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1 Introduction

How is classical physics precisely encoded in a perturbative theory of quantum fields? The
naive textbook answer is that it is encoded in tree-level diagrams, but the answer in the
presence of heavy particles is not so simple [2]. This question has become relevant in
recent years following the detection of gravitational waves by LIGO [3], as an approach to
the classical relativistic two-body problem from the classical limit of quantum field theory
amplitudes has proven very effective [4–16, 16, 17, 17–21] and complemented classical field
theory methods [22–24]. In a seminal paper [25], Kosower, Maybee and O’Connell (KMOC)
developed a formalism for computing classical observables from quantum scattering amplitudes
in the ℏ → 0 limit. The main advantage of the scattering-amplitude-based method is that it
can borrow various powerful tools like the double-copy [26, 27], unitarity methods [28, 29],
and modern techniques for computing Feynman integrals [30–35], originally developed in the
context of collider physics to compute classical gravitational quantities.

In the KMOC framework, one aims to compute various classical observables such as
linear and angular impulses of a particle, or the radiative waveform itself, perturbatively
in the gravitational coupling constant. Such classical observables are defined from classical
limits of changes in the expectation value of an operator O in the quantum theory

∆O = ⟨in|Oout |in⟩ − ⟨in|Oin |in⟩ , (1.1)
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where objects with in and out labels are defined at the asymptotic past and future infinity
respectively, and |in⟩ are two-particle states with classically-peaked wavepackets. Such
observables are in-in quantities by definition, but in the KMOC framework these are expressed
in terms of in-out scattering amplitudes, using the relation

Oout −Oin = S†OinS −Oin = i[Oin, T ] + T †[Oin, T ] , (1.2)

where S = 1+iT is the familiar unitary S-matrix. However, from this perspective, the classical
limit is not manifest, as the S matrix is semiclassically the exponential of the on-shell action

S ∼ ei I
ℏ , (1.3)

and delicate manipulations are required to manifest the cancellation of singular contributions as
ℏ → 0 between different terms in eq. (1.2) [9, 25]. Furthermore, despite classical observables
being causal quantities by definition, when expressed in terms of the in-out scattering
amplitudes, causality is hidden in the intermediate steps of the computation.

An alternative way of computing these observables is to directly use the in-in or Schwinger-
Keldysh formalism [36, 37], which is commonly utilized in worldline-based approaches to the
two-body problem [38–46]. In field theory, the relation between asymptotic observables and
generalized scattering amplitudes has been discussed recently in [1], where it was shown that
a class of in-in response functions [47, 48], computes KMOC-like expectation values such as
the classical gravitational waveform. In this paper, we further explore this connection and
show that other observables can also be computed from appropriate soft limits of response
functions. We explain how the KMOC formula for other observables, such as the linear
impulse and radiated momentum, ∆P, can be derived from a causal response function.

A particularly interesting classical gravitational observable is the angular momentum
loss for the binary system, ∆J. A position space calculation by Damour [49] showed that
the angular momentum loss in General Relativity begins at O

(
G2), whereas the energy

loss starts at O
(
G3) [8]. This result was reproduced in momentum space using Weinberg’s

soft theorem [50, 51]. However, the naive application of the KMOC framework produces an
ambiguous result, as it requires the inclusion of a unitary cut involving an on-shell three-point
amplitude, which is zero for real kinematics, times the singular soft-limit of a five-point
amplitude. In this paper, we will show that the soft limit of the response function unveils
new integration regions thereby enabling us to present an unambiguous calculation of the
radiated angular momentum, within the KMOC framework.

Response functions are causal observables. Does manifest causality simplify the calcula-
tions of classical observables from amplitudes? In this work, we find an affirmative answer to
this question by computing classical observables using causal Feynman rules, i.e., amplitudes
with a retarded iϵ prescription, which appear naturally within the in-in formalism in the
so-called Keldysh basis [24, 48]. We show that the causal representation manifests various
properties of certain classical observables, such as the linear impulse, the scattering waveform
and its variance. In particular, we find that the retarded iϵ prescription ensures the manifest
cancellation of O(1/ℏn) terms within classical observables, as well as the vanishing of the
classical variance of the scattering waveform.
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The organization of this paper is as follows. In section 2, we review causal response
functions and discuss their computation using the Schwinger-Keldysh closed time contour.
We also review the relation between amputated response functions and the KMOC waveform
from ref. [1]. In section 3, we present a derivation of the KMOC formulas for the linear
impulse and radiated momentum from response functions, and explain the subtle calculation
of the angular momentum loss. In section 4, we revisit the calculation of impulse, waveform,
and variance up to one loop in the causal basis. Finally in section 5, we summarize our results.

For simplicity, we present example calculations in scalar QED, described by the Lagrangian

L = −1
4FµνF µν +

∑
i=1,2

[
(DµΦi) (DµΦi)† − m2

iΦiΦ†
i

]
(1.4)

where Dµ = ∂µ + ie QiAµ is the covariant derivative, Fµν = ∂µAν − ∂νAµ is the photon field
strength, Qi and mi are the charges and masses of the fields Φi, and e is the gauge coupling.
The generalization to the more interesting case of gravity is straightforward.

2 Review: in-in formalism and asymptotic observables

In this section, we review causal response functions which are familiar objects in non-linear
response theory. More details can be found in refs. [47, 48, 52–54]. We present our discussion
in terms of a generic field φ(x), as a stand-in for Φi and Aµ. Then, we review the KMOC
formula and its application for the scattering waveform from refs. [1, 55], as well as the
connection of the latter with a five-point causal response functions.

2.1 Local response functions and in-in formalism

Let us denote the expectation value of a local operator O(xi) at some time t = x0
i by ⟨O(xi)⟩ =

⟨0| O(xi) |0⟩ where |0⟩ is the ground state of the theory. A perturbation Hj =
∫

ddxφ(x)j(x)
with source j(x) is added to the system and the expectation value of the operator O(x) at
t = x0 as a result of the perturbation is given by [48]

⟨Oj(x)⟩ = ⟨0| T̄ ei
∫

dDxφ(x)j(x)O(x)T e−i
∫

dDxφ(x)j(x) |0⟩ (2.1)

where the time integral is from x0
i to x0, T (T̄ ) is the time ordering (anti-time-ordering)

symbol, and the operator O(x) is in the interaction picture. We shall describe the path-
integral computation of the above quantity momentarily. The difference between ⟨Oj(x)⟩
and ⟨O(x)⟩ can be thought of as a measure of the response of the system to the external
perturbation sourced by j(x) [53]. The n + 1-point response function is defined as

Rn+1[O(x);φ(x1), φ(x2), · · · , φ(xn)] =
inδn

δj(x1) · · · δj(xn)
⟨Oj(x)⟩

=
∑
P

θ(x0 − x0
P (1))θ(x0

P (2) − x0
P (2)) · · · θ(x0

P (n−1) − x0
P (n))

× ⟨0|
[[
· · ·
[[
O(x), φ(xP (1))

]
, φ(xP (2))

]
· · ·
]

, φ(xP (n))
]
|0⟩ , (2.2)

where the sum is over all permutations of (1, 2, · · · , n). The definition in eq. (2.2) is manifestly
causal, and symmetric in x1, · · · , xn. In particular, for the retarded 2-point function of the
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Figure 1. Closed-timed contour for computing in-in expectation values.

field one has

R2[φ(x1);φ(x2)] = θ(x0
1 − x0

2) ⟨0| [φ(x1), φ(x2)] |0⟩ (2.3)

which is the usual retarded propagator.
Now, let us take x0

i → −∞, x0 → ∞ and discuss the computation of the path integral in
eq. (2.1). One can use a single closed time contour as shown in figure 1 with Γ = γI ∪ γII

that goes from γI : −∞ → ∞ and back to γII : ∞ → −∞ along with two field variables
φI, φII to write the unitary time evolution operator and its conjugate as path-integrals. These
two fields are identified at x0 = ∞ i.e

φI − φII = 0, x0 = ∞. (2.4)

The full partition function in terms of the doubled fields is given by [48]

Z =
∫

DφIDφII ei
∫
(S[φI]−S[φII]) . (2.5)

Eq. (2.5) allows for the computation of contour-ordered correlation functions by inserting fields
with contour labels I, II on the path-integral in eq. (2.5). For example, an ordinary n-point
time-ordered (or anti time-ordered) correlation function can be computed by inserting n type
I (or type II) fields in eq. (2.5). It is useful to adopt notation of [1] to denote the contour
ordering of various fields: for a string of operators OI,II

1 ,OI,II
2 ,OI,II

3 , · · · , the contour-ordering
symbol C sorts all type II fields to the left of type I fields and then time orders or anti-time
orders the I and II fields respectively. For example,

C
{
OII

1 OI
2ÔI

3OI
4OII

5

}
= T̄ {O1O5} T {O2O3O4} .

