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Abstract

This thesis, written as a compendium of articles, investigates the properties of
scalar dynamics and vacuum energy in the context of string theory compactifications,
and their connection with the swampland program.

In the first article presented in the thesis, we consider warped throats with locally
AdS geometry, and study their stability properties. Motivated by considering the near
horizon limit of systems of fractional D-branes at singularities, we propose that such
backgrounds cannot be stable in the absence of supersymmetry, and thus generalize the
swampland criterion that forbids stable non supersymmetric AdS vacua. This allows us
to rule out large classes of warped throats with supersymmetry breaking ingredients,
shedding new light on already known instabilities, including the runaway in the dP1

theory, and unveiling novel decay mechanisms such as the one associated to N = 2
fractional branes.

In the second article we focus on the asymptotic Klebanov–Tseytlin solution, re-
garded as a compactification to five dimensions in which an axion runs in the radial
direction of the locally AdS spacetime. The model can be reinterpreted as a fully
backreacted solution of transplanckian axion monodromy, with the axion traversing ar-
bitrarily large distances in field space, and provides an existence proof of transplanckian
field excursions in string theory. In particular, we discuss how the ten-dimensional solu-
tion fully encodes the backreaction of the axion dynamics including the impact on the
axion kinetic term, and the backreaction on other sectors, such as the compactification
moduli and the vacuum energy.

In the third article we propose a refinement of certain swampland conjectures in
the presence of discrete gauge symmetries. We consider theories with both discrete
and continuous gauge symmetries, and relate the gauge coupling of the continuous
symmetry with the order of the discrete symmetry. We also study discrete symmetries
associated to domain walls, and we use them to justify the presence of separation of
scales in an infinite family of AdS4 flux vacua of type IIA string theory.

In the last two articles of the thesis, we study running solutions sourced by tad-
poles for dynamical fields, and analyse their properties in large classes of string theory
models. These solutions can only extend up to a finite distance in spacetime, scaling
inversely with the strength of the tadpole, and are capped off by cobordism walls of
nothing in a dynamical realization of the cobordism conjecture. We also discuss do-
main walls interpolating between different (but cobordant) theories. The key criterion
to distinguish between the two kinds of walls is related to the distance in field space,
and suggests a connection with the distance conjecture.
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Resumen

En esta tesis, escrita como un compendio de artículos, se exploran la dinámica de
campos escalares y la energía de vacío en el contexto de compactificaciones de teoría
de cuerdas, y sus conexión con el programa de swampland.

En el primer artículo de la tesis, consideramos gargantas curvadas con geometría
localmente AdS, y analizamos sus propriedades de estabilidad. Motivados por consid-
erar el límite cerca del horizonte de sistemas de D-branas fraccionarias en singularid-
ades, conjeturamos que estas geometrías no pueden ser estables si supersimetría está
rota, generalizando el criterio de swampland que excluye vacíos non-supersimétricos
estables de tipo AdS. Aplicando esta idea a largas clases de gargantas curvadas non
supersimétricas, aclaramos los distintos mecanismos que obstaculan la estabilidad en
ejemplos conocidos de la literatura, como la teoría basada en dP1, y encontramos mecan-
ismos innovadores de decaimiento, como la inestabilidad asociada a branas fraccionarias
de tipo N = 2.

En el segundo artículo nos centramos en la solución asintótica de Klebanov–
Tseytiln, considerada como una compactificación cuya teoría efectiva en cinco dimen-
siones incluye un axion dependiente en la coordenada radial del espaciotiempo loc-
almente AdS. Esta solución se puede reinterpretar como un modelo de monodromía
axionica en que la distancia efectiva que recorre el campo sea arbitrariamente larga,
aportando así una prueba de existencia de excursiones transplanckianas en teoría de
cuerdas. Específicamente, mostramos como la solución en diez dimensiones incluye ple-
namente la retroacción sobre la dinámica del axion, los otros módulos y la energía de
vacío.

En el tercer articulo proponemos un refinamiento de algunas conjeturas de swamp-
land en presencia de simetrías discretas de gauge. Específicamente, consideramos teorías
con simetrías de gauge discretas y continuas y relacionamos la constante de acoplami-
ento de la simetría continua con el orden de la simetría discreta. Además examinamos
simetrías discretas asociadas a paredes de dominio, y explicamos como utilizarlas para
justificar la presencia de separación de escalas en una familia infinita de vacíos AdS4 de
teoría de cuerdas tipo IIA.

En los últimos dos artículos de la tesis, examinamos soluciones asociadas a tad-
poles para campos dinámicos, y analizamos sus propriedades en varios modelos de teoría
de cuerdas. Estas soluciones no se pueden extender mas de una distancia finita en el es-
paciotiempo, que depende inversamente de la fuerza del tadpole, y culminan en paredes
de dominio en una realización dinámica de la conjetura de cobordismo. Además discu-
timos paredes de dominio que separan teorías distintas (pero cobordantes). El criterio
llave para diferenciar los dos tipos de paredes está relacionado con la distancia en el
espacio de campos, lo que sugiere una conexión con la conjetura de la distancia.
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1
General introduction

Progress in theoretical physics has often taken the form of unification. In the
1860s, James Clerk Maxwell realized the similarities between electricity and magnetism,
and elaborated his theory of a single electromagnetic force. In the 1920s, when Albert
Einstein began to work on a unified theory of gravitation and electromagnetism, these
were the only known fundamental forces, and no subatomic particles were known apart
from electrons and protons. Einstein strongly believed that all of nature must be
described by a single theory, and devoted the last thirty years of his life to this idea,
but his efforts were clearly premature.

It was only in the 1970s that theorists began to disclose the connection between
electromagnetism, with its visible effects in everyday life, and the weak force, which
is usually concealed within the atomic nucleus. These two forces appear to be very
different at low energies, but begin to act on equal terms at the higher energies explored
in particle collisions. Experiments also show that the strong force becomes weaker as
energy increases, and this is a good hint that at extremely high energies, a thousand
million times greater than those accessible to particle accelerators, the strengths of the
electromagnetic, weak and strong interactions might be the same. Taking this idea even
further, theorists envisage the possibility of including gravity at still higher energies,
thereby unifying all of the fundamental forces into one.

To provide a deep understanding of the interactions and the structure of matter
at a fundamental level is one of the key objectives of particle physics. A remarkable in-
sight into these questions is provided by the Standard Model, the most accurate physical
theory ever produced, which has successfully explained almost all experimental results,
and precisely predicted a wide variety of phenomena. Formulated as a quantum field
theory, it describes the elementary particles leading to both matter and the electro-
magnetic, weak and strong interactions into a single mathematical framework, which
incorporates the two paradigms of modern physics, namely quantum mechanics and
special relativity. The first implies a shift from a deterministic to a probabilistic per-
spective in our understanding of the world, while the second intertwines space and time
in a very specific manner.
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Chapter 1. General introduction

Despite its undeniable success, however, there are evidences that the Standard
Model is still incomplete. In particular, the fact that an interacting theory of a massless
spin-2 boson is non-renormalizable implies that it is not possible to include gravity in
this framework. This is a difficult challenge, and the formulation of a description of
gravity in a way consistent at the quantum level stands as the main task ahead of
this century theoretical physics. In this respect, string theory represents the leading
candidate for a consistent quantum theory of gravity, and at the same time has a
structure which is just rich enough to contain the essential ingredients of the Standard
Model.

This unified description requires the introduction of extra spatial dimensions para-
metrizing an internal space of very small size, inaccessible to our present observations.
Despite this fact, the properties of the compactification space are very relevant, since
they determine the properties of the physics in four dimensions, including the gauge
group for the interactions, the particle content charged under them, and the specific
values of the coupling constants of the theory, namely the strength of the interactions
and the masses and couplings of particles. There seems to be an enormously large num-
ber of possible compactifications in string theory, each leading to a different vacuum
with (possibly widely) different properties for the resulting physics in four dimensions.
This has led to the concept of a string landscape, as the set of four-dimensional theories
arising from the different string compactifications. The largeness of this set might sug-
gest the idea that any four-dimensional effective field theory ultimately admits some
embedding into string theory, for a suitable choice of the compactification data.

However, there is an increasing evidence that this is not the case, and that there
exist certain constraints that any low energy effective field theory must satisfy in order
to admit a consistent UV embedding in quantum gravity. Otherwise, the theory cannot
be part of the landscape, and is said to belong to the swampland. Unfortunately,
the complete set of such constraints is not known. These are usually formulated in
the form of conjectures for which a complete proof is still missing, but the increasing
web of connections between them suggest that they might be pointing towards some
more fundamental quantum gravity principles yet to be uncovered. To identify such
constraints and gather evidence to prove (or disprove) them, as well as to understand
their phenomenological implications for low energy physics, is the aim of the swampland
program. Although the notion of the swampland is in principle not restricted to string
theory, swampland conjectures are often motivated by or checked in stringy setups,
which are a perfect arena to test them in a quantitative and rigorous way.

Hence, it is fair to say that the existence of a swampland is good news, and paves
the way towards an era of quantum gravitational string phenomenology, with interesting
applications in both particle physics and cosmology. Swampland conjectures can indeed
provide new guiding principles to construct theories beyond the Standard Model, as well
as induce UV/IR mixing that breaks the expectation of scale separation. They can also
be used to address the structure of large field inflation in early-time cosmology, or the
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Chapter 1. General introduction

mechanism responsible for the observed late-time acceleration of the universe, to name
but a few. In the rest of the introduction we will briefly introduce some of these con-
jectures, focusing on those that are more relevant for the articles presented in the thesis.

Weak gravity conjecture

The motivation for the weak gravity conjecture (WGC) [5] is twofold. First, it provides
a mechanism that prevents from recovering a global symmetry when the gauge coup-
ling of a U(1) gauge symmetry is sent to zero, g → 0. The statement that there are
no global symmetries in quantum gravity, which means that any symmetry is either
broken or gauged, is indeed the oldest and most widely accepted of swampland con-
jectures [7], with much evidence for it coming from string theory. This is known to
be true in perturbative string theory [6, 23], where global symmetries on the string
worldsheet correspond to gauge symmetries in spacetime, and there is no way to have
global symmetries in spacetime. The situation for strings in AdS background [1, 13]
is also similar: global symmetries in the boundary theory are associated with gauge
symmetries in the bulk, and there is no way to have global symmetries in the bulk.
Second, the WGC corresponds to the kinematic requirement that extremal black holes
are able to decay, thus avoiding troubles with remnants and entropy bounds. However,
as many arguments based on black hole physics, this should be taken as a (heuristic)
motivation rather than a proof.

The WGC comes with both an electric and a magnetic version. Given a theory
with a U(1) gauge vector field coupled to Einstein gravity, the electric WGC requires
the existence of an electrically charged particle with charge-to-mass ratio greater than
that of an extremal black hole, which depends on the theory under consideration and is
typically of order one. In four dimensions, for instance, the Reissner-Nordström black
hole leads to the inequality

m ≤
√
2gqMp , (1.1)

where m, q are the mass and the quantized charge of the WGC particle. An equivalent
interpretation of the conjecture (in the absence of scalar fields) is that for such particle
the gravitational force is weaker than the electromagnetic one,

Fgrav ≤ Fem , (1.2)

whence the name.
To derive the magnetic version, one applies (1.1) to the magnetic dual field, and

gets a constraint on the mass of a magnetic monopole. Since the magnetic charge is
proportional to the magnetic gauge coupling, which is the inverse of the electric gauge
coupling, and the mass of the monopole is typically at least at the order of the cut-off
of the theory over the gauge coupling squared, one finds that the cut-off Λ is bounded

3



Chapter 1. General introduction

from above by the gauge coupling, and is smaller than the Planck mass if the gauge
coupling is small,

Λ . gMp . (1.3)

In particular, when the gauge coupling goes to zero, this results in new light particles
according to (1.1), and the cut-off also goes to zero according to (1.3), invalidating
the effective field theory description. This provides the aforementioned obstruction to
restoring a global symmetry.

An obvious generalisation of the WGC applies to p-form gauge fields in d dimen-
sions, and implies the existence of a (p − 1)-dimensional state with charge-to-tension
ratio greater than that of an extremal (p− 1)-black brane. For the Reissner-Nordström
black brane, one gets the bound

p(d− p− 2)

d− 2
T 2 ≤ q2g2Md−2

p , (1.4)

which reproduces (1.1) for p = 1 and d = 4. The case for axions p = 0, albeit not
covered by the above formula, can also be argued, and implies the existence of an
instanton with quantized charge q whose action satisfies

S . q
Mp

f
. (1.5)

The equivalent of the mass for an instanton is indeed its action, and the equivalent of the
gauge coupling is the inverse of its decay constant f . The main difficulty is to properly
identify what one means by an extremal instanton [14]. Otherwise, the previous bound
actually contains an undetermined order one factor, whence the twiddle. One of the
most interesting applications of the WGC for axions, when interpreted as a bound
on the size of the monotonic regions of the axion potential, is to constrain models
of large-field inflation [10, 19, 24]. In natural inflation, an axion slowly rolls down a
non-perturbative potential generated by instantons. While the overall periodicity is of
the order of the decay constant, and can be made large with f � 1, the magnitude
of monotomic regions, and therefore of the field range available for inflation, remains
approximately constant when higher instanton corrections are included. A loophole in
this argument is that the WGC instanton may not be the leading contribution in the
potential: in this case stronger versions of the conjecture are needed.

Another implication of the WGC that has raised significant interest is related to
AdS space. Assuming that the WGC bound can only be saturated by BPS states in a
supersymmetric theory, and applying this criterion to D-branes with AdS near-horizon
limits, one concludes that stable AdS vacua are necessarily supersymmetric [22]. In
particular, any non-supersymmetric AdS vacuum must either be inconsistent or not
stable. Since there are several large classes of string compactifications or supergravity
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Chapter 1. General introduction

backgrounds which seemingly lead to non-supersymmetric AdS vacua, this opens up
the general question of what are the instability mechanisms for these constructions.
Such mechanisms may be of non-perturbative nature, and therefore provide very inter-
esting insights into string theory beyond perturbation theory. Similar conclusions hold
for other extensions to close relatives of non-supersymmetric AdS vacua, such as the
holographic gravitational duals of D-branes at singularities breaking supersymmetry in
the infrared due to strong coupling dynamics. In these gauge theories, the D-brane
construction leads to a runaway behaviour, which should turn into a direct decay of the
proposed locally AdS vacua. This and other examples are studied in detail in the first
article included in the thesis.

Finally, most works on the WGC focus on the properties of continuous gauge sym-
metries, whereas fewer results have been obtained for discrete symmetries. A partial
explanation for the scarcity of swampland constraints on discrete symmetries, mostly fo-
cusing on the constraint that global discrete symmetries, just as in the continuous case,
are forbidden in quantum gravity, is the lack of long-range fields or tunable parameters
like coupling constants, that makes quantitative statements more difficult. In the third
article presented in the thesis, we overcome this difficulty by considering theories with
both discrete and continuous gauge symmetries, namely Zk and U(1) symmetries, and
uncover interesting quantitative relations between them. In particular, we propose that
the gauge coupling scales as

g ∼ k−α (1.6)

when the order k of the discrete symmetry is large, with α a positive order one coeffi-
cient. We also relate to diverse versions of swampland distance conjectures, which are
discussed next.

Distance conjectures

There is no free dimensionless parameter in string theory. Upon compactification to
lower dimensions, the values of couplings and masses are controlled by the vevs of scalar
fields called moduli, which are massless before adding fluxes or other ingredients, and
from a ten-dimensional perspective correspond to the size and shape of the extra di-
mensions. Moving in this moduli space corresponds to exploring different effective field
theories. However, something dramatic is expected to happen when moving towards a
point where a global symmetry is restored, for example by sending a gauge coupling to
zero. An obvious solution that prevents a global symmetry from being recovered in this
way is that such point is located at infinite distance in moduli space, and is actually
unreachable. Albeit from a purely QFT perspective there seems to be nothing wrong
with being as close as possible to this point, global symmetries are strictly forbidden in
quantum gravity, and one may expect that the effective field theory description breaks
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Chapter 1. General introduction

down continuously as the approximate global symmetry looks more and more exact.
One may also wonder what happens when approaching any infinite distance limit in
moduli space. The answer to these and related questions is provided by the swampland
distance conjecture (SDC) [21].

Given an effective field theory coupled to Einstein gravity and with moduli space
M parametrized by massless scalar fields, the SDC predicts the existence of an infinite
tower of states that becomes exponentially light for any point P ∈ M and any infinite
field distance limit, that is

M(Q) ∼ M(P )e−λ∆φ when ∆φ → ∞ , (1.7)
in terms of the geodesic field distance ∆φ ≡ d(P,Q). The exponential rate λ, apart
from being positive, is not further specified. It is believed to be of order one, as one
would expect that the exponential behaviour is reached at a distance of order the Planck
mass [15], but how small it can be remains an important open question, although some
concrete lower bounds have been proposed in the literature [2, 9, 12, 16]. Associated to
the tower there is a quantum gravity cut-off decreasing exponentially in the distance,
which implies that the range of validity of an effective field theory cannot be extended
an arbitrarily large distance away from the original point: the higher the cut-off, the
smaller is the maximum field distance that the theory can describe. This is to be
contrasted with the situation in which gravity is absent, and no obstruction to the
extension of an effective field theory to an arbitrary point in moduli space appears.

In its original formulation, the SDC is a statement about the moduli space of
effective field theories with zero potential. However, it is phenomenologically relevant
to consider the case in which a potential is added and the moduli space is lifted, ap-
plying the SDC to any scalar field, and not just moduli [15]. This is closely related to
the axionic WGC, suggesting that periodic axion potentials cannot host transplanckian
field ranges. There are also partial studies concerning axion monodromy models, try-
ing to rule out their transplanckian excursion by invoking the backreaction on the
scalar kinetic terms, which reduces the effectively traversed distance [8]. These results
would seem to suggest that transplanckian field ranges are not physically attainable in
quantum gravity. If correct, this statement would have profound implications for phe-
nomenological applications, notably for the construction of models of inflation. In the
second paper of the thesis, however, we prove that this statement is in fact incorrect,
and that transplanckian field excursions are physically realized in string theory.

It has been proposed that the SDC can be extended to more general field configur-
ations beyond the moduli space [17]. In particular, one can define a notion of distance
between different metric configurations of AdS spaces, such that the flat space limit,
corresponding to the AdS scale going to zero Λ → 0, is at infinite distance. This leads
to the AdS distance conjecture (ADC), stating that any AdS vacuum has an infinite
tower of states that becomes light in the flat space limit as

m ∼ |Λ|α . (1.8)
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Chapter 1. General introduction

A strong version of the conjecture states that α = 1
2

in the supersymmetric case, im-
plying that there is no scale separation between the AdS scale and the KK scale. A
counterexample to the strong version (but not to the conjecture itself) is provided by an
infinite family of four-dimensional type IIA orientifold vacua that is claimed to achieve
scale separation [11]. In the third paper of the thesis, we propose a way to reconcile
these vacua with (a refinement of) the strong ADC, based on discrete symmetries.

Cobordism conjecture

Cobordism is an equivalence relation on the space of compact manifolds of the same
dimension, whereby two manifolds are identified if their disjoint union is the boundary
of a compact manifold one dimension higher. This has an abelian group structure, with
the trivial element given by a manifold that is a boundary by itself. In the presence
of gravity, topology changing transitions are expected to occur, and since these can
be interpreted as cobordisms, any topological global charge that is associated to a
topological symmetry should also be a cobordism invariant, so that it doesn’t change
after a topology changing transition. This means that a natural global charge to look
at is the cobordism group itself.

Motivated by the statement that global symmetries, including topological sym-
metries, are forbidden in quantum gravity, it has been proposed that in order not to
define a global symmetry, the cobordism group actually has to vanish, and all the cobor-
dism classes must be trivial [18]. This means that any compactification manifold must
be cobordant to the empty manifold, and thus can be shrunk to a point. An equivalent
perspective is to define the cobordism group of a theory of quantum gravity by identi-
fying configurations that can be connected by a finite energy domain wall. This makes
sense because, if the theory arises upon compactification of higher dimensions, then
any non-trivial cobordism between two compactification spaces would correspond to a
domain wall from the perspective of the lower dimensional theory. In this language,
the vanishing of the cobordism group corresponds to the existence of a boundary the
theory can end on, namely a wall of nothing.

The most interesting implication of the cobordism conjecture is that it can be used
to predict the existence of defects. When the cobordism group of a theory is non-trivial,
it is indeed possible to include additional ingredients to generate new cobordisms and
kill the otherwise non-trivial cobordism classes. Obviously there are many cobordism
groups, and which one to look at depends on the theory under consideration. If the the-
ory contains a p-form U(1) gauge field, the total magnetic flux over (p+1)-dimensional
manifold is a cobordism invariant, labelling non-trivial cobordism classes. However, by
adding magnetic monopoles that act as a source, the total flux is not an invariant any
more, and a trivial corbordim group is recovered. This is nothing but a rewriting in the
language of cobordism of the well-known statement that completeness of the spectrum

7



Chapter 1. General introduction

for abelian gauge symmetries follows from the absence of global symmetries, and can
be used to predict the existence of D-branes from the presence of RR-gauge fields in
type II string theories.

Suppose instead to turn off all the gauge fields, and use only the fact that string
theory contains spinors. The spin cobordism for 0-dimensional manifolds is Z, and is
generated by the positively oriented point. To kill this class in M-theory, one needs a
boundary, which is given by the Horava–Witten wall. Similarly, in type IIA one has an
orientifold 8-plane as a boundary, corresponding to the Horava–Witten wall wrapped
on the M-theory circle. Another example is the spin cobordism for 1-dimensional man-
ifolds, which is Z2, and is generated by the circle with periodic spin structure. The way
to kill it in a circle compactification of type IIB is to include two O7-planes. Now all
the objects in these examples are very explicit and familiar, but this is not always the
case, and sometimes one has to rely on the conjecture to claim that the required defect
actually exists [18,20].

The cobordism conjecture is topological in nature, and a better understanding
of situations where it is treated in a more physical, real-life sense is clearly desirable.
An important step forward in endowing cobordism walls with dynamics is taken in the
last two articles presented in the thesis, where we study the properties of theories with
tadpoles for dynamical fields, and discuss their interplay with cobordism and distance
conjectures.

Plan of the thesis After this general introduction, the second part of the thesis
contains the collection of five articles in the published versions. Three of them can be
read independently and are presented in separated chapters. The other two are one
the continuation of the other and are incorporated in a single chapter. We leave the
conclusions for the last part of the thesis, where the main results of these works are
summarized.
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1 Introduction: Quantum Gravitational String Phenomenology

The recent flurry of activity, largely triggered by [1–3], in constraining phenomenological

string model building using Quantum Gravity swampland criteria [4–11] (see [12] for a re-

cent review) is giving birth to an emerging field, which can deservedly claim the designation

of Quantum Gravitational String Phenomenology.

The application of constraints convincingly argued to hold in any theory of Quantum

Gravity is leading to new breakthroughs. In particular, the Weak Gravity Conjecture

(WGC) [6] (see [1–3, 13–26] for different formulations and applications) has motivated the

remarkable statement that stable non-supersymmetric Anti de Sitter (AdS) vacua are not

possible in Quantum Gravity [7, 8]. This AdS-WGC constraint is largely motivated by

the application of the refined WGC to systems of branes in the near horizon limit, and

has received direct support from the study of decays of non-supersymmetric AdS vacua

in string theory via bubbles of nothing [27]. The AdS-WGC has been argued to have

far-reaching implications for particle physics and its scales [24–26].

There are also recent proposals of swampland criteria attempting to rule out de Sitter

vacua as well [9, 28, 29], possibly in certain regimes under parametric control. This claim

clashes with familiar roadmaps for the construction of de Sitter vacua in string theory [30,

31], see [32, 33] for recent discussion. A key ingredient in the parametric control of these
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scenarios is the presence of warped throats [34, 35] at whose bottom the supersymmetry

breaking sectors are localized, so that they undergo a redshift crucial for the tunability

of the 4d vacuum energy. Starting from the original proposal of supersymmetry breaking

by anti-D3-branes [30], there is a rich variety of proposals, see e.g. [36–38]. Hence, it is

interesting to explore the interplay of non-supersymmetric warped throats with constraints

from Quantum Gravity.

In this paper we consider non-compact warped throats and constrain these 5d back-

grounds by proposing a new swampland conjecture, the local AdS-WGC, which generalizes

the AdS-WGC to locally AdS warped throats. The conjecture is motivated by considering

the near horizon limit of systems of fractional D-branes at singularities, but should hold

more in general. Although it does not constrain metastable non-supersymmetric throats,

hence has no direct implication for e.g. anti-D3-brane models, it can be used to rule out large

classes of warped throats with supersymmetry breaking sectors at their bottom. We study

this phenomenon in several explicit examples, shedding new light on already known insta-

bilities in supersymmetry breaking D-brane models, such as the dP1 theory, and unveiling

novel decay channels in AdS or locally AdS backgrounds. For instance, we explicitly discuss

warped throats with supersymmetry broken by the introduction of anti-orientifold planes.

A remarkable feature of these examples is that the non-supersymmetric backgrounds

are stable at the classical level, and that the pathologies arise at the quantum level, often

by nucleation of bubbles hosting interiors of more stable vacua. This is consistent with the

interpretation of these constraints as arising from consistency in Quantum Gravity.

The paper is organized as follows: in section 2 we review systems of D-branes at

singularities and fractional branes using the powerful toolkit of dimer diagrams. In section 3

we propose the local AdS-WGC criterion; we derive it in section 3.1, and use it in section 3.2

to reinterpret the properties of supersymmetric and non-supersymmetric warped throats

dual to fractional D3-branes in toric singularities. In section 3.3 we discuss the situation for

throats with meta-stable supersymmetry breaking. In section 4 we consider an illustrative

example of a system of D3-branes with Dynamical Supersymmetry Breaking due to strong

dynamics and consider its embedding into warped throats. The D-brane gauge theory

is discussed in section 4.1, and in section 4.2 we describe the instabilities that arise when

embedded into AdS or locally AdS warped throats, in agreement with the (local) AdS-WGC

implications for non-supersymmetric throats; in section 4.3 we describe the local AdS-WGC

statement in an explicit example illustrating how it applies to non-supersymmetric throats

from N = 2 fractional branes. Section 5 treats warped throats with supersymmetry broken

by the presence of anti-orientifold-planes. In section 5.1 we discuss generalities about

such throats. In section 5.2 we focus on anti-O3-planes, describe their different kinds and

their interaction with systems of D3-branes. In section 5.3 we discuss the corresponding

gravitational backgrounds and describe their instabilities, in agreement with the (local)

AdS-WGC statement. Finally, in section 6 we give our conclusions.

2 Review of dimers and fractional branes

Here we briefly review some ingredients of the dimer diagram description of D3-branes at

singularities. The initiated reader is welcome to skip it and jump into the next sections.

– 2 –



J
H
E
P
0
4
(
2
0
1
9
)
1
1
1

Figure 1. (a) Dimer diagram for the theory of D-branes at a conifold. The dashed line is the unit

cell in the periodic array. (b) Web diagram of the conifold. We have displayed it with a finite size

S2 (middle segment) for clarity; the actual singularity arises when this S2 is blown-down.

The gauge theories on D3-branes at toric CY threefold singularities are nicely encoded

in a combinatorial graph known as dimer diagram [39, 40] (see also [41, 42] and references

therein). They are (bipartite) graph tilings of T2, or equivalently infinite periodic graphs

in R2. Their faces correspond to gauge factors, edges represent bi-fundamental chiral

multiplets (oriented e.g. clockwise around black nodes, and counterclockwise around white

nodes), and nodes represent superpotential couplings (with sign determined by the node

color). As an illustration, the diagram for the conifold is shown in figure 1(a). The

corresponding gauge theory [43] has gauge group U(n1) × U(n2), bi-fundamental chiral

multiplets in two copies of the representation ( 1, 2) + ( 1, 2), denoted by Ai, Bi,

i = 1, 2, and a superpotential W = εikεjlAiBjAkBl.

The geometric information about the CY singularity is encoded in simple combinatorial

objects in the dimer, whose discussion we skip, directing the interested reader to the

references. We just mention that the geometries are encoded in web diagrams, which

specify the fibration structure of the corresponding toric geometry. The web diagram can

be obtained by constructing the zig-zag paths in the dimer (these are paths constructed

out of sequences of edges which turn maximally left at black nodes and maximally right

at white nodes) and translating the non-trivial (p, q) windings of the path on the two non-

trivial 1-cycles in T2 into the (p, q) labels of external legs in the web diagram. The web

diagram for the conifold is shown in figure 1(b).

The choice of ranks ni in the gauge groups of the dimer theories is arbitrary, but

constrained by cancellation of RR tadpoles. These are equivalent to cancellation of non-

abelian gauge anomalies (understood as formally imposed for all gauge factors, even those

of possible empty faces). These conditions also guarantee the cancellation of mixed U(1)

anomalies thanks to Green-Schwarz couplings. There are in fact topological BF couplings

with RR 2-forms making all U(1) factors massive (even the non-anomalous ones, see [44]).

Supersymmetry of the configuration implies that blow-up modes couple as (field dependent)

FI terms to the D3-branes. Although these U(1)’s are massive, it still makes sense to discuss

them if the corresponding couplings to localized closed string modes are taken into account.

The choice of all ranks equal ni ≡ N for all i is always allowed, and corresponds to

D3-branes which can move off the singularity, as signaled by corresponding flat directions

– 3 –
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Figure 2. (a) Dimer diagram showing an N = 2 fractional brane in the PdP4 theory; (b) Web

diagram, displaying the corresponding mobile P1 as a red discontinuous segment.

in the D3-brane gauge theory. This in fact underlies the way in which the dimer encodes

the CY threefold geometry, as the moduli space of a single such D-brane. These D3-branes

are referred to as dynamical, or regular (since, for orbifold singularities, they are associated

to the regular representation of the orbifold group [45]).

Other rank assignments consistent with the RR tadpole constraints are known as

fractional branes. They can be regarded as D5-branes wrapped on 2-cycles (collapsed at

the singularity) such that their dual 4-cycle is non-compact. This allows the RR charge

carried by the D-branes to escape to infinity. These can always be written as combinations

of certain basis of fractional branes, which fall into different classes, as described in [46],

as follows:

• The so-called N = 2 fractional branes correspond to an overall increase of ranks in a

subset of faces bounded by zig-zag paths associated to the same (p, q) 1-cycle in the

dimer T2. They are associated to parallel external legs in the web diagram, or equiv-

alently to curves of C2/Zk singularities sticking out of the singularity at the origin.

The gauge theory on these fractional D3-branes has a flat direction, parametrized by

the meson obtained by concatenation of bifundamentals joining the faces bounded

by the zig-zag paths in the dimer. The flat direction describes the possibility of mov-

ing the fractional D-brane off the origin along the curve of singularities, to become

a fractional brane of C2/Zk, namely a D5-brane wrapped on one of the collapsed

2-cycles of the orbifold singularity. The gauge theory on this branch is the N = 2

Ak−1 quiver gauge theory [45], hence the name. An example of N = 2 fractional

brane is shown in figure 2.

• The so-called deformation branes are associated to complex deformations of the CY

threefold singularity. They are associated to splittings of the web diagram into sub-

webs in equilibrium. The rank assignment corresponds to an overall increase of ranks

in the subset of faces bounded by the splitting. Namely, the homological sum of the

zig-zag paths associated to the sub-web removed (in a given complex deformation, the

two sub-webs give the same result, due to the condition that the total sum of (p, q)

charges for external legs is zero). They correspond to checkerboard pictures on the

dimer. The complex deformation of the geometry has a field theory counterpart, in

– 4 –
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Figure 3. (a) Dimer diagram showing a deformation fractional brane in the dP3 theory; (b) Web

diagram, and its splitting into subwebs in equilibrium, with the finite size S3 displayed as a red

discontinuous segment suspended between the subwebs.

which the gauge theory on the fractional branes confines and has a complex deformed

moduli space. The resulting gauge theories are associated to the two sub-webs [47, 48].

An example of a deformation fractional brane is shown in figure 3.

The gauge theory arising from a set of N regular D3-branes and M (deformation)

fractional branes, leads to RG flows with a sequence of Seiberg duality cascades, along

which the overall number of D3-branes N is reduced in multiples of M , and the num-

ber M of D5-branes remains fixed. The gravity dual corresponds to a warped throat

supported by RR 3-form fluxes on the 3-cycles associated to the complex deformed

singularity, and NSNS flux in the dual (non-compact) 3-cycle. Their combination

G3 = F3 − τH3 is an ISD 3-form of type (2, 1), thus preserving supersymmetry [49–

51]. The throat is locally similar to AdS5 ×X5, but with logarithmic changes in the

cosmological constant and the RR 5-form flux along the radial direction.

The simplest example is the conifold, studied exhaustively in [34] both from the

viewpoints of field theory and of its gravity dual warped throat. The generalization

of duality cascades in gauge theories associated with fractional branes in more gen-

eral singularities has been studied in [47, 52]. We will consider the gravity dual of

deformation branes in general singularities in section 3.1.

• The last class corresponds to the remaining kind of fractional branes. Their cor-

responding rank assignments on faces have no correspondence with a set of zig-zag

paths defining a sub-web in equilibrium. Therefore, there is no geometric complex

deformation of the singularity associated to them. Indeed, contrary to deformation

fractional branes, their infrared dynamics involves non-abelian gauge dynamics (even

for the minimal such fractional brane) and results in the absence of a supersymmetric

vacuum (hence they were dubbed DSB branes in [46], see also [53, 54]). On the other

hand, similarly to deformation fractional branes, they can trigger duality cascades

in the presence of N regular D3-branes, which define some warped throats (albeit

with naked singularities in the infrared region) [52]. The discussion of the infrared

dynamics, supersymmetry breaking, and its implications for the gravity dual and the

deformed AdS-WGC are discussed in section 3.1

– 5 –
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Figure 4. Dimer diagrams for orientifolds of the conifold with fixed points (a) or fixed lines (b).

In this paper we will also exploit systems of D-branes at orientifolds of toric singu-

larities. They can be usefully encoded in suitable modifications of dimer diagrams. The

general description was provided in [55], and corresponds to modding out the dimer dia-

gram by a Z2 involution. There are two kinds of orientifold quotients, classified by their

fixed sets being lines or points. Two such orientifolds of the conifold theory are shown in

figure 4. It is easy to construct other examples, see later and [55].

In the following we will mainly focus on models with orientifold fixed points in the

dimer. For this class, the rules are as follows (see [55] for detailed derivations). Each

orientifold point carries a ± sign, with the constraint that the number of orientifold planes

with the same sign is even (resp. odd) for dimers with number of nodes given by 4k (resp.

4k+2). Orientifold points with charge + (resp −) in the middle of a dimer face project down

the corresponding gauge factor to SO(na) (resp. USp(na) ). Orientifold points with charge

+ (resp. −) in the middle of a dimer edge project down the corresponding bifundamental

onto the two-index symmetic (resp. antisymmetric) representation. Finally, faces and

edges not mapped to themselves by the orientifold, combine with their images and descend

to U(na) gauge factors and bi-fundamental matter multiplets in the orientifold theory.

3 The local AdS-WGC swampland criterion

3.1 Derivation

The WGC [6], in its minimal formulation establishes that in any theory including quantum

gravity, any U(1) gauge factor should have a super-extremal charged particle, namely

q ≥ m, in natural units. This has been generalized to other p-form gauge fields, requiring

the existence of the corresponding branes with tensions bounded by their charges, Q ≥ T ,

an extension natural in string theory models via T-duality.

The proposal in [7] of a refined WGC establishes that the inequality is saturated

only for BPS states in supersymmetric theories. This further motivates the AdS-WGC

statement that theories of quantum gravity do not have stable non-supersymmetric AdS

vacua, which are thus in the swampland, rather than the string landscape. The AdS-WGC

is largely motivated by a particular (but large) class of AdS backgrounds in string theory,

which correspond to flux compactifications arising as near horizon limits of systems of D-

– 6 –
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branes. A prototypical example is the type IIB AdS5 × S5 solution with N units of RR

5-form flux on the S5, which arises as the near horizon limit of a system of N D3-branes

in flat 10d spacetime [56]. In short, the T = Q condition is crucial in the structure of

these vacua, in which the tension creating the spacetime curvature is balanced against

the flux sourced by the brane charge in the underlying picture. This proposal is further

supported by the study of instabilities of non-supersymmetric AdS vacua due to bubbles

of nothing [27]. The AdS-WGC is a powerful statement, which e.g. has subsequently been

applied to derive novel constraints on particle physics [24–26, 57].

In this paper we propose a generalization of the conjecture, which we dub the local

AdS-WGC. It states that certain warped throats backgrounds, which are AdS locally in

the radial direction but have a slow variation of the local 5d value of the cosmological

constant, are not consistent in quantum gravity, except for supersymmetric cases. The

precise formulation will be manifest from the derivation below.

The derivation follows the strategy of [7] for AdS fluxed backgrounds, by taking a

near horizon limit of D-brane systems. In our case, we apply the near horizon description

to systems of regular and fractional D3-branes at singularities, in particular the toric CY

singularities of section 2. We note that the discussion below also applies to throats from

N = 2 fractional branes, despite the presence of singularities in the near horizon geometry,

if one accounts for the additional fields from the twisted sectors, see 4.3 for extra details.

The backgrounds correspond to the holographic duals of (the UV regime of) gauge

theories with cascading RG flows, like the familiar conifold example. The statements below

have well-established translations to the holographic dual gauge theory on the D-branes,

but we prefer to emphasize the properties of the gravity side.

Consider a system of N regular and M fractional D3-branes at a toric CY singularity

with metric,

ds2
Y6

= dr2 + r2ds2
X5

(3.1)

The near horizon geometry is a solution of the kind considered in [58] for the conifold and

generalized in [51, 52], as a particular class of the supersymmetric warped compactification

ansatz in [35, 50],

ds2 = Z(r)−1/2 ηµν dx
µ dxν + Z(r)1/2 [ dr2 + r2ds2

X5
]. (3.2)

One obtains a warped version of the singular manifold, which can be regarded as the 5d

horizon X5 fibered over the 5d space given by 4d Minkowski space and the radial direction r.

There are M units of RR 3-form flux along a non-trivial 3-cycle Σ3 (topologically an S3

or a Lens space) in X5, and a corresponding NSNS 3-form flux, such that the combination

(setting the 10d RR axion to zero for simplicity) G3 = F3− i
g s
H3 is a harmonic (2,1)-form,

so that the flux is supersymmetric. This H3 flux can be described as a variation in r of

the 5d scalar arising from the axion φ given by the component of the NSNS 2-form B2

along the harmonic 2-form ω2 Poincaré dual to Σ3 (equivalently, the period of B2 over the

2-cycle Σ2 dual to Σ3 in X5), specifically.

H3 = gsM
dr

r
∧ ω2(Σ3) (3.3)

– 7 –
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The combination of fluxes is a source of the RR 5-form dF5 = F3 ∧H3, such that its flux

N over X5 varies logarithmically as

N ∼ gsM2 ln(r/r0) (3.4)

where r0 is a cutoff distance. The fluxes also backreact on the geometry, via the warp

factor, which obeys

(∇2
YZ) vol(Y6) = gs F3 ∧H3 (3.5)

leading to

Z(r) =
4πgs

2

r4
M2

(
ln

(
r

r0

)
+ 1

)
(3.6)

The whole of X5 shrinks at r = 0, but the F5 flux has disappeared by then, so there is no

topological obstruction to the shrinking from this side. However, the 3-cycle Σ3 in X5 also

collapses, and it supports the F3 flux, which is constant. This leads to a naked singularity

at the tip of the throat.

The 5d part of the above solution describes what we refer to as a local AdS solution.

It corresponds to a background which locally in r is an AdS5 background, but whose AdS

curvature changes in r, as in (3.6). This variation is controlled by that of a 5d scalar,

which in the earlier flux throat is φ =
∫

Σ2
B2, changing from (3.3). In purely 5d terms, the

defining property for this scalar is that (from the 10d topological coupling F3 ∧B2 ∧F5) it

has a 5d topological coupling

SCS = M φF5 (3.7)

This is the 5d version of the topological couplings [59, 60], arising in flux compactifications

as described in [61, 62]. Upon integrating out the non-dynamical F5, the resulting potential

for φ controls the local (in r) value of the vacuum energy. The background value for this

5d field, following from (3.3) is

dφ = gsM
dr

r
(3.8)

Alternatively, its boundary condition is fixed by the asymptotic behavior

φ ∼M ln(r/r0) (3.9)

The local AdS solution can thus be described as a (in this case, 5d) AdS solution modified

by the backreaction of a (5d) scalar φ with topological coupling to a non-dynamical field

strength top-form and obeying (3.8). The coupling to the top-form can be replaced by

equivalent dual formulations, e.g. the explicit r-dependence of the 5d vacuum energy.

