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Abstract
We prove essential self-adjointness of the spatial part of the linear Klein-Gordon
operator with external potential for a large class of globally hyperbolic manifolds.
The proof is conducted by a fusion of new results concerning globally hyperbolic
manifolds, the theory of weighted Hilbert spaces and related functional analytic
advances.
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1 Introduction

Quantum field theory (QFT) in curved spacetime studies the behavior of quantum
fields that propagate in the presence of a classical gravitational field, where the quan-
tum behavior of the gravitational field is neglected. It is seen as an intermediate (and
mostly rigorous) step towards a complete theory of quantum gravity (see [1-5] for
excellent reviews).

One particularly fruitful context arises from the restriction to globally hyperbolic
spacetimes. The advantage of this class of spacetimes is the existence of a (non-
canonical) choice of time, or equivalently the existence of a global Cauchy surface.
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Then the equations of motion given by the Klein Gordon equation have a well posed
initial value formulation [2, Theorem 4.1.2], [1].

A well established path towards constructing a free QFT starts with the phase
space of initial data of a classical field theory on a spacelike hypersurface. This
comes naturally equipped with a symplectic structure. Provided one has a complex
structure, which is compatible (tame) with the symplectic structure, a “one particle
structure” is constructed by using the aforementioned objects to induce a positive
definite inner product. This Hilbert space is then second quantized into a Fock space
[6, 7]. For the case of stationary spacetimes this construction has been done in [8]
and (more rigorously) in [9]. More recently, the question of finding a complex struc-
ture that is compatible with a unitary time-evolution for non-stationary spacetimes
has been addressed e.g. in [10, 11] (and references therein). In [12, 13] for exam-
ple such a structure was constructed for the Gowdy cosmology (a time dependent
globally hyperbolic spacetime).

In the present article we focus on the Klein-Gordon theory. An important ingre-
dient in the construction of complex structures or Hadamard states (for the case of
FRW-spacetime see [14, Appendix A]) in QFT is an essentially self-adjoint (possibly
time-dependent) operator w?. This operator encodes the spatial part of the Klein-
Gordon equation (see (2.4)). In general this operator appears as a component in the
Hamiltonian, that is represented as a 2 x 2 matrix, see [9, Equation 2.5], [15, Equation
1.17] and [14, Appendix A]. Therefore, in order for the Hamiltonian to be self-adjoint
(which is of essence for a unitary time-evolution) it is essential for the operator w?
that appears as one of its components to be self-adjoint. For a relation of the con-
struction of a complex structure for a time dependent globally hyperbolic spacetime
with the Hamiltonian approach see [16, Section VI.B]. Moreover, for globally hyper-
bolic manifolds it was recently realized, see [17], that essential self-adjointness of
the Klein-Gordon operator is a requirement for the construction of various kinds of
propagators needed in quantum field theory. Propagators are essential for the con-
struction of states and thus for the formulation of QFT in such manifolds by the
GNS-construction. A fundamental assumption [17, Assumption 1.a.] in the proof
of essential self-adjointness of the Klein-Gordon operator is precisely the essential
self-adjointness of the spatial part of the Klein-Gordon equation.

In this work we prove that in the case of a globally hyperbolic spacetime, the
operator w? will take the form of a weighted Laplace-Beltrami operator (see (3.1),
Proposition 3.1, Lemma 4.1 and Theorem 4.1) plus a potential V (multiplied by a
positive smooth function, see (2.4)).! The Laplace-Beltrami operator for a metric h is
essentially self-adjoint on C3°(X) if the Riemannian manifold (X, h), where X is a
Cauchy surface, is geodesically complete?, see [19, 20]. This result was extended in
[21] for the case of weighted Laplace-Beltrami operators and furthermore sufficient
conditions for the potential were given in [21], in order for the (weighted) Laplace-

The potential in the Klein-Gordon theory is usually given by V = m? + &R, where m denotes the mass
of the scalar field and R the scalar curvature of the metric g.

2A complete Riemannian manifold is a Riemannian manifold for which every maximal (inextensible)
geodesic is defined on R, see [18, Definition 1.4.6].
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Beltrami operator plus a potential to be essentially self-adjoint on C3°(X). In these
mentioned works geodesic completeness plays a fundamental role and it will be a
necessary condition also for our main result, Theorem 4.1, to hold.

In addition to the essential self-adjointness of the operator w? we give a condition
to guarantee strict positivity thereof. The positivity requirement is imposed in order to
take the (unique) square-root and the inverse of the (closure of the) operator which is
used in the construction of complex structures. Proving strict positivity and essential
self-adjointness in a rather general setting is the goal of the present paper.

