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Abstract
We show that a Calabi–Yau structure of dimension d on a smooth dg category C
induces a symplectic form of degree 2− d on ‘the moduli space of objects’MC . We
showmoreover that a relativeCalabi–Yau structure on a dg functorC → D compatible
with the absolute Calabi–Yau structure on C induces a Lagrangian structure on the
corresponding map of moduli MD → MC .
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1 Introduction

Given a smooth, proper variety X over a field k, there is a reasonable derived moduli
space of perfect complexes MX on X , with the property that at a point in MX

corresponding to a perfect complex E on X , the tangent complex at E identifies
with the shifted (derived) endomorphisms of E :

TE (MX ) � End(E)[1].

For X of dimension d, a trivialisation θ : OX � ∧d T ∗(X) of its canonical bundle

gives a trace map tr : End(E)
θ� Hom(E, E ⊗ ∧d T ∗(X)) → k[−d] such that the

Serre pairing

TE (MX )[−1]⊗2 � End(E)⊗2 ◦→ End(E)
tr→ k[−d] (1.1)

is symmetric and non-degenerate. Shifting by 2, we obtain therefore an anti-symmetric
map ∧2TE (MX ) → k[2 − d].

When d = 2, so that X is a K3 or abelian surface, and the moduli space MX is
replaced with that of simple sheaves, Mukai [18] showed that the above pointwise
pairings come from a global algebraic symplectic form. Similarly, when X is taken to
be a compact oriented topological surface, Goldman [10] showed that using Poincaré
pairings in place of Serre pairings as above gives a global symplectic form on the
moduli space of local systems on X .

Such examples motivated Pantev-Toën-Vaquié-Vezzosi [19] to introduce shifted
symplectic structures on derived Artin stacks and to show that, in particular, the above
pairings (1.1) are induced by a global symplectic form of degree 2 − d on MX . The
main goal of this paper is to establish an analogue of this global symplectic formwhen a
Calabi–Yau variety (X , θ) is replaced by a ‘non-commutative Calabi–Yau’ in the form
of a nice dg category C equipped with some extra structure and the moduli spaceMX

is replaced with a ‘moduli space of objects’MC . More precisely, a non-commutative
Calabi–Yau of dimension d is a (very) smooth dg category C equipped with a negative
cyclic chain θ : k[d] → HC−(C) satisfying a certain non-degeneracy condition,
and the moduli space MC parametrises ‘pseudo-perfect C-modules’, introduced by
Töen-Vaquié in [22].More generally, we shall be interested in ‘relative left Calabi–Yau
structures’ on dg functors C → D, in the sense of Brav-Dyckerhoff [4].

The main result of this paper is Theorem 5.6, which we paraphrase here.

Main theorem Given a non-commutative Calabi–Yau (C, θ) of dimension d, the mod-
uli space of objects MC has an induced symplectic form of degree 2−d. If in addition
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f : C → D is a dg functor equipped with a relative left Calabi–Yau structure, then
the induced map of moduli spaces MD → MC has an induced Lagrangian structure.

In Corollary 6.2, we shall show that the above theorem about non-commutative
Calabi–Yaus allows us to say something new even for non-compact commutative
Calabi–Yaus with Gorenstein singularities. Namely, we have the following corollary.

Corollary of main theorem Let X be a finite type Gorenstein scheme of dimension d
with a trivialisation θ : OX � K X of its canonical bundle. Then the moduli spaceMX

of perfect complexes with proper support has an induced symplectic form of degree
2 − d. When X arises as the zero-scheme of an anticanonical section s ∈ K −1

Y on a
Gorenstein scheme Y of dimension d + 1, then the restriction map

MY → MX

carries a Lagrangian structure.

In Corollary 6.5, we shall show that the notion of relative Calabi–Yau structure and
its relation toLagrangian structures allows us to construct Lagrangian correspondences
between moduli spaces of quiver representations, generalising examples known to
experts. We record here a special case.

Corollary of main theorem For a noncommutative Calabi–Yau (C, θ) of dimension d,
there is a Lagrangian correspondence

MC × MC ← Mex
C → MC ,

where Mex
C is the moduli space of exact triangles in C.

Remark 1.1 Before proceeding, let us mention some related work. The notion of
relative Calabi–Yau structure was introduced in our previous paper, [4], where we
announced the theorem above. In [21], 5.3, Toën sketches an argument for the par-
ticular case of the main theorem when C is both smooth and proper, and describes a
version of the second corollary. In [24], Theorem 4.67, Yeung proves a version of the
main theorem for a certain substack of MC . In [20], Shende and Takeda develop a
local-to-global principle for constructing absolute and relative Calabi–Yau structures
on dg categories of interest in symplectic topology and representation theory. Com-
bined with our main theorem, this gives many examples of shifted symplectic moduli
spaces and Lagrangians in them coming from non-commutative Calabi–Yaus.

We now sketch the main constructions involved in establishing the main theorem.
First, by definition of the moduli space MC , there is a universal functor

FC : Cc → Perf(MC )

from the subcategory of compact objects ofC to perfect complexes on themoduli space
MC . Applying the functor of Hochschild chains and taking S1-invariants, we obtain
a map of negative cyclic chains HC−(Cc) → HC−(Perf(MC )). An appropriate
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version of the Hochschild-Kostant-Rosenberg theorem (Proposition 5.3) provides a
projection map HC−(Perf(MC )) → A2,cl(MC , 2) from negative cyclic chains of
Perf(MC ) to closed 2-forms of degree 2. In particular, from a Calabi–Yau structure
of dimension d, θ : k[d] → HC−(C), we obtain a closed 2-form of degree 2 − d as
the composite

k[d] θ→ HC−(C) → HC−(Perf(MC )) → A2,cl(MC , 2).

While the construction of the above closed 2-form is fairly easy, it requires some
work to show that it is non-degenerate. Indeed, much of the paper consists in setting up
the theory necessary for computing this 2-form in such a way that its non-degeneracy
becomes manifest. The computation is broken into a number of steps.

First, we note that since C is smooth, the functor F is corepresentable relative
to Perf(MC ) in the sense that there is a universal object EC ∈ Cc ⊗ Perf(MC )

so that FC = HomMC
(EC ,−). Moreover, there is a form of Serre duality relative

to Perf(MC ), formulated in terms of the ‘relative inverse dualising functor’ (see
Corollary 2.6), which in the case that (C, θ) is a noncommutative Calabi–Yau of
dimension d induces a global version of the Serre pairing (1.1):

EndMC
(EC )⊗2 ◦→ EndMC

(EC )
tr→ OMC [−d]. (1.2)

Next, we show (see Proposition 3.9) that there is a natural isomorphism of Lie
algebras of the shifted tangent complex of MC with endomorphisms of EC :

T (MC )[−1] � EndMC
(EC ).

In particular, the shifted tangent complex T (MC )[−1] carries not only a Lie algebra
structure, but even an associative algebra structure.

Finally, after a general study of maps of Hochschild chains induced by dg functors,
we check that under the identification T (MC )[−1] � EndMC

(EC ), the pairing 1.2
agrees with that given by the 2-form induced by θ . (See Proposition 5.4 in the body
of the text.)

We end this introduction with an outline of the structure of the paper, highlighting
those points important to the proof of the main theorem.

In Sect. 2, we introduce notation for dg categories. The two most important points
are Corollary 2.7, which shows that certain dg functors are corepresentable, and
Lemma 2.6, which shows that the ‘inverse dualising functor’ for a smooth dg cat-
egory behaves like an ‘inverse Serre functor’.

In Sect. 3, we introduce some basic objects of derived algebraic geometry, as well
as the protagonist of our story, the ‘moduli space of objects’ MC in a dg category
C . The main result of this section is Theorem 3.9, which for nice C establishes an
isomorphism of Lie algebras T (MC )[−1] � End(EC ), where EC is the ‘universal
left proper object’. In particular, this endows the shifted tangent complex T (MC )[−1]
with the structure of associative algebra.
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In Sect. 4, we review the formalism of traces of endofunctors, which we use to
describe the functoriality and S1-action for Hochschild chains. Themost import points
are Lemma 4.7, which describes how to compute the Hochschild map for a dg functor
with smooth source and rigid target, and Proposition 4.10, which establishes an S1-
equivariant isomorphism between functions on the loop space LU of an affine scheme
U and Hochschild chains H H(QCoh(U )) of the category of quasi-coherent sheaves.