The local AdS backgrounds we have described contain a naked singularity at the origin,

which in fact is known to admit a smooth deformation (preserving supersymmetry) in

certain singularities, starting from the celebrated conifold example [34] and generalized

in [47]. Thus, the local AdS solution should be regarded as defining the asymptotics of

– 8 –
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certain very general class of warped throats, in principle with or without supersymmetry,

and imposing swampland constraints on the possible existence of such throats in quantum

gravity. This brings us to the precise formulation of a new swampland conjecture.

Local AdS-WGC swampland criterion: in consistent theory of quantum

gravity, there are no stable non-supersymmetric solutions with asymp-

totics given by local AdS backgrounds, as defined above.

3.2 Evidence from deformation and DSB fractional brane systems

Besides the direct derivation in the spirit of the AdS-WGC, we now present additional

support for the local AdS-WGC. Although the following results are known in the literature,

their re-interpretation in terms of a swampland constraint is new and provides an interesting

insight into the structure of the underlying warped throats and supersymmetry breaking,

which we further exploit in later sections.

As mentioned in section 2, there is a large class of local AdS backgrounds arising

as holographic duals of (the UV regime of) systems of regular and fractional D3-branes

at singularities, specifically, fractional branes of the deformation or DSB kinds (N = 2

fractional branes are discussed in section 4.3). We discuss their interplay with the local

AdS-WGC in turn.

Toric CY singularities admitting a complex deformation can support deformation

branes. The gauge theory on their worldvolumes has an UV RG flow whose holographic

dual is given by a supersymmetric local AdS background supported by M units of RR flux

on the 3-cycle Σ3 associated to the complex deformation. Thus the naked singularity at the

origin in the local AdS background can be smoothed out by giving this 3-cycle a finite size.

The resulting configuration is a smooth supergravity solution described by a warped ver-

sion of the deformed CY threefold, preserving supersymmetry, and with asymptotics given

by a local AdS background; this is thus in agreement with the local AdS-WGC statement.

The field theory counterpart of this deformation process was described in [34, 47].

Toric CY singularities can also support DSB fractional branes which are not associated

to complex deformations. Still, the gauge theory on their worldvolume has a UV RG flow

whose holographic dual is a supersymmetric local AdS background supported by M units of

RR flux on a 3-cycle Σ3. The latter, however, cannot be given a finite size while preserving

supersymmetry. Naively, one may think that the infrared region is smoothed out to an

alternative configuration breaking supersymmetry, either in the form of a supergravity

background beyond the warped CY ansatz (in the spirit of e.g. [63] in the supersymmetric

case), or perhaps involving stringy ingredients, such us explicit sources from branes or

other singular objects. However, if such re-stabilization would indeed be possible, it would

contradict our local AdS-WGC statemetnt.

The actual answer is that the warped throats created by DSB fractional branes actually

do not admit any such stable non-supersymmetric smooth version, in agreement with the

local AdS-WGC conjecture. This has actually been already studied in the lilerature, from

the gauge theory side. The complex cone over dP1 is the prototypical case of a duality

cascade triggered by a DSB brane, and the lack of a supersymmetric vacuum in this dP1
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theory was discussed in [46, 53, 54]. This however does not imply the existence of a non-

supersymmetric stable vacuum, rather [46] already established that the theory shows a

runaway behaviour, as follows. By keeping the U(1) factors in the description of the gauge

theory, the system has a supersymmetry breaking minimum only if the Fayet-Iliopoulos

terms are kept fixed, due to the constraints from the D-term potential. However, the

FI terms are actually field dependent, and are controlled by the vevs of closed string

twisted sectors. When they are taken as dynamical, the D-term potential can relax in new

directions leading to the runaway. The same physics was reinterpreted in [64] as a baryonic

runaway direction in the gauge theory with the (massive) U(1)’s integrated out. In either

of these descriptions, the runaway direction corresponds to a dynamical blow-up of the

singularity, since FI terms, or baryonic vevs, are related to blow-up modes. The fractional

brane remains as a D5-brane wrapped on a 2-cycle in the dP1 exceptional divisor.

The gravity dual of this runaway has not been determined in the literature, but its

structure should correspond to a time-dependent solution, in which the geometry is resolved

by growing a finite size dP1 itself, with M explicit D5-branes wrapped on one of its 2-cycles.

The latter plays the role of sourcing the M units of RR 3-form, peeling it off the 3-cycle

and allowing it to shrink to zero size at the bottom of the (disappearing) throat.

It is interesting to point out that this system provides an interesting link between two

seemingly unconnected swampland criteria. On one hand, the statement that in theories

of quantum gravity all FI terms should be field-dependent, and thus dynamical [65]; on

the other hand, our newly proposed local AdS-WGC. We expect other connections of the

local AdS-WGC constraint with other swampland criteria.

We thus see that the class of throats obtained from the different kinds of fractional

branes provide illustrative examples of the local AdS-WGC constraint. In later sections we

illustrate the power of this conjecture to exclude candidates to non-supersymmetric throats

proposed in the literature.

3.3 Meta-stable throats

It is important to emphasize that the present form of the local AdS-WGC still allows for

certain forms of non-supersymmetric warped throats. For instance,

• The conjecture poses no conflict so far with the existence of supersymmetry breaking

meta-stable throats with local AdS asymptotics. For instance the systems of anti-

D3-branes at the bottom of conifold-like warped throats (i.e. created by deformation

fractional branes), extensively used since [30], are in principle allowed.1 See also [67],

where non-supersymmetric orbifolds are considered and shown to be unstable through

nucleation of bubbles of nothing. In contrast with the AdS-WGC, in local AdS

throats there is no isometry in the radial direction introducing an infinite volume

factor multiplying the decay probability, rather instabilities tend to nucleate near the

tip of the throat. Hence, a finite and potentially small decay amplitude is in principle

feasible, although this point deserves further study.2

1For discussions on asymptotics and stability of these throats, there is a long-standing debate, see e.g. [66]

for a recent work, and references therein.
2We thank M. Montero for raising this point.
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• Similarly for the nilpotent Goldstino scenario realized in terms of a single anti-D3-

brane on top of an O3-plane [37], for which the stability remarks of [68] specially ap-

ply.

• Finally, global compactifications including warped throats may contain ingredients

in the CY bulk which modify non-trivially the boundary conditions in the UV re-

gion of the throat, thus changing its asymptotics, and allowing it to evade the local

AdS-WGC constraint. For instance, this may well be the case if one introduces eu-

clidean D3-brane instantons on 4-cycles intersecting the underlying DSB D3-brane

system (thus, stretching in the radial direction of the throat) to stop their runaway,

as proposed in [69] (see also [70, 71] for related tools). Also, if one includes D7-

branes introducing new flavours in DSB D-brane systems, to allow for metastable

supersymmetry breaking vacua [72, 73] in the ISS spirit [74]. For a recent discussion

of orientifolded throats, see [75].

In the following discussions, we consider several large classes of non-supersymmetric

warped throats, and reconcile them with the local AdS-WGC by looking for decay channels.

Whether these decay channels render the configurations unstable or just meta-stable is not

constrained by the conjecture in its present form, hence we loosely refer to them as insta-

bilities of the configuration, even in cases where they could host meta-stable backgrounds.

4 Warped throats with dynamical supersymmetry breaking

In the previous discussion, the system of D3-branes breaking supersymmetry had a fairly

manifest runaway behaviour. There are however other systems of D3-branes at singularities

which trigger genuine dynamical supersymmetry breaking, rather than runaway. In this

section we explore the proposal of embedding such systems in warped throats [38], and

how they face the local AdS-WGC.

Again, there are systematic tools for the construction of such theories in terms of

D3-branes at toric singularities (possibly in the presence of orientifold quotients), pro-

ducing N = 1 supersymmetric gauge theories with supersymmetry broken only by non-

perturbative dynamics. As explained in [38], dimer diagram tools moreover allow to re-

alize them as the theories arising in the infrared of duality cascades of systems of further

(deformation) fractional D3-branes at singularities. The gravity dual description of these

configurations would correspond to a locally AdS supersymmetric warped throat supported

by 3-form fluxes on a 3-cycle associated to a complex deformation, and at whose tip we

have the supersymmetry breaking D-brane sector.

If stable, such configurations would lead to a supersymmetry breaking warped throat

violating the local AdS-WGC. In this section, we provide a detailed analysis of an illustra-

tive example and show that the configurations are actually unstable. Concretely, although

the DSB D3-brane system is consistent in isolation, its embedding into a warped throat

contains an instability against bubble nucleation of certain D-brane domain walls. The

latter are however more involved than just D3-brane domain walls peeling off the 5-form
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flux, and provide a novel kind of decay for warped throats. The system also relates to

warped throats from (orientifolds of) N = 2 fractional branes, which we discuss as well.

4.1 The DSB D-brane system

To make the discussion concrete, we consider an illustrative explicit example given by the

DSB theory introduced in [55]. We start with the C3/Z′6 geometry, where the Z′6 generator

θ acts as

θ : zi → e2πivizi (4.1)

with v = (1, 2,−3)/6. We consider the quotient by an orientifold group (1 + θ + . . . +

θ5)(1 + Ωα(−1)FL), where α acts as

(z1, z2, z3)→ (e2iπ/12, e4iπ/12, e−6iπ/12). (4.2)

Equivalently, we may introduce invariant coordinates

x = z 6
1 , y = z 3

2 , z = z 2
3 . (4.3)

in terms of which the orientifold corresponds to the geometric action

x→ −x, y → −y, z → −z. (4.4)

We consider sets of D3-branes at this orientifold singularities. The resulting gauge theory

can be determined from its dimer diagram, shown in figure 5. As discussed in the intro-

duction, there are different choices of orientifold signs, which lead to different results of SO

or Sp gauge factors and of / matter fields. For our choice of interest, corresponding

to orientifold signs (a, b, c, d) = (+ +−−), the resulting gauge theory is

SO(n0)×U(n1)×U(n2)×USp(n3)

( 0, 1) + ( 1, 2) + ( 2, 3)

+( 0, 2) + ( 1, 3) + 2 + 1

+[ ( 0, 3) + ( 1, 2) + ( 1, 2) ]. (4.5)

As is familiar [44], cancellation of non-abelian gauge anomalies is equivalent to the

requirement of cancellation of compact RR tadpoles, which leads to

−n0 + n2 + n3 − n1 − 4 = 0. (4.6)

We consider the solution n1 = n3 = 0, n0 = k, n2 = k + 4, which yields the gauge group

SO(k) × U(k + 4) with matter ( , ) + (1, ). The U(1) gauge factor is anomalous,

with anomaly canceled by Green-Schwarz couplings, which make it massive and remove

it from the massless spectrum. Focusing on k = 1, we have an SU(5) theory with chiral

multiplets in the 10 + 5 and no superpotential. This theory has been argued to show

dynamical supersymmetry breaking [76, 77]. Since there is no moduli space, there is an
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Figure 5. Dimer diagram for an orientifold of the C3/Z′
6 theory, from [55].

isolated non-supersymmetric vacuum, which however lies at strong coupling and is non-

calculable. Nevertheless, the vacuum energy should scale with the strong dynamics scale

Λ as

V ∼ |Λ|4 (4.7)

This provides a consistent configuration displaying supersymmetry breaking localized at

the tip of the corresponding singularity.

It is natural to consider its embedding into warped throats, as a possible source of

tunable uplifting energy to be used in attempts to build de Sitter string vacua. In the

following we argue this not to be possible.

4.2 The DSB AdS throat

As a warm-up towards such throats, we may consider the simple addition of a large num-

ber of dynamical D3-branes to the earlier system, and take the near horizon limit. This

corresponds to increasing the rank of all gauge factors in 4.5 by the same amount, namely

n0 = N + 1 , n1 = n3 = N , n2 = N + 5 (4.8)

For consistency with the USp factor, N should be taken even, but is otherwise

unconstrained.

Since the DSB D-brane system (including the orientifold and the k = 1 SU(5) D-brane

set) is subleading in 1/N , standard arguments show that in the large N limit we obtain a

gravity dual given by AdS5 ×X, where X corresponds to an orientifold of the Z′6 orbifold

of S5. Note that since the Z′6 orbifold contains fixed complex planes in C3, there are fixed

circles in the action on S5. This leads to circles of C2/Z2 and C2/Z3 singularities, which

are however well understood [78, 79]. The orientifold action (4.4) has instead the origin as

only fixed point, hence it is freely acting on S5.

At leading order in 1/N , which corresponds to the classical gravity level, we have a

supersymmetric AdS configuration, associated to the near horizon limit of a D-brane system

saturating the WGC bound, hence satisfying the AdS-WGC. In the exact configuration,
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however, the DSB D-brane sector breaks supersymmetry, and implies that at the quantum

level the gravitational background becomes non-supersymmetric, hence according to the

AdS-WGC, the system should exhibit an instability.

Naively, it would seem that the instability corresponds, as suggested in [7], to the emis-

sion of shells of D3-branes peeling off the 5-form flux background from the AdS solution.

This would correspond, in the underlying picture of D-branes at singularities, to the DSB

D-brane system repelling dynamical D3-brane off the origin towards generic points in the

transverse space. This actually turns out to be incorrect, as can be shown using the field

theory description, using standard supersymmetric field theory arguments. Expelling the

dynamical D3-branes corresponds to the Higgsing down the gauge theory with the rank

assignment (4.8) to the original N = 0 SU(5) theory, by giving vevs to suitable mesonic

operators. To make the point, it suffices to turn on a vev for the gauge invariant operator

involving fields in the first line in (4.5)

〈 ( 0, 1) · ( 1, 2) · ( 2, 3) 〉 ≡ Φ3 (4.9)

Here Φ is the dimension 1 order parameter for this vev. The superpotential involves

only triples of fields from the three different lines in (4.5), hence it is an F-flat direction.

As follows from the D-brane picture, there are more general choices, allowing for three

independent vevs — for similar mesonic operators built from fields in the three different

lines in (4.5) — for each of the dynamical D3-branes. But for our present purposes it

suffices to consider only this overall position vev Φ.

From the viewpoint of the infrared SU(5) theory this corresponds to a Higgsing of the

UV SU(N+5) theory by the N flavours acquiring vevs involved in Φ. Denoting Λ, and ΛUV

the dynamical scales of the SU(5) and SU(N +5) theories, the potential for Φ would follow

from (4.7) from the implicit dependence of the IR scale Λ on Φ. However, taking the SU(5)

theory, with a 10 + 5 matter content, and the UV SU(N + 5) theory, with matter content

(3N+1) +2N + , the matching relation is just Λ = ΛUV, with no dependence of Φ.

This implies that the DSB D-brane systems does not exert forces on dynamical D3-branes,

which are thus not repelled from the origin. The non-supersymmetric AdS configuration

is not unstable towards the emission of such D3-brane shells peeling off the 5-form flux.

Actually, the contradiction with the AdS-WGC statement is avoided by a novel mech-

anism, related to a different kind of instability, which we explain as follows. Let us return

to the picture of D3-branes at the orientifold of the C3/Z′6 singularity, i.e. the rank assign-

ment (4.8). The Z′6 quotient does not actually define an isolated singularity; indeed, the

generator (4.1) has the origin as only fixed point, but θ3 leaves invariant the complex plane

parametrized by z2, and θ2 leaves z3 invariant. This implies that there is a complex plane

(along z2) of C2/Z2 singularities, and a complex plane (along z3) of C2/Z3 singularities.

In the field theory, there are flat directions corresponding to splitting some of the dynam-

ical D3-branes into fractional D3-branes (of the N = 2 kind, i.e. D5-branes wrapped on

the collapsed cycles of the C2/Zn) which can slide off the origin along the corresponding

complex plane. Once the non-perturbative supersymmetry breaking kicks in, these flat

directions can turn into runaway, providing an instability, bringing back agreement with

the AdS-WGC.
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The existence of this instability can again be analyzed in terms of the field theory,

by Higgsing and scale matching. Consider for concreteness the splitting of dynamical D3-

branes into fractional D3-branes of the C2/Z2 singularity associated to θ3, and moving the

latter along z2. A similar analysis could be performed using the fractional branes of the

C2/Z3 curve of singularities. Motion in z2 corresponds to mesonic vevs for fields in the

second line in (4.5). Denoting the fields ( 0, 2) and 2 by QA
i and Aij , respectively,

and ( 1, 3), 1 by Q′j′,B′ , Si
′j′ , respectively, the vevs for the two kinds of fractional

branes have the structure

v = 〈 εABQAiQBjAij 〉 ; v′ = 〈Si′j′Qi′AQj′BδAB 〉 (4.10)

For simplicity we have assumed all fractional D3-branes of the same kind to be located at

the same position. The fact that the two different fractional branes are related to vevs of

fields Higgsing the combinations of gauge factors (0,2) and (1,3), respectively, is manifest

in the dimer diagram in figure 5, where the above combinations correspond to two sets of

faces forming two different strips in the z2 mesonic direction.

Let us compute the scale matching. Considering for instance v � v′ (eventually shown

to be the realistic regime), the Higgsing pattern is

SO(N + 1)× SU(N)× SU(N + 5)×USp(N)
v−→ (4.11)

v−→ SO(1)× SU(N)× SU(5)×USp(N)
v′−→ SO(1)× SU(5)

where the SO(1) factor is kept for bookkeeping purposes. In the first step, the SU(N + 5)

is Higgsed down to SU(5). In the second step, the SU(5) theory maintains the number

of colors, but 2N flavours become massive. The scale matching between the IR and UV

scales Λ, ΛUV is

Λ13 = Λ13
UV v

′2N v−2N (4.12)

Replacing in (4.7), the vev v runs away to infinity, while the vev v′ is attracted to zero.

Note that, although the two kinds of fractional branes have similar features in isolated

C2/Z2, they have a very different behavior in the presence of the orientifold action. This is

in fact manifest already in the orientifold projection on the gauge group and matter content.

The resulting configuration is given by a set of D-branes describing the SO(1)×SU(N)×
SU(5)×USp(N) gauge theory. The SU(5) gauge factor still has the antisymmetric matter,

but it has extra vector-like flavours, and the theory has supersymmetric vacua [77]. This

fits nicely with the vacuum energy from (4.7), (4.12) going to zero as v′ → 0. Note that the

final configuration can be described as a quotient (a Z3 orbifold of an orientifold of) a set

of N N = 2 fractional branes at C2/Z2. This configuration has a supersymmetric gravity

dual given by a locally AdS throat of the kind studied in [80, 81]. These can be regarded

as N = 2 versions of the N = 1 Klebanov-Strassler throats, with the singularity at the

origin resolved by a stringy phenomenon, the so-called enhançon configuration [82]. The

fact that the final end point is a supersymmetric local AdS background avoids conflicts

with the local AdS-WGC.
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In the gravity picture of the initial configuration, the instability of the non-susy AdS

corresponds to the nucleation of bubbles defined by suitable fractional D3-branes, namely

D5-branes wrapped on a collapsed P1 on the S1 of C2/Z2 singularities, and with spatial

topology S3 in the non-compact dimensions, expanding outwards with time. In the interior,

we are left with a supersymmetric locally AdS throat induced by the N fractional branes

stabilized at the origin, and with the singularity at its tip smoothed out presumably by an

enhançon configuration. In contrast with other examples in the literature, this is neither a

bubble of nothing nor a bubble removing the 5-form flux completely. It thus corresponds

to a novel decay channel for non-supersymmetric warped throats.

The C3/Z′6 orientifold singularity can be embedded in a locally AdS warped throat

associated to a complex deformation, as discussed in section 4. In this setup, supersymme-

try breaking on the infrared gauge theory would lead to contradiction with our proposed

local AdS-WGC. However, our above analysis of the AdS case shows that the locally AdS

throat is already unstable due to D5-brane bubble nucleation (on top of other possible

decay channels related to the deformation fractional branes). Hence, the conflict with the

local AdS-WGC is solved by the decay channel already solving the potential conflict with

the AdS-WGC.

4.3 Non-supersymmetric warped throats for N = 2 fractional branes

In this section we exploit the previous configuration to obtain a non-trivial example of

non-supersymmetric warped throat induced by N = 2 fractional branes. The discussion is

straightforward and the arguments should be familiar by now.

Consider the previous orientifold singularity, with D-branes corresponding to the rank

assignment

n0 = M + 1 , n1 = n3 = 0 , n2 = M + 5 (4.13)

with M even, for consistency of the (hidden) USp factor. This leads to a gauge theory

with group SO(M + 1)× SU(M + 5), with matter ( , ) + (1, ). In the limit of large

M , at leading order we have a gravity dual given by a quotient of the supersymmetric

N = 2 warped throats in [80, 81]. The configuration is of the local AdS kind, hence the

local AdS-WGC constraints should apply.

On the other hand, the gauge theory does not have a supersymmetric vacuum. The

SU(N) theory with odd N , antisymmetric matter, and no extra flavours, breaks supersym-

metry, as shown in [76, 77, 83]. Actually, this reference argued for an isolated supersym-

metry breaking vacuum for the theory with Yukawa couplings, which remove the classical

flat direction. In our present example, such superpotential couplings are absent, and the

classical flat direction can turn into runaway ones. This is precisely the conclusion from

matching of scales, as in the previous section, which we skip.

This means that, on the gravity side, the classical background has a decay channel given

by nucleation of bubbles of fractional branes, exactly as in the previous section. In this

case, however, since there are no fractional branes of the supersymmetry preserving kind,

the bubbles completely peel off the 5-form flux background of the configuration leading to

a complete decay of the local AdS throat.
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This example thus provides an explicit example of the application of the local

AdS-WGC constraint to non-supersymmetric warped throats induced by N = 2 frac-

tional branes.

5 Supersymmetry breaking orientifolds in warped throats

In the previous sections, we have focused on warped throats whose underlying D-brane con-

figuration is supersymmetric in perturbation theory, with supersymmetry breaking arising

from non-perturbative strong dynamics effects. It is interesting to check the behavior of

warped throats with more dramatic supersymmetry breaking patterns. In this section, we

explore a class of warped throats, where supersymmetry breaking is induced by orientifold

planes not preserving the supersymmetry preserved by the CY geometry and the 3-form

fluxes. In fact, they correspond to the CPT conjugates of the familiar supersymmetric

orientifold planes, so we refer to them as anti-orientifold planes. Systems of anti-orientifold

planes in the presence of D-branes are identical to systems of anti-D-branes in the pres-

ence of orientifold planes, which have been considered in many non-supersymmetric string

constructions, pioneered in [84–89].

5.1 Non-supersymmetric throats from anti-O3-planes

We focus on anti-O3-planes in the presence of a large number N of D3-branes, possibly at

singularities and with extra M fractional branes. In the underlying D-brane construction,

they lead to an explictly non-supersymmetric spectrum, which can be easily determined

using open string techniques and (non-supersymmetric projections of) dimer diagrams. For

M = 0, the systems of anti-O3-planes with N D3-branes behave as “supersymmetric” and

conformal in the leading large N approximation, in the sense that the effects of orientifold

planes (noticed via crosscaps) are subleading in the large N limit. This implies that the

gravity dual description corresponds to AdS backgrounds which behave as supersymmetric

in the classical supergravity approximation, but have supersymmetry breaking effects at

1-loop. Similarly, in systems in the presence of M additional deformation branes, we obtain

locally AdS warped throats which are supersymmetric in the leading approximation, but

break supersymmetry at the 1-loop order. These AdS and locally AdS configurations thus

correspond to classically stable backgrounds, which, if stable in the full theory, would

violate the AdS-WGC or the local AdS-WGC, respectively. Our purpose is thus to test the

stability of these configurations, providing a check of these conjectures at the quantum level.

Concrete examples are easy to build. For instance, [37] provided tools to embed a

single (anti-)O3-plane at the bottom of a warped throat with 3-form fluxes, for instance

based on the xy = z3w3 singularity, a Z3 orbifold of the conifold. The deformed conifold

itself xy − zw = t2 also admits an involution (x, y, z, w) → (y, x,−z,−w) leading to O3-

planes (in fact, two, located at z = w = 0, x = y = ±i t) [90]. Considering any of these

geometries, we may just replace the O3-planes by anti-O3-planes and obtain explicit locally

AdS warped throats with supersymmetry broken by anti-orientifold planes.
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5.2 Dynamics of D3-branes and anti-O3-planes

It is useful to start considering anti-O3-planes in flat space, in the presence of N D3-

branes. In the large N limit, the near horizon limit leads to gravity duals of the form

AdS5 × RP5, which behave as supersymmetric at leading order and feel the absence of

supersymmetry at order 1/N . The configuration is the CPT symmetric of O3-planes in

the presence of anti-D3-branes (denoted by D3’s), which was studied in [87] following the

analysis in [91] for the supersymmetric O3-D3 system. We now revisit the main points, in

anti-O3-plane language.

An anti-O3-plane is a fixed plane of the Z2 orientifold action on R6, preserving the 16

supersymmetries broken by D3-branes. There are four kinds of anti-O3-planes, classified

according to the (discretized) values 0, 1
2 for the NSNS and RR 2-form backgrounds on

the RP2 (twisted) 2-cycles on the RP5 = S5/Z2 surrounding the origin in R6. In short,

comparing with [91], the tension of an anti-O3-plane equals that of the corresponding

O3-plane, while they have opposite RR charge. The tensions and charges, measured in

D3-brane units, for the anti-O3-planes are in the following table.

D-brane description (θNS , θR) Tension RR charge

anti-(O3−) (0, 0) -1/2 +1/2

anti-(O3−) + 1 D3 (0, 1/2) +1/2 −1/2

anti-O3+ (1/2, 0) +1/2 −1/2

anti-Õ3
+

(1/2, 1/2) + 1/2 −1/2

Just like for O3-planes, the O3− is a singlet under the type IIB SL(2,Z) and the three

remaining ones transform into each other under it.

The stability of the throats built out using these anti-O3-plane can be heuristically

understood by considering the dynamics of D3-branes in the presence of these anti-O3-

planes. Namely, we can consider the previous anti-O3-planes with a N D3-branes on top

(as counted in the double cover), and study the stability properties of the system.

The corresponding analysis can in fact be borrowed from [87] (in its CPT conjugate

version). It is straightforward to obtain the spectrum of the non-supersymmetric gauge

theories on D3-branes in the presence of the different anti-O3-planes. The stability prop-

erties of the system can be assessed from the open string perspective, by the computation

of the Coleman-Weinberg potential. We instead focus on the dynamics in the dual closed

string channel, by comparing the interaction between D3-branes and anti-O3-planes due

to exchange in the NSNS and RR channels. We consider the different cases in turn:

• Consider N = 2p D3-branes in the presence of the anti-(O3−). They have opposite

sign tensions and equal sign RR charges, hence the gravitational and Coulomb inter-

actions are both repulsive. Thus, D3-branes are expelled away from the anti-(O3−)

and the configuration is unstable.

• Take N = 2p D3-branes in the presence of the anti-(O3−) + 1 D3. The D3-branes are

attracted to the origin, but when they reach below sub-stringy distances, a tachyon
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arises from open strings between the stuck D3- and the dynamical D3-branes. The

result is a configuration of the anti-(O3−) with one stuck D3-brane at the origin,

and (2p − 2) dynamical D3-branes. The system at the origin has tension +1/2 and

charge +3/2, so the Coulomb repulsion overcomes the gravitational attraction and

D3-branes are repelled. The result is a (CPT conjugate) of the nilpotent Goldstino

configuration [37].

• Consider N = 2p D3-branes in the presence of the anti-(O3+). The gravitational and

Coulomb interactions are both attractive, so the D3-branes are driven to the origin.

Contrary to the previous case, however, there is no obvious annihilation between

the anti-(O3+) and the D3-branes. This would suggest that the non-supersymmetric

AdS5 × RP5 gravity dual is stable, in conflict with the AdS-WGC. Happily, as we

will discuss later on, a non-perturbative instability will come to the rescue.

• For N = 2p D3-branes in the presence of the anti-(Õ3
+

) we have a similar situation.

The D3-branes are driven to the origin, and no obvious decay channel seems to be

available. This perturbatively stable configuration is however again rendered unstable

by a non-perturbative process described later on, thus solving the potential conflict

with the AdS-WGC and the local AdS-WGC constraints.

5.3 Instabilities in throats with anti-O3-planes

The large N limit of the above configurations of D3-branes on top of anti-O3-planes leads

to near horizon geometries classically given by AdS5 ×RP5, with N units of RR 5-form

flux (as counted in the covering space) and the corresponding discrete NSNS and RR 2-

form backgrounds on RP2 ⊂ RP5. Absence of supersymmetry is only detectable at the

1-loop (i.e. 1/N order), namely via string diagrams involving crosscaps and thus noticing

the underlying non-supersymmetric orientifold. Thus, the AdS-WGC condition implies

such AdS backgrounds should have instabilities.

The same statement applies in more general local AdS warped throats with anti-O3-

planes. For any local AdS warped throat admitting a supersymmetric orientifold involution

introducing O3-planes, it is possible to consider the non-supersymmetric version obtained

by the introduction of any of the different anti-O3-planes. The resulting gravitational back-

ground remains the same at the level of classical supergravity, but subleading corrections

encode the breaking of supersymmetry. Thus, the local AdS-WGC conditions imply such

local AdS backgrounds should be unstable.

We now analyze the instabilities in these AdS backgrounds, and the same conclu-

sions clearly apply to local AdS configurations. The analysis follows the discussion in the

previous section.

• In the case of the anti-(O3−) orientifold projection, the repulsion exerted by the

anti-O3-plane on D3-branes translates into a decay channel of the corresponding

non-supersymmetric AdS5 × RP5 background, by nucleation of D3-brane bubbles,

which discharge the N units of RR 5-form flux, much along the lines suggested in [7].

– 19 –



J
H
E
P
0
4
(
2
0
1
9
)
1
1
1

• In the case of the anti-(O3−) with an extra anti-D3-brane, the decay channel of

the corresponding non-supersymmetric AdS5 ×RP5 background is identical to the

previous one, since the two configuration simply differ in the value mod 2 of the RR

5-form flux N . Notice that the decay does not change the values of the NSNS and RR

2-form backgrounds, since the anti-(O3−) with either the initial stuck anti-D3-brane

or the final stuck D3-brane, both have vanishing NSNS background and non-trivial

RR 2-form background.

• In the case of the anti-(O3+) projection, the flat space configuration seems stable.

However, the S-dual of the anti-(O3+) is given by the configuration of an anti-(O3−)

+ 1 D3 of the previous paragraph. This suggests that the anti-(O3+) can turn into an

anti-(O3−) via strong coupling processes. Indeed, notice that if one considers an NS5-

brane (whose core is inherently non-perturbative) stretching along three of the anti-

O3 directions and three directions transverse to it, the NS5-brane splits the anti-O3

in two halves, which actually have opposite signs for the orientifold plane charge, with

one extra half anti-D3-brane on top of the anti-(O3−) half to provide a continuous

O3-plane charge across the NS5-brane (see [92] for a review including such brane

constructions). This allows to nucleate holes in the anti-(O3+), in whose interior

the stuck D3 on the anti-(O3−) can annihilate against one of the D3-branes around

it, leading to repulsion of the remaining D3-branes, and thus, to instability. This

suggests that, in the AdS5×RP5 gravity dual language, there is a decay channel via

the nucleation of bubbles bounded by a domain wall given by an NS5-brane wrapped

on a maximal RP2. From the analysis of topological constraints on wrapped branes

in [91] (derived in the supersymmetric setup, but valid in general), this is indeed

allowed. The NS5-brane may moreover carry arbitrarily large D3-brane charge, thus

discharging dynamically the RR 5-form flux and rendering the AdS unstable.

• Similar conclusions hold in the case of the anti-(Õ3
+

) projection, where now the

required domain wall involves a bound state of one NS5- and one D5-brane (aka a

(1,1)-fivebrane) wrapped on RP2 ⊂ RP5, thus changing both the NSNS and RR

2-form backgrounds. The fivebrane can carry D3-brane charge, so it can peel off the

RR 5-form flux of the AdS compactification triggering its instability.

The instabilities of the above non-supersymmetric orientifolds of AdS backgrounds gen-

eralize straightforwardly to non-supersymmetric orientifolds of local AdS warped throats.

Hence, in this class of examples, the local AdS-WGC is closely related to the ordinary

AdS-WGC constraint.

6 Discussion

In this paper we have proposed a new swampland conjecture forbidding stable non-

supersymmetric locally AdS warped throats. This local AdS-WGC statement generalizes

the analogous statement for stable non-supersymmetric AdS vacua. We have illustrated

its application, which allows to reinterpret several known results about warped throats
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from fractional branes, and to derive new results on the (in)stability of large classes of

non-supersymmetric throats, with supersymmetry breaking triggered by strong dynamics

in infrared D-brane sectors, or by the presence of stringy sources like anti-O3-planes.

Although the local AdS-WGC forbids stable non-supersymmetric throats, it has no di-

rect bearing on meta-stable non-supersymmetric throats. In contrast with the AdS-WGC,

there is no isometry in the radial direction introducing an infinite volume factor multiply-

ing the decay probability, so a finite and potentially small decay amplitude is in principle

feasible. The question of whether swampland criteria can impose further restrictions on

the meta-stable throats used in dS uplifts is a very interesting one, to which we plan to

return in the future.

Several of the instabilities of the non-supersymmetric throats we have discussed are

of the runaway kind. In actual 4d compactifications, this corresponds to shortening the

throat, thus moderating the hierarchies between the bulk and the throat. Hence, even if

the dynamics of the global compactification eventually stabilizes the runaway and renders

such configurations more stable, there may remain a question on the tunability of scale

hierarchies in the final states. The possibility that swampland criteria directly constrain

such hierarchies is a tantalizing direction we hope to explore in the future.

We have made some interesting progress, and provided yet another hint that the body

of knowledge on swampland criteria on effective theories is paving the way towards an era

of Quantum Gravitational String Phenomenology.
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Abstract: We show that warped throats of the Klebanov-Strassler kind, regarded as

5d flux compactifications on Sasaki-Einstein manifolds X5, describe fully backreacted solu-

tions of transplanckian axion monodromy. We show that the asymptotic Klebanov-Tseytlin

solution features a 5d axion physically rolling through its dependence on an spatial coor-

dinate, and traversing arbitrarily large distances in field space. The solution includes the

backreaction on the breathing mode of the compactification space and on the vacuum en-

ergy, which yields a novel form of flattening. We establish the description of the system

in terms of an effective 5d theory for the axion, and verify its validity in transplanckian

regimes. In this context, rolling axion monodromy configurations with limited field space

range would correspond, in the holographic dual field theory, to duality walls, which admit

no embedding in string theory so far. We present an identical realization of transplanckian

axion monodromy in 4d in fluxed version of AdS4 ×X7. We speculate that similar models

in which the axion rolls in the time direction naturally correspond to embedding the same

mechanism in de Sitter vacua, thus providing a natural arena for large field inflation, and

potentially linking the swampland de Sitter and distance conjectures.
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1 Introduction and conclusions

The application of Quantum Gravitational constraints to string theory vacua has motivated

several conjectures limiting the possibilities to attain field ranges larger than the Planck

scale [1–7] (see [8] for a recent review). A prototypical case is the application of the Weak

Gravity Conjecture [3] to axions, which implies that periodic axion potentials, such as those

in natural inflation, cannot host transplanckian field ranges [9]. Another general result is

the Swampland Distance Conjecture, which states that as some modulus approaches a

point at infinite distance in moduli space, there is an infinite tower of states becoming

massless, exponentially with the distance [2]. There are also partial studies concerning

axion monodromy models [10], see also [11–18], trying to rule out their transplanckian

excursion by invoking the backreaction on the scalar kinetic terms reducing the effectively

traversed distance [19].1 There are also discussions ruling out particular models using 10d

lifts [21, 22] or other mechanisms [23].

These results would seem to motivate a Swampland Transplanckian conjecture, stating

that transplanckian field ranges are not physically attainable in Quantum Gravity. If cor-

rect, this statement would have profound implications for certain phenomenological applica-

tions, like the construction of inflation models with sizable gravitational wave backgrounds

(which for single-field inflation are directly related to the distance traversed by the inflaton).

The purpose of the present article is to prove that this conjecture is in fact incorrect, and

1For other discussions of backreaction related to flattening of the potential, see [20].
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that transplanckian field excursions are physically realized in string theory. We will do it by

presenting a completely explicit example of axion monodromy model, with full backreac-

tion taken into account, in terms of the complete 10d supergravity solution. The complete

background turns out to be given by a simple and well-known warped throat, the Klebanov-

Strassler throat [24, 25], when regarded as a flux compactification on a Sasaki-Einstein

manifold X5, with a 5d axion rolling in the radial direction of a (locally) AdS5 spacetime.

Let us make some relevant remarks:

• The discussion is intended as an existence proof of transplanckian axion monodromy

in string theory. In particular, we focus on discussing how the 10d solution fully

encodes the backreaction of the axion dynamics including the impact on axion kinetic

terms, and the backreaction on other sectors, including the compactification moduli

and the vacuum energy. This last point is extremely relevant and has not been taken

into account in earlier attempts to describe 10d lifts of axion monodromy models.

• We consider configurations where the axion has an explicit dependence on the non-

compact spacetimes coordinates (in fact, on a particular spatial coordinate). This is

crucial for the configuration to allow the axion to climb its potential while maintaining

the solution on-shell. Again, this is an ingredient not properly accounted for in earlier

analysis of 10d backreaction of transplanckian axion monodromy, and ties directly to

the question of including the vacuum energy variation in the analysis.

• On the other hand, it is physically meaningful to consider configurations where the

axion is actually varying in spacetime. After all, the main motivation for scalars with

transplanckian field excursions are large field inflation models, in which the eventual

cosmological solution corresponds to a time-dependent configuration of the scalar

rolling down its potential.

• We work in configurations with negative vacuum energy. This is not an obstruction

from the fundamental viewpoint of establishing the existence of transplanckian field

excursions in string theory. On the other hand, it does not yield realistic models

for inflation. Related to this, our configurations have axions depending on spatial

directions, rather than time-dependent ones. In fact, formally the sign flip required

to switch from space to time dependent scalar profiles correlates with the sign flip for

the vacuum energy. This suggests a tantalizing link between positive cosmological

constant and time dependent background, which in the present context is reminiscent

of the dS/CFT correspondence [26]. It would be interesting to explore the relation

of our transplanckian axion monodromy scenario with recent discussions of bounds

on slow-roll and the swampland de Sitter conjectures [27].

• We focus on 5d models because the kinds of Klebanov-Strassler throats we need

(either for the conifold or for generalizations) have been most studied in this setup.

On the other hand, there are less studied but completely analogous throats based on

locally AdS4 ×X7 configurations in M-theory, which we also discuss and lead to 4d

transplanckian axion monodromy configurations in precisely the same fashion as the

5d models.
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• The dynamics of the transplanckian axion can be described within an effective field

theory, which we discuss explicitly based on a consistent truncation provided in [24].

This, together with the full 10d solution, allows for a discussion of the validity of effec-

tive actions for the transplanckian excursion. We show that the configuration is free

from oftentimes feared problems: no pathology arises neither when the axion winds its

period a large number of times, and no infinite tower of states becomes exponentially

light when the axion reaches beyond transplanckian distances in field space.

• Freund-Rubin vacua such as AdS5 ×X5 with 5-form flux on X5 are often described

as not yielding good effective field theories, since the compactification radius is com-

parable to the AdS radius. However, we are not interested in describing an effective

field theory which describes the stabilization of the compactification breathing mode,

which cannot be decoupled (in the Wilsonian sense) from the KK tower of states. We

are interested in the effective dynamics of a massless axion and its spacetime varia-

tions at much lower scales, and in its backreaction effects, which are also controlled

by those scales. Our effective theory is suitable for that purpose, and can be regarded

as describing the low energy dynamics of a scalar in a gravitational background which

is fixed at higher scales, save for backreaction effects which are duly included in the

effective field theory description.