Kay proved the essential self-adjointness for the important class of static space-
times, under certain additional boundedness requirements [9, Theorem 7.2]. Our
results extend this by showing essential self-adjointness for a considerably larger
class of globally hyperbolic spacetimes, while, in some instances, dropping at the
same time the additional boundedness requirements. To this end we use, as already
mentioned, the theory of weighted Hilbert spaces (see [22]) and related functional
analytic advances [21, 23].

Recent results [24] have also shown an important connection between the exis-
tence of an essentially self-adjoint quantum Hamiltonian (that guarantees unitary
evolution) and the requirement for those operators to be bounded from below. Hence,
in addition to essential self-adjointness, positivity plays again an important role.

Throughout this work we use Greek letters u, v =0, ..., 3 for spacetime indices
and we use Latin letters i, j, k, ... for spatial components which run from 1, ..., 3.

2 Klein-Gordon Theory on Globally Hyperbolic Spacetimes
We start with basic definitions that are needed for the subsequent results.

Definition 2.1 (Globally hyperbolic spacetime) We denote a spacetime by (M, g)
where M is a smooth, four-dimensional manifold and g is a Lorentzian metric on
M with signature (—1, +1, +1, 4+1). In addition we assume time-orientability of the
manifold. This means that there exists a C°°-vector-field u on M that is everywhere
timelike, i.e. g(u, u) < 0. A smooth curve y : I — M, I being a connected subset of
R, is called causal if g(y, y) < 0 where y denotes the tangent vector of y. A causal
curve is called future directed if g(y,u) < 0 and past directed if g(y,u) > 0 all
along y and for a global timelike vector-field «. For any point x € M, J*(x) denotes
the set of all points in M which can be connected to x by a future(+)/past (—)-
directed causal curve. An time-orientable spacetime is called globally hyperbolic if
for each pair of points x, y € M the set J~(x) N JT(y) is compact whenever it is
non-empty. This definition is equivalent to the existence of a smooth foliation of M
in Cauchy surfaces, where a smooth hypersurface of M is called a Cauchy surface if
it is intersected exactly once by each inextensible causal curve.

The advantages of requiring a spacetime to be globally hyperbolic are best
displayed by the following theorem [15].

@ Springer



5  Page4of14 Math Phys Anal Geom (2021) 24:5

Theorem 2.1 Given a spacetime (M, g) the following statements are equivalent:

(M, g) is globally hyperbolic
®  There exists a (global) Cauchy surface in (M, g)
®  There exists a choice of time> on (M, g)

Hence, an effective way of thinking of globally hyperbolic spacetimes is to think
that these spacetimes admit a choice of time or that they are topologically equivalent
to R x X for any Cauchy surface X (strictly, {t} x ¥ for any ¢t € R) [25]. The authors
in [26] solved a long-standing conjecture by proving that any globally hyperbolic
spacetime admits a smooth foliation into Cauchy surfaces [26, Theorem 1.1]. More-
over, the induced metric of such a globally hyperbolic spacetime admits a specific
form [27, Theorem 1.1].

Theorem 2.2 Let (M, g) be a globally hyperbolic spacetime. Then, it is isometric to
the smooth product manifold R x ¥ with a metric g, i.e.,

g =—N2dr* + hijdx'dx?, @2.1)
where X is a smooth 3-manifold, t : R x ¥ + R is the natural projection, N :
R x ¥ + (0, 00) a smooth function, and h a 2-covariant symmetric tensor field on
R x X, satisfying the following condition: Each hypersurface ¥; C M at constant t

is a Cauchy surface, and the restriction h(t) of h to such a ¥, is a Riemannian metric
(i.e. 3y is spacelike).

In general N and h depend on the time and space coordinates. By abuse of notation
we also write N = N(¢) and h = h(z) when denoting the corresponding objects
pulled back to X for a fixed time ¢.

We proceed to consider the Klein-Gordon equation in (M, g) with an external
potential V.* A solution ¢ satisfies,

Ue = V)¢ =0, (2.2)
where [, is the wave operator with respect to the metric g. That is,

O, = (V1gD) 718,118 y),

with |g| denoting the absolute value of the determinant of the metric g. We denote

for each Cauchy surface X the space of smooth Cauchy data of compact support by
S5 = CT(E) d Cr (D).

Moreover, due to Leray’s Theorem [28], the Cauchy data & € .5 given by

o= ()= (b))~ (+%0e)

3See [15] for definition.

