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Abstract. In this review I present some recent results on the convergence properties of formal star products.
Based on a general construction of a Fréchet topology for an algebra with countable vector space basis I
discuss several examples from deformation quantization: the Wick star product on the flat phase space
R

2n gives a first example of a Fréchet algebraic framework for the canonical commutation relations. More
interesting, the star product on the Poincaré disk can be treated along the same lines, leading to a non-trivial
example of a convergent star product on a curved Kähler manifold.

1. Introduction
In this review we recall some recent progress in the understanding of the passage from formal
deformation quantization [1] to a more analytic framework for star products as obtained in [2].

Let us recall the basic definitions of formal deformation quantization from [1], see also [3]
for a pedagogical introduction. We consider a Poisson manifold (M,π) where π ∈ Γ∞(Λ2TM)
is the Poisson bivector field. This means that {f, g} = π(df,dg) defines a Poisson bracket for
f, g ∈ C∞(M). We will use complex-valued functions throughout this paper. The Jacobi identity
for this bracket is equivalent to the condition Jπ, πK = 0 using the Schouten bracket. Then a star
product ? for (M,π) is a C[[λ]]-bilinear associative multiplication for C∞(M)[[λ]] written as

f ? g =
∞∑
r=0

λrCr(f, g) (1.1)

such that C0(f, g) = fg is the pointwise product,

C1(f, g)− C1(g, f) = i{f, g} (1.2)

gives the Poisson bracket in the first order commutator, the Cr are bidifferential operators, and
1 ? f = f = f ? 1 for all f ∈ C∞(M)[[λ]].

The classification and existence of such star products is by now well-established: starting with
the early works of deWilde and Lecomte [4] and Fedosov [5] in the symplectic case, Kontsevich
proved the existence and classification in the general Poisson case in [arXiv:q-alg/9709040] that
later appeared as [6]. In addition to these existence and classification results one has many
explicit examples, a good understanding of the quantization of symmetries and phase space
reduction in this context, and a well-working representation theory for the resulting algebras, see
e.g [7] for a review.

However, from a physical point of view the situation is still unsatisfactory: the deformation
parameter λ plays the role of Planck’s constant ~ which one would like to substitute by a positive
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real number. Since one can easily show that the series (1.1) typically diverges for all λ 6= 0, one
faces a serious convergence problem.

There are several different approaches to overcome this problem. Most notably is the idea
to replace the deformation aspect as above by the notion of a continuous field of topological
algebras. Here mainly continuous fields of C∗-algebras have been considered, see e.g Rieffel’s
definition of strict deformation quantization [8]. In this context one knows various examples and
some general constructions based on actions of Rd and some more general groups [9–13] but a
general picture seems to be missing.

In this review we present a different approach, namely to investigate the convergence of the
series (1.1) more directly within a Fréchet-algebraic framework. The reason for this choice is
that for M = R2n with the usual Weyl-Moyal star product the polynomials form a subalgebra
where convergence is trivially fulfilled as the series simply terminate. To extend the star product
beyond polynomials one would like to establish a topology for which it is continuous. Then
the completion with respect to this topology should yield a hopefully large and interesting class
of functions. However, since the canonical commutation relations will be realised in this larger
algebra, no Banach topology will be possible.

In this work we do not get any general existence or classification results as this may even be
too much to ask for. Instead, we focus on some non-trivial example, the star product on the
Poincaré disk. Topologically, the disk is still trivial but from the Kähler geometry point of view,
we have curvature compared to the case of the flat R2n.

Though we only have examples so far, we can at least split the question about convergence of
star products in two separate problems. The first will be a general construction of a locally convex
topology for an algebra having a countable basis. This construction will not work in general but
requires some rather technical conditions on the multiplication to be satisfied. Nevertheless, it is
conceptually rather easy and clear. The second step will consist in finding good examples where
the above construction actually works. Surprisingly, we have many interesting examples even
from beyond deformation quantization which stress that the general construction can be used to
produce examples of locally convex algebras in various areas of mathematics.