The boundary condition in eq. (2.4) implies that the correlation functions including all
difference fields vanishes identically

⟨0| C
{
(OI

1 −OII
1 )(OI

2 −OII
2 )(OI

3 −OII
3 ) · · ·

}
|0⟩ = 0 , (2.6)

which is known as the largest time equation. Finally, it can be shown that the response
function in eq. (2.2) can be written as [47]

Rn+1[O(x);φ(x1), φ(x2), · · · , φ(xn)]

= ⟨0| C
{1
2
(
OI(x) +OII(x)

)
(φI

(
x1)− φII(x1)

)
· · ·
(
φI(xn−1)− φII(xn)

)}
|0⟩

= ⟨0| C
{
OI(x)(φI

(
x1)− φII(x1)

)
· · ·
(
φI(xn−1)− φII(xn)

)}
|0⟩ , (2.7)
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using the largest time equation in eq. (2.6), and with the normalization condition of theta
functions ∑P θ(x0

P (1) − x0
P (2)) · · · θ(x0

P (n−1) − x0
P (n)) = 1.

We conclude this section by describing the momentum space in-in Feynman rules to
compute correlation functions in eq. (2.7) using the in-in path integral [1, 56]:

• Assign a label I to the response field O. The source fields φ should be assigned all
possible I/II labels. External points must be connected with the same type of internal
points.

• Include an additional minus sign for a type II vertex.

• For an internal line connecting two type II fields, insert a factor of i/(p2 − m2 + iϵ),
whereas for an internal line connecting two type I fields, insert a factor of −i/(p2 −
m2 − iϵ).

• Draw a positive energy cut for an internal line connecting a type I vertex to a type II
vertex. Include a factor of δ̂+(p2 − m2) = θ(p0)δ̂(p2 − m2) for the propagator.

2.2 Waveforms from KMOC and response functions

A systematic approach to computing classical observables from amplitudes was developed
in [25, 55] in the context of 2 → 2 scattering. Suppose we are interested in computing the
change in expectation value of some classical observable O due to the interaction between
two massive objects mediated by some massless particle. The change in the expectation
value of O is defined as

∆O = ⟨in|Oout |in⟩ − ⟨in|Oin |in⟩ = ⟨in|S†OinS |in⟩ − ⟨in|Oin |in⟩ , (2.8)

where, Oout,Oin are O(t) evaluated at t = ∞, t = −∞ respectively, S = 1+ iT is the unitary
S matrix. The two-particle states, |in⟩, are carefully chosen so that they correspond to two
classical particles separated by impact parameter bµ = bµ

1 − bµ
2 in the following way

|in⟩ =
∫ [ ∏

i,1,2

d4pi

(2π)4 δ̂+(p2
i − m2

i )e−ipibiΨi(pi)
]
|12⟩ , (2.9)

⟨in| =
∫ [ ∏

i,1,2

d4p′i
(2π)4 δ̂+(p′2i − m2

i )eip′
ibiΨ∗

i (pi)
] 〈

1′2′
∣∣ , (2.10)

where |ij⟩ = a†
pi

a†
pj
|0⟩ is a two-particle state, δ̂+(p2

i −m2
i ) = (2π)θ(p0

i )δ(p2
i −m2

i ) the Lorentz
invariant phase space measure, and Ψi(pi) are wavepackets sharply peaked around the classical
momenta pµ

i = miu
µ
i so that for any function f(pi),

f(pi)
∣∣
cl. =

∫ [ ∏
i,1,2

d4p′i
(2π)4 δ̂+(p′2i − m2

i )
]
|Ψi(pi)|2f(pi) = f(miui) , (2.11)

where mi, ui are the masses and four velocities of the particles, and u2
i = 1. Then, the change

in an observable during the two-particle-scattering process is given by

∆O =
〈
1′2′

∣∣Oout −Oin |12⟩
∣∣
cl. , (2.12)
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where ·
∣∣
cl. denotes the integral against the classical wavefunctions as in eq. (2.11), with an

appropriate impact parameter phase. KMOC then instruct us to write Oout = S†OinS, and
expand the S-matrix as S = 1 + iT , yielding

∆O = i
〈
1′2′

∣∣ [Oin, T ] |12⟩+
〈
1′2′

∣∣T †[Oin, T ] |12⟩
= i

〈
1′2′

∣∣ [Oin, T ] |12⟩+
∑
X

〈
1′2′

∣∣T † |X⟩ ⟨X| [Oin, T ] |12⟩ , (2.13)

upon the use of the unitarity of the S-matrix

SS† = 1 → i(T − T †) = T †T . (2.14)

and inserting a complete set of states ∑X |X⟩ ⟨X|.
Perhaps the simplest example of such an observable is the classical spectral waveform of

the massless particle. This is defined as the change in expectation value of the annihilation
operator ah(k) of the photon with helicity h as

Wh
k =

〈
1′2′

∣∣ ah out
k − ah in

k |12⟩
∣∣
cl. . (2.15)

The absence of photons in the initial state, ah in
k |12⟩ = 0, simplifies the calculation of the

various terms〈
1′2′

∣∣ [ah in
k , T ] |12⟩ =

〈
1′2′

∣∣ ah in
k T |12⟩ =

〈
1′2′k

∣∣T |12⟩ = A(12 → 1′2′k) . (2.16)

The momentum conserving delta functions are implicit in the definition of the amplitude
A. Similarly,∑

X

〈
1′2′

∣∣T † |X⟩ ⟨X| ah in
k T |12⟩ =

∑
X

A(1, 2 → Xk)A∗(X → 1′2′) . (2.17)

Thus, by this procedure, we obtain a formula for the spectral waveform in terms of the
scattering amplitudes which was derived in ref. [57]

Wh
k =

∫ ∏
i=1,2

d̂4qi δ̂+
(
2p1 · qi + q2

i

)
e−ibi·qi δ̂4(k + q1 + q2)

[
p2

p1 + q1p1

p2 + q2

k

iA (2.18)

+
∑
X

∫ ∏
i=1,2

d̂4ℓi δ̂+
(
2p1 · ℓi + ℓ2

i

)
δ̂(ℓ1 + ℓ2 + rX)

p1

p2

p1 + q1

p2 + q2

iA −iA∗

p1 + ℓ1

p2 + ℓ2

rX

k

]
.

Let us now review how this formula is derived from a local causal response function,
as explained in ref. [1]. Consider the LSZ amputations

LSZout
x Φi(x) = +i

∫
d4xe+ipix

(
∂2 + m2

)
Φi(x) = aout

pi
− ain

pi
(outgoing) ,

LSZin
x Φ†

i (x) = −i

∫
d4xe−ipix

(
∂2 + m2

)
Φ†

i (x) = a†out
pi

− a†in
pi

(incoming) . (2.19)
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Similarly for the photon with helicity h

LSZout
x Ah(x) = +i

∫
d4ke+ikx

(
∂2 + m2

)
εh∗

µ (k)Aµ(x) = ah out
k − ah in

k (outgoing) ,

LSZin
x Ah(x) = −i

∫
d4xe−ikx

(
∂2 + m2

)
εh

µ(k)Aµ(x) = ah† out
k − ah† in

k (incoming) . (2.20)

Then, by amputating the five-point response function we obtain the key relation

LSZout
x

∏
i=1,2

LSZout
x′

i
LSZin

xi
R5[Ah(x); Φ†

1(x1),Φ†
2(x2),Φ1(x′

1),Φ2(x′
2)]

= ⟨0| C
{
(aI h out

k − aI h in
k )(aII in

1′ − aI in
1′ )(aII in

2′ − aI in
2′ )(aII †in

1 − aI †in
1 )(aII †in

2 − aI †in
1 )

}
|0⟩

= ⟨0| ain
1′ain

2′(ah out
k − ah in

k )ain†
1 ain†

2 |0⟩ =
〈
1′2′

∣∣ ah out
k |12⟩ = Wh

k . (2.21)

In the second line, we have adopted the contour ordering prescription in eq. (2.7). As a
result of the boundary condition in eq. (2.4), we obtain, for instance, from the amputated
heavy fields [1]

LSZout
x′

i

[
ΦI

i(x′
i)− ΦII

i (x′
i)
]
= aII in

p′
i

− aI in
p′

i
, LSZin

xi

[
ΦI†

i (xi)− ΦII†
i (xi)

]
= aII in †

pi
− aI in †

pi
,

and similarly for the photon. Using the Feynman rules to compute the response functions
outlined in section 2.1, it is easy to see that indeed, upon amputation, the five-point function
reproduces precisely the KMOC formula for the spectral waveform in eq. (2.18). The first
term eq. (2.18) corresponds to diagrams with only I fields and the cuts in the second term
correspond to diagrams which connect I and II fields.