In Sect. 5, we review the theory of closed differential forms in derived algebraic
geometry. In Proposition 5.3, we show how to construct closed differential forms on
the moduli space MC from negative cyclic chains on C , and then prove our main
result, Theorem 5.6. We conclude by discussing some corollaries and examples.

Conventions

For ease of reading, we adopt certain linguistic and notational conventions. For
example, (∞, 1)-categories are simply called categories, (∞, 1)-functors are called
functors, and homotopy limits and colimits are called limits and colimits. Similarly
for (∞, 2)-categories. Certain objects or morphisms, such as adjoints and composites,
are only defined up to a contractible space of choices and we leave this ambiguity
implicit. However, given an (∞, 1)-category C and two objects x, y ∈ C , we do write
Map(x, y) for the mapping space between them, which should serve as a reminder of
what is not explicitly mentioned. Certain properties, like a morphism being an equiv-
alence or an object in a monoidal category being dualisable, can be checked in the
homotopy category and we do not usually mention explicitly the passage to the homo-
topy category. In particular, we simply call equivalences isomorphisms. Since there
are no new ∞-categorical notions introduced in this paper, and almost all notions that
we use appear in standard references such as [17] and [16], we trust that the reader
will not have difficulty in applying these conventions.

2 Dualisability and smoothness for dg categories

In this section we review some basic definitions and results about dg categories. The
main results that we use in later sections are Proposition 2.5 and Corollary 2.7.

2.1 Dualisability in symmetric monoidal categories

In order to aid later calculations, we give a few definitions andmake a few observations
about dualisable objects and morphisms between them.

We introduce some notation and recall common notions. Let C be a symmetric
monoidal category. An object C ∈ C is dualisable if there is another object C∨,
togetherwith an evaluation evC : C∨⊗C → 1C and coevaluation coC : 1C → C⊗C∨
satisfying the usual axioms. Given a morphism f : C → D with dualisable source,
the adjoint morphism ϕ : 1 → C∨ ⊗ D is given as the composite

1
coC−→ C ⊗ C∨ � C∨ ⊗ C

IdC∨ ⊗ f−→ C∨ ⊗ D. (2.1)
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Conversely, given a morphism ϕ : 1 → C∨ ⊗ D, we obtain the adjoint morphism
f : C → D as the composite

C
IdC ⊗ϕ−→ C ⊗ C∨ ⊗ D � C∨ ⊗ C ⊗ D

evC ⊗ IdD−→ D. (2.2)

Note that these two constructions are inverse to each other. Given a morphism f :
C → D with dualisable source and target, the dual morphism f ∨ : D∨ → C∨ is
given as the composite

D∨ ev∨
C ⊗ IdD∨−→ C∨ ⊗ C ⊗ D∨ IdC∨ ⊗ f ⊗IdD∨−→ C∨ ⊗ D ⊗ D∨ IdC∨ ⊗ co∨

D−→ C∨. (2.3)

Remark 2.1 Note that for a dualisable object C , the evaluation evC and coevaluation
coC are dual to each other after composing with the symmetry C∨ ⊗ C � C ⊗ C∨.
Moreover, the endomorphism of C adjoint to ev∨

C : 1C → C∨ ⊗ C is nothing but the
identity endomorphism IdC .

Lemma 2.2 Consider a symmetric monoidal 2-category C.

(1) Let C
f→ D and D

g→ C be morphisms between 1-dualisable objects in C. Then
we have a natural identification of composites

IdD∨ ⊗ f g ◦ ev∨
D � g∨ ⊗ f ◦ ev∨

C (2.4)

In other words, the adjoint of the composite D
g→ C

f→ D can be computed as
g∨ ⊗ f ◦ ev∨

C .
(2) More generally, given an endomorphism F : C → C with adjoint morphism

� : 1C → C∨ ⊗ C, the adjoint of the composite f Fg can be computed as
g∨ ⊗ f ◦ �.

(3) Similarly, we have a natural identification

evD ◦g∨ ⊗ f = evC ◦ IdC∨ ⊗g f , (2.5)

both sides being adjoint to g f .
(4) An adjoint pair f : C ↔ D : f r dualises to an adjoint pair ( f r )∨ : C∨ ↔ D∨ :

f ∨.

Proof As these are standard facts, we make only brief remarks on the proofs.
For 1), using the definition of (co)evaluation,we obtain a factorisation IdC �

co∨
C ⊗ IdC ◦ IdC ⊗ ev∨

C . Now insert IdC between f and g, and rearrange, using
g∨ � IdD∨ ⊗ co∨

C ◦ IdD∨ ⊗g ⊗ IdC∨ ◦ ev∨
D ⊗ IdC∨ .

For 2), use essentially the same argument as in 1), but replacing f with F f .
For 3), again use the same argument as in 1), but inserting a factorisation of IdD

between g and f .
For 4), note that for a 2-morphism α : f1 → f2, there is a naturally induced 2-

morphism α∨ : f ∨
2 → f ∨

1 . Applying this to the unit and co-unit f f r → IdD and
I dC → f r f gives the dualised adjunction. 
�
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2.2 Presentable dg categories

In this subsection we discuss the formalism in which we deal with dg categories.
Mostly we follow Gaitsgory-Rozenblyum [8].

DGCat2cont denotes the symmetricmonoidal 2-categoryof presentable dg categories,
continuous dg functors, and dgnatural transformations.Here continuousmeans colimit
preserving. The underlying 1-category, with presentable dg categories as objects and
continuous dg functors as 1-morphisms, is denoted DGCatcont. We denote by Fun the
relative Hom adjoint to tensor product.1 The unit with respect to the tensor product is
the dg category Vectk of dg vector spaces.

Given a dg category C ∈ DGCatcont, we denote its subcategory of compact objects
by Cc. A dg category C is compactly generated if C = Ind(Cc). Note that for any
presentable dg category C , Cc is a small, idempotent complete dg category. The
category of such small dg categories is denoted dgcat.

As a matter of convention, objects of DGCatcont shall be called simply ‘dg cate-
gories’, while objects of dgcat shall be called ‘small dg categories’. Let us emphasise
here that in the prequel to this paper [4], we worked with a model for small dg cate-
gories dgcat in terms of small categories enriched over cochain complexes and Morita
equivalences between them. In the present paper, it is both more convenient and also
necessary to work with DGCatcont, since we need to handle not-necessarily compactly
generated dg categories when dealing with quasi-coherent sheaves on prestacks.

The dualisable objects in DGCatcont (1-dualisable objects in DGCat2cont) are simply
called dualisable dg categories. Concretely, a dg category C is dualisable if there
is another dg category C∨ and a pairing evC : C∨ ⊗ C → Vectk and copairing
coC : Vectk → C ⊗ C∨ satisfying the usual properties. Note that if C is compactly
generated, then it is dualisable with dual C∨ = Ind((Cc)op). One shows that evC

and coC are dual up to a switch of tensor factors. Furthermore one shows that for a
dualisable dg category, we have a natural equivalence C∨ ⊗ D � Fun(C, D), and that

under this equivalence, the composite Vectk
coC→ C ⊗ C∨ � C∨ ⊗ C � Fun(C, C)

sends k ∈ Vectk to IdC .
Given a continuous dg functor f : C → D between presentable dg categories (that

is, a map in DGCatcont), the adjoint functor theorem ensures the existence of a formal
right adjoint f r : D → C . When the right adjoint f r is itself continuous, we call
f : C ↔ D : f r a continuous adjunction. When C and D are dualisable, passing to
duals gives a continuous adjunction ( f r )∨ : C∨ ←→ D∨ : f ∨, by Lemma 2.2. One
shows that if C is compactly generated, then a continuous functor f : C → D has
continuous right adjoint if and only f sends compact objects to compact objects.

A dualisable dg category C is called proper if the evaluation functor C∨ ⊗ C
evC→

Vectk has a continuous right adjoint and is called smooth if the evaluation functor has

a left adjoint. Equivalently, C is smooth if the coevaluation functor Vectk
coC→ C ⊗ C∨

has a continuous right adjoint. Since Vectk is generated by the compact object k, coC

has a continuous right adjoint if and only coC (k) ∈ C ⊗ C∨ is compact if and only
if IdC ∈ Fun(C, C) is compact. (We note in passing that the 2-dualisable objects

1 In some sources, Fun is denoted FunL , to emphasise that morphisms preserve colimits.
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in DGCat2cont are precisely the dualisable dg categories C that are both smooth and
proper.)