The paper is organized as follows: in the next section we present the general construction of
a Fréchet topology for a complex algebra with countable vector space basis in two versions. We
discuss several simple examples where the necessary technical conditions for the constructions
are fulfilled. In Section 3 we pass to the first non-trivial example from deformation quantization:
the Wick star product on R2n. Already here we get a quite non-trivial completion and a Fréchet
algebraic framework for the canonical commutation relations. Section 4 contains a brief review
of the explicit construction of a star product of Wick type on the Poincaré disk. In Section 5 we
show that the general construction can be applied to the star product on the disk. In fact, the
whole phase space reduction of the star product can be formulated within our Fréchet algebraic
context. The resulting Fréchet algebra on the disk enjoys many nice features some of which we
explain.

2. The general construction
Consider a complex algebra A with a vector space basis {eα}α∈I such that the index set I is
countable. Then the product ? of A is completely determined by its values on the basis vectors

eα ? eβ =
∑

γ
Cγαβeγ (2.1)

Here we introduced the structure constants Cγαβ . For given α and β we have only finitely many
γ for which Cγαβ 6= 0. A general element a ∈ A can be written as a =

∑
α aαeα with only finitely

many aα being different from zero, thereby defining the evaluation functionals eα : a 7→ aα.
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The aim is now to find a locally convex topology on A such that ? becomes continuous and
all the evaluation functionals eα become continuous, too.

The first step is therefore to consider the seminorm ‖a‖0,0,γ = |aγ |. which has to be among
the continuous seminorms of the searched-for topology if we want eγ to be continuous. While
this makes eγ continuous, the product ? has no reason to be continuous with respect to all the
‖ · ‖0,0,γ . In order to see the possible failure of continuity we estimate

‖a ? b‖0,0,γ =
∣∣∣∑

α,β
Cγαβaαbβ

∣∣∣ ≤√∑
α,β
|aα|2|Cγαβ|

√∑
α,β
|bβ|2|Cγαβ| (2.2)

Thus we get the following simple candidate for additional seminorms in order to control the
continuity of ?. We define

h1,0,γ)(a) =
∑

α
|aα|2Cγα,· with Cγα,· =

∑
β
|Cγαβ| (2.3)

and

h1,1,γ)(b) =
∑

β
|bβ|2Cγ·,β with Cγ·,β =

∑
α
|Cγαβ| (2.4)

Then ‖a‖1,`,γ =
√
h1,`,γ(a) for ` = 0, 1 will be seminorms estimating the continuity requirement

for ? with respect to ‖ · ‖0,0,γ . But then we have to iterate this procedure to get continuity
estimates for ? with respect to ‖ · ‖1,`,γ and so on. Thus we define recursively for m = 0, 1, . . .,
` = 0, . . . 2m − 1, and γ ∈ I

hm+1,2`,γ(a) =
∑

α
hm,`,α(a)2Cγα,· hm+1,2`+1,γ(a) =

∑
β
hm,`,β(a)2Cγ·,β (2.5)

for every a ∈ A and set ‖a‖m,`,γ = 2m
√
hm,`,γ(a). By construction, it is now clear that we have

the continuity estimate

‖a ? b‖m,`,γ ≤ ‖a‖m+1,`,γ‖b‖m+1,2m+`,γ (2.6)

However, it may very well happen that all these quantities diverge to +∞. In particular, the
numbers Cγα,· and C

γ
·,β need not to be finite. In this situation our construction fails. In any case,

we consider those elements of A where we have convergence of all the above series and set

Anice =
{
a ∈ A

∣∣∣ ‖a‖m,`,γ <∞ for all m, `, γ
}

(2.7)

It is then easy to see that Anice is a subalgebra of A on which the product is continuous with
respect to the locally convex topology induced by all the seminorms ‖ · ‖m,`,γ . Nevertheless, it
might happen that Anice = {0} is trivial.

Theorem 2.1 Suppose we have A = Anice.
i.) The completion Â of A becomes a Fréchet algebra.

ii.) The evaluation functionals eγ : A −→ C are continuous and extend continuously to Â.

iii.) The vectors {eα}α∈I form an unconditional Schauder basis of Â, i.e a =
∑

γ e
γ(a)eγ

converges unconditionally.
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Let us comment on this construction: the first problem is of course that we have to choose
a basis and the construction depends on this choice in a rather obscure way. In many examples
we will see that there are good reasons for such a choice, so this will be only a minor drawback.
More severe is that it might happen that Anice = {0} is trivial. In this case, it will turn out that
sometimes a rescaling of the given basis yields better convergence properties and can make the
construction work. It turns out that by an appropriate rescaling one even can control properties
of the resulting topology.