3 KMOC formulas from causal response functions

In this section, we explain in detail the relationship between in-in expectation values of more
general (composite) operators and causal response functions. This was briefly touched upon
in [1], but here we further clarify the precise relationship and explain various subtleties. In
particular, we show that the change in the expectation value of an observable O is given
by a particular soft limit of a five-point response function.

We shall consider observables, O which are integrals of a local density given by an
operator O(x)

O(t) =
∫

d3x O(t, x) . (3.1)

Indeed, such is the case for the linear impulse and radiated momentum, as well as the
radiated angular momentum loss, which are suitable integrals of the stress-energy tensor,
as we review below.

Just as for the waveform, following [1], we can write the expectation value of the local
density O in terms of an amputated response function〈

1′2′
∣∣O(x) |12⟩ = ⟨0| ain

1′ain
2′O(x)ain†

1 ain†
2 |0⟩ (3.2)

=
∏

i=1,2
LSZout

x′
i

LSZin
xi

R5[O(x); Φ†
1(x1),Φ†

2(x2),Φ1(x′
1),Φ2(x′

2)] .

– 7 –
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Let us now define the Fourier transform of this expectation value

⟨O(ω, k)⟩ =
∫

d4xeiωt−ikx 〈1′2′∣∣O(t, x) |12⟩ , (3.3)

with ω > 0, which at zero three-momentum, k, yields

lim
k→0

⟨O(ω, k)⟩ =
∫

dteiωt 〈1′2′∣∣O(t) |12⟩ . (3.4)

Finally, by taking the zero-frequency limit we obtain the change of the observable

− lim
ω→0

lim
k→0

iω ⟨O(ω, k)⟩ = lim
ω→0

∫
dt eiωt 〈1′2′∣∣ ∂tO(t) |12⟩ =

〈
1′2′

∣∣Oout −Oin |12⟩ . (3.5)

where the first equality follows from integration by parts, which is carried out before taking
the ω → 0 limit.

Therefore, we find that the change of the observable between the in and out states is
simply given by the soft limit of an amputated five-point local response function

〈
1′2′

∣∣Oout −Oin |12⟩ (3.6)

= − lim
ω→0

lim
k→0

iω

∫
d4x eiωt−ikx

∏
i=1,2

LSZout
x′

i
LSZin

xi
R5[O(x); Φ†

1(x1),Φ†
2(x2),Φ1(x′

1),Φ2(x′
2)].

Eq. (3.6) is our key formula to compute the change in classical observables from causal response
functions. Next, we will explain how this soft limit does indeed reproduce the KMOC formula
for the linear impulse and reveals a subtlety in the computation of the angular impulse.

3.1 Linear impulse

Let us first demonstrate how the KMOC formula for the impulse of a particle undergoing
scattering follows from eq. (3.6) using the in-in Feynman rules to compute the response
functions discussed in section 2.1. In the KMOC framework the impulse is defined as the
difference in expectation value of momentum of particle 1 defined at x0 → −∞ from its
value at x0 → ∞, that is,

∆Pµ
1 =

〈
1′2′

∣∣Pµ out
1 − Pµ in

1 |12⟩
∣∣
cl. , (3.7)

with

Pµ in
1 =

∫
d̂4p1 pµ

1 δ̂(p2
1 − m2

1)ain†
p1 ain

p1 , (3.8)

Pµ out
1 =

∫
d̂4p1 pµ

1 δ̂(p2
1 − m2

1)aout†
p1 aout

p1 . (3.9)
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The KMOC impulse formula in terms of the in-out scattering amplitudes is [25]

∆Pµ
1 =

∫
d̂4q δ̂

(
2p1 · q + q2

)
δ̂
(
2p2 · q − q2

)
e−ib·q

[
qµ

p2

p1 + qp1

p2 − q

iA (3.10)

+
∑
X

∫ ∏
i=1,2

d̂4ℓi δ̂+
(
2p1 · ℓi + ℓ2

i

)
δ̂(ℓ1 + ℓ2 + rX) ℓµ

1

p1

p2

p1 + q

p2 − q

iA −iA∗

p1 + ℓ1

p2 + ℓ2

rX

]
.

where the momentum transfer q is

qµ = p′µ1 − pµ
1 = pµ

2 − p′µ2 . (3.11)

and is taken to be small in the classical limit, q ≪ pi. We refer the reader to [25] for a
detailed derivation.

Next, we will derive this formula from amputated response functions. The relevant local
density for P1 is the momentum density

Pµ
1 (t) =

∫
d3xP1(t, x) =

∫
d3xT 0µ

1 (t, x) , (3.12)

given in terms of the stress-energy tensor of particle 1

T µν
1 = 2∂µΦ1∂νΦ†

1 − ηµν
(
∂ρΦ1∂ρΦ†

1 − m2
1Φ1Φ†

i

)
. (3.13)

Thus, to derive the linear impulse we consider the amputated response function

⟨Pµ
1 (ω, k)⟩ =

∫
d4xeiωt−ikx 〈1′2′∣∣T 0µ

1 (t, x) |12⟩ . (3.14)

The Feynman rule corresponding to the heavy-scalar stress-tensor insertion can be
easily obtained

p1 + k p1

k

= (p1 + k)(0p
µ)
1 = 2p0

1pµ
1 +O(k) , (3.15)

where we used an unnormalized symmetrization symbol A(µBν) = AµBν + AνBµ and on the
second equality we show the terms which are relevant in the soft limit k → 0. Importantly,
the energy of the scalar legs is conserved only up to ω = k0.

In writing the diagrams for this response function we assign a type I vertex for the
operator insertion with energy ω flowing out of the diagrams and all possible assignments
of I/II vertices for the remaining vertices. The in-in Feynman rules lead to various classes
diagrams with all type I fields as well as cut diagrams involving type I and type II fields
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p1

k
I

p2

p1 + q

p2 − q
iA

I I

I I

p1

p2

p1 + q

k
I

p2 − q
iA

I I

I I

iA iA

ℓ

k
I

I I

I I

(a) Operator insertions on uncut diagrams.

p1

k
I

p2

p1 + q

p2 − q
iA −iA∗

p1 + ℓ1

p2 + ℓ2

rX

I II

I IIIII

III
p1

p2

p1 + q

p2 − q
iA −iA∗

p1 + ℓ1

p2 + ℓ2

rX

k
I

I II

I IIIII

III

(b) Cut diagrams with operator insertions.