The paper is organized as follows. In section 2 we describe the KS solutions from

the perspective of producing 5d axion monodromy models, focusing on the conifold ex-

ample. In section 2.1 we describe the 5d compactification on X5 with no 3-form fluxes,

leading to the AdS5 vacuum. In section 2.2 we describe the KS solution [25] (actually,

its KT asymptotic form [24]) and in section 2.3 we establish that it describes an axion

monodromy solution in which the field range traversed is arbitrarily large, in particular

transplanckian. In section 2.4 we relate hypothetical backgrounds with finite axion field

ranges with duality walls in the UV of the holographically dual field theories, which have

so far not been shown to admit a gravitational description. In section 3 we turn to the

effective field theory description. In section 3.1 we review the effective field theory in [24]

for the axion and compactification moduli. In section 3.2 we obtain an effective action at

energies hierarchically below the KK scale, which actually encodes the axion dynamics and

its backreaction effects. In section 4 we discuss 4d configurations from M-theory compact-

ifications, with exactly the same axion monodromy physics as the previous 5d examples.

Appendix A discusses a dual Hanany-Witten configuration of D4- and NS5-branes useful

to illustrate the absence of pathologies as the axion winds around its period.

2 Warped throats and transplanckian axion monodromy

In the following we review the Klebanov-Strassler (KS) throat [25]. We intentionally em-

phasize its structure as a 5d compactification in which the introduction of the RR 3-form

flux yields a 5d axion monodromy model, for which the KS throat is an explicit fully back-

reacted solution. We then show that the axion roll in this configuration is transplanckian.

Actually, for this purpose it suffices to focus on the region far from the tip of the throat,
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so we use the simpler expressions of the Klebanov-Tseylin (KT) throat [24], supplemented

with the boundary conditions derived from the KS smoothing of its naked singularity. For

the latter reason, we still refer to the configuration as KS throat.

2.1 The 5d theory

Consider as starting point the type IIB Freund-Rubin AdS5 × T 1,1 background

ds2 = R2 dr
2

r2
+
r2

R2
ηµνdx

µdxν +R2 ds2
T 1,1 (2.1)

with

R4 = 4π(α′)2gsN (2.2)

and with N units of RR 5-form flux through T 1,1. The type IIB complex coupling is

constant, and we will keep it set at τ = i/gs (introduction of non-trivial constant C0 is

straightforward via minor changes in the fluxes below).

This is the near horizon limit of a set of N D3-branes at a conifold singularity [28].

The line element ds2
T 1,1 corresponds to a (unit volume) 5d horizon T 1,1, which is an S1

bundle over P1 × P1 with first Chern classes (1, 1), hence the name. Topologically, it is

an S2×S3. Denoting by σ2 and σ′2 the volume forms of the two P1’s, we have a harmonic

2-form ω2 = σ2 − σ′2 and its (dual in T 1,1) harmonic 3-form ω3. They are Poincaré duals

of the 3- and 2-spheres, and ω2 ∧ ω3 is the volume form on T 1,1.

On top of the complex dilaton, the resulting effective 5d theory has a massless axion,

given by the period of the NSNS 2-form over S2 ⊂ T 1,1∫
S2

B2 = φ namely B2 = φω2. (2.3)

The periodicity φ ∼ φ + 1 is set by the exponential of the action of a fundamental string

wrapped on the S2. Above the scale of massless fields, there is the scale 1/R. This is the

scale of KK modes, but also the scale of stabilization of the breathing mode of T 1,1. It is

possible to write an effective action for this dynamical mode;2 in this action, the potential

is minimized at the value (2.2), and with a negative potential energy cosmological constant,

such that the maximally symmetric solution is the AdS5 space in (2.1). For a simplified

discussion in the completely analogous case of AdS5 × S5, see [29]; we will discuss such

effective actions in a more general context later on.

The above background is a particular case of the general class of AdS5 × X5 vacua,

where X5 is a Sasaki-Einstein variety. These are gravitational duals to systems of D3-

branes at singularities, and have been intensely explored in the literature. Large classes

of these models admit also the introdution of 3-form fluxes to be described below, and

thus lead to axion monodromy models. To emphasize this direct generalization, we will

oftentimes write X5 instead of T 1,1.

2Since this scale is not hierarchically lower than the KK masses, this effective action should be interpreted

as arising from a consistent truncation, rather than a Wilsonian one.
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2.2 The KS solution

Once we have described the compactification to 5d, we would like to describe the introduc-

tion of a RR flux on S3 ⊂ T 1,1

1

(2π)2α′

∫
S3

F3 = M. (2.4)

Our key observation is that the resulting 5d theory is an axion monodromy model

for φ. This simply follows because the self-dual 5-form field strength

F̃5 = dC4 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 (2.5)

satisfies the modified Bianchi identity

d ∗ F̃5 = dF̃5 = H3 ∧ F3. (2.6)

From the KK perspective the flux (2.4) induces a 5d topological coupling∫
10d

F3 ∧B2 ∧ F5 −→M

∫
5d
φF5. (2.7)

As already noted in [16, 30],3 this is a 5d version of the Dvali-Kaloper-Sorbo term [32, 33]

associated to a monodromy for the axion. Clearly, as φ winds around its basic period, there

is a corresponding increase for the flux of F̃5 through T 1,1 (and, by self-duality, through

the non-compact 5d space), as follows,

N =

∫
T 1,1

F̃5 = N0 +Mφ. (2.8)

In the following we take the reference value N0 to be reabsorbed into a redefinition of φ.

The presence of a scalar potential of the axion monodromy kind, arising from the

reduction of the 10d |F̃5|2 terms, will be manifest in the 5d effective action discussed in

section 3. We are interested in the behaviour of this theory as the value of φ changes over

a large range. Clearly, the presence of this potential term implies that moving the scalar

vev adiabatically away from the minimum leads to off-shell configurations, for which the

computation of the backreaction is not clearly defined. A natural solution is to instead

consider configurations in which the scalar φ is allowed to roll, so that the spacetime

dependent background allows to remain on-shell.4 The KS solution is precisely an explicit

10d solution of this rolling configuration in which the axion φ is allowed to roll along one of

the spatial directions. (As discussed in the introduction, the realization of time dependent

roll suggests an interesting interplay with the question of realizing de Sitter vacua). We

now review the 10d KS solution (actually, its KT limit with KS boundary conditions) from

this perspective.

3While finishing this paper, we noticed the recent [31], which involves a similar structure of flux and

axion, albeit in a different approach to axion monodromy.
4This is in fact a natural viewpoint in inflationary axion monodromy models, in which the interesting

solutions correspond to physical time-dependent rolls of the scalar down its potential.
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The KS throat describes a configuration in which the axion has a dependence on the

radial direction. Concretely, φ is a harmonic form in the radial direction in the underlying

AdS5, hence

∆φ = 0 → φ ∼M log r. (2.9)

This corresponds to the fact that the combination G3 = F3 − i
gs
H3 is imaginary self-dual,

and in fact (2,1) i.e. supersymmetry preserving, when regarded as a flux in the conifold

CY threefold X6, i.e. when combining the radial coordinate r with the angular manifold

T 1,1. The metric then simply corresponds to a warped version of M4 ×X6 of the general

class in [34, 35]

ds2
10 = h−1/2(r)dxndxn + h1/2(r)(dr2 + r2ds2

T 1,1) (2.10)

with

h(r) =
1

4r4
M2 log

r

r∗
(2.11)

with r∗ some reference value. In short, the metric is of the form (2.1) with the radius (2.2)

including a radial dependence

N ∼M2 log r, (2.12)

which follows from (2.8). As explained, this is the KT solution, which has a naked sin-

gularity at r → 0. The KS solution provides a smoothing of this based on the deformed

conifold.5 In fact we will be interested in the region of large r, and how it extends to

infinity, so the KT solution suffices.

The above solution describes precisely all the effects of the backreaction for arbitrarily

large values of the axion and number of windings along its period. As one moves towards

large r, the axion is climbing up its potential and inducing larger flux N due to the

monodromy. The flux and stored energy backreact on the stabilization of the breathing

mode of the compactification space, whose minimum tracks the value of φ from (2.2), (2.8)

and (2.12)

R4 ∼ gsMφ ∼ gsM
2 log r. (2.13)

The non-compact geometry is locally AdS5 with varying radius R. Hence, there is also a

backreaction in the vacuum energy, with runs towards less negative values as

V0 ∼ (log r)−1. (2.14)

5When regarded from the 5d perspective, this implies that the direction r “ends” at a finite distance. Of

course this is not relevant for the discussion below, which only deals with the large r regime. Moreover, even

if one would be interested in having a radial dimension with no end, it is straightforward to modify (2.11)

or even its full KS version, e.g. by introducing a large number P of additional explicit D3-branes, producing

an AdS5 at the bottom of the KS throat, effectively removing the endpoint for r. This corresponds to the

mesonic branches of the cascade [36].

– 6 –



J
H
E
P
0
5
(
2
0
1
9
)
1
7
6

The slow growth of the vacuum energy can be regarded as a flattening of the potential,

albeit different from the polynomial ones in [20].

From the holographic perspective, each winding of φ on its period corresponds to a

cycle in the cascade of Seiberg dualities, in which, as one moves to the UV (larger r), the

effective number of colors increases by (actually twice) a factor M

SU(N0)× SU(N0 +M)→ SU(N0 + 2M)× SU(N0 +M)→
→ SU(N0 + 2M)× SU(N0 + 3M). (2.15)

Although we will not exploit this holographic picture (as the supergravity solution speaks

for itself), we will use it in appendix A to explain why no disaster arises when the axion

rolls around its period.6 In particular there are no states becoming massless or light as

one crosses the “zero” value, an effect often feared to play a lethal role for the discussion

of monodromy dynamics in effective field theory. The fact that this effect is absent in

our model supports the expectation that it is not a generic problem of axion monodromy

models (but rather, either of particular models realizing the idea, or of partial analysis of

those models without full inclusion of backreaction).

2.3 Transplanckian axion field range

Let us use the above solution to quickly show that the 5d field φ traverses a transplanckian

distance in field space. A more systematic discussion is presented in section 3.

The distance traversed by φ from a reference point r0 to infinity is given by

∆ =

∫ ∞
r0

(
Gφφ

dφ

dr

dφ

dr

) 1
2

dr =

∫ ∞
r0

(Gφφ)
1
2
dφ

dr
dr, (2.16)

where Gφφ is the metric in field space, which is determined by the 5d kinetic term for φ,

in the 5d Einstein frame

S5 =
1

2κ2
5

∫
d5x
√
−g5

(
R5 −Gφφ ∂mφ∂nφ gmn

)
. (2.17)

Since the compactification volume varies, certain care is required. We must define a fixed

reference radius R determining the 5d Planck scale, and introduce a 5d dynamical breathing

mode R̃ encoding any variation (see [29] for a similar parametrization). Hence, focusing

just on the parametric dependence, we write

VX5 = R5 R̃5, (2.18)

ds2 = g(5)
mn dx

m dxn + (RR̃)2 (gX5)ij dy
i dyj . (2.19)

We now focus on the reduction on X5 of the 10d action for the metric and kinetic term of

B2. In the 10d Einstein frame we have

S10d =
1

2κ 2
10

∫
d10x

√
−g10

(
R10 −

1

12 gs
HMNP H

MNP

)
. (2.20)

6See [12] for some discussion of periodic effects in axion monodromy.
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As explained, the reference value R fixes the 5d Planck scale

R5

2κ 2
10

=
1

2κ2
5

(2.21)

and the factor R̃5 is reabsorbed by rescaling the 5d metric to the 5d Einstein frame

(g5)mn → R̃−
10
3 (g5)mn. (2.22)

We follow the effect of this rescaling in the kinetic term of the component of B2 given

by (2.3). The dependence on R̃ is as follows:∫
d10x

√
−g10 g

mngikgjl∂mBij∂nBkl
compact.−→ (2.23)

compact.−→
∫

d5x
√
−g5 (RR̃) (g5)mn ∂mφ∂nφ

Einstein−→
∫

d5x
√
−g5 (RR̃−4) (g5)mn ∂mφ∂nφ .

Hence, we have R̃4 ∼M2 log r and thus

Gφφ ∼ (M2 log r )−1. (2.24)

We have φ ∼M log r, hence the distance (2.16) is

∆ =

∫
G

1
2
φφ

dφ

dr
dr ∼

∫
dr (M2 log r)−

1
2 M

dr

r
=

∫
ds

s
1
2

(2.25)

for s = log r. This becomes arbitrarily large for large r, showing that the 5d scalar φ rolls

through a transplanckian distance in field space.

The 10d backreacted solution for this transplanckian axion monodromy configuration

allows to address many of the objections to transplanckian field excursions in string theory

or quantum gravity, and study how the present models avoid those potential pitfalls. As

many of these are related to the regimes of validity of effective field theories for the axion

dynamics, we postpone their discussion until section 3.

The above AdS5 vacua admit generalizations associated to D3-branes at more general

CY threefold singularities, which have been extensively studied in the toric case. The dual

backgrounds correspond to type IIB Freund-Rubin AdS5×X5, where X5 is the 5d horizon of

the 6d CY cone. The construction of KT backgrounds by introducing (possibly a richer set

of) 3-form fluxes is a straightforward extension of our above discussion (see for instance [37]

for complex cones over del Pezzo surfaces), so there is a large class of constructions lead-

ing to transplanckian axion monodromy. Being more careful, we should make clear that

only CY singularities admitting complex deformations can complete their KT throats into

smooth supersymmetric KS-like throats [38]; other choices admit no supersymmetric KS

completion [37, 39, 40], and actually lead to runaway instabilities [37, 41], a fact which has

recently motivated the “local AdS-Weak Gravity Conjecture” [30], generalizing the “AdS-

WGC” in [4]. However, even with the restriction to CY singularities admitting complex

deformations, there is an enormous class of such explicit constructions (built with standard

toolkits, see e.g. [42]), and thus leading to transplanckian axion monodromy.
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2.4 Duality walls

The fact that the axion traverses an arbitrarily large distance in field space as one moves to

larger distances in r is intimately related to the RG flow structure in the holographic field

theory. As mentioned in section 2.2, the axion winding around its period corresponds to

completing a cycle in the Seiberg duality cascade of the SU(N)× SU(N +M) field theory.

The steps in the energy scale in each duality cycle relate to the radial distance required

for the scalar to wind around its period. The infinite range in energy as one moves up to

the UV in the field theory provides an infinite range in radial distance on the gravity side,

which allows for an arbitrarily large axion field range with finite gradient energy density.

Hence, the nice properties of the holographic field theory RG flow relates to the fact that

the gravity side is described by a supergravity background.

In contrast with this picture, it is interesting to point out that a different kind of RG

flow behaviour of duality cascades has been contemplated, purely from the field theory

perspective. These are known as duality walls, and correspond to duality cascade RG flows

in which, as one moves to the UV, the energy steps in each duality cycle decrease; more

concretely, the number of duality cycles in a given energy slice increases as one moves up

to the UV, in such a way that there is a limiting energy, at which the number of cycles

per energy interval diverges. Such RG flows have been introduced in [43], and proposed to

relate to quiver gauge theories of D-branes at singularities in e.g. [44–46]. However, there

is no concrete string theory D-brane realization of such RG flows. In particular, systematic

searches for gravity backgrounds dual to gauge theories with duality walls have produced

no such results [37].

The absence of such backgrounds, at least in the context of supergravity, has an inter-

esting implication for our perspective on field ranges in axion monodromy models. Gravi-

tational solutions dual to duality walls would require an axion winding around its period

an infinite number of times in a finite range in the radial distance. This is compatible

with finite gradient energy densities only if the kinetic term of the axion varies so as to

render finite the traversed distance in field space. This kind of behaviour would produce

axion monodromy models where superplanckian field ranges cannot be attained. Hence,

the absence of supergravity backgrounds of this kind is a signal that superplanckian axion

monodromy models are actually generic in the present setup, whereas those with limiting

field ranges are exotic, if at all existent.

3 Effective field theory analysis

In the previous section we have shown a fully backreacted explicit 10d solution for ax-

ion monodromy models with arbitrarily large field ranges. In this section we bring the

discussion to the context of the 5d effective field theory, where much of the discussion of

swampland conjectures is carried out.

3.1 Effective field theory for axion and breathing mode

From the 10d solution it is clear that the relevant dynamics in 5d involves the axion φ

and the breathing mode of X5 = T 1,1, coupled to 5d gravity. It is interesting to device

– 9 –
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an effective field theory describing the dynamics for these degrees of freedom in the KS

solution.7 This provides a concrete context in which to test the regime of validity of

the effective field theory to describe transplanckian axion monodromy, or to test other

swampland conjectures.

The 5d effective field theory can be obtained starting from the 10d type IIB effective

action, and using a suitable ansatz for the compactification, which allows for general dy-

namics for the relevant 5d fields. This strategy was in fact put forward in [24] to produce

the 5d action we are interested in. We review the key ingredients relevant for our purposes,

and adapted to our present notation.

We consider the metric ansatz

ds2
10 = L2

(
e−5q ds2

5 + e3qds2
T 1,1

)
. (3.1)

Here q is a 5d field encoding the breathing mode of T 1,1. Also, ds2
5 is the line element in

the 5d non-compact spacetime, defined in the 5d Einstein frame thanks to the prefactor

e−5q. The explicit L scales out the line elements to geometries of unit radius.

There are M units of F3 flux over the S3 ∈ T 1,1 and there is a 5d axion defined by (2.3).

The modified Bianchi identity (2.6) implies that the flux of F̃5 over T 1,1 is given by (2.8).

The 5d effective action for the 5d scalars φ and q, collectively denoted by ϕa, is given by

S5 = − 2

κ2
5

∫
d5x
√
−g5

[
1

4
R5 −

1

2
Gab(ϕ)∂ϕa∂ϕb − V (ϕ)

]
, (3.2)

with the kinetic terms and potential given by

Gab(ϕ)∂ϕa∂ϕb = 15(∂q)2 +
1

4
g−1
s e−6q(∂φ)2 , (3.3)

V (ϕ) = −5e−8q +
1

8
M2gs e

−14q +
1

8
(N0 +Mφ)2e−20q. (3.4)

The different terms in the potential have a clear interpretation. The first negative con-

tribution corresponds to the curvature of the compactification space T 1,1, the second is

the contribution from the M units of F3 flux on the S3, and the third corresponds to

the contribution from the 5-form flux over T 1,1, and has the typical axion monodromy

structure. We note that, despite the bare quadratic dependence, the backreaction of φ on

the geometry will produce a different functional dependence of the potential energy at the

minimum, as shown below. Also, as already explained, the above action should be regarded

as a consistent truncation in supergravity, so we will take special care to discuss the role

of other physical degrees of freedom, like KK modes.

Since the above effective theory is general, it should reproduce the basic AdS5 back-

ground for M = 0. The potential becomes

V (ϕ) = −5e−8q +
1

8
N 2

0 e
−20q. (3.5)

7Inclusion of the dilaton is discussed in section 3.3.
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The potential has a minimum at

e6q =
N0

4
(3.6)

with negative potential energy at the minimum

V0 = −3 e−8q. (3.7)

Comparing (3.1) with the standard expression for AdS5×T 1,1 metric (2.1), we recover the

scaling of the T 1,1 radius R with N0

R2 ∼ e3q → R4 ∼ N0 (3.8)

with other factors reabsorbed in L in (3.1). Taking the value for V0 (3.7) and removing a

factor of e−5q to change to the 10d frame, we recover the same scaling for the radius of the

AdS5 vacuum.

The KS throat (actually its asymptotic KT form) is a solution of the above effective

action. Following [24], we take the following ansatz for the metric

ds2
10 = s−1/2(r) ηµν dx

µ dxν + h1/2(r) (dr2 + r2ds2
T 1,1). (3.9)

In terms of (3.1), this corresponds to

e3q = r2 h1/2(r) , ds 2
5 = e5q [ s−1/2(r) ηµν dx

µ dxν + h1/2(r) dr2 ]. (3.10)

The effective theory admits a solution where

φ = M log r , s(r) = h(r) =
1

4r4
M2 log

r

r∗
, (3.11)

with r∗ some reference value. This is just the throat solution discussed in section 2.2.

The effective action can be exploited to recover the result of the transplanckian field

range covered by the axion. Since the 5d effective action is already in the 5d Einstein

frame, we can read out and evaluate the kinetic term for φ in (3.3)

Gφφ ∼ e−6q = [ r4 h(r) ]−1 ∼ (M2 log r )−1. (3.12)

We thus recover, in a more precise setting, the result (2.24), and thus the corresponding

unbounded (and hence transplanckian) field range.

3.2 The axion effective field theory

As explained, the above action should be regarded as a consistent truncation in supergrav-

ity, but not as a Wilsonian effective action. In other words, at the scale 1/R at which the

stabilization of the breathing mode occurs, there are many other modes, corresponding to

KK excitations of the 10d fields in X5 which are not included in the action. Note that this

scale goes as 1/R ∼ (log r)−1/4. On the other hand, the effective dynamics for the axion

occurs at far lower scales, set by ∂φ = 1/r. Similarly, the scale of the backreaction on the
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compactification radius or the vacuum energy is measured by their derivatives with respect

to r, which are similarly suppresed by 1/r (or even with additional inverse powers of log r).

It is therefore interesting to construct an effective field theory including just the axion and

intended to describe its dynamics at those scales (hence, including the backreaction on the

volume and vacuum energy).

For this, we minimize the scalar potential for q keeping φ fixed. This gives the condition

5

2
(N0 +Mφ)2 x2 +

7

4
gsM

2 x− 40 = 0 , with x = e−6q. (3.13)

Rather than solving the above exactly, since we are focusing on the large r regime, where

φ is large and x is comparably small, we drop the subleading second term, and obtain

e6q =
1

4
(N0 +Mφ). (3.14)

This reproduces the result of the KS solution that e6q ∼ M2 log r for φ ∼ M log r, so we

are capturing the relevant physics.

We should replace that value in the potential. Again restricting to large r, we drop

the second term in (3.4) and obtain

V = −e−8q

[
5− 1

8
(N0 +Mφ)2 e−12q

]
. (3.15)

This has the same structure as (3.5) with the replacement N0 → N0 +Mφ. The potential

should be regarded as a function of φ only, by simply replacing (3.14) in this expression.

It is therefore clear that considering a profile φ = M log r leads to the appropriate change

in the vacuum energy, so that the backreaction of the axion monodromy is duly included.

The complete axion action should include its kinetic term, obtained from that in (3.3)

by using (3.14). We recover a kinetic term

∼ (N0 +Mφ)−1(∂φ)2, (3.16)

which again reproduces the familiar result about the transplanckian distance traveled in

the rolling solution considered.

This effective action suffices to describe the dynamics of the transplanckian axion

monodromy, so it is a well-defined setup to test/propose swampland conjectures on effective

actions. For instance, one natural idea is to consider if there is an analog of the swampland

distance conjecture, and there is a tower of states becoming exponentially light as the

axion travels at arbitrarily large distances. This is not the case, as follows. The invariant

distance in axion field space goes (for large φ) as d ∼ φ1/2; on the other hand, the masses

of KK modes (which are the primary suspects for fields becoming light at large φ, since

R increases), scale as mKK ∼ e−4q ∼ (φ)−2/3, hence mKK ∼ d−4/3 and there is no tower

of exponentially light states. This is compatible with the swampland distance conjecture,

if interpreted as applying to field ranges approaching points at infinite distance in moduli

space [2, 47]. It is also compatible with the oftentimes used version for transplanckian

geodesic distances, since in the next section we will show that our axion travel does not

– 12 –
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follow a geodesic. However the model provides a beautiful way in which a fully backreacted

monodromic axion can travel arbitrarily large distance in field space without triggering the

appearance of exponentially light states.

There are other interesting questions that can be addressed in the present setup, such

as the application of swampland constraints on the scalar potential, or the realization of

the weak gravity conjecture in the present setup, etc. Since the underlying model is a string

theory compactification on a smooth geometry with fluxes, we expect no new surprises or

novel mechanisms related to these other swampland conjectures.

3.3 Inclusion of the dilaton

As announced, in this section we show that the underlying reason for the compatibility

of the transplanckian axion monodromy model with the swampland distance conjectures

is that the axion does not follow a geodesic in the moduli of light fields. The crucial

ingredients to understand this are the spacetime dependence of the axion, and the inclusion

of the dilaton in the moduli space.

The original KT 5d effective action [24] includes further fields beyond those included

in the earlier discussion. Indeed, it contains fields ϕa = q, f,Φ, φ, where f describes a

possible asymmetric volume for the S2 and S3 of T 1,1, and Φ is the dilaton. The 5d action

for these fields has the structure (3.2) with

Gab(ϕ) = diag

(
15, 10,

1

4
,

1

4
e−Φ−4f−6q

)
,

V (ϕ) = e−8q
(
e−12f − 6e−2f

)
+

1

8
M2eΦ+4f−14q +

1

8
(N0 +Mφ)2e−20q.

(3.17)

The pure AdS×T 1,1 solution for M = 0 shows that in this action the breathing mode q

and asymmetric mode f are heavy modes, while the axion φ and dilaton Φ remain as light

fields. Morally, we should thus consider the later as parametrizing a moduli space at scales

hierarchycally below the KK scale, with a potential induced by the introduction of non-zero

M . This is manifest because the terms including M in the potential are subdominant with

respect to the first, M -independent, one.

This allows to integrate out q and f . We may minimize the leading potential for f ,

and set f = 0 (as implicit in the previous section). For the minimization of q, we proceed

as in the previous section and recover (3.14).

Note that, in the resulting theory for the axion and the dilaton, there is a non-trivial

potential for the dilaton. This is however compatible with its constant value in the axion

monodromy solution in an interesting way: the spacetime dependence of the axion has

a non-trivial backreaction in the dilaton, through the dilaton dependence of the axion

kinetic term, which induces an effective potential for the dilaton balancing the original one

and allowing for a constant dilaton solution. Quantitatively, the equation of motion for a

general field in the presence of a spacetime-dependent axion background reads

1
√
g
∂ν (
√
ggµνGac∂µϕ

a) =
1

2

∂Gφφ
∂ϕc

(∂φ)2 +
∂V

∂ϕc
. (3.18)
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For the dilaton, the condition to allow for a constant dilaton eΦ = gs is the vanishing of

the right-hand side, which is proportional to

−e−6q−Φ(∂φ)2 + e−14q+ΦM2. (3.19)

This indeed vanishes in the KT solution, allowing for a constant dilaton. As anticipated,

the spacetime dependence of the axion exerts a force on the dilaton keeping it constant on

the slope of its bare potential.

The scale of this effect is set by the gradient of the axion ∂φ, which is hierarchycally

below the KK scale. This implies that the corresponding backreaction effect for the other

fields q and f is negligible, and can be ignored when they are integrated out, as implicit

in our above discussion. It also implies that it is not appropriate, in a Wilsonian sense, to

integrate out the dilaton dynamics, as it occurs at the scale relevant for axion dynamics.

This last observation raises an important point. In checking the interplay of our axion

monodromy model with the swampland distance conjectures, the moduli space on which

distances should be discussed is that spanned by the axion and the dilaton, as their poten-

tial on this moduli space is hierarchically below the KK scale cutoff. As we have shown, in

this moduli space the KT solulion describes an axion monodromy model traversing trans-

planckian (and actually arbitrarily long) distances without encountering infinite towers of

light states. However, as we now argue, this does not contradicts swampland distance

conjectures, since the trajectory does not correspond to a geodesic in the axion-dilaton

moduli space.

After replacement of q and f by their values at the minimum of their potentials, the

kinetic term for φ, Φ reads

Lkin =
1

8
(∂Φ)2 +

(
e−Φ

2 (N0 +Mφ)
+

5M2

24 (N0 +Mφ)2

)
(∂φ)2. (3.20)

At large φ we can neglect the subleading second term in the kinetric term of φ and get

Lkin =
1

8
(∂Φ)2 +

e−Φ

2 (N0 +Mφ)
(∂φ)2. (3.21)

To look at the geodesics of this theory it is convenient to change variables

x =
4

M

√
N0 +Mφ,

y = 2eΦ/2 = 2
√
gs.

(3.22)

This leads to

Lkin =
1

2y2

[
(∂x)2 + (∂y)2

]
, (3.23)

which is the metric of the hyperbolic plane. Geodesics of this space, considering y the verti-

cal axis, are vertical lines or half-circles centered in the horizontal axis. On the other hand,

the KT solution corresponds to horizontal lines at different constant values of the dilaton.
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4 The 4d case

The above discussion has been carried out in the 5d context because, being holographically

dual to 4d gauge theories, these are the best studied warped throats. However, there are

well studied supergravity solutions of the form AdS4 ×X7, and supergravity solutions of

the KT kind when the horizon variety X7 admits the introduction of fluxes [48]. In the

following we review these backgrounds and show that they realize in 4d the same kind of

transplanckian axion monodromy as the 5d configurations described above.

The starting point is the AdS4 × X7 background, which can be regarded as arising

from the near-horizon limit of a stack of N coincident M2-branes [49]

ds2 = h(r)
2
3 ηµν dx

µ dxν + h(r)
1
3 ( dr2 + r2 ds 2

X7
), (4.1)

where now Greek indices label non-compact coordinates spanning, together with r, the 4d

spacetime. The harmonic function is

h(r) =
25 π2N `6p

r6
. (4.2)

Namely, we have

ds2 =
R4

r4
ηµν dx

µ dxν +R2 dr
2

r2
+R2 ds 2

X7
, (4.3)

where

R6 = 25 π2N `6p. (4.4)

There are N units of flux of the 7-form field strength F7 (dual to the 4-form field strength

F4) through X7.

Consider an X7 with a non-trivial 4-cycle,8 on which we turn on M units of 4-form

field strength flux F4. Taking the dual 3-cycle Π3 in X7, there is a 4d axion

φ =

∫
Π3

C3. (4.5)

This axion is monodromic, as follows from the reduction of the 11d Chern-Simons coupling∫
11d

F4 ∧ F4 ∧ C3 →
∫

4d
M φF4. (4.6)

The monodromy implies that the value of N varies with φ as

N = N0 +M φ, (4.7)

with N0 a reference value, which we take zero in what follows.

8Such horizons can be obtained for instance by taking the near horizon limit of M2-branes at toric

CY3 ×C (leading to 3d N = 1 theories), where the CY3 admits a complex deformation corresponding to

the size of a 3-cycle. The horizon X7 then contains (an S1 worth of) such 3-cycle, and hence its dual 4-cycle.
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This leads to a 4d analog of the KT throat found in [48] and given by a flux background

F4 = d3x ∧ dh−1 +M ∗7 ω3 −M
dr

r
∧ ω3. (4.8)

Here ω3 is the Poincare dual to the 4-cycle in X7, so the second term corresponds to the F4

flux through the 4-cycle. The third term corresponds to a rolling scalar profile dφ = dr/r,

hence

φ ∼ M log r. (4.9)

Hence we have the axion rolling logarithmically up its monodromic potential, exactly as in

the 5d KS solutions discussed above. The first term correspond to the dual of the flux of

F7 through X7, which varies with the radial coordinate due to the axion monodromy.

The harmonic function h(r) is

h(r) = M2

(
log r

6r6
+

1

36r6

)
(4.10)

(up to some ρ/r6 factor, which defines a reference value which we take to be zero). It also

determines the metric by replacement in (4.1).

The solution, just like in the 5d KT example, has a naked singularity at r = 0, which is

presumably smoothed out at least for certain geometries X7, although no analog of the full

KS solution has been found. It would be interesting to develop the dictionary of fractional

M2-brane theories and their gravity duals further to gain insight into such smoothings.

This however lies beyond the scope of the present paper.

It is straightforward to compute the 4d kinetic term of the axion φ as in the simplified

5d calculation in section 2.3. Specifically, the Einstein-Hilbert and 3-form kinetic term in

the 11d action read

S11 =
1

2κ 2
11

∫
d11x

√
−g11

(
R11 +

1

2
|F4|2

)
. (4.11)

Define the volume of X7 = (RR̃)7, where R defines the backgound value and R̃ its breathing

mode. The KK reduction to 4d contains the terms

S4 =
1

2κ 2
4

∫
d11x

√
−g4

(
R̃7R4 + c R̃ gmn ∂m∂nφ

)
. (4.12)

Here we have introduced

κ 2
4 =

κ 2
11

R7
. (4.13)

Also, the factor R̃ in the axion kinetic term arises from an R̃7 from the compactification

volume and a factor R̃−6 from three inverse metrics of X7 required for the contractions of

|ω3|3. Finally c is a constant that depends on geometrical properties of the cycles in X7.

Going to the 4d Einstein frame we have

S4 =
1

2κ 2
4

∫
d11x

√
−g4

(
R4 + c R̃−6 gmn ∂m∂nφ

)
. (4.14)
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So the kinetic term for the axion gives

Gφφ ∼ R̃−6 ∼ (M2 log r)−1. (4.15)

This is exactly as in the 5d example, and again leads to arbitrarily large, in particular

transplanckian, field ranges traversed by the axion roll.
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A Periodic crossing and the dual Hanany-Witten picture

In this section we discuss a T-dual realization of the KS duality cascade, in terms of the

NS5- and D4-brane configurations [50] realizing 4d gauge theories à la Hanany-Witten [51].

The picture is similar to that mentioned in [10], albeit with additional relevant refinements.

The configuration is flat 10d space with one dimension, labelled 6, compactified on

an S1. There is one NS5-brane along the directions 012345 (and at the origin in 89), and

one NS5-brane (denoted NS5’) along the directions 012389 (and at the origin in 45), with

D4-branes along 0123 and suspended among them in 6 (and at the origin in 4589), in a

compact version of [52]. The positions of all branes in the directions 7 are taken equal.

The numbers of D4-branes at each side of the interval are N and N +M respectively. The

scalar φ corresponds to the distance (in units of 2π the radius of S1) between the NS and

the NS’-branes, so it has periodicity φ ∼ φ+ 1.

In a naive description, as the scalar winds around its period, the crossings of the NS

and NS’-branes produce Seiberg dualities that complete a full cycle in the duality cascade.

This naive picture would seem to suggest that each crossing leads to additional light degrees

of freedom, which could spoil the axion monodromy, or at least its description in terms of

an effective action not including these new modes.

However, the actual picture is somewhat more intricate and is free of these problems.

The answer lies in the phenomenon of brane bending in [50], which implies that the M

additional D4-branes on one of the intervals forces the NS- and NS’-branes to bend. This

bending has a logarithmic dependence, and is a long distance result of the description

of the whole system as a single M5-brane in a holomorphic curve in the M-theory lift of

the configuration [50, 53]. In N = 2 4d theories, this corresponds in a precise manner

to the field theory running of gauge couplings on the Coulomb branch. In the present

N = 1 setup, the RG direction (to become the radius in the gravitational dual side) can be

thought of as the radial distance away from the point x4 = x5 = x8 = x9 = 0 at which all

branes are located. Then, there is a logarithmic bending of the positions of the NS- and
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NS’-branes in the directions 6, which matches the above naive description. However, the

other positions of the NS- and NS’-branes in the other directions do not coincide, hence

no actual crossing of branes occurs. The discussion of Seiberg dualities carries over but in

this more precise sense. The phenomenon is similar to the discussion in [54].
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1 Introduction and conclusions

By now there is a substantial amount of swampland conjectures constraining effective field

theories to be compatible with Quantum Gravity [1–6] (see [7, 8] for reviews). They have

led to interesting insights into phenomenological applications of string theory models.

Interestingly, many of these works focus on the properties of continuous gauge sym-

metries, whereas far fewer results have been obtained to constrain discrete symmetries (for
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some results, see [9–11], and also [12]), and mostly focus on the constrain that global dis-

crete symmetries, just like global continuous symmetries, are forbidden in quantum gravity

(see [13–19] for early literature). Discrete gauge symmetries are an interesting area with ex-

citing applications in BSM phenomenology and string model building [20–26]. The scarcity

of swampland constraints on them is partially explained by the fact that discrete symme-

tries lack long-range fields or tunable parameters like coupling constants, so there are less

handles to quantitatively constrain their properties or their impact on other quantities of

the theory.

In this work, we overcome this difficulty by considering theories with both discrete

and continuous gauge symmetries, and uncover interesting quantitative links among them.

For simplicity we focus on abelian Zk and U(1) symmetries. In theories with a U(1)

gauge symmetry, considerations about evaporation of charged black holes lead to the Weak

Gravity Conjecture [3], by demanding that the black hole should remain (sub)extremal

throughout the process. To put it simply, considering an extremal black hole with M = gQ

(in Planck units), the theory must contain particles with mass m and charge q, with

m ≤ gq, such that the black hole can decay without becoming super-extremal. This

is the Weak Gravity Conjecture (WGC). The marginal case in which the Weak Gravity

Conjecture particles saturate the inequality m = q has been further proposed to correspond

to supersymmetric situations, in which it often corresponds to a BPS bound.

If the theory enjoys a further Zk discrete gauge symmetry, one can consider any such

classical black hole solution and endow it with discrete Zk charge, with no change in

the classical solution, as this charge does not source long-range fields (see e.g. [27], and

also [28] for a recent perspective), and study their decay as in the WGC. In particular, we

may consider extremal black holes carrying Zk charge and derive a striking result, the Zk
Weak Coupling Conjecture (WCC) which schematically is the statement that in a theory

with a discrete Zk gauge symmetry and a U(1) gauge symmetry with coupling g, the gauge

coupling scales as g ∼ k−α for large k, with α a positive order 1 coefficient.

The derivation and some qualifications on this statement are discussed in sec-

tion 2. In particular, we also relate this statement with diverse versions of swampland

distance conjectures.

As we will see, the derivation is most precise in the supersymmetric case, in which the

WGC bound saturates, but we believe it holds far more generally, as we will illustrate in

concrete string theory examples. In particular, in section 3 we study AdS5 × S5/Zk vacua

(and generalizations to general toric1 theories AdS5 ×X5/Zk), in which there is a discrete

Heinsenberg group Hk, associated to torsion classes in S5/Zk [29–31]. This is generated by

elements A, B, each generating a Zk symmetry, with commutation relations AB = CBA,

with C a central element. In the effective 5d theory (namely at scales below the KK scale,

and thus at long distance compared with the AdS radius as well) there is at least one U(1)

gauge symmetry, corresponding to the R-symmetry of the holographic dual SCFT, whose

coupling, as we show, obeys the WCC. In addition, for S5/Zk, and in fact for any toric

1By toric, in this context we mean that the CY3 obtained as the real cone over the Sasaki-Einstein 5d

variety, is toric.
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theory X5/Zk, there are two additional U(1)’s (the mesonic global symmetries in the dual

SCFT), which also satisfy the WCC.

In section 4 we discuss an analogous exercise in 4d by considering in section 4.1 the

case of M-theory on AdS4 × S7/Zk, which provides the gravity dual to the ABJM theo-

ries [32]. The U(1) symmetry corresponds to an isometry of the internal space, and the

discrete symmetry is also related to torsion classes in S7/Zk, although it has an intricate

structure not reducible to just Zk. This is further clarified using the type IIA perspective

in section 4.2, in which the discrete gauge symmetry is shown to have order k2 +N2, and

the U(1) symmetry is a linear combination of different RR p-form gauge symmetries, with

a second linear combination that is massive due to a Stückelberg coupling. We discuss

these systems and show how the corresponding WCC is duly satisfied.

In section 5 we turn to exploiting these considerations in theories in which the Zk
charged objects are not particles (or their dual objects, e.g. strings in 4d), but rather

4d domain walls. In particular, we consider the type IIA AdS4 vacua obtained in CY

orientifold compactification with NSNS and RR fluxes. In section 5.1 we review a class of

compactifications with fluxes scaling with a parameter k, shown in [33] to have parametric

scale separation controlled by k. These vacua would violate the strong AdS Distance

Conjecture proposed in [34], an issue on which our analysis sheds important insights. In

section 5.2 we show that these systems are higher p-form analogues to the type IIA vacua of

section 4.2, with a continuous 3-form symmetry arising from a massless linear combination,

and the discrete symmetry arising from a second linear combination made massive by a

3-form Stückelberg mechanism (see [35, 36], also [24]), also called Dvali-Kaloper-Sorbo

(DKS) mechanism. In section 5.3 we discuss the role of the discrete Zk symmetry in fixing

the scaling of the moduli with k. In section 5.4 we use tensions of BPS domain walls to

recover the vacuum energy scalings, and show that AdS vacua with trivial 3-form discrete

symmetry have no scale separation, while the above scaling family of AdS vacua with a

non-trivial 3-form discrete symmetry displays scale separation controlled by k, as follows.