The remarkable feature of the construction is that it does not require an associative algebra
at all: it would be very interesting to apply this to some of the standard candidates of
infinite-dimensional Lie algebras with countable vector space basis like e.g the Witt algebra
or the Virasoro algebra. We also note that there are alternative constructions of locally convex
topologies for algebras having a countable vector space basis, see [14, Prop. 2.1].

While the above construction already yields several interesting examples, we can still refine it.
The idea is that on A there might be a collection of linear functionals Ω of special interest. We
are now interested in constructing a finer topology such that the functionals ω ∈ Ω also become
continuous. Of course, we can just add the seminorms ‖a‖ω = |ω(a)| to achieve the continuity
of ω and then start the recursion again, in order to guarantee the continuity of the product.
However, this will not be necessary as the seminorms

‖a‖m,`,ω = 2m

√∑
γ
hm,`,γ(a)|ω(eγ)| (2.8)

will do the job. Again, we have the problem that these new seminorms might all diverge to +∞.
In this case the construction fails again. Thus we consider

AΩ-nice =
{
a ∈ Anice

∣∣∣ ‖a‖m,`,ω <∞ for all m, `, ω
}

(2.9)

which turns out to be a subalgebra of Anice. Under the assumption AΩ-nice = A we get the same
conclusions as in Theorem 2.1 also in this case.

We conclude this section with some examples where the above general construction has been
applied successfully:

Example 2.2 (polynomials I) Consider A = C[z] with the standard basis {en = zn}n∈N0 .
In this case the construction can be show to work. The resulting completion is the algebra
of formal power series C[[z]] with its usual Fréchet algebra structure. Now we can no longer
interpret the elements of the completion as functions on C. Thus we pass to the second version
of the construction and take Ω = {δp} for a point p ∈ C different from 0. Denote by R = |p| > 0
its absolute value. For R ≥ 1 the second version of the construction fails but for R < 1 we get
a non-trivial completion which is a subalgebra of the Banach algebra of holomorphic functions
on the closed disk BR(0)cl ⊆ C, endowed with a Fréchet topology strictly finer than the Banach
space topology of uniform convergence.

Example 2.3 (polynomials II) Again, we consider A = C[z] but now with the basis en = zn

n! .
The first version of the construction still works the same way and yields the same completion
Â = C[[z]]. However, the second version changes drastically. The resulting Fréchet algebra Â

does not depend on R > 0 at all and it is explicitly given by those series a =
∑

n ãnz
n/n! with

‖a‖ε = sup
n

|ãn|
n!ε

<∞ (2.10)

for all ε > 0. With other words, the Taylor coefficients of a have sub-factorial growth. In fact,
the (quite complicated) seminorms for the second version of the construction can be shown to
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lead to the same topology as the one described by the seminorms (2.10). This example can
be extended to the case of Laurent polynomials C[z−1, z] where one gets a similar completion:
the Laurent coefficients are required to have sub-factorial growth, too. This is again a strongly
nuclear Köthe space with the monomials being an absolute Schauder basis.

Example 2.4 (matrices) The next example starts with the noncommutative non-unital
algebra M∞(C) of matrices with only finitely many non-zero entries. Here we have an obvious
basis to start with: the elementary matrices Eij where we have a 1 at the (i, j)-th position and
zeros elsewhere. Taking them as a first try, the construction fails for this basis. A rescaling to
Êij = 1√

i!j!
Eij makes the construction work. The completion is a Fréchet algebra containing

matrices with entries having sub-factorial growth. Moreover, the trace functional is continuous
and hence the completion can be seen as a particular subalgebra of the trace class operators.
The alternative we investigated starts with the basis Ẽij = 1

ijEij instead. Also in this case the
construction works and we get a larger completion: the completion contains at least those infinite
matrices A whose coefficients Ãij with respect to Ẽij are bounded. The trace functional is not
continuous and the completion does contain operators which are not of trace class.