4The potential is usually given by V = m? + £ R, where m denotes the mass of the scalar field and R the
scalar curvature w.r.t. the metric g. The regularity of the potential will be discussed in more detail for the
upcoming results.

(2.3)

z
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define a unique solution ¢ in C*°(M), where N -1y, = n*V, and the vector n*
is the future pointing unit vector normal to the surface X. Let us further define the
corresponding symplectic form Qy : 5 x 5 +— Ron .5 as

Qs (®1, D) = [y, (192 — mae1) VIR x,

where the integral exists since the functions &1 and &, are compactly supported
on X. Moreover, for given global solutions of the Klein-Gordon equation (2.2) the
integral is independent of the choice of the Cauchy surface. The symplectic structure
Qy makes .’y into a symplectic vector space (a fact that relies on the requirement
that the spacetime is globally hyperbolic, see [29]). Next, let the operator w? be given
by

w? = _%a,- (IR[NRY3;) + N>V (2.4)
= —N%(Ah— V) — NhU3;Nd;,
where Ay, is the Laplace-Beltrami operator with respect to the associated spatial

metric h. The operator w? is defined such that the Klein-Gordon equation takes the
form,

(02 + f(t, )3 +w)¢p =0,
where f(t,x) = —N~'9,N + (/Th])~'9,+/Th].

3 Weighted Manifolds and Essential Self-Adjointness

We proceed by introducing the notion of weighted manifolds and weighted Hilbert
spaces. For further details we direct the reader to the excellent reference [22]. We
begin this section with the following definition, [22, Chapter 3.6, Definition 3.17].

Definition 3.1 A triple (X, h, ) is called a weighted manifold, if (X, h) is a Rie-
mannian manifold and w is a measure on ¥ with a smooth and everywhere positive
density function p, i.e., du = p /Th[d>x. A weighted Hilbert space, denoted by
L?(%, p), is given as the space of all square-integrable functions on the manifold
> with respect to the measure . The corresponding weighted Laplace-Beltrami
operator (also called the Dirichlet-Laplace operator), denoted by A, is,

1 L.
A, = ——08;(p+/|h|h" 3;). 3.1
" P T (p+/Ih| i) 3.1

We use the following proposition about weighted manifolds in the subsequent
discussion [22, Chapter 3, Exercise 3.11].

Proposition 3.1 Let a, b be smooth and everywhere positive functions on a weighted
manifold (X, h, u) and define a new metric h and measure fi by

h=ah, and din =bdpu.
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Then, the weighted Laplace-Beltrami operator A i of the weighted manifold
(Z,h, @) is given by
~ 1. b
Aﬂ_ = Zdlv'u(EV)’
where in local coordinates the divergence of a vector field v is given by
1 0 ;
div,v = ——(pv").
M P (ov")
In particular, if a = b then
Ap=-Ay

Proof The proof is conducted by using functions of compact support and the Green
formula [22, Chapter 3, Theorem 3.16],

/u(Aﬂv)d,z = —/(ai w)h' (3; v)d i
)

)
b . . b
=— [ @uw—=h"@jvdu= | udivy,(=Vv)du
a a
) x
1 . b -
= uzdlvﬂ(;Vv)du,
b))

forall u, v € C3°(X). For b = a we have,

Ju(Apvydi = [u Ldiv,(Vvydia = [u (I Ayv)df.
p) ) P

O

Remark 3.1 From the Green Formula for a weighted Laplace-Beltrami operator it
follows that the weighted Laplace-Beltrami operator is a positive operator (see [22,
Lemma 4.4 and Equation 4.14]).

Before proceeding to our general result we need to mention another theorem that
we use. First, define a local L2(X, i) function f as a function that is square inte-
grable (with respect to the scalar product of the weighted Hilbert space L?(X, it)) on
every compact subset of the manifold ¥ and we write [ € L%OC(E, ). Moreover, a
symmetric operator H is semi-bounded on C§°(X) if there exists a constant C € R
such that,

(W, HV) > —C(¥, V), U e C°(%).
Then, the theorem of Shubin states the following [21, Theorem 1.1] (see also [23] for
an extension of this result to singular potentials).

Theorem 3.1 Let the Riemannian manifold (X, h) be complete and let the potential

Ve LIZOC(E, W) be such that we can write V.=V + V_, where V € LIZOC(E, w) =
Oand V_ € LIZOC(E, ) < 0point-wise. Furthermore, let the operator Hy = — A, +
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V be semi-bounded from below. Then, the operator Hy is an essentially self-adjoint
operator on Cj°(%).