2.3 Rigid dg categories and continuous adjunctions

In this subsection, we review the notion of rigid dg category, following [8], and prove
a corepresentability result (Corollary 2.7) for continuous adjunctions between smooth
and rigid dg categories. This corepresentability lemma will be important for under-
standing the tangent complex of the moduli space of objects.

By monoidal/symmetric monoidal dg category, we mean an algebra/commutative
algebra object in DGCatcont.

Given a monoidal dg category A, we denote the tensor product functor by mA :
A ⊗ A → A, and the unit functor by − ⊗ 1A : Vectk → A. Since A is an algebra
object in DGCatcont, mA and 1A are continuous, hence for every object a ∈ A, the
functors a ⊗ −,− ⊗ a : A → A are continuous.

By A-module category we mean a (left) module C for A internal to DGCatcont. By
definition, the action functor mC : A ⊗ C → C is continuous. In particular, given
any object c ∈ C , the functor − ⊗ c : A → C is continuous. By the adjoint functor
theorem,−⊗c has a (not necessarily continuous) right adjoint HomA(c,−) : C → A,
called ‘relative Hom’.

We use the notation

EndA(c) := HomA(c, c).

EndA(c) admits a natural structure of algebra in A. See [16], 4.7.2.
Given an associative algebra A in a monoidal dg category A and an A-module

category C , there is a dg category of A-modules in C , denoted

A -mod(C)

The datum of an object c ∈ A -mod(C) is equivalent to giving an algebra morphism
A → EndA(c).

We shall need the following fact, proved in [8], I.1.8.5.7:

Proposition 2.3 There is an equivalence of categories

A -mod⊗AC � A -mod(C).

A monoidal dg category A is called rigid if the unit 1A is compact, the monoidal
product mA : A ⊗ A → A has a continuous right adjoint mr

A, and mr
A is a map

of A-bimodules. It is easy to see that for A rigid, evA := HomA(1A,mA(−)) :
A ⊗ A → A → Vectk induces a self-duality equivalence A � A∨. When A is
compactly generated, the condition that mr

A be a bimodule functor can replaced with
the requirement that an object is compact if and only if it admits a left and right dual.
See [8], I.1.9.
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If C is dualisable, then one can show that there is an equivalence of dg categories
C∨ � FunA(C, A) and that there is an A-linear relative evaluation functor evC/A :
C∨ ⊗A C → A exhibiting C∨ as the A-module dual of C ([8], I.1.9.5.4). We say
that C is smooth over A if the relative evaluation evC/A has a left adjoint evl

C/A and
proper over A if there is a continuous right adjoint evr

C/A.
For a rigid dg category A, the induction-restriction adjunction

− ⊗1A : Vectk ←→ A : HomA(1A,−) (2.6)

is continuous. Tensoring 2.6 with a dg category C , we obtain a continuous induction-
restriction functor for C and CA := A ⊗ C , which for brevity we denote

i : C ←→ CA : ir .

Concretely, we have i(c) = 1A ⊗ c and ir (a ⊗ c) = HomA(1A, a) ⊗ c.

Lemma 2.4 Let C be a dg category, A a rigid dg category, f : C ↔ A : f r a
continuous adjunction.

(1) There is an induced, continuous A-linear adjunction

F : CA
IdA ⊗ f A ⊗ AIdA ⊗ f r

mA A : Fr .mr
A

(2) We have f � F ◦ i and f r � ir ◦ Fr . Applying i to the latter and using the unit
of the adjunction i, ir , we obtain a natural transformation

i ◦ f r � i ◦ ir ◦ Fr ⇒ Fr .

(3) Using the above natural transformation and the natural isomorphism i ◦ � �
IdA ⊗� ◦ i for a continuous endomorphism � of C, we obtain a natural trans-
formation

f ◦ � ◦ f r � F ◦ i ◦ � ◦ f r � F ◦ IdA ⊗� ◦ i ◦ f r ⇒ F ◦ IdA ⊗� ◦ Fr

natural in �.

Proof The proofs are straightforward. Let us merely note that F is A-linear by con-
struction. The fact that its right adjoint Fr is also A-linear uses rigidity of A and is
verified in [8], I.9.3.6. 
�

Next, we specialise to the case of dualisable and smooth sources and rigid target,
where standard diagram chases establish the following.

Proposition 2.5 Let A be a rigid symmetric monoidal dg category, C a dualisable
A-module, F : C ↔ A : Fr a continuous A-linear adjunction.
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(1) Under the self-duality A � A∨, the dual functor F∨ identifies with the composite

A
ev∨

C/A−→ C∨ ⊗A C
IdC∨ ⊗A F−→ C∨ ⊗A A � C∨

and the dual functor Fr ∨ identifies with the composite

C∨ � A ⊗A C∨ Fr ⊗AIdC∨−→ C ⊗A C∨ co∨
C/A−→ A

(2) By definition of dual functor, F � evC/A ◦F∨ ⊗A IdC . Then using the above
computation of F∨, F identifies with the composite

C � A ⊗A C
ev∨

C/A ⊗A IdC−→ C∨ ⊗A C ⊗A C
IdC∨ ⊗A F⊗AIdC−→ C∨ ⊗A A ⊗A C

� C∨ ⊗A C
evC/A−→ A.

(3) If C is smooth over A, so that evC/A : C∨ ⊗A C → A has a left adjoint evl
C/A,

then we can pass to left adjoints in F � evC/A ◦F∨ ⊗A IdC to obtain a left adjoint
Fl � Fr ∨ ⊗A IdC ◦ evl

C/A. Using the above computation of Fr ∨, we find that Fl

identifies with the composite

A
evl

C/A−→ C∨⊗AC � A⊗AC∨⊗AC
Fr ⊗AIdC∨ ⊗A IdC→ C⊗AC∨⊗AC

co∨
C/A ⊗A IdC→ C .

Inspecting the above composite, we find that

Fl � Id!
C/A ◦Fr ,

where Id!
C/A is adjoint to evl

C/A(k) ∈ C∨ ⊗A C.

(4) When C is smooth over A, we set E := Fl(1A) ∈ C and obtain that F is
corepresentable relative to A:

F � HomA(E,−).

Let A be a rigid, compactly generated dg category, C a compactly generated A-
module category. An object c ∈ C is called left proper over A if HomA(c,−) :
C → A is continuous with continuous right adjoint, and right proper over A if
HomA(−, c)∨ : C → A is continuous with continuous right adjoint. 2

The functor Id!
C/A adjoint to evl

C/A(k) ∈ C∨ ⊗A C is called the (relative) inverse
dualising functor, since by the following corollary it behaves like an ‘inverse Serre
functor’ relative to A.

2 Here, HomA(−, c)∨ is a slight abuse of notation. Strictly speaking, the formula is correct on compact
objects, and is then defined everywhere by left Kan extension.
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Corollary 2.6 Let C be a compactly generated dg category, smooth over a rigid dg
category A. Suppose c ∈ C is right proper over A, so that the functor HomA(−, c)∨ :
C → A is continuous with continuous right adjoint. Then there is a natural isomor-
phism of functors

HomA(−, c)∨ � HomA(Id!
C/A(c),−).

In particular, Id!
C/A(c) is left proper.

Moreover, applying the above isomorphism to c, we have HomA(Id!
C/A(c), c) �

HomA(c, c)∨. Composing with the dual of the unit 1A → HomA(c, c), we obtain a
trace map trc : HomA(Id!

C/A(c), c) � HomA(c, c)∨ → 1A. For a compact object d,

the isomorphism HomA(d, c)∨ � HomA(Id!
C/A(c), d) is induced by the pairing

HomA(d, c) ⊗A HomA(Id!
C/A(c), d)

◦→ HomA(Id!
C/A(c), c)

trc→ 1A.

Proof Let F = HomA(−, c)∨ : C → A. By assumption, F has a continuous right
adjoint Fr . For each compact object d ∈ C , we have a natural equivalence

HomA(d, c) � HomA(1A,HomA(d, c)) � HomA(HomA(d, c)∨, 1A)

� HomA(F(d), 1A) � HomA(d, Fr (1A)),

hence by the Yoneda lemma Fr (1A) � c. By Proposition 2.5, F also has a left
adjoint given as Fl = Id!

C/A ◦Fr and F is corepresented by Fl(1A), hence F �
HomA(Id!