Example 2.5 (group algebras) A last class of examples is given by the group algebra C[G]
of a finitely generated group. A first try suggests to take the group elements g ∈ G as the basis,
but then the construction fails. A rescaling can be done by means of the length L(g) of g ∈ G
with respect to a fixed choice of generators of the group. Then the basis eg = 1/(L(g)!)ε makes
the construction work. Here ε > 0 is a parameter of the construction. The resulting completion
gives a Fréchet algebra inside `1(G). Many properties can be determined explicitly. A further
study of this group algebra is work in progress [Cahen M, Gutt S and Waldmann S].

As a conclusion one can say that the procedure described in Theorem 2.1 and in its alternative
version gives a rather general framework to produce interesting Fréchet algebras, even though
for the particular example there is typically still some work to be done in order to identify the
precise topology.

3. The Wick star product on Cn
We come now to a first non-trivial example from deformation quantization: on Cn one considers
the Wick star product

f ?Wick g =

∞∑
I,J=0

(2~)|I|

I!
gIJ

∂|I|f

∂zI
∂|J |g

∂zJ
(3.1)

where f, g ∈ AWick = C[z1, . . . , zn, z1, . . . , zn] are polynomials, I, J ∈ Nn
0 are multiindices, and

g = diag(+1, . . . ,+1) is the canonical Kähler structure on Cn. Clearly, the Wick star product
converges for polynomials as the series is actually a finite sum. We take now the following basis

eI,J =
zIzJ

(2~)|I|+|J |I!J !
(3.2)

to start our construction. Here I, J ∈ Nn
0 are as before and a ∈ AWick will be written as

a =
∑

I,J aIJeIJ . The choice for this normalization of the basis is motivated on one hand by
physics as the (2~)|I|+|J | in the denominator will ensure that the basis is “dimensionless”, and on
the other hand by the Taylor formula. It is now a quite involved computation of all the relevant
structure constants to show that the first version of the construction actually works. The resulting
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completion can be described in a rather simple way: first we introduce the following seminorms
measuring again a sub-factorial growth of the coefficients aIJ , i.e

‖a‖ε = sup
I,J

|aIJ |
(|I|+ |J |)!ε

(3.3)

Then the completion can be viewed as the subset of all formal series a =
∑

IJ aIJeIJ with finite
seminorms ‖a‖ε <∞. In fact, we have the following theorem:

Theorem 3.1 The completion ÂWick of the Wick star product algebra AWick = (C[z1, . . . , zn], ?Wick)
with respect to the construction of Theorem 2.1 is a strongly nuclear Fréchet algebra with absolute
Schauder basis {eIJ}I,J∈Nn

0
consisting of real-analytic functions on R2n with Taylor coefficients

aIJ having sub-factorial growth. An equivalent system of seminorms is given by {‖ · ‖ε}ε>0.

Remark 3.2 The (completed) Wick star product algebra has been studied in detail in [2, 15]
resulting in many additional properties some of which we list here:
i.) Having an absolute Schauder basis, the completion is a Köthe sequence space. This can

also be seen directly, as the isomorphism to a Köthe sequence space is given by mapping a
to the sequence of Taylor coefficients {aIJ}I,J∈Nn

0
. This gives also the proof of the strong

nuclearity thanks to the Grothendieck-Pietsch criterion.
ii.) The Fréchet topology is independent of ~. Moreover, the Wick star product f ?Wick g of

two functions in the completion ÂWick depends holomorphically on ~. In fact, the series
expression (3.1) converges absolutely in the Fréchet topology. This shows that we have a
holomorphic (even an entire) deformation in the sense of [16].

iii.) The ?Wick-exponential of linear polynomials converges absolutely. This is non-trivial since
the completion has no general entire functional calculus, it is not locally multiplicatively
convex. In fact, due to the presence of elements obeying the canonical commutation
relations this can not be the case.

iv.) The additive group (R2n,+) acts on the completion by continuous algebra automorphism
in a smooth way. In fact, the smooth topology with respect to this action coincides with
the original topology. Moreover, the action is inner by means of the ?Wick-exponentials of
linear polynomials.

v.) For ~ > 0 the δ-functionals are continuous positive linear functionals and the corresponding
GNS construction with respect to δ0 is the usual Bargmann-Fock representation in normal
ordering of the z’s and z’s.

vi.) Since all evaluation functionals at points in R2n are continuous, we can view the elements
of the completion as functions. They are real-analytic and have a holomorphic/anti-
holomorphic extension to Cn × Cn. The Fréchet topology of ÂWick is then finer as the
Fréchet topology of locally uniform convergence of the extensions on Cn ×Cn.