This theorem is in particular an extension of the result that the (unweighted)
Laplace-Beltrami operator for a metric h is essentially self-adjoint on C5°(X) if the
Riemannian manifold (X, h) is geodesically complete, see [19, 20], to the case of a
weighted Laplace-Beltrami operator ([21, Theorem 6.1]).

4 Main Result on Self-Adjointness

In this section we present our main result, i.e., proving essential self-adjointness and
positivity of the operator w? that was given by formula (2.4). In contrast to previ-
ous works, our result also covers the case of globally hyperbolic spacetimes with
unbounded N (see next section).

We consider the weighted manifolds (X, h, u) and (%, h, 1), where dji =
N~2dp and h = N~2h. The measure dji = N ~'/[h] d>x represents the one usually
considered in field theory in curved spacetimes to define the symplectic structure or
a real inner product (see [2, Equation 4.2.6] or [8]). Hence, one is in general inter-
ested in proving the essential self-adjointness of the operator w? with respect to the
measure di.

Lemma 4.1 Let the weighted manifold (X, h, i) be given by the Riemannian mani-
fold (X, h) and the corresponding measure . with the smooth strictly positive density
function N. Moreover, let the weighted manifold (X, h, i) be given by the Rie-
mannian manifold (£, h), with Riemannian metric h = N~2h and corresponding
measure i with the smooth strictly positive density function N~'. Then, the operator
w? (from (2.4)) is given by the sum of a weighted Laplace-Beltrami operator and a
potential term,

2 — —NZAM + N2 \%
=—Az+ N2V,
where A, and A i are the weighted Laplace-Beltrami operators of the weighted
manifolds (X, h, u) and (%, ﬁ, L), respectively.

Proof We study the Laplace-Beltrami part of the operator w?, i.e., the operator
N~2w? — V. We write it as a weighted Laplace-Beltrami operator of the weighted
manifold (X, h, 1), where the measure is du = N /]h| d3x. Positivity and smooth-
ness of the function N follow from global hyperbolicity (see Theorem 2.2) and hence
we have

_ 1
N2w?>—V=-A,=— \/ma(N‘/mh”a)

Next, we use Proposition 3.1 and make the following transformations

h = N2h, dit = N2du = N""Vhd’x.
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Note that the operator N ~? satisfies the conditions of Proposition 3.1 (the conditions
on a) as a multiplication operator since global hyperbolicity demands from the oper-
ator N to be smooth, positive and invertible. After applying the transformations we
obtain the weighted Laplace-Beltrami operator of the weighted manifold (2, h, 1),

X 2
AﬂZN Ay,

which is exactly the Laplace-Beltrami term (i.e., the term without the potential) of
the operator w?. O

By using the previous lemma we are able to obtain the following general result.

Theorem 4.1 Let the Riemannian manifold (X, h) (from Lemma 4.1) be complete
and let the scaled potential satisfy N>V = V..+V_, where V. € LIOC(E ) = 0and
V_e LZZOC(Z, i) < 0 point-wise. Furthermore, let the operator w> A +N?V
be semi-bounded from below. Then, the operator w? is essentlally self- adjomt on
CP (%) C LA(Z, ).

Proof By Lemma 4.1 we know that the operator w? takes the form of a weighted
Laplace-Beltrami operator of the weighted manifold (X, h, jt) with the addition of a
scaled potential term, i.e.

wzz—Aﬂ+N2V.

By demanding geodesic completeness of (£, h), by imposing the requirements of
local integrability on the scaled potential term N2 V and by the semi-boundedness
condition on the operator w?, essential self-adjointness follows from Theorem 3.1.

O

Proposition 4.1 Let the Riemannian manifold (X, h) (from Lemma 4.1) be complete
and let the potential V be strictly positive, i.e. V > € for some € > 0. Moreover,
let the scaled potential N>V € leo (X, 1) be locally square integrable. Then, the

operator w? is essentially self-adjoint on CP(®) C L%(%, fu) and the closure of the
operator is strictly positive and invertible.

Proof By Theorem 2.2 we know that the function N is positive and hence the condi-
tion of strict positivity on the potential guarantees the semi-boundedness from below
by a positive constant ¢ > 0, i.e.