The scale separation relation between the KK scale mKK and the 4d cosmological constant

Λ is given by the species bound

Λ =
m 2

KK

k
. (1.1)

We accordingly formulate the following Zk Refined Strong AdS4 Distance Conjecture: in

supersymmetric AdS4 vacua with a discrete symmetry associated to Zk-charged domain

walls, the ratio between the KK scale and Λ is mKK ∼ (kΛ)1/2.

This provides an underlying rationale for the seeming violation of the strong ADC by

the family of scaling AdS solutions in type IIA vacua with field strength fluxes. It would

be interesting to test it in other setups, and even exploit it in applications to holography.

Our work is an important step in understanding the nature of discrete gauge symme-

tries in quantum gravity, and their non-trivial interplay with continuous gauge symmetries.

As in other swampland constraints, although the arguments for the Zk-WCC are admit-

tedly heuristic, there is a substantial amount of evidence from concrete, very rigorous,

string vacua supporting it. We have argued that discrete symmetries for 3-forms play an
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important role in the problem of scale separation, and provided a rationale to embed it in a

refined AdS Distance Conjecture. We thus expect they may be relevant in other swampland

criteria, like the de Sitter constraint. We hope to report on these topics in the near future.

Note: as we were finishing writing this paper, ref. [37] appeared, which studies scale sep-

aration in type IIA AdS vacua, albeit from a different perspective (note also [38], appeared

shortly after our work). It would be interesting to explore the relation between the two

approaches.

2 The Zk weak coupling conjecture

In this section we consider theories of quantum gravity with discrete and continuous gauge

symmetries. For simplicity we focus on a Zk discrete symmetry and a U(1) gauge symme-

try. Generalizations to multiple U(1)’s and discrete groups could be worked out similarly.

Notice that throughout the paper we are interested in the properties of the theory at large

k, hence many of our expressions should be regarded as the leading approximation in a

1/k expansion.

2.1 A black hole argument

For concreteness we focus on 4d theories, although the results extend to other dimensions

(as we will see e.g. in the examples of section 3). The strategy is to use black hole evap-

oration as a guiding principle to derive new swampland constraints, as we now review in

two familiar situations.

2.1.1 Review of some mass bound derivations

Let us briefly recall one such derivation for the Weak Gravity Conjecture (WGC) [3]. The

idea is to consider extremal black holes, with mass M and charge Q, satisfying M =

gQMp, where g is the U(1) gauge coupling (in units in which the minimal charge is 1).

Requiring the decay of such extremal black holes, while preventing them from becoming

super-extremal, leads to the familiar statement of the Weak Gravity Conjecture, namely

that there must exist some particle in the theory with mass m and charge q such that

m ≤ g qMp. (2.1)

There are different versions of the WGC (see [8] for a review with references), including

the lattice [39] and sublattice [40] versions, but we stick to the basic one above.

Let us consider a black hole (possibly charged under the U(1) or not), carrying a

discrete Zk charge. The analysis now follows [41]. Even though this is a gauge symmetry,

it does not have long-range fields, so it does not affect the classical black hole solution,

neither its evaporation in the semiclassical approximation, which thus does not allow to

eliminate the Zk charge. Since we are interested in the large k behavior, this would lead

to a too large number of remnants. Hence, when the black hole radius reaches some cutoff

value Λ−1 it starts peeling off its Zk charge. If we denote by m the mass of the Zk charged
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particles, the mass of the black hole at the cutoff scale should suffice to emit O(k) of such

particles, that is

M 2
p Λ−1 & km . (2.2)

The cutoff radius is intuitively of the order of the inverse mass of the emitted particle,

hence we consider Λ ∼ βm, with β some unknown coefficient encoding model dependent

information about the black hole and its evaporation process. Consequently, we obtain

m2 .
M 2
p

k
. (2.3)

This is often known as the species bound [41], although in the present context k does not

correspond to the number of species, rather it relates to the order of the discrete symmetry.2

Keeping in mind the unknown factors in the discussion, we take the above relation

as controlling the scaling of suitable Zk charged particles in the limit of large k. Namely,

there must exist some Zk charged particle whose mass must scale as m . k−1/2Mp.

In the following, we will apply this constraint to black holes charged under contin-

uous U(1) symmetries. One may worry that the derivation in [41] did not include such

charges, i.e. it implicitly assumed Schwarzschild black holes. However, there are analogous

arguments for charged (in fact extremal) black holes in theories with U(1) gauge groups,

leading to identical results, as we discuss in appendix A. Hence for practical purposes we

may continue with the above simple picture.

2.1.2 The Zk weak gravity conjecture

In the above discussion, the mass of the Zk particle we are constraining is thought of as

the lightest one. However, in the following we argue that we can use a similar argument to

constrain not only the lightest Zk charge particle, but also the one with smallest ratio q/m

between its U(1) charge and its mass. Namely, the Weak Gravity Conjecture particles.

Consider an extremal black hole with mass M and charge Q, and endow it with a

large Zk charge. The black hole can try to peel off its Zk charge by emitting Zk charged

particles, but this would decrease its mass while keeping its charge fixed, thus becoming

super-extremal. The simplest way to prevent this is that there exist some Zk charged

particle which is also charged under the U(1) with charge q, and such that it satisfies the

WGC bound m ≤ gqMp. In other words, the simplest resolution is that the WGC particles

carry Zk charge. We may dub this result as the Zk Weak Gravity Conjecture.

This is a remarkable result, but is actually a little bit of an overstatement. It may

well happen that the WGC particles are neutral and do not saturate the WGC bound,

and the evaporation of the black hole by emission of WGC particles makes it sufficiently

sub-extremal so as to be able to subsequently emit enough Zk charged particles (not obey-

ing the WGC bound) to peel off its discrete charge without ever getting super-extremal.

2Actually, to account for the fact that the particle needs not be minimally charged under Zk, we should

point out that the role of k above should actually be played by the number of emitted particles. Hence the

factor appearing in relations like (2.3) may differ from the order of the discrete group by a factor of the

particle charge, see some examples in sections 4, 5.
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Interestingly, notice that this is only possible if the WGC particles satisfy the strict WGC

bound, not the equality, and hence, according to the extended WGC version in [4], it is

possible only in non-supersymmetric theories. Thus our derivation above is strictly valid

in the supersymmetric setup, and in our examples we will indeed focus on supersymmetric

examples. We however still consider the argument as interestingly compelling also in non-

supersymmetric models, and hence keep an open mind about its general validity, and that

of its implications, to which we turn.

2.1.3 The Zk weak coupling conjecture

The fact that the WGC particles, whose defining feature has to do with the U(1) gauge

symmetry, know about the Zk symmetry implies that there are cross constraints among the

U(1) and the Zk symmetry. Indeed, let us consider a relaxed version of the Zk bound (2.3),

by stating that the Zk charged particles involved in the black hole decay should have mass

scaling as

m ∼ k−αMp , (2.4)

with α an order 1 coefficient, obeying some bound α ≥ 1/2 to satisfy (2.3). On the other

hand, the particles that extremal black holes use to peel off their Zk charge are WGC

particles, hence obey

m ∼ g qMp . (2.5)

We thus obtain that the gauge coupling of the U(1) must depend on k and should become

weak fast enough in the large k limit, as

g ∼ k−α . (2.6)

We thus propose this to be a general swampland constraint, as follows:

Zk weak coupling conjecture. In a quantum gravity theory with a discrete Zk gauge

symmetry and a U(1) gauge symmetry with coupling g, the gauge coupling scales as g ∼ k−α

for large k, with α a positive order 1 coefficient.

We note that, in the case of multiple U(1) gauge symmetries, a similar BH argument

leads to a Zk Weak Coupling Conjecture for any rational direction in charge space, much

in the spirit of the WGC for multiple U(1)’s [42]. Since the gauge coupling of any linear

combination follows from those in some basis in the charge lattice, in this case it suffices

that the couplings of these independent U(1) obey the Zk Weak Coupling Conjecture. We

also note that in the case of multiple discrete symmetries, the conjecture applies to each

discrete symmetry independently.

The above intertwining between the properties of discrete and continuous symmetries

is completely unexpected from the viewpoint of the low energy effective field theory, where

these parameters are uncorrelated and would seem to be completely free choices. As with

other swampland constraints, it is amusing that quantum gravity manages to impose its

own plans.
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A simple illustration of how this interplay works in intersecting brane modes is dis-

cussed at the heuristic level in appendix B. More concrete examples will follow in the

upcoming sections.

2.2 Distance conjectures

Before moving to concrete examples, it is interesting to explore the relation between the Zk
WCC and the Swampland Distance Conjectures (SDC). The WCC states that gauge cou-

plings scale to zero for large k, thus approaching a global symmetry and hence presumably

leading to the appearance of a tower of states becoming light.

An intuitive picture of this implication is as follows. Consider a 4d version of the Zk
WCC with g ∼ k−α. For simplicity, and following many examples in string theory we

consider g to belong to a complex modulus

S =
1

g2
+ iθ (2.7)

and assume a Kähler potential

K(S, S̄) = − log(S + S̄) . (2.8)

In this moduli space, the distance as a function of s = Re S as one approaches infinity

reads

d ∼
∫
ds

s
∼ log s . (2.9)

The SDC states that there is a tower of states becoming light as s→∞ with masses

mtw ∼Mp e
−γd , (2.10)

with γ an order 1 coefficient, for d measured in Planck units. In our case we have

mtw ∼ Mp k
− 1

2
αγ . (2.11)

Hence there is a Zk Distance Conjecture stating that there is a tower of states with masses

becoming light as a negative power of k. This is just a re-derivation of the ‘species’ bound

cutoff [41].

In fact, the above argument where g is dealt with as a modulus going to infinite dis-

tance in moduli space does not correspond to the general Zk WCC, since at least some of

the gauge couplings may not correspond to fundamental moduli. For instance, consider the

intersecting brane toy model in appendix B. There, the moduli remain at fixed location in

moduli space, and we instead change the discrete wrapping numbers for some D-branes.

Hence, the origin of the tower should be a different one, as is easily argued. In a configu-

ration in which one stack of branes has wrappings scaling with k, the angles between that

stack of branes and others will scale as θ ∼ k−1 (to see that, consider e.g. the cycles (1, 0)

and (k, 1) in a rectangular T2 with radii (R1, R2). They have intersection angle θ with

tan θ = k−1R2/R1, hence θ ∼ k−1). As discussed in [43, 44] there is a tower of string states

with masses given by

m2
tw ∼Ms θ ∼ k−1 . (2.12)

This again nicely reproduces the ‘species’ bound cutoff.
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3 AdS5 × S5 orbifolds

In this section we consider type IIB string theory on AdS5 × S5/Zk. The discussion can

be easily extended to general toric orbifold theories AdS5 ×X5/Zk, but the 5-sphere case

will suffice to illustrate the main points. We study general Zk actions compatible with

supersymmetry, namely acting as SU(3) in the underlying C3. We also note that, although

these vacua do not display scale separation, we may discuss the 5d physics essentially in

the same sense as in the AdS/CFT correspondence, whose dictionary and results we use

freely in this section. Moreover, our final statement involves gauge couplings for U(1)

symmetries, which can be observed at arbitrarily long distances, in particular at energies

well below the KK scale.

As pioneered in [29] (see also [30, 45–47] for other examples) and generalized in [31],

there is a discrete gauge symmetry in the AdS5 theory, corresponding to the discrete

Heisenberg group Hk. This is defined by two non-commuting Zk symmetries generated by

A, B (hence Ak = 1, Bk = 1) satisfying

AB = CBA , (3.1)

with C a central element (also generating a further Zk, and possibly mixing with other

anomaly free baryonic U(1)’s, if present).

Generalizing [29], the particles charged under the discrete symmetry are D3-branes

wrapped on torsion 3-cycles carrying non-trivial flat gauge bundles (discrete Wilson lines

and ’t Hooft loops). The minimally charged particle is obtained by wrapping the D3-brane

on a maximal S3/Zk. We are interested in the mass of this particle, and in particular in

its scaling with k. It is a simple exercise, as this is just analogous to a giant graviton in

the parent AdS5 × S5 theory [48].

The D3-brane particle mass computation. In the KK reduction from 10d to 5d, the

5d Planck mass Mp, 5 in terms of the string scale is

M 3
p, 5 =

M8
sR

5

g2
s k

. (3.2)

We are ignoring numerical factors e.g. in the volume of S5. Above, R is the curvature radius

of S5, which is also the AdS5 radius. Note that in order to get a theory with N units of

RR 5-form flux over S5/Zk, the parent theory is the AdS5 × S5 solution corresponding to

Nk D3-branes, and the usual relation between the radius R and N is modified to

R4 = 4π(α′)2 gsN k . (3.3)

Hence

R ∼M −1
s g

1
4
s N

1
4 k

1
4 , (3.4)

where we have dropped numerical factors.
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The mass m of the D3-brane particle3 in 5d is

m =
M4
sR

3

gs k
. (3.5)

We wish to express the mass in terms of the 5d Planck scale. From (3.2) and (3.4) we get

Ms ∼Mp, 5 g
1
4
s N

− 5
12 k−

1
12 , R ∼M −1

p, 5 N
2
3 k

1
3 . (3.6)

Hence

m ∼Mp, 5N
1
3 k−

1
3 . (3.7)

Note that the k-dependence reproduces the 5d version of the relation (2.3) [41]

m3 ∼
M 3
p, 5

k
. (3.8)

This result fits nicely with the expectation for the mass of a particle charged under Zk.

Notice that, as mentioned in section 2.1, the coefficient in (3.8) is not necessarily

the order of the discrete symmetry (which we recall is the Heisenberg group Hk) but the

number of particles emitted to peel off the black hole charge. We also note that the factor

of N in (3.7) is presumably related to the precise nature of the cutoff Λ in the black hole

argument in section 2.1.1. It would be interesting to explore this dependence in more

detail, but we leave this for future work.

Comparison with the BPS formula and WCC. The above states are not the lightest

carrying charges under the Zk subgroups of the Heisenberg group. In fact, there are charged

particle states arising from fundamental strings and D1-branes wrapped on torsion 1-cycles

on the internal geometry. What is special about the above D3-brane particle states is that

they are BPS. Just like giant gravitons in AdS5 × S5, they carry N units of momentum

along a maximal S1, determined by the Zk action. In the 5d theory, there is a KK U(1)R,

which is precisely the gravity dual of the R-symmetry of the holographic SCFT. In the

SCFT, the D3-brane particle states are dibaryons of the form det Φij , with Φ denoting a

generic bifundamental chiral multiplet in the quiver gauge theory. It has R-charge N , and

conformal dimension ∆ = N . Using the AdS/CFT dictionary, we then expect the masses

of these particles to be given by

m =
N

R
. (3.9)

The fact that these states are BPS means that they should saturate the WGC conjecture

bound, in other words, the BPS mass formula

m = (gM
1
2
p, 5)NMp, 5 . (3.10)

3Notice that for our purposes it does not matter if we are in the string or Einstein frame, since this

introduces factors that depend on dynamical fields, but does not change the scaling with k, which goes into

the constant part (reference value).
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This is the standard m = gQ in Planck units, with charge q = N and g being the gauge

coupling of the U(1).

In these relations, there is no manifest dependence on k, which could be puzzling from

the viewpoint of the black hole arguments. As we however know, the resolution is that, on

these general grounds, the gauge coupling g must scale with k, at large k, in particular

g ∼ k−
1
3 . (3.11)

This is easily checked by computing the gauge coupling. In the KK reduction from

10d to 5d, the prefactor of the gauge kinetic term is

1

g2
=

M8
s R

5

g2
s k

R2 . (3.12)

The first factor is just the 10d prefactor times the volume of S5/Zk, and the R2 comes

from the rescaling of mixed components of the metric into dimensionful gauge field, such

that charges are quantized in integers.

Using our above expressions, we get

g ∼ R−1M
− 3

2
p, 5 , (3.13)

which means

gM
1
2
p, 5 = N−

2
3 k−

1
3 . (3.14)

So, in terms of this gauge coupling, the mass (3.7) turns into (3.10). Hence we recover a

very explicit confirmation of our heuristic argument in section 2.

Let us conclude with some general remarks.

• In addition to U(1)R there are in general (in fact, for general toric theories) two extra

mesonic U(1) symmetries, arising from isometries of the internal 5d manifold. The

direct computation of their 5d gauge couplings proceeds as above, thus leading to a

scaling compatible with the WCC.

• In addition to D3-brane charged particles, there are 5d membranes of real codimen-

sion 2, which implement monodromies associated to the discrete group elements. As

in the abelian case, these objects are charged under a dual discrete gauge symmetry

(this can be made more manifest by introducing non-harmonic forms to represent

the torsion classes [22, 49]). However, since these objects are not charged under any

continuous symmetry, we lack a good handle to constrain their properties, and we

will not discuss them further.

The Zk distance conjectures. It is interesting to explore the relation between the Zk
WCC and the AdS Distance Conjecture in the present setup where, using (3.6), going to

large k implies going to large R. This is a decompactification limit (note that the orbifold

only reduces lengths in S5 in some directions, so the KK scale remains R−1), in which also

the AdS cosmological constant goes to zero, approaching flat space. Hence we can apply
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the AdS Distance Conjecture, which e.g. in its strong version (as we have supersymmetry)

establishes that there should be a tower of states with masses scaling as

mtw ∼
1

R
∼Mp, 5N

− 2
3 k−

1
3 , (3.15)

where we have also kept the dependence on N . From the 1/R dependence, it is clear the

tower corresponds to KK modes. These are the familiar particles dual to single trace chiral

primary mesonic operators of the dual SCFT, extensively studied in the literature [50],

see [51]. Note that, even though the scaling with k is the same as for wrapped D3-branes,

KK modes are lighter due to the relative factor of N .

A further subtlety. The above discussion has overlooked an important subtlety. The

discrete symmetry Zk (in fact the full discrete Heisenberg group) is intertwined with the

U(1) in the following sense. Since the D3-branes are charged under the U(1) with charge

N , a set of k D3-branes carries no discrete Zk charge, but carries kN units of momentum

and cannot decay to the vacuum. In fact, the instanton processes removing the discrete

Zk charge (which correspond to a D3-brane wrapped on the 4-chain whose boundary is k

times the torsion 3-cycle) produce simultaneously N particles each carrying momentum k

on the circle (whose radius is R/k due to the orbifold).

The situation is very analogous to the one we will encounter in M-theory and type

IIA compactifications in section 4, so we postpone the discussion. Suffice it to say that

in this kind of situation, the actual discrete symmetry has order k2 + N2, heuristically

corresponding to the fact that the discrete charge may be eliminated via emission of k

D3-branes (each with charge k under the discrete group) and N KK modes (each with

charge N under the discrete group). In the regime where the gravity description of S5/Zk
is valid, we need large R4 ∼ Nk and large R/k ∼ N1/4k−3/4, hence N � k3, and the order

of the gauge group is effectively dominated by the N2 term, corresponding to emission of

N KK modes. Hence, the actual discrete symmetry in this regime is an effective ZN .

It is straightforward to repeat the above computations for the KK mode particles. The

mass is given by k/R, as corresponds to mesonic operators of dimension k (or multiples of

it) due to the orbifold action. We obtain the relations and scalings

m ∼ Mp, 5N
− 2

3 k
2
3 , m ∼ g kM3/2

p, 5 , gM
1
2
p, 5 = N−

2
3 k−

1
3 . (3.16)

Here g is obviously the same as in (3.14), but we repeat it for convenience. Happily, it

is clear that g obeys a ZN WCC. Notice also that the discretely charged KK modes fit

more nicely with the black hole argument in section 2.1. It seems more manageable to

emit KK particles than D3-brane particles, as the later extend to a very large size in the

internal dimension.

As anticipated, we will re-encounter a very similar situation in M-theory compactifica-

tions in the next section, with the additional handle of a type IIA reduction which makes

these aspects far more intuitive. We refer the reader to those sections for details.
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4 M-theory orbifolds and ABJM

In this section we study the WCC in M-theory on AdS4 × S7/Zk and its type IIA re-

duction, which provide the gravity dual of the ABJM gauge theories [32]. These theories

display interesting new subtleties as compared with earlier cases. Some have been partially

discussed in the ABJM literature, so we can again profit from the holographic dictionary.

4.1 M-theory on AdS4 × S7/Zk

Let us now consider M-theory on AdS4 × S7/Zk, where Zk is generated by zi → e2πi/kzi
in the underlying C4. This theory is the dual to the ABJM theories, which correspond to

U(N)k ×U(N)−k Chern-Simons matter theories,4 with ±k denoting the CS level.

The curvature radius of the covering S7 and the AdS4 are given by

R6 = 25π2M −6
p, 11Nk , (4.1)

where the factor of Nk is analogous to that in section 3.

We are interested in studying gauge symmetries in the 4d theory. The 4d Planck scale

is given by

M 2
p, 4 =

M 9
p, 11R

7

k
. (4.2)

Hence we have

R ∼ M−1
p, 11N

1
6 k

1
6 , (4.3)

and then

Mp, 11 ∼ Mp, 4N
− 7

12 k−
1
12 , R ∼M −1

p, 4 N
3
4k

1
4 . (4.4)

There are two relevant symmetries. There is a U(1) isometry, surviving from the

underlying isometry of S7 which decomposes as SO(8)→ SU(4)×U(1) under the orbifold

action zi → e2πi/kzi. It is a continuous gauge symmetry in AdS4. In addition, the internal

space has a non-trivial torsion group H5

(
S7/Zk

)
= Zk which allows to obtain 4d particles

by wrapping M5-branes on the torsion 5-cycle. In the covering space the minimal charge

particle is essentially an M5-brane giant graviton, similar to those in the AdS4×S7 theory.

In particular, it carries N units of momentum on the S1 associated to the U(1) symmetry.

This seems a perfect candidate for a WGC particle charged under the discrete symme-

try, so we consider its properties, in analogy with the D3-brane particles in section 3. Its

mass is given by

mM5 ∼
M 6
p, 11R

5

k
= Mp, 4N

1
4 k−

1
4 , (4.5)

4Actually, as mentioned below and pointed out in [32] the global structure is different such that there

are gauge invariant dibaryons for arbitrary N , k.
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where, in the last equation, we have used (4.4). Note that we recover the AdS/CFT

dictionary relation

mM5 =
N

R
, (4.6)

indicating that the M5-brane particle is dual to an operator of conformal dimension N , as

befits a dibaryon.

We can compare this mass with the WGC bound (BPS bound), by computing the

gauge coupling. This is just given by the KK reduction of the 11d Einstein terms and gives

g−2 ∼ M 9
p, 11 (R7 k−1 )R2 . (4.7)

Note that we have taken the normalization factor R2, which holds when gcd(N, k) = 1. This

is because in that normalization, the charges under the U(1) are KK modes of momentum

multiple of k (since the radius is R/k due to the orbifold action), and M5-branes, whose

charges are multiples of N . Then by Bezout’s lemma, the minimal charge quantum is

1. For the general case gcd(N, k) = r, we would have a factor (R/r)2. We proceed with

the coprime case in what follows. As pointed out in [32], the existence of gauge invariant

dibaryon operators for general N (not a multiple of k) implies a specific choice of the global

structure of the gauge group of the holographically dual ABJM field theory, see footnote 4.

Using (4.4) we have

g−2 ∼ N
3
2 k

1
2 → g ∼ N−

3
4 k−

1
4 . (4.8)

So we get the WGC/BPS relation

mM5 = Mp, 4 g N . (4.9)

It is interesting that in the large k limit we recover a weak coupling scaling result

g ∼ k−1/4, but that this decrease is slower than the critical g ∼ k−1/2 required by the

black hole evaporation argument. The resolution of this point reveals two interesting

related subtleties: the actual discrete gauge symmetry of the theory is not just Zk, and the

wrapped M5-branes are not the only states charged under the discrete symmetry. Indeed,

as mentioned in [32], a set of k wrapped M5-brane particles can unwrap, but they do not

decay to the vacuum, but rather turn into N KK states with momentum along the U(1)

circle (which, due to the Zk orbifold, is quantized in multiples of k). In other words, there

are instantons (given by M5-branes wrapped on the CP3 base of the Hopf fibration of

S7/Zk), which emit k M5-branes and N minimal momentum KK modes. As will be more

intuitively explained in section 4.2, there is a discrete symmetry of order N2 + k2, under

which a wrapped M5-brane has charge k and a minimal momentum KK mode has charge

N . Thus KK modes provide a possible alternative to allow for black hole decay, which in

fact is dominated by processes of emission of N such KK modes. Hence, the gauge coupling

needs to obey a WCC with respect to N . Let us thus check this point.

The KK particle mass is given by

mKK =
k

R
. (4.10)
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This in fact constitutes the holographic dictionary relation for an operator of conformal

dimension k. These are constructed with k copies of a bifundamental field, as required by

gauge invariance under the level-k U(1)’s of the holographic dual field theory [32].

Using (4.4) we have

mKK = Mp, 4N
− 3

4 k
3
4 , (4.11)

and with (4.8) we obtain

mKK = Mp, 4 g k . (4.12)

Hence these are WGC particles charged under the discrete symmetry, and the gauge cou-

pling (4.8) obeys a WCC bound with respect to N .

4.2 Type IIA description of ABJM vacua

We may now describe the type IIA version of the previous section, which makes some of

the above points more intuitive, and also provides a good warm-up for coming sections.

The type IIA limit arises as follows. The S7 is a S1 Hopf fibration over CP3, where

the Zk quotient acts on the S1. The radius of the CP3 factor is large whenever Nk � 1.

From (4.1) we conclude that the M-theory description is valid whenever k5 � N . When

k increases, we end up in a weakly coupled regime and we can reduce to type IIA string

theory [32].

The type IIA background corresponds to a compactification on AdS4 × CP3 with

internal and AdS radii Rs (see below), with N units of F6 RR flux over CP3 (i.e. of F4

flux over AdS4) and k units of F2 RR flux over CP1 ⊂ CP3 (due to the Hopf fibration of

the M-theory S1).

The matching of string theory quantities to the 11d Planck scale is as follows. The

10d string coupling gs is related to the M-theory radius R = R/k as

gs = M
3/2
p, 11R

3/2 , (4.13)

that scales as

gs ∼ N
1
4 k−

5
4 . (4.14)

The string scale Ms is related to the 11d Planck scale as

M 3
p, 11 =

M 3
s

gs
. (4.15)

So in terms of Ms, the radius (4.1) becomes

R ∼ N
1
6 k

1
6 g

1
3
s M

−1
s . (4.16)

Finally we need the radius Rs of CP3 from the string viewpoint. The type IIA metric

is given by

ds2
IIA = R2

s

(
1

4
ds2

AdS4
+ ds2

CP3

)
, (4.17)
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where

R2
s ∼ N1/2 k−1/2M−2

s . (4.18)

We can now compute the 4d Planck mass:

M4
p, 4 ∼M8

s g
−2
s R6

s , (4.19)

and combine with (4.18), (4.19) and (4.14) to obtain

Rs ∼ N k−1M−1
p, 4 g

−1
s ∼M −1

p, 4 N
3
4 k

1
4 , Ms ∼ N−3/4 k3/4Mp, 4 gs ∼ Mp, 4N

− 1
2 k−

1
2 .

(4.20)

Let us now consider the gauge symmetries in the 4d theory in this type IIA string

compactification. The SU(4) symmetry arises as the isometry of the internal CP3. On

the other hand, there are additional U(1) gauge fields arising from the 10d RR fields,

concretely the 10d RR 1-form potential and the 10d RR 3-form potential integrated over

CP1 ⊂ CP3. We should however notice that there are Stückelberg couplings arising from

the 10d Chern-Simons coupling B2F2F6, of the form5

N B2 F2 + k B2F
′
2 , (4.21)

where F ′2 =
∫
CP2 F6. This implies that the massless U(1) linear combination is

J = kQ0 −NQ4 . (4.22)

Here the generators Q0, Q4 are labeled by the objects charged under the corresponding

U(1)’s, namely D0-branes and D4-branes wrapped on CP2. Note that our sign convention

differs from [32].

The orthogonal linear combination,

Qbroken = NQ0 + kQ4 , (4.23)

corresponds to a massive U(1), which is broken by instanton effects, and only a discrete

subgroup remains. The instanton corresponds to an NS5-brane wrapped on CP3, since it

couples magnetically to B2. It suffers from Freed-Witten anomalies due to the F6 and F2

fluxes, so it emits N D0-branes and k wrapped D4-branes. Hence, the total violation of

Qbroken is N2 + k2. This is the order of the gauge group. However, notice that at the level

of the black hole (and of the WCC), what is actually relevant is the number of particles

required to be emitted, namely N D0-branes (contributing charge N each) and k D4-branes

(contributing charge k each). The type IIA internal space is large compared with the string

scale if N � k, so the limit of large order of the discrete gauge group scales as N2 and the

black hole decay is dominated by the emission of N D0-branes. In the arguments below,

this is one particular instance in which the relevant coefficient in scaling relations is not

the order of the discrete symmetry, but the number of emitted particles.

Notice also that we are recovering in possibly more intuitive terms the discussion of

the earlier M-theory setup, with wrapped D4-branes corresponding to wrapped M5-branes

and D0-branes corresponding to KK modes of the M-theory circle.

5For further discussion of Chern-Simons couplings and swampland constraints see [52].
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Let us discuss the masses of the D4- and D0-brane particles and the U(1) gauge

couplings. They scale as

mD0 = g−1
s Ms ∼Mp, 4N

− 3
4 k

3
4 ,

mD4 = g−1
s M 5

s R
4
s ∼Mp, 4N

1
4 k−

1
4 . (4.24)

We already notice that the D0-brane mass decreases with N faster than the ‘species’ bound

reviewed in section 2.1.1, ensuring that black holes can get rid of their discrete charge by

emitting D0-branes. Let us turn to check the implication for gauge couplings and verify

the ZN WCC.

The 4d gauge couplings for the U(1)’s generated by Q0 and Q4 are given by

1

g 2
0

∼ M8
s R

6
sM

−2
s

1

g 2
4

∼ M8
s R

6
s (M−5

s R−4
s )−2 . (4.25)

The first common factor arises from the reduction of the 10d kinetic term for RR fields

on the CP3, while the last factors arise from the normalization of the gauge fields by the

coefficient of the D-brane Chern-Simons term, so that charges are integer numbers. Using

the familiar relations above, we obtain the scalings

g−2
0 ∼ N3/2k−3/2 , g−2

4 ∼ N−1/2k1/2 . (4.26)

The coupling constant associated to the massless combination (4.22) is

g−2 =
k2

g2
0

+
N2

g2
4

∼ N
3
2k

1
2 , (4.27)

and, as explained, its scaling satisfies the WCC with respect to N

g ∼ N−
3
4k−

1
4 . (4.28)

As expected, the D0- and D4-brane particles satisfy the BPS/WGC bound, in agree-

ment with the result for wrapped M5-branes and KK modes in (4.9), (4.12)

mD4 = Mp, 4g N , mD0 = Mp, 4 g k . (4.29)

Notice also that g ∼ 1/R in Planck units, so the above masses imply conformal dimensions

N and k for the holographically dual operators, as is by now familiar.

5 Discrete 3-form symmetries and scale separation in AdS solutions

In [34] it is proposed that in AdS vacua with cosmological constant Λ, the limit Λ → 0 is

accompanied by a tower of states becoming light as

m ∼ |Λ|α . (5.1)

– 16 –



J
H
E
P
0
6
(
2
0
2
0
)
0
8
3

The strong version of this conjecture is that α = 1/2, which is the case in many/most string

solutions (see below for examples). We focus on this version and phrase the conjecture as

a ratio of scales6

m2

Λ
∼ O(1) . (5.2)

The states in the tower are typically KK states, and we use this term in the following.

The conjecture implies that one cannot achieve a (parametric) separation of the KK scale

and the scale of the cosmological constant. In fact, a problem that has been pervasive in

holography literature is the search of gravity duals of QCD or 4d SCFT with conformal

anomaly coefficients a 6= c. Scale separation is also an important intermediate step in

constructions attempting to realize de Sitter vacua in string theory [53, 54]. Hence it is an

important question which merits attention.

There are systematic constructions of AdS4 vacua in string theory in type IIA com-

pactifications on CY orientifolds with NSNS and RR fluxes [33, 55] (see [56] for a recent

generalization to general CYs). As already noticed in the literature, there is a family of

vacua in [33] (see also [55]) claimed to achieve scale separation, thus violating the strong

form of the conjecture. In this section we show that this family enjoys a Zk discrete sym-

metry arising from 3-form gauge symmetries broken by a topological coupling to an axion,

of the kind considered in [35, 36], together with a continuous 3-form symmetry. Hence it

provides a setup in which a Zk WCC for 3-form gauge fields is at work. The tension of

the corresponding BPS domain walls can be related to the vacuum energy, and introduces

additional factors of k in (5.2), thus explaining the parametric scale separation, that is

controlled by the parameter k. This symmetry is consistently absent in other AdS vacua

with no scale separation, hence provides a rationale for the existence of scale separation in

this family, and suggests the proper generalization of (5.2) in the presence of domain wall

Zk symmetries.

5.1 Review of scaling AdS4 vacua with scale separation

In this section we review some key elements of the family of models with scale separation,

following [33] (see also [55] for related classes of type IIA AdS vacua).

Consider type IIA on a CY threefold modded out by an orientifold action introducing

O6-planes. The O6-planes introduce a tadpole for the RR 7-form, which is canceled by

(possibly present) D6-branes, and a combination of the F0 ≡ m Romans mass flux param-

eter and H3 NSNS field strength flux on 3-cycles. Although it is possible to introduce it,

we consider the RR F2 field strength fluxes to be zero.7 On the other hand, we introduce

RR F4 field strength fluxes on a basis of 4-cycles Σ̃i∫
Σ̃i

F4 = eĩ ∈ Z . (5.3)

6Note that Λ has dimension mass2.
7Actually, by monodromies in suitable axions [24] the F2 flux can be generated due to the presence

of F0 flux. This follows from a Dvali-Kaloper-Sorbo coupling, and intertwines non-trivially with similar

DKS coupling to appear in section 5.2. We keep our simplified discussion for F2 = 0, and refer the reader

to [57, 58] for further information on the more general framework.
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We do not introduce RR F6 flux over the CY, and only consider it when generated by

monodromies, see section 5.3. Some details on the 4d effective action of this theory are

provided in appendix C, and here we streamline the key facts. Whereas the fluxes F0 = m

and H3 are constrained to be O(1) due to the tadpole conditions, the fluxes for F4 are

unconstrained and can be taken large. The scaling solutions are achieved in the large k

limit of

eĩ ∼ ēĩ k , (5.4)

where the ēĩ are O(1) quantities. Note that we have renamed the scaling parameter of [33]

as k to make better contact with earlier sections, and to emphasize its forthcoming role as

related to a discrete gauge symmetry.

Although we keep much of the upcoming discussion general, it is useful to consider

explicit examples. A simple class is obtained by taking toroidal orbifolds T6/Z3, whose

untwisted sector is given by 3 Kähler moduli associated to the 3 underlying T2’s. Their

volumes, measured in string units, are denoted by vi, i = 1, 2, 3, with the overall volume

being V̄ ∼ v1v2v3. They are complexified by the axions from the NSNS 2-form over the

2-tori bi. We ignore twisted sectors, and refer the reader to [33] for details. Since h2,1 = 0,

there is only one axion ξ from the period of the RR 3-form over the 3-cycle; it combines

with the 4d dilaton eD to form a complex modulus.

In the scaling limit, [33] found a supersymmetric AdS4 minimum (which we refer to

as the DGKT solution) with the following values for the 4d moduli

vi, bi ∼ k
1
2 , V̄ ∼ k

3
2 , e−D, ξ ∼ k

3
2 . (5.5)

This implies that

M 2
s ∼ e2DM 2

p, 4 ∼ k−3M 2
p, 4 , (5.6)

and that the following relevant quantities of the 4d effective action, evaluated at the mini-

mum, and measured in 4d Planck units, scale as

W ∼ k
3
2 , eK ∼ k−

15
2 Λ ∼ k−

9
2 . (5.7)

One may evaluate the KK scale as

mKK ∼ V̄−
1
6 Ms ∼ k−

7
4 Mp, 4 (5.8)

(incidentally, it coincides with the mass scale for other massive moduli, so it provides a

general cutoff of the 4d theory).

This leads to a relation of the type (5.1)

m 2
KK ∼ Λ

7
9 , (5.9)

and hence to a seeming parametric violation of the strong version of the conjecture. In [59]

the problem was considered in a family of IIA compactifications with geometric fluxes.

The back-reaction of the latter [60] implied a modification of mKK which restored the
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scaling predicted by the strong AdS Distance Conjecture. This mechanism however is

not obviously available in the present context, where geometric moduli are absent. In the

following sections we propose the scale separation is physical in these cases, and find a

rationale in terms of underlying symmetries.

5.2 The discrete 3-form symmetry

In this section we address the backbone of the solution to the above conundrum. First,

notice that we had rewritten the strong conjecture as in the form (5.2) with hindsight.

Indeed, taking this ratio we find that in the DGKT family

m 2
KK

Λ
∼ k . (5.10)

Alternatively, we may express the vacuum energy Λ in terms of the UV cutoff scale mKK as

Λ ∼
m 2

KK

k
. (5.11)

Recalling that Λ has dimension 2, this is extremely reminiscent of the type of relation one

finds in theories with a Zk discrete gauge symmetry, see (2.3). Moreover, since the left

hand side quantity is the vacuum energy, the relevant charged objects should be related to

the structure of the vacuum.

We now show that there is indeed an effective Zk symmetry acting on domain walls

changing the fluxes in the vacuum. The structure is controlled by topological couplings of

the 10d theory. In fact, we will study them without assuming the vacuum solution described

in the previous section, and show that the scaling relations found there are a consequence

of these topological couplings, or equivalently of the discrete symmetry structure.

So we start with the general CY (orientifold) compactification, and consider the basis

of 4-cycles Σ̃i and their dual 2-cycles Σi. We recall the F4 flux structure and introduce 4d

axions from B2 as ∫
Σ̃i

F4 = k ēĩ ,

∫
Σi

B2 = φi (5.12)

(these axions were denoted by bi in the toroidal setup above). In addition, we introduce a

symplectic basis of orientifold-odd 3-cycles αa and orientifold-even 3-cycles βa, and intro-

duce the NSNS H3 fluxes and RR axions∫
αa

H3 = pa ,

∫
βa

C3 = ξa . (5.13)

In addition, there is a Romans mass flux parameter F0 = m.

Let us initially focus on the dynamics of Kähler moduli, hence ignore ξa, which will

be reintroduced later on. Most of the discussion is general, although we eventually apply

it to the toroidal orbifold for illustration.

The dimensional reduction of the 10d Chern-Simons coupling F4F4B2 leads to the 4d

topological coupling

k

( ∑
i

ēĩφi

)
F4 . (5.14)
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This makes the 3-form massive, by eating up the 2-form dual to a linear combination of

axions. The overall factor k implies that there is a discrete Zk symmetry under which

domain walls are charged [21]. This confirms we are on the right track. In fact, although

certain modifications are about to come in, in the large k limit this Zk discrete symmetry

determines the properties of the system.

The situation is actually slightly more subtle, because of the following. The scalars φi
also appear in couplings with other 4-forms, arising from the 8-form as

F4, ĩ =

∫
Σ̃i

F8 . (5.15)

Hence, including the reduction of the 10d coupling F0B2F8, the complete set of topological

couplings is

m
∑
i

φiF4, ĩ + k

( ∑
i

ēĩφi

)
F4 . (5.16)

This means that the combination φ′ ≡
∑

i ēĩφi also couples to other 4-forms. To isolate

that dependence, introduce the generators Q′ and Qi of 3-form U(1) symmetries for C3

and C3,i, and consider the linear combination

Q′ =
∑
i

ēĩQi . (5.17)

The topological coupling for the corresponding 4-form F ′4 is

m

(∑
i

ēĩ φi

)
F ′4 = mφ′ F ′4 . (5.18)

Hence, we can isolate the axion φ′ with its couplings to the 4-forms F4, F ′4 as

φ′
(
mF ′4 + k F4

)
. (5.19)

It is interesting that we have this universal sector, decoupled (at the topological level)

from other axions and 4-forms, and hence independent of the details of the underlying CY

compactification space.

Since there is only one axion and two 4-forms, there is clearly a massless 3-form cor-

responding to the combination

QU(1) = k Q′ − mQ =
∑
i

eĩQĩ − mQ . (5.20)

In the second equality we have recast the combination in terms of the original 4-forms. It is

straightforward to check, using (5.16), that QU(1) is indeed free from topological couplings

to scalars, hence remains an unbroken 3-form gauge symmetry.