As a last remark we would like to mention that the construction of the topology by means of
Theorem 2.1 of course looks very ad-hoc. However, a posteriori, we showed in [17] that there is a
much more conceptual approach to the Wick algebra, based on an arbitrary continuous bilinear
form on a locally convex space: this enlarges the construction to infinite dimensions and proves
some very nice functorial properties.

4. The star product on the Poincaré disk
We come now to the main example for a convergent star product beyond the flat situation. We
base the construction on the results from [18, 19] where a star product on CPn and on the
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Poincaré disk Dn was constructed by means of a phase space reduction. We have to recall some
parts of this construction in order to introduce some notation.

Consider Cn+1 with the pseudo Kähler metric defined by g = diag(−1,+1, . . . ,+1) and define
the Kähler potential

y(z) = −g(z, z) = |z0|2 − |z1|2 − · · · − |zn|2 (4.1)

Then one considers the open cone

C+
n+1 =

{
z ∈ Cn+1

∣∣ y(z) > 0
}

(4.2)

We use y as a momentum map for the canonical U(1)-action on Cn+1 to construct the Marsden-
Weinstein quotient for the momentum value 1. Thus let C = {z ∈ C+

n+1 | y(z) = 1} be the
constraint surface and let Mred = C

/
U(1) be the reduced phase space. It turns out that this

is the Poincaré disk Mred = Dn with the symplectic structure being the one from its canonical
Kähler structure of constant negative holomorphic curvature. Alternatively, we can view Dn as
an open subset of CPn by Dn = {[z] ∈ CPn | z ∈ C+

n+1} where [z] denotes the complex line
through the point z ∈ Cn+1 \ {0}. This gives the correct complex structure on Dn but of course
not the correct Kähler structure. Note that in this particular situation we also have a direct
map going from the big phase space C+

n+1 to the reduced one, i.e the holomorphic quotient map
π : C+

n+1 −→ Dn by mapping z to [z].
Using the metric g on C+

n+1 this gives us a Wick star product ?Wick by the very same formula
(3.1), now of course involving some additional signs due to the changed g. This Wick star product
inherits the correct SU(1, n) symmetry from the pseudo Kähler structure of C+

n+1. The basic
idea is to modify the Wick star product on C+

n+1 in a suitable way such that it passes to the
quotient Dn.

To this end, one first observes that the U(1)-invariant functions form a subalgebra with respect
to the Wick star product. Next, one calls a function R ∈ C∞(C+

n+1) radial if it depends only on
the “radius” y, i.e if there is a smooth function % ∈ C∞(R+) with R = % ◦ y. Clearly, a radial
function is U(1)-invariant. Moreover, a function F ∈ C∞(C+

n+1) is called homogeneous if it is of
the form F = π∗u with u ∈ C∞(Dn). Finally, we introduce the global vector field

∂

∂y
=

1

2y

n∑
k=0

(
zk

∂

∂zk
+ zk

∂

∂zk

)
(4.3)

which on radial functions indeed acts as the partial derivative by y. A homogeneous function
F can be characterized infinitesimally by ∂

∂yF = 0 = XyF , where Xy is the Hamiltonian vector
field of y.

A simple computation shows that for a radial function R and a U(1)-invariant function F one
has

R ?Wick F = F ?Wick R =

∞∑
r=0

(2~)r

r!
yr
∂rR

∂yr
∂rF

∂yr
(4.4)

This shows that inside the U(1)-invariant functions the radial ones are central. However, the
product is not the pointwise product. Hence a restriction to the constraint surface C is not
possible directly: the pointwise ideal generated by y − 1 is not the ?Wick-ideal. Thus the Wick
star product does not restrict directly to Dn. Now this flaw can be cured by passing to an
equivalent star product ?̃ such that for this new star product the U(1)-invariant functions are

3Quantum: Algebra Geometry Information (QQQ Conference 2012) IOP Publishing
Journal of Physics: Conference Series 532 (2014) 012027 doi:10.1088/1742-6596/532/1/012027

7



still a subalgebra and the ?̃-product with a radial function becomes the pointwise product. There
is an explicit formula for the equivalence transformation and the resulting formula for ?̃ is

F ?̃ G =
∞∑
r=0

1

r!