(D, w>d) = (D, (— A + N2V)®) > | P, 4.1

which holds Y@ € C3°(X). Hence, by the completeness of the Riemannian manifold
(=, h), by the local integrability condition of the scaled potential and by the semi-
boundedness of the operator w? essential self-adjointness follows from Theorem 3.1.
Since the operator w? is a strictly positive essentially self-adjoint operator, it has
only one semi-bounded self-adjoint extension which coincides with the Friedrich
extension ([30, Theorem X.23, Theorem X.26]) that is bounded by the same constant
c (see (4.1)). O]
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It follows from this proof that the square root (for V > ¢ for some ¢ > 0) and

its inverses are well-defined and given as a unique self-adjoint operator. The self-
adjointness of the respective operators is proven by using the spectral theorem ([31,
Chapter V.II1.3]) or by using [32, Theorem 3.35], [33] or for a new shorter proof see
[34].
Remark 4.1 Since the operator w? is a positive symmetric operator (with the addi-
tional requirement on the potential) we could have used the Friedrich extension (as
suggested in [8]) to prove that there exists a self-adjoint extension. However, the
problem with this approach is lack of uniqueness. In particular, the extension given
by the Friedrich theorem is, although self-adjoint, not necessarily unique. Proving
essential self-adjointness for a strictly positive operator, on the other hand, implies
the uniqueness of the Friedrich extension.

5 Complete Riemannian Manifolds

In the last section we made the assumption that the Riemannian manifold (X, h) is
complete in order to use Theorem 3.1 to prove essential self-adjointness. This section
gives concrete results (and examples) for this condition.

Consider first the case where the hypersurface ¥ used in the foliation of Theo-
rem 2.2 is compact. From compactness it follows that the Riemann manifold (X, h)
is complete (see [18, Theorem 1.4.7] or [9, Corollary 5.4]). But the same is also
true for the Riemannian manifold (X, fl) with the conformally transformed metric
h = N~2h. Hence, in the case of compact Cauchy surfaces our proof applies without
restriction.

We proceed to consider the case where X is non-compact.

5.1 Static Globally Hyperbolic Spacetimes

First, we investigate the case of static globally hyperbolic spacetimes, i.e., spacetimes
(of the form given in Theorem 2.2) where N and all components of h are time inde-
pendent. The proposition that we use in the subsequent discussion is the following
[9, Proposition 5.3].

Proposition 5.1 The Riemannian manifold (%, h) is Cauchy with respect to the
metric tensor ~ o
g =—dt* + hij(X)dx'dx’ (5.1)

if and only if the Riemannian manifold (X, h) is complete.
By using the previous proposition we have the following result.

Corollary 5.1 Let (M =R x X, g) be a static globally hyperbolic spacetime given
by

g = —N>*@)d1? + h;j(¥)dx"dx’.
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Then, the Riemannian manifold (2, h=N"2h)is Cauchy (with respect to the metric
g = N~2g) and therefore geodesically complete.

Proof Let us consider the conformally equivalent spacetime (M, g) that is ultra-static
with metric

g =—dt* + N"2h;jdx'dx’. (5.2)

The manifold (M, g) is globally hyperbolic since conformal transformations (that
are smooth and strictly positive) preserve the causal structure, see [9, 35, 36] and
[37, Appendix D].5 Hence, by the previous proposition (and the definition of globally
hyperbolic manifolds) the Riemannian manifold (X%, h) is Cauchy (for the metric g)
and therefore necessarily complete. O

Hence, our proof of essential self-adjointness of w? (see Theorem 4.1) holds for all
static globally hyperbolic spacetimes (of the form given in Theorem 2.2 and a poten-
tial that is semi-bounded from below that in addition satisfies the required conditions
in [21]).6

5.2 Globally Hyperbolic Spacetimes

Next, we provide a sufficient condition for a (not necessarily stationary) globally
hyperbolic spacetime (M = R x X, g), with Cauchy surface X (strictly, {t} x X
for any t+ € R) and induced metric h, to admit a conformally transformed geodesi-
cally complete Riemannian manifold (X, h). In this context we use a fundamental
theorem, [38, Theorem 2.1] (see also [39, 40]), for general spacetime manifolds
(M, g).7 Let the spacetime M be given by the product M = R x %, where ¥ is an
n-dimensional smooth manifold. Equip the manifold M with a n 4+ 1-dimensional
Lorentz metric g of the form

g = —N2@, 0)dt* + hi; (X, 1) dx" dx/, (5.3)

where N (X, 1) is the lapse function and ¥, = {r} x ¥, spatial slices of M, are space-
like sub-manifolds equipped with the time-dependent metric h; = h;; (X, t)dx' dx’ 8
Moreover, let the following Assumption be met.

