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1 Introduction

A multitude of exotic hadrons has been unearthed in the last two decades [1–8], sparking
interest in providing first-principles predictions of their properties through quantum chromo-
dynamics (QCD). Despite the theoretical suitability of lattice QCD for such endeavors, its
practical application encounters limitations due to the extensive array of open decay modes
associated with many of these exotic resonances.

In this work we address one particular limitation of the formalism that has been derived
to date [9–33], namely the restriction to a single three-particle channel [11, 12, 14, 16, 17],
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or to several degenerate such channels [23, 34]. In particular, we consider a system with
two distinct three-particle channels, although the generalization to multiple such channels is
straightforward. This is a step on the way to a completely general formalism that includes
channels with two, three and more particles.1

To have a concrete system to discuss, we consider the b1(1235) and η(1295) resonances
in isosymmetric QCD. These have quantum numbers IG(JP C) = 1+(1+−) and 0+(0−+), and
in particular have positive G parity and unnatural JP . These resonances decay into two
three-particle channels, namely KKπ and ππη, as well as into 4π modes. They cannot decay
to two pions (a channel having natural JP ) or to three pions (due to G parity). Thus, if we
neglect the four pion modes, and also the other kinematically allowed channels that have
not yet been observed in the decays of these resonances (6π, 8π, 4π + η), this is a system
that has our desired property of two different three-particle channels.2

In this work we make the desired generalization using the generic relativistic field-theoretic
(RFT) approach to the derivation of three-particle formalism [11, 12]. In particular, we use
the method of derivation based on time-ordered perturbation theory (TOPT) introduced
in ref. [24]. The formalism we obtain is a synthesis of methodologies developed previously
for three distinct particles [28], for 2 + 1 systems (comprising two identical and one dis-
tinct particle) [30], for three pions of arbitrary isospin [23], and for the doubly-charmed
tetraquark [34]. We avoid repeating steps in the derivation that are presented in these works
to the extent possible while retaining readability.

This paper is organized as follows. In the following section, section 2, we introduce the
two-channel system that we study, and point out the pertinent general features. The core
of this paper is section 3, in which we derive the multichannel three-particle quantization
condition, following what are now fairly standard steps in the TOPT approach. The only
new feature is the projection onto the sector of positive G parity, discussed in section 3.8.
Since the ππη and KKπ channels have substantially different thresholds, one can ask how
the two-channel formalism reduces to that for a single channel as one drops below the
upper (KKπ) threshold. We address this in section 4. Practical applications require the
use of parametrizations of the three-particle K matrix, and we describe in section 5 how
symmetries constrain the allowed forms. We conclude in section 6. Various technical details
are collected into seven appendices.

2 Overview

The total isospin of both KKπ and ππη channels can be I = 0, 1, or 2. Although resonances
are present only for the first two of these values, we derive the formalism for all three
choices. All three can be accessed by studying the sector with quantum numbers I3 = 0,

1We note that the formalism that includes channels with both two and three particles has been derived
in ref. [13], but this is restricted to the case in which all the particles are spinless and identical. Another
approach to the “2 + 3” case has recently been proposed for the D∗D + DDπ system in ref. [34].

2The b1 resonance has been studied using lattice QCD for heavier-than-physical quark masses such that
Mπ ≈ 390 MeV, in which case it decays primarily to the two-particle channel πω, and thus can be analyzed
using the two-particle quantization condition [35].
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U = 0, D = 0, S = 0.3 There are six different flavor channels with these quantum numbers,{
K+(k1)K0(k2)π−(k3), K+(k1)K−(k2)π0(k3), K0(k1)K0(k2)π0(k3),

K0(k1)K−(k2)π+(k3), π+(k1)π−(k2)η(k3), π0(k1)π0(k2)η(k3)
}

,

(2.1)

where we include momentum labels for later use. These decompose into isospin as the I3 = 0
components of the following seven channels,

I = 2 : a) [[KK̄]1π]2, b) [[ππ]2η]2 ;
I = 1 : a) [[KK̄]1π]1, b) [[KK̄]0π]1, c) [[ππ]1η]1 ;
I = 0 : a) [[KK̄]1π]0, b) [[ππ]0η]0 ;

(2.2)

where the subscripts indicate isospin, and the momentum labels are implicitly ordered as in
eq. (2.1): k1, k2, and k3. The increase from six to seven dimensions arises because, when
decomposing under isospin, the symmetric and antisymmetric parts of π+π− are treated
separately. The relation between the isospin and flavor bases, which will be needed in the
subsequent discussion, is given in appendix A.

In order to avoid mixing with the three-pion channel, we must restrict the states to
have G = +. This is automatic for the ππη channel, but not for KKπ, which can have
either G parity. This restriction can be implemented by applying relations between the
four KKπ flavor channels in eq. (2.1), or equivalently upon the corresponding four channels
in eq. (2.2). It is simpler to state the restrictions for the latter:4 To have overall G = +,
the KK pairs must have G = −. This implies that [KK̄]1 pairs must be symmetric under
k1 ↔ k2 (and thus have only even relative angular momentum), while [KK̄]0 pairs must be
antisymmetric (implying odd relative angular momentum). This follows because the action
on kaons of G = Ce−iπIy (where C is the charge conjugation operator and Iy the second
component of isospin) is K+ → K

0, K0 → −K−, K
0 → −K+, and K− → K0. Here we have

used the result that the kaon isodoublets are (K+, K0) and (−K
0
, K−). Thus, for example,

[KK̄]0 ∝ K+K− + K0K
0, which under G transforms to K

0
K0 + K−K+. Since the K and

K are interchanged, to obtain a negative G parity the relative spatial wavefunction must be
antisymmetric. We stress that G parity is an exact symmetry of lattice QCD if mu = md, so
that these considerations apply without approximation to the results of simulations.

In the derivation that follows, we will implicitly assume that these restrictions have been
applied, so that only G = + states are present. We will not explicitly apply these restrictions
until after the final form has been obtained. Having the restrictions (implicitly) in place
allows us to neglect mixing with the 3π channel. We stress that it would be straightforward,
though tedious, to include this channel as a third three-particle state. This would result in a
separate formalism describing the 3π and odd-G-parity KKπ system, since G parity is an

3We have also checked the final results by considering the channels with I3 = 1 and 2, which contain,
respectively, total isospins I = 1, 2 and I = 2.

4For completeness we note that the restrictions on the channels in eq. (2.1) are as follows: the first and
fourth must be symmetric under k1 ↔ k2, as must the difference between the second and third channels,
while the sum of the second and third channels must be antisymmetric under k1 ↔ k2.
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exact symmetry of isosymmetric QCD. We choose not to do so in order to keep the focus
on the essential new features that arise when there are additional three-particle channels,
and to avoid cumbersome expressions.

As noted in the introduction, the b1(1235) and η(1295) do not couple to ππ states,
because these resonances have unnatural JP . However, coupling between ππη or KKπ and
ππ states is possible for natural JP other than 0+. For example, two pions in a p-wave
combined with an η in a relative p-wave leads to an overall JP = 1−, which can mix with
two pions. In finite volume, the rotation group is broken to a finite subgroup, with parity not
being a good symmetry in moving frames. Thus mixing with two-pion states is allowed in any
finite-volume irreducible representations (irreps) into which natural JP values are subduced.
Therefore, in the following, we implicitly assume that we are using irreps into which only
unnatural JP values are subduced, thus avoiding the mixing with two-pion states. It is
straightforward to determine which irreps these are, using, for example, the group-theoretical
results presented in ref. [36]. For the rest frame, where parity is a good symmetry, we can
use the A1u, T1g, A2g, Eu, and T2u irreps, with the first two, respectively, picking out the
η(1295) and b1(1235) quantum numbers. In other frames, we can only use the A2 irrep,
which couples to both the η(1295) and b1(1235), except for the following caveat. For frames
with momenta of the form {0, 0, n}, {0, n, n}, {n, n, n}, {n, n, m}, and {n, m, 0}, natural JP

values do appear in the A2 irrep, but only starting at 4+, 2+, 3−, 1− and 1−, respectively.
Thus we can only use these frames if we assume that the mixing is small in the corresponding
values of JP . This appears most reasonable for the {0, 0, n} and {n, n, n} frames.

3 Derivation of quantization condition

We follow the TOPT approach introduced in ref. [24], a work hereafter referred to as BS1. In
particular, we make extensive use of the results for three distinguishable particles (derived
in ref. [28], referred to as BS3 henceforth) and for “2+1” systems (ref. [30], referred to as
BS2). We use Minkowski time and confine space within a cubic box of side-length L with
periodic boundary conditions. The starting point is the finite-spatial-volume Minkowski-space
correlation matrix,

ĈL(P )jk ≡
∫

dx0
∫

L3
d3x e−iP ·x+iEt⟨0|TOj(x)O†k(0)|0⟩L , (3.1)

where the indices i and j run over the six flavors given in eq. (2.1), with Oj(x) being any
quasilocal operator possessing the appropriate quantum numbers to annihilate states with
flavor j, coupling with all allowed irreducible representations of the cubic group. The overall
momentum vector P is constrained by the boundary conditions to lie in the finite volume
set 2πn/L, where n ∈ Z3.

For a specified P , the energies of finite-volume states are determined by the poles of CL as
a function of E. Our derivation will hold in a kinematic range where the only relevant on-shell
states are ππη and KKπ, the thresholds for which are Mππη ≈ 820 and MKKπ ≈ 1130 MeV,
respectively, for physical quark masses. For the heavier-than-physical quark masses often used
in present lattice simulations of multiparticle states, the two channels will lie closer together,
since the pion mass rises more rapidly with increasing quark mass than those of the kaon or
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η. Since we are restricting ourselves to positive G parity, and to irreps that do not mix with
ππ states, the other potentially relevant channels are 4π, 6π, 8π, 4π + η, 6π + η and KKππ.
As noted in the introduction, we will neglect the coupling to these channels, but keep in mind
that, in a practical application of our formalism, this approximation will become increasingly
inaccurate as the energy increases. We expect the range of approximate applicability to be

Mππη − 2Mπ = Mη < E∗ =
√

E2 − P 2 < MKKπ + Mπ . (3.2)

Here the lower limit is set either by the presence of the single η intermediate state (for the
I = 0 channel), or, more generally, by the closing of the ππ subchannel at the left-hand
cut due to two-pion exchange.

3.1 All orders expression obtained using TOPT

Through a straightforward extension of the work in BS2 and BS3, we can express the finite-
volume-dependent part of CL in the relevant kinematic range as a geometric series. This
series involves TOPT Bethe-Salpeter kernels B2,L and B3 situated between cut factors, D,
that carry the singularities associated with three-particle states:

∆CL ≡ CL − C(0)
∞ = A′iD

1
1− i(B2,L + B3)iDA +O(e−MπL), . (3.3)

Here, A′ and A represent endcaps, encompassing all diagrams connecting the operators
Oj and O†k to a three-particle intermediate state, while C

(0)
∞ is the contribution devoid of

three-particle intermediate states. All quantities in eq. (3.3) are matrices, spanning both
flavor space and momentum space. Momentum indices are denoted as {k} = {k1, k2, k3},
with the triplets of finite-volume momenta constrained by k1 + k2 + k3 = P . The derivation
of eq. (3.3) relies on the fact that finite-volume momentum sums of nonsingular summands
can be replaced by the corresponding infinite-volume integrals, with corrections exponentially
suppressed in MπL [37]. Throughout this derivation, such corrections are assumed negligible,
and will be omitted from subsequent expressions. A key consequence of this assumption is
that the Bethe-Salpeter kernels, the endcaps, and C

(0)
∞ are infinite-volume quantities, aside

from a trivial L dependence in B2,L to be described below.
We now describe the remaining quantities present in eq. (3.3), starting with the cut

factors. These are diagonal in flavor and take the form

D = diag(D0, D0, D0, D0, D0, 1
2D0) , (3.4)

where D0 and D0 are standard TOPT energy denominators,

D0 = δ{p}{k}
1

L6
1

8ω1ω2ω3

1
E − ω1 − ω2 − ω3

, (3.5)

D0 = δ{p}{k}
1

L6
1

8ω′1ω′2ω′3

1
E − ω′1 − ω′2 − ω′3

. (3.6)

Here ωi ≡ ωpi =
√

p2
i + M2

i and ω′i ≡ ωpi =
√

p2
i + M ′

i
2 are single-particle energies, with

Mi drawn from the ordered set {MK , MK , Mπ}, and M ′
i drawn from {Mπ, Mπ, Mη}. The

momentum-space Kronecker delta δ{p}{k} is shorthand for

δ{p}{k} = δp1k1δp2k2δp3k3 . (3.7)
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Note that in the final entry of D, which corresponds to the 2+1 system π0π0η, the factor
of D0 is accompanied by a symmetry factor of 1/2.

The appearance of two different cut factors, i.e. D0 and D0, which have singularities
at different energies, is the first new feature due to the presence of multiple three-particle
channels. This presents no obstacle to deriving the all-orders result eq. (3.3)— one simply
has to keep both types of cut factor explicit.

Next we consider the matrix B2,L, which contains two-particle Bethe-Salpeter kernels,
denoted, using calligraphic font, as B2. These kernels are defined as sums over all TOPT
diagrams contributing to two-to-two processes that lack two-particle cuts in the s channel. In
these diagrams, all momentum sums are replaced by integrals, rendering them infinite-volume
quantities. Extending the analysis from BS2 and BS3, we arrive at the following block
form for the flavor structure,

B2,L =
(

B11 B12
B21 B22

)
(3.8)

where

B11 =



B2,L(K+K
0←K+K

0)
+B2,L(K+π−←K+π−)
+B2,L(K

0
π−←K

0
π−)

B2,L(K0
π−←K−π0) B2,L(K+π−←K0π0) 0

B2,L(K−π0←K
0
π−)

B2,L(K+K−←K+K−)
+B2,L(K+π0←K+π0)
+B2,L(K−π0←K−π0)

B2,L(K+K−←K0K
0) B2,L(K+π0←K0π+)

B2,L(K0π0←K+π−) B2,L(K0K
0←K+K−)

B2,L(K0K
0←K0K

0)
+B2,L(K0π0←K0π0)
+B2,L(K

0
π0←K

0
π0)

B2,L(K0
π0←K−π+)

0 B2,L(K0π+←K+π0) B2,L(K−π+←K
0
π0)

B2,L(K0K−←K0K−)
+B2,L(K0π+←K0π+)

+B2,L(K−π+←K−π+)


,

(3.9)

B12 =


B2,L(K+K

0←π+η) 0

0 B2,L(K+K−←π0η)SD

0 B2,L(K0K
0←π0η)SD

B2,L(K0K−←π−η) 0

 , (3.10)

B21 =

B2,L(π+η←K+K
0) 0 0 B2,L(π−η←K0K−)

0 SDB2,L(π0η←K+K−) SDB2,L(π0η←K0K
0) 0

 ,

(3.11)

and

B22 =


B2,L(π+η←π+η)

+B2,L(π−η←π−η)
+B2,L(π+π−←π+π−)

B2,L(π+π− ← π0π0)

B2,L(π0π0 ← π+π−) SDB2,L(π0η←π0η)SD

+B2,L(π0π0←π0π0)

 . (3.12)

The texture of nonzero entries is dictated by the two-particle interactions capable of inducing
the necessary changes in flavor composition. For instance, the top-right entry in B12 vanishes
because there are no two-particle interactions that connect K+K

0
π− to π0π0η, since all

three particles must change.
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The form of the individual entries in B2,L is exemplified by

B2,L(π0η ← K+K−){p},{k} = 2ωp2L3δp2k3B2[π0(p1)η(p3)← K+(k1)K0(k2)] , (3.13)

which appears in the lower row of B21. The explicit L dependence arises from keeping track
of TOPT propagator factors. The single momentum Kronecker-delta arises because one of
the particles spectates (here, one of the π0s). Note that we have chosen the π0 particle in the
final state of the scattering to be that with momentum p1. The other possible choice, p2,
is included by the factor of SD, a symmetrization operator defined as

SD = 1 + P D , 1 = δ{p},{k} , P D = δp1k2δp2k1δp3k3 . (3.14)

In words, P D interchanges the first two momenta. All other entries in B2,L have a similar form,
with the choice of spectator momenta depending on the flavors involved in the two-particle
scattering, and factors of SD appearing when a single π0 is involved in the scattering.