(
2~
y

)r r∏
k=1

(
1− k2~

y

)−1

yrgi1j1 · · · girjr ∂rF

∂zi1 · · · ∂zir
∂rG

∂zj1 · · · ∂zjr
(4.5)

for F,G ∈ C∞(C+
n+1)U(1)[[~]] being U(1)-invariant. Now the radial functions behave like scalars

and hence the ?̃-ideal generated by y − 1 coincides with the pointwise ideal, i.e the vanishing
ideal of C. Hence we can induce a star product ?Dn on the disk by the identification

C∞(D) ∼= C∞(C+
n+1)U(1)

/
(y − 1)C∞(C+

n+1)U(1) (4.6)

This gives the very explicit formula for u, v ∈ C∞(Dn): we take F = π∗u and G = π∗v, compute
their star product upstairs according to (4.5) and set y = 1 afterwards. Then the resulting
function on the constraint surface C is the pull-back of u ?Dn v.

We use now this star product ?Dn on the disk to implement our construction of a Fréchet
topology according to Theorem 2.1.

5. The basis and the algebra on the disk
The first step is of course to find a subalgebra of C∞(C+

n+1)U(1) with a countable vector space
basis such that the product ?̃ is well-defined for some ~ 6= 0. Then we can implement our
construction, still on the big phase space, and pass to the quotient by the same identification as
in (4.6) after having established the topological context.

We start with the U(1)-invariant monomials

eP,Q,α =
(
z0
)α−|P |(

z0
)α−|Q|

zP zQ (5.1)

where P,Q ∈ Nn
0 are multiindices for the last n coordinates and α ≥ |P |, |Q|. We call such

(P,Q, α) an index triple. Then we consider the functions

fP,Q,α =
1

P !(α− |P |)!Q!(α− |Q|)!

( y
2~

)
α

eP,Q,α
yα

(5.2)

where (x)α = x(x+ 1) · · · (x+ α− 1) is the Pochhammer symbol. Here and in the following 2~
will be a complex number from the set

2~ ∈ C \ {0,−1,−1/2,−1/3, . . .} (5.3)

which guarantees that the Pochhammer symbol
( y

2~
)
α
will be different from zero on the constraint

surface for all α ∈ N0.

Proposition 5.1 The functions {fP,Q,α}P,Q,α form a basis of a ?̃-subalgebra A~(Cnn+1) where the
star product is convergent. The structure constants can be computed explicitly and one obtains
A~(Cnn+1) = (A~(Cnn+1))nice.

While the computation of the structure constants and the relevant estimates to guarantee
A~(Cnn+1) = (A~(Cnn+1))nice according to Theorem 2.1 are quite involved, the above first version
of our construction is not yet sufficient. The reason is that the evaluation functionals at points
w ∈ C+

n+1 are not continuous. In fact, one can show that the topology given by Theorem 2.1
on the subalgebra spanned by the basis {fP,Q,α}P,Q,α is just the Cartesian product topology
with respect to the index triples. Thus it is much too coarse to interpret the elements of the
completion as functions on C+

n+1.
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The second version of our general construction provides a way out of this: we enforce the
continuity of all the δ-functionals at points in C+

n+1 by considering the set Ω = {δw | w ∈ C+
n+1}.

It is now again a nontrivial estimation to see that the procedure works and yields a reasonable
Fréchet topology. Indeed, the result is again very simple. Consider the seminorms

‖a‖ε = sup
P,Q,α

|aP,Q,α|/α!ε (5.4)

where the supremum is taken over all index triples and the aP,Q,α are the coefficients of a with
respect to the basis {fP,Q,α}P,Q,α. Then one has the following result:

Theorem 5.2 For Ω as above we have A~(Cnn+1) = (A~(Cnn+1))Ω-nice and the induced topology
can equivalently be described by the seminorms {‖ · ‖ε}ε>0. The completion with respect to this
topology yields a Fréchet algebra such that every evaluation functional δw for w ∈ C+

n+1 is
continuous. The completion is a strongly nuclear Köthe space with {fP,Q,α}P,Q,α being an absolute
Schauder basis, consisting of a subalgebra of real-analytic functions on C+

n+1.