Figure 2. Two different types of diagrams with the momentum operator insertions are shown. We
have taken p1, p2 to be incoming and p1 + q, p2 − q, k to be outgoing.

as shown in figure 2. Consider the types of diagrams in figure 2(a) where O is inserted on
the external legs. The first diagram corresponds to multiplying four-point the amplitude iA
without the soft operator insertion by an additional propagator. Taking the soft limit we find

lim
ω→0

(−2iωp0
1pµ

1 )
i

(ω − p0
1)2 − p2

1 − m2
1 + iϵ

= lim
ω→0

2ωp0
1pµ

1
−2p0ω + ω2 + iϵ

= −pµ
1 , (3.16)

where in the second line we have used the on-shell condition p2
1 = m2

1. Similarly, the second
diagram with the momentum operator inserted on the outgoing external line produces a
factor of pµ

1 + qµ. These two classes of diagrams combined yield

− lim
ω→0

lim
k→0

iω

[ k

iA +

k

iA
]
= qµ

p2

p1 + qp1

p2 − q

iA . (3.17)

which reproduces the first term in the KMOC formula in eq. (3.10). The uncut diagram
on the right of figure 2(a), which features the operator inserted on an internal line with
momentum ℓ does not contribute in the soft limit

lim
ω→0

2iωℓ0ℓµ(
(ω + ℓ0)2 − ℓ2 − m2

1 + iϵ
) (

ℓ2 − m2
1 + iϵ

) = 0 (3.18)

Finally, let us consider the cut diagrams obtained by connecting a type I vertex with a
type II vertex in figure 2(b). The stability condition, which requires the vanishing of the
three-particle cuts, and the positivity of energy flow along the cuts guarantee that only the
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iA iA
I

I I

I III

I

I

I

(a)

iA −iA∗I
I II

I IIII

II

I

I

(b)

Figure 3. Two types of diagrams contributing to the causal response function for the photon stress
tensor.

unitarity cuts survive as depicted in figure 2. Using the identity in eq. 3.17 on the left-hand
side of the cut one easily finds that these two classes of diagrams combined give the cut term
in the second line of eq. (3.10). All together, we have reproduced the KMOC formula for the
linear impulse from the soft limit of a causal response function of the stress tensor.

3.2 Radiated linear momentum

It is easy to generalize the above discussion to give a formula for the radiated momentum,
which is carried away by the photons:

∆Pµ
γ =

〈
1′2′

∣∣Pµ out
γ − Pµ in

γ |12⟩
∣∣
cl. =

〈
1′2′

∣∣Pµ out
γ |12⟩

∣∣
cl. , (3.19)

where we used the absence of photons in the initial state to set Pµ in
γ |12⟩ = 0 and

Pµ out
γ =

∑
h

∫
d̂4p pµδ̂(p2)ah out†

p ah out
p . (3.20)

This can be written in terms of the local density

Pµ
γ(t) =

∫
d3xPµ

γ (t, x) =
∫

d3xT 0µ
γ (t, x) , (3.21)

where the stress energy tensor of the photon is

T µν
γ = F µρF ν

ρ − 1
4ηννF ρσFρσ . (3.22)

The Feynman rule corresponding to the insertion of this operator is

α β

ℓ + k ℓ

k

= (ℓ + k)αℓ(µη0)β + ℓβηα(µ(ℓ + k)0)

− ηα(µη0)βℓ · (ℓ + k)− ηαβℓ(µ(ℓ + k)0) . (3.23)
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This simplifies considerably when one of the legs is put on-shell and contracted with a
transverse polarization

α

ℓ + k ℓ

k

= −2ℓ0ℓµεα + ℓαε(µℓ0) +O(k) , (3.24)

where we only display terms that remain in the soft limit k → 0.
The absence of photons in the initial state implies that the only classes of diagrams that

can contribute to the response function of the photon stress tensor are those in figure 3. The
diagrams with only I or II fields in figure 3(a) vanish in the soft limit by a manipulation
analogous to eq. (3.18). On the other hand, the diagram with both I or II fields yields the
cut diagrams of the form of figure 3(a) where on the support of the on-shell delta function
for the photon, δ(ℓ2), we can use the completeness relation ηβδ =∑

h εβ
hε∗ δ

h , which holds up
to terms that vanish due to the Ward-Takahashi identity. In the soft limit these diagrams
produce terms on the form

lim
ω→0

(−iω)Aα
−i(−2ℓ0ℓµεα + ℓαε(µℓ 0))

(ω + ℓ0)2 − ℓ2 + iϵ
= lim

ω→0
Aαεα 2ωℓ0ℓµ

2ωℓ0 + ω2 + iϵ
= ℓµA , (3.25)

where A = εαAα denotes the amplitude on the left of the cut, and we used its on-shell Ward
identity, ℓαAα = 0. Thus, from the soft limit of the causal response function we obtain the
KMOC formula for the radiated momentum

∆Pµ
γ =

∫
d̂4q δ̂

(
2p1 · q + q2

)
δ̂
(
2p2 · q − q2

)
e−ib·q (3.26)

×
[∑

X

∫ ∏
i=1,2

d̂4ℓi δ̂+
(
2p1 · ℓi + ℓ2

i

)
δ̂(ℓ1 + ℓ2 + rX) rµ

X

p1

p2

p1 + q

p2 − q

iA −iA∗

p1 + ℓ1

p2 + ℓ2

rX

]
.

where we recall that rX =∑
a ℓa is the sum over the momenta of all photons in the cut.

Finally, we note that in deriving the above results, we assumed ω ≪ ℓ, and expanded
the Feynman rules and propagators using the method of regions [58]. For the linear impulse
and momentum loss there are no other regions in the expansion that contribute, but we will
see next that this is not true when considering the angular momentum loss.

3.3 Radiated angular momentum

In this section, we compute angular momentum loss in the form of photons during scattering,
from a response function. A key difference between this calculation and that of the linear
impulse or energy loss is that the soft limit ω → 0 of the response function is subtle.

We take the canonical definition of the angular momentum operator for a massive or
massless particle as an integral of the corresponding density

Jij
γ (t) =

∫
d3xJ ij(t, x) =

∫
d3x x[iT 0j]

γ (x) =
∫

d3x (xiT 0j
γ (x)− xjT 0i

γ (x)) , (3.27)
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iA3 iA

k

II
I I

I I

I

(a)

iA3 −iA∗

k

II
II II

II II

I

(b)

Figure 4. Diagrams relevant for the computation of the angular momentum loss.

where T µν is the appropriate energy-momentum tensor, and i, j are spatial indices. Thus
we conclude that the angular impulse is given as the soft limit of a derivative of the same
amputated causal response function

∆Jij
γ = − lim

ω→0
lim
k→0

iω ⟨J ij
γ (ω, k)⟩

∣∣
cl. = − lim

ω→0
lim
k→0

ω ∂
[i
k ⟨P

j]
γ (ω, k)⟩

∣∣
cl. . (3.28)

Naively, for this computation, we can simply consider the diagrams in figure 3 and
compute the appropriate derivatives and soft limit as prescribed in eq. (3.28). But the set
of diagrams that contribute will be slightly different. In the calculation of the radiated
momentum ∆Pγ we tacitly discarded the diagrams in figure 4, because in the soft limit, they
yield an on-shell three-point amplitude, which vanishes for real kinematics. However, to
reach this conclusion we expanded the integrand in the limit ω ≪ ℓ, which implicitly assumes
that there are no relevant regions in which the loop momentum is or order ℓ ∼ ω. This
assumption is valid for the class of diagrams without cut propagators in figure 4(a), which
indeed vanish; but it fails when considering the diagrams in figure 4(b). The region ℓ ∼ ω of
the loop integration in these diagrams in fact completely captures the leading contribution
to the angular momentum loss. The mechanism for this is that the integrals develop a pole
in ω in the soft limit, thanks to the cut photon propagator

lim
k→0

δ̂+(ℓ2)δ̂
(
(p1 − k − ℓ)2 − m2

1
)

(ℓ + k)2 + iϵ
= δ̂+(ℓ2)δ̂

(
2p1 · ℓ − 2p0

1ω
)

2ℓ0ω + ω2 + iϵ
.

In the region ω ∼ ℓ, one must not drop the p0
1ω term in the delta function, and power-counting

the measure as d4ℓ ∼ ω4 we find that the result is indeed of order 1/ω. The shift in the
on-shell delta function for the massive particle can be interpreted as it being off-shell by
an infinitesimal amount of O(ω). We will see momentaritly that this off-shell-ness makes
the evaluation of related integrals completely unambiguous. Furthermore, since we are
interested in small ω ∼ ℓ we can write (q2 − ℓ)2 ∼ q2

2, so the amplitude on the other side
of the cut effectively becomes a contact term, as it cannot be resolved by waves with small
frequency of O(ω). In hindsight, this justifies the calculations of the angular momentum
loss in refs. [50, 51] using Weinberg’s soft theorem.