To complete the description, it remains to define B3. The entries in this flavor matrix are
the sum over all TOPT diagrams connecting initial and final flavors with no three-particle cuts.
Momentum sums are replaced by integrals, rendering all entries infinite-volume quantities.
The only properties of B3 that we will need are that it conserves isospin and is symmetric
under interchanges of identical particles in either the initial or final states.

3.2 On-shell projection

The next step is to project the kernels and endcaps on either side of each cut factor in eq. (3.3)
on shell, using the approach of BS1. The new feature due to having two three-particle
channels is that the kinematic details of on-shell projection differ for the two types of cut.
This is straightforward to implement.

As explained most extensively in BS2, a convenient first step is to relocate the sym-
metrization operators from the Bethe-Salpeter kernels into the cut factors D. This can be
accomplished by following the same steps as in BS2, leveraging the symmetry under exchange
of two identical particles. We first pull out the factors of SD in B2,L by writing

B2,L = S̃DB̃2,LS̃D , (3.15)

where
S̃D ≡ diag(1, 1, 1, 1, 1, SD) . (3.16)

B̃2,L contains no factors of SD and will be given explicitly below. Next, we introduce a
rescaling matrix

R = diag(1, 1, 1, 1, 1, 1
2) , (3.17)

such that the following identities hold

A = S̃DRA , A′ = A′RS̃D , B3 = S̃DRB3RS̃D . (3.18)

These follow from the invariance under the interchange of the two π0s, with the factor of
1/2 in the last slot of R cancelling the double counting introduced by applying SD. Then
we can rearrange the volume-dependent part of the correlator into the form

∆CL = Ã′iDS
1

1− i(B̃2,L + B̃3)iDS

Ã , (3.19)
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where

DS = S̃DDS̃D = diag(D0, D0, D0, D0, D0, 1
2SDD0SD) , (3.20)

and
B̃3 = RB3R , Ã′ = A′R , Ã = RA . (3.21)

The explicit form of B̃2,L is

B̃2,L =
(

B11 B̃12
B̃21 B̃22

)
, (3.22)

where the top-left block is unchanged from B2,L, eq. (3.9), the off-diagonal blocks B̃12 and B̃21
are given by eq. (3.10) and eq. (3.11), respectively, except with the factors of SD removed, and

B̃22 =


B2,L(π+η←π+η)

+B2,L(π−η←π−η)
+B2,L(π+π−←π+π−)

1
2B2,L(π+π− ← π0π0)

1
2B2,L(π0π0 ← π+π−)

B2,L(π0η←π0η)
+ 1

4B2,L(π0π0←π0π0)

 . (3.23)

With the form eq. (3.19) in hand, we can now apply the on-shell projection and resum-
mation methodology of BS1. The on-shell projection changes the momentum indices into the
standard {kℓm} coordinates of the three-particle formalism. This involves picking a spectator
particle, whose momentum is k (chosen from the finite-volume set), and then projecting
the remaining pair onto spherical harmonics in their rest frame (with components labeled
by ℓm). As detailed in BS3, for channels with three distinct particles, and in particular
the KKπ channels, this leads to an enlargement in the flavor space by a factor of three,
corresponding to the three possible choices of spectator. For the 2 + 1 channel π0π0η, the
enlargement factor is two, corresponding to the two choices of spectator, as explained in BS2.
The only exception to this counting is the π+π−η channel, where it is preferable to enlarge by
four rather than three by decomposing the π+π− pair into parts with even and odd relative
partial waves. This facilitates the decomposition into isospin channels, and borrows from
the work of ref. [34] on the doubly-charmed tetraquark.

The result of these enlargements is a flavor matrix of dimension 3 + 3 + 3 + 3 + 4 + 2 = 18.
Each index corresponds to a choice of spectator together with a choice of “primary” member
of the pair, i.e. that with respect to which the spherical harmonic decomposition is defined.
The ordering we use is{

[K+K
0]π−, [K+π−]K0

, [K0
π−]K+, [K+K−]π0, [K+π0]K−, [K−π0]K+,

[K0K
0]π0, [K0π0]K0

, [K0
π0]K0, [K0K−]π+, [K0π+]K−, [K−π+]K0,

[π+π−]eη, [π+π−]oη, [π+η]π−, [π−η]π+, [π0π0]η, [π0η]π0
}

, (3.24)

where in each case the pair is enclosed in square brackets, with the primary member appearing
first, while the third entry corresponds to the spectator. The subscripts e and o refer to
even and odd partial waves, respectively. Note that we have adopted the convention that the
primary member of the pair is defined with a priority order given by {K, K, π±, π0, η}.
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On-shell projection converts cut factors into either F or G cuts, depending on whether
the spectator is unchanged or not. We adhere to the prescriptions presented in BS2 and BS3,
slightly generalized to handle flavor off-diagonal terms following ref. [34], and obtain

∆CL = Â′iF̂G
1

1− i(K̂2,L + K̂(u,u)
df,3 )iF̂G

Â . (3.25)

We now proceed to explain the elements of this result.
The cut-factor matrix F̂G has block-diagonal form,

F̂G = diag
(
F 1+1+1

G , F 1+1+1
G , F 1+1+1

G , F 1+1+1
G , F 4d

G , F 2+1
G

)
, (3.26)

with entries

F 1+1+1
G =

 F̃ π PℓG̃
πKPℓ G̃πKPℓ

PℓG̃
KπPℓ F̃ K G̃KK

PℓG̃
Kπ G̃KK F̃ K

 . (3.27)

F 4d
G =


PeF̃ ′ηPe 0 PeG̃′ηπPℓ PeG̃′ηπPℓ

0 PoF̃ ′ηPo −PoG̃′ηπPℓ PoG̃′ηπPℓ

PℓG̃
′πηPe −PℓG̃

′πηPo F̃ ′π G̃′ππ

PℓG̃
′πηPe PℓG̃

′πηPo G̃′ππ F̃ ′π

 , (3.28)

F 2+1
G =

(
PeF̃ ′ηPe

√
2PeG̃′ηπPℓ√

2PℓG̃
′πηPe F̃ ′π + G̃′ππ

)
. (3.29)

The standard kinematic functions F̃ i and G̃ij are defined in appendix B. Those with a prime
have the ππη cut, while those without have the KKπ cut. The factors of

P
(ℓ)
p′ℓ′m′;pℓm = δp′pδℓ′ℓδm′m(−1)ℓ (3.30)

are needed to correct for mismatches in the conventions for primary spectator between F̃ i

and G̃ij . For example, in the upper-right element of F 1+1+1
G , the final-state spectator is the

pion, and thus in G̃πK the initial-state Kπ pair is decomposed in harmonics relative to the
pion direction. This conflicts with our standard convention, requiring a factor of Pℓ to the
right (initial-state) side of G̃Dπ. The factors of Pe = (1 + Pℓ)/2 and Po = (1− Pℓ)/2 project,
respectively, onto even and odd partial waves. Finally, we stress that neither F̃ i nor G̃ij

contain symmetry factors; the only symmetry factors here are the occurrences of
√

2 in F 2+1
G .

Next we discuss K̂2,L, which contains the two-particle K matrices, and arises from
summing products of factors of B̃2,L sewn together with principal-value-regulated integrals
over phase space. An explicit formula can be given by generalizing results in BS2 and BS3,
but will not be displayed as it is not needed in the following. The structure of K̂2,L is
straightforward: there are nonzero entries whenever two channels have a shared spectator.
For example, the {1, 1} entry involves K+K

0 ← K+K
0 scattering with a π− spectator,

and has the explicit form[
K̂2,L

]
1k′ℓ′m′,1kℓm

= δk′k2ωkπ L3δℓ′ℓδm′mKℓ
2(K+K

0 ← K+K
0) . (3.31)
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The superscript on Kℓ
2 indicates the partial wave, and this quantity has an implicit dependence

on the relative momentum in the center-of-momentum frame (CMF) of the scattering pair.
An example of an offdiagonal element is that in the {3, 6} slot,[

K̂2,L

]
3k′ℓ′m′,6kℓm

= δk′k2ωkK
L3δℓ′ℓδm′mKℓ

2(K0
π− ← K−π0) . (3.32)

The complete set of nonzero entries of K̂2,L is provided in appendix C.
The matrix K̂(u,u)

df,3 is algebraically related to the quantities discussed above, including
B3 in particular, but again we do not display the result as it is not needed in the following.
All that is essential to know about K̂(u,u)

df,3 is that it is an infinite-volume quantity, devoid of
any singularities associated with three-particle intermediate states, and with nonzero entries
in all elements. The (u, u) superscript indicates that it is an unsymmetrized quantity, the
precise meaning of which we will explain in section 3.4 below.

Finally, the relation between the new endcaps Â′ and Â (which are, respectively, 6× 18
and 18× 6 matrices) to the earlier endcaps is known, but not needed in the following. Indeed,
we will not keep detailed track of changes to the endcaps in the subsequent manipulations.

Below, we will need to convert 18-dimensional matrices in the {kℓm} basis (such as
K̂(u,u)

df,3 ) into 6-dimensional matrices in the original index space given by eq. (2.1) and labeled
by triplets of momenta {p}. Thus we need to recombine the different choices of spectator
flavor, and convert from the {kℓm} basis to the momentum basis. A convenient notation
for formalizing the basis conversion was introduced in ref. [34], and we recall this notation
in appendix B. It involves operators X σ

[kab], defined in eq. (B.12), that act from the left on
objects with {kℓm} indices, as well as the conjugate operators that act from the right. In
term of this, the conversion from an 18-d matrix M

(18)
ch to a 6-d matrix M

(6)
ch , both in the

charge basis, is accomplished by conjugation

M
(6)
ch = C ◦M

(18)
ch ◦ C† , (3.33)

where C is a 6 × 18 matrix of operators with block form

C =



X (3) 0 0 0 0 0
0 X (3) 0 0 0 0
0 0 X (3) 0 0 0
0 0 0 X (3) 0 0
0 0 0 0 X (4) 0
0 0 0 0 0 SDX (2)


, (3.34)

where

X (3) ≡
(
X (312)

[kab] , X (213)
[kab] , X (123)

[kab]

)
,

X (4) ≡
(
X (312)

[kab] Pe, X (312)
[kab] Po, X (213)

[kab] , X (123)
[kab]

)
,

X (2) ≡
(√

1
2X (312)

[kab] , X (123)
[kab]

)
.

(3.35)

The choices of superscripts in these vectors determines which momentum is assigned to each
particle. The fixed subscript on these objects, [kab], indicates that the first superscript index
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corresponds to k, the spectator; the second to a, the preferred partner in the interacting
pair; and the third to b, the remaining partner. This ordering follows from the choices in
eq. (2.1) as well as the conventions for momentum labels in eq. (3.24). The a and b that
appear here should not be confused with those appearing in eq. (2.2), which label distinct
isospin channels. The symmetry factor of

√
1/2 is explained in BS2, and the appearance

of SD follows from eq. (3.15).
We stress, as explained in BS2 and ref. [34], that this conversion is only precise in the

L → ∞ limit; this, however, will be sufficient for our purposes in the following.

3.3 Converting to the total isospin basis

We now convert to the total isospin basis. We choose the following ordering,{
[[KK̄]1π]2, [[Kπ]3/2K̄]2, [[K̄π]3/2K]2, [[ππ]2η]2, [[πη]1π]2,

[[KK̄]1π]1, [[KK̄]0π]1, [[Kπ]3/2K̄]1, [[Kπ]1/2K̄]1, [[K̄π]3/2K]1, [[K̄π]1/2K]1,

[[ππ]1η]1, [[πη]1π]1,

[[KK̄]1π]0, [[Kπ]1/2K̄]0, [[K̄π]1/2K]0, [[ππ]0η]0, [[πη]1π]0
}

(3.36)

where, as before, the final entry corresponds to the spectator, and the first entry to the
primary particle in the pair. The first five elements have I = 2, the next eight have I = 1,
and the final five have I = 0. Since isospin is an exact symmetry in our setup, we must
find that all matrices block diagonalize according to isospin.

The unitary matrix C
(18)
ch→iso that converts between bases is given in appendix E. We insert

[C(18)
ch→iso]−1C

(18)
ch→iso = 1 between all matrices in eq. (3.25), such that each of these matrices is

converted to the isospin basis by conjugation, as in eq. (E.1), while the endcaps are rotated.
We simplify notation by using the same symbols for all quantities after conversion to the
isospin basis, so that the result for ∆CL maintains exactly the form of eq. (3.25).

After conjugation, the matrices F̂G, eq. (3.26), and K̂2,L, given in appendix C, are indeed
found to be block digaonal in isospin. The explicit forms are given below in the summary
section, section 3.5. As for K̂(u,u)

df,3 , all we know is that it must be block diagonal, but is
otherwise of general form, aside from certain symmetry constraints. We postpone discussion
of its form until we reach its symmetrized version below.

At this point we observe that ∆CL has a pole, corresponding to a finite-volume energy
level, whenever

det
[
1 + (K̂2,L + K̂(u,u)

df,3 )F̂G

]
= 0 . (3.37)

This is the asymmetric form of the three-particle quantization condition, and has the standard
form first given in BS1. It has potential utility as a bridge to quantization conditions derived
in the finite-volume unitarity approach [17], as outlined in ref. [25]. We note that the presence
of two three-particle channels leads to F̂G having two types of free-particle singularities, and
to the presence of additional channels in the two- and three-particle K matrices.

3.4 Expressing results in terms of symmetrized quantities

The drawback of the quantization condition eq. (3.37) is that it contains a three-particle K
matrix, K̂(u,u)

df,3 , that is asymmetric. As discussed in detail in BS1, BS2 and BS3, the elements
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of this matrix are defined by summing an infinite series of products of Bethe-Salpeter kernels,
such that, if the external kernel is a B2, then the noninteracting particle is always the
spectator. This means that only a subset of the total number of diagrams are being included.
In this section we use the method developed in BS1, and extended in BS2 and BS3, to
“symmetrize” the three-particle K matrix, by which we mean combining contributions such
that all diagrams are included.

The method is most straightforwardly implemented on a different finite-volume quantity
than CL, namely M23,L,off . This is a finite-volume 3 → 3 correlation function involving
external single-particle legs at fixed momenta (drawn from the finite-volume set). External
TOPT propagators are amputated, and final and initial times are sent to ±∞, respectively.
The subscript “23” indicates that this quantity contains not only fully-connected contributions,
but also those in which one of the three particles spectates while the others interact. (A more
detailed explanation is given in figure 2 of BS3.) The subscript “off” indicates that this is an
off-shell amplitude because the energy E does not, in general, equal the sum of the external on-
shell energies. UsingM23,L,off also allows the determination of the integral equations relating
the three-particle K matrix to the infinite-volume three-particle scattering amplitude, M3.

Just as for CL, M23,L,off is a 6 × 6 matrix in flavor space, with the channels those of
eq. (2.1). It also has momentum indices {k}. Following the arguments in BS2 and BS3,
it has the form

M23,L,off = (B2,L + B3) 1
1− iDi(B2,L + B3) , (3.38)

= S̃D(B̃2,L + B̃3) 1
1− iDSi(B̃2,L + B̃3)

S̃D , (3.39)

where the quantities are the same as those appearing in CL. In the second step we have
moved symmetrization factors onto the Ds. We observe that the correlator can be written
in terms of M23,L,off [24]

∆CL = A′iDSA + A′iDSiM23,L,offiDSA . (3.40)

This implies that poles in M23,L,off can also be used to determine the finite-volume en-
ergy levels.