C/A(c),−), as claimed.
The statement about the isomorphism being induced by the pairing follows from

naturality of the isomorphism, just as in the case of Serre functors. 
�
Combining Lemma 2.4 and Proposition 2.5, we have the following corepresentabil-

ity result, which will be essential in understanding the tangent complex of the moduli
space of objects MC in a smooth dg category C .

Corollary 2.7 Let f : C ←→ A : f r be a continuous adjunction with smooth source
and rigid target. Then the induced functor

F = f A : CA → A

has a left adjoint Fl and F is corepresented by the compact object E = Fl(1A) ∈ CA:

F � HomA(E,−).

We have isomorphisms

F Fl(1A) � F Id!
C/A Fr (1A) � EndA(E) (2.7)

F Fr (1A) � HomA(E, Fr (1A)) � EndA(E)∨ (2.8)
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We end this section with a computation that will be useful later for computing fibres
of certain canonical perfect complexes on the moduli space of objects in a dg category.

Lemma 2.8 Let C be a dg category, A a rigid dg category, and ϕ : A ←→ Vectk : ϕr

an adjunction with ϕ a symmetric monoidal dg functor. Then for objects E1, E2 ∈
CA = A ⊗ C, we have a natural isomorphism

ϕHomA(E1, E2) � HomC ((ϕ ⊗ IdC )(E1), (ϕ ⊗ IdC )(E2)).

Proof First, let us note that Vectk becomes an A-module via ϕ and that with respect
to this A-module structure ϕr is A-linear. Hence the endofunctor ϕrϕ of A is A-linear
and so determined by its action on 1A, giving an isomorphism of functors

ϕrϕ � ϕr (k) ⊗ −.

Using this isomorphism, adjunction, and A-linearity of relative Hom, we obtain the
following sequence of isomorphisms:

ϕHomA(E1, E2)

� Homk(ϕ(1A), ϕHomA(E1, E2)) � HomA(1A, ϕrϕHomA(E1, E2))

� HomA(1A, ϕr (k) ⊗ HomA(E1, E2))

� HomA(1A,HomA(E1, ϕ
r (k) ⊗ E2))

� HomCA (E1, ϕ
r (k) ⊗ E2) � HomC ((ϕ ⊗ IdC )(E1), (ϕ ⊗ IdC )(E2)).


�

3 Themoduli space of objects

3.1 Quasi-coherent and ind-coherent sheaves on affine schemes

We review some basic notions in derived algebraic geometry that we shall need later,
mostly following [8], Chapters 2-6. For more subtle points, we give precise references.

From now on, we take k to be a field of characteristic 0.
By definition, the category of (derived) affine schemes Aff is opposite to the cat-

egory CAlg≤0
k ⊂ CAlgk of connective commutative algebras in Vectk .3 An affine

scheme U = Spec(R) is said to be of finite type over the ground field k if H0(R) is
finitely generated as a commutative algebra over k, Hi (R) is finitely generated as a
module over H0(R), and H−i (R) = 0 for i � 0. The category of affine schemes of
finite type is denoted Aff f t .

By definition, the dg-category of quasi-coherent sheaves QCoh(U ) on an affine
scheme U = Spec(R) is the dg category of dg modules over the commutative algebra
R. Given a map f : U → V , the pullback functor f ∗ : QCoh(V ) → QCoh(U ) is

3 Since we are working in characteristic 0, it is possible to model CAlg≤0
k in terms of cohomologically

non-positive commutative differential graded algebras. See [16], Proposition 7.1.4.11.
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given by induction of modules along the corresponding map of rings. As such, f ∗ is
symmetric monoidal. The naturality of pullback is expressed via a functor

QCoh(−)∗ : Affop → DGCatcont.

Since we are so far considering only affine schemes, f ∗ always has a continuous
right adjoint f∗.

One can show that QCoh(U ) is a rigid symmetric monoidal dg category, and in
particular that ⊗-dualisable objects coincide with compact objects. In this case, the
structure sheafOU , corresponding to the ring R, is a compact generator. The compact
objects in QCoh(U ) are called perfect complexes, which form a small idempotent
complete dg category denoted Perf(U ). They are preserved by pullback. In the present
affine case, we therefore have Ind(Perf(U )) = QCoh(U ).

Given a pullback square of affine schemes

U ×W V

q

p
V

g

U
f

W

(3.1)

naturality of pullback gives an isomorphism q∗ f ∗ � p∗g∗, so by adjunctionwe obtain
a base-change map

f ∗g∗ → q∗ p∗, (3.2)

which is easily checked to be an isomorphismby considering its action on the generator
OV ∈ QCoh(V ).

For affine schemes U = Spec(R) of finite type, define the small subcategory
Coh(U ) ⊆ QCoh(U ) of coherent sheaves to consist of quasi-coherent sheaves with
bounded, finitely generated cohomology: F ∈ Coh(U ) if Hi (F) is finitely generated
over H0(R) and Hi (F) = 0 for |i | � 0. The dg category of ind-coherent sheaves is
defined to be the ind-completion of the category of coherent sheaves:

IndCoh(U ) := Ind(Coh(U )).

The category of ind-coherent sheaves IndCoh(U ) is a module category for quasi-
coherent sheaves QCoh(U ), with the action given by ind-completion of the action of
Perf(U ) on Coh(U ). For a map of affine schemes of finite type f : U → V , there is
a functor 4

f ! : IndCoh(V ) → IndCoh(U ).

More precisely, we have a functor

IndCoh()! : Aff f t
op → DGCatcont,

4 For an ‘elementary’ definition of f !, see [8], II.5.4.3.
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IndCoh(U ) has a natural symmetric monoidal structure, the product of which is
denoted ⊗!, and the unit of which is ωU := p!(k) for p : U → ∗. Using the action of
QCoh(U ) on IndCoh(U ), tensoring with ωU gives a symmetric monoidal functor

ϒU = − ⊗ ωU : QCoh(U ) → IndCoh(U ).

The functor ϒ intertwines ∗-pullback and !-pullback: ϒU f ∗ � f !ϒV .
More precisely, ϒ is a natural transformation

ϒ : QCoh(−)∗ → IndCoh(−)!

of functors from Aff f t
op to DGCatcont.

There is a self-duality equivalence IndCoh(U ) � IndCoh(U )∨. The corresponding
equivalence between compact objects is denoted

DU (−) = Coh(U )op � Coh(U ).

Onecan show that there is an isomorphismof functorsDU (−) � HomQCoh(U )(−, ωU ).
The functorDU (−) can be used to define a contravariantGrothendieck-Serre duality
functor

QCoh(U )−op → Funex(Coh(U )op,Vectk) � IndCoh(U ) (3.3)

given explicitly by E �→ HomQCoh(U )(E,DU (−)) 5. If E is a perfect complex, then
for any F ∈ Coh(U ) ⊂ IndCoh(U ), we have isomorphisms

HomQCoh(U )−(E,DU (F)) � HomIndCoh(U )(E ⊗ F, ωU )

� HomIndCoh(U )(F, E∨ ⊗ ωU )

hence the functor 3.3 is given on perfect complexes by

E �→ ϒ(E∨). (3.4)

In particular, it is symmetric monoidal and fully faithful when restricted to perfect
complexes. More generally, one can show that DU (−) is fully faithful on bounded
above quasi-coherent sheaves having coherent cohomology sheaves.

3.2 Prestacks and themoduli of objects

In this subsection, we fix notation by reviewing some basic constructions concerning
prestacks and dg categories of sheaves on prestacks. Our basic reference is [8,9].

We denote by PrStk := Fun(CAlg≤0
k ,Spc) the category of prestacks on Aff. Being

a topos, PrStk is cocomplete, Cartesian closed, and colimits commute with pullbacks.
We denote the internal/local mapping space adjoint to X × − by Map(X ,−), and

5 Here, QCoh(U )− denotes quasi-coherent sheaves that are cohomologically bounded above. For more on
Grothendieck-Serre duality, see [9], I.1.3.4.
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the global mapping space by Map(X ,−). Moreover, there is a continuous faithful
embedding Spc ↪→ PrStk sending a space K to the constant prestack with value K .

The embedding Spc ↪→ PrStk is symmetric monoidal for the Cartesian monoidal
structures, so (abelian) groups in Spc map to (abelian) groups in PrStk. We shall be
especially interested in the circle group BZ = S1.