The combination appearing in (5.19), namely

Q⊥ = mQ′ + kQ =
∑
i

m ēĩ Qĩ + k Q , (5.21)

– 20 –



J
H
E
P
0
6
(
2
0
2
0
)
0
8
3

is broken to a discrete subgroup. To better understand its structure, consider the string

emitting a number of domain walls, and let us compute the violation of conservation of Q⊥.

The relevant string couples to the dual to φ, namely it is given by an NS5-brane wrapped

on the linear combination of 4-cycles
∑

i ēĩΣ̃i. Due to the presence of m, it emits mēĩ
D6-branes wrapped on Σ̃i; due to the presence of eĩ units of 4-form flux over Σ̃i, it emits∑

i ēĩeĩ D2-branes. Since each D6-brane on Σ̃i violates Qĩ in 1 unit, and each D2-brane

violates Q in 1 unit, we have a total violation of Qbroken by

∆Q⊥ =
∑
i

(
ēĩ
)2 (

k2 +m2
)

. (5.22)

Although it would seem that at large k the symmetry is of order k2, notice that it suffices

to have k D2-branes (plus a number of D6’s sub-leading in the 1/k approximation) to

annihilate into a string. It’s only that one D2-brane implies a violation of k units of Qbroken,

from the way we built the linear combination. So it is an effective Zk for D2-branes.

Notice that this system realizes a 3-form version of the theories with discrete and

continuous U(1) symmetries (for 1-forms) we described in earlier sections. In particular,

the structure of two underlying U(1)’s with one linear combination broken by a topological

coupling is completely analogous to the discussion of the type IIA gravity dual of ABJM

theories in section 4.2.8

5.3 Scaling relations for moduli from discrete symmetries

In analogy with the ABJM system, the D2- and D6-brane domain walls are BPS, and their

tensions must relate to their charges under the unbroken QU(1),

TDW = g QU(1)M
4
p, 4 . (5.23)

The gauge coupling g for QU(1) is derived from those of the 3-form symmetries associated

to Q and Qĩ, see (5.20). We denote them g2, g6, ĩ respectively, to indicate that the charged

objects are D2-branes and D6-branes on Σĩ. We have

1

g2
= k2

∑
i

(
ēĩ
)2 1

g 2
6, ĩ

+ m2 1

g2
2

. (5.24)

The fact that both D2- and D6-branes can satisfy the BPS condition (5.23), implies that,

in the large k limit, their gauge couplings must relate as

g6, ĩ ∼ k g2 . (5.25)

It is easy to express the ratio of these gauge couplings in terms of microscopic compactifica-

tion parameters and derive that the scaling for v reproduces (5.5). We offer a simplified dis-

cussion here, referring the reader to appendix C for a supergravity-friendly derivation. For

concreteness, we also focus on the toroidal case. The inverse gauge couplings squared are

1

g 2
2

= M 2
s V̄

(
M−3
s

)2
= M −4

s V̄ ,

1

g 2
6, ĩ

= M 2
s V̄
(
M−3
s

vi
V̄

)2

= M −4
s

(vi)
2

V̄
, (5.26)

8With the notational difference that the roles of N , k are now played by k, m, respectively.
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where the first factor arises from the 10d coupling and the terms in parenthesis arise from

normalization of charges to integers, and we recall that V̄ = v1v2v3. We have that

g6, ĩ

g2
=
V̄
vi

(5.27)

and comparing with (5.25) for different i’s gives

vi ∼ k
1
2 , V̄ ∼ k

3
2 . (5.28)

A more direct, and possibly more general, route to the scaling relations for moduli is

to use the monodromy relations. The fact that e.g. F4 has topological couplings to axions

implies that the flux N of F6 over the CY changes as the axions wind across their periods.

Indeed, the above discussion is slightly oversimplified, since the fluxes experience a more

intricate set of axion monodromies. These have been studied systematically in [57], and

appeared implicitly in [33]. They just follow from the nested structure of 10d Chern-Simons

terms, or equivalently of the 10d modified Bianchi identity for F6, which implies

F6 = dC5 + F4B2 + F2B2B2 + F0B2B2B2 +H3C3 . (5.29)

Hence, restricting to our setup with only F0, F4 and H3, the effective 4d theory can depend

only on the combination

N + k ēĩ φi + mκijk φiφjφk + pa ξa (5.30)

(where sums over repeated indices are implicit). Here κijk is the triple intersection number.

For instance, κ123 = 1 for the torus. This implies that it is possible to generate F6 flux

from m by performing a monodromy in b1 to generate F2 on the first T2, followed by a

monodromy in b2 to generate F4 on the T4 transverse to the third coordinate, and one in

b3 to generate F6 on the CY.

This is a more complete version of the topological couplings to 4-forms we have been

considering, and which underlies the discrete symmetry of the system. We are interested

in its behavior in the large k limit. Consistent scaling of the monodromy relations for large

k requires that

φi ∼ k
1
2 . (5.31)

This is the generalization of the scaling for bi in (5.5), and provides the complexified

counterpart of our scalings for vi in (5.28) (which recovered those in (5.5)). We point out

that the fact that the two components of complex moduli have identical scalings with large

flux quanta fits nicely with results on asymptotic flux compactification [61]. It is extremely

interesting that this result follow from just the discrete symmetry in the present context.

Motivated by this, we can use a similar argument to extract the scaling of the dilaton

multiplet in the large k limit. From (5.30) we get

ξa ∼ k
3
2 . (5.32)
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This is the complexification of a similar dependence of the dilaton, which thus repro-

duces (5.5).

Interestingly, with this information, which in particular implies the scaling (5.6), i.e.

Ms ∼ k−3/2Mp, 4, we obtain the scaling of gauge couplings (5.26), (5.24)

g2 ∼ k−
15
4 , g6, ĩ ∼ k−

11
4 , g ∼ k−

15
4 , (5.33)

providing a nice version of the WCC for domain walls.

Note however that when including the H3 fluxes, the above discussion is equivalent to

the inclusion of additional topological couplings paξaF4. In other words, D2-brane domain

walls, in the presence of H3 flux, can annihilate in sets of pa by nucleating a string given

by a D4-brane wrapped on the 3-cycle αa, due to the Freed-Witten inconsistency of the

latter. The presence of these couplings spoils the structure of continuous and discrete 3-

form gauge symmetries found in the Kähler moduli sector. In other words, the coupling of

F4 to a different linear combination of axions implies that the former continuous symmetry

is actually also broken by the new additional axion, given by the linear combination of ξa.

We skip the detailed discussion of the resulting complete discrete symmetry group. Note

however that for large k the effects of both m and p are sub-leading in a 1/k expansion, so

the Zk symmetry we have been using prevails.

Since we have recovered the scalings of the Kähler and complex structure moduli, it

is a simple exercise to use the expressions of 4d supergravity to derive others like (5.7),

and eventually recover the scale separation (5.11). On the other hand, the 4d approach

has been criticized as potentially hiding subtleties of the 10d solution. Therefore in the

following we use an alternative approach, and exploit properties of BPS domain walls to

recover the vacuum energy.

5.4 Discrete symmetries and scale separation

In this section we exploit the interplay between the tensions of domain walls and the vacuum

energy, and study the interplay of discrete symmetries and scale separation. We argue

through explicit examples that AdS vacua with trivial discrete symmetry for domain walls

do not have scale separation; this is true even if there are non-trivial discrete symmetries

for particles or strings, and in general for real codimension higher than 1 objects. On the

other hand, we show that the above type IIA modes with non-trivial discrete symmetry

for domain walls, with the corresponding scaling for moduli, do have vacuum energy with

scale separation. We extend this general relation and put forward the following refined

version of the swampland constraint (5.2), as follows:

Zk refined strong ads distance conjecture. Consider quantum gravity on an AdS

vacuum with a Zk discrete symmetry for domain walls (with k large). In the flat-space

limit Λ→ 0 (with Λk → 0 as well) there exists an infinite tower of states at a scale Mcutoff ,

with the relation

Λ ∼
M2

cutoff

k
. (5.34)

We now proceed to check this conjecture in the examples of supersymmetric AdS vacua

of this paper, by deriving their vacuum energies from the properties of domain walls.
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5.4.1 Vacuum energy from domain walls

Let us describe our main tool to evaluate the vacuum energies without invoking an un-

derlying scalar potential. There is in fact a general relation between domain wall tensions

and vacuum energies, which essentially follows from junction conditions in general relativ-

ity. We refer the reader to appendix D for a discussion well adapted to our application in

AdS. The key point is that the domain wall tension T is the variation of certain quanti-

ties λ, see (D.9), whose square essentially gives the vacuum energy Λ, see (D.8). In the

supersymmetric setup, and for BPS domain walls, these statements become the familiar

λ = eK/2W , T = ∆(eK/2W ) = ∆λ , Λ = −3eK |W |2 ∼ −|λ|2 . (5.35)

We consider BPS domain walls whose quantized charge describes the change in some

field strength flux n as one crosses the domain wall. In the limit of large flux n, the tension

T provides the derivative of dλ/dn. We can then solve to obtain the scaling with n of λ,

and thus of its square, Λ.

5.4.2 Warm-up examples: no scale separation

We now turn to discuss the AdS examples of sections 3, 4, deriving their AdS radius

from the above strategy, and showing there is no scale separation. This is in agreement

with our Refined Strong AdS Distance Conjecture (RSADC), as these examples have dis-

crete symmetries for particles (and for their dual real codimension 2 objects) but not for

domain walls.

Type IIB on S5/Zk. Consider type IIB on S5/Zk with N units of RR 5-form flux and

R4 ∼M−4
s gsN k . (5.36)

This is of course the class of theories considered in section 3, but we are now not imposing

the solution for the 5d vacuum, rather we are deriving its vacuum energy from the domain

wall properties. In passing, we also discuss the gauge coupling of the 3-forms and draw

conclusions regarding the WCC.

We consider a BPS domain wall given by a D3-brane in 5d. Its tension is

TD3 ∼ M 4
s g
−1
s ∼ M 4

p, 5N
− 5

3k−
1
3 . (5.37)

The same result is obtained from the BPS condition

TD3 = gQD3 (5.38)

upon computation of the gauge coupling of the 5d RR 4-form under which the D3-brane

is charged. Since the tension essentially agrees with the gauge coupling, we observe an

interesting WCC scaling for g (in that respect, recall that the relevant large order dis-

crete symmetry is ZN ). This is interesting, since the discrete symmetry acts on parti-

cles/membranes, whereas g is a 3-form gauge coupling. It would be interesting to explore

the interplay between discrete and continuous symmetries of different degrees; we hope to

come back to this in future work.
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Since this domain wall interpolates among vacua with N and N + 1, one can now

obtain

dλ

dN
∼ N−

5
3k−

1
3 ⇒ λ ∼ N−

2
3 k−

1
3 ⇒ Λ ∼M 2

p, 5N
− 4

3 k−
2
3 . (5.39)

Using (3.6) we have

Λ ∼ R−2 . (5.40)

Hence the AdS radius is the same as that of the internal space, and there is no decoupling

of scales. This is the strong ADC statement in [34].

Note that, even though there are discrete gauge symmetries in the system, their orders

do not enter the ratio of scales. This is in agreement with our RSADC, since these discrete

symmetries involve particles and membranes, not domain walls.

M-theory on S7/Zk. Let us consider M-theory on S7/Zk with N units of flux (or Nk

in the covering space) and

R6 ∼ M−6
p, 11N k . (5.41)

This is of course the same system as in section 4, but again we wish to derive the 4d vacuum

energy from the relevant BPS domain walls. We consider a BPS domain wall given by an

M2-brane in 4d. Its tension is

TM2 ∼ M3
p, 11 ∼ M 3

p, 4N
− 7

4 k−
1
4 . (5.42)

where we used (4.4). The same result is obtained from the BPS condition

TM2 = g QM2 (5.43)

upon computation of the gauge coupling g for the 4d 3-form. Recalling the relevant large

order discrete symmetry is ZN , we note again that we get an interesting WCC scaling for g.

Since the M2-brane domain wall interpolates between vacua with N and N + 1 units

of flux, we have

dλ

dN
∼ N−

7
4 k−

1
4 ⇒ λ ∼ N−

3
4 k−

1
4 ⇒ Λ ∼ M 2

p, 4N
− 3

2 k−
1
2 ∼ R−2 . (5.44)

In the last relation, we have used (4.4). Again, we recover the result that the AdS radius

is of the same order of magnitude as the KK scale of the internal space. Also, notice that

there are discrete symmetries in the theory, but they involve particles and strings, rather

than domain walls. Hence, they do not alter the relation between scales, in agreement with

our RSADC.

Type IIA on CP3. We would like to repeat the previous computation in the type IIA

picture. Let us consider type IIA theory on CP3 with N units of F6 RR flux over CP3

and k units of F2 RR flux over CP1 ⊂ CP3 and

R2
s ∼M−2

s N1/2k−1/2 . (5.45)
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This is the same system as in section 4.2. The relevant BPS domain wall is a D2-brane in

4d, whose tension is

TD2 ∼ M3
s g
−1
s ∼ M3

p,4N
−7/4k−1/4 . (5.46)

This is the same scaling as the M2-brane in the previous section, and the D2-brane domain

wall interpolates vacua with N and N + 1 units of flux, so we recover

Λ ∼M2
p,4N

−3/2k−1/2 ∼ R−2
s . (5.47)

The AdS radius is the same as that of the internal space, with no scale separation, in

agreement with our RSADC.

5.4.3 Revisiting the scale separation in type IIA CY flux compactifications

Consider now the configurations with the large k discrete Zk symmetry for domain walls

in section 5.2. We wish to derive the scaling of the vacuum energy with k, just using the

scaling of moduli vevs (5.5), (5.6) derived in section 5.3 from the Zk symmetry.

We consider the BPS domains wall given by a D4-brane wrapped on the combination

of 2-cycles
∑

i ēĩΣi. This domain wall interpolates between vacua with F4 flux given by

k and k + 1. Notice that the F4-flux is not monodromic, hence the D4-branes are stable

against nucleation of strings, and can provide BPS objects (in contrast with e.g. D2- and

D6-brane domain walls encountered in earlier sections).

The tension of these domain walls can be obtained from the BPS equation and the

gauge couplings, computed in detail in appendix C. Here we carry out a simplified deriva-

tion, taking the toroidal case for concreteness. The gauge coupling of a D4i-brane domain

wall is

1

g 2
4, i

= M2
s V̄ (M −3

s v−1
i )2 = M−4

s V̄v−2
i ∼ k

13
2 . (5.48)

As usual, in the first equality, the first term comes from the reduction of the 10d coupling,

and the parenthesis from the charge normalization. Note that the scaling is common for

all i, so by the BPS condition we get the tension

TDW ∼ k−
13
4 . (5.49)

Notice that, if interpreted in terms of gauge couplings, this implies an interesting WCC,

as in earlier examples. From the above tension we get

dλ

dk
∼ k−

13
4 ⇒ λ ∼ k−

9
4 ⇒ Λ ∼ k−

9
2 . (5.50)

So we recover the scaling (5.7) for Λ (the reader can check those of K and W as well). Once

mKK is recovered as in (5.8), this reproduces the scale separation (5.11), in agreement with

our RSADC conjecture.
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A Species bound for extremal black holes

In the following we consider the evaporation of extremal black holes endowed with Zk
charge. For concreteness, the classical solutions we are taking are the extremal Reissner-

Nordström black holes in 4d space-time dimensions. They have vanishing Hawking tem-

perature, so the analysis in [41] is not directly applicable.

Extremal black holes can discharge through Schwinger radiation [62–64]. Whenever

the electric field is much larger than the background curvature, this happens essentially in

flat space [65]. In this case the production rate has an exponential suppression

Γ ∼ e−
m2

qE ∼ e−χ , (A.1)

where m and q are the mass and charge of the emitted particle and E is the electric field,

given by

E =
g2

4π

Q

r2
. (A.2)

As argued in section 2.1.2, the simplest way in which this kind of black hole is able

to get rid of both continuous and discrete charge while remaining sub-extremal is in the

presence of a Zk WGC particle. Let us assume that this particle is actually BPS,

m = gqMp . (A.3)

As a consequence, the black hole will remain extremal throughout the whole evapora-

tion process.

From (A.1) and (A.2), we notice that the maximum particle production will happen

close to the horizon, so in this order of magnitude analysis we will approximate the whole

radiation as the contribution of that region.

From the extremality condition we can relate the horizon radius and the charge of the

BH with its mass through

rh ∼
MBH

M2
p

, gQ ∼ MBH

Mp
. (A.4)

They lead to

E ∼ g
M3
p

MBH
. (A.5)

Introducing (A.3) and (A.5) in (A.1) we can estimate the factor in the exponential

suppression of the production rate of the Zk WGC particle to be

χ ∼ mMBH

M2
p

. (A.6)
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The black hole will be able to efficiently evaporate discrete charge when

MBH .
M2
p

m
. (A.7)

With this condition being true, the black hole should still have enough mass to radiate

O (k) particles (assuming the Zk WGC particle to have unit discrete charge), which means

MBH & km . (A.8)

Finally, from the two conditions (A.7) and (A.8), we obtain the following bound for the

mass of the Zk WGC particle:

m2 .
M2
p

k
. (A.9)

This is the species bound in [41]. We have shown that the bound also applies to extremal

black holes emitting Zk WGC particles via Schwinger effect.

B Discrete symmetries in intersecting brane models

Discrete symmetries are ubiquitous in models of intersecting branes (see [66] for a review),

as pioneered in [20]. In this appendix we use them to illustrate the interplay of Zk and

U(1) gauge symmetries, and the scalings implied by the Zk WCC.

Let us start by recalling the basic setup. Consider a compactification of type IIA on

a Calabi-Yau space X6 quotiented by the orientifold9 action ΩR(−1)FL , where R is an

antiholomorphic Z2 involution of X6, which introduces O6-planes. Let us denote [ΠO6] the

total homology class of the 3-cycles wrapped by the O6-planes. Introducing a symplectic

basis [αi], [βi] of 3-cycles even and odd under R, respectively, we may expand

[ΠO6] =
∑
i

riO6[αi] + siO6[βi] , (B.1)

with riO6, siO6 some coefficients of order 1-10.

The O6-planes are charged under the RR 7-form, so to cancel its tadpoles we introduce

D6-branes. We consider stacks of NA overlapping D6A−branes wrapped on 3-cycles ΠA,

and their orientifold image D6A′−branes on 3-cycles ΠA′ . In terms of the basis, we have

[ΠA] =
∑
i

riA[αi] + siA[βi] , [ΠA′ ] =
∑
i

riA[αi] − siA[βi] . (B.2)

The RR tadpole condition reads∑
A

2riA + riO6 = 0 ∀i . (B.3)

In addition there are K-theory RR tadpole conditions [67], which we skip in this sketchy

discussion.

9Note that the orientifolds are not essential for the argument, but we choose to introduce them to better

connect with the literature on intersecting brane models.
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In these models, there are Stückelberg couplings for the U(1)A, of the form∑
A

NAs
i
Ab2,i FA , (B.4)

where wedge product is implicit. FA is the field strength of the U(1) gauge field on the

D6A−branes, and the 4d 2-forms b2,i arise from the KK compactification of the RR 5-form

C5 as

b2,i =

∫
βi

C5 . (B.5)

This makes some of the U(1)’s massive. Let us consider linear combinations of the U(1)A
generators QA

Q =
∑
A

cAQA , (B.6)

with cA being coprime integers, so as to preserve charge integrality. The Stückelberg

coupling for the field strength F of the U(1) generated by A is( ∑
A

cANAs
i
A

)
b2,i F . (B.7)

Hence, the condition for a U(1) to remain massless is∑
A

cANAs
i
A = 0 ∀i . (B.8)

If not, the U(1) is broken, remaining only as approximate global symmetry, broken by non-

perturbative D2-brane instanton effects [68–70]. The condition that a discrete Zk subgroup

remains as exact discrete gauge symmetry is∑
A

cANAs
i
A = 0 mod k ∀i . (B.9)

Generically, to achieve this for large k a possibility10 is to have siA ∼ k, at least for some

A, for all i. This implies that there is some brane which is wrapped on a very large (i.e.

multiply wrapped) cycle. This implies that in general any unbroken U(1), given by a linear

combination (B.6) satisfying (B.8), will also involve that particular QA with a coefficient

of order k. This implies that the gauge coupling of the unbroken U(1) scales as

1

g2
= k hence g ∼ k−

1
2 , (B.10)

in agreement with the Zk WCC.

Although this is not quite a rigorous argument, it is a good illustration of how the

interplay between U(1) gauge couplings and Zk symmetries arises, as a consequence of

the fact that, to achieve a large order Zk discrete symmetry, one needs to use parametri-

cally large cycles, thus parametrically scaling gauge couplings to zero. Hence, intersecting

brane models provide an intuitive mechanism for the Zk WCC. More detailed string theory

examples are presented in the main text.

10This is not the only one, but we stick to it as an illustrative example.
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C Gauge couplings in type IIA CY compactifications

In this appendix we derive the gauge coupling constants for domain walls present in type

IIA CY flux compactifications. We review the computation in [71] following the conventions

in [33]. From [33], the 10d string frame action is given by11

S10d =
1

2κ2
10

∫
d10x
√
−g
(
e−2φ(R+ 4(∂µφ)2 − 1

2
|Htotal

3 |2)

− (|F̃2|2 + |F̃4|2 +m2
0)

)
+ SCS , (C.1)

where 2κ2
10 = (2π)7α′4 and the definitions of the field strengths are

Htotal
3 = dBs +Hbg

3 ,

F̃2 = dC1 +mB2 , (C.2)

F̃4 = dC3 + F bg
4 − C1 ∧H3 −

m

2
B2 ∧B2 .

The Chern-Simons action contains also a prefactor (2κ10)−1 in front. We define an adi-

mensional internal volume by V̄ = M6
s V and perform the dimensional reduction in the

string frame. For instance, the kinetic term for the 4d field strength associated to the 10d

F4 reads

Skin
4d ⊃ −

M2
s

2

∫
d4x
√
−g4V̄|F4|2 , (C.3)

where F4 = dC3. To move back to the Einstein frame, we choose a reference scale a, and

define the 4d dilaton D(x) as

a =
〈V̄〉
e2〈φ〉 , e2D =

e2φ

V̄
. (C.4)

So the Einstein frame kinetic terms take the form

Skin
E ⊃ M2

s

2a

∫
d4x
√
−gERE −

a2M2
s

2

∫
d4x
√
−gEV̄e−4D|F4|2 , (C.5)

where the products are now done using gE as a metric.

To obtain 4d gauge 3-forms, we perform a KK reduction of 10d p-forms along suitable

harmonic (p− 3)-forms in the internal space. In the notation of [57],

C3 = c0
3 , C5 = ca3 ∧ ωa , C7 = d̃3a ∧ ω̃a and C9 = d̃3 ∧ ω6 . (C.6)

They corresponds to the relevant 4-forms F0
4 , Fa4 , F̃4,a and F̃4 associated to D2-, D4-, D6-

and D8-branes.

Notice that we need to normalize the gauge fields by the coefficient in front of the

D-brane Chern-Simons term, in order for the charges to be properly quantized. For a

Dp-brane this introduces factors of µp ∝ α′(p+1)/2 ∼ M
(p+1)
s in the forthcoming gauge

11Our convention is that |Fp|2 = Fα1...αpF
α1...αp/p!.
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couplings. Namely, in order to be consistent, we need to keep the harmonic forms as

adimensional, so the generic Chern-Simons action is

S
(p)
CS ∼M

3
s

∫
W3×γp−2

c3 ∧ ωp−2 , (C.7)

where we have called c3∧ωp−2 collectively each decomposition in (C.6). The normalization

consists in redefining the RR 3-form by a factor M3
s , so that there is no prefactor in front

of the Chern-Simons action. The effect of such redefinition on (C.5) is just a change in the

prefactor in front of the kinetic terms of the gauge fields,

Skin
E ⊃ M2

s

2a

∫
d4x
√
−gERE −

a2

2M2
s

∫
d4x
√
−gEV̄e−4D|F4|2 . (C.8)

We are almost done in the definition of the coupling constants, but first we need the

following quantities:

M2
s ∝

e2〈φ〉

〈V̄〉
M2
p, 4 = a−1M2

p, 4 , KK = − ln(8V̄) , KQ = 4D , K = KK +KQ .

Substituting in (C.8) and including the other 4-forms, we obtain [71]

Skin
E =

π

2M4
p

∫
e−K

8

[
F0

4 ∧ ?F0
4 + 4gabFa4 ∧ ?F b4 +

1

4V̄2
gabF̃4|a ∧ ?F̃4|b +

1

V̄2
F̃4 ∧ ?F̃4

]
,

(C.9)

where

gab =
∂2KK

∂ta∂t̄b
(C.10)

is the metric in the Kähler moduli space with ta = va + iba.

We need now to specialize to the toroidal orbifold in [33]. The Kähler potential is

KK = − ln(8v1v2v3) = − ln((t1 + t̄1)(t2 + t̄2)(t3 + t̄3)) , (C.11)

so

gab =
1

4
diag

(
(v1)−2, (v2)−2, (v3)−2

)
. (C.12)

We rewrite the action according to this metric obtaining

Skin
E =

π

2M4
p

∫
e−K

8

[
F0

4 ∧ ?F0
4 +

3∑
i=1

(
1

(vi)2
F i4 ∧ ?F i4 +

(vi)2

V̄2
F̃4|i ∧ ?F̃4|i

)
+

1

V̄2
F̃4 ∧ ?F̃4

]
. (C.13)

We are finally able to read the coupling constants of all kinds of domain walls:

1

g2
0

=
πe−K

8M4
p

,
1

g2
i

=
πe−K

8M4
p (vi)2

,

1

g2
ĩ

=
πe−K(vi)2

8M4
p V̄2

,
1

g2
4̃

=
πe−K

8M4
p V̄2

. (C.14)
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From the main text, the scalings with the flux k are

eK ∼ k−15/2 , vi ∼ k1/2 and V̄ ∼ k3/2 , (C.15)

so the couplings scale as

1

g2
0

=
πe−K

8M4
p

∼ k15/2 ,
1

g2
i

=
πe−K

8M4
p (vi)2

∼ k13/2 ,

1

g2
ĩ

=
πe−K(vi)2

8M4
p V̄2

∼ k11/2 ,
1

g2
4̃

=
πe−K

8M4
p V̄2

∼ k9/2 . (C.16)

D Junction conditions for AdS vacua

Here we adapt to the 4d setup the discussion of [72], which studies a Randall-Sundrum

construction [73, 74] with an arbitrary number of branes (domain walls). The discussion

is also similar to systems of D8-branes in type I’ theory [75].

Consider a 4d spacetime with N parallel domain walls with tensions Ti, located at po-

sitions yi in a coordinate y. The region between the ith and (i+1)th brane has cosmological

constant Λi. A solution of the 4d Einstein equations

√
−G

(
RMN −

1

2
GMNR

)
=− 1

4M2
p, 4

[
N∑
i=1

Λi [θ(y − yi)− θ(y − yi+1)]
√
−GGMN

+

N∑
i=1

Ti

√
−g(i)g(i)

µνδ
µ
Mδ

ν
Nδ(y − yi)

]
(D.1)

is given by the ansatz

ds2 = e−2σ(y)ηµνdx
µdxν + r2

cdy
2 . (D.2)

The warp factor in the above expression is given by the following piecewise linear function

σ(y) =(λ1 − λ0)(y − y1)θ(y − y1) + (λ2 − λ1)(y − y2)θ(y − y2)

+ . . .+ (λN − λN−1)(y − yN )θ(y − yN ) , (D.3)

where λ0 and λN provide the asymptotic behavior at y ∓∞. In any region between two

domain walls, we can perform a change of coordinates

x0

rc
= eσ(y) , (D.4)

to bring the metric (D.2) to a more standard form, i.e.

ds2 =
r2
c

x2
0

(
ηµνdx

µdxν + dx2
0

)
. (D.5)

from which it is clear that the solution describes slices of AdS4 with different values of the

cosmological constant, made explicit below.
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From (D.1), we obtain the following constraints for σ(y) [72]:

(σ′(y))2 = − r2
c

12M2
p, 4

N∑
i=1

Λi [θ(y − yi)− θ(y − yi+1)] , (D.6)

σ′′(y) =
rc

8M2
p, 4

N∑
i=1

Tiδ(y − yi) . (D.7)

Substituting (D.3) in (D.6) and (D.7), we obtain the relations

λi = ±
√
−Λir2

c

12M2
p, 4

, (D.8)

Tirc
8M2

p, 4

= λi − λi−1 . (D.9)

Hence these junction conditions relate the variation of the cosmological constant to the

potential of the branes that give us the domain walls. This is a general interpretation of

what we proposed in section 5.4.

Open Access. This article is distributed under the terms of the Creative Commons
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[69] L.E. Ibáñez, A.N. Schellekens and A.M. Uranga, Instanton induced neutrino Majorana

Masses in CFT orientifolds with MSSM-like spectra, JHEP 06 (2007) 011

[arXiv:0704.1079] [INSPIRE].

[70] B. Florea, S. Kachru, J. McGreevy and N. Saulina, Stringy instantons and quiver gauge

theories, JHEP 05 (2007) 024 [hep-th/0610003] [INSPIRE].
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1 Introduction and conclusions

Supersymmetry breaking string vacua (including 10d non-supersymmetric strings) are
generically affected by tadpole sources for dynamical fields, unstabilizing the vacuum [1, 2].
We refer to them as dynamical tadpoles to distinguish them from topological tadpoles, such
as RR tadpoles, which lead to topological consistency conditions on the configuration (note
however that dynamical tadpoles were recently argued in [3] to relate to violation of swamp-
land constraints of quantum gravity theories). Simple realizations of dynamical tadpoles
arose in early models of supersymmetry breaking using antibranes in type II (orientifold)
compactifications [4–7], or in 10d non-supersymmetric string theories [8].
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Dynamical tadpoles indicate the fact that equations of motion are not obeyed in the
proposed configuration, which should be modified to a spacetime-dependent solution (more
precisely, solution in which some fields do not preserve the maximal symmetry in the corre-
sponding spacetime dimension, but we stick to the former nomenclature), e.g. rolling down
the slope of the potential. This approach has been pursued in the literature (see e.g. [9–13]),
although the resulting configurations often contain metric singularities or strong coupling
regimes, which make their physical interpretation difficult.

In this work we present large classes of spacetime1 dependent field configurations
sourced by dynamical tadpoles, which admit a simple and tractable smoothing out of such
singularities. Remarkably, these examples reveal a set of notable physical principles and
universal scaling behaviours. We argue that the presence of a dynamical tadpole implies
the appearance of ends of spacetime (or walls of nothing) at a finite spacetime distance,
which is (inversely) related to the strength of the tadpole. These ends of spacetime more-
over correspond to cobordism defects (or end of the world branes) of the theory implied by
the swampland cobordism conjecture [14, 15]. In most setups the cobordism defects end
up closing off the space into a compact geometry (possibly decorated with branes, fluxes
or other ingredients), thus triggering spontaneous compactification.

We can sum up the main features described above, and illustrated by our examples,
in two lessons:

Finite distance. In the presence of a dynamical tadpole controlled by an order parame-
ter T , the spacetime-dependent solution of the equations of motion cannot be extended to
spacetime distances beyond a critical value ∆ scaling inversely proportional to T , with a
scaling relation

∆−n ∼ T . (1.1)

In our examples, n = 1 or n = 2 for setups with an underlying AdS-like or Minkowski
vacuum, respectively.

Dynamical cobordism. The physical mechanism cutting off spacetime dimensions at
scales bounded by the ∆ above, is a cobordism defect of the initial theory (including the
dynamical tadpole source).

To be precise, when there are multiple spacetime directions to be closed off, the actual
defect is the cobordism defect corresponding to circle or toroidal compactifications of the
initial theory, with suitable monodromies on non-trivial cycles. This is analogous to the
mechanism by which F-theory on half a P1 provides the cobordism defect for type IIB on
S1 with SL(2,Z) monodromy [14] (see also [16]).

As explained, we present large classes of models illustrating these ideas, including (susy
and non-susy) 10d string theories and type II compactifications with D-branes, orientifold
planes, fluxes, etc. For simplicity, we present models based on toroidal examples (and
orbifolds and orientifolds thereof), although many of the key ideas easily extend to more

1Actually, we restrict to configurations of fields varying over spatial dimensions (rather than time); yet
we abuse language and often refer to them as spacetime-dependent.
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general setups. This strongly suggests that they can apply to general string theory vacua.
Very remarkably, the tractability of the models allows to devise spontaneous compacti-
fication whose endpoint corresponds to some of the (supersymmetric extensions of the)
SM-like D-brane constructions in the literature. As will be clear, our examples can often
be regarded as novel reinterpretations of models in the literature.

Although our examples are often related to supersymmetric models, supersymmetry is
not a crucial ingredient in our discussion. Dynamical tadpoles correspond to sitting on the
slope of potentials, which, even in theories admitting supersymmetric vacua, correspond to
non-supersymmetric points in field space. On the other hand, supersymmetry of the final
spacetime-dependent configuration is a useful trick to guarantee that dynamical tadpoles
have been solved, but it is possible to build solutions with no supersymmetry but equally
solving tadpoles.

Our results shed new light on several features observed in specific examples of classical
solutions to dynamical tadpoles, and provide a deeper understanding of the appearance of
singularities, and the stringy mechanism smoothing them out and capping off dimensions
to yield dynamical compactification. In particular, we emphasize that our discussion unifies
several known phenomena and sheds new light on the strong coupling singularities of type
I’ in [17] and in heterotic M-theory [18] (and its lower bound on the 4d Newton’s constant).
There are several directions which we leave for future work, for instance:

• As is clear from our explicit examples, many constructions of this kind can be obtained
via a reinterpretation of known compactifications. This strongly suggests that our
lessons have a general validity in string theory. It would be interesting to explore
the discussion of tadpoles, cobordism and spontaneous compactifications in general
setups beyond tori.

• A general consequence of (1.1) is a non-decoupling of scales between the geometric
scales controlling the order parameter of the dynamical tadpole and the geometric size
of the spontaneously compactified dimensions. This is reminiscent of the swampland
AdS distance conjecture [19]. It would be interesting to explore the generation of
hierarchies between the two scales, possibly based on discrete Zk gauge symmetries
as in [20].

• Our picture can be regarded as belonging to the rich field of swampland constraints
on quantum gravity [21] (see [22–24] for reviews). It would be interesting to study
the interplay with other swampland constraints. In particular, the relation between
the strength of the dynamical tadpole and the size of the spacetime dimensions is
tantalizingly reminiscent of the first condition on |∇V |/V of the de Sitter conjec-
ture [25–27], with T = |∇V | and if we interpret V as the inverse Hubble volume
and hence a measure of size or length scale in the spacetime dimensions. It would
be interesting to explore cosmological setups and a possible role of horizons as al-
ternative mechanisms to cut off spacetime. Also, the inequality admittedly works in
different directions in the two setups, thus suggesting they are not equivalent, but
complementary relations.

– 3 –
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• It would be interesting to apply our ideas to the study of other setups in which
spacetime is effectively cut off, such as the capping off of the throat in near horizon
NS5-branes due to strong coupling effects, or the truncation in [28] of throats of the
euclidean wormholes in pure Einstein+axion theories [29].

• Finally, we have not discussed time-dependent backgrounds.2 These are obviously
highly interesting, but their proper understanding is likely to require new ingredients,
such as end (or beginning) of time defects (possibly as generalization of the spacelike
S-branes [30, 31]).

Until we come back to these questions in future work, the present paper is organized
as follows. In section 2 we reinterpret the Klebanov-Strassler (KS) warped throat sup-
ported by 3-form fluxes as a template illustrating our two tadpole lessons. Section 2.1
explains that the introduction of RR 3-form flux in type IIB theory on AdS5 × T 1,1 pro-
duces a tadpole. The varying field configuration is the Klebanov-Tseytlin solution, which
leads to a metric singularity at a finite distance scaling as (1.1), as we show in section 2.2.
In section 2.3 we relate the KS smoothing of this singularity with cobordism defects. In
section 2.4 we extend the discussion to other warped throats. In section 3 we present a
similar discussion in toroidal compactifications with fluxes. Section 3.1 introduces a T5
compactification with RR 3-form flux, whose tadpole backreacts producing singularites at
finite distance as we show in section 3.2. In section 3.3 we argue they are smoothed out by
capping off dimensions and triggering spontaneous compactification. In section 4 we build
examples in the context of magnetized D-branes. In section 4.1 we describe the tadpole
backreaction and its singularities, which are removed by spontaneous compactification in
section 4.2. In section 5 we turn to the dilaton tadpole of several 10d strings. In sec-
tion 5.1 we consider massive type IIA theory, where the running dilaton solutions produce
dynamical cobordisms by introduction of O8-planes as cobordism defects of the IIA theory,
eventually closely related to type I’ compactifications. In section 5.2 we discuss a similar
picture for M-theory on K3 with G4 flux, and a Horava-Witten wall as its cobordism defect.
In section 5.3 we consider the 10d non-supersymmetric USp(32) theory, in two different
approaches. In section 5.3.1 we build on the classical solution in [9] and discuss its singu-
larities in the light of the cobordism conjecture. In section 5.3.2 we describe an explicit
(and remarkably, supersymmetry preserving) configuration solving its tadpole via magne-
tization and spontaneous compactification on T6. In section 6 we discuss an interesting
application, describing a 6d model with tadpoles, which upon spontaneous compactifica-
tion reproduces a semi-realistic MSSM-like brane model. Finally, appendix A discusses the
violation of swampland constraints of type IIB on AdS5×T 1,1 when its tadpole is not duly
backreacted, in a new example of the mechanism in [3].

2 The fluxed conifold: KS solution as spontaneous cobordism

In this section we consider the question of dynamical tadpoles and their consequences in
a particular setup, based on the gravity dual of the field theory of D3-branes at a coni-

2For classical solutions of tadpoles involving time dependence, see e.g. [11].
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fold singularity. The discussion is a reinterpretation, in terms useful for our purposes, of
the construction of the Klebanov-Tseytlin (KT) solution [32] and its deformed avatar, the
Klebanov-Strassler (KS) solution [33]. This reinterpretation however provides an illumi-
nating template to discuss dynamical tadpoles in other setups in later sections.

We consider type IIB on AdS5 × T 1,1, where T 1,1 is topologically S2 × S3 [34]. This is
the near horizon geometry of D3-branes at the conifold singularity [34] (see also [35–37]),
which has been widely exploited in the context of holographic dualities. The vacuum is
characterized by the IIB string coupling eφ = gs and the RR 5-form flux N . The model
has no scale separation, since the T 1,1 and AdS5 have a common scale R, given by

R4 = 4π gsNα′2 . (2.1)

In any event, we will find useful to discuss the model, and its modifications, in terms of the
(KT) 5d effective theory introduced in [32]. This is an effective theory not in the Wilsonian
sense but in the sense of encoding the degrees of freedom surviving a consistent truncation.
In particular, it includes the dilaton φ (we take vanishing RR axion for simplicity), the
NSNS axion Φ =

∫
S2 B2 and the T 1,1 breathing mode q (actually, stabilized by a potential

arising from the curvature and the 5-form flux), which in the Einstein frame enters the
metric as

ds2
10 = R2

(
e−5q ds2

5 + e3qds2
T 1,1

)
. (2.2)

This approach proved useful in [38] in the discussion of the swampland distance conjec-
ture [39] in configurations with spacetime-dependent field configurations (see [19] for a
related subsequent development, and [40, 41]).

2.1 The 5d tadpole and its solution

Let us introduce M units of RR 3-form flux in the S3, namely

F3 = M ω3 , (2.3)

where ω3 is defined in eq. (27) in [33]. We do not need its explicit expression, it suffices
to say that it describes a constant field strength density over the S3. The introduction of
this flux sources a backreaction on the dilaton and the metric, namely a dynamical tadpole
for φ and q. In addition, as noticed in [38], it leads to an axion monodromy potential
for Φ [42–45]. The situation is captured by the KT effective action (with small notation
changes) for the 5d scalars φ, Φ and q, collectively denoted by ϕa

S5 = − 2
κ2

5

∫
d5x
√
−g5

[1
4R5 −

1
2Gab(ϕ)∂ϕa∂ϕb − V (ϕ)

]
, (2.4)

with the kinetic terms and potential given by

Gab(ϕ)∂ϕa∂ϕb = 15(∂q)2 + 1
4(∂φ)2 + 1

4e
−φ−6q(∂Φ)2 , (2.5)

V (ϕ) = −5e−8q + 1
8M

2 eφ−14q + 1
8(N +MΦ)2e−20q . (2.6)
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Clearly gsM2 is an order parameter of the corresponding dynamical tadpole. In the fol-
lowing we focus on the case3 of N being a multiple of M .