As in the analysis of CL, we next introduce additional matrix indices as above to convert
to 18-d matrix forms, and then project on shell (so that the subscript “off” is dropped).
There then follows a series of steps that are essentially exact copies of those used in BS2,
BS3 and ref. [34], and which we do not reproduce here. These involve tedious algebra, plus
the use of symmetrization identities. The end result is that

M23,L = C ◦ M̂(u,u)
23,L ◦ C† ,

M̂(u,u)
23,L = M̂2,L + D̂(u,u)

L + M̂(u,u)′
df,3,L ,

(3.41)

where

M̂2,L = K̂2,L
1

1− iF̂ iK̂2,L

. (3.42)

D̂(u,u)
L = −M̂2,LĜM̂2,L

1
1 + ĜM̂2,L

, (3.43)
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M̂(u,u)′
df,3,L =

[1
3 − D̂

(u,u)
23,L F̂

]
K̂df,3

1
1 + F̂3K̂df,3

[1
3 − F̂ D̂(u,u)

23,L

]
, (3.44)

D̂(u,u)
23,L = M̂2,L + D̂(u,u)

L (3.45)

F̂3 = F̂

3 − F̂
1

(K̂2,L)−1 + F̂G

F̂ . (3.46)

The quantities in these expressions are the same as earlier, with C given in eq. (3.34). We
have also used the decomposition

F̂G = F̂ + Ĝ , (3.47)

where F̂ and Ĝ contain, respectively, only the F̃ and G̃ terms contributing to F̂G, whose
form is given in eqs. (3.26)–(3.29).

Various features of eq. (3.41) deserve discussion. First, it was noted earlier that M23,L

includes disconnected contributions. These lead to the M̂2,L term, which should be subtracted
to obtain the fully connected M3,L. Second, the operators C and C† in eq. (3.41) serve to
symmetrize M̂(u,u)

23,L in the sense discussed earlier in this section, namely adding together all the
terms that contribute to the finite-volume amplitude. However, as noted when these operators
were defined, their action leads to terms that can be added only in the infinite-volume limit.
While sufficient for deriving integral equations for M3, as we do below, this is problematic if
one wishes to use the expression eq. (3.41) in finite volume. This brings us to the third point,
which is that in BS1, BS2 and BS3, building on the work of refs. [11, 12], symmetrization
operators were introduced that can be used in finite volume. The net effect is that an equation
of similar form to eq. (3.41) can be written, with C and C† replaced by these new operators,
and effectively inserted into eq. (3.40). This implies that this properly symmetrized M23,L is
part of a finite-volume correlator, and thus its poles determine the finite-volume energies.
Only the third term in M23,L, namely M̂(u,u)′

df,3,L, can lead to such poles, since three-particle
energies must depend on the three-particle K matrix. This allows us to read off a new form
of the quantization condition, as is done in the following section.

The fourth feature of eq. (3.41) concerns the nature of K̂df,3. As indicated by the
absence of the (u, u) superscript, this is a symmetrized quantity. This follows from the
derivation given in BS1, BS2 and BS3. In particular, for a given choice of external particles,
all contributions are included in its definition. Different choices of spectator flavors lead
to different decompositions into {kℓm} indices, but the underlying quantity is the same.
This is not the case for K̂(u,u)

df,3 . A particularly explicit discussion of this point is given in
appendix A of BS2.

Finally, we note that we are free to rotate from the charge basis to the isospin basis,
leaving the form of all equations unchanged. In the following, we assume that this rotation
has been carried out.

3.5 Symmetric form of three-particle quantization condition

As just discussed, the poles in M̂(u,u)′
df,3,L correspond to finite-volume energy levels. This implies

a second form for the quantization condition,5

det
[
1 + F̂3K̂df,3

]
= 0 , (3.48)

5As shown in appendix G, one can also derive this form directly from the asymmetric form of the
quantization condition.
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where F̂3 is given in eq. (3.46). This result takes the standard form for all quantization
conditions obtained previously in the RFT approach [11, 13, 18, 23, 28, 30, 34, 38]. We call
this the symmetric form, as it contains a symmetrized three-particle K matrix. Given that
this minimizes the number of independent components of Kdf,3, it is the simplest form of
the quantization condition to implement in practice.

Since all matrices contained in the quantization condition block diagonalize in isospin,
we can solve the condition separately for each block. This leads to our final form

det
[
1 + F̂

[I]
3 K̂

[I]
df,3

]
= 0 , (3.49)

for I = 2, 1, 0, with

F̂
[I]
3 = F̂ [I]

3 − F̂ [I] 1
(K̂[I]

2,L)−1 + F̂
[I]
G

F̂ [I] . (3.50)

We collect here the explicit forms for the isospin blocks, beginning with those for I = 2,

F̂
[I=2]
G =

(
F 1+1+1

G 0
0 F 2+1

G

)
(3.51)

K̂[I=2]
2,L =



KKK̄,I=1
2,L 0 0 0 Kπη↔KK̄,I=1

2,L

0 KKπ,I=3/2
2,L 0 0 0

0 0 KKπ,I=3/2
2,L 0 0

0 0 0 1
2K

ππ,I=2
2,L 0

Kπη↔KK̄,I=1
2,L 0 0 0 Kπη,I=1

2,L


(3.52)

The subblocks in F 1+1+1
G and F 2+1

G are given in eqs. (3.27) and (3.29), respectively. The
elements of K̂[I=2]

2,L contain the underlying two-particle K matrix along with kinematic factors,
and are defined in appendix B. The structure of these matrices follows from the ordering
of indices given in eq. (3.36), with the I = 2 part given by

{
[[KK̄]1π]2, [[Kπ]3/2K̄]2, [[K̄π]3/2K]2, [[ππ]2η]2, [[πη]1π]2

}
. (3.53)

In particular, the diagonal entries of K̂[I=2]
2,L correspond to the scattering of the pair, with

a symmetry factor of 1/2 for the identical particle case, while the offdiagonal entry is that
for which there is a common spectator particle.

The results for the I = 0 blocks are similar to those for I = 2, as expected because
of the similarity of the corresponding indices,

{
[[KK̄]1π]0, [[Kπ]1/2K̄]0, [[K̄π]1/2K]0, [[ππ]0η]0, [[πη]1π]0

}
. (3.54)

– 14 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
3

We find

F̂
[I=0]
G =

(
F

1+1+1
G 0

0 F 2+1
G

)
(3.55)

K̂[I=0]
2,L =



KKK̄,I=1
2,L 0 0 0 Kπη↔KK̄,I=1

2,L

0 KKπ,I=1/2
2,L 0 0 0

0 0 KKπ,I=1/2
2,L 0 0

0 0 0 1
2K

ππ,I=0
2,L 0

Kπη↔KK̄,I=1
2,L 0 0 0 Kπη,I=1

2,L


, (3.56)

where

F
1+1+1
G =

 F̃ π −PℓG̃
πKPℓ −G̃πKPℓ

−PℓG̃
KπPℓ F̃ K G̃KK

−PℓG̃
Kπ G̃KK F̃ K

 (3.57)

differs from F 1+1+1
G , given in eq. (3.27), by signs in some of the offdiagonal terms.

Finally, for I = 1, for which the indices are

{
[[KK̄]1π]1, [[KK̄]0π]1, [[Kπ]3/2K̄]1, [[Kπ]1/2K̄]1, [[K̄π]3/2K]1, [[K̄π]1/2K]1,

[[ππ]1η]1, [[πη]1π]1
}

, (3.58)

we obtain

F̂
[I=1]
G =

(
F

(6)
G 0
0 F

2+1
G

)
(3.59)

where

F
2+1
G =

(
PeF̃ ′ηPe −

√
2PeG̃′ηπPℓ

−
√

2PℓG̃
′πηPe F̃ ′π − G̃′ππ

)
, (3.60)

which differs from F 2+1
G , eq. (3.29), by several signs, and

F
(6)
G =



F̃ π 0 −
√

1
3 PℓG̃

πKPℓ

√
2
3 PℓG̃

πKPℓ −
√

1
3 G̃πKPℓ

√
2
3 G̃πKPℓ

0 F̃ π
√

2
3 PℓG̃

πKPℓ

√
1
3 PℓG̃

πKPℓ −
√

2
3 G̃πKPℓ −

√
1
3 G̃πKPℓ

−
√

1
3 PℓG̃

KπPℓ

√
2
3 PℓG̃

KπPℓ F̃ K 0 − 1
3 G̃KK −

√
8
9 G̃KK

√
2
3 PℓG̃

KπPℓ

√
1
3 PℓG̃

KπPℓ 0 F̃ K −
√

8
9 G̃KK 1

3 G̃KK

−
√

1
3 PℓG̃

Kπ −
√

2
3 PℓG̃

Kπ − 1
3 G̃KK −

√
8
9 G̃KK F̃ K 0√

2
3 PℓG̃

Kπ −
√

1
3 PℓG̃

Kπ −
√

8
9 G̃KK 1

3 G̃KK 0 F̃ K



.

(3.61)
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The two-particle K matrix is

K̂[I=1]
2,L =



KKK̄,I=1
2,L 0 0 0 0 0 0 Kπη↔KK̄,I=1

2,L

0 KKK̄,I=0
2,L 0 0 0 0 0 0

0 0 KKπ,I=3/2
2,L 0 0 0 0 0

0 0 0 KKπ,I=1/2
2,L 0 0 0 0

0 0 0 0 KKπ,I=3/2
2,L 0 0 0

0 0 0 0 0 KKπ,I=1/2
2,L 0 0

0 0 0 0 0 0 1
2K

ππ,I=1
2,L 0

Kπη↔KK̄,I=1
2,L 0 0 0 0 0 0 Kπη,I=1

2,L


.

(3.62)

The form of the isospin blocks of K̂df,3 is more complicated to determine, and we discuss
this in the following section.

With the result in hand, we can study the impact of having multiple (here two) three-
particle channels. We saw above that there are two classes of the kinematic functions F̃

and G̃, one with singularities at ππη free energies, the other with singularities at KKπ free
energies. Above the KKπ threshold, these free energies can lie close to each other. For
each total isospin, the sub-blocks of F̂G containing these two classes are connected by the
two-particle πη ↔ KK scattering, and by elements of K̂df,3. This connection can therefore
lead to finite-volume states that cannot be thought of as close to either type of free state,
but are instead mixed. The situation is analogous to that for the two-particle quantization
condition when there are multiple channels. From a practical point of view, the impact is
simply that the matrices in the quantization condition become larger.

3.6 Form of Kdf ,3

As already noted, the three-particle K matrix block diagonalizes according to total isospin.
In this section we present the general form of these blocks, K̂[I]

df,3. The analysis follows the
methodology introduced in appendix A of ref. [34].

For each choice of I, there are some number of independent channels, as shown in eq. (2.2):
two each for I = 2 and 0, and three for I = 1. These are the distinct asymptotic states
that can scatter into one another. Assuming PT symmetry, this implies that there are three
independent 3→ 3 amplitudes for I = 2 and 0 (two diagonal and one offdiagonal) and six
for I = 1. Since the corresponding K̂[I]

df,3 matrices have 5 × 6/2 = 15 independent entries
for I = 0, 2, and 8 × 9/2 = 36 for I = 1, there must be many relations between entries.
Determining these relations is the task of this section.

We begin by writing down the form in the charged basis based on results for nondegenerate
and 2 + 1 systems, and then rotate to the isospin basis. The block structure of the 18-d
matrices is 3 + 3 + 3 + 3 + 4 + 2, where 3 indicates the nondegenerate blocks, 4 the extended
nondegenerate block with even and odd ππ waves separated, and 2 the 2 + 1 block, We label
these blocks with an index that runs from 1 to 6. Within each block the entries of Kdf,3 are
given by the same underlying function, denoted Kjk({p}, {k}) with j, k being block indices,
expressed in different coordinates, i.e. with different choices of spectator and primary member
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of the pair. PT symmetry relates off-diagonal blocks,

Kjk({pi}, {ki}) = Kkj({ki}, {pi}) , (j ̸= k) , (3.63)

so there are 28 independent underlying functions. These must be related in such a way that in
the isospin basis Kdf,3 is block diagonal. We will not, however, need (or display) these relations.

The structure within each block is an outer product built from the following three vectors,

Y(3)† =
(
Y [kab]†

(312) , Y [kab]†
(213) , Y [kab]†

(123)

)
, (3.64)

Y(4)† =
(
PeY [kab]†

(312) , PoY [kab]†
(312) , Y [kab]†

(213) , Y [kab]†
(123)

)
, (3.65)

Y(2)† =
(√

1
2Y [kab]†

(312) , Y [kab]†
(123)

)
, (3.66)

and their conjugates

Y(3) =


Y [kab]

(312)

Y [kab]
(213)

Y [kab]
(123)

 , Y(4) =



Y [kab]
(312)Pe

Y [kab]
(312)Po

Y [kab]
(213)

Y [kab]
(123)


, Y(2) =


√

1
2Y [kab]

(312)

Y [kab]
(123)

 . (3.67)

Here we are using the operators Y and Y†, introduced in ref. [34], which are defined in
appendix B. They convert functions of the triplet of on-shell momenta to the kℓm basis,
and thus are essentially the inverses of the operators X introduced above. The permutation
associated with the Y indicates, in order, the assignment of momenta to the spectator, the
primary member of the pair, and the remaining member of the pair. The ordering of these
permutations within each of the vectors Y is determined by our choice of momentum labels
in eq. (2.1) and of the ordering within blocks given in eq. (3.24). The factor of 1/

√
2 is

explained in BS2. We note that in Y(2) we can freely replace Y [kab]
(123) with Y [kab]

(213) because
this acts on a function that is symmetric under the interchange of the two neutral pions
(whose momenta are labeled 1 and 2).

The outer product form depends only on the dimensions of the block. Thus, for example,
the {5, 3} block, which has dimensions 4×3, contains Y(4)K53Y(3)† and similarly in other cases.

After constructing the 18 × 18 matrix K̂df,3 in this fashion, we rotate to the isospin
basis, and examine the three isospin blocks in turn. For the I = 2 block we find a sum
of four outer products

K̂[I=2]
df,3 =

∑
x,y∈{a,b}

Y [I=2],x ◦ K[I=2],xy
df,3 ({p}, {k}) ◦Y [I=0/2],y† , (3.68)

where

Y [I=2],a† =
(
Y [kab]†

(312) , Y [kab]†
(213) , Y [kab]†

(123) , 0, 0
)

,

Y [I=2],b† =
(

0, 0, 0,
√

1
2Y [kab]†

(312) , Y [kab]†
(213)

)
,

(3.69)
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with the conjugate vectors given similarly. The superscripts a, b here refer to the two
independent states that contribute, respectively [[KK̄]1π]2 and [[ππ]2η]2. Thus, for example,
K[I=2],ba

df,3 corresponds to the K matrix for the process ππη ← KKπ. PT invariance implies
that K[I=2],ba

df,3 ({p}, {k}) = K[I=2],ab
df,3 ({k}, {p}), so that there are only three underlying K

matrices, as claimed above. Finally, we note that, to obtain these results, we have used the
fact that the I = 2 ππη state is symmetric under the interchange of the two pions.

The choice of normalization of the Y [I=2],x is arbitrary, since any changes can be absorbed
by a redefinition of K[I=0],xy

df,3 . The normalization that we choose is explained in the following
section, and in particular is such that eq. (3.89) holds.

The result for the I = 0 block takes the same form as for I = 2,

K̂[I=0]
df,3 =

∑
x,y∈{a,b}

Y [I=0],x ◦ K[I=0],xy
df,3 ({p}, {k}) ◦Y [I=0],y† , (3.70)

where

Y [I=0],a† =
(
Y [kab]†

(312) ,−Y [kab]†
(213) ,−Y [kab]†

(123) , 0, 0
)

,

Y [I=0],b† = Y [I=2],b† .
(3.71)

In this case a, b refer to [[KK̄]1π]0 and [[ππ]0η]0, respectively. Again, using PT symmetry,
there are three independent underlying functions.