Definition 3.1 Given a prestack X , its free loop space L X is by definition the mapping
prestack Map(S1, X).

The free loop space L X carries a natural action of the circle group S1, which we
call ‘loop rotation’. Decomposing a circle into two intervals and using the fact that
mapping out of a colimit gives a limit, we obtain an isomorphism of the free loop
space with the self-intersection of the diagonal:

L X � X ×X×X X

In particular, if X is affine, then the free loop space is again affine.
Mostly we shall be interested in prestacks that are laft (locally almost of finite type)

and def (‘have deformation theory’). Roughly, a prestack X is laft if it is determined
by maps U → X with U an affine of finite type, and is def if it has a (pro-)cotangent
complex T ∗(X) that behaves as expected. See the next section for what we expect of
a (pro-)cotangent complex.

Recall from Sect. 3.1 the functor of quasi-coherent sheaves on affine schemes:

QCoh(−)∗ : Affop → DGCatcont

Taking the right Kan extension of QCoh(−)∗, we obtain a functorial notion of
quasi-coherent sheaves on general prestacks:

QCoh(−)∗ : PrStkop → DGCatcont.

Since every prestack X is tautologically a colimit over all affines mapping into it,
X = colimAff /X U , we have by definition an identification

QCoh(X) = lim
U∈(Aff /X)op

QCoh(U ).

For each map of prestacks f : X → Y , we have by definition a pullback functor
f ∗ : QCoh(Y ) → QCoh(X). The adjoint functor theorem provides a right adjoint,
denoted f∗, but in general it can be poorly behaved. However, for ‘qca’ morphisms
f , f∗ is continuous and satisfies base change and the projection formula for pullbacks
along maps of affines U → Y (see Corollary 1.4.5 [7]). A morphism f : X → Y is
qca if the pullback of X along a map from any affine U → Y is a nice Artin 1-stack
with affine stabilisers. This will be obvious in the situations where we need it.

One can similarly define perfect complexes on a prestack by right Kan extension
from affines, so that in particular we have an identification

Perf(X) = lim
U∈(Aff /X)op

Perf(U ).
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For a general prestack X , perfect complexes need not be compact as objects in
QCoh(X), but they always identify with the subcategory of ⊗-dualisable objects
in QCoh(X). In particular, QCoh(X) is not always rigid, nor even dualisable in
DGCatcont. It shall therefore be convenient for us to formally introduce the cate-
gory of ind-perfect sheaves Ind(Perf(X)). Note that by construction Ind(Perf(X)) is
compactly generated and that pullback preserves compact objects, hence for a map of
prestacks f : X → Y , we have a continuous adjunction

f ∗ : Ind(Perf(Y )) ←→ Ind(Perf(X)) : f∗

Similarly, for a general laft prestack X , the category of ind-coherent sheaves is
defined as the limit along !-pullback over all finite type affine schemes mapping to X :

IndCoh(X) := lim
U∈(Aff f t /X)op

IndCoh(U )!.

For a map of laft prestacks f : X → Y , we have an evident pullback functor
f ! : IndCoh(Y ) → IndCoh(X) and a natural transformation ϒ : QCoh(−)∗ →
IndCoh(−)! of functors from PrStkoplaft to DGCatcont given at a laft prestack X by
tensoring with ωX .

Note that since mapping spaces in limit categories are computed as limits, the
functor ϒX : QCoh(X) → IndCoh(X) is fully faithful when restricted to perfect
complexes, since this was true for affines of finite type. In particular, for X laft, ϒX

induces an isomorphism

	(X ,OX ) � HomQCoh(X)(OX ,OX ) � HomIndCoh(X)(ωX , ωX ). (3.5)

Remark 3.2 For maps of laft prestacks f : X → Y that are sufficiently algebraic, one
can define a pushforward functor f∗ : IndCoh(X) → IndCoh(Y ). Beware, however,
that unless f is proper, f ! is not right adjoint to f∗. Nonetheless, one of the main
results of [8,9] is that in many cases ∗-pushforward satisfies base-change with respect
to !-pullback.

We can now define the main object of interest for this paper.

Example 3.3 Themoduli space of objectsMC in a compactly generated dg category
C is the prestack given on an affine U by

MC (U ) = Mapdgcat(C
c,Perf(U )).

Note that Mapdgcat(C
c,Perf(U )) is the space of exact functors Cc → Perf(U ) from

compact objects in C to perfect complexes on U . Equivalently, we could consider the
space of continuous adjunctions C ↔ QCoh(U ).

When C is smooth, Corollary 2.7 ensures that functors F : Cc → Perf(U ) are
precisely those co-represented by left proper objects E ∈ Cc ⊗ Perf(U ), hence the



Relative Calabi–Yau structures II: shifted Lagrangians in… Page 17 of 45    63 

(somewhat inaccurate) name ‘moduli space of objects’. In particular, a k-point x :
Spec(k) → MC classifies a functor

ϕx : Cc → Perf(k),

and when C is smooth, this functor is corepresented by Id!
C ϕr

x (k). By Serre duality,
we have

HomC (Id!
C ϕr

x (k), y) � HomC (y, ϕr
x (k))∗,

natural in y ∈ Cc, hencewehave an isomorphismof functorsϕx � HomC (−, ϕr
x (k))∗.

Our convention is to identify the point x with the right proper object ϕr
x (k), so that we

have an isomorphism of functors

ϕx � HomC (−, x)∗. (3.6)

By definition of the moduli space, there is a universal exact functor Cc →
Perf(MC ), or equivalently, a universal continuous adjunction

FC : C ←→ Ind(Perf(MC )) : Fr
C ,

so that given a continuous adjunction F : C ←→ QCoh(U ) : Fr corresponding to a
morphism f : U → MC , we have an isomorphism

f ∗FC � F .

By Corollary 2.7, the universal functor FC is corepresented by a left proper object

EC ∈ Ind(Perf(MU )) ⊗ C .

Remark 3.4 The moduli space MC was introduced by Toën-Vaquié [22], where it
is shown that for C a finite type dg category, MC is locally an Artin stack of finite
presentation and in particular has a perfect cotangent complex. A compactly generated
dg category C is of finite type if its category of compact objects Cc is compact in the
category dgcat of small idempotent complete dg categories and exact functors. One
can show that finite type dg categories are always smooth. See [22], Proposition 2.14.

3.3 (Co)tangent complexes and differential forms

In this subsection, we review the notions of cotangent complex and tangent complex,
following I.1 of [9]. (In fact, the authors of [9] work with the somewhat more general
notion of pro-cotangent complex, but we shall not explicitly need that.)

Given an affine scheme U = Spec(R) and a connective quasi-coherent sheaf F ∈
QCoh(U )≤0, we form the trivial square-zero extension UF = Spec(R ⊕ F). Given
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a prestack X and a point U
x→ X , the space of derivations at x valued in F is by

definition

MapU/(UF , X).

For a fixed point x , the space of derivations valued in F is natural in F and we obtain
a functor

QCoh(U )≤0 → Spc, F �→ MapU/(UF , X).

When this functor respects fibres of maps F1 → F2 inducing surjections on H0, it
can be extended to an exact functor

QCoh(U )− → Spc, F �→ MapU/(UF , X). (3.7)

We say that X has a cotangent space T ∗
x (X) ∈ QCoh(U )− atU

x→ X if the functor 3.7
is corepresented by T ∗

x (X):

MapQCoh(U )−(T ∗
x (X), F) � MapU/(UF , X).

Suppose X has all cotangent spaces and

U
f

x

V

y

X

(3.8)

is a commutative diagram of affines over X . Then there is a natural pullback map

f ∗T ∗
y (X) → T ∗

x (X). (3.9)

If 3.9 is an isomorphism for all diagrams 3.8, we obtain a cotangent complex

T ∗(X) ∈ QCoh(X) = lim
U∈(Aff /X)op

QCoh(U )

whose fibres are the cotangent spaces:

x∗T ∗(X) � T ∗
x (X) ∈ QCoh(U )−.

Similarly, given a map of prestacks X → Y and a point x : U → X , the functor of
relative derivations at x is

F �→ MapU/(UF , X) ×MapU/(UF ,Y ) ∗. (3.10)
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If the functor 3.10 is co-represented by an object T ∗
x (X/Y ) ∈ QCoh(U )−, the co-

representing object T ∗
x (X/Y ) is called the relative cotangent space at x , and if relative

cotangent spaces at different points are compatible under pullback, then we obtain a
relative cotangent complex T ∗(X/Y ) ∈ QCoh(X).