Let us now compute this quantity at leading order in electromagnetism. The leading
diagrams we can draw are the cut diagrams shown in figure 5. These can be straightforwardly
computed using the Feynman rule in eq. (3.23). Although the latter looks rather complicated,
the calculation simplifies greatly by using power counting to read off the contributing terms
after applying the derivatives. For more details, we refer the reader to appendix B where
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p1 p1 + q1

p2 p2 + q2

k

ℓ
ℓ

q2

(a) (b) (c)

Figure 5. Three diagrams contributing to the angular impulse are shown. We take the p1, p2 incoming
and p1 + q1, p2 + q2, k outgoing.

we present the calculation in detail for a scalar toy model. In electromagnetism, summing
up the diagrams in figure 5 we get

J ij
ph,1 = ie4

4 lim
ω→0

e4Q1Q2 p1 · p2

∫
d̂4q

q2 eib·q δ̂ (p1 · q) δ̂ (p2 · q)×

× p
[i
1

[
Q1Q2

(
4p1 · p2Kj]

12 + 2I12qj]
)
− Q2

1

(
4m2

1K
j]
11 + 2I11qj]

) ]
, (3.29)

where we have defined the following integrals

Kµ
ab =

∫
d̂4ℓ

δ̂+(ℓ2)δ̂′(paℓ − p0
1ω) q · ℓ

(pbℓ + iϵ)2 ℓµ , (3.30)

Iab =
∫

d̂4ℓ
δ̂+(ℓ2)δ̂(paℓ − p0

aω)
(pbℓ + iϵ) +

∫
d̂4ℓ

δ̂+(ℓ2)δ̂′(paℓ − p0
aω)(pa · ℓ)

(pbℓ + iϵ) . (3.31)

These can be computed by using integration by parts identities (IBP) [59, 60] to reduce
them to a basis of master integrals

Ia =
∫

d̂4ℓδ̂+(ℓ2)δ̂(pa · ℓ − p0
aω) , (3.32)

Iab =
∫

d̂4ℓ
δ̂+(ℓ2)δ̂(pa · ℓ − p0

aω)
pb · ℓ + iϵ

, (3.33)

which can be unambiguously evaluated. For instance, the first master integral yields

I1 =
∫

d̂4ℓδ̂+(ℓ2)δ̂(p1 · ℓ − p0
1ω) = 1

4π2m1

∫ ∞

0

d3ℓ

2|ℓ|δ(|ℓ| − ω) = ω

2πm1
. (3.34)

More details about the integration are given in appendix A. Here we quote the results:

I12 = 1
πm1m2

cosh−1 γ√
γ2 − 1

, I11 = 1
πm2

1
, (3.35)

Kµ
12 = qµ

2πm2
1m2

2

[
1

γ2 − 1 − γ cosh−1 γ

(γ2 − 1)3/2

]
, Kµ

11 = − qµ

6πm4
1

. (3.36)

where γ = p1 · p2/m1m2 is the relative Lorentz factor of the particles.
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There are three additional diagrams shown below that can be evaluated by simply
changing labels 1 ↔ 2:

J ij
γ,2 = + +

= J ij
γ,1 (1 ↔ 2) . (3.37)

Furthermore, simple power counting in ω shows that the triangle diagrams do not contribute
to angular impulse. Finally, using the expression for the leading order electromagnetic linear
impulse of the heavy particle 1 [25]

∆Pi
1 = −∆Pi

2 = ie2Q1Q2p1 · p2

∫
d̂4q

q2 δ̂ (p1 · q) δ̂ (p2 · q) qie−iq·b = −e2Q1Q2
2π

γ√
γ2 − 1

bi

b2 ,

(3.38)
we find the leading order electromagnetic angular momentum loss

∆Jij
γ = J ij

γ,1 + J ij
γ,2

= e2

2π

[
− 2Q2

1
3m2

1
+ Q1Q2

m1m2

(
γ

γ2 − 1 − cosh−1 γ

(γ2 − 1)3/2

)]
p

[i
1 ∆Pj]

1 + (1 ↔ 2). (3.39)

which agrees with [61].

4 Classical observables in the causal basis

In this section, we will present examples of classical observables computed using manifestly
causal diagrams, and point out the various simplifications that this method provides.

4.1 Amputated response functions in causal basis

Since we are interested in causal observables, we shall now choose a basis in the in-in path
integral in which the causal structure of these quantities becomes manifest. This basis,
called the Keldysh basis or r/a basis, is defined via a rotation of the I/II basis in the path
integral in eq. (2.5) as

φr = 1
2(φ

I + φII) , φa = φI − φII , (4.1)

and for a generic operator, O, we also define

Or = 1
2(O

I +OII), Oa = OI −OII. (4.2)

The response function in eq. (2.7) takes a simple form in this basis

Rn+1[O(x);φ(x1), · · · , φ(xn)] = ⟨C {Or(x)φa(x1) · · ·φa(xn)}⟩. (4.3)
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More generally, one can insert nr number of r-type fields and n − nr number of a-type fields
to construct general n-point causal response function

Rn[Or(x1), · · · ,Or(xnr);φa(xnr+1), · · · , φa(xn)] (4.4)
= ⟨C {Or(x1) · · · Or(xnr)φa(xnr+1) · · ·φa(xn)}⟩ .

The boundary condition in eq. (2.4) becomes φa(t = +∞) = 0 in the causal basis. Thanks
to this, the largest time equation in eq. (2.6) simply becomes the vanishing of correlation
functions of all a fields.

The r/a basis serves as a natural basis for taking the semi-classical limit. One can
think of the difference in the fields along two contours to be much smaller compared to
their sum i.e. φa = (φI − φII) ≪ 1

2

(
φI + φII

)
= φr in this limit. Thus, the action can

be expanded in small φa

S[φI]− S[φII] = δS[φ]
δφ

∣∣∣
φ=φr

φa + δ3S[φ]
δφ3

∣∣∣
φ=φr

φ3
a + · · · . (4.5)

At the leading order in φa, we have∫
DφrDφa e

i
δS[φ]

δφ

∣∣
φ=φr

φa
. (4.6)

The path integral over φa can be performed exactly and it imposes the equation of motion
for φr. For this reason, we will refer to all vertices linear in a fields as classical vertices.
Since the exponent in eq. (2.5) has to be odd in φa, the next-order term is cubic in φa,
etc, which we will call quantum vertices.

The free-field propagators in the causal basis are [62]
(

Grr(p) Gra(p)
Gar(p) Gaa(p)

)
=

1
2 δ̂(p2 − m2

i ) i
p2−m2

i +iϵp0

i
p2−m2

i −iϵp0 0

 . (4.7)

The vanishing of the Gaa propagator follows non-perturbatively from the largest time equation.
Note the appearance of causal, that is, advanced and retarded, propagators

GR(p) = GA(−p) = ▶
p

= i

p2 − m2
i + iϵp0 , (4.8)

which make the causal properties of the amplitude manifest, as well as the “cut” (or Hadamard)
propagator

Grr(p) = ◀ ▶ = 1
2 δ̂(p2 − m2

i ) , (4.9)

which we note does not include a positive-energy condition.
We are interested in momentum-space n-point amputated causal amplitudes with nr

number of r-type external fields, which can be computed using the following diagrammatic
rules: on each diagram,
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GR ▶ = i
p2−m2

i +iϵp0
p

Grr◀ ▶ = 1
2 δ̂(p2 − m2

i )

GR µ ν▶ = −iηµν

p2+iϵp0
p

Grr µ ◀ ν▶ = −ηµν

2 δ̂(p2)

(a) Bare propagators.

µ ▶

p′

▶

p
▲

µ◀

p′

◀

p
▲

= −ieQi(p + p′)µ

µ

▼

ν
▶

▶ ▲

µ

▼

ν

◀

▶
▼

= 2ie2Q2
i ηµν

(b) Classical vertices.

µ◀

p′

▶

p▼

= − ieQi
4 (p + p′)µ

µ

▼

ν
▶

◀ ▼

µ
▲

ν
▶

▶
▼

= ie2

2 Q2
i ηµν

(c) Quantum vertices.

Figure 6. Feynman rules for scalar QED are shown above. The arrow on the retarded propagators GR

corresponds to the direction of the causal flow. The Grr type propagators are represented by cuts. The
a and r-type fields in the vertices are represented by outgoing and incoming arrows respectively. The di-
rections of momenta going in or out of the vertices are aligned with the directions of particle flows shown
by the thin arrows. The quantum vertices get an additional factor of 1

4 owing to two additional a fields.