Finally, for I = 1, where the block is eight dimensional and there are three underlying
states, we obtain

K̂[I=1]
df,3 =

∑
x,y∈{a,b,c}

Y [I=1],x ◦ K[I=1],xy
df,3 ◦Y [I=1],y† , (3.72)

where a, b, c correspond to [[KK̄]1π]1, [[KK̄]0π]1, and [[ππ]1η]1, respectively, and the vectors
are now

Y [I=1],a† =
(

Y [kab]†
(312) , 0,−

√
1
3Y [kab]†

(213) ,
√

2
3Y [kab]†

(213) ,−
√

1
3Y [kab]†

(123) ,
√

2
3Y [kab]†

(123) , 0 0
)

,

Y [I=1],b† =
(

0, Y [kab]†
(312) ,

√
2
3Y [kab]†

(213) ,
√

1
3Y [kab]†

(213) ,−
√

2
3Y [kab]†

(123) ,−
√

1
3Y [kab]†

(123) , 0, 0
)

,

Y [I=1],c† =
(

0, 0, 0, 0, 0, 0,
√

1
2Y [kab]†

(312) , Y [kab]†
(213)

)
.

(3.73)

Using PT symmetry, there are here six underlying functions.
The form of the underlying functions in the above expressions is constrained by symmetries.

This will be discussed in section 5 below.

3.7 Integral equations relating Kdf ,3 to M3

Implementation of the three-particle formalism involves two steps: first, determine (constraints
on) the three-particle K matrix, K̂df,3 using the quantization condition eq. (3.48) to fit to
finite-volume energies; and, second, determine the three-particle scattering amplitude M3
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by solving the integral equations that relate it to K̂df,3 [12]. In this section we describe
the required integral equations.

These are obtained by taking an appropriate limit of M3,L, which, from eq. (3.41) and
subsequent discussion, is given by

M3,L = C ◦ D̂(u,u)
L ◦ C† . + C ◦ M̂(u,u)′

df,3,L ◦ C† . (3.74)

The first term describes a ladder of one-particle exchanges, as can be seen from its definition
in eq. (3.43), and does not involve K̂df,3. It contains the divergences that are known to be
present in three-particle amplitudes. The second term is the divergence-free part of M3, and
is denoted Mdf,3. As can be seen from eq. (3.44), it vanishes unless K̂df,3 is nonzero.

The desired integral equations are obtained by reinserting iϵ factors in the numerators
of F̃ and G̃, taking the L → ∞ limit, and then sending ϵ → 0 [12]

M3 = lim
ϵ→0

lim
L→∞

M3,L . (3.75)

We do not write out the detailed form of the integral equations, as these are essentially the
same as those that have appeared in previous RFT works; see, e.g., refs. [11, 38] and BS3.
What is new here are the presence of two types of singularity in the one-particle exchange
terms, due to the presence of two distinct intermediate states, namely KKπ and ππη. This
simply leads to additional matrix indices that are built into the formalism.

The additional feature of the present application is the need to decompose into different
total isospin channels. In particular, the “core” of the integral equations resulting from
eq. (3.75) (i.e. dropping the factors of C and C†) involves 18-d matrices in flavor space, which,
as we have seen above, block-diagonalize into 5-d, 8-d, and 5-d blocks corresponding to
I = 2, 1, 0, respectively. The final integral equations, by contrast, involve 7-d flavor matrices,
and the isospin blocks are of size 2, 3, and 2, corresponding to the states listed in eq. (2.2).
This is because the integral equations are given in the momentum basis, with no choice
of a spectator or pair required.

Putting this together, what we require is the 7 × 18 matrix of operators

Ciso18→iso7 = Cch→iso C [C(18)
ch→iso]−1 , (3.76)

where the three matrices on the right-hand side are given in eq. (A.9), eq. (3.34), and
appendix E, respectively. An important check on the form of these matrices is that Ciso18→iso7
should itself be block diagonal, with 2 × 5 blocks for both I = 2 and 0, and a 3 × 8 block
for I = 1. We indeed find this to be the case.

The explicit form of the 2 × 5 block for I = 2 is

C[I=2]
iso18→iso7 =

(
X [I=2],a

X [I=2],b

)
, (3.77)

where

X [I=2],a =
(
X (312)

[kab] , X (213)
[kab] , X (123)

[kab] , 0, 0
)

,

X [I=2],b =
(
0, 0, 0,

√
2X (312)

[kab] , X (123)
[kab] + X (213)

[kab]

)
.

(3.78)
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For the I = 0 block we find

C[I=0]
iso18→iso7 =

(
X [I=0],a

X [I=0],b

)
, (3.79)

where

X [I=0],a =
(
X (312)

[kab] ,−X (213)
[kab] ,−X (123)

[kab] , 0, 0
)

,

X [I=0],b = X [I=2],b .
(3.80)

Finally, for I = 1, the 3 × 8 block is

C[I=1]
iso18→iso7 =

X [I=1],a

X [I=1],b

X [I=1],c

 , (3.81)

where

X [I=1],a =
(

X (312)
[kab] , 0,−

√
1
3X (213)

[kab] ,
√

2
3X (213)

[kab] ,−
√

1
3X (123)

[kab] ,
√

2
3X (123)

[kab] , 0, 0
)

,

X [I=1],b =
(

0, X (312)
[kab] ,

√
2
3X (213)

[kab] ,
√

1
3X (213)

[kab] ,−
√

2
3X (123)

[kab] ,−
√

1
3X (123)

[kab] , 0, 0
)

,

X [I=1],c =
(
0, 0, 0, 0, 0, 0,

√
2X (312)

[kab] ,−X (123)
[kab] + X (213)

[kab]

)
.

(3.82)

To be completely explicit, the final result in the isospin basis is

M[I]
3 = lim

ϵ→0
lim

L→∞
C[I]

iso18→iso7 ◦
(
D̂(u,u),[I]

L + M̂(u,u)′,[I]
df,3,L

)
◦ C[I]†

iso18→iso7 , (3.83)

where the quantities inside the parentheses on the right-hand side are given by eq. (3.43)
and eq. (3.44), respectively, except that all matrices in these relations are restricted to the
corresponding isospin block. As above, if we drop the D̂(u,u)

L term from the right-hand side,
then we obtain the divergence-free amplitude, M[I]

df,3. We also stress that the operators C
and C† convert the core matrices, which are in the {kℓm} basis, to the momentum basis
{k}, as is appropriate for a scattering amplitude.

As a final check, we note that in the formal limit in which we treat M2 and Kdf,3 as
small, we find from eq. (3.44) that

M̂(u,u)′,[I]
df,3,L = 1

9K̂
[I]
df,3 [1 +O(M2,Kdf,3)] . (3.84)

Thus, in this limit,[
M[I]

df,3

]
xy
≡
[
C[I]

iso18→iso7 ◦ M̂
(u,u)′,[I]
df,3,L ◦ C[I]†

iso18→iso7

]
xy

(3.85)

→
[
C[I]

iso18→iso7 ◦
1
9K̂

[I]
df,3 ◦ C[I]†

iso18→iso7

]
xy

(3.86)

=
∑

x,x′,y′,y

X [I],x ◦Y [I],x′ ◦ 1
9K

[I],x′y′

df,3 ◦Y [I],y′† ◦X [I],y† (3.87)

= K[I],xy
df,3 , (3.88)
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where in the penultimate step we have used the outer-product form of Kdf,3 derived in the
previous section. To do so, we have combined the individual isospin results eqs. (3.68), (3.70)
and (3.72) into a generic notation, where x, x′, y′, y are summed over {a, b} for I = 2, 0 and
over {a, b, c} for I = 1. In the last step we have used,

X [I],x ◦Y [I],x′ = 3δxx′ , (3.89)

which can be shown from the results in eqs. (3.69), (3.73), (3.78), (3.80) and (3.82) given
that X σ

[kab], defined in eq. (B.11), is the inverse of Y [kab]
σ , defined in eq. (B.13). We stress

that eq. (3.89) holds only when acting on components of K[I]
df,3, for it relies on the symmetry

or antisymmetry under pion exchange in the ππη components. The normalization of the
Y was chosen in the previous section so that the right-hand side of eq. (3.89) contains the
factor of 3. This was done so that Mdf,3 and Kdf,3 have the same normalization in the
weak coupling limit, as shown by eq. (3.88).

3.8 Projection onto positive G parity

In this section we discuss how the above-described formalism can be projected onto states of
positive G parity. As described in section 2, this is necessary to avoid mixing with three-pion
channels, mixing that we have ignored so far in the development of the formalism.

The projection can be applied to the external operators of eq. (2.2), in a manner already
described in section 2. The action on this 7-d space is by the projection matrix

P
(7)
+ = diag

(
1
2S12, 1, 1

2S12, 1
2A12, 1, 1

2S12, 1
)

, (3.90)

where S12 = 1 + P12 and A12 = 1−P12, with P12 the operator that interchanges the momenta
k1 and k2. The action of this projector propagates through the formalism, and leads to a
reduction in the size of the matrices entering the quantization condition. We stress that this
projection commutes with total isospin, so we can consider this reduction block by block.

To determine the projectors on the isospin blocks we need the G-parity transformation
of the KKπ operators in eq. (2.1),

K+(k1)K0(k2)π−(k3)→ K
0(k1)K+(k2)π−(k3) ,

K+(k1)K−(k2)π0(k3)→ −K
0(k1)K0(k2)π0(k3) ,

K0(k1)K0(k2)π0(k3)→ −K−(k1)K+(k2)π0(k3) ,

K0(k1)K−(k2)π+(k3)→ K−(k1)K0(k2)π+(k3) .

(3.91)

Here we have used the action of G described in section 2, as well as the negative G-parity of
pions. For the first and fourth operators G parity simply leads to the interchange k1 ↔ k2,
while the second and third operators are themselves interchanged, with an overall sign flip,
as well as k1 ↔ k2 interchange. Note that the ππη operators automatically have positive G

parity and thus are unchanged. We now expand out each of the twelve KKπ operators in
the isospin basis eq. (3.36) in terms of underlying operators in eq. (3.91) (with momentum
assignments changed, in general), and apply the G-parity transformation. The results are

[[KK̄]1e/oπ]I → ±[[KK̄]1e/oπ]I , [[KK̄]0e/oπ]1 → ∓[[KK̄]0e/oπ]1 ,

[[Kπ]3/2K̄]I ↔ [[K̄π]3/2K]I , [[Kπ]1/2K̄]I ↔ [[K̄π]1/2K]I , (3.92)
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where I takes all allowed values, and e and o refer, respectively, to projections onto even
and odd partial waves.

Thus the projectors onto positive G parity are

P
[I=2]
G = P

[I=0]
G =


Pe 0 0 0 0
0 1

2
1
2 0 0

0 1
2

1
2 0 0

0 0 0 1 0
0 0 0 0 1

 , (3.93)

P
[I=1]
G =



Pe 0 0 0 0 0 0
0 Po 0 0 0 0 0
0 0 1

2 0 1
2 0 0 0

0 0 0 1
2 0 1

2 0 0
0 0 1

2 0 1
2 0 0 0

0 0 0 1
2 0 1

2 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (3.94)

These project the 5-d blocks for I = 2, 0 down to 4-d, and project the 8-d blocks for I = 1
down to 6-d.

The result is that the quantization condition for each isospin takes the same form as
above, eqs. (3.49) and (3.50), but with the matrices F̂

[I]
G , K̂2,L, and K̂df,3 replaced by their

reduced versions. We first describe these new versions for F̂
[I]
G and K̂2,L. For I = 2, we find

F̂
[I=2]
G →


PeF̃ πPe

√
2PeG̃πKPℓ 0 0√

2PℓG̃
KπPe F̃ K + G̃KK 0 0

0 0 PeF̃ ′ηPe

√
2PeG̃′ηπPℓ

0 0
√

2PℓG̃
′πηPe F̃ ′π + G̃′ππ

 , (3.95)

K̂[I=2]
2,L →


PeK

KK̄,I=1
2,L Pe 0 0 PeK

πη↔KK̄,I=1
2,L

0 KKπ,I=3/2
2,L 0 0

0 0 1
2K

ππ,I=2
2,L 0

Kπη↔KK̄,I=1
2,L Pe 0 0 Kπη,I=1

2,L

 . (3.96)

Several comments are in order. First, we note that the upper 2× 2 block in F̂
[I=2]
G now has a

similar structure to the lower such block, which is given by the 2+1 form F 2+1
G . Thus the

projection onto G = + in some sense treats the K and K as identical particles. Second, we
could replace PeF̃ πPe with PeF̃ π, due to the properties of F̃ , as explained in appendix A of
ref. [11]. Similarly we do not need a Pe on both sides of the top-left entry in K̂[I=2]

2,L . Finally,
the factors of Pe acting on the offdiagonal πη ↔ KK entries in K̂[I=2]

2,L can be dropped, since
the G = + πη state only couples to the KK state with even partial waves. In all cases, we
keep the factors of Pe to illustrate the action of the projectors.

The results for I = 0 are similar

F̂
[I=0]
G →


PeF̃ πPe −

√
2PeG̃πKPℓ 0 0

−
√

2PℓG̃
KπPe F̃ K + G̃KK 0 0

0 0 PeF̃ ′ηPe

√
2PeG̃′ηπPℓ

0 0
√

2PℓG̃
′πηPe F̃ ′π + G̃′ππ

 , (3.97)
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K̂[I=0]
2,L →


PeK

KK̄,I=1
2,L Pe 0 0 PeK

πη↔KK̄,I=1
2,L

0 KKπ,I=1/2
2,L 0 0

0 0 1
2K

ππ,I=0
2,L 0

Kπη↔KK̄,I=1
2,L Pe 0 0 Kπη,I=1

2,L

 , (3.98)

and analogous comments apply.
For I = 1, we find

F̂
[I=1]
G →

(
F

(4)
G 0
0 F

2+1
G

)
, (3.99)

where F
2+1
G is given in eq. (3.60), and

F
(4)
G =



PeF̃ πPe 0 −
√

2
3PeG̃πKPℓ

√
4
3PeG̃πKPℓ

0 PoF̃ πPo −
√

4
3PoG̃πKPℓ −

√
2
3PoG̃πKPℓ

−
√

2
3PℓG̃

KπPe −
√

4
3PℓG̃

KπPo F̃ K − 1
3G̃KK −

√
8
9G̃KK

√
4
3PℓG̃

KπPe −
√

2
3PℓG̃

KπPo −
√

8
9G̃KK F̃ K + 1

3G̃KK


, (3.100)

while the two-particle K matrix reduces to

K̂[I=1]
2,L →



PeK
KK̄,I=1
2,L Pe 0 0 0 0 PeK

πη↔KK̄,I=1
2,L

0 PoK
KK̄,I=0
2,L Po 0 0 0 0

0 0 KKπ,I=3/2
2,L 0 0 0

0 0 0 KKπ,I=1/2
2,L 0 0

0 0 0 0 1
2K

ππ,I=1
2,L 0

Kπη↔KK̄,I=1
2,L Pe 0 0 0 0 Kπη,I=1

2,L


.

(3.101)
Next we describe the reduced forms of Kdf,3. The expressions in terms of sums over outer

products, eqs. (3.68), (3.70) and (3.72), remain valid, but the vectors themselves change to

Y [I=2],a† →
(

1
2(Y [kab]†

(312) + Y [kab]†
(321) ),

√
1
2(Y [kab]†

(213) + Y [kab]†
(123) ), 0, 0

)
,

Y [I=2],b† →
(

0, 0,
√

1
2Y [kab]†

(312) , Y [kab]†
(213)

)
,

(3.102)

Y [I=0],a† →
(

1
2(Y [kab]†

(312) + Y [kab]†
(321) ),−

√
1
2(Y [kab]†

(213) + Y [kab]†
(123) ), 0, 0

)
,

Y [I=0],b† →
(

0, 0,
√

1
2Y [kab]†

(312) , Y [kab]†
(213)

)
,

(3.103)

Y [I=1],a† →
(

1
2(Y [kab]†

(312) + Y [kab]†
(321) ), 0,−

√
1
6(Y [kab]†

(213) + Y [kab]†
(123) ),

√
1
3(Y [kab]†

(213) + Y [kab]†
(123) ), 0 0

)
,

Y [I=1],b† →
(

0, 1
2(Y [kab]†

(312) −Y [kab]†
(321) ),

√
1
3(Y [kab]†

(213) −Y [kab]†
(123) ),

√
1
3(Y [kab]†

(213) −Y [kab]†
(123) ), 0, 0

)
,

Y [I=1],c† →
(

0, 0, 0, 0,
√

1
2Y [kab]†

(312) , Y [kab]†
(213)

)
.