Ignoring the backreaction of the dynamical tadpole (i.e. considering constant profiles
for the scalars over the 5d spacetime) is clearly incompatible with the equations of motion.
Furthermore, as argued in [3], it can lead to violations of swampland constraints. In
particular, since the introduction of F3 breaks supersymmetry, if the resulting configuration
was assumed to define a stable vacuum, it would violate the non-susy AdS conjecture [46];
also, as we discuss in appendix A, it potentially violates the Weak Gravity Conjecture [47].

Hence, we are forced to consider spacetime-dependent scalar profiles to solve the equa-
tions of motion. Actually, this problem was tackled in [33], with the scalars running with
r, as we now review in the interpretation in [38]. There is a non-trivial profile for the axion
Φ, given by

Φ = 3gsM log(r/r0) . (2.7)

This implies the cancellation of the dilaton tadpole, which can be kept constant eφ = gs,
as follows from its equation of motion from (2.5), (2.6)

∇φ ∼ −e−6q−φ(∂Φ)2 + e−14q+φM2 . (2.8)

2.2 Singularity at finite distance

The varying Φ corresponds to the introduction of an NSNS 3-form flux in the configuration

H3 = −gs ∗6d F3 , (2.9)

where the 6d refers to T 1,1 and the AdS5 radial coordinate r, and the Hodge duality is
with the AdS5×T 1,1 metric. This is precisely such that the complexified flux combination
G3 = F3 − τH3 satisfies the imaginary self duality (ISD) constraint making it compatible
with 4d Poincaré invariance in the remaining 4d coordinates (and in fact, it also preserves
supersymmetry). The backreaction on the metric thus has the structure in [48, 49]. The
metric (2.2) takes the form

ds 2
10 = Z−

1
2 ηµνdx

µdxν + Z
1
2
(
dr2 + r2ds2

T 1,1

)
, (2.10)

where Z obeys a Laplace equation in AdS5, sourced by the fluxes, and reads

Z(r) = 1
4r4 (gsM)2 log(r/r0) . (2.11)

The warp factor also enters in the RR 5-form flux, which decreases with r as

N(r) =
∫

S5
F5 = gsM

2 log(r/r0) . (2.12)

This matches nicely with the monodromy for the axion Φ as it runs with r [38]. These
features (as well as some other upcoming ones) were nicely explained as the gravity dual
of a Seiberg duality cascade in [33].

3This implies that the configuration is uncharged under a discrete ZM symmetry, measured by N mod
M , and associated to the redundancy generated by transformation φ→ φ+ 1, N → N −M , see footnote 5.
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This 5d running solution in [32] solves the dynamical tadpole, but is not complete, as
it develops a metric singularity at r = r0. This is a physical singularity at finite distance in
spacetime, whose parametric dependence on the parameters of the initial model is as follows

∆(r) =
∫ r

r0
Z(r)

1
4 dr ∼

∫ r

r0
(gsM)

1
2
[
log(r/r0)

] 1
4
dr

r

∼ (gsM)
1
2
[
log(r/r0)

] 5
4 = (gsN)

1
4

N

gsM2 ∼ R
N

gsM2 . (2.13)

In the last equalities we used (2.12), (2.1). Hence, starting with an AdS5 × T 1,1 theory
with N units of RR 5-form flux, the introduction of M units of RR 3-form flux leads
to a breakdown of the corresponding spacetime-dependent solution at a distance scaling
as ∆ ∼ M−2. Recalling that the dynamical tadpole is controlled by an order parameter
T = gsM

2, this precisely matches the scaling relation (1.1) of the Finite Distance Lesson.

2.3 Dynamical cobordism and the KS solution

As is well known, the singularity in the KT solution is smoothed out in the KS solution [33].
This is given by a warped version of the deformed conifold metric, instead of the conical
conifold singularity, with warp factor again sourced by an ISD combination of RR 3-form
flux on S3 and NSNS 3-form flux on S2 times the radial coordinate. At large r the KS
solution asymptotes to the KT solution, but near r ∼ r0, the solutions differ and the KT
singularity is replaced by the finite size S3 of the deformed conifold.

Hence, the Finite Distance Lesson still applies even when the singularity is removed,
and the impossibility to extend the coordinate r to arbitrary distances is implemented by
a smooth physical end of spacetime. The purpose of this section is to highlight a novel
insight on the KS solution, as a non-trivial realization of the swampland cobordism conjec-
ture [14, 15]. The latter establishes that any consistent quantum gravity theory must be
trivial in (a suitably defined version of) cobordism. Namely in an initial theory given by an
n-dimensional internal compactification space (possibly decorated with additional ingredi-
ents, like branes or fluxes), there must exist configurations describing an (n+1)-dimensional
(possibly decorated) geometry whose boundary is the initial one. The latter describes an
end of the world defect (which we will refer to as the ‘cobordism defect’) for the spacetime
of the initial theory. Since the arguments about the swampland cobordism conjecture are
topological, there is no claim about the unprotected properties of the cobordism defect,
although in concrete examples it can preserve supersymmetry; for instance, in maximal
dimensions, the Horava-Witten boundary is the cobordism defect for 11d M-theory, and
similarly the O8-plane is the cobordism defect of type IIA theory.4

In our setup, the initial theory is AdS5 × T 1,1 with N units of RR 5-form flux and M
units of RR 3-form flux on S3. From the above discussion, it is clear that the KS solution

4Other 10d theories are conjectured to admit cobordism branes, but they cannot be supersymmetric and
their nature is expected to be fairly exotic, and remains largely unknown. We will come back to this point
in section 5.3.1.
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is just the cobordism defect of this theory.5 The remarkable feature is that the end of
spacetime is triggered dynamically by the requirement of solving the equations of motion
after the introduction of the RR 3-form flux, hence it is fair to dub it dynamical cobordism.
Hence, this is a very explicit illustration of the Dynamical Cobordism Lesson.

This powerful statement will be realized in many subsequent examples in later sections,
and will underlie the phenomenon of spontaneous compactification, when the cobordisms
close off the spacetime directions bounding them into a compact variety.

2.4 More general throats

A natural question is the extension of the above discussion to other AdS5×X5 vacua with
3-form fluxes. This question is closely related to the search for general classes of gravity
duals to Seiberg duality cascades and their infrared deformations, for which there is a
concrete answer if X5 is the real base of a non-compact toric CY threefold singularity Y6,
which are very tractable using dimer diagrams [50, 51] (see [52] for a review).

From our perspective, the result in [53] is that the X5 compactification with 3-form
flux F3 admits a KS-like end of the world (cobordism defect6) if Y6 admits a complex
deformation which replaces its conical singularity by a finite-size 3-cycle corresponding to
the homology dual of the class [F3]. In cobordism conjecture terms, in these configurations
the corresponding global symmetry is broken, and spacetime may close off without further
ado (as the axion monodromy due to the 3-form fluxes allows to eat up the RR 5-form
flux before reaching the end of the world). Such complex deformations are easily discussed
in terms of the web diagram for the toric threefold, as the splitting of the web diagram
into consistent sub-diagrams [53]. Simple examples include the deformation of the complex
cone over dP2 to a smooth geometry, or the deformation of the complex cone over dP3 to
a conifold, or to a smooth geometry.

There are however singularities (or 3-form flux assignments), for which the complex
deformations are simply not available. One may then wonder about how our Dynamical
Cobordism lesson applies. The answer was provided in particular examples in [54–56]: the
infrared end of the throat contains an explicit system of fractional D-branes, which in the
language of the cobordism conjecture kill the corresponding cobordism classes, and allow
the spacetime to end. As noticed in these references, the system breaks supersymmetry,
and in [55] it was moreover noticed (as later revisited in [57]) to be unstable and lead to
a runaway behaviour for the field blowing up the singularity. Hence, this corresponds to
an additional dynamical tadpole, requiring additional spacetime dependence, to be solved.
Simple examples include the complex cone over dP1, and the generic Y p,q theories. We will
not enter the discussion of possible mechanisms to stabilize these models, since following [58]
they are likely to require asymptotic modifications of the warped throat ansatz (i.e. at all
positions in the radial direction, including the initial one).

5Recalling footnote 3, the case of N multiple of M implies the vanishing of a ZM charge, and allows the
cobordism defect to be purely geometrical; otherwise the cobordism defect ending spacetime must include
explicit D3-branes, which are the defect killing the corresponding cobordism class [14].

6We note in passing that the regions between different throats in the multi-throat configurations [53]
can be regarded as domain walls interpolating between two different, but bordant, type IIB vacua.

– 8 –



J
H
E
P
0
6
(
2
0
2
1
)
1
7
0

3 Type IIB fluxes and spontaneous compactification

In this section we construct an explicit 5d type IIB model with a tunable dynamical tadpole,
and describe the spacetime-dependent solution solving its equations of motion, which is in
fact supersymmetry preserving. The configuration displays dynamical cobordism resulting
in spontaneous compactification to 4d. The resulting model is a simple toroidal compacti-
fication with ISD NSNS and RR 3-form fluxes [48, 49], in particular it appeared in [59, 60].
With this perspective in hindsight, one can regard this section as a reinterpretation of
the latter flux compactification. Our emphasis is however in showing the interplay of the
dynamical tadpoles in the 5d theory and the consequences in the spacetime configuration
solving them.

3.1 The 5d tadpole and its solution

Consider type IIB on T5, which for simplicity we consider split as T2 × T2 × S1. We
label the coordinates of the T2’s as (x1, y1) and (x2, y2), with periodicity 1, and introduce
complex coordinates as z1 = x1 + τ1y

1, z2 = x2 + τ2y
2. We also use a periodic coordinate

x3 ' x3 + 1 to parametrize the S1. For simplicity, we do not consider moduli deviating
from this rectangular structure,7 and also take the T5 to have an overall radius R,

ds2 = R2[(dz1)2 + (dz2)2 + (dx3)2] . (3.1)

The result so far is a standard 5d supersymmetric T5 compactification.
We introduce a non-trivial dynamical tadpole source by turning on an RR 3-form flux

(using conventions in [49])
F3 = (2π)2α′N dx1 dx2 dx3 . (3.2)

The introduction of this flux does not lead to RR topological tadpoles, but induces dynam-
ical tadpoles for diverse fields. In the following we focus on the dynamics of the 5d light
fields R, τ1, τ2, the dilaton φ and the NSNS axion Φ defined by

B2 = Φ dy1 dy2 . (3.3)

The discussion of the dynamical tadpole is similar to the T 1,1 example in section 2, so
we sketch the result. There is a dilaton tadpole, arising from the dimensional reduction of
the 10d kinetic term for the 3-form flux,

∇2 φ = 1
12 e

φ (F3)2 . (3.4)

Since (F3)2 is a constant source density, which does not integrate to zero over T5, there is
no solution for this Laplace equation if we assume the solution to be independent of the 5d
spacetime coordinates. One possibility would be to allow for 5d spacetime dependence of φ
(at least in one extra coordinate, as in [9]). Here we consider a different possibility, which

7As usual, they can be removed in orbifold models, although we will not focus on this possibility.
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is to let the NSNS axion Φ acquire a dependence on one of the 5d coordinates, which we
denote by y, as follows

Φ = −(2π)2α′
N

t3
y ⇒ H3 = −(2π)2α′

N

t3
dy1 dy2 dy . (3.5)

We have thus turned on NSNS 3-form field strength in the directions y1, y2 in T5 and the
5d spacetime coordinate y. Here the sign has been introduced for later convenience, and
t3 is a positive real parameter allowing to tune the field strength density, whose meaning
will become clear later on.

Including this new source, the dilaton equation of motion becomes

∇2 φ = 1
12
[
eφ (F3)2 − e−φ (H3)2

]
. (3.6)

Hence, the spacetime-dependent profile (3.5) can cancel the right hand side and solve the
dilaton tadpole when

e2φ (F3)2 = (H3)2 . (3.7)

We can thus keep the dilaton constant eφ = gs. Taking for simplicity purely imaginary
τ1 = it1 and τ2 = it2, the condition (3.7) is simply

gs t1 t2 t3 = 1 . (3.8)

In addition to the dilaton, the 3-form fluxes backreact on the metric and other fields,
which we discuss next.

3.2 The singularities

We now discuss the backreaction on the metric and other fields. For convenience, we use
the complex coordinates z1, z2 and z3 = x3 + iy. In terms of these, we can write the
combination

G3 = F3 − τH3 = (2π)2

4 α′N(dz1 dz2 dz3 + dz1dz2dz3 + dz1dz2dz3 + dz1dz2dz3) . (3.9)

Regarding T5 × R1
y as a (non-compact) CY, this is a combination of (2, 1) and (0, 3)

components, which is thus ISD. There is a backreaction on the metric and RR 4-form of
the familiar black 3-brane kind. In particular, the metric includes a warp factor Z

ds 2
10 = Z−

1
2 ηµνdx

µdxν + Z
1
2 R2[dz1dz1 + dz2dz2 + dz3dz3] , (3.10)

where xµ runs through the four Poincaré invariant spacetime coordinates. The warp factor
is determined by the Laplace equation

− ∇̃2Z = gs
12G3 ·G3 = gs

6 (F3)2 , (3.11)

with the tilde indicating the Laplacian is computed with respect to the unwarped, flat
metric, and in the last equation we used (3.7).
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Note that, since y parametrizes a non-compact dimension, there is no tadpole problem
in solving (3.11) i.e. we need not add background charge. One may then be tempted to
conclude that this provides a 5d spacetime-dependent configuration solving the 5d tadpole.
However, the solution is valid locally in y, but cannot be extended to arbitrary distances
in this direction. Since the local flux density in T5 is constant, we can take Z to depend
only on8 y, hence leading to a solution

− d2Z

dy 2 = gs
6 (F3)2 ⇒ Z = 1− gs

12(F3)2 y2 , (3.12)

where we have set an integration constant to 1. The solution hits metric singularities at

y−2 = 1
12gs(F3)2 , (3.13)

showing there is a maximal extent in the direction y. Let us introduce the quantity
T = 1

12gs(F3)2, which controls the parametric dependence of the tadpole. Then, the dis-
tance between the singularities is

∆ =
∫ T −1/2

−T −1/2
Z

1
4 dy = 2√

T

∫ 1

0
(1− t2)

1
4 dt , (3.14)

with t =
√
T y. We thus recover the scaling (1.1) with n = 2,

∆−2 ∼ T . (3.15)

Hence the appearance of the singularities as a consequence of the dynamical tadpole is as
explained in the introduction.

3.3 Cobordism and spontaneous compactification

The appearance of singularities is a familiar phenomenon. In this section we argue that
they must be smoothed out, somewhat analogously to the KS solution in section 2. The fact
that it is possible follows from the swampland cobordism conjecture [14, 15], namely there
must exist an appropriate cobordism defect closing off the extra dimension into nothing.
Since there are two singularities, the formerly non-compact dimension becomes compact,
in an explicit realization of spontaneous compactification.9

In the following, we directly describe the resulting geometry, which turns out to be a
familiar T6 (orientifold) compactification with ISD 3-form fluxes. Consider type IIB theory
on T2 ×T2 ×T2, with

F3 = (2π)2α′N dx1 dx2 dx3 , H3 = (2π)2α′N dy1 dy2 dy3 . (3.16)

We use zi = xi + itiy
i, hence the above defined t3 is the complex structure modulus for

the T2 involving the newly compact dimension. For moduli satisfying (3.8) the T6 flux
combination G3 is given by (3.9), which is ISD and indeed compatible with 4d Poincaré

8In fact, this is the leading behaviour at long distances, compared with the T5 size scale R.
9Spontaneous compactification has been discussed in the context of dynamical tadpoles in [9].
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invariance as usual. Notice that in this case, it is possible to achieve a large size for the
new compact dimension t3 � 1 by simply e.g. taking small gs. This corresponds to the
regime of small 5d tadpole, with the relation

t−2
3 ∼ g 2

s ∼ T 2 , (3.17)

in agreement with the maximal distance relation in the previous section.
Consistency, in the form of C4 RR tadpole cancellation, requires the introduction of

O3-planes at fixed points of the involution R : zi → −zi (together with mobile D3-branes).
From the perspective of the 5d theory, the additional dimension is compactified on an inter-
val, with two end of the world defects given by the O3-planes, which constitute the cobor-
dism defects of the configuration (possibly decorated with explicit D3-branes if needed).

4 Solving dynamical tadpoles via magnetization

In this section we consider a further setup displaying dynamical tadpoles, based on com-
pactifications with magnetized D-branes [61–65]. In toroidal setups, these have been (ei-
ther directly or via their T-dual intersecting brane world picture) widely used to realize
semi-realistic particle physics models in string theory. In more general setups, magnetized
7-branes are a key ingredient in the F-theory realization of particle physics models [66–68].

4.1 Solving dynamical tadpoles of magnetized branes

We consider a simple illustrative example. Consider type IIB theory compactified on
T2×T2 (labelled 1 and 2, respectively) and mod out by ΩR1(−1)FL , where R1 : z1 → −z1.
This introduces 4 O71-planes spanning (T2)2 and localized at the fixed points on (T2)1.
We also have 32 D7-branes (as counted in the covering space), split as 16 D7-branes (taken
at generic points) and their 16 orientifold images. This model is related by T-duality on
(T2)1 to a type I toroidal compactification, but we proceed with the D7-brane picture.

We introduce M units of worldvolume magnetic flux along (T2)2 for the U(1) of a
D7-brane10

1
2πα′

∫
T2
F2 = M . (4.1)

The orientifold requires we introduce −M units of flux on the image D7-brane.11 This also
ensures that there is no net induced Z-valued D5-brane charge in the model, and hence no
associated RR tadpole, in agreement with the fact that the RR 6-form is projected out. In
addition, there is a Z2 K-theory charge [70] which is cancelled as long as M ∈ 2Z.

The introduction of the worldvolume flux leads to breaking of supersymmetry. As
is familiar in the discussion of supersymmetries preserved by different branes [71], we
introduce the angle

θ2 = arctan(2πα′ F ) = arctan (Mχ) , (4.2)

where F is the field strength and χ is the inverse of the T2 area, in string units.
10If N the D7-branes are coincident, it is also possible to use the overall U(1) ⊂ U(N). We will stick to

the single D7-brane for the moment, but such generalization will arise in later examples.
11For simplicity we consider vanishing discrete NSNS 2-form flux [69], although such generalization will

arise in later examples.
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This non-supersymmetric configuration introduces dynamical tadpoles. For small θ2,
the extra tension can be described in effective field theory as an FI term controlled by
θ [72–74]. In fact, in [75] a similar parametrization was proposed for arbitrary angles. By
using the DBI action, the extra tension has the structure

V ∼ 1
gs

(√
1 + (tan θ2)2 − 1

)
. (4.3)

This leads to a tadpole for the dilaton and the (T2)2 Kähler modulus.
We now consider solving the tadpole by allowing for some spacetime-dependent back-

ground. Concretely, we allow for a non-trivial magnetic field −F on two of the non-compact
space coordinates, parametrized by the (for the moment, non-compact) coordinate z3. In
fact this leads to a configuration preserving supersymmetry since, defining the angle θ3 in
analogy with (4.2), we satisfy the SU(2) rotation relation θ3 + θ2 = 0 [71]. In other words,
the field strength flux has the structure

F2 = F (dz2dz2 − dz3dz3) , (4.4)

which is (1, 1) and primitive (i.e. J ∧F2 = 0), which are the supersymmetry conditions for
a D-brane worldvolume flux.

Hence, it is straightforward to find spacetime-dependent solutions to the tadpole of
the higher-dimensional theory, at the price of breaking part of the symmetry of the lower-
dimensional spacetime. In the following we show that, as in earlier examples, this eventually
also leads to spontaneous compactification.

4.2 Backreaction and spontaneous compactification

The spacetime field strength we have just introduced couples to gravity and other fields,
so we need to discuss its backreaction.

In fact, this is a particular instance of earlier discussions, by considering the F-theory
lift of the D7-brane construction. This can be done very explicitly by taking the config-
uration near the SO(8)4 weak coupling regime [76]. The configuration without magnetic
flux M = 0 simply lifts to F-theory on K3×T2 × R2, where the (T2)1 (modulo the Z2
orientifold action) is the P1 base of K3, and the T2 and R2 explicit factors correspond to
the directions z2 and z3, respectively. As is familiar, the 24 degenerate fibers of the K3
elliptic fibration form 4 pairs, reproducing the 4 orientifold planes, and 16 D7-branes in
the orientifold quotient. Actually, the discussion below may be carried out for F-theory on
K3 at generic points in moduli space, even not close to the weak coupling point.

The introduction of magnetization for one 7-brane corresponds to the introduction of a
G4 flux along the local harmonic (1, 1)-form supported at an I1 degeneration (or enhanced
versions thereof, for coincident objects), of the form

G4 = ω2 ∧ F (dz2dz2 − dz3dz3) . (4.5)

This flux is self-dual, and in fact (2, 2) and primitive, which is the supersymmetry preserving
condition for 4-form fluxes in M/F-theory [48, 77]. The backreacted metric is described
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by a warp factor satisfying a Laplace equation sourced by the fluxes, similar to (3.11).
Considering the regime in which the warp factor is taken independent of the internal space
and depends only on the coordinates in the R2 parametrized by z3, the constant flux
density leads to singularities at a maximal length scale ∆

∆−2 ∼ F 2 . (4.6)

This is another instance of the universal relation (1.1) with T ∼ F 2, hence n = 2.
This is in complete analogy with earlier examples. Hence, we are led to propose

that the smoothing out of these singularities is provided by the compactification of the
corresponding coordinates, e.g. on a T2, with the addition of the necessary cobordism
defects, namely orientifold planes and D-branes.12

To provide an explicit solution, we introduce the standard notation (see e.g. [63, 64])
of (n,m) for the wrapping numbers and the magnetic flux quanta on the (T2)i’s for the
directions i = 1, 2, 3. In this notation, the O71-planes and unmagnetized D71-branes
are associated to (0, 1) × (1, 0) × (1, 0), while the magnetized D71-branes13 correspond to
(0, 1)× (1,M)× (1,−M), and (0, 1)× (1,−M)× (1,M) for the orientifold images. In other
words, we require a flux quantization condition on (T2)3 as in (4.1), up to a sign flip.

Since now the last complex dimension is compact, there is an extra RR tadpole cancella-
tion condition, which requires the introduction of 16 O73-planes, wrapped on (T2)1×(T2)2
and localized at fixed points in (T2)1, namely with wrapping numbers (1, 0)×(1, 0)×(0, 1).
This introduces an extra orbifold action generated by (z1, z2, z3) → (z1,−z2,−z3), so the
model can be regarded as a (T-dual of a) magnetized version of the D9/D5-brane T4/Z2
orientifolds in [78, 79]. Allowing for n additional mobile D73-branes (as counted in the
covering space, and arranged in orbifold and orientifold invariant sets), the RR tadpole
cancellation conditions is

2M2 + n = 32 . (4.7)

The supersymmetry condition is simply that the T2 parameters satisfy χ2 = χ3.
From the perspective of the original 6d configuration, the tadpole in the initial T2×T2

configuration has triggered a spontaneous compactification. Since the additional O-planes
and D-branes required to cancel the new RR tadpoles are localized in z3, they can be
interpreted as the addition of I-branes to cancel the cobordism charge of the original model.

It should be possible to generalize the above kind of construction to global K3-fibered
CY threefolds with O7-planes. The local fibration in a small neighbourhood of a generic
point of the base provides a local 6d model essentially identical to our previous one. On

12To be precise, the cobordism defects of an S1 compactification of the model. This is analogous to
the mechanism by which F-theory on half a P1 provides the cobordism defect for type IIB on S1 with
SL(2,Z) monodromy [14] (see also [16]). In fact, since magnetized branes often lead to chiral theories in
the bulk, this extra circle compactification allows them to become non-chiral and admit an end of the world
describable at weak coupling, see the discussion below (5.14) in section 5.3. We will nevertheless abuse
language and refer as cobordism defect to the structures involved in the final spontaneous compactification
under discussion.

13If the magnetization is in the U(1) ⊂ U(N) of a stack of N coincident branes, see footnote 10, the
corresponding wrapping goes as (N,M).
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the other hand, the global geometry defining how the two extra dimensions compactify
would correspond to another possible spontaneous compactification, with the ingredients
required for the cancellation of the new RR tadpoles.

However, a general drawback of this class of models is that the scales of the compact
spaces in the directions 2 and 3 are of the same order.14 Thus, there is no separation of
scales, and no reliable regime in which the dynamics becomes that of a 6d model. This is
easily avoided in more involved models, as we will see in the examples in coming sections.

5 Solving tadpoles in 10d strings

In this section we consider dynamical tadpoles arising in several 10d string theories, and
confirm the general picture. We illustrate this with various examples, with superymmetry
(massive type IIA and M-theory on K3), and without it (non-supersymmetric 10d USp(32)
theory).

5.1 Massive IIA theory

We consider 10d massive type IIA theory [80]. This can be regarded as the usual type IIA
string theory in the presence of an additional RR 0-form field strength F0 ≡ m. The string
frame effective action for the relevant fields is

S10 = 1
2κ 2

10

∫
d10x

√
−G

{
e−2φ[R+ 4(∂φ)2]− 1

2(F0)2 − 1
2(F4)2

}
+ Stop , (5.1)

where Stop includes the Chern-Simons terms. In the Einstein frame GE = e−
φ
2G, we have

S10,E = 1
2κ 2

∫
d10x

√
−GE

{[
R− 1

2(∂φ)2
]
− 1

2e
5
2φm2 − 1

2e
1
2φ(F4)2

}
. (5.2)

Here we have usedm to emphasize this quantity is constant. This theory is supersymmetric,
but at a given value of φ, it has a tadpole controlled by

T ∼ e
5
2φm2 . (5.3)

This is in particular why the massive IIA theory does not admit 10d maximally symmetric
solutions. In the following we discuss two different ways of solving it, leading to Minkowski
or AdS-like configurations.

5.1.1 Solution in 9d and type I’ as cobordism

To solve the tadpole (5.3) we can consider a well-known 1/2 BPS solution with the dilaton
depending on one coordinate x9. Since the flux m can be regarded as generated by a set
of m distant D8-branes, this is closely related to the solution in [81]. We describe it in

14In the toroidal example, if the magnetization along (T2)2 is on the overall U(1) ⊂ U(16) of 16 coincident
D7-branes, the magnetic field along z2 is F ∼M/16; this weakened tadpole implies an increase of the critical
size of the spontaneously compactified dimensions by a factor of 4.
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conventions closer to [17], for later use. In the Einstein frame, the metric and dilaton
background have the structure

(GE)MN = Z(x9)
1

12 ηMN , eφ = Z(x9)−
5
6 , with Z(x9) ∼ B −mx9 , (5.4)

where B is some constant (in the picture of flux generated by distant D8-branes, it relates
to the D8-brane tensions). The solution hits a singularity at x9 = B/m. Starting at a
general position x9, the distance to the singularity is

∆ =
∫ B

m

x9
Z(x9)

1
24 dx9 ∼ Z(x9)

25
24 m−1 ∼ m−1e−

5
4φ , (5.5)

where in the last equality we have traded the position for the value the dilaton takes there.
Recalling (5.3), this reproduces the Finite Distance scaling relation (1.1) with n = 2,

∆−2 ∼ T . (5.6)

It is easy to propose the stringy mechanism capping off spacetime before or upon reach-
ing this singularity, according to the Dynamical Cobordism lesson. This should be the
cobordism defect of type IIA theory, which following [14] is an O8-plane, possibly with
D8-branes.

In fact, this picture is implicitly already present in [17], which studies type I’ theory,
namely type IIA on an interval, namely IIA on S1 modded out by ΩR with R : x9 → −x9,
which introduces two O8−-planes which constitute the interval boundaries. There are 32
D8-branes (in the covering space), distributed on the interval, which act as domain walls
for the flux F0 = m, which is piecewise constant in the interval. The metric and the dilaton
profile are controlled by a piecewise linear function Z(x9). The location of the boundaries
at points of strong coupling was crucial to prevent contradiction with the appearance of
certain enhanced symmetries in the dual heterotic string (the role of strong coupling at
the boundaries for the enhancements was also emphasized from a different perspective
in [82, 83]). In our setup, we interpret the presence of (at least, one) O8-plane as the
cobordism defect triggered by the presence of a dynamical tadpole in the bulk theory.

5.1.2 A non-supersymmetric Freund-Rubin solution

We now consider for illustration a different mechanism to cancel the dynamical tadpole,
which in fact underlies the spontaneous compactification to (non-supersymmetric15) AdS4×
S6 in [80]). The idea is that, rather than solving for the dilaton directly, one can introduce
an additional flux F4 along three space dimensions and time (or its dual F6 on six space
dimensions) to balance off the dilaton sourced by F0. This can be used to fix φ to a
constant, and following [80] leads to a scaling

F4 ∼ m2 d(vol)4 , (5.7)
15Thus, it should be unstable according to [46]. However, being at a maximum of a potential is sufficient

to avoid dynamical tadpoles, so the solution suffices for our present purposes.
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where d(vol)4 is the volume form in the corresponding 4d. Using arguments familiar by
now, the constant F4 backreaction on the metric is encoded in a solution of the 4d Laplace
equation with a constant source, leading to a solution quadratic in the coordinates (to avoid
subtleties, we take solutions depending only on the space coordinates). This develops a
singularity at a distance scaling as

∆2 ∼ |F4|−2 ∼ m−4 ∼ T , (5.8)

where in comparison with (5.3) we have taken constant dilaton.
The singularities are avoided by an AdS4×S6 compactification, whose curvature radius

is R ∼ m2, in agreement with the above scaling. From our perspective, the compactification
should be regarded as a dynamical cobordism (where the cobordism is actually that of the
10d theory on an S5 (i.e. equator of S5)).

5.2 An aside on M-theory on K3

In this section we relate the above system to certain compactifications of M-theory and to
the Horava-Witten end of the world branes as its cobordism defect. Although the results
can be obtained by direct use of M-theory effective actions, we illustrate how they can be
recovered by applying simple dualities to the above system.

Consider the above massive IIA theory with mass parameter m, and compactify on
T4/Z2. This introduces O4-planes, and requires including 32 D4-branes in the configura-
tion, either as localized sources, or dissolved as instantons on the D8-branes. Actually this
can be considered as a simple model of K3 compactifications, where in the general K3 the
O4-plane charge is replaced by the contribution to the RR C5 tadpole arising from the CS
couplings of D8-branes and O8-planes to trR2.

We now perform a T-duality in all the directions of the T4/Z2 (Fourier-Mukai trans-
form in the case of general K3). We obtain a similar model of type I’ on T4/Z2, but
now with the tadpole being associated to the presence of m units of non-trivial flux of the
RR 4-form field-strength over T4 (namely, K3). Also, the dilaton of the original picture
becomes related to the overall Kähler modulus of K3. Finally, we lift the configuration
to M-theory by growing an extra S1 and decompactifying it. We thus end up with a 7d
compactification of M-theory on K3, with m units of G4 flux,∫

K3
G4 = m. (5.9)

This leads to a dynamical tadpole, cancelled by the variation of the overall Kähler modulus
(i.e. the K3 volume) along one the 7d space dimensions, which we denote by x11. As in
previous sections, this will trigger a singularity at a finite distance in x11, related to the
tadpole by ∆−2 ∼ T . The singularity is avoided by the physical appearance of a cobordism
defect, which for M-theory is a Horava-Witten (HW) boundary [84]. This indeed can
support the degrees of freedom to kill the G4 flux, as follows. From [85], the 11d G4 is
sourced by the boundary as

dG4 = δ(x11)
(

trF 2 − 1
2trR2

)
, (5.10)
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where δ(x11) is a bump 1-form for the HW brane, and F is the field-strength for the E8
gauge fields in the boundary. Hence, the m units of G4 in the K3 compactification can be
absorbed by a HW boundary with an E8 bundle with instanton number 12 + m (the 12
coming from half the Euler characteristic of K3

∫
K3 trR2 = 24).

The above discussion is closely related to the picture in [18], which discusses compact-
ification of HW theory (namely, M-theory on an interval with two HW boundaries) on K3
and on a CY threefold. It includes a Kähler modulus varying over the interval according
to a linear function16 and the appearance of a singularity at finite distance. In that case,
the HW brane was located at the strong coupling point, based on heuristic arguments, and
this led, in the CY3 case, to a lower bound on the value of the 4d Newton’s constant.

Our perspective remarkably explains that the location of the HW wall is not an arbi-
trary choice, but follows our physical principle of Dynamical Cobordism, and the bound
on the Newton’s constant is a consequence of that of Finite Distance!

5.3 Solving tadpoles in the non-supersymmetric 10d USp(32) theory

The previous examples were based on an underlying supersymmetric vacuum, on top of
which the dynamical tadpole is generated via the introduction of fluxes or other ingredients.
In this section we consider the opposite situation, in which the initial theory is strongly
non-supersymmetric and displays a dynamical tadpole from the start. In particular we
consider the non-supersymmetric 10d USp(32) theory constructed in [4], in two different
ways: first, we use our new insights to revisit the spacetime-dependent solution proposed
in [9] (see also [10] for other proposals); then we present a far more tractable solution
involving magnetization, which in fact provides a supersymmetric compactification of this
non-supersymmetric 10d string theory.

5.3.1 The Dudas-Mourad solution and cobordism

The non-supersymmetric 10d USp(32) theory in [4] is obtained as an Ω orientifold of type
IIB theory. The closed string sector is as in type I theory, except that the O9−-plane is
replace by an O9+-plane. Cancellation of RR tadpoles requires the introduction of open
strings, which must be associated to 32 D9-branes. The closed string sector is a 10d N = 1
supergravity multiplet; the orientifold action on the D9-branes breaks supersymmetry,
resulting in an open string sector with USp(32) gauge bosons and gauginos in the two-index
antisymmetric representation. All anomalies cancel, a remarkable feat from the field theory
viewpoint, which is just a consequence of RR tadpole cancellation from the string viewpoint.

Although the RR tadpoles cancel, the NSNS tadpoles do not, implying that there is
no maximally symmetric 10d solution to the equations of motion. In particular there is a
dynamical dilaton tadpole of order the string scale, as follows from the terms in the 10d
(Einstein frame) action

SE = 1
2κ2

∫
d10x
√
−G

[
R− 1

2(∂φ)2
]
− TE9

∫
d10x
√
−G 64 e

3φ
2 , (5.11)

16In the presence of explicit M5-branes, it is a piecewise linear function. It is straightforward to include
them in our cobordism description if wished, with explicit branes considered as part of the cobordism defect.
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where TE9 is the (anti)D9-brane tension. The tadpole scales as T ∼ TE9 g
3/2
s , with the

dilaton dependence arising from the fact that the supersymmetry breaking arises from the
Moebius strip worldsheet topology, with χ = 3/2.

Ref. [9] proposed solutions of this dynamical tadpole with 9d Poincaré invariance, an d
the dilaton varying over one spacetime dimension (see also [86, 87] for more recent, related
work). In the following we revisit the solution with dependence on one spatial coordinate
y, from the vantage point of our Lessons.

The 10d solution is, in the Einstein frame,

φ = 3
4αEy

2 + 2
3 log |√αEy|+ φ0 ,

ds 2
E = |√αEy|

1
9 e−

αEy
2

8 ηµνdx
µdxν + |√αEy|−1e−

3φ0
2 e−

9αEy
2

8 dy2 , (5.12)

where αE = 64k2T9. There are two singularities, at y = 0 and y → ∞, which despite
appearances are separated by a finite distance

∆ ∼
∫ ∞

0
|
√
αEy|−

1
2 e−

3φ0
4 e−

9αEy
2

16 dy ∼ e−
3φ0

4 α
− 1

2
E . (5.13)

The fact that the solution has finite extent in the spatial dimension on which the fields
vary is in agreement with the Finite Distance Lesson, and in fact satisfying its quantitative
bound (1.1)

∆−2 ∼ T . (5.14)

We can now consider how the Dynamical Cobordism Lesson applies in the present
context. Following it, we expect the finite extent in the spatial dimensions to be physically
implemented via the cobordism defect corresponding to the 10d USp(32) theory. In general
the cobordism defect of bulk chiral 10d theories are expected to be non-supersymmetric,
and in fact rather exotic, as their worldvolume dynamics must gap a (non-anomalous) set of
chiral degrees of freedom. In fact, on general grounds they can be expected to involve strong
coupling.17 An end of the world defect imposes boundary conditions on bulk supergravity
fields, which at weak coupling should be at most linear in the fields, to be compatible with
the superposition principle. A typical example are boundary conditions that pair up bulk
fermions of opposite chiralities. However, the anomaly cancellation in the 10d USp(32)
theory involves fields of different spins, which cannot be gapped by this simple mechanism,
and should require strong coupling dynamics (a similar phenomenon in a different context
occurs in [88]).

This strong coupling fits nicely with the singularity at y → ∞, but the singularity at
y = 0 lies at weak coupling. The simplest way out of this is to propose that the singularity
at y = 0 is actually smoothed out by perturbative string theory (namely, α′ corrections,
just like orbifold singularities are not singular in string theory), and does not turn into
an end of the world defect. Hence the solution (5.12) extends to y < 0, and, since the
background is even in y, develops a singularity at y → −∞. This is still at finite distance
∆ scaling as (5.14), and lies at strong coupling, thus allowing for the possibility that the
singularity is turned into the cobordism defect of the 10d USp(32) theory.

17We are indebted to Miguel Montero for this argument, and for general discussions on this section.
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It would be interesting to explore this improved understanding of this solution to the
dilaton tadpole. Leaving this for future work, we turn to a more tractable solution in the
next section.

5.3.2 Solving the tadpole via magnetization

We now discuss a more tractable alternative to solve the dynamical tadpole via magneti-
zation, following section 4.

Stabilizing the tadpole via magnetization is, ultimately, equivalent to finding a com-
pactification (on a product of T2’s) which is free of tadpoles, for instance by demanding it
to be supersymmetric. Hence we need to construct a supersymmetric compactification of
the non-supersymmetric 10d USp(32) theory [4].

As explained above, the 10d model is constructed with an O9+-plane and 32 D9-branes.
Hence, we need to introduce worldvolume magnetic fields in different 2-planes, in such a
way that the corresponding angles add up to 0 mod 2π. It is easy to convince oneself that
this requires magnetization in at least three complex planes, ultimately triggering a T2 ×
T2×T2 compactification. In order to preserve supersymmetry, we need the magnetization
to induce D5-brane charges, rather than D5-brane charge, hence we need the presence of
three independent kinds of negatively charged O5−i -planes, where i = 1, 2, 3 denotes the
T2 wrapped by the corresponding O5-plane. We are thus considering an orientifold of
T6/(Z2 × Z2) with an O9+-plane, and 8 O5−i -planes.18

The wrapping numbers for the O-planes, and for one simple solution of all constraints
for the D9-branes (and their explicitly included orientifold image D9-branes), are

Object Nα (n1
α,m

1
α) (n2

α,m
2
α) (n3

α,m
3
α)

O9+ 32 (1, 0) (1, 0) (1, 0)
O5−1 −32 (1, 0) (0, 1) (0,−1)
O5−2 −32 (0, 1) (1, 0) (0,−1)
O5−3 −32 (0, 1) (0,−1) (1, 0)
D9 16 (−1, 1) (−1, 1) (−1, 1)
D9′ 16 (−1,−1) (−1,−1) (−1,−1)

It obeys the RR tadpole conditions for the Z-valued D9- and D5-brane charges, and
the discrete Z2 RR tadpole conditions for D3- and D7i-brane charges [70].

The supersymmetry condition determined by the O-plane wrappings is∑
i

arctan(−χi) ≡ θ1 + θ2 + θ3 = 0 mod 2π . (5.15)

The model is in fact T-dual (in all T6 directions) to that in section 5 of [59].
It is easy to see that the above condition forces at least one of the T2 to have O(1) area

in α′ units. From our perspective, this a mere reflection of the fact that the 10d dynamical
18For such combinations of orientifold plane signs, see the analysis in [89], in particular its table 6. We

will not need its detailed construction for our purposes.
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tadpole to be canceled is of order the string scale, hence it agrees with the scaling ∆−2 ∼ T .
Happily, the use of an α′ exact configuration, which is moreover supersymmetric, makes
our solution reliable. This is an improvement over other approaches e.g. as in section 5.3.1.