• Put r, a labels to the r or a-type external fields. The internal lines should be dressed
with all possible assignments of r/a labels.

• Draw arrows such that all the causal flows are from a to r. In doing so, Grr propagators
can be treated as sources for the arrows.

• Align the directions of momenta of the heavy lines with the directions of the particle
flow unless otherwise specified. Amputate the external lines.

For the case of electrodynamics, the corresponding Feynman rules are given in figure 6.
The calculation of the observables in the r/a basis is simplified by a very useful counting rule
derived in [48] which we quote without proof: for a n-point L-loop diagram with nr number
of r-type external legs, let us denote the number of rr propagators by Prr, and the number
of additional a-type fields at the internal vertices by na (which is zero for the classical vertex,
and always even for the quantum ones). These are related by [48]

L + nr − 1 = Prr + na . (4.10)
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p1 p1 − k▶ ◀

k

= −pµ
1 p1 + k p1▶ ◀

k

= pµ
1

(a) Operator insertion on the external lines.

ℓ + k ℓ▶ ◀

k

= ℓµδ̂
(
ℓ2 − m2

1
) ℓ + k ▶ ◀ ℓ▶

k

= ℓµ

2 δ̂
(
ℓ2 − m2

1
) ℓ + k◀ ℓ▶ ◀

k

= − ℓµ

2 δ̂
(
ℓ2 − m2

1
)

(b) Operator insertion on an internal line.

Figure 7. Five possible cases are shown when the momentum vertex is inserted on the external and
internal lines. The directions of momenta of the heavy lines are denoted by the thin arrows. We take
kµ = (ω, 0) outgoing.

Crucially, the above counting only depends on the number of a and r-type fields, but not
on their species (i.e whether they come from massive or massless fields in our context). It
was argued in [48] using eq. (4.10) that a n-point response function does not receive any
contribution from the quantum vertices up to one loop. Indeed, inserting a cubic all-a vertex
in a 1-loop diagram results in a closed loop of retarded propagators which vanishes due
to causality. Thus, for the causal amplitudes with nr = 1, eq. (4.10) implies that the tree
amplitudes are connected and the one-loop amplitudes have a single cut. More generally, it
implies that diagrams with na = 0, that is, those which only feature the classical vertex (i.e.,
the vertex linear in φa) in eq. (4.6), have at least one cut propagator per loop.

Finally, let us comment on the iϵ prescription of the causal massive propagators. A
crucial feature of the computations in the classical limit is the soft expansion of the matter
propagators [9, 63] in the soft limit ℓ ∼ q ∼ ℏ ≪ pi, with ℓ being a loop momentum. For
a massive retarded propagator we get

1
(pi + ℓ − q)2 − m2

i + iϵ(p0
i + ℓ0 − q0) = 1

2pi · ℓ + iϵ p0
i

+ · · · . (4.11)

The key observation is that in the soft limit, the sign of (p0
i + ℓ0 + q0) is determined by

the sign of the massive particle energy, p0
i , since ℓ0, q0 ≪ p0

i . Thus, the iϵ prescription for
the massive propagator is fixed by the causal flow of the heavy particle in the classical limit.

4.2 Linear impulse

In this section, we compute the impulse of particle 1 in the r/a basis. The corresponding
response function was described in detail in section 3.1. Let us begin by stating the Feynman
rules for inserting the momentum operator into the internal and external lines in figure 7.

The derivation of these rules is similar to the ones described in sec 3. Notice, that
the operator, represented by a double line, is r-type since causal arrows flow towards it.
According to eq. (4.10), we have single-cut diagrams at one-loop one external r leg. The
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simplest are the triangle diagrams

▶ ▶ ◀

▶ ▲

◀ ▶▶ ◀

▶ ◀ ◀

▶ ▲

◀ ▶▶ ◀

ℓ ℓ+ = 4ie4Q2
1Q2

2p2
1

∫
d̂4ℓ

δ̂(2p2 · ℓ)qµ

ℓ2(ℓ − q)2 .

(4.12)
We have dropped the iϵ for the photon propagators since they can not go on-shell at one-loop.
For the same reason, we do not need to consider the diagrams where the photon propagators
are cut. The inverted triangle can be found by replacing 1 ↔ 2. However, for the inverted
diagram, we have two additional diagrams that sum to zero:

▶ ◀ ▶ ◀ ◀

▼ ▶

▶ ◀

▶ ▶ ◀ ▶ ◀

▲ ◀

▶ ◀

ℓ ℓ+ = 0, (4.13)

thanks to the last two Feynman rules in figure 7(b). Next, we consider the box and crossed-box
diagrams. When the operator is inserted on the external lines, we have

▲▼

◀▶ ▶ ▶◀

▶ ◀▶

▶▼
◀▶ ▶ ▶◀

▶ ◀◀

▼▲

▶◀ ◀ ▶ ◀

▶ ◀◀

◀▲
▶◀ ◀ ▶ ◀

▶ ◀▶

ℓ + ℓ + ℓ + ℓ

= −iN
∫

d̂4ℓ
δ̂(2p1 · ℓ)
ℓ2(ℓ − q)2

[
(p1 + q)µ2q · ℓ

(2p2 · ℓ − iϵ)2 − pµ
12q · ℓ

(2p2 · ℓ + iϵ)2

]
, (4.14)

with N = 8e4Q2
1Q2

2(p1 · p2)2. Notice that leading-order terms from the expansion of the
propagators cancel automatically due to the causal iϵ prescription. We have also dropped
all the scaleless integrals from the expansion for simplicity. Similarly,

▶ ▶ ▶ ◀

▲▲

◀ ▶▶ ◀

▶ ▶ ▶ ◀
▶▲

◀ ▶▶ ◀

▶ ◀ ◀ ◀

▲▲

◀ ▶▶ ◀

▶ ◀ ◀ ◀
▶▲

◀ ▶▶ ◀

ℓ + ℓ + ℓ + ℓ

(4.15)

= −N
∫

d̂4ℓ
δ̂(2p2 · ℓ)
ℓ2(ℓ − q)2

[
δ̂(2p1 · ℓ)(2pµ

1 + qµ) + i

(
(p1 + q)µ2q · ℓ

(2p1 · ℓ − iϵ)2 − pµ
12q · ℓ

(2p1 · ℓ + iϵ)2

)]
,

where we have used the distributional identity

1
x − iϵ

− 1
x + iϵ

= iδ̂(x) . (4.16)
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Next, we have diagrams from inserting the momentum operator on the internal lines:

▲▼

◀▶ ▶◀◀

▶ ◀▶

▶▼
◀▶ ▶◀◀

▶ ◀◀

▼▲

▶ ▶◀ ▶◀

▶ ◀◀

◀▲
▶ ▶◀ ▶◀

▶ ◀▶

ℓ + ℓ + ℓ + ℓ

= N
∫

d̂4ℓ
δ̂(2p1 · ℓ)
ℓ2(ℓ − q)2 δ̂′(2p2 · ℓ)(2q · ℓ)(pµ

1 + ℓµ) , (4.17)

where we have used

i

(x − iϵ)2 − i

(x + iϵ)2 = iδ̂′(x) . (4.18)

Notice that the leading-order terms cancel similar to eq. (4.14). Finally, we have

▶ ◀ ▶ ◀

▲▲

◀ ▶▶ ◀

▶ ◀ ▶ ◀
▶▲

◀ ▶▶ ◀

ℓ + ℓ (4.19)

= N
∫

d̂4ℓ
δ̂(2p2 · ℓ)
ℓ2(ℓ − q)2

[
δ̂(2p1 · ℓ)(2p1 + q)µ + δ̂′(2p1 · ℓ)(p1 + q − ℓ)µ(2q · ℓ)

]
.