(3.104)
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The final change is to the integral equations relating Kdf,3 to M3. Here again the form
of the relations, eq. (3.83), remains unchanged, as does the expressions for the conversion
matrices, eqs. (3.77), (3.79) and (3.81). The vector of operators entering the latter expressions,
however, change to

X [I=2],a →
(

1
2(X (312)

[kab] + X (321)
[kab] ),

√
1
2(X (213)

[kab] + X (123)
[kab] ), 0, 0

)
,

X [I=2],b →
(
0, 0,

√
2X (312)

[kab] , X (123)
[kab] + X (213)

[kab]

)
,

(3.105)

X [I=0],a →
(

1
2(X (312)

[kab] + X (321)
[kab] ),−

√
1
2(X (213)

[kab] + X (123)
[kab] ), 0, 0

)
,

X [I=0],b →
(
0, 0,

√
2X (312)

[kab] , X (123)
[kab] + X (213)

[kab]

)
,

(3.106)

X [I=1],a →
(

1
2(X (312)

[kab] + X (321)
[kab] ), 0,−

√
1
6(X (213)

[kab] + X (123)
[kab] ),

√
1
3(X (213)

[kab] + XR123), 0, 0
)

,

X [I=1],b →
(

0, 1
2(X (312)

[kab] −X (321)
[kab] ),

√
1
3(X (213)

[kab] −X (123)
[kab] ),

√
1
6(X (213)

[kab] −XR123), 0, 0
)

,

X [I=1],c →
(
0, 0, 0, 0,

√
2X (312)

[kab] ,−X (123)
[kab] + X (213)

[kab]

)
.

(3.107)

The orthogonality relation eq. (3.89) remains true with these changes.

4 Reduction to single-channel formalism for E∗ < MKKπ

Up to this point, we have had in mind working above both ππη and KKπ thresholds, i.e. in
the regime where both resonances of interest lie. In this section we consider the range between
the thresholds, Mππη ≲ E∗ ≲ MKKπ. Here our formalism remains valid, but we expect
that it can be reduced to that for a single three-particle channel by “integrating out” the
contributions associated with the KKπ state. Our aim is to sketch how this reduction occurs.

The first point to observe is that, due to the presence of our cutoff functions, the KKπ

channel will be automatically and smoothly turned off as the energy is reduced. As described
in appendix B, this will occur in two stages, first when the KK channel closes, and second
upon the closure of the Kπ channel. A similar phenomenon occurs in the DDπ system, which
is where the two-stage turn-off was first noted [34]. For physical masses, the two closures
occur, respectively, at the three-particle energies

E∗1 = Mπ + 2
√

M2
K −M2

π ≈ 1090MeV and E∗2 = MK +
√

M2
K −M2

π ≈ 970MeV . (4.1)

These lie about 40 and 160 MeV below the threshold at MKKπ ≈ 1130 MeV, and both are
well above the lower threshold at Mππη ≈ 820 MeV.

The regime we are interested in here is thus E∗2 < E∗ ≲ MKKπ, so that two-channel
formalism applies but only one of the channels is kinematically open. In fact, there is a
further constraint on the relevance of the considerations of this section, namely that we
cannot integrate out the KKπ channel if ∆ = MKKπ−E∗ is too small. This is because there
are finite-volume effects arising from the proximity to on-shell KKπ states that scale roughly
as exp(−∆L). These are captured by the full, two-channel quantization condition, but not by
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the reduced version. Thus we should use ∆ ≳ Mπ, since then the errors caused by reduction
to a single-channel form are comparable to the exponentially-suppressed terms ∼ exp(−MπL)
that the formalism does not control. This leaves a very small window E∗2 < E∗ ≲ MKKπ−Mπ

where the considerations of the remainder of this section apply. Nevertheless, we think the
analysis is of interest both from a purely theoretical point of view, and because the window
of applicability could be larger in other multichannel systems.

The strategy we follow is to represent the matrices that enter the quantization condition
in block form, where the blocks correspond to the ππη and KKπ channels, respectively. Thus,
for example, in the I = 0 case after G-parity projection, the 4 × 4 flavor matrices such as
F

[I=0]
G in eq. (3.97) have two ππη entries (the last two) and two KKπ entries (the first two).

In general, these two blocks will have different dimensions. We write the block form as

M =
(

MA MB

MC MD

)
, (4.2)

and make repeated use of the following standard results (valid if M−1 exists)

det M = det(MA −MBM−1
D MC) det(MD) , (4.3)

[M−1]A =
(
MA −MBM−1

D MC

)−1
, [M−1]D =

(
MD −MCM−1

A MB

)−1
,

MA[M−1]B = −MB[M−1]D , [M−1]CMA = −[M−1]DMC .

(4.4)
We first consider the case that Kdf,3 = 0, so that the quantization condition can be

written det(F−1
3 ) = 0. Here, and in the remainder of this section, we drop isospin superscripts,

since the considerations are general. For brevity, we also drop carets. We are thus looking for
energies where an eigenvalue of F3 diverges. Given the form of F3, eq. (3.50), and the fact that
F only diverges at noninteracting energies, we can rewrite the quantization condition as [19]

det(K−1
2,L + FG) = 0 . (4.5)

This is also equiavlent to the asymmetric quantization condition, eq. (3.37), when K̂(u,u)
df,3 = 0.

Our aim is to rewrite this as a single-channel three particle quantization condition. It will
turn out to be easier to initially aim for the asymmetric form, which can be written

det(K−1 + [FG]A) = 0 , K = K2,L +K(u,u)
df,3 , (4.6)

where K is a reduced matrix living only in the ππη block. Here we allow for the possibility that
integrating out the KKπ channel leads to the reappearance of Kdf,3 (here in asymmetric form).

To proceed, we note that FG is block diagonal with no B or C components, so that,
using eq. (4.3), the quantization condition eq. (4.5) becomes

det(rA + fA − rB[rD + fD]−1rC) det(rD + fD) = 0 , (4.7)

where we have introduced the shorthands r ≡ K−1
2,L and f ≡ FG. We now make the key

assumption, namely that the second determinant does not vanish. This is plausible because
fD ≡ [FG]D contains only the KKπ singularity, which is finite in our kinematic regime. With
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this assumption, the quantization condition becomes the vanishing of the first determinant in
eq. (4.7). This has the desired form of the reduced quantization condition, eq. (4.6), if we take

K = 1
rA −−rB[rD + fD]−1rC

. (4.8)

Using eq. (4.4), we find, after some algebraic effort, that

K = [K2,L]A − [K2,L]B[FG]D
1

1 + [K2,L]D[FG]D
[K2,L]C . (4.9)

To achieve our aim, we must decompose this into the form of the second equality in eq. (4.6),
i.e. a K2,L part that involves a spectator momentum Kronecker-delta plus an overall factor
of 2ωL3, but is otherwise an infinite-volume quantity, and a K(u,u)

df,3 part that is purely an
infinite-volume quantity. The first part is obtained by keeping only the F terms in eq. (4.9),

K2,L = [K2,L]A − [K2,L]B[F ]D
1

1 + [K2,L]D[F ]D
[K2,L]C . (4.10)

This involves the same spectator (a pion) throughout, and the 2ωL3 factors cancel between
adjacent factors of F and K2,L, leaving a single overall such factor. Concerning [F ]D, one
might expect the sum-integral difference in F to vanish, up to exponentially-suppressed
corrections, since the summand/integrand involves KKπ denominators and is nonsingular
[see eq. (B.1)]. In fact, because of our definition of the PV-regulated integral [11], there
is an additional infinite-volume contribution, proportional to the subthreshold part of ρ̃,
eq. (B.18). This leads to the following interpretation of K2,L: the second term adds back
the on-shell, but subthreshold, contributions to πη scattering that involve KK intermediate
states. By construction, these contributions are not included in [K2,L]A, but are needed in
the full single-channel two-particle K matrix when the KKπ state is integrated out.

The remainder of K involves at least one factor of [G]D, which switches the spectator
from a pion to a K or K. In fact, it is easy to see that, after expanding the geometric series
in eq. (4.9), at least two factors of [G]D are needed to bring the spectator back to being a
pion. Although an explicit all-orders expression can be given, it is not illuminating. The
important properties are that all three particles are involved in the process, that the various
factors of 2ωL3 [including two for each G — see eq. (B.7)] cancel aside from an inverse for
each internal momentum sum, and that these momentum sums can be converted to integrals
up to exponentially suppressed corrections (since the summands involve KKπ intermediate
states and are thus nonsingular). The result is a contribution to K(u,u)

df,3 , an infinite-volume
quantity involving all three particles. It is asymmetric because only the external pions are
spectators. The interpretation of this contribution to the reduced three-particle kernel is
simply that it adds in contributions involving intermediate KKπ states that lead to power-law
volume effects above the KKπ threshold, due to the singularities in G, but now lead only
to exponentially-suppressed volume dependence.

We now repeat the argument in the general case, but starting with the asymmetric form
of the quantization condition, written as

det
(
[K2,L +K(u,u)

df,3 ]−1 + FG

)
= 0 . (4.11)

– 26 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
3

We follow exactly the same steps as above, leading to the reduced quantization condition
eq. (4.6), in which K (denoted with a prime to distinguish it from the earlier form) has the form

K′ = [K2,L +K(u,u)
df,3 ]A − [K2,L +K(u,u)

df,3 ]B[FG]D
1

1 + [K2,L +K(u,u)
df,3 ]D[FG]D

[K2,L +K(u,u)
df,3 ]C .

(4.12)
This can be decomposed as

K′ = K2,L +K(u,u)
df,3 + [K(u,u)

df,3 ]A +K′(u,u)
df,3 , (4.13)

where the first two terms on the right-hand side are those discussed above in the Kdf,3 = 0
case, the third term is simply the A block of the asymmetric three-particle K matrix, and
the final term is the new contribution arising from integrating out KKπ in the presence of a
non-zero Kdf,3. An example of a contribution to the final term is

K′(u,u)
df,3 ⊃ −[K(u,u)

df,3 ]B[FG]D[K2,L]C (4.14)

As above, it is straightforward to see that, for all contributions, the 2ωL3 factors combine to
convert sums into integrals up to exponentially-suppressed volume dependence. The result is
that K′(u,u)

df,3 is an infinite volume quantity with the correct properties to be a contribution to
the asymmetric Kdf,3. Thus the last three terms in eq. (4.13) constitute the renormalized
reduced three-particle K matrix.

The final step is to symmetrize the quantization condition. This can be done using the
symmetrization identities given in BS2 and BS3, as already noted in section 3.4. However, the
method used in those works is based on M23,L, rather than the quantization condition. Since
here we work directly with the latter, we provide the necessary generalization in appendix G.
The conclusion is that we can convert the asymmetric form of the reduced quantization
condition to the desired symmetric form,

det
[
1 + F 3Kdf,3

]
= 0 , (4.15)

F 3 = FA

3 − FA
1

(K2,L)−1 + [FG]A
FA , (4.16)

in which Kdf,3 is a symmetrized three-particle K matrix that is algebraically related to K′(u,u)
df,3 .

An alternative method of determining the reduced, single-channel quantization condition
is to begin with the full symmetrized quantization condition, expressed as

det
[
Kdf,3 + F−1

3

]
= 0 , (4.17)

and to apply eq. (4.3) with M = Kdf,3 + F−1
3 . Expanding inside the first determinant of

eq. (4.3), one can identify [F−1
3 ]A and −[F−1

3 ]B([F−1
3 ]A)−1[F−1

3 ]C as the only terms with
overlap of F

−1
3 , the quantity appearing in the new single-channel quantization condition. As

with the method described above, these terms split into two parts: those that contribute to
Kdf,3, and those which can be folded into F

−1
3 through the correct definition of K2,L. Both

methods arrive at the same expression for K2,L, given in eq. (4.10), and we expect Kdf,3 can
be brought into the same form through symmetrization.

In summary, we have shown explicitly how, if one goes far enough below the KKπ

threshold, the quantization condition reduces to the expected form for a single channel
system, with a renormalized K2 and K(u,u)

df,3 .
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5 Parametrizations of Kdf ,3

In a practical application, one must parametrize the three-particle K-matrix. This should be
done respecting the symmetries of the theory, in particular Lorentz, P , and T invariance, and
the exchange symmetries of the three-meson states. Of particular interest are the behavior
near threshold and in the vicinity of a three-particle resonance. We discuss these two regimes
in turn, generalizing the methods introduced in refs. [19, 23].

Near threshold, Kdf,3 can be expanded in terms of kinematic invariants that vanish at
threshold. The procedure for doing so was laid out in ref. [19] in the case of three identical
particles, and has been subsequently generalized to many systems [23, 30, 34, 38, 39]. The
main new feature here is the presence of two thresholds, corresponding to the ππη and
KKπ channels.

From section 3.6, we know that the underlying functions that we have to parametrize
are the K[I],xy

df,3 that appear in eqs. (3.68), (3.70) and (3.72), where x, y run over the different
channels. Each of these K matrices are Lorentz-invariant functions of the three incoming
on-shell four-momenta, which here we denote {ki}, and the corresponding outgoing momenta,
denoted {k′i}. For our two channels, we use the labels i = 1, 2 for the two particles that are
degenerate, while i = 3 denotes the particle with a distinct mass. We denote the initial-state
masses as mi and the final-state masses as m′i. The threshold CMF energies for the two
channels are then M = 2m1 + m3 and M ′ = 2m′1 + m′3. We call the smaller of these Mmin,
and use this to set the scale in the following.

To parameterize the three-particle amplitude Kdf,3, we use generalized Mandelstam
variables,

s ≡ (k1 + k2 + k3)2, sij ≡ (ki + kj)2, s′ij ≡ (k′i + k′j)2, tij ≡ (k′i − kj)2 . (5.1)

It is convenient to use the following seventeen dimensionless quantities,

∆ ≡ s−M2

M2
min

, ∆′ ≡ s−M ′2

M2
min

= ∆ + M ′2 −M2

M2
min

,

∆i ≡
sjk − (mj + mk)2

M2
min

, ∆′i ≡
s′jk − (m′j + m′k)2

M2
min

, t̃ij ≡
tij − (m′i −mj)2

M2
min

, (5.2)

where, in the definitions of ∆i and ∆′i, {i, j, k} form a cylic permutation of {1, 2, 3}. ∆ and
∆i vanish at the initial-state threshold, while ∆′ and ∆′i vanish at the final-state threshold.
The t̃ij only vanish at threshold if the initial and final channels are the same; in general
they vanish if the final (i) and initial particles (j) are relatively at rest. We note that these
quantities are well-defined below as well as above the corresponding thresholds.

These seventeen quantities in eq. (5.2) are constrained by the relation between ∆ and ∆′

given in that equation, as well as the following eight relations, seven of which are independent,6
3∑

i=1
∆i = ∆ ,

3∑
i=1

∆′i = ∆′ ,
3∑

i=1
t̃ij = ∆j −∆ + 2mj(M ′ −M)

M2
min

,

3∑
i=1

t̃ji = ∆′j −∆′ +
2m′j(M −M ′)

M2
min

, (5.3)

6In refs. [19, 30], the fact that only seven of these relations were independent was missed. This had no
impact on the threshold expansions developed in these works. The correct counting was also noted in ref. [39].
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where j = 1, 2, 3. This allows us to express Kdf,3 in terms of the following nine variables: ∆,
∆1, ∆2, ∆′1, ∆′2, t̃11, t̃12, t̃21, and t̃22. We develop the threshold expansion treating ∆, ∆i,
∆′i, and the t̃ij as small. Since the thresholds differ, in practice some of these quantities will
be larger than others, and an asymmetric power-counting is appropriate. As the relative sizes
depend on the precise kinematics, which varies according to the values of the underlying quark
masses, we simply ignore this point and work to quadratic order in all variables, presenting
terms of up to linear order here, and collecting the quadratic terms in appendix F.