Remark 3.5 One can show in particular that filtered colimits of Artin stacks have
cotangent complexes, and that Artin stacks locally of finite presentation have perfect
cotangent complexes. In particular, the moduli spaceMC for a finite type dg category
C has a perfect cotangent complex. See [22], Theorem 3.6.

Given a laft prestack X with cotangent complex T ∗(X), its tangent complex

T (X) ∈ IndCoh(X)

is defined to be the image of its cotangent complex under the contravariant dual-
ity 3.3. In particular, when the cotangent complex of X is perfect, we have by 3.4 an
identification

ϒ(T ∗(X)∨) � T (X)

We define the complex of differential p-forms on X to be

∧pT ∗(X) ∈ QCoh(X).

and the space of differential p-forms of degree n to be

Ap(X , n) = |	(X ,∧pT ∗(X)[n])|.6

When T ∗(X) is perfect, we have by 3.4 isomorphisms

	(X ,∧pT ∗(X)[n]) � HomQCoh(X)(OX ,∧pT ∗(X)[n])
� HomIndCoh(X)(∧pT (X)[−n], ωX ). (3.11)

3.4 The tangent complex of themoduli of objects

In this subsection, we compute the shifted tangent complex of the moduli of objects
T (MC )[−1] in a finite type dg category C . Our argument is an adaptation of that of
[9], II.8.3.3, which treats the case C = Vectk .

To begin with, we review the construction of the natural Lie algebra structure on
T (X)[−1] ∈ IndCoh(X) for X ∈ PrStklaft−def .

6 Here || : Vectk → Spc is the ‘geometric realisation’ of a complex, which is truncation above at 0 followed
by the Dold-Kan correspondence.
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Given X ∈ PrStklaft−def , consider the completion (X × X)∧ of the diagonal 
 :
X → X × X as a pointed formal moduli problem over X :

(X × X)∧

ps

X




Looping, we obtain a formal group�X (X × X)∧ over X sitting in a pullback diagram

�X (X × X)∧

π

π
X




X 

(X × X)∧

It is easy to check that the formal group �X (X × X)∧ identifies with the completion
L X∧ of the loop space along the constant loops.

From the theory of formal groups developed in [9], II.7.3, L X∧ has a cocommutative
Hopf algebra of distributions in IndCoh(X) given as

Dist(L X∧) = π∗ωL X∧ � 
!
∗ωX ,

whose Lie algebra of ‘primitive elements’ identifies with the shifted tangent complex:

Prim(π∗ωL X∧) � T (X)[−1].

By [9], II.6.1.7, there is an isomorphism of cocommutative conilpotent coalgebras

SymX (T (X)[−1]) � 
!
∗ωX . (3.12)

By [9], II.7.5.2 and II.8.6.1, there is a natural identification


!
∗ωX − mod(IndCoh(X)) � IndCoh((X × X)∧) (3.13)

where the functor
! : IndCoh((X × X)∧) → IndCoh(X) corresponds to the forgetful
functor and p!

1 : IndCoh(X) → IndCoh((X × X)∧) to the trivial module functor.
Taking !-pullback along the other factor gives another symmetric monoidal functor
can(X) : p!

2 : IndCoh(X) → IndCoh((X × X)∧). In particular, there is an action map

!
∗ωX ⊗! F → F natural in F ∈ IndCoh(X), and hence by adjunction an algebra
map 
!
∗ωX → EndX (F). In particular, for a perfect complex ϒ(E) ∈ IndCoh(X),
we have an algebra map


!
∗ωX → EndX (ϒ(E)) � ϒEndX (E).
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Remark 3.6 One can show that for a perfect complex ϒ(E) ∈ IndCoh(X), the corre-
sponding action map T (X)[−1] ⊗! ϒ(E) → 
!
∗ωX ⊗! ϒ(E) → ϒ(E) identifies
with the Atiyah class of E . Compare [11].

We shall need the following, which combines the equivalences of 3.13 and Propo-
sition 2.3.

Proposition 3.7 Let M be a module category for IndCoh(X). Then there is an equiv-
alence

IndCoh((X × X)∧) ⊗IndCoh(X) M � 
!
∗ωX -mod(M)

Tensoring over IndCoh(X) with the functor can(X) � p!
2 : IndCoh(X) →

IndCoh((X × X)∧) � 
!
∗ωX -mod(IndCoh(X)), we obtain a functor can(M) :
M → 
!
∗ωX -mod(M), endowing every object m ∈ M with a canonical structure of

!
∗ωX -module. In particular, we obtain a canonical action map 
!
∗ωX ⊗m → m.
Adjoint to this, we obtain a natural algebra map


!
∗ωX → EndX (m) (3.14)

in IndCoh(X).

For later use, we elaborate on a particular case of the above proposition. Let C be a
smooth dg category, f : C → QCoh(U ) a continuous functor with continuous right
adjoint f r ,whereU is an affine schemeoffinite type, and E ∈ CU = QCoh(U )⊗C the
object corepresenting F = f ⊗IdU , so that F � HomU (E,−).Writing EndU (E)∨ �

∗ p∗

2EndU (E)∨, there is a natural map

EndU (E)∨ → 
∗
∗OU (3.15)

defined by applying
∗ to the natural map p∗
2EndU (E)∨ → 
∗OU adjoint to the map

EndU (E)∨ → OU dual to the unit OU → EndU (E).

Lemma 3.8 Let C and f : C → QCoh(U ) be as above. Then the map 
!
∗ωU →
ϒEndU (E) in IndCoh(U ) from 3.14 is Grothendieck-Serre dual to the natural map
EndU (E)∨ → 
∗
∗OU in QCoh(U ) from 3.15.

Proof The assertion is clear at the level of objects. Indeed, since EndU (E) is perfect,
DU (EndU (E)∨) � EndU (E) ⊗ ωU � ϒEndU (E). Moreover, by definition of the
duality functor DU (−) 3.3, we have

HomIndCoh(U )(F,DU (
∗
∗OU )) � HomQCoh(U )(

∗
∗OU ,DU (F))

� HomQCoh(U×U )(
∗OU ,DU×U (
∗F))

� HomIndCoh(U×U )(
∗F,
∗ωU )

� HomIndCoh(U )(F,
!
∗ωU )

for F ∈ Coh(U ), hence by the Yoneda lemma DU (
∗
∗OU ) and 
!
∗ωU are
naturally isomorphic.
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At the level of morphisms, writing ϒEndU (E) � 
! p!
2ϒEndU (E), we have that

the map 
!
∗ωU → ϒEndU (E) is obtained by applying 
! to the natural map

∗ωU → p!

2ϒEndU (E) adjoint to the unit ωU → 
! p!
2ϒEndU (E) � ϒEndU (E).

Similarly, as noted above, the natural map EndU (E)∨ → 
∗
∗OU is defined by
applying 
∗ to the natural map p∗

2EndU (E)∨ → 
∗OU . Since the duality functor D
exchanges ∗-pullback and !-pullback, the assertion follows. 
�

We now proceed to compute the shifted tangent complex of the moduli of objects
MC in a dg category C of finite type. Recall that by definition we have a universal
continuous adjunction

FC : C ←→ Ind(Perf(MC )) : Fr
C

and hence by Corollary 2.7, there is a left proper object

EC ∈ Ind(Perf(MC )) ⊗ C

corepresenting FC . In particular, we obtain an associative algebra EndMC
(EC ) in

Perf(MC ) and hence an associative algebra ϒEndMC
(EC ) � EndMC

(ϒEC ) in
IndCoh(MC ).

Using Proposition 3.7 with M = IndCoh(MC ) ⊗ C and m = ϒEC , we obtain a
natural map of algebras


!
∗ωMC → EndMC
(ϒEC )

and hence a map of Lie algebras

T (MC )[−1] → EndMC
(ϒEC ). (3.16)

Proposition 3.9 The map of Lie algebras (3.16) is an isomorphism.