Adding all the contributions together, we see that the super-classical terms cancel manifestly.
The sub-leading terms give the next to leading-order impulse

∆Pµ
1,NLO = ie4

2 Q2
1Q2

2

∫
d̂4ℓ

ℓ2(ℓ−q)2 d̂4q δ̂ (u1 ·q) δ̂ (u2 ·q)e−ib·q×

×
[
qµ

(
δ̂ (u1 ·ℓ)

m1
+ δ̂ (u2 ·ℓ)

m2
−γ2

(
δ̂ (u2 ·ℓ)

m1

q ·ℓ
(u1 ·ℓ+iϵ)2 +

δ̂ (u1 ·ℓ)
m2

q ·ℓ
(u2 ·ℓ−iϵ)2

))

+iγ2ℓµ q ·ℓ
(

δ̂′ (u1 ·ℓ)(u2 ·ℓ)
m1

− δ̂′ (u2 ·ℓ)(u1 ·ℓ)
m2

)]
, (4.20)

which agrees with [25] modulo scaleless integrals.

4.3 Waveform and its variance

In this section, we will discuss the leading order waveform and its variance in the causal basis.
As discussed in 2.2, the waveform is given by the amputated five-point response function
in eq. (2.21). The leading-order waveform in the III basis involves O

(
q−3) super-classical

terms upon the expansion of the massive propagators, the cancellation of which formally
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requires including a cut with a three-particle amplitude:

p1 p1 + q − k

k

p2 p2 − q

I I

I

II

I

+

III

II

+ (4.21)

= −8ie3Q2
1Q2

(p1 · p2)(p1 · εh)
q2

[ 1
2p1 · k + iϵ

+ 1
−2p1 · k + iϵ

− δ̂ (2p1 · k)
]
+O(q−2)

= O(q−2) ,

where we have used the on-shell condition 2p1 · q = 2p1 · k + O
(
q2), and eq. (4.16). The

analogous calculation in the r/a basis is given by the five-point amputated response function
of one r-type photon field and four a− type heavy fields

Wh
k = LSZout

x

∏
i=1,2

LSZout
x′

i
LSZin

xi
R5[Ar h(x); Φa†

1 (x1),Φa†(x2)
2 ,Φa

1(x′
1),Φa

2(x′
2)]. (4.22)

At the leading order, we have the following diagrams

Wh
k (q, k) =

▶
p2

◀

p1 + q − k

▼

p1

▲
p2 − q

▲
k

=

▶ ◀▶

▶

▶ ◀

▲

▶ ◀◀

▶

▶ ◀

▲

▶ ◀

▶

▶ ◀

▲+ +

+ (1 ↔ 2) . (4.23)

The O
(
q−3) terms in eq. (4.23) are

−8ie3Q2
1Q2

(p1 · p2)(p1 · εh)
q2

[ 1
2p1 · q + iϵ

+ 1
−2p1 · k − iϵ

]
= 0. (4.24)

where we have used the on-shell condition 2p1 ·q = 2p1 ·k+O
(
q2). Similar to the computation

of the linear impulse in the causal basis, the O
(
q−3) terms, which are singular as ℏ → 0,

manifestly cancel, thanks to the causal iϵ prescription. We have also verified that the
subleading terms of these diagrams in the soft expansion of the waveform yield precisely
the classical answer.

So far we have considered causal response functions with one r type field. However,
correlation functions with multiple r-type insertions which measure correlations between
different measurements after a system is perturbed, are also familiar objects in non-linear
response theory. The simplest of them in our context is the six-point amputated response
function with two on-shell r-type photon fields and four a-type massive fields. Explicitly,
we want to compute〈
1′2′

∣∣ ah1 out
k1

ah2 out
k2

|12⟩ (4.25)

=
2∏

i=1
LSZin

x′
i

2∏
j=1

LSZout
xj

2∏
k=1

LSZout
zk

R6
[
Arh1(z1), Arh2(z2); Φa†

1 (x1),Φa†
2 (x2),Φa

1(x′
1),Φa

2(x′
2)
]

.
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The expectation value in eq. (4.25) is used to compute the variance of the waveform in [57]
which can be defined as

V(k1, k2) =
〈
1′2′

∣∣ ah1 out
k1

ah2 out
k2

|12⟩
∣∣
cl. −

〈
1′2′

∣∣ ah1 out
k1

|12⟩
∣∣
cl.
〈
1′2′

∣∣ ah2 out
k2

|12⟩
∣∣
cl.. (4.26)

appropriately integrated against classical wavepackets for the heavy particles. We refer the
reader to [57] for details. Here, we concentrate on the properties of the six-point amputated
response function in eq. (4.25) in the classical limit. It was shown in [57] that at the tree-level
the expectation value in eq. (4.26) is quantum. More specifically, working in a gauge

p1 · ϵhi(ki) = 0, i = 1, 2. (4.27)

it was shown that the O
(
q−4), O (q−3) diagrams in the six-point tree amplitudes cancel,

and the leading order six-point connected tree amplitude is, in fact, O
(
q−2). The particular

gauge choice was crucial to simplify the analysis in [57].
In this section, we demonstrate the advantage of the causal r/a basis for the calculation

of the variance. We will present our result in full generality without adopting any particular
gauge. The counting rule in eq. (4.10) for nr = 2 and na = 0 gives Prr = 1 at the tree level.
Therefore, at leading order one can only draw various single-cut diagrams that isolate a
three-point on-shell amplitude or diagrams with horizontal cuts as shown below.

p1 ▶

p2 ▶

p′1◀

p′2◀

k1
▶

k2
▶

=

▶ ◀ ▶ ◀◀

▶▶

▶ ◀

▲

▶◀ ◀ ▶ ◀

▶▶

▶ ◀

▲

▶◀ ▶ ◀

▶

▶ ◀

▲

▶

++

+

▶ ◀◀ ▶

▶

▶ ◀ ◀

▼

▼

+

▶ ◀

▶

▶ ◀ ◀

▲

▼

▼

+ · · · (4.28)

When the external photons are on-shell, the diagrams with three-particle cuts vanish due to
the stability condition. As in the classical limit the exchanged gravitons are in the potential
region, and hence off-shell, the diagrams with horizontal cuts do not contribute to the classical
results. Thus, the connected part in eq. (4.26) at the leading order is entirely quantum.
Notice that configurations like those illustrated in eq. (4.29), in which external photons are
emitted from the quartic vertex in QED (or a cubic graviton vertex in gravity) are prohibited
by the Feynman rules in the r/a basis. This is because such emissions must originate from
quantum vertices, which cannot contribute at tree level as shown by the counting rule in
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eq. (4.10). In the usual in-out formalism, one must include such diagrams.

▶▲ ▶▲

▶

▼
(not allowed) (4.29)

This analysis is rather involved in the I/II basis since we need to involve various cut diagrams.
For instance, at leading order in the classical expansion, the following diagrams, which include
a Compton scattering sub-process, must cancel among themselves

II

I

I II

I

I
+ +

I I

I

II
= O

(
q−3

)
. (4.30)

At one-loop we can either have diagrams with Prr = 2, na = 0 or Prr = 0, na = 2. The
combination of these diagrams leaves behind factorized six-point diagrams in the classical
limit. We discuss one such example and leave the rest as an exercise for the reader. Consider
the box topology with two photon emissions. The cut diagram at the leading order is

p1 ▶

p1 ▶

p′1

p′2

◀▶◀

◀▶◀

k1
▶

k2
▶

= + · · ·

▶◀ ◀

k1
▶

k2
▶

▶▶ ◀ ◀

▲▲

◀ ▶▶ ◀

ℓ

=
∫

d̂4ℓ Wh1
k1
(ℓ, k1)δ̂ (2p1 · (ℓ + k1)) δ̂ (2p2 · ℓ)Wh2

k2
(ℓ − q, k1 + k2) , (4.31)

where the outgoing heavy momenta are p1 + q − k1 − k2 and p2 − q. The ellipses include
various cut diagrams such as cross-boxes and the photon emission from various internal
and external lines. In the classical limit, this becomes a convolution of two leading-order
waveforms, thereby demonstrating the classical factorization of such an observable after
Fourier transform to impact parameter space and the time domain. Finally, we have two
diagrams of the same topology involving quantum vertices

▶◀

k1
▶

k2
▶

▶ ◀ ◀

▲▼

▶ ▶ ◀

▶◀

k1
▶

k2
▶

▶ ◀ ◀

▶▼

▶ ◀ ◀

ℓ ℓ+
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The leading order terms in the classical limit cancel due to the causal iϵ prescription. To
see this, notice the two diagrams only differ by the bottom matter propagator

1
(p2 + ℓ)2 − m2

2 + iϵ
+ 1

(ℓ + q − p2)2 − m2
2 − iϵ

= O(q0, ℓ0) . (4.32)

Therefore the connected diagrams with quantum vertices are subleading compared to the
diagram involving only classical vertices.