As we have seen in section 2, the requirement that the KK pairs have negative G parity
implies [KK̄]1 must be symmetric under k1 ↔ k2, while [KK̄]0 must be antisymmetric
under this exchange. Similarly, the [ππ]0,2 states are symmetric, while [ππ]1 is antisymmetric.
Using these symmetry requirements allows us to write down all allowed combinations of
the nine kinematic variables in our chosen basis.

To begin, we consider I = 0 and I = 2, each of which have two channels [found in eq. (2.2)],
and which have the same symmetry properties. While K[I=0,2],ab

df,3 and K[I=0,2],ba
df,3 are symmetric

under the independent exchanges k1 ↔ k2 and k′1 ↔ k′2, K[I=0,2],aa
df,3 and K[I=0,2],bb

df,3 are also
symmetric under PT transformations. These symmetries lead to the following result for
the diagonal terms,

M2
minK

[I=0,2],xx
df,3 ({k′}, {k}) = K[I]xx

0 +K[I]xx
1 ∆ +K[I]xx

2 (∆1+∆2+∆′1+∆′2)

+K[I]xx
3 (t11+t12+t21+t22) +O(∆2) , (5.4)

where x = a or b, and the coefficients K[I]xx
j are real and dimensionless. For the off-diagonal

contributions the lack of PT symmetry leads to one additional term at linear order

M2
minK

[I=0,2],ab
df,3 ({k′},{k}) = M2

minK
[I=0,2],ba
df,3 ({k},{k′})

=K[I]ab
0 +K[I]ab

1 ∆+K[I]ab
2 (∆1+∆2)

+K[I]ab
3 (∆′1+∆′2)+K[I]ab

4 (t11+t12+t21+t22)+O(∆2) , (5.5)

where again the coefficients are real and dimensionless. We note that, in both eqs. (5.4)
and (5.5), the leading coefficients lead to a contribution that is independent of momenta and
thus isotropic. Quadratic terms are given in eqs. (F.1) and (F.2).

Now we turn our attention to I = 1, which contains transitions between three independent
states [found in eq. (2.2)]. While state a is symmetric under k1 ↔ k2, states b and c are
antisymmetric under this exchange. These exchange symmetries, coupled with the PT
invariance of K[I=1],xx

df,3 , lead to the following results. For K[I=1],aa
df,3 the result has exactly the

same form as that for I = 0, 2, given in eq. (5.4). For the other diagonal terms, we find

K[I=1],yy
df,3 ({k′}, {k}) = K[1]yy

1 (t11−t12−t21+t22) +O(∆2) , (5.6)

where y = b or c. For the offdiagonal contributions, we obtain

K[I=1],ay
df,3 ({k′}, {k}) = K[I=1],ya

df,3 ({k}, {k′})

= K[1]ab
1 (∆′1−∆′2) +K[1]ab

2 (t11−t12+t21−t22) +O(∆2) , (5.7)
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with y = b or c, and

K[I=1],bc
df,3 ({k′}, {k}) = K[I=1],cb

df,3 ({k}, {k′}) = K[1]bc
1 (t11−t12−t21+t22) +O(∆2) . (5.8)

The antisymmetry of the b, c channels leads to the absence of the isotropic contribution
and a smaller number of linear terms. Quadratic contributions for I = 1 K matrices are
given in eqs. (F.3)–(F.5).

We next consider how the expressions given above can be augmented in the I = 0 and
I = 1 channels (in which, respectively, the η(1295) and the b1(1235) appear) to incorporate
an explicit pole that satisfies the relevant symmetries and has a factorizable residue. It is
plausible that such a pole will be needed to describe a resonance in M3 [40]. We are guided
here by the work of ref. [23] addressing the same issue for the 3π system, in particular for
the JP = 0− resonance, π(1300), and the JP = 1+ resonance, a1(1260). We stress that the
pole terms we give below are to be added to the threshold expansion forms, and that we are
presenting only the simplest possible expressions in both cases. By its very nature, a pole
term violates the threshold expansion, and thus one does not have any power counting to
restrict the form of the residues. Thus, higher order terms may be needed in practice.

The simplest case is the I = 0 η(1295) resonance. This JP = 0− state couples to both
ππη and KKπ in s-wave states, and thus no momentum dependence is needed in the residue.
Thus the simplest form to add to Kdf,3 is

K[I=0]xy
df,3 ⊃ vxvy

P 2 − E2
0−

, (x, y) ∈ (a, b) , (5.9)

where v = (va, vb) is a real vector describing the relative coupling to the two channels, with
va and vb being coefficients to be determined. We stress that the pole position E0− will not
equal the η(1295) mass, since to connect Kdf,3 to M3 requires solving integral equations,
and this will, in general, shift the pole position.

Two additional features arise for the I = 1, JP = 1+ channel needed for the b1(1235).
The first is due to the resonance being a vector, and thus having a polarization vector.
Summing over this leads to a factor of∑

ϵ

ϵµϵ∗ν = gP
µν ≡ gµν − PµPν/P 2 . (5.10)

The second new feature is the need to contract the open Lorentz indices with four-vectors
having the appropriate symmetries. The simplest form is

K[I=1]xy
df,3 ⊃ 1

P 2 − E2
1+

gP
µνw′µx wν

y , (x, y) ∈ (a, b, c) , (5.11)

where

wν = (wa[kν
1 + kν

2 ], wb[kν
1 − kν

2 ], wc[kν
1 − kν

2 ]) ,

w′µ =
(
wa[k′µ1 + k′µ2 ], wb[k′µ1 − k′µ2 ], wc[k′µ1 − k′µ2 ]

)
,

(5.12)

with wx being real coefficients to be determined. We note that an additional allowed
contribution to the wa terms proportional to P ν can be dropped since gP

µνP ν = 0.
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6 Conclusions

In this work, we have generalized the three-particle formalism to accommodate systems
involving multiple three-particle channels. While we have focused on the two-channel ππη

and KKπ system, the generalization to additional three-particle channels will involve a
simple extension of the work presented here. Indeed, just as in the two-particle case, the
generalization to multiple channels is itself not the most challenging part of the derivation.
Instead, the complications mainly arise from the need to account for multiple subchannels,
and to determine isospin and G-parity projections. These aspects are similar to those arising
in the formalism developed for the DDπ system in ref. [34]. The need for G-parity projection
is a new feature here, and turns out to reduce the dimensionality of the matrices appearing
in the quantization conditions.

The general structure of the quantization conditions and associated integral equations
is the same as that in all previous applications of the RFT approach. The presence of
two channels simply enlarges the space of spectator flavors. In our final results, given in
section 3.8, these spaces are of dimension 4, 6, and 4, respectively, for I = 0, 1, and 2. As for
the DDπ system studied in ref. [34], the results for I = 0 and I = 2 are nearly identical.

The specific channels on which we have focused allow the application to the b1(1235)
and η(1295) resonances, as long as one neglects the coupling to channels with four or more
particles. As discussed in section 2, for such an application, one must use finite-volume irreps
in which there are no, or minimal, contributions from ππ states. There are several such irreps,
so we do not expect this to be a significant practical limitation. We hope that, in the next
few years, results from lattice QCD will be available that allow one to study these resonance.
This will likely first be with heavier-than-physical quark masses, which will, in fact, reduce
the problem with neglected channels containing four or more particles.

A three-particle formalism has now been developed that encompasses nearly all systems
of interest. The remaining lacuna is exemplified by the Roper resonance, which decays
to Nπ and Nππ. This involves multiple channels with both two and three particles, as
well as nondegenerate particles with a variety of spins. Given the recent extension of
the formalism to three spin-1/2 particles [38], and the by now complete understanding
of incorporating nondegenerate particles [26, 28, 30, 34], the main challenge concerns the
combination of two- and three-particle channels. So far, two approaches have been used: one
in which the two-particle channel is incorporated explicitly [13], and the other in which it is
introduced by the presence of a bound state in a two-particle subchannel of the three-particle
system [22, 34, 41, 42]. It remains to be seen which approach, if either, is the best choice
for generalization to the Roper system.7
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7The same comment applies to the generalization of the work presented here to irreps in which the ππ
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A Isospin relations

Here we give the relations between the isospin-basis states of eq. (2.2) and the flavor-basis
states of eq. (2.1). Doing so, it is important to keep in mind that, while the kaon doublet is
(K+, K0), the antikaon doublet contains a sign: (−K

0
, K−). For I = 2, the results are

I = 2,a : [[KK
0]1π]2→

√
1
6

(
−K+(k1)K0(k2)π−(k3)+

√
2K+(k1)K−(k2)π0(k3)

−
√

2K0(k1)K0(k2)π0(k3)+K0(k1)K−(k2)π+(k3)
)

,

(A.1)

I = 2, b : [[ππ]2η]2→
√

1
6

(
π+(k1)π−(k2)+2π0(k1)π0(k2)+π−(k1)π+(k2)

)
η(k3) . (A.2)

For I = 1 we have

I = 1,a : [[KK
0]1π]1→

√
1
2

(
−K+(k1)K0(k2)π−(k3)−K0(k1)K−(k2)π+(k3)

)
, (A.3)

I = 1, b : [[KK
0]0π]1→

√
1
2

(
K+(k1)K−(k2)π0(k3)+K0(k1)K0(k2)π0(k3)

)
, (A.4)

I = 1, c : [[ππ]1η]1→
√

1
2
(
π+(k1)π−(k2)−π−(k1)π+(k2)

)
η(k3) . (A.5)

Finally, for I = 0 we have

I = 0, a : [[KK
0]1π]0 →

√
1
6

(
−
√

2K+(k1)K0(k2)π−(k3)−K+(k1)K−(k2)π0(k3)

+ K0(k1)K0(k2)π0(k3) +
√

2K0(k1)K−(k2)π+(k3)
) (A.6)

I = 0, b : [[ππ]0η]0 →
√

1
3
(
π+(k1)π−(k2)− π0(k1)π0(k2) + π−(k1)π+(k2)

)
η(k3) . (A.7)

Thus the conversion from the charged to the isospin basis is accomplished by a 7×6 matrix

viso = Cch→isovch , (A.8)

Cch→iso =
√

1
6



−1
√

2 −
√

2 1 0 0
0 0 0 0 S12 2
−
√

3 0 0 −
√

3 0 0
0
√

3
√

3 0 0 0
0 0 0 0

√
3A12 0

−
√

2 −1 1
√

2 0 0
0 0 0 0

√
2S12 −

√
2


, (A.9)

where S12 = 1 + P12 is the symmetrization operator acting on the k1 and k2 arguments, with
P12 permuting these labels, while A12 = 1 − P12 is the corresponding antisymmetrization
operator.
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B Kinematic functions

In this appendix we provide definitions of kinematic quantities and auxiliary operators that
enter the three-particle formalism. These are taken from previous works in the RFT formalism,
with the exception of the discussion of K̂2,L in the case of channel mixing.

We begin with the F function for nondegenerate particles, which appears in the main
text starting in eq. (3.27). There are both primed and unprimed versions, corresponding to
ππη and KKπ triplets. The latter are given, in the notation of ref. [30], by

[
F̃ (i)

]
p′ℓ′m′;pℓm

= δp′p
H(i)(p)
2ω

(i)
p L3

[
1

L3

UV∑
a

−PV
∫ UV d3a

(2π)3

]

×

Y∗ℓ′m′(a∗(i,j,p))(
q
∗(i)
2,p′
)ℓ′ 1

4ω
(j)
a ω

(k)
b

(
E−ω

(i)
p −ω

(j)
a −ω

(k)
b

) Yℓm(a∗(i,j,p))(
q
∗(i)
2,p

)ℓ
 . (B.1)

Here {i, j, k} are a permutation of {K, K, π}. The superscript on F̃ (i) indicates the spectator
particle, while the label j refers to the primary particle of the nonspectator pair, with k is
the flavor of the third particle. The ordering conventions are given in eq. (3.24).

Other quantities appearing in eq. (B.1) are the on-shell energies, exemplified by

ω(i)
p =

√
M2

i + p2 ; (B.2)

the “third” momentum b = P − p − a; and the magnitude of the (jk) pair momentum,
assuming three on-shell particles,

[
q
∗(i)
2,p

]2
=

λ(σ(i)
p , M2

j , M2
k )

4σ
(i)
p

, (B.3)

σ(i)
p = (E − ω(i)

p )2 − (P − p)2 , (B.4)

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc . (B.5)

The sum over a runs over the finite-volume set, a = (2π/L)Z3, and the integral over the
pole is regulated by the principal value (PV) prescription, possibly augmented by the IPV
function introduced in ref. [22]. Both sum and integral are regulated in the same manner in
the ultraviolet, with the particular choice only changing F by exponentially-suppressed effects.
The momentum a∗(i,j,p) is the spatial part of the four-momentum resulting from boosting
(ω(j)

a , a) to the center of momentum frame (CMF) of the nonspectator pair, and thus depends
on the spectator momentum p, the spectator flavor i, the mass of the primary member of the
pair, Mj , as well as (implicitly) the total four-momentum (E, P ). Note that we use ∗ both to
indicate a quantity boosted to a pair CMF, and complex conjugation. Which usage applies
should be clear from the context. The cutoff function H(i)(p) will be defined below. Finally,

Yℓm(r) =
√

4πrℓYℓm(r̂) (B.6)

are harmonic polynomials.
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The G function for nondegenerate particles is given by [30][
G̃(ij)

]
pℓ′m′;rℓm

= 1
2ω

(i)
p L3

Y∗ℓ′m′(r∗(i,j,p))(
q
∗(i)
2,p

)ℓ′ H(i)(p)H(j)(r)
b2

ij −m2
k

Yℓm(p∗(j,i,r))(
q
∗(j)
2,r

)ℓ 1
2ω

(j)
r L3

, (B.7)

where i and j indicate the flavor of the final and initial spectators, respectively. The only
new notation here is that bij = (E − ω

(i)
p − ω

(j)
r , P − p − r).

We now return to the cutoff function. This is defined, following refs. [11, 32, 34], as

H(i)(p) = J(z(i)(p)) , z(i)(p) = (1 + ϵH)σ
(i)
p − σ

(i)
min

σ
(i)
th − σ

(i)
min

, (B.8)

J(z) =


0 z ≤ 0
exp(−1

z exp[−1/(1− z)]) 0 < z < 1
1 1 ≤ z

. (B.9)

Here σ
(i)
th = (Mj + Mk)2 is the value of σ

(i)
p at the pair’s threshold, while ϵH is a small positive

constant introduced to avoid additional power-law finite-volume effects [32]. J(z) is any
function that smoothly interpolates between 0 and 1, and we have shown one possible form.
The quantity σ

(i)
min is the minimum allowed value of σ

(i)
p , and should be chosen to avoid any

singularities in the two-particle K matrix for the pair. As discussed in detail in ref. [34], this
singularity is typically due to the nearest left-hand cut associated with exchange of one or more
particles. Here, for diagonal scattering in all the two-particle channels (KK, Kπ, and Kπ)
the nearest left-hand cut is due to t-channel exchange of two pions. Avoiding this requires that

σ
(i)
min ≥

(√
M2

j −M2
π +

√
M2

k −M2
π

)2
. (B.10)

We also enforce that σ
(i)
th > σ

(i)
min, so that the cutoff function has nonvanishing subthreshold

support. Numerically, the minimum values for
√

σ
(i)
min are ≈ 950 and ≈ 475 MeV, respectively,

for i = π, and i = K/K. These should be compared to the values of √σth, which are ≈ 990
and 630 MeV, respectively. Thus we learn that the cutoff in the KK channel (i = π) is
much closer to threshold than that in the πK/πK channels (i = K/K). This observation
will play a role in the discussion of section 4.