Proof Given a point x : U → MC classifying a functor f : C → QCoh(U ), let
E ∈ QCoh(U ) ⊗ C be the left proper object corepresenting the functor f ⊗ IdU :
CU = QCoh(U ) ⊗ C → QCoh(U ). Applying !-pullback to (3.16), we obtain for
every F ∈ Coh(U ) a map

HomU (DU (F), x !T (MC )[−1]) → HomU (DU (F),EndU (ϒ E)). (3.17)

Since MC and LMC are locally geometric and locally of finite presentation ([22],
Theorem 3.6), in particular laft-def, to show that (3.16) is an isomorphism it suffices
to check that (3.17) is an isomorphism for all F ∈ Coh(U ), and since IndCoh(U ) is
stable, it is in fact enough to check that (3.17) induces an isomorphism on homotopy
classes of maps. We shall do this by showing that x !T (MC )[−1] and EndU (ϒ E)

represent the same functor at the level of homotopy categories.
By definition of the Lie algebra of a formal group, we have T (MC )[−1] �

s!T (LMC/MC ), hence T (MC )[−1] represents relative derivations for LMC →
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MC at each point U → MC
s→ LMC . By definition of MC and of the loop

space, a point U → MC
s→ LMC is given by a pair ( f , Id f ), where f is a functor

f : C → QCoh(U ) and Id f is the identity automorphism of the functor f . Therefore
to give a relative derivation into F ∈ Coh(U ) is to give an automorphism α of the

trivial extension f̃ : C
f→ QCoh(U )

π∗→ QCoh(UF ) of the functor f together with an
identification i∗α � Id f .

By adjunction, the automorphism α : π∗ f → π∗ f is equivalent to a map E →
π∗π∗E � E ⊕ F ⊗ E in CU whose first component is just IdE . Such a map is
therefore determined by its second component E → F ⊗ E . In short, homotopy
classes of derivations with values in F ∈ Coh(U ) at ( f , Id f ) : U → LMC relative
toMC naturally identify with homotopy classes of maps E → F ⊗ E in CU .

We claim that suchmaps are naturally identified with mapsDU (F) → ϒEndU (E),
and thus ϒEndU (E) identifies with the relative tangent space for every point. Indeed,
we have

HomCU (E, F ⊗ E) � HomQCoh(U )(OU ,HomQCoh(U )(E, F ⊗ E))

� HomQCoh(U )(OU , F ⊗ EndQCoh(U )(E))

� HomQCoh(U )(EndQCoh(U )(E)∨, F)

� HomIndCoh(U )(DU (F),DU (EndQCoh(U )(E)∨))

� HomIndCoh(U )(DU (F), ϒEndQCoh(U )(E)).


�
We conclude this section with a computation of the (co)tangent map induced by a

dg functor.

Lemma 3.10 Let f : C ←→ D : f r be a continuous adjunction between smooth dg
categories and ϕ : MD → MC the induced map of moduli spaces. Then there is a
natural map of functors FDF l

Dϕ∗ → ϕ∗FCF l
C which when evaluated on OMC gives

a map EndMD
(ED) → ϕ∗EndMC

(EC ). After applying ϒ , the latter map gives the
shifted tangent map

T (MD)[−1] → ϕ!T (MC )[−1].

The fibre of the above shifted tangent map at a point x ∈ MD corresponding to
a functor ϕx = HomD(−, x)∗ : D → Vectk identifies with the map EndD(x) →
EndC ( f r (x)) induced by the functor f r : D → C.

Dually, there is a natural map of functors ϕ∗FCFr
C → FDFr

Dϕ∗ which when
evaluated on OMC gives a map ϕ∗EndMC

(EC )∨ → EndMD
(ED)∨. The latter map

identifies with the shifted cotangent map

ϕ∗T ∗(MC )[1] → T ∗(MD)[1].
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Proof The universal property of the moduli spaces gives a commutative diagram of
functors

C
f

FC

D

FD

Ind(Perf(MC ))
ϕ∗

Ind(Perf(MD))

.

We then have a composite of natural maps of functors F l
Dϕ∗ → F l

Dϕ∗FCF l
C �

F l
DFD f F l

C → f F l
C where the first arrow is induced by the unit IdC → FCF l

C and
the second by the counit F l

DFD → IdD . Applying FD to this composite gives the
desired map FDF l

Dϕ∗ → FD f F l
C � ϕ∗FCF l

C . Evaluating on OMC indeed gives
a map EndMD

(ED) → ϕ∗EndMC
(EC ) by Corollary 2.7. Using Proposition 3.9 and

applying ϒ , we obtain a map T (MD)[−1] → ϕ!T (MC )[−1]. That this map agrees
with the natural tangent map follows easily from the same kind of argument as in the
proof of Proposition 3.9. Finally, the claim about the fibres follows from Lemma 2.8.

The dual statement for the cotangent map is proved dually. 
�

4 Traces and Hochschild chains

4.1 Traces and circle actions

We begin by reviewing the theory of traces in (higher) symmetric monoidal categories.
Our main reference is Hoyois-Scherotzke-Sibilla [12], which among other things pro-
vides enhanced functoriality for a construction of Toën-Vezzosi [23]. Other references
making use of this circle of ideas include [2] and [14]. We follow [12], but slightly
modify the notation and language to be consistent with other parts of the paper. In
particular, we call a symmetric monoidal category ‘very rigid’ rather than ‘rigid’ if all
its objects are dualisable.

Following [12], given a symmetric monoidal 2-category C, we consider the sym-
metric monoidal 1-category End(C), defined as the symmetric monoidal category of
‘oplax natural transfors’, in the sense of Scheimbauer-Johnson-Freyd [13], from the
free very rigid category generated by BN to C:

End(C) := Funoplax⊗ ((BN)vrig,C). (4.1)

Accordingly, we shall informally say that that End(C) is ‘oplax corepresentable’.
At the level of homotopy categories, End(C) admits the following description: an
object of End(C) is a pair (C,�), where C ∈ C is a 1-dualisable object and � is an
endomorphism of x . Given two objects (C,�) and (D, 
), a morphism between them
is a pair ( f , α), where f : C → D is a 1-morphism admitting a right adjoint f r in C
and α : f � ⇒ 
 f is a 2-morphism. Such a morphism is usually displayed as a lax
commutative square
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C

f

�
C

f
α

D



D

(4.2)

The symmetric monoidal structure on End(C) is given ‘pointwise’. We also consider
the symmetric monoidal category �C, whose objects are endomorphisms of the unit
1C and whose morphisms are natural transformations between such endomorphisms.

Definitions 2.9 and 2.11 of [12] give a symmetric monoidal trace functor

Tr : End(C) → �C. (4.3)

The value of Tr on an object (C,�) is computed simply as the trace of the endomor-

phismadjoint to�, namely, as the composite 1C
ev∨

C−→ C∨⊗C
IdC∨ ⊗�−→ C∨⊗C

evC−→ 1C.

In other words, the trace of� is the composite of the morphism 1C
�ad→ C∨⊗C adjoint

to C
�→ C with the evaluation morphism evC : C∨ ⊗ C → 1C:

Tr(�) = evC (�ad). (4.4)

Given a morphism ( f , α) : (C,�) → (D, 
) in End(C), the induced map of
traces Tr(�) ⇒ Tr(
) is computed as the left-to-right composite of lax-commutative
squares

1
ev∨

C
C∨ ⊗ C

( f r )∨⊗ f

IdC ⊗�
C∨ ⊗ C

( f r )∨⊗ f

evC
1

1
ev∨

D D∨ ⊗ D
IdD ⊗


D∨ ⊗ D
evD 1

. (4.5)

Here, we have used Lemma 2.2 to define the 2-morphisms in the left-most and

right-most squares as ( f r )∨ ⊗ f ◦ ev∨
C � (IdD∨ ⊗ f f r ) ◦ ev∨

D

(1⊗ε)◦ev∨
D−→ ev∨

D and

evC
evC ◦(1⊗η)−→ evC ◦(IdC∨ ⊗ f r f ) � evD ◦( f r )∨ ⊗ f , while the 2-morphism in the

central square is 1 ⊗ α.

Lemma 4.1 Given a morphism ( f , α) : (C,�) → (D, 
) corresponding to a lax
commutative square 4.2, the induced map of traces Tr( f , α) : Tr(�) → Tr(
)

factors as

Tr(�)
Tr(�η)−→ Tr(� f r f ) � Tr( f � f r )

Tr(α f r )−→ Tr(
 f f r )
Tr(
ε)−→ Tr(
)
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Proof Simply observe that the diagram

C

f

�
C

f
α

D



D

factors as

C
�

C

�η

C

f

� f r f
C

f

D
f � f r

D

α f r

D

 f f r

D


ε

D



D


�
An important feature of the theory of traces developed in [12] is the naturality in

C of the trace functor TrC : End(C) → �C. While not explicitly stated in [12], the
following lemma follows immediately from ‘oplax corepresentability’ of End(C).