5 Conclusion

In this work, we have explained how to compute the change in the expectation value of
a generic asymptotic observable O during a scattering process from an amputated causal
response function of its local density O(x), computed using the in-in formalism. For instance,
the soft limit of a five-point response function of the stress-energy tensor of a particle i with
four amputated legs computes the linear impulse ∆Pi of particle i during scattering with
an initial two-particle state. We demonstrate that this procedure is exactly equivalent to
the KMOC formalism, thus generalizing the findings of ref. [1].

Although our formalism is general, we have applied it to the computation of classical
observables. We find that the soft limit acts as a useful regulator which carefully parameterizes
the approach to the asymptotic past and future. This becomes particularly important for
certain observables, such as the angular momentum loss, which receive contribution from
the long-range interactions present in theories with massless particles. As an example, we
computed the angular momentum loss in scalar QED, for which the soft frequency unveils a
new region in the loop integration that yields unambiguously the leading contribution to this
quantity. It would be interesting to use our method to reproduce the angular momentum
loss in gravity at O

(
G3) from [50], and produce new results beyond this order. Futhermore,

we expect that similar considerations will be important to understand other phenomena
related to long-range forces, such as violation of peeling [64, 65] from the perspective of
scattering amplitudes.

We also have initiate a study of classical observables from amplitudes with retarded
propagators within the Schwinger-Keldysh formalism. This approach ensures that causality
is manifest at every step of the calculation, setting it apart from the conventional method of
computing classical observables from in-out scattering amplitudes with Feynman propagators.
We find that doing the calculations in this way, terms which are singular as ℏ → 0 cancel
manifestly for the linear impulse at one-loop, and for waveform and its variance at tree-level.
In particular, for the variance, the classical vertices naturally give rise to factorized diagrams
as expected for a classical quantity. It would be interesting to extend our analysis beyond
one loop. In particular, starting at two loops, both classical and quantum vertices contribute.
We expect the contributions from the diagrams with quantum vertices to be q ∼ ℏ suppressed
compared to those with classical vertices at all loops. We leave the explicit checks of this
statement for future work.

– 24 –



J
H
E
P
0
7
(
2
0
2
5
)
0
3
7

Acknowledgments

S.B. would like to acknowledge the hospitality of Institut des Hautes Études Scientifiques
(IHES) where this work was initiated, and the support of the University of British Columbia
through the Four-Year Fellowship (4YF). J.P.-M. thanks Enrico Herrmann, Michael Ruf, and
Zander Moss for many discussions and previous collaboration on related topics.

A Integrals

The integrals appearing in section 3.3 and appendix B all belong to the integral family

Ia1,a2,a3,a4 =
∫

d̂Dℓ
1

(pa · ℓ − p0
aω ± iϵ)a1 (pb · ℓ ± iϵ)a2 (ℓ2) ((q + ℓ)2)a4 . (A.1)

It is important to note that IBP relations are insensitive to the iϵ prescriptions of the integrals.
In particular, the delta function and its derivative appearing in various integrals that we are
interested in can be reduced to the above form by using the distributional identity

2πi

(−1)nn!δ
(n)(x) = 1

(x − iϵ)n+1 − 1
(x + iϵ)n+1 .

Using LiteRed [66], we find two master integrals

I1,0,1,0 = Ia, I1,1,1,0 = Iab . (A.2)

To evaluate Iab, we work in the rest frame of a specified by pµ
a = ma(1, 0), pµ

b = γmb(1, v)

Iab =
∫

d̂4ℓ
δ̂+(ℓ2)δ̂(pa · ℓ − p0

aω)
p2 · ℓ ± iϵ

=
∫

d̂3ℓ

2|ℓ|
δ̂
(
p0

a(|ℓ| − ω)− p1 · ℓ
)(

p0
b |ℓ| − pb · ℓ

)
= 1

8π2γmamb

∫ ∞

0
d|ℓ|δ(|ℓ| − ω)

∫
dΩ

1− v cos θ

= 1
2πmambγv

cosh−1 γ = 1
2πmamb

cosh−1 γ√
γ2 − 1

. (A.3)

Iaa is given by the γ → 1 limit of eq. (A.3)

Iaa = 1
2πm2

a

. (A.4)

Now we discuss the integrals appearing in the calculation of the angular impulse. We start
with the evaluation of I12, which upon IBP reduction yields

I12 = 2I12 = 1
πm1m2

cosh−1 γ√
γ2 − 1

. (A.5)

Next, we have

Kµ
ab =

∫
d̂4ℓ

δ̂+(ℓ2)δ̂′(pa · ℓ − p0
aω) q · ℓ

(pb · ℓ ± iϵ)2 ℓµ = Apµ
a + Bpµ

b + Cqµ . (A.6)
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Figure 8. The diagrams contributing to the scalar angular momentum loss are shown. We label the
momenta as in fig 5.

The coefficients A, B, C can be expressed in terms of scalar integrals pa · Kab, pb · Kab, q · Kab.
The scalar integrals can be IBP reduced in terms of the master integrals which gives

pa · Kab = pb · Kab = 0. (A.7)

Taking into account pa · q = 0 = pb · q, we obtain A = B = 0 and

C = 1
4q2

(
I2,2,1,−2 − 2q2I2,2,1,−1 + q4I2,2,1,0

)
= 1

2πm2
am2

b

[
1

γ2 − 1 − γ cosh−1 γ

(γ2 − 1)3/2

]
(A.8)

Finally, Kµ
aa is found by taking γ → 1 limit of Kµ

ab.

B Radiated scalar angular momentum

In this section, we compute angular momentum loss at one-loop in a simple model of real
massive scalars Φi interacting with a real massless scalar field ϕ described by the Lagrangian

L = 1
2∂µϕ∂µϕ +

∑
i=1,2

[1
2∂µΦi∂

µΦi − m2
iΦ2 + gi

2 Φ2
i ϕ

]
. (B.1)

We take the canonical definition of the stress-energy tensor for the massless scalar ϕ. The
Feynman rule corresponding to the insertion of the stress-energy tensor of the massless
scalar is the same as eq. (3.15). The relevant diagrams are shown in figure 8 where we have
represented the massless scalar propagator by a dotted line.

The first diagram gives

Ja = ig2
1g2

2 lim
ω→0

lim
k→0

∂
[i
k

[ ∫
d̂4q1d̂4q2δ̂

(
2p1 · q1 + q2

1

)
δ̂
(
2p2 · q2 + q2

2

)
e−ib1·q1−ib2·q2

×
∫

d̂4ℓ
2ωℓ0δ̂+(ℓ2)δ̂(2p1 · ℓ + 2k · (p1 − ℓ) + k2) ℓj]

(2ℓ · k + k2 + iϵ) (2p2 · ℓ − iϵ) ((q2 − ℓ)2 − iϵ) × δ̂4(k + q1 + q2)
]

. (B.2)

In evaluating eq. (B.2), we need to be careful since the k derivative hits the delta function
and one must integrate by parts before imposing the momentum conservation. Taking the
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soft limits and adding all the diagrams in figure 8, we obtain the angular impulse of the
massless scalar field

∆Jij
ϕ = − lim

ω→0

ig1g2
16

[∫
d̂4q

q2 e−ib1·q δ̂ (p1 · q) δ̂ (p2 · q) p
[i
1

[
g1g2 Kj]

12 − g2
1K

j]
11

]

= 1
8π

[
g2

1
3m4

1
+ g1g2

m2
1m2

2

(
1

γ2 − 1 − γ cosh−1 γ

(γ2 − 1)3/2

)]
p

[i
1 ∆p

j]
1 + (1 ↔ 2) , (B.3)

where we have used the on-shell conditions 2pi · qi + q2
i = 0. We have also defined the leading

order linear impulse of the heavy particle 1:

∆pi
1 = − ig1g2

4

∫
d̂4q

q2 δ̂ (p2 · q) δ̂ (p1 · q) qie−iq·b. (B.4)

This agrees with the small-deflection limit of the result in [51].
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