The primed quantities F̃ ′(i) and G̃′(ij) are defined in exactly the same manner, except
that {i, j, k} is now a permutation of {π, π, η}. Strictly speaking, the cutoff functions should
be primed, i.e. H ′(i)(p), to indicate that a new triplet of particles is being used. The nearest
left-hand cut in both ππ and πη scattering is due to two-pion exchange so that the result for
σ

(i)
min, eq. (B.10), still holds. Numerically, the minimum values for

√
σ

(i)
min are 0 and ≈ 535 MeV

for i = η and π, respectively, while those for
√

σ
(i)
th are ≈ 270 and 685 MeV.

We now turn to the X operators, introduced in ref. [34], and appearing in the main
text starting in eq. (3.35). These convert from the {kℓm} to the momentum basis. The
operator X σ

[kab] acts on a vector fkℓm as

[
X σ

[kab] ◦ f
]

({p}) =
[∑

ℓm

Y ∗ℓm(â∗)fkℓm

]
k→pσ1 ,a→pσ2 ,b→pσ3

, (B.11)
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where σ is a permutation of {1, 2, 3}. In words, the sum over ℓm yields a function of k and
â∗. The former is then equated to pσ1 (the spectator momentum), while the latter, when
boosted to the CMF of the nonspectator pair, is set to the direction of pσ2 . For three on-shell
momenta, this completely determines pσ2 and also the final momentum b = P − k − a, which
is equated with pσ3 . The result is a function of the three on-shell momenta p1, p2, p3. The
left-acting version X σ†

[kab] is defined analogously,

[
f ◦X σ†

[kab]

]
({ki}) =

[∑
ℓm

fkℓmYℓm(â∗)
]

k→kσ1 , a→kσ2 , b→kσ3

. (B.12)

Next we introduce operators Y [kab]
σ that have the inverse action of the X σ

[kab], again
borrowing notation from ref. [34]. These appear first in the main text in section 3.6. The Y [kab]

σ

act on functions g({pi}) of three on-shell momenta, yielding objects that have {kℓm} indices:
[
Y [kab]

σ ◦ g
]

kℓm
= 1

4π

∫
dΩa∗Yℓm(â∗)g({pi})

∣∣∣∣
pσ(1)→k, pσ(2)→a, pσ(3)→b

, (B.13)

where σ is again a permutation of {1, 2, 3}. In words, we choose pσ1 to be the spectator
momentum, leaving pσ2 and pσ3 to be the remaining pair. We boost to the CMF of this pair,
and decompose into spherical harmonics, defining â∗ as the direction of pσ2 in this frame.
An analogous definition holds for the conjugate operator Y [kab]†

σ , which acts from the right
and includes the complex-conjugated spherical harmonics.

Finally, we give the explicit form for the two-particle K matrices, or, more precisely,
for the inverse of these matrices, since it is the latter that enter the quantization condition
[see eqs. (3.49) and (3.50)]. We focus on channels having definite isospin, rather than using
the charge basis, since the former enter the final form of the quantization condition, both
before (section 3.5) and after (section 3.8) G-parity projection.

As can be seen from the form of the isospin blocks K̂[I]
2,L, given in eqs. (3.52), (3.56)

and (3.62) before G-parity projection and eqs. (3.96), (3.98) and (3.101) after, the only mixing
occurs between the [KK̄]1 and [πη]1 channels. For the other channels, taking the inverse
is straightforward as the matrix is diagonal in all indices, and we discuss these cases first.
The general form of the inverse is exemplified by 1

KKπ,I=3/2
2,L


k′ℓ′m′,kℓm

= δk′k
1

2ωK̄
k L3

δℓ′ℓδm′m
1

KKπ,I=3/2,(ℓ)
2 (q∗K̄2,k )

, (B.14)

where we recall that the superscript K̄ indicates the spectator flavor, and

1
KKπ,I=3/2,(ℓ)

2 (q∗K̄2,k )
= ηK̄

8πσK̄
k

{
q∗K̄2,k cot δ

Kπ,I=3/2
ℓ (q∗K̄2,k ) +

∣∣∣q∗K̄2,k

∣∣∣ [1−H ′K̄(k)]
}

. (B.15)

ηK̄ is a symmetry factor that is unity here and in all other channels except for ππ, where
it is 1/2. Note that we are abusing notation slightly as the right-hand side depends on
the spectator momentum k and flavor (here i = K), but we do not show this explicitly on
the left-hand side. The result eq. (B.15) can be generalized to deal with poles in K2 by
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introducing an IPV function, matching the corresponding addition to F noted earlier. The
details of this function and its role are described in ref. [22].

It will be helpful for the generalization to the case involving channel mixing to recall
the argument leading to the form of the right hand side in eq. (B.15). To do so we rewrite
eq. (3.42) as

[M̂2,L]−1 = [K̂2,L]−1 + F̂ . (B.16)

We first apply this to channels that only have diagonal scattering, where the inverses are
trivial. We take the L→∞ limit in the fashion described in ref. [12], i.e. first introducing
the standard iϵ into the poles. A detailed description of this limit using the present notation
is given in section VII of ref. [28]. Removing common factors, one then finds

[M(i)(ℓ)
2 (q∗(i)2,k )]−1 = [K(i)(ℓ)

2 (q∗(i)2,k )]−1 + H(k)ρ̃(q∗(i)2,k ) , (B.17)

ρ̃(q∗(i)2,k ) = ηi

8πσ
(i)
k

−iq
∗(i)
2,k q

∗(i)2
2,k ≥ 0∣∣∣q∗(i)2,k

∣∣∣ q
∗(i)2
2,k < 0

. (B.18)

Here we are denoting the channel generically by the spectator index i, and we stress that
M(i)(ℓ)

2 is the physical infinite-volume two-particle scattering amplitude. The Hρ̃ term in
eq. (B.17) comes from the L → ∞ limit of F̃ , eq. (B.1), in which limit the sum-integral
difference vanishes aside from the difference between the PV and iϵ pole prescriptions. This
leads to the phase-space factor ρ̃, including its analytic continuation below threshold, as
well as the overall factor of H that comes with F̃ . The unitarity constraint on M2 can
be resolved by writing

[M(i)(ℓ)
2 (q∗(i)2,k )]−1 = ηi

8πσ
(i)
k

q
∗(i)
2,k cot δ

(i)
ℓ (q∗(i)2,k ) + ρ̃(q∗(i)2,k ) , (B.19)

where the first term is the standard continuum definition of K−1
2 . Equating the results in

eq. (B.17) and eq. (B.19) leads to the form given above in eq. (B.15). We note that the modified
K2 that appears in the RFT formalism agrees with the standard one above threshold (where
H = 1) and smoothly interpolates to M2 below threshold, with equality holding once H = 0.

We now extend this discussion to the case of two channel mixing. We label the two chan-
nels i = 1, 2 for [KK̄]1, [πη]1, respectively. We use the Blatt-Biedenharn (BB) parametrization
of the S matrix [43],

S2 =
(

cϵ −sϵ

sϵ cϵ

)(
e2iδ1 0

0 e2iδ2

)(
cϵ sϵ

−sϵ cϵ

)
, (B.20)

where cϵ ≡ cos(ϵ), sϵ ≡ sin(ϵ), with ϵ the mixing angle, and all quantities have an implicit
label (ℓ). The relation to the scattering amplitude is [44]

S2 = 1 + 2iPM2P , P = diag

√ η1q∗1
8πE∗

,

√
η2q∗2
8πE∗

 , (B.21)

where we are using E∗ in place of √σk for the total energy in the CMF, which is common
to both channels, and q∗i are the channel-dependent CMF particle momenta. We include
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symmetry factors to keep the discussion general, although for the channels of interest
η1 = η2 = 1. The unitarity of S is ensured if M satisfies

M−1
2 = K−1 − iP 2 , (B.22)

with K a real, symmetric matrix. Inserting the BB form of S2 into eq. (B.21) and comparing
to eq. (B.25), one finds

K−1 = P

(
c2

ϵ cot δ1 + s2
ϵ cot δ2 sϵcϵ(cot δ1 − cot δ2)

sϵcϵ(cot δ1 − cot δ2) c2
ϵ cot δ2 + s2

ϵ cot δ1

)
P , (B.23)

which has the expected decoupled limit when ϵ → 0.
To relate K to the matrix in the quantization condition K̂2,L, we follow the same steps

as above. The result eq. (B.16) remains valid, though now as a 2-d matrix equation. Taking
the L → ∞ limit one now obtains

M−1
2 = K−1

2 − iHP 2 , H = diag (H1(k), H2(k)) , (B.24)

where Hi are the appropriate cutoff functions for the two channels, as discussed above.
Comparing to eq. (B.25) one finds

K−1
2 = K−1 − i(1−H)P 2 , (B.25)

which is the generalization of eq. (B.15).
This discussion has assumed that both channels are above threshold. The analytic

continuation below threshold is done as shown in the definition of ρ̃, eq. (B.18): q∗ → i|q∗|.
This suffices to define the P 2 term in eq. (B.24). As for K−1, if one uses the expression
eq. (B.23), it would appear that we would need to choose a branch of the square root in
P . However, we know that the elements of K are smooth functions of momenta, since it
involves PV-regulated integrals. Thus, in practice, it may be simplest to parametrize its
three independent elements as analytic functions of the q2

i .

C Form of matrix K̂2,L in charge basis

Here we list the nonzero entries of K̂2,L. We use the shorthand notation

[K(ij←mn;p)
2,L ]k′ℓ′m′,kℓm = δk′k2ωkpL3δℓ′ℓδm′mKℓ

2(ij ← mn) , (C.1)

such that the right-hand side of eq. (3.32) is K
(K0

π0←K−π0;K+)
2,L , as well as the abbreviation

K
(ij;p)
2,L ≡ K

(ij←ij;p)
2,L (C.2)

for diagonal scattering.
The diagonal entries are{

K
(K+K

0;π−)
2,L , K

(K+π−;K0)
2,L , K

(K0
π−;K+)

2,L , K
(K+K−;π0)
2,L , K

(K+π0;K−)
2,L , K

(K−π0;K+)
2,L ,

K
(K0K

0;π0)
2,L , K

(K0π0;K0)
2,L , K

(K0
π0;K0)

2,L , K
(K0K−;π+)
2,L , K

(K0π+;K−)
2,L , K

(K−π+;K0)
2,L ,

K
([π+π−]e;η)
2,L , K

([π+π−]o;η)
2,L , K

(π+η;π−)
2,L , K

(π−η;π+)
2,L , 1

2K
(π0π0;η)
2,L , K

(π0η;π0)
2,L

}
(C.3)
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We have augmented the notation with the subscripts e and o to indicated even and odd
partial waves.

The nonzero offdiagonal entries lying above the diagonal are[
K̂2,L

]
1,15

= K
(K+K

0←π+η;π−)
2,L ,

[
K̂2,L

]
2,8

= K
(K+π−←K0π0;K0)
2,L , (C.4)[

K̂2,L

]
3,6

= K
(K0

π−←K−π0;K+)
2,L ,

[
K̂2,L

]
4,7

= K
(K+K−←K0K

0;π0)
2,L , (C.5)[

K̂2,L

]
4,18

= K
(K+K−←π0η;π0)
2,L ,

[
K̂2,L

]
5,11

= K
(K+π0←K0π+;K−)
2,L , (C.6)[

K̂2,L

]
7,18

= K
(K0K

0←π0η;π0)
2,L ,

[
K̂2,L

]
9,12

= K
(K0

π0←K−π+;K0)
2,L , (C.7)[

K̂2,L

]
10,16

= K
(K0K−←π−η;π+)
2,L ,

[
K̂2,L

]
13,17

=
√

1
2K

([π+π−]e←π0π0;η)
2,L , (C.8)

while those below the diagonal are determined by the result that the matrix is symmetric.
Symmetry follows from PT symmetry, which implies that the K matrices for ij ← mn

and mn ← ij are equal.
The factors of 1/2 and

√
1/2 in the expressions above are symmetry factors that follow

from the considerations of BS2.

D Isospin decompositions of two-particle K matrices

In the following, the superscript ℓ is dropped, and we make use of the form of the triplet
and singlet KK pairs,

[KK̄]1 =
{
−K+K

0
,
√

1
2(K+K− −K0K

0), K0K−
}

, (D.1)

[KK̄]0 =
√

1
2(K+K− + K0K

0) . (D.2)

For ππ scattering we have

K2([π+π−]e ← [π+π−]e) = 1
6
(
Kππ,I=2

2 + 2Kππ,I=0
2

)
. (D.3)

K2(π0π0 ← π0π0) = 1
3
(
2Kππ,I=2

2 +Kππ,I=0
2

)
, (D.4)

K2(π0π0 ↔ [π+π−]e) = 1
3
(
Kππ,I=2

2 −Kππ,I=0
2

)
, (D.5)

K2([π+π−]o ↔ [π+π−]o) = 1
2K

ππ,I=1
2 . (D.6)

To obtain these results, care must be taken with the meaning of the subscripts e and
o. For example, to obtain the last line, we use the fact that the I = 1, I3 = 0 state is
(π+π0 − π−π+)/

√
2, and determine the contribution of all contractions. Even partial waves

cancel, while odd waves come with a factor of (1/
√

2)2 × 4 = 2. Since [π+π−]o ← [π+π−]o
means “take the odd partial waves of the amplitude for π+π− ← π+π−”, this leads to the
factor of 1/2 on the right-hand side of eq. (D.6).