Assumption 5.1 With respect to the components of the metric g we have the
following bounds.

S1n fact, if the spacetimes (M, g) and (M, g) have identical causal structures, the respective metrics must
be related by a conformal transformation.

6 It can be easily seen that our result contains [14, Theorem A.1.] as a special case.

7The authors give the theorem for a metric with shift vector. However, if the shift vector is equal to zero
the condition of the Theorem concerning the shift vector is trivially satisfied.

8Such a product space M is called a sliced space. The spacetime is time-oriented by increasing 7.
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1. The lapse function is bounded from above and below for all # by ap, ¢c € R,
i.e.,

0<ap < NG, b <L ac.

2. The metric h(X, r) is uniformly bounded by the metric h(x¥, 0) for all € R and
tangent vectors u € T X. That is, there exists universal constants A, D € R > 0
such that,

Ahip (R, 00w/ < hij (R, 0u' u! < Dhij (R, 0)u’ ul. (5.4)

Theorem 5.1 ([38, Theorem 2.1]) For the spacetime manifold (M, g), with metric g
that satisfies Assumption 5.1, the two following statements are equivalent.

1. (%, h) is a complete Riemannian manifold.
2. The spacetime (M, g) is globally hyperbolic.

Since with regards to our proof of essential self-adjointness we are interested in
the conformally transformed metric h we obtain the following result.

Theorem 5.2 Let the globally hyperbolic spacetime M be given by the product
M = R x X, with a 4-dimensional Lorentz metric g of the form (5.3). Moreover,
let Inequality (5.4) be fulfilled for the conformally transformed metric h := N~2h.
Then, the Riemannian manifold (X, h) is geodesically complete.

Proof Since conformal transformations do not change the causal structure, the
spacetime (M, g) with metric,

§=—dt* + hij (X, 1) dx' dx/,

is globally hyperbolic. Therefore, the first bound of Assumption 5.1 is trivially satis-
fied and the second bound is the demanded condition. Hence, the proof is concluded
by the globally hyperbolicity of (M, g) and Theorem 5.1. O

6 Discussion

Essential self-adjointness of the spatial part w? of the Klein-Gordon operator has
been proven for the case that the conformally transformed Cauchy surface under
consideration is complete, i.e. that (X, N ’zh) is a complete metric space. In addition
we gave a necessary condition on the conformal factor for the manifold (X, N~2h)
to be complete without necessarily having a complete Riemannian manifold (X, h).

This generalizes a corresponding result [9, Theorem 7.2] of Kay, who had to
assume that (X, h) is complete and that N is bounded as a multiplication operator.
In particular, if N is bounded by positive constants from above and below, it follows
(by strong equivalence) that (X, N —2h) is a complete metric space. However, the
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restriction on N and more specifically the assumption that (X, h) is complete” is not
necessary as long as the conformally transformed metric becomes complete. Hence,
given a globally hyperbolic manifold that is smoothly foliated by non-complete
Cauchy surfaces, the proof of essential self-adjointness of the operator w? is still
possible (by standard methods) if the conformal factor N =2 acts as a completion.
In the case of stationary globally hyperbolic spacetimes of the form given in Theo-
rem 2.2 and a potential that is semi-bounded from below that in addition satisfies the
required conditions in [21], our main result, Theorem 4.1, holds without restriction
to generality.

Although we require global hyperbolicity of spacetime, a possible application of
our theorem to QFT on certain spacetimes that are not globally hyperbolic might
be possible. The reason therefore lies in the manner how QFT is studied on such
spacetimes. In particular, in [41] a generalization was proposed in the context of the
algebraic approach to quantum field theory to study the case of non-globally hyper-
bolic spacetimes. Basically one requires that every point in a given spacetime M
should have a globally hyperbolic neighborhood N. Moreover, the algebra of observ-
ables of the spacetime M restricted to N should be equal to the algebra obtained by
regarding the neighborhood N as a globally hyperbolic spacetime in its own right
(with some choice of time). With regards to our result this means that we can define a
Klein-Gordon equation on each such globally hyperbolic neighborhood and use The-
orem 4.1 to prove the essential self-adjointness of the spatial part of the Klein-Gordon
operator in that neighborhood.

Another approach for doing QFT on not necessarily globally hyperbolic space-
times is general boundary quantum field theory [42, 43]. There, Hilbert spaces of
states are associated to hypersurfaces that need not even be spacelike. However, in
many contexts the restriction to spacelike hypersurfaces is sufficient and our result is
useful there.
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