The last step is now to pass to the disk: as before in the formal setting we can simply quotient
by the ?̃-ideal generated by the function y − 1 which coincides with the vanishing ideal of the
constraint surface C inside A~(Cnn+1). This will only be possible for the allowed values of ~
according to (5.3). Since the δ-functionals are continuous the ideal is closed and hence we obtain
a Fréchet algebra A~(Dn) as quotient. While this works by abstract arguments we also have a
more explicit description of the elements of A~(Dn) as functions on the disk Dn.

In fact, we have again a vector space basis becoming a absolute Schauder basis after completion
given by the functions

fP,Q(v) = [fP,Q,α](v) =
1

P !(α− |P |)!Q!(α− |Q|)!

(
1

2~

)
α

vvQ

(1− |v|2)α
(5.5)

where P,Q ∈ Nn
0 are multiindices, α = max(|P |, |Q|), and v = z

z0
∈ Dn is a point in the disk

corresponding to the complex line [z]. These functions form a linearly independent set and
we write [a] =

∑
P,Q aP,QfP,Q for an element in the span of them, where a ∈ A~(Cnn+1) is a

representative upstairs. Then we define the seminorms

‖[a]‖ε = sup
P,Q

|aP,Q|
max(|P |, |Q|)!ε

(5.6)

again controlling a sub-factorial growth of the “Taylor coefficients” aP,Q. The final result is then
the following:

Theorem 5.3 The algebra A~(Dn) consists of those real-analytic functions [a] on the disk with
‖[a]‖ε < ∞ for all ε > 0. It is a strongly nuclear Köthe space with absolute Schauder basis
{fP,Q}P,Q and all evaluation functionals at v ∈ Dn are continuous.

Remark 5.4 We list some further properties of the algebra on the disk:
i.) The class of functions we obtain is a subalgebra of those real-analytic functions on Dn

which allow for a holomorphic/anti-holomorphic extension to Dn ×Dn and not just to a
small open neighbourhood of the diagonal. Then the topology of A~(Dn) is (strictly) finer
than the Fréchet topology of locally uniform convergence on Dn ×Dn of the extensions.

ii.) The symmetry group SU(1, n) of the Kähler structure of Dn acts via pull-backs also
on the algebra A~(Dn) by continuous automorphisms. Moreover, the action is smooth
and the smooth topology coincides with the original topology of A~(Dn). The classical
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momentum map for the corresponding Lie algebra action of su(1, n) provides also a quantum
momentum map, i.e the ?Dn-commutators with the components of the classical momentum
map generate the su(1, n)-action.

iii.) If ~ is real then the complex conjugation provides a continuous ∗-involution for the algebra
A~(Dn). The SU(1, n)-symmetry acts by ∗-automorphisms in this case.

iv.) Let ~ be in the set (5.3) of allowed values. Then the Fréchet space A~(Dn) does not
depend on ~. This is not true upstairs: here even the vector spaces A~(Cnn+1) viewed as
subspaces of C∞(C+

n+1) do depend on ~. Since the topology of A~(Dn) is independent
of ~, the following statement makes sense: for every two functions a, b ∈ A~(Dn) the
map ~ 7→ a ?Dn b is holomorphic for the allowed values of ~. Thus we have a holomorphic
deformation of the functions of the disk in the sense of [16]. Note however, that the classical
case ~ = 0 is not in the domain where we have a holomorphic dependence. This shows that
the singularities for the classical limit ~ −→ 0 are much more subtle than in the flat case
discussed in Remark 3.2.

v.) For ~ > 0 the evaluation functionals δv at points v ∈ Dn are continuous positive functionals.
Thanks to the transitive action of SU(1, n) it will be sufficient to consider one of them, say
δ0. The Gel’fand ideal can be computed explicitly. It has a complementary closed subspace

D~ =
{
ψ =

∑
Q
ψQf0,Q

∣∣∣ (ψQ)Q∈N0 has sub-factorial growth
}
⊆ A~(Dn) (5.7)

in A~(Dn) which can be identified with the GNS pre-Hilbert space. The inner product
as well as the GNS representation can be computed explicitly. It is an ongoing project to
identify the corresponding Hilbert space with more familiar Hilbert spaces from coherent
states quantizations like in [20].
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