For πη scattering we have

K2(π+η ← π+η) = K2(π0η ← π0η) = K2(π−η ← π−η) = Kπη,I=1
2 , (D.7)
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while for πη ↔ KK we find

−K2,L(π+η ↔ K+K
0) = K2,L(π−η ↔ K0K−) =

= −
√

2K2,L(π0η ↔ K0K
0) =

√
2K2,L(π0η ↔ K+K−) = Kπη↔KK̄,I=1

2,L . (D.8)

For Kπ scattering, the results are

K2(K+π− ← K+π−) = K2(K0π+ ← K0π+) = 1
3
(
KKπ,I=3/2

2 + 2KKπ,I=1/2
2

)
, (D.9)

K2(K0π0 ← K0π0) = K2(K+π0 ← K+π0) = 1
3
(
2KKπ,I=3/2

2 +KKπ,I=1/2
2

)
, (D.10)

K2(K+π− ↔ K0π0) = K2(K0π+ ↔ K+π0) =
√

2
3
(
KKπ,I=3/2

2 −KKπ,I=1/2
2

)
. (D.11)

Those for Kπ scattering can then be obtained using charge conjugation, keeping in mind
that, for standard conventions, Cπ+ = −π−, CK+ = K−, and CK0 = K

0. We find

K2(K−π+ ← K−π+) = K2(K0
π− ← K

0
π−) = 1

3
(
KKπ,I=3/2

2 + 2KKπ,I=1/2
2

)
, (D.12)

K2(K0
π0 ← K

0
π0) = K2(K−π0 ← K−π0) = 1

3
(
2KKπ,I=3/2

2 +KKπ,I=1/2
2

)
, (D.13)

K2(K−π+ ↔ K
0
π0) = K2(K0

π− ↔ K−π0) =
√

2
3
(
−KKπ,I=3/2

2 +KKπ,I=1/2
2

)
. (D.14)

Finally, for KK scattering, we have

K2(K+K
0 ← K+K

0) = K2(K0K− ← K0K−) = KKK̄,I=1
2 , (D.15)

K2(K+K− ← K+K−) = K2(K0K
0 ← K0K

0) = 1
2
(
KKK̄,I=0

2 +KKK̄,I=1
2

)
, (D.16)

K2(K+K− ↔ K0K
0) = 1

2
(
KKK̄,I=0

2 −KKK̄,I=1
2

)
. (D.17)

E Conversion from charge to isospin basis for 18-d matrices

We can convert the 18-d matrices to the isospin basis eq. (3.36) by means of conjugating
by the 18 × 18 orthogonal matrix C

(18)
ch→iso:

M
(18)
iso = C

(18)
ch→isoM

(18)
ch

[
C

(18)
ch→iso

]−1
. (E.1)

To obtain this matrix we simply expand the entries of eq. (3.36) using isospin Clebsch-Gordon
coefficients, and then express in terms of the charge basis, eq. (3.24). The only subtlety is
the treatment of [π+π−]e/o. In order for C

(18)
ch→iso to correspond to a change of basis, it must

be unitary, and this requires maintaining normalizations. Thus we must consider [π+π−]e/o

as corresponding to [π+π− ± π−π+]/
√

2.
The conversion matrix is too large to present in normal format, so we present it row by

row in a compact notation. We begin with the first five rows, which are those corresponding
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to I = 2, and are given by

[[KK̄]1π]2 :
√

1
6

(
−1, 0, 0,

√
2, 0, 0,−

√
2, 0, 0, 1, |0⟩6

)
, (E.2)

[[Kπ]3/2K̄]2 :
√

1
6

(
0,−1, 0, 0,

√
2, 0, 0,−

√
2, 0, 0, 1, 0, |0⟩6

)
, (E.3)

[[K̄π]3/2K]2 :
√

1
6

(
0, 0,−1, 0, 0,

√
2, 0, 0,−

√
2, 0, 0, 1, |0⟩6

)
, (E.4)

[[ππ]2η]2 :
√

1
3

(
|0⟩12 , 1, 0, 0, 0,

√
2, 0
)

(E.5)

[[πη]1π]2 :
√

1
6 (|0⟩12 , 0, 0, 1, 1, 0, 2) , (E.6)

where |0⟩n is the vector consisting of n zeros.
The middle eight rows, corresponding to I = 1, are

[[KK̄]1π]1 :
√

1
2 (−1, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, |0⟩6) , (E.7)

[[KK̄]0π]1 :
√

1
2 (0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, |0⟩6) , (E.8)

[[Kπ]3/2K̄]1 :
√

1
6

(
0, 1, 0, 0,

√
2, 0, 0,

√
2, 0, 0, 1, 0, |0⟩6

)
, (E.9)

[[Kπ]1/2K̄]1 :
√

1
6

(
0,−
√

2, 0, 0, 1, 0, 0, 1, 0, 0,−
√

2, 0, |0⟩6
)

, (E.10)

[[K̄π]3/2K]1 :
√

1
6

(
0, 0, 1, 0, 0,−

√
2, 0, 0,−

√
2, 0, 0, 1, |0⟩6

)
, (E.11)

[[K̄π]1/2K]1 :
√

1
6

(
0, 0,−

√
2, 0, 0,−1, 0, 0,−1, 0, 0,−

√
2, |0⟩6

)
, (E.12)

[[ππ]1η]1 : (|0⟩12 , 0, 1, 0, 0, 0, 0) , (E.13)

[[πη]1π]1 :
√

1
2 (|0⟩12 , 0, 0, 1,−1, 0, 0) . (E.14)

The last five rows, corresponding to I = 0, are

[[KK̄]1π]0 :
√

1
6

(
−
√

2, 0, 0,−1, 0, 0, 1, 0, 0,
√

2, 0, 0, |0⟩6
)

, (E.15)

[[Kπ]1/2K̄]0 :
√

1
6

(
0,
√

2, 0, 0, 1, 0, 0,−1, 0, 0,−
√

2, 0, |0⟩6
)

, (E.16)

[[K̄π]1/2K]0 :
√

1
6

(
0, 0,
√

2, 0, 0, 1, 0, 0,−1, 0, 0,−
√

2, |0⟩6
)

, (E.17)

[[ππ]0η]0 :
√

1
3

(
|0⟩12 ,

√
2, 0, 0, 0,−1, 0

)
(E.18)

[[πη]1π]0 :
√

1
3 (|0⟩12 , 0, 0, 1, 1, 0,−1) , (E.19)

F Quadratic terms in the threshold expansion of Kdf ,3

Here we collect the quadratic terms in the threshold expansion developed in section 5, and
sketch the group-theoretic analysis that allows one to determine the number of terms with
given symmetry properties. Rather than give names to the coefficients we simply list the
independent terms, each of which will be multiplied by an independent real coefficient.
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For the I = 0, 2 diagonal K matrices we find 11 terms, one choice of basis for which is,

K[I],xx
df,3 : ∆2, (∆1∆2 + ∆′1∆′2), (t̃11t̃22 + t̃12t̃21), (∆1 + ∆2)(∆′1 + ∆′2),

(t̃11 + t̃22)(t̃12 + t̃21), (∆2
1 + ∆′21 + ∆2

2 + ∆′22),
∆(∆1 + ∆′1 + ∆2 + ∆′2), (t̃2

11 + t̃2
12 + t̃2

21 + t̃2
22), ∆(t̃11 + t̃12 + t̃21 + t̃22),

(t̃11(∆′2 + ∆2) + t̃12(∆′2 + ∆1) + t̃21(∆′1 + ∆2) + t̃22(∆′1 + ∆1))
(t̃11(∆′1 + ∆1) + t̃12(∆′1 + ∆2) + t̃21(∆′2 + ∆1) + t̃22(∆′2 + ∆2)) ,

(F.1)

while for the offdiagonal case we find 17 terms,

K[I],ab
df,3 : ∆2, ∆1∆2, ∆′1∆′2, (∆2

1 + ∆2
2), (∆′21 + ∆′22), ∆(∆1 + ∆2),

∆(∆′1 + ∆′2), (t̃11t̃12 + t̃21t̃22), (t̃11t̃21 + t̃12t̃22), (t̃11t̃22 + t̃12t̃21),
(∆1 + ∆2)(∆′1 + ∆′2), (t̃2

11 + t̃2
12 + t̃2

21 + t̃2
22), ∆(t̃11 + t̃12 + t̃21 + t̃22),

((t̃11 + t̃21)∆1 + (t̃12 + t̃22)∆2), ((t̃11 + t̃21)∆2 + (t̃12 + t̃22)∆1),
(∆′1(t̃11 + t̃12) + ∆′2(t̃21 + t̃22)), (∆′2(t̃11 + t̃12) + ∆′1(t̃21 + t̃22)) .

(F.2)

For I = 1, the aa quadratic terms are as in eq. (F.1), while those for bb and cc involve
the following 6 terms

K[I=1],yy
df,3 : (t̃12t̃21 − t̃11t̃22), (∆1 −∆2)(∆′1 −∆′2),

(t̃2
11 − t̃2

12 − t̃2
21 + t̃2

22), ∆(t̃11 − t̃12 − t̃21 + t̃22),
(∆′1(t̃11 − t̃12) + ∆′2(t̃22 − t̃21) + (t̃11 − t̃21)∆1 + (t̃22 − t̃12)∆2),
(∆′1(t̃22 − t̃21) + ∆′2(t̃11 − t̃12) + (t̃22 − t̃12)∆1 + (t̃11 − t̃21)∆2).

(F.3)

As for the offdiagonal I = 1 contributions, we find 10 quadratic terms for ay, with y = b or c

K[I=1],ay
df,3 ({k′}, {k}) : (t̃11t̃21 − t̃12t̃22), (∆′1 + ∆′2)(∆1 −∆2), (∆′21 + ∆′22), (∆2

1 −∆2
2),

(t̃2
11 − t̃2

12 + t̃2
21 − t̃2

22), ∆(t̃11 − t̃12 + t̃21 − t̃22),
((t̃12 + t̃22)∆1 − (t̃11 + t̃21)∆2), ((t̃11 + t̃21)∆1 − (t̃12 + t̃22)∆1),
(∆′1(t̃11 − t̃12) + ∆′2(t̃21 − t̃22)), (∆′2(t̃11 − t̃12) + ∆1(t̃21 − t̃22)) ,

(F.4)

and 8 terms for bc

K[I=1],bc
df,3 : (t̃12t̃21 − t̃11t̃22), (∆1 −∆2)(∆′1 −∆′2),

(t̃2
11 − t̃2

12 − t̃2
21 + t̃2

22), ∆(t̃11 − t̃12 − t̃21 + t̃22),
(∆′1(t̃11 − t̃12) + ∆′2(t̃22 − t̃21)), ((t̃11 − t̃21)∆1 + (t̃22 − t̃12)∆2),
(∆′1(t̃22 − t̃21) + ∆′2(t̃11 − t̃12)), ((t̃22 − t̃12)∆1 + (t̃11 − t̃21)∆2).

(F.5)

The counting of terms can be done using a group theoretic method introduced in
appendix B of ref. [39]. This has the advantage over direct enumeration of avoiding the
possibility of missing terms. The method is based on the observation that all terms can
be built from products of the t̃ij , as can be seen from the relations eq. (5.3). These 9
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objects transform under the symmetry group S2 × S′2, where S2 is the permutation group of
two elements, here generated by the interchange initial momenta k1 ↔ k2, while S′2 is the
corresponding group for final state interchange. This is the symmetry group that is applicable
for the off-diagonal elements of Kdf,3. For the diagonal elements, PT symmetry enlarges
the group to (S2 × S′2) ⋊ Z2, with the Z2 interchanging initial and final states. The Z2 acts
nontrivially — interchanging the two S2s — so the combination involves a semidirect product.

The method is now to decompose the 9 objects t̃ij and the 45 objects t̃ij t̃kℓ into irreducible
representations (irreps) of the appropriate group. We begin with the simpler S2 × S′2 case.
Here there are four 1-d irreps, labeled (1, 1), (1,−1), (−1, 1) and (−1,−1) according to
symmetry/antisymmetry under the two subgroups. Determining the characters of t̃ij , we
find that these 9 objects decompose as

4× (1, 1)⊕ 2× (1,−1)⊕ 2× (−1, 1)⊕ (−1,−1) . (F.6)

The 4 singlets lead to the four linear terms in K[I=0,2]ab
df,3 , eq. (5.5), the two (−1, 1) irreps lead

to the two linear terms in K[1]ab
df,3 , eq. (5.7), and the single (−1,−1) irrep leads to the single

linear term in K[1]bc
df,3 , eq. (5.8). A similar exercise for the t̃ij t̃kℓ finds

17× (1, 1)⊕ 10× (1,−1)⊕ 10× (−1, 1)⊕ 8(−1,−1) . (F.7)

This determines the number of independent quadratic terms, and is consistent with the
results quoted earlier in this section.

Now we turn to the diagonal cases, which have the larger (S2 × S′2) ⋊ Z2 symmetry. The
group can be represented by 4− d matrices that act on the momentum vector {k1, k2, k′1, k′2},
and is generated by the block matrices

s2 =
(

σ1 0
0 1

)
, s′2 =

(
1 0
0 σ1

)
, and z2 =

(
0 1
1 0

)
, (F.8)

with σ1 the usual Pauli matrix. There are 5 conjugacy classes, with elements {1}, {s2, s′2},
{s2s′2}, {z2, s2z2s2}, and {z2s2, z2s′2}. There are correspondingly 5 irreps, four with d = 1
and one with d = 2. The character table is shown in table 1, with rather arbitrary names
chosen for the irreps.

The character vector of the t̃ij is χt = {9, 3, 1, 3, 1}, from which one finds the de-
composition

3× 1⊕ 1a ⊕ 1b⊕ 2× 2 . (F.9)

The three singlets correspond to the three linear terms in K[I=0,2],xx
df,3 , eq. (5.4), while the

1a irrep is that which is fully antisymmetric, and thus leads to the single term in K[I=1],yy
df,3 ,

eq. (5.6).
For t̃ij t̃kℓ, the character vector is χt2 = {45, 9, 5, 9, 1}, leading to the decomposition

11× 1⊕ 6× 1a ⊕ 6× 1b⊕ 2× 1c⊕ 10× 2 . (F.10)

This leads to the 11 fully symmetric quadratic terms in eq. (F.1) above, and the 6 fully
antisymmetric terms in eq. (F.3)

– 42 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
3

Class 1 s2 s2s′2 z2 z2s2
Dim 1 2 1 2 2

1 1 1 1 1 1
1a 1 -1 1 1 -1
1b 1 1 1 -1 -1
1c 1 -1 1 -1 1
2 2 0 -2 0 0

Table 1. Character table of (S2 × S′2) ⋊ Z2.

G Symmetrization of the quantization condition

In this appendix we sketch how the asymmetric form of the three-particle quantization
condition, eq. (3.37), can be manipulated into the symmetric form, eq. (3.48). This is
done using symmetrization identities, which are valid only up to exponentially-suppressed
corrections. This is sufficient for our purposes, however, since the derivation of all forms
of the quantization condition discards such corrections.

For simplicity, we consider a single three-particle channel with distinguishable particles,
allowing us to use several results from ref. [28] (BS3). The generalization to identical particles,
2+1 systems, or multiple three-particle channels, is straightforward, since the symmetrization
identities take the same form in all cases. For brevity, we also drop carets in this appendix.

The asymmetric form of the quantization condition can be rewritten as

det M = 0 , M = 1 + FG(K2,L +K(u,u)
df,3 ) . (G.1)

Noting that D(u,u)
23,L , eq. (3.45), can be written as

D(u,u)
23,L = 1

K−1
2,L + FG

, (G.2)

we find

M = 1
1− FGD(u,u)

23,L

M ′ , M ′ =
[
1 + (1− FGD(u,u)

23,L )FGK(u,u)
df,3

]
. (G.3)

Since energy levels must depend on the three-particle K matrix, assuming that it has a
general form, we can rewrite the quantization condition as det M ′ = 0. We note that M ′

has the same form as the denominator in eq. (79) of BS3.
The next step is to use the algebraic result given in eq. (D9) of BS3,

K(u,u)
df,3 M ′−1 = (1 +K2,L

−→
IG)TL(1 +←−IGK2,L) , (G.4)

TL = K′ 1
1 +

[
FG − IF G − (FG −

←−
IG)D(u,u)

23,L (FG −
−→
IG)

]
K′

, (G.5)

K′ = Z
1

1 + (IF G +←−IGK2,L
−→
IG)Z

, (G.6)

Z = 1
1 +K2,L

−→
IG

K(u,u)
df,3

1
1 +←−IGK2,L

, (G.7)
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where IF G, −→IG and ←−IG are integral operators that enter the symmetrization identities given
in eqs. (100)–(102) of BS3, which, in shorthand form, are

FG − IF G = 1
3
←−
S F
−→
S , FG −

−→
IG = F

−→
S , FG −

←−
IG =←−S F . (G.8)

Here −→S and ←−S are symmetrization operators, defined in eq. (98) of BS3.
Using these identities we find

TL = K′ −K′←−S F3
1

1 +Kdf,3F3

−→
S K′ , (G.9)

F3 = F

3 − FD(u,u)
23,L F = F

3 − F
1

K−1
2,L + FG

F , (G.10)

Kdf,3 = −→S K′←−S . (G.11)

This leads to the desired symmetric form of the quantization condition in the following
manner. As noted above, the quantization condition can be written det M ′ = 0, which implies
that the left-hand side of eq. (G.4) must satisfy det(K(u,u)

df,3 M ′−1) =∞. Now, in the right-hand
side, the integral operators sew the external factors of K2,L to the central TL and do not
lead to divergences. These can only arise from TL itself, so that the quantization condition
can be rewritten as det TL =∞. Using eq. (G.9), we then observe that this divergence can
arise only in the second term on the right-hand side, leading to the standard symmetric
form of the quantization condition,

det(1 +Kdf,3F3) = 0 . (G.12)

The symmetrization operators on both sides of K′ ensure that Kdf,3 is symmetric. Tracing
back through eqs. (G.6) and (G.7) we see that K′ is obtained from the K matrix that enters
the asymmetric form of the quantization condition, K(u,u)

df,3 , by an infinite series involving
attaching factors of K2,L with the integral operators. An important point is that these
attachments convert one infinite-volume quantity into another.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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