Although we have discussed the compactification on (an orientifold of) T6 directly,
we would like to point out that it is easy to describe it as a sequence of T2 spontaneous
compactifications, each eating up a fraction of the initial 10d tadpole until it is ultimately
cancelled upon reaching T6. However, this picture does not really correspond to a physical
situation, given the absence of decoupling of scales. This is true even in setups which
seemingly allow for one T2 of parametrically large area. Indeed, consider for instance the
regime χ3 ∼ 2λ and χ1, χ2 ∼ λ−1, for 0 < λ � 1, which corresponds to θ1, θ2 ∼ π

2 + λ,
θ3 ∼ π − 2λ. This corresponds to a compactification on substringy size (T2)1 × (T2)2 and
a parametrically large (T2)3. However, the fact that the (T2)1, (T2)2 can be T-dualized
into large area geometries shows that there is not true decoupling of scales: in the original
picture, the small sizes imply that there are towers of light winding modes, whose scale is
comparable with the KK modes of (T2)3. Hence, the lack of decoupling is still present, as
expected from our general considerations in the introduction.

6 The SM from spontaneous compactification

In this section we explore an interesting application of the above mechanism, and provide
an explicit example of a 6d theory with brane-antibrane pairs, and a dynamical tadpole
triggering spontaneous compactification to a 4d (MS)SM-like particle physics model. Inter-
estingly, the complete chiral matter and electroweak sector, including the Higgs multiplets,
are generated as degrees of freedom on cobordism branes. Only the gluons are present in
some form in the original 6d models.

Consider the type IIB orientifold of T4/Z2 with orientifold action Ω constructed in [78,
79], possibly with magnetization. To describe it, we introduce the notation in [69, 90] of
wrapping numbers (niα,mi

α), where niα and mi
α provide the wrapping number and magnetic

flux quantum of the D-brane α on the ith T2, respectively. We consider the following stacks
of D-branes (and their orientifold images, not displayed explicitly)

Nα (n1
α,m

1
α) (n2

α,m
2
α)

Na+d = 6 + 2 (1, 3) (1,−3)
Nh1 = 4 (1,−3) (1,−4)
Nh2 = 4 (1,−4) (1,−3)

40 (0, 1) (0,−1)

The O9- and O5-planes correspond to the wrapping numbers (1, 0)× (1, 0) and (0, 1)×
(0,−1) respectively. The stacks a and d are taken different and separated by Wilson lines,
but they can be discussed jointly for the time being. They correspond to 8 D9-branes
with worldvolume magnetic fluxes 72 units of D5-brane charge. The stacks h1 and h2
correspond to 8 additional D9-branes, with 96 with units of induced D5-branes charge.
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The addition of 40 explicit D5-branes leads to RR tadpole cancellation (once orientifold
images are included). In terms of the wrapping numbers, we have∑

α

Nαn
2
αn

3
α = 16 ,

∑
α

Nαm
2
αm

3
α = −16 . (6.1)

The model is far from supersymmetric due to the presence of D5-D5 pairs, and in fact
has a decay channel to supersymmetric model by their annihilation. On the other hand,
even at the top of the tachyon potential, the theory is not at a critical point of its potential
due to dynamical tadpole for the closed string moduli, namely the area moduli of the T2’s.
In other words, the excess tension depends on these, as they enter the angles determining
the deviation from the supersymmetry condition

arctan
(
m1
α

n1
α

χ1

)
+ arctan

(
m2
α

n2
α

χ2

)
= 0 . (6.2)

For instance, we can make the stacks a, d supersymmetric, by choosing

χ1 = χ2 , (6.3)

but the D-branes h1 and h2 break supersymmetry. Hence, there is a dynamical tadpole
associated to the excess tension of these latter objects.

The dynamical tadpole can be solved by introducing magnetization along two of the
6d spacetime dimensions. The backreaction of this extra flux forces these two dimensions
to be compactified on a T2, with the addition of cobordism I-branes [15], which in general
includes orientifold planes and D-branes, as in the examples above. We take these extra
branes to be arranged in two new stacks b and c. Overall, we end up with an orientifold of
T6/(Z2 × Z2), with D-brane stacks and topological numbers given by

Nα (n1
α,m

1
α) (n2

α,m
2
α) (n3

α,m
3
α)

Na+d = 6 + 2 (1, 3) (1,−3) (1, 0)
Nb = 2 (0, 1) (1, 0) (0, 1)
Nc = 2 (−1, 0) (0,−1) (0, 1)
Nh1 = 2 (1,−3) (1,−4) (2,−1)
Nh2 = 2 (1,−4) (1,−3) (2,−1)

40 (0, 1) (0,−1) (0, 1)

The model satisfies the RR tadpole conditions∑
α

Nαn
1
αn

2
αn

3
α = 16 ,

∑
α

Nαn
1
αm

2
αm

3
α = 16 ,∑

α

Nαm
1
αn

2
αm

3
α = 16 ,

∑
α

Nαm
1
αm

2
αn

3
α = −16 . (6.4)

This corresponds to O9-planes along (1, 0) × (1, 0) × (1, 0), and O5-planes along (0, 1) ×
(0,−1)×(1, 0), as already present in the 6d theory, and cobordism O5-planes along (0, 1)×
(1, 0)× (0, 1) and (1, 0)× (0, 1)× (0, 1).
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The model still contains only 3 stacks of D-branes with non-trivial angles, so that they
are just enough to fix the 2 parameters χi of the T2’s. The O-planes fix the supersymmetry
condition signs to

arctan
(
m1
α

n1
α

χ1

)
+ arctan

(
m2
α

n2
α

χ2

)
− arctan

(
m3
α

n3
α

χ3

)
= 0 . (6.5)

Using the branes above, we get

χ1 = χ2 , χ3 = 14χ1
1− 12χ 2

1
. (6.6)

The regime of large (T2)3 corresponds to small χ3, which is also attained for small χ1.
Note that in this context the last condition χ1 ∼ χ3 encodes the relation between the 6d
tadpole and the inverse area of the spontaneously compactified T2.

The model is, up to exchange of directions in the T6 and overall sign flips, precisely
one of the examples of 4d MSSM-like constructions in [59, 60]. The gauge group is U(3)a×
USp(2)b×U(1)c×U(1)d, where we break the naive USp(2)c by Wilson lines or shifting off
the O-plane for the corresponding D5-branes. Taking into account the massive U(1)’s due
to BF couplings, this reproduces the SM gauge group. In addition, open strings between
the different brane stacks reproduce a 3-family (MS)SM chiral matter content, and the
MSSM Higgs doublet pair. Hence, we have described the spontaneous compactification of
a 6d model to a semi-realistic MSSM-like 4d theory.

A fun fact worth emphasizing is that most of the SM spectrum is absent in the original
6d model, and arises only after the spontaneous compactification. In particular, all the
MSSM matter and Higgs chiral multiplets, as well as the electroweak gauge sector, arise
from open string sectors involving the b and c branes, which arises as cobordism branes.
It is remarkable that cobordism entails that spontaneous compactification implies not just
the removal of spacetime dimensions, but also the dynamical appearance of novel degrees
of freedom. It is tantalizing to speculate on the potential implications of these realizations
in cosmological or other dynamical setups.
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A Dynamical tadpoles and swampland constraints

In this appendix we use the model in section 2 to illustrate the result in [3] that, in
theories with a dynamical tadpole which is not duly backreacted on the field configuration,
the mistreatment can show up as violations of swampland constraints.
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We consider type IIB theory on AdS5×T 1,1 and introduce M units of RR 3-form flux.
In the coordinates in [33, 34], it reads

F3 = 1
2M [sin θ1(cos θ2dθ1dφ1dφ2 + dθ1dφ1dψ) + sin θ2(cos θ1dθ2dφ1dφ2 − dθ2dφ2dψ)] .

It has constant coefficients in terms of fünf -bein 1-forms gi in [33] F3 = 1
2Mg5(g1g2 +

g3g3), hence its kinetic term |F3|3 is constant over the T 1,1 geometry. This acts as a
constant background source for e.g. the Laplace equation for the dilaton, which has no
solution over the compact T 1,1 geometry. This inconsistency of the equations of motion,
assuming no backreaction on the underlying geometry, signals the dynamical tadpole in
the configuration. In the following we will argue that it moreover can lead to violation of
the Weak Gravity Conjecture [47].

For concreteness we focus on the simplest set of states, corresponding to 5d BPS
particle states in the original theory (M = 0), with the BPS bound corresponding to
the WGC bound, for the gauge interaction associated to the KK U(1) dual to the U(1)R
symmetry of the dual CFT. For small R-charge n � N , these particle states are dual to
chiral primary single-trace mesonic operators of the SU(N)2 theory, e.g. tr (A1B1 . . . A1B1);
in the AdS side, they correspond to KK gravitons with momentum n on the S1. For very
large R-charge, the KK gravitons polarize due to Myers’ effect [91] into giant gravitons [92],
and their dual operators are determinant or sub-determinant operators [93]. Note that on
T 1,1 we have D3-branes wrapped on homologically trivial 3-cycles (but sustained as BPS
states by their motion on S1), hence they are different from (di)baryonic operators, which
correspond to D3-branes wrapped on the non-trivial S3 [94].

Our strategy is to consider these states in the presence of F3, but still keeping the
geometry as AdS5 × T 1,1 (i.e. with no backreaction of the dynamical tadpole), and show
that the interaction of F3 makes these states non-BPS, hence violating the WGC bound.
This analysis will be quite feasible in the giant graviton regime 1 � n ∼ N , by using the
wrapped D3-brane worldvolume action. Admittedly, proving a full violation of the WGC
would require showing the violation of the BPS condition for all values of n; we nevertheless
consider the large n result as a compelling indication that the WGC is indeed violated in
this configuration, thus making its inconsistency manifest.

Supersymmetric 3-cycles for D3-branes are easily obtained from holomorphic 4-cycles
in the underlying CY threefold [95, 96] (see also [97]). Describing the conifold as z1z2 −
z3z4 = 0, any holomorphic function of these coordinates f(x, y, z, w) = 0 defines a holo-
morphic 4-cycle corresponding to a giant graviton D3-branes, i.e. wrapped on a trivial19

3-cycle in T 1,1. We focus on a simple class of D3-branes studied in detail in [98]. They
are defined by the 4-cycle z1 =

√
1− α2, with α ∈ [0, 1] being a real constant, encoding

the size of the 3-cycle (with α = 0, 1 corresponding to the pointlike KK graviton and the
maximal giant graviton, respectively). We will follow the analysis in [98] with the inclusion
of the effect of F3 on the D3-brane probe.

19Di-baryonic D3-branes are on the other hand associated to non-Cartier divisors in the conifold, i.e.
4-cycles which can be defined in terms of the ai, bi homogeneous coordinates of the linear sigma model,
but cannot be expressed as a single equation f(zi) = 0.
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It is convenient to change to new coordinates {χ1, χ2, χ3, α, ν}
χ1 = 1

3(ψ − φ1 − φ2)
χ2 = 1

3(ψ + 3φ1 − φ2)
χ3 = 1

3(ψ − φ1 + 3φ2)


√

1− α2 = sin θ1
2 sin θ2

2

ν = 2u
α2+u2 with u = cos θ1

2 cos θ2
2

(A.1)

These are adapted to the D3-brane embedding, which simply reads

σ0 = t, σ1 = ν (doubly-covered), σ2 = χ2, σ3 = χ3 .

The double covering is very manifest for the maximal giant graviton, α = 1, z1 = 0. It cor-
responds to the defining equation z3z4 = 0, which splits in two components, corresponding
to two (oppositely oriented) copies of the non-trivial20 S3. The double covering remains
even for non-maximal giants, even though they correspond to irreducible 4-cycles.

The RR 3-form field strength in these coordinates is

F3 = M([a12 dχ1 ∧ dχ2 + a13 dχ1 ∧ dχ3 + a23 dχ2 ∧ dχ3] ∧ dα
+ [v12 dχ1 ∧ dχ2 + v13 dχ1 ∧ dχ3 + v23 dχ2 ∧ dχ3] ∧ dν) ,

(A.2)

with 
a12 = 9

4α(1±
√

1−ν2

1−c )
a13 = 9

4α(−1±
√

1−ν2

1−c )
a23 = 9

4α( −c1−c)


v12 = ∓9

4
c(ν2−c)

ν3
√

1−ν2(1−c)

v13 = ∓9
4

c(ν2−c)
ν3
√

1−ν2(1−c)

v23 = −9
4

c2

ν3(1−c)

where we have introduced c = 1−
√

1− α2ν2. We can fix a gauge and find the RR 2-form

C2 = M(c12dχ1 ∧ dχ2 + c13dχ1 ∧ dχ3 + c23dχ2 ∧ dχ3) , (A.3)

with 
c12 = −9

8(−α2 ∓ 2
√

1−ν2c
ν2 )

c13 = −9
8(α2 ∓ 2

√
1−ν2c
ν2 )

c23 = 9
8

(α2ν2−2c)
ν2

Its pullback on the D3-brane worldvolume is

P [C2] = Mχ̇1(c12dt ∧ dχ2 + c13dt ∧ dχ3) +Mc23dχ2 ∧ dχ3 . (A.4)

We can now compute the effect of this background on the D3-brane by using its world-
volume action. This is easy in the S-dual frame, in which the RR 2-form couples to the
D3-brane just like the NSNS 2-form in the original DBI+CS D3-brane action.21 After
integrating over χ2, χ3, this reads

S = SBDI + SCS = 64π2

9

∫
dtL ,

with L =
∫ 1

0
dν 2

(
− T3

√
− det (P [G]µν + P [C2]µν) + µ3R

4c4χ̇1
)
,

(A.5)

20In terms of the linear sigma model coordinates we have z1 = a1b1, z2 = a2b2, z3 = a1b2, z4 = a2b1,
and the two components correspond to a1 = 0 and b1 = 0, which are non-Cartier divisors.

21Related to this, one can check that the above background is neither pure gauge on the D3, nor cannot
be removed by a change in the worldvolume gauge field strength flux.
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where the factor of 2 of the double-covering of ν has been added, and the last term arises
from the CS coupling to the RR 4-form as in [98].

We are interested in focusing on the angular momentum of the state Pχ1 = ∂L
∂χ̇1

conju-
gate to the angular coordinate χ1. This reads

Pχ1 = 3
2

∫ 1

0
dν

( √
3πAgν NT3(χ̇1)√
N gν(B −A(χ̇1)2)

+ 9πc4µ3N

)
, (A.6)

with

A = 81
64ν4 {−4M2[(2(1− α2ν2)c− α2ν2)c]− 3πN(α2 − 1)ν2c2} ≡ AM2M2 +ANN ,

B = 81
64ν4

{
4M2[(4− α2ν2)c2 − 2α2ν2c

]
+ πN

[
2α4ν4 +

(
α2ν2 − 2c

)
(−3α2ν2 − 3ν2 + 8)

]}
≡ BM2M2 +BNN .

(A.7)
In the last equalities we have highlighted the parametric dependence on N and M .

Despite the fact that we have not managed to find a closed form for the result, since
M � N we can find an expansion for the integrand in the form

n = p0(α, ν, χ̇1)N + p2(α, ν, χ̇1)M2 +O(M4) , (A.8)

where the coefficient functions are computable, but we will not need their explicit expres-
sions.

The coefficient p0 is the survivor for theM = 0 case, and leads to an integer momentum.
On the other hand, the subleading correction p2 produces a momentum which is not integer.
This already signals a problem, since (as the geometry is considered undeformed even
after introducing F3) the gauge coupling of the KK U(1) is as in the M = 0 case, hence
charges under it should be integer in the same units. Hence one can directly claim that
the assumption of ignoring the dynamical tadpole backreaction lead to violation of charge
quantization, in contradiction with common lore for consistency with quantum gravity [99].

The above discussion however seems to contradict the fact that any quantum exci-
tation on a periodic S1 direction must have quantized momentum to have a well-defined
wavefunction. In fact, an alternative interpretation of the above mismatch is that the D3-
brane probe computation assumes a well-defined worldvolume embedding, in particular
well-defined (hence classical) trajectories for the 5d particle. It is only for BPS states in
supersymmetric vacua that such a computation is guaranteed to end up producing quan-
tized momenta. The fact that our holomorphic embedding ansatz fails to do so is just a
reflection that the actual integer-quantized states are not described by holomorphic equa-
tions. Since the latter condition is the one ensuring the match between the particle mass
and charge, it is clear that non-holomorphic embeddings will produce larger masses for the
same charge, hence violating the BPS/WGC bound.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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1 Introduction and conclusions

A remarkable proposal in the Swampland Program of quantum gravity constraints on
effective field theories [1] (see [2–4] for reviews) is the Cobordism Conjecture [5], that is
based on the expected absence of exact global symmetries in quantum gravity. In short, it
states that any configuration in a consistent theory of quantum gravity should not carry
any cobordism charge. In practice, it implies that any configuration in a consistent theory
of quantum gravity should admit, at the topological level, the introduction of a boundary
ending spacetime into nothing,1 in the sense of [6] (see [7, 8] for recent related discussions).
Accordingly, we will refer to such boundaries as walls of nothing. Equivalently, it implies
that any two consistent theories of quantum gravity must admit, at the topological level,
an interpolating configuration connecting them, as a generalized domain wall separating
the two theories. We will refer to such configurations as interpolating domain walls.

1This boundary may be dressed by additional defects, such as D-branes or O-planes in string setups, to
absorb the relevant charges.
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The Cobordism Conjecture is topological in nature. However, it can lead to remarkable
breakthroughs when supplemented by additional assumptions. For instance, the extra
ingredient of supersymmetry of the theory (and possibly of its walls) has led to highly
non-trivial constraints in lower dimensional theories, see e.g. [9, 10].

An important step forward in endowing cobordism walls with dynamics was taken
in [11], in the study of theories with tadpoles for dynamical fields (dubbed dynamical
tadpoles, as opposed to topological tadpoles, such as RR tadpoles, which lead to topological
consistency conditions on the configuration2). These are ubiquitious in the presence of
scalar potentials, and in particular in non-supersymmetric string models. In theories with
dynamical tadpoles the solutions to the equations of motion vary over the non-compact
spacetime dimensions. Based on the behaviour of large classes of string models, it was
proposed in [11] that such spacetime-dependent running solutions must hit cobordism walls
of nothing at a finite distance ∆ in spacetime3 (as measured in the corresponding Einstein
frame metric), scaling as ∆−n ∼ T with the strength of the tadpole T . These examples
included holographic AdS5 × T 1,1 compactifications with RR 3-form flux, type IIB 3-form
flux compactifications, magnetized D-brane models, massive IIA theory, M-theory on K3
with G4 flux, and the 10d non-supersymmetric USp(32) string theory. On the other hand,
interpolating cobordism walls connecting different theories were not discussed. One of the
motivations of this work is to fill this gap.

We argue that, when a running solution in theories with dynamical tadpoles hits a wall,
the behaviour of the configuration across the wall, and in particular the sharp distinction
between interpolating domain walls and walls of nothing, is determined by the behaviour
of scalar fields as one reaches the wall, via a remarkable correspondence:

• When scalars remain at finite distance points in moduli space as one hits the wall, it
corresponds to an interpolating domain wall, and the solution continues across it in
spacetime (with jumps in quantities as determined by the wall properties);

• On the other hand, when the scalars run off to infinity in moduli space as one reaches
the wall (recall, at a finite distance in spacetime), it corresponds to a wall of nothing,
capping off spacetime beyond it.

We also argue that scalars reaching singular points at finite distance in moduli space
upon hitting the wall still define interpolating domain walls, rather than walls of nothing;
hence, walls of nothing are not a consequence of general singularities in moduli space, but
actually to those at infinity in moduli space. This suggests that, in the context of dynamical
solutions,4 the walls of nothing of the Cobordism Conjecture are closely related to the
Swampland Distance Conjecture.5 We indeed find universal scaling relations between the

2Note however that dynamical tadpoles were recently argued in [12] to relate to violation of swampland
constraints of quantum gravity theories.

3For related work on dynamical tadpoles in non-supersymmetric theories, see [13–20].
4Note that, in setups with no dynamical tadpole, one can still have e.g. cobordism walls of nothing

without scalars running off to infinity: for instance, 11d M-theory, which does not even have scalars, admits
walls of nothing defined by Horava-Witten boundaries; similar considerations may apply to potential theories
with no moduli (or with all moduli stabilized at high enough scale).

5The status of the SDC in spacetime dependent running solutions was addressed in [21].
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(finite) distance to the wall in spacetime and the scale of the SDC tower [22]. In addition,
we uncover a universal scaling relation between the curvature scalar in running solutions
and the SDC tower scale that is reminiscent of the Anti de Sitter Distance Conjecture
(ADC) [23].

We illustrate these ideas in several large classes of string theory models, including
massive IIA, and M-theory on CY threefolds. Moreover, we also argue that our framework
encompasses the recent discussion of EFT string solutions in 4d N = 1 theories in [24] (see
also [25]), where saxion moduli were shown to attain infinity in moduli space at the core
of strings magnetically charged under the corresponding axion moduli. We show that EFT
string solutions are the cobordism walls of nothing of S1 compactifications of the 4d N = 1
theory with certain axion fluxes on the S1. Our scalings also relate to those between EFT
string tensions and the SDC tower scale in [24].

The paper is organized as follows. In section 2 we present the main ideas in the
explicit setup of running solutions in massive IIA theory, and their interplay with type I’
solutions [26]. In section 3 we carry out a similar discussion for M-theory on CY threefolds
with G4 flux (in section 3.1) and their relation to strongly coupled heterotic strings [27].
In section 3.2 we use it to discuss domain walls across singularities at finite distance in
moduli space, following [28]. In section 4 we discuss the S1 compactification of general 4d
N = 1 theories. In section 4.1 we introduce dynamical tadpoles from axion fluxes, whose
running solutions hit walls of nothing at which saxions run off to infinity. In section 4.2 we
relate the discussion to the EFT strings of [24]. In section 5 we discuss the moduli space
distances in walls of nothing and interpolating walls in 4d N = 1 theories with non-trivial
superpotentials of the kind arising in flux compactifications. In section 6 we discuss our
proposal in non-supersymmetric string theories, in particular the 10d USp(32) string. In
section 7 we offer some final remarks and outlook. Appendix A provides some observations
on cobordism walls in holographic throats.

2 Cobordism walls in massive IIA theory

Walls of nothing and infinite moduli space distance. In this section we consider
different kinds of cobordism walls in massive IIA theory [29], extending the analysis in [11].
The Einstein frame 10d effective action for the relevant fields is

S10,E = 1
2κ 2

∫
d10x

√
−GE

{[
R− 1

2(∂φ)2
]
− 1

2e
5
2φF 2

0 −
1
2e

1
2φ(F4)2

}
, (2.1)

where the Romans mass parameter is denoted by F0 to suggest it is a 0-form field strength
flux. This theory is supersymmetric, but has a dilaton tadpole

T ∼ e
5
2φF 2

0 , (2.2)

so the theory does not admit 10d maximally symmetric solutions. The solutions with
maximal (super)symmetry are 1/2 BPS configurations with the dilaton depending on one
coordinate x9, closely related to that in [30]. In conventions closer to [26], the Einstein
frame metric and dilaton are

(GE)MN = Z(x9)
1

12 ηMN , eφ = Z(x9)−
5
6 , with Z(x9) ∼ −F0 x

9 , (2.3)
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where we have set some integration constant to zero. The solution hits a singularity at
x9 = 0. The spacetime distance from a general position x9 to the singularity is [11]

∆ =
∫ 0

x9
Z(x9)

1
24 dx9 ∼ Z(x9)

25
24 F−1

0 ∼ F−1
0 e−

5
4φ ∼ T −

1
2 , (2.4)

in agreement with the scaling relation ∆−2 ∼ T , that was dubbed Finite Distance les-
son in [11]. Following the Dynamical Cobordism proposal therein, the singularity is re-
solved in string theory into a cobordism wall of nothing, defined by an O8-plane (possibly
dressed with D8-branes to match the F0 flux to be absorbed),6 ending the direction x9 as
a boundary.

We now notice that, since Z → 0 implies φ→∞ as x9 → 0, the dilaton runs off to infin-
ity in moduli space as one hits the wall, as befits a wall of nothing from our discussion in the
introduction. According to the SDC, there is an infinite tower of states becoming massless
in this region, with a scale decaying exponentially with the moduli space distance D as

MSDC ∼ e−λD , (2.5)

with some positive O(1) coefficient λ.
It is interesting to find a direct relation between these quantities and the spacetime

distance to the wall. The distance in moduli space is given by φ =
√

2D, as can be seen
from the kinetic term for φ in (2.1). From (2.4) we have

∆ ∼ e−
5

2
√

2
D
, MSDC ∼ ∆

2
√

2
5 λ . (2.6)

Hence the SDC tower scale goes to zero with the distance to the wall with a power-like
scaling.

It is a natural question to ask if this tower of states becomes light in the actual dynam-
ical configuration (rather than in the adiabatic framework of the standard formulation of
the SDC). In this particular setup, the SDC tower corresponds to D0-branes which end up
triggering the decompactification of the M-theory eleventh dimension. In the dynamical
solution, there are a finite number of extra massless states, responsible for the enhancement
of the perturbative open string gauge group to the exceptional symmetries which are known
to arise from the heterotic dual theory [26] (see also [31]). On the other hand, there is no
signal of an infinite tower of states becoming massless simultaneously. The appearance of
the SDC in the dynamical context has thus different implications as compared with the
usual adiabatic formulation.

Let us now turn to another novel, and tantalizing, scaling. The scalar curvature for
the running solution reads

|R| ∼ (−x9)−
25
12 ∼ e

5√
2
D
. (2.7)

Using this, we can write the SDC tower scale in terms of the scalar curvature as

MSDC ∼ e−λD ∼ |R|−
√

2
5 λ . (2.8)

6This imposes a swampland bound on the possible values of F0 that are consistent in string theory.
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This scaling is highly reminiscent of the Anti de Sitter Distance Conjecture (ADC) of [23],7
even though the setup under consideration is very different.8 Note however that, as in the
ADC, it signals a failure of the decoupling of scales, and hence a breakdown of the effective
field theory near the wall of nothing. This fits nicely with our observation that the wall
can only be microscopically defined in the UV complete theory, and works as a boundary
condition defect at the level of the effective theory.

Interpolating domain walls. There is a well known generalization of the above solu-
tions, which involves the inclusion of D8-branes acting as interpolating domain walls across
which F0 jumps by one unit. The general solution of this kind is provided by (2.3) with a
piecewise constant F0 and a piecewise continuous function Z [26].

The D8-brane domain walls are thus (a very simple realization of) cobordism domain
walls interpolating between different Romans IIA theories (differing just in their mass
parameter). The point we would like to emphasize is that, since Z remains finite across
them, the dilaton remains at finite distance in moduli space, as befits interpolating domain
walls from our discussion in the introduction.

3 Cobordism walls in M-theory on CY3

In this section we recall results from the literature on the strong coupling limit of the
heterotic string, also known as heterotic M-theory [27, 32–34] (see [35, 36] for review and
additional references). They provide straightforward realizations of the different kinds of
cobordism walls in M-theory compactifications on CY threefolds. The discussion general-
izes that in [11], and allows to study the behaviour at singular points at finite distance in
moduli space, in particular flops at conifold points.

3.1 M-theory on CY3 with G4 flux

We consider M-theory on a CY threefold X, with G4 field strength fluxes on 4-cycles. For
later convenience, we follow the presentation in [28]. We introduce dual basis of 2- and
4-cycles Ci ∈ H2(X) and Di ∈ H4(X), and define∫

Di

G4 = ai ,

∫
Ci
C6 = λ̃i . (3.1)

We also denote by bi the 5d vector multiplet of real Kähler moduli, with the usual Kähler
metric and the 5d N = 1 prepotential

Gij = −1
2

∂2

∂bi∂bj
lnK , K ≡ 1

3!dijkb
ibjbk , (3.2)

with dijk being the triple intersection numbers of X. We have the familiar constraint K = 1
removing the overall modulus V , which lies in a hypermultiplet.

7It is possible that the result is ultimately linked to the generalized distance conjectures in [23]; we leave
this as an open question for future work.

8In contrast to the ADC, that considers the limit of vanishing curvature of a family of AdS vacua, in
our setup the scalar curvature blows up as the singularity is approached. However, we do find a power-like
scaling similar to the ADC one.
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The 5d effective action for these fields is

S5 = −
M 9
p,11
2 L6

[∫
M5

√
−g5

(
R+Gij(b)∂Mbi∂Mbj + 1

2V 2∂MV ∂
MV + λ(K − 1)

)

+ 1
4V 2G

ij(b)ai ∧ ?aj + dλ̃i ∧ ai
]
−
N+1∑
n=0

α
(n)
i

∫
M

(n)
4

(
λ̃i + bi

V

√
g4

)
. (3.3)

Here λ is a Lagrange multiplier, and L the reference length scale of the Calabi-Yau. With
hindsight, we include 4d localized terms which correspond to different walls in the theory,
with induced 4d metric g4.

The G4 fluxes ai induce dynamical tadpoles for the overall volume and the Kähler
moduli bi. There are 1/2 supersymmetric solutions running in one spacetime coordinate,
denoted by y, with the structure

ds2
5 = e2Ads2

4 + e8Ady2 ,

V = e6A , bi = e−Af i ,

e3A =
( 1

3!dijkf
if jfk

)
,

(dλ̃i)µνρσ = εµνρσe
−10A

(
−∂11b

i + 2bi∂11A
)
. (3.4)

The whole solution is determined by a set of one-dimensional harmonic functions. They
are given in terms of the local values of the G4 fluxes,

dijkf
jfk = Hi , Hi = aiy + ci . (3.5)

Here the ci are integration constants set to have continuity of the Hi, and hence of the
fi, across the different interpolating domain walls in the system, which produce jumps as
follows. Microscopically, the interpolating domain walls correspond to M5-branes wrapped
on 2-cycles [C] = ∑

niC
i, leading to jumps in the fluxes that in units of M5-brane charge

are given by
∆ai = ni . (3.6)

Hence, interpolating domain walls maintain the theory at finite distance in moduli
space. This is not the case for cobordism walls of nothing, which arise when eA → 0, and
hence V → 0, which sits at infinity in moduli space. This regime was already discussed (in
the simpler setup of K3 compactifications) in [11], where the cobordism domain was argued
to be given by a Horava-Witten boundary (dressed with suitable gauge bundle degrees of
freedom, as required to absorb the local remaining G4 flux), in agreement with the strong
coupling singularity discussed in [27]. The wall appears at a finite spacetime distance ∆
following the scaling ∆−2 ∼ T in [11]. In what follows, we describe the scaling relations of
the moduli space distance and the SDC tower at these walls of nothing.

Since they are characterized by the vanishing of the overall volume of X, it is enough to
follow the behaviour of V and the discussion simplifies. Restriction to this sector amounts
to setting all fi ≡ f in (3.4), and all Hi ≡ H. Also, since the wall of nothing arises when
H → 0, we can take this location as y = 0 and write

e2A ∼ H(y) ∼ αy . (3.7)
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Using the metric in (3.4), the spacetime distance from a point y > 0 is

∆ =
∫ y

0
(αy)2dy = 1

3α
2 y3 . (3.8)

We are also interested in the traversed distance in moduli space D. Using the kinetic term
in (3.3), the relevant integral to compute is

D = −
∫ 1√

2V
dV

dy
dy . (3.9)

Using V ∼ H3, we get as leading behavior near the singularity

D ' − 3√
2

log y = − 1√
2

log 3∆
α2 , (3.10)

where in the last equality we used (3.8). This implies

∆ ∼ e−
√

2D , (3.11)

and leads to a power-like scaling of the SDC tower mass

MSDC ∼ ∆
λ√

2 . (3.12)

Computing the curvature scalar from (3.4), we get

|R| ∼ e2
√

2D . (3.13)

So the SDC tower scale can be expressed, in an ADC-like manner, as

MSDC ∼ |R|
− λ

2
√

2 . (3.14)

We thus recover a similar behaviour to the examples in section 2.

3.2 Traveling across finite distance singularities in moduli space

The setup of M-theory on a CY3 X allows to address the question of whether walls of
nothing could arise at finite distance in moduli space, if the scalars hit a singular point in
moduli space. This is actually not the case, as can be explicitly shown by following the
analysis in [28] for flop transitions.

Specifically, they considered the flop transition between two Calabi-Yau manifolds with
(h1,1, h2,1) = (3, 243), in the setup of a CY3 compactification of the Horava-Witten theory,
namely with two boundaries restricting the coordinate y to an interval. In our more general
setup, one may just focus on the dynamics in the bulk near the flop transition as one moves
along y. Hence we are free to locate the flop transition point at y = 0.

In terms of the Kähler moduli ti = V
1
3 bi of X, and changing to a more convenient

basis
t1 = U , t2 = T − 1

2U −W , t3 = W − U , (3.15)
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and similar (proper transforms under the flop) for X̃, the Kähler cones of X and X̃ are
defined by the regions

X : W > U > 0 , T >
1
2U +W , (3.16)

X̃ : U > W > 0 , T >
3
2U . (3.17)

This shows that the flop curve is C3, and the area is W −U , changing sign across the flop.
Near the flop point y = 0, the harmonic functions for the two CYs X and X̃ have the

form

X at y ≤ 0 X̃ at y ≥ 0
HT = −18y + kT , H̃T = 18y + kT ,

HU = −25y + k0 , H̃U = 24y + k0 ,

HW = 6y + k0 , H̃W = −5y + k0 . (3.18)

Hence

X at y ≤ 0 X̃ at y ≥ 0
HW−U = 31y , H̃W−U = −29y . (3.19)

Even though the flop point is a singularity in moduli space, and despite the sign flip for
W−U , the harmonic functions are continuous and the solution remains at finite distance in
moduli space. This agrees with the picture that it corresponds to an interpolating domain
wall. In fact, as discussed in [28], the discontinuity in their slopes (and the related change
in the G4 fluxes) makes the flop point highly analogous to the above described interpolating
domain walls associated to M5-branes.

The above example illustrates a further important aspect. It provides an explicit
domain wall intepolating between two different (yet cobordant) topologies. It would be
extremely interesting to extend this kind of analysis to other topology changing transitions,
such as conifold transitions9 [38]. This would allow for a further leap for the dynamical
cobordism proposal, given that moduli spaces of all CY threefolds are expected to be
connected by this kind of transitions [39].

We have thus established that physics at finite distance in moduli space gives rise to
interpolating domain walls, rather than walls of nothing, even at singular points in moduli
space. The implication is that the physics of walls of nothing is closely related to the
behaviour near infinity in moduli space and hence to the SDC. In the following section we
explore further instances of this correspondence in general 4d N = 1 theories.

4 S1 compactification of 4d N = 1 theories and EFT strings

In this section we study a systematic way to explore infinity in moduli space in general 4d
N = 1 theories. This arises in a multitude of string theory constructions, ranging from

9For a proposal to realize conifold transitions dynamically in a time-dependent background, see [37].
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heterotic CY compactifications to type II orientifolds on CY spaces [40]. Our key tool is
an S1 compactification to 3d with certain axion fluxes. We will show that the procedure
secretly matches the construction of EFT strings in [24] (see also [25]). Actually, this
correspondence was the original motivation for this paper.

4.1 Cobordism walls in 4d N = 1 theories on a circle

We want to consider general 4d N = 1 theories near infinity in moduli space. According
to [41–43], the moduli space in this asymptotic regime is well approximated by a set of
axion-saxion complex fields, with metric given by hyperbolic planes. We start discussing
the single-field case, and sketch its multi-field generalization at the end of this section.

Consider a 4d N = 1 theory with complex modulus S = s+ ia, where a is an axion of
unit periodicity and s its saxionic partner. We take a Kähler potential

K = − 2
n2 log(S + S̄) . (4.1)

The 4d effective action is

S =
M2
P,4
2

∫
d4x
√
−g4

{
R4 −

n−2

s2

[
(∂s)2 + (∂a)2

]}
,

=
M2
P,4
2

∫
d4x
√
−g4

{
R4 − (∂φ)2 − e−2nφ (∂a)2

}
,

(4.2)

where in the last equation we have defined φ = 1
n log ns.

We now perform an S1 compactification to 3d with the following ansatz for the metric10

and the scalars

ds2
4 = e−

√
2σds2

3 + e
√

2σR2
0dθ

2 ,

φ = φ(xµ) , a = θ

2πq + a(xµ) , (4.3)

where xµ denote the 3d coordinates and θ ∼ θ + 2π is a periodic coordinate. Regarding
the axion as a 0-form gauge field, the ansatz for a introduces q units of its field strength
flux (we dub it axion flux) on the S1. We allowed for a general saxion profile to account
for its backreaction, as we see next.

The dimensional reduction of the action (4.2) gives (see e.g. [44])

S3 = MP,3
2

∫
d3x
√
−g3

{
R3 −Gab∂µϕa∂µϕb − V (ϕ)

}
, (4.4)

where

Gab∂µϕ
a∂µϕb = (∂σ)2 + (∂φ)2 + e−2nφ (∂a)2 , (4.5a)

V (ϕ) = e−2
√

2σ−2nφ
(

q

2πR0

)2
, (4.5b)

and MP,3 = 2πR0M
2
P,4 is the 3d Planck mass.

10We omit the KK U(1) because it will not be active in our discussion.
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The last term in the 3d action corresponds to a dynamical tadpole for a linear combi-
nation of the saxion and the radion, induced by the axion flux. We thus look for running
solutions of the 3d equations of motion. We focus on solutions with constant axion in 3d
a(xµ) = 0, for which the equations of motion read

1√
−g3

∂ν
(√
−g3g

µν∂µσ
)

= −
√

2 e−2
√

2σ−2nφ
(

q

2πR0

)2
, (4.6a)

1√
−g3

∂ν
(√
−g3g

µν∂µφ
)

= −n e−2
√

2σ−2nφ
(

q

2πR0

)2
. (4.6b)

We consider solutions in which the fields run with one of the coordinates x3 (which with
hindsight we denote by r ≡ x3). We focus on a particular 3d axion-saxion ansatz

s(r) = s0 −
q

2π log r

r0
, a(r) = a0 , (4.7)

for which the radion can be solved as

√
2σ = 2

n
(φ− φ0) + 2 log r

R0
= 2
n2 log

(
1− q

2πs0
log r

r0

)
+ 2 log r

R0
. (4.8)

This, together with (4.7), provides the scalar profiles solving the dynamical tadpole. The
motivation for this particular solution is that it preserves 1/2 supersymmetry, as we discuss
in the next section in the context of its relation with the 4d string solutions in [24].

Note that as r → 0, the radion blows up as σ → −∞, implying that the S1 shrinks to
zero size, and the metric becomes singular. As one hits this singularity, the saxion goes to
infinity, so we face a wall at which the scalars run off to infinity in moduli space. According
to our arguments, it must correspond to a cobordism wall of nothing, capping off spacetime
so that the r < 0 region is absent; hence the suggestive notation to regard this coordinate
as a radial one, an interpretation which will become more clear in the following section.
The finite distance ∆ to the wall can be shown to obey the scaling ∆−2 ∼ T introduced
in [11].

Note that the asymptotic regime near infinity in moduli space s � 1 corresponds to
the regime

r � r0e
2π
q

(s0−1)
. (4.9)

Hence the exploration of the SDC’s implications requires zooming into the region close to
the wall of nothing.

Let us emphasize that the microscopic structure of the wall of nothing cannot be
determined purely in terms of the effective field theory, and should be regarded as provided
by its UV completion.11 On the other hand, we can use effective field theory to obtain
the scaling relations between different quantities, as in the string theory examples in the
previous sections.

11In particular, possible constraints on q could arise from global consistency of the backreaction.
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The scaling relations. We can now study the scaling relations between spacetime and
moduli space distances, and the SDC tower scale. From the spacetime profiles for σ and
φ, it is easy to check that the contribution from the radion dominates in the r → 0 limit.
The resulting scaling between the moduli space distance D and r is

r ' e−D , (4.10)

showing again that D →∞ as r → 0. On the other hand, the spacetime distance ∆ in the
same limit gives

d∆ ' r

R0

(
− q

2πs0
log

(
r

r0

)) 2
n2
' 1
R0

(
− q

2πs0

) 2
n2
D2/n2

e−2DdD . (4.11)

Upon integration one gets an incomplete gamma function that, after keeping the leading
order in D →∞, finally gives

∆ ∼ e−2D+ 2
n2 logD . (4.12)

This is an exponential behaviour up to logarithmic corrections. It would be interesting to
relate this to existing results on log corrections to Swampland conjectures (see [45]), but
we skip them for now. The resulting relation allows to write the scalings of the SDC tower
scale as

MSDC ∼ e−λD ∼ ∆
λ
2 , (4.13)

that is again a power-like relation with O(1) exponents.
Let us turn to computing the scaling of the SDC scale with the scalar curvature R.

The general expression for R is rather complicated, but simplifies in the leading order
approximation at r = 0

log |R| ' −4 log r ' 4D . (4.14)

Hence, the SDC tower mass scales as

MSDC ∼ e−λD ∼ |R|−
1
4λ . (4.15)

Amusingly, we again recover a power-like scaling highly reminiscent of the ADC.

Multi-field generalization. Let us end this section by mentioning that the above simple
model admits a straightforward generalization to several axion-saxion moduli ai, si. One
simply introduces a vector of axion fluxes qi and generalizes the above running solution to

ai = ai0 + θ

2πq
i , si(r) = si0 −

qi

2π log r

r0
. (4.16)

The corresponding backreaction on σ is
√

2σ = −K(r) +K0 + 2 log r

R0
. (4.17)

We leave this as an exercise for the reader, since the eventual result is more easily recovered
by relating our system to the 4d string-like solutions in [24], to which we now turn.
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4.2 Comparison with EFT strings

The ansatz (4.7) is motivated by the relation of our setup with the string-like solutions to
4d N = 1 theories discussed in [24], which we discuss next. This dictionary implies that
those results can be regarded as encompassed by our general understanding of cobordism
walls of nothing and the SDC.

In a 4d perspective, (4.7) corresponds to a holomorphic profile z = reiθ

S = S0 + q

2π log z

z0
. (4.18)

The axion flux in (4.3) implies that there is a monodromy a→ a+q around the origin z = 0.
Hence, the configuration describes a BPS string with q units of axion charge. The solution
for the metric can easily be matched with that in [24]. The 4d metric takes the form

ds2
4 = −dt2 + dx2 + e2Zdzdz̄ , (4.19)

with the warp factor
2Z = −K +K0 = 2

n2 log s

s0
. (4.20)

This matches the 3d metric (4.19) by writing

ds2
3 = e

√
2σ
(
−dt2 + dx2

)
+ e2Z+

√
2σdr2 , (4.21)

and (4.8) ensures the matching of the S1 radion with the 4d angular coordinate range.∫ 2π

0
dθeσ/

√
2R0 =

∫ 2π

0
dθeZr . (4.22)

Hence, in 4d N = 1 theories there is a clear dictionary between running solutions in S1

compactifications with axion fluxes and EFT string solutions. The compactification circle
maps to the angle around the string; the axion fluxes map to string charges; the coordinate
in which fields run (semi-infinite, due to the wall of nothing) maps to the radial coordinate
away from the string; the saxion running due to the axion flux induced dynamical tadpole
maps to the string backreaction on the saxion, i.e. the string RG flow; the scalars running
off to infinity in moduli space as one hits the wall of nothing map to the scalars running
off to infinity in moduli space as one reaches the string core. Note that the fact that the
wall of nothing is not describable within the effective theory maps to the criterion for an
EFT string, i.e. it is regarded as a UV-given defect providing boundary conditions for the
effective field theory fields.

This dictionary allows to extend the interesting conclusions in [24] to our context.
For instance, the relation between the string tension and its backreaction on the geometry
provides a scaling with the spacetime distance. This is the counterpart of the scaling
relations we found in our 3d dynamical cobordism discussion in the previous section.

On another line, the Distant Axionic String Conjecture in [24] proposes that every
infinite field distance limit of a 4d N = 1 effective theory consistent with quantum gravity
can be realized as an RG flow UV endpoint of an EFT string. We can thus map it into the
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proposal that every infinite field distance limit of a 4d N = 1 effective theory consistent
with quantum gravity can be realised as the running into a cobordism wall of nothing in
some axion fluxed S1 compactification to 3d. It is thus natural to extend this idea to a
general conjecture

Cobordism Distance Conjecture. Every infinite field distance limit of a effective theory
consistent with quantum gravity can be realized as the running into a cobordism wall of
nothing in (possibly a suitable compactification of) the theory.

The examples in the previous sections provide additional evidence for this general form
of the conjecture, beyond the above 4d N = 1 context.

5 4d N = 1 theories with flux-induced superpotentials

In the previous section we discussed cobordism walls in compactifications of 4d N = 1 theo-
ries on S1 with axion fluxes. Actually, it is also possible to study running solutions and walls
in these theories without any compactification. This requires additional ingredients to in-
troduce the dynamical tadpoles triggering the running. Happily, there is a ubiquitous mech-
anism, via the introduction of non-trivial superpotentials, such as those arising in flux com-
pactifications. We discuss those vacua and their corresponding walls in this section. The
discussion largely uses the solutions constructed in [46], whose notation we largely follow.

Let us consider a theory with a single axion-saxion complex modulus Φ = a+ iv. The
4d effective action, in Planck units, is

S = −
∫
d4x
√
−g

[
1
2R+ |∂Φ|2

4(Im Φ)2 + V (Φ,Φ)
]

(5.1)

with the N = 1 scalar potential

V (Φ,Φ) = eK
(
KΦΦ |DΦW |2 − 3|W |2

)
. (5.2)

We focus on theories of the kind considered in [46], where the superpotential is induced
from a set of fluxes mI , eI , with I = 0, 1, and is given by

W = eIf
I(Φ)−mIGI(Φ) (5.3)

for f I , GI some holomorphic functions whose detailed structure we do not need to specify.
In general, these fluxes induce a dynamical tadpole for Φ, unless it happens to sit at

the minimum of the potential. The results in [46] allow to build 1/2 BPS running solutions
depending on one space coordinate y with

ds2 = e2Z(y)dxµdx
µ + dy2 . (5.4)

For the profile of the scalar, the solution has constant axion a, but varying saxion.
Defining the ‘central charge’ Z = eK/2W and Z∗ its value at the minimum of the potential
(and similarly for other quantities), the profile for the scalar v is

v(y) = v∗ coth2
(1

2 |Z∗| y
)
. (5.5)

– 13 –



J
H
E
P
1
0
(
2
0
2
1
)
0
3
7

Note that in [46] this solution was built as ‘the left hand side’ of an interpolating domain
wall solution (more about it later), but we consider it as the full solution in our setup.
Note also that we have shifted the origin in y with respect to the choice in [46].

The backreaction of the scalar profile on the metric is described by

Z(y) = d+ e−
1
2 K̂0

[
log

(
− sinh

(1
2 |Z∗| y

))
+ log cosh

(1
2 |Z∗|y

)]
, (5.6)

where d is just an integration constant and K̂0 is an additive constant in the Kähler
potential.

The solution exhibits a singularity at y = 0, which (since the metric along y is flat) is
at finite distance in spacetime from other points. On the other hand it is easy to see that
the scalar v runs off to infinity as we hit the wall, since

v(y)→ 4 v∗ |Z∗|−2 y−2 as y → 0 . (5.7)

We can obtain the scaling of the moduli space distance with the spacetime distance. Using
the kinetic term in (5.1),

D = −
∫ 1√

2v
dv

dy
dy ' −

√
2 log y ' −

√
2 log ∆ . (5.8)

In the last two equalities we have used (5.7) and (5.4) respectively. We thus get a familiar
power-like scaling for the SDC scale

MSDC ∼ ∆
√

2λ . (5.9)

We also recover the ADC-like scaling with the scalar curvature. At leading order in y → 0
one finds

log |R| ' −2 log y '
√

2D , (5.10)
which gives

MSDC ∼ |R|
− 1√

2
λ
. (5.11)

This all fits very nicely with our picture that the solution is describing a cobordism wall
of nothing, and that the solution for y > 0 is unphysical and not realized. This provides
an effective theory description of the cobordism defects for general 4d N = 1 theories, in
a dynamical framework. It would be interesting to find explicit microscopic realizations of
this setup.

Let us conclude this section by mentioning that it is possible to patch together sev-
eral solutions of the above kind and build cobordism domain walls interpolating between
different flux vacua. In particular in [46] the solution provided ‘the left hand side’ of one
such interpolating domain wall solution whose ‘right hand side’ was glued before reaching
(in our choice of origin) y = 0, hence before encountering the wall of nothing. The partic-
ular solution on the right hand side was chosen to sit at the minimum of the corresponding
potential, for which there is no tadpole and thus the functions D and v are simply set to con-
stants, fixed to guarantee continuity. Consequently, the solutions remain at finite distance
in moduli space, in agreement with our picture for interpolating domain walls. In some
sense, the flux changing membrane is absorbing the tadpole, thus avoiding the appearance
of the wall of nothing. We refer the reader to [46] (see also [25]) for a detailed discussion.
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6 Walls in 10d non-supersymmetric strings

The above examples all correspond to supersymmetric solutions, and even the resulting
running solutions preserve some supersymmetry. This is appropriate to establish our key
results, but we would like to illustrate that they are not restricted to supersymmetric
setups. In order to illustrate that these ideas can apply more generally, and can serve as
useful tools for the study of non-supersymmetric theories, we present a quick discussion
of the 10d non-supersymmetric USp(32) theory [47], building on the solution constructed
in [13] and revised in [11].12

The 10d (Einstein frame) action reads

SE = 1
2κ2

∫
d10x
√
−G

[
R− 1

2(∂φ)2
]
− TE9

∫
d10x
√
−G 64 e

3φ
2 , (6.1)

where TE9 is the (anti)D9-brane tension. The theory has a dynamical dilaton tadpole
T ∼ TE9 g

3/2
s , and does not admit maximally symmetric solutions. The running solution

in [13] preserves 9d Poincaré invariance, and reads

φ = 3
4αEy

2 + 2
3 log |√αEy|+ φ0 ,

ds 2
E = |√αEy|

1
9 e−

αEy
2

8 ηµνdx
µdxν + |√αEy|−1e−

3φ0
2 e−

9αEy
2

8 dy2 , (6.2)

where αE = 64k2T9. There are two singularities, at y = 0 and y → ∞, which despite
appearances are located at finite spacetime distance, satisfying the scaling ∆−2 ∼ T intro-
duced in [11]. In this case, there is no known microscopic description for the underlying
cobordism defect, but we can still consider the effective theory solution to study the theory
as we hit the walls.

We consider the two singularities at y = 0,∞, and look at the behaviour of the
solution near them. The distance from a generic point y to the singularites is given by the
integral [11]

∆ ∼
∫
|
√
αEy|−

1
2 e−

3φ0
4 e−

9αEy
2

16 dy , (6.3)

on the intervals [y, 0] when y → 0, and [y,∞] when y →∞. They give (lower and upper)
incomplete gamma functions

∆0 ∼ γ
(

1
4 ,

9αEy2

16

)
and ∆∞ ∼ Γ

(
1
4 ,

9αEy2

16

)
. (6.4)

By expanding at leading order as y → 0 and y →∞, one gets

∆0 ∼ y
1
2 and ∆∞ ∼ y−

3
2 e−

9αEy
2

16 . (6.5)

The moduli space distance is φ =
√

2D. Its leading behavior is D ' −
√

2
3 ln y as

y → 0+ and D ' 3αE
4
√

2y
2 as y →∞. This leads to the scaling relations

y → 0+ : ∆0 ∼ e
− 3

2
√

2
D
,

y →∞ : ∆∞ ∼ D−
3
4 e
− 3

2
√

2
D ∼ e−

3
2

√
2
D− 3

4 lnD
. (6.6)

12For other references related to dynamical tadpoles in non-supersymmetric theories, see [14–20].
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In both cases we have the moduli space distance running off to infinity as we approach
the wall. This is in agreement with their interpretation as cobordism walls of nothing.13

Moreover, we recover the a familiar power-like scaling of the SDC mass scale with the same
numerical factors in both cases

MSDC ∼ e−λD ∼ ∆
2

√
2

3 λ . (6.7)

It is interesting to see that one can also recover a standard power-like scaling for both
singularities if the moduli space distance D is compared with the spacetime curvature
scalar R. The latter reads

|R| = √αE e
3φ0

2

(2
9y
−1 + 7

2αEy + 9
8α

2
Ey

3
)
e

9αE
8 y2

. (6.8)

Let us start with the y → 0 singularity. We can approximate the logarithm of the scalar
curvature as

log |R| ' − log y ' 3√
2
D . (6.9)

This allows to rewrite the SDC scaling in the form of the ADC-like scaling

MSDC ∼ e−λ∆ ∼ |R|−
√

2
3 λ . (6.10)

Let us now turn to the y →∞ limit. In this case the logarithm of the scalar curvature
is approximated to

log |R| ' 9αE
8 y2 ' 3√

2
D , (6.11)

thus recovering the same behavior as for the other singularity.
As announced, we find a nice power-like scaling, reminiscent as usual of the ADC

relations. It is amusing that the precise coefficient arises in both the strong and weak
coupling singularities, which may hint towards some universality or duality relation in this
non-supersymmetric 10d model.

7 Final remarks

In this work we have considered running solutions solving the equations of motion of
theories with tadpoles for dynamical fields. These configurations were shown to lead to
cobordism walls of nothing at finite distance in spacetime [11], in a dynamical realization
of the Cobordism Conjecture. We have also discussed interpolating domain walls across
which we change to a different (but cobordant) theory/vacuum. We have shown that the
key criterion distinguishing both kinds of walls is related to distance in field space: walls of
nothing are characterized by the scalars attaining infinite distance in moduli space, while
interpolating domain walls remain at finite distance in moduli space.

13The interpretation of the y → 0 singularity as a wall of nothing was deemed unconventional, since it
would arise at weak coupling. It is interesting that we get additional support for this interpretation from
the moduli space distance behaviour.
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Hence, cobordism walls of nothing provide excellent probes of the structure of the
effective theory near infinite distance points, and in particular the Swampland Distance
Conjectures. This viewpoint encompasses and generalizes that advocated for EFT strings
in 4d N = 1 theories in [24]. We have found interesting new general scaling relations
linking, for running solutions, the moduli space distance and the SDC tower mass scale to
geometric spacetime quantities, such as the distance to the wall or the scalar curvature.
The latter takes a form tantalizingly reminiscent of the Anti de Sitter Distance Conjecture
(ADC), suggesting it may relate to the generalized distance in [23].

We have illustrated the key ideas in several large classes of string models, most often
in supersymmetric setups (yet with nontrivial scalar potentials to produce the dynami-
cal tadpole triggering the running); however, we emphasize that we expect similar be-
haviours in non-supersymmetric theories, as we have shown explicitly for the 10d non-susy
USp(32) theory.

There are several interesting open question that we leave for future work:

• We have mainly focused on space-dependent running solutions. It is clearly interesting
to consider time-dependent solutions, extending existing results in the literature [13–20],
and exploit them in applications, in particular with an eye on possible implications for
inflationary models or quintessence.

• A particular class of time-dependent solutions are dynamical bubbles. In particular, a
tantalizing observation is that in the original bubble of nothing in [6], the 4d radion
modulus goes to zero size (which lies at infinite distance in moduli space of the S1

compactification) as one hits the wall. Although the setup is seemingly unrelated, it
would be interesting to understand universal features of bubbles of nothing along the
lines considered in our work.

• The appearance of ADC-like scaling relations in our running solutions possibly signals
an underlying improved understanding of infinite distance limits in dynamical (rather
than adiabatic) configurations. For instance, as shown in [21], the r → ∞ limit in the
Klebanov-Strassler solution [48] avoids the appearance of a tower of states becoming
massless exponentially with the distance. This was related to having a non-geodesic
trajectory in moduli space (see [49] for a general discussion about non-geodesics and
the SDC). However, as dictated by the lack of separation of scales in this model, an
ADC-like scaling is yet respected as the scalar curvature goes to zero in this limit. This
could point to a more universal way of writing the SDC in dynamical configurations.

• In all the examples we find precise numbers relating the parameter in the SDC λ to
the power in the ADC-like scaling. It would certainly be interesting to find a pattern
in these values and possibly relate them to properties of the infinite distance limits
along the lines of [41–43]. On a similar line of thought, it has been argued that in
supersymmetric cases the ADC’s scaling parameter should be 1/2 [23], assuming this
applies to our setup, it would be interesting to extract the SDC’s parameter λ from our
supersymmetric examples with an ADC-like scaling. It would be remarkable that they
match the existing proposals for the value of λ.
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• The ADC-like scaling may also signal some potential interplay with the Gravitino Dis-
tance Conjecture [50, 51]. One expects to find a power relation between the mass of the
gravitino and the scalar curvature of the solution, it would be certainly interesting to
test this and to look for some pattern in the corresponding powers.

• The trajectory in moduli space in spacetime-dependent solutions has a strong presence
in the study of black holes, in particular attractor equations and flows. The attempts to
relate them to the SDC (see e.g. [52]) can have an interesting interplay with our general
framework.

• We certainly expect interesting new applications of our results to the study of non-
supersymmetric strings, and to supersymmetry-breaking configurations in string theory.

We hope to report on these problems in the near future.
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A Holographic examples

In [11] it was shown that Dynamical Cobordism underlies the structure of the gravity
dual of the SU(N) × SU(N + M) conifold theory, namely fractional brane deformation
of AdS5 × T 1,1. This in fact explains the appearance of a singularity at finite radial
distance [53] and its smoothing out into a configuration capping of the warped throat [48],
as a cobordism wall of nothing. In this appendix we provide some examples of other
warped throat configurations which illustrate the appearance of other cobordism walls
of nothing, and cobordism domain walls interpolating between theories corresponding to
compactification on horizons of different topology. The discussion is strongly inspired by
the constructions in [54] (see also [55]).

A.1 Domain wall to a new vacuum

As a first example we consider a configuration in which a running of the conifold theory
hits a wall (given by the tip of a KS throat) interpolating to an AdS5 × S5 vacuum. The
latter is the maximally symmetric solution of a theory at the bottom of its potential, i.e.
with no dynamical tadpole. We carry out the discussion in terms of the dual field theory,
which translates easily into the just explained gravity picture. The dilaton is constant in
the whole configuration, so we skip factors of gs.
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Consider the conifold theory with SU(N) × SU(N + M) at some scale, i.e. at some
position r there are N units of 5-form flux and M units of 3-form flux. The Klebanov-
Tseytlin solution [53] gives a running for the effective flux

N(r) = N +M2 log(r) , (A.1)

and we get a singu at a value r0 defined by

N +M2 log r0 = 0 ⇒ r0 = e−N/M
2
. (A.2)

Naively, the singularity would seem to be smoothed out into a purely geometric background
with a finite size S3. Indeed, this is the full story if N is multiple of M , namely N = KM :
in the field theory, the SU(KM) × SU(KM + M) theory suffers a cascade of K Seiberg
dualities in which K decreases by one unit in each step. Morally, the cascade ends when
the effective K = 0 and then we just have a pure SU(M) SYM, which confines and develops
a mass gap. This is the end of the RG flow, with no more running, hence the spacetime in
capped off in the IR region of the dual throat.

However, as also noticed in [48], the story is slightly different if N = KM + P . After
the K steps in the duality cascade, one is left over with an SU(P ) gauge theory with
three complex scalar degrees of freedom parametrizing a deformed mesonic moduli space
corresponding to (the symmetrization of P copies of) the deformed conifold. This gauge
theory flows to N = 4 SU(P ) SYM in the infrared, which is a conformal theory. In the
parameter range 1 � P � M � N , the whole configuration admits a weakly coupled
supergravity dual given by a KS throat at which infrared region we have a finite size S3,
at which P D3-branes (which we take coincident) would be located; however, since P is
large, they backreact and carve out a further AdS5 × S5 with P units of RR 5-form flux,
which continues the radial direction beyond the KS throat endpoint region. Hence, this
region acts as an interpolating domain wall between two different (but cobordant) theories,
namely the conifold throat (with a dynamical tadpole from the fractional brane charge),
and the AdS5 × S5 vacuum (with no tadpole, and preserving maximal symmetry). The
picture is summarized in figure 1.

A.2 Domain wall to a new running solution

Running can lead to an interpolating domain wall, across which we find not a vacuum,
but a different running solution (subsequently hitting a wall of nothing, other interpolating
domain walls, or just some AdS vacuum). We now illustrate this idea with an example
of a running solution A hitting a domain wall interpolating to a second running solution
B, which subsequently hits a wall of nothing. The example is based on the multi-flux
throat construction in [54] (whose dimer picture is given in [56]). It is easy to devise other
generalizations displaying the different behaviours mentioned above.

Consider the system of D3-branes at the singularity given by the complex cone over
dP3. The gauge theory is described by the quiver and dimer diagrams14 in figure 2.

14For references, see [55, 57–59].
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Figure 1. Domain wall interpolating between the conifold theory with fractional branes, and an
AdS vacuum. Figure a) shows a heuristic intermediate step of a KS solution with a number P of left-
over probe D3-branes. If P is large, the appropriate description requires including the backreaction
of the D3-branes, which lead to a further AdS throat, to the left of the picture in figure b). Hence
the running of the dynamical tadpole in the right hand side ends in a domain wall separating it
from an AdS vacuum.

Figure 2. The quiver and dimer diagrams describing the gauge theory on D3-branes at the tip of
the complex cone over dP3.

We can add fractional branes, i.e. rank assignments compatible with cancellation of
non-abelian anomalies. There are several choices, corresponding to different fluxes on the
3-cycles in the dual gravitational theory. Some of them correspond to 3-cycles which can
be grown out of the singular origin to provide a complex deformation of the CY. These
are described as the splitting of the web diagram into sub-webs in equilibrium, see [56]. In
particular we focus on the complex deformation of complex cone over dP3 to a conifold,
see the web diagram in figure 3.

There are two kinds of fractional branes, associated to M and P . In the gravity dual,
these correspond to RR 3-form fluxes on 3-cycles (obtained by an S1 fibration over a 2-cycle
on dP3), and there are NSNS 3-form fluxes in the dual 3-cycles. These are non-compact,
namely they span a 2-cycle (dual to the earlier 2-cycle in dP3) and the radial direction. For
more details about the quantitative formulas of this kind of solution, see section 5 of [60].
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Figure 3. a) Web diagram of the complex cone over dP3 splitting into three sub-webs. b) Rank
assignment (fractional branes) that trigger those complex deformations.

Figure 4. a) Quiver of the dP3 theory in the last step of the first cascade, which turns into the
conifold upon strong dynamics of the nodes 1 and 4. b) Same story in the dimer picture.

If we focus in the regime15 P �M , then the larger fluxM implies a larger correspond-
ing component of the H3 flux, which means a faster running of the corresponding 5d NSNS
axion. The axion associated to the flux P also runs, but more slowly. In the field theory,
the duality cascade is controlled by M , so that N is reduced in multiples of M (at leading
order in P/M). When N is exhausted we are left with a rank assignment as given in fig-
ure 4a. The result of the strong dynamics triggered by M can be worked out in field theory
as in [54] or using dimers as in [56]. All the info about this last description is in figure 4b.

The result is a conifold theory with M regular branes and P fractional branes. This is
the standard KS story (with just different labels for the branes): M decreases in sets of P
until it is exhausted, then the running stops due to strong dynamics. In the gravity dual, we

15Note that in [54] the regime is the opposite, but both kinds of fractional branes are similar, so the result
is the same up to relabeling.
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Figure 5. Domain wall interpolating between the theory on dP3 with (M + P ) fractional branes,
and a conifold theory with M regular branes and P fractional ones. The running of one of the
dynamical tadpoles in the dP3 theory stops at the wall but the other continues running until it
reaches the S3 at the bottom of the KS throat.

have a KS throat sticking out and spacetime ends on the usual S3 (alternatively, ifM is not
a multiple of P , there is a number P of leftover D3-branes, which, if large, can trigger a fur-
ther AdS throat as in section A.1. A sketch of the gravity dual picture is shown in figure 5.

Note that this kind of domain wall interpolates into two topologically different com-
pactifications. As we cross it, the compactification space changes, and the spectrum of
light fields changes (at the massless level, one of the axions ceases to exist). In this sense,
it is a cobordism domain wall connecting two different quantum gravity theories [5].

A.3 Cobordism domain walls to disconnected solutions

The construction of singularities admitting complicated patterns of complex deformations
(or resolutions) can be carried out systematically for toric singularities, using the tech-
niques in [55]. This can be used to build sequences of domain walls realizing a plethora
of possibilities. For our last class of examples, we consider cobordism domain walls to
disconnected theories.

This has already been realized in the geometry used in [61] to build a bifid throat, i.e.
two throats at the bottom of a throat, see figure 6. These had been proposed in [62] as
possible hosts of axion monodromy inflation models (see [63–67] for additional references).

Actually, a far simpler way of getting a running solution with a domain wall to a
disconnected set of e.g. vacua is to consider the KS setup in section A.1, with the P
leftover D3-branes split into two stacks P1 and P2 of D3-branes at separated locations
on the S3 (with P1, P2 � 1). This corresponds to turning on a vev v for a Higgsing
SU(P ) → SU(P1) × SU(P2) (with P1 + P2 = P ) with a scale for v much smaller than the
scale of confinement Λ of the original SU(KM + P ) × SU(KM + M + P ) theory. In the
gravity dual, we have a running solution in the holographic direction, towards low energies;
upon reaching Λ, we have the S3 domain wall, out of which we have one AdS5 × S5-like
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Figure 6. Picture of a bifid throat. It represents a domain wall implementing a cobordism between
one theory and a disconnected set of two quantum gravity theories.

Figure 7. Picture of a bifid throat with two AdS tongues. It represents a domain wall implementing
a cobordism between one theory and a disconnected set of two AdS theories.

vacuum (with flux P ), until we hit the scale v, and the single throat splits into two AdS5×S5

throats (with fluxes P1, P2). If v ' Λ, the splitting of throats happens in the same regime
as the domain wall ending the run of the initial solution. This is depicted in figure 7.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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6
Global summary of results and discussion

In this thesis, we have studied different aspects of quantum gravity constraints
within the framework of string theory compactifications. The main common thread
was provided by running solutions, which played a central role in the articles presented
in Chapter 2, 3 and 5. The article presented in Chapter 4 lies somewhat outside this.
However, one of its highlights was vacuum energy, and this is not unrelated to the
question of dynamical tadpoles, extensively studied in Chapter 5, when both concepts
are regarded as features of the scalar potential. Let us briefly summarize the key points
and the main results of each of the five articles.

Non compact locally AdS warped throats, and their stability properties, were
the object of study of Chapter 2. Motivated by looking at systems of fractional D-
branes at singularities, we proposed a new swampland conjecture forbidding stable
non-supersymmetric locally AdS warped throats, and thus generalized the analogous
statement that non-supersymmetric AdS vacua must be unstable. This allowed us
to reinterpret several known facts about warped throats from fractional branes, as
well as to derive new results on the instability of large classes of non-supersymmetric
throats, with supersymmetry breaking triggered by strong dynamics in the infrared D-
brane sectors, or by the presence of stringy sources as orientifold planes. In one of the
examples, the instability was associated to the presence of fractional N = 2 branes, and
this was later shown to be fully general [4]. As opposed to the pure AdS formulation,
our conjecture has no direct bearing on meta-stable non-supersymmetric throats, since
in the local case there is no isometry in the radial direction introducing an infinite
volume factor multiplying the decay probability, so a finite and potentially small decay
amplitude is in principle feasible.

In Chapter 3, we used warped throats as an arena to test the attainability of
transplanckian field ranges in string theory. We showed that warped throats of the
Klebanov-Strassler kind, regarded as flux compactifications on five-dimensional Sasaki-
Einstein manifolds, describe fully backreacted solutions of transplanckian axion mono-
dromy. The key feature of the five-dimensional theory was an axion physically rolling
through its dependence on a spatial coordinate, and traversing arbitrarily large dis-
tances in field space. The solution included the backreaction on the breathing mode
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of the compactification space and the vacuum energy, thus yielding a novel form of
flattening. We established the description of the system in terms of an effective five-
dimensional theory for the axion, and verified its validity in transplanckian regimes.
We speculated that similar models in which the axion rolls in the time direction would
correspond to embedding the same mechanism in de Sitter vacua, thus providing a
natural arena for large field inflation, and potentially linking de Sitter and distance
conjectures.

The goal of the article presented in Chapter 4 was to clarify the role of discrete
gauge symmetries in certain swampland conjectures. Motivated by black hole argu-
ments combined with the weak gravity conjecture and the species bound, we argued
that in theories of quantum gravity with discrete gauge symmetries, namely Zk, the
gauge couplings of U(1) gauge symmetries become weak in the limit of large k. We
provided explicit examples based on type IIB on AdS5×S5/Zk orbifolds, and M-theory
on AdS4×S7/Zk ABJM orbifolds (and their type IIA reductions). We also studied AdS4

vacua of type IIA on CY orientifold compactifications, and showed that the parametric
scale separation in certain infinite families is controlled by a discrete Zk symmetry for
domain walls. We accordingly proposed a refined version of the strong AdS distance
conjecture, including a parametric dependence on the order of the discrete symmetry
for 3-forms. It should be noted that there exist some scale separated AdS3 models
where discrete symmetries of the kind we discussed in the four-dimensional example
are absent [3]. This may be a peculiarity of working in three dimensions. Another
possibility is that there is some discrete symmetry that protects the scale separation
before the orientifolding, and such protection remains after the projection, even though
the discrete symmetry is removed.

In Chapter 5, we considered string theory vacua with tadpole sources for dynam-
ical fields. These are dynamical tadpoles (as opposed to topological tadpoles, such
as RR tadpoles) and typically indicate the fact that the equations of motion are not
obeyed in the proposed configuration, which should be modified by letting the solution
acquire some dependence on spacetime coordinates, namely rolling down the slope of a
potential. These running solutions share some interesting features. In particular, they
often contain metric singularities or strong coupling regimes, which make their physical
interpretation difficult.

In the first article of the Chapter, we presented large classes of spacetime-dependent
solutions sourced by dynamical tadpoles, which admitted a simple and tractable smooth-
ing out of such singularities. These included AdS5×T1,1 with 3-form fluxes, 10d massive
type IIA, M-theory on K3, 10d non supersymmetric USp(32) string theory, and type
IIB compactifications with three-form fluxes and/or magnetized D-branes. We also il-
lustrated a model building application based on a six-dimensional string model whose
tadpole triggered spontaneous compactification to four dimensions. Remarkably, this
implied not only that some spacetime dimensions were removed, but also that some new
degrees of freedom appeared, yielding a semirealistic three-family MSSM-like particle
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physics model. All these examples revealed some universal features and scaling beha-
viours, which are most likely to apply to general string theory vacua, and were summed
up in two lessons. The Finite Distance lesson implied the appearance of ends of space-
time (or walls of nothing) at a finite spacetime distance, inversely related to the strength
of the tadpole. The Dynamical Cobordism lesson identified the physical mechanism cut-
ting off spacetime dimensions as the cobordism defect of the initial theory, predicted
by the cobordism conjecture. These results shed new light on several features observed
in specific examples of classical solutions to dynamical tadpoles, and provided a deeper
understanding of the appearance of singularities, and the stringy mechanism smoothing
them out and capping off dimensions to yield dynamical compactification.

In the second article of the Chapter, we showed that as the configuration ap-
proaches the cobordism walls of nothing, the scalar fields run off to infinite distance in
moduli space, allowing us to explore the implications of the distance conjecture. We
uncovered new interesting scaling relations linking the moduli space distance and the
scale of the massless tower predicted by the distance conjecture to spacetime geometric
quantities, such as the distance to the wall and the scalar curvature. We also considered
walls at which scalars remained at finite distance in moduli space and identified them
as domain walls interpolating between different (but cobordant) theories. This still
applied even if the scalars reached finite distance singularities in moduli space, such as
conifold points. We illustrated our ideas with explicit examples in massive IIA theory,
M-theory on CY threefolds with 4-form fluxes, and 10d non-supersymmetric strings.
In four-dimensional N = 1 theories, our framework reproduced a recent proposal to
explore the distance conjecture using four-dimensional axionic string solutions [16].
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7
Resumen global de los resultados y discusión

Esta tesis se ha enfocado al estudio de varios aspectos en la comprensión de las
restricciones que impone la gravedad cuántica sobre las teorías de campos efectivas a
bajas energías en el contexto de compactificaciones de teoría de cuerdas. Soluciones con
dependencia espaciotemporal han sido el hilo conductor de los artículos presentados en
los Capítulos 2, 3 and 5. El artículo presentado en el Capítulo 4 se encuentra un tanto
afuera de esto. Sin embargo, uno de los puntos principales era la energía de vacío, que es
relacionada con el tema de tadpoles dinámicos, discutido ampliamente en el Capítulo 5,
cuando las dos nociones son consideradas como propriedades del potencial escalar. A
continuación resumimos brevemente los puntos clave y los principales resultados de
cada uno de los cinco artículos.

Gargantas curvadas con geometría localmente AdS y sus propriedades de estabil-
idad han sido el objecto de estudio del Capítulo 2. Motivados por considerar sistemas
de D-branas fraccionarias en singularidades, hemos propuesto una nueva conjetura de
swampland que prohíbe la estabilidad de estas geometrías si supersimetría está rota,
generalizando el criterio análogo que excluye vacíos non-supersimétricos estables de tipo
AdS. Esto nos ha permitido reinterpretar varios resultados conocidos en la literatura
sobre gargantas curvadas obtenidas de branas fraccionarias, así como derivar resulta-
dos originales sobre la inestabilidad de largas clases de gargantas non supersimétricas,
donde la rotura de la supersimetría es provocada por la dinámica fuerte en el infrarrojo,
o por la presencia de ingredientes cuerdosos como planos anti-O3. En un ejemplo par-
ticular, la inestabilidad estaba asociada a la presencia de branas fraccionarias N = 2,
que fue demostrada posteriormente para ser completamente general [4]. A diferencia
de la formulación puramente AdS, la nuestra conjetura no guarda relación directa con
gargantas metaestables non-supersimétricas, ya que en el caso local no hay alguna iso-
metría en la dirección radial que introduzca un factor infinito de volumen que multiplica
la probabilidad de decaimiento, y por lo tanto una amplitud de decaimiento finita y
posiblemente pequeña es en principio realizable.

En el Capítulo 3 hemos utilizado gargantas curvadas como un escenario para
probar la obtenibilidad de excursiones de campos transplanckianas en teoría de cuerdas.
Hemos demostrado que gargantas curvadas de tipo Klebanov–Strassler, consideradas
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como compactificaciones con flujos en espacios Sasaki–Einstein cinco dimensionales,
definen un modelo de monodromía axionica plenamente backreacted. La característica
principal de la teoría efectiva en cinco dimensiones ha sido la presencia de un axion
dependiente en la coordenada radial, que recorre distancias arbitrariamente largas en
lo espacio de campos. La solución incluía la backreaction sobre el breathing mode
del espacio de compactificación y la energía de vacío, generando así una nueva forma
de aplanamiento. Especulamos que modelos similares en que el axion se deplaza en
la coordenada temporal correspondería a incorporar el mismo mecanismo en vacíos
de Sitter, generando así un escenario natural para modelos inflacionarios de campos
grandes, y potencialmente relacionando las conjeturas de de Sitter y de la distancia.

El objetivo del Capítulo 4 ha sido analizar el papel de simetrías discretas de gauge
en varias conjeturas de swampland. Motivados por argumentos basados en agujeros
negros juntos a la conjetura de gravedad débil y la restricción de especies, hemos ar-
gumentado que en teorías de gravedad cuántica con simetrías discretas de gauge, en
concreto Zk, las constantes de acoplamiento de las simetrías U(1) de gauge se hacen
débiles en el limite de k grande. Hemos analizados ejemplos explícitos basados en tipo
IIB en orbifolds AdS5 × S5/Zk, y teoría M en ABJM orbifolds AdS4 × S7/Zk (y sus
reducciones tipo IIA). Además, hemos estudiado vacíos AdS4 de tipo IIA en compac-
tificaciones orbifold de Calabi-Yau, y hemos mostrado que la separación paramétrica
de escalas en algunas familias infinitas es controlada por una simetría discreta Zk para
paredes de dominio. Por lo tanto, hemos propuesto un refinamiento de la conjetura
fuerte de la distancia en Anti-de Sitter, que incluye una dependencia paramétrica del
orden de la simetría discreta para 3-formas. Cabe señalar que existen modelos AdS3

con separación de escalas en que las simetrías discretas del tipo que hemos discutido
en el ejemplo cuatro dimensional son ausentes [3]. Esto podría ser una peculiaridad de
tres dimensiones. Otra posibilidad es que existe algúna simetría discreta que protege
la separación de escalas antes del orientifold, y tal protección permanece después de la
proyección, aunque la simetría discreta sea eliminada.

En el Capítulo 5, se ha completado el estudio de potenciales de campos escalares
incluyendo tadpoles dinámicos (en oposición a tadpoles topológicos, en concreto RR),
que describen inestabilidades que prohíben soluciones máximamente simétricas de las
ecuaciones de movimiento, y que por tanto corresponden a procesos de evolución espa-
ciotemporal no trivial. Estas soluciones comparten varias características interesantes.
En concreto, suelen contener singularidades de la métrica o regímenes de acoplamiento
fuerte, que dificultan la interpretación física.

En el primer artículo del Capítulo, hemos presentado largas clases de soluciones
con dependencia espaciotemporal asociadas a tadpoles dinámicos, que admitían una
resolución simple y tratable de estas singularidades. Los modelos tratados incluían
AdS5×T1,1 con flujos de 3-formas, teoría tipo IIA masiva en diez dimensiones, teoría
M en K3, teoría de cuerdas USp(32) non supersimétrica en diez dimensiones, y com-
pactificaciones de tipo IIB con flujos de 3-formas y/o D-branas magnetizadas. Además,
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hemos discutido una aplicación de estas ideas a un modelo seis dimensional cuyo tad-
pole induce una compactificación espontánea en cuatro dimensiones. Notablemente,
esto implicaba que no sólo algunas dimensiones se eliminaron, sino también algunos
nuevos grados de libertad aparecían, produciendo un modelo de física de partículas
tipo MSSM semi-realista con tres familias. Estos ejemplos han revelados algunas carac-
terísticas universales que posiblemente se podrán aplicar a soluciones mas generales de
teoría de cuerdas, y que hemos sintetizado en dos lecciones. Con la lección de Distancia
Finita hemos establecido la aparición de muros de dominio que constituyen fronteras
del espaciotiempo a una distancia finita relacionada inversamente con la intensidad del
tadpole. Con la lección de Cobordismo Dinámico hemos identificado el mecanismo que
corta las dimensiones espaciotemporal como el defecto de cobordismo de la teoría inicial,
demostrando una realización dinámica de la conjetura de cobordismo. Estos resulta-
dos han arrojado nueva luz on varias características de soluciones clásicas asociadas a
tadpoles dinámicos en ejemplos específicos, y han permitido comprender mejor la apar-
ición de singularidades, así como el mecanismo de sus resolucción con la terminación
de dimensiones espaciotemporales que produce compactificaciones dinámicas.

En el segundo artículo del Capítulo, hemos mostrado que cuando la configuración
se acerca al muro de dominio, los campos escalares huyen a una distancia infinita en
el espacio de módulos, permitiéndonos explorar las implicaciones de la conjetura de
la distancia. Hemos desvelado nuevas relaciones entre la distancia en el espacio de
módulos y la escala de la torre sin masa de la conjetura de la distancia con cantidades
geométricas en el espaciotempo, en concreto la distancia con el muro y la curvatura
escalar. Además, hemos considerado muros en que los campos escalares se mantenían
en un distancia finita en el espacio de módulos y los hemos identificado como muros
de dominio que interpolan entre teorías distintas (pero cobordantes). Esto se aplicaba
también cuando los campos escalares alcanzaban singularidades a distancia finita en el
espacio de módulos, como puntos de conifold. Hemos ilustrado estas ideas con ejemplos
explícitos en teoría masiva IIA, teoría M en CY3 con flujos de 4-formas, y cuerdas
non supersimétricas en diez dimensiones. En teorías N = 1 cuadridimensionales, el
nuestro esquema ha reproducido una propuesta reciente para explorar la conjetura de
la distancia utilizando soluciones de cuerdas axionicas [16].
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