Lemma 4.2 Given a symmetric monoidal 2-functor F : C → D, we have a commuta-
tive diagram of symmetric monoidal functors

End(C)
TrC

F

�C

F

End(D)
TrD

�D

Explicitly, given an object (C,�) ∈ End(C), we have an equivalence

F(TrC(�)) � TrD(F(�)).



Relative Calabi–Yau structures II: shifted Lagrangians in… Page 27 of 45    63 

Furthermore, if G is right adjoint to F, then for any object (D, 
) in End(D), the
counit F ◦G ⇒ IdD induces a natural map F(TrC(G
)) � TrD(FG
) → TrD(
)

and hence, by adjunction, a natural map

TrC(G
) → GTrD(
).

Similarly to the category of endomorphisms End(C), we define the category of
automorphisms as

Aut(C) := Funoplax⊗ ((S1)vrig,C).

At the level of homotopy categories, Aut(C) admits the following description. The
objects of Aut(C) are pairs (C,�) of a dualisable object in C together with an auto-
morphism�. The 1-morphisms inAut(C) are the same as those inEnd(C). Restricting
along BN → BZ = S1, we obtain a symmetric monoidal trace functor

TrC(−) : Aut(C) → �C. (4.6)

The main result that we need from [12] is Theorem 2.14 (refining Corollaire 2.19
of [23]), which states that the trace functor TrC(−) : Aut(C) → �C admits a unique
S1-equivariant lift natural in symmetric monoidal functors C → D. Here Aut(C) =
Funoplax⊗ ((S1)vrig,C) carries the S1-action induced by that on (S1)vrig, while�C carries
the trivial S1-action. Here we explicitly formulate the result from [12] that we shall
need later.

Proposition 4.3 Given an S1-fixed point (C,�) ∈ Aut(C), there is an induced S1-
fixed point structure onTrC(�) ∈ �C, that is, an S1-action onTrC(�). Given a second
S1-fixed point (D, 
) ∈ Aut(C), and an S1-fixed map ( f , α) : (C,�) → (D, 
), we
get an induced S1-equivariant map TrC(�) → TrC(
).

Moreover, given a symmetric monoidal functor F : C → D between symmetric
monoidal 2-categories, we obtain an S1-equivariant equivalence

F(TrC(�)) � TrD(F(�)). (4.7)

The case of most interest to us will be the trace of the identity functor IdC on
a dualisable object C ∈ C, which is naturally S1-fixed. In the next subsection, we
consider the special case of the symmetric monoidal 2-category of presentable dg
categories, in which case Tr(IdC ) gives a natural realisation of Hochschild chains of
C with its functorial S1-action. In the following subsection, we consider the special
case of the symmetric monoidal 2-category of correspondences of affine (derived)
schemes, and use Proposition 4.3 to identify Hochschild chains and functions on the
loop space as S1-complexes.

Remark 4.4 While the constructions abovewere describedmostly at the level of homo-
topy categories, which is sufficient for later computations, the existence of a homotopy
coherent trace functor and its S1-equivariant lift are important for us and provided by
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[12] and [23]. As we have briefly indicated, homotopy coherence and functoriality
are handled by defining the symmetric monoidal categories End(C) and Aut(C) to be
‘oplax corepresentable’ by (BN)vrig and (BZ)vrig respectively.

4.2 Hochschild chains of dg categories

We now specialise to the case of the symmetric monoidal 2-category DGCat2cont of
presentable dg categories. Given a dualisable dg category C ∈ DGCat2cont, we define
Hochschild chains of C to be trace of the identity functor on C endowed with the
S1-action described in the last section:

H H(C) := Tr(IdC )

Remark 4.5 There are various approaches in the literature to the S1-action on
Hochschild chains. Most classically, the S1-action is described in terms of the cyclic
bar complex, as in the book of Loday [15]. Comparable to this is the construction of
Hochschild chains in terms of factorisation homology, as in [16] and [1]. In this paper,
we always use the S1-action coming from the 1-dimensional cobordism hypothesis,
as in [23]. While the comparison between the first two S1-actions and the third seem
to be known to experts, we so far have not found a reference.

Given a continuous adjunction f : C ←→ D : f r between dualisable dg cate-
gories, we obtain from the formalism of traces an induced S1-equivariant map

H H(C) → H H(D).

Recall from Sect. 2 that when C is smooth, then by definition the evaluation functor
evC : C∨ ⊗ C → Vectk has a left adjoint evl

C : Vectk → C∨ ⊗ C . Under the
identification C∨ ⊗ C � End(C), evl

C (k) corresponds to a continuous endofunctor
of C , denoted Id!

C and called the inverse dualising functor of C . By definition of the
identification C∨ ⊗ C � End(C), the action of Id!

C is given by the composite

Id!
C : C

IdC ⊗ evl
C−→ C ⊗ C∨ ⊗ C

τ⊗IdC� C∨ ⊗ C ⊗ C
evC ⊗ IdC−→ C (4.8)

Forgetting the S1-action, we obtain the following expression for Hochschild chains
of a smooth dg category C in terms of Hom-complexes:

H H(C) = Tr(IdC ) = Homk(k, evC ◦ ev∨
C (k)) � HomC∨⊗C (evl

C (k), ev∨
C (k))

� HomEnd(C)(Id
!
C , IdC ). (4.9)

Using the above identification, we can compute the map on Hochschild chains for
a dualisable functor with smooth source and dualisable target and in particular for
smooth source and smooth target.
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Proposition 4.6 Let f : C ↔ D : f r be a continuous adjunction with smooth source
and dualisable target. Given a Hochschild chain k[i] → Tr(IdC ) adjoint to a natural
transformation α : Id!

C [i] → IdC , the composite k[i] → Tr(IdC ) → Tr(IdD) giving
the image of the Hochschild chain under the functor f identifies with the composite

k[i] → Tr(Id!
C )[i] Tr(Id!

C )η[i]−→ Tr(Id!
C f r f )[i]

� Tr( f Id!
C f r )[i] Tr( f α f r )−→ Tr( f f r )

Tr(ε)−→ Tr(IdD).

When D is also smooth, there is a natural unit map η̃ : Id!
D → f Id!

C f r so that
the image of α identifies with the composite

Id!
D[i] η̃[i]−→ f Id!

C [i] f r f α f r

−→ f f r ε−→ IdD (4.10)

under the isomorphism Tr(IdD) � HomEnd(D)(Id!
D, IdD).

Proof First note that Tr(Id!
C ) = evC ◦ evl

C (k), so there is a natural unit k → Tr(Id!
C ).

After suspension, that gives the first arrow. Then by adjunction, the composite

k[i] → Tr(Id!
C )[i] Tr(α)→ Tr(IdC ) identifies with the original Hochschild chain

k[i] → Tr(IdC ). Now using Lemma 4.1, and the naturality of η : IdC → f r f ,
we obtain the commutative diagram

k[i] Tr(Id!
C [i]) Tr(IdC )

Tr(Id!
C f r f )[i]

�

Tr( f r f )

�

Tr( f Id!
C f r )[i] Tr( f f r ) Tr(IdD)

Now suppose both C and D are smooth. Since they are in particular dualisable, we
have a natural transformation evC → evD ◦( f r )∨ ⊗ f . Applying evl

D on the left and
evl

C on the right of this natural transformation, we obtain a map evl
D ◦ evC ◦ evl

C →
evl

D ◦ evD ◦( f r ) ⊗ f ◦ evl
C . Post-composing with the counit evl

D ◦ evD → IdD , we
obtain a map

evl
D ◦ evC ◦ evl

C → ( f r ) ⊗ f ◦ evl
C (4.11)

Since C is smooth, we have a unit k → evC ◦ evl
C (k) = End(Id!

C ). Applying evl
D on

the left of this unit, we obtain a map

evl
D(k) → evl

D ◦ evC ◦ evl
C (k). (4.12)
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Composing 4.11 and 4.12 and using the usual identifications, we obtain the desired
unit

Id!
D

η̃−→ f Id!
C f r . (4.13)

The claim about the image of α then follows as in the case of C smooth and D
dualisable. 
�

Ourmain interest is in computing theHochschildmap H H (C) → H H(A) induced
by a continuous adjunction f : C ↔ A : f r with smooth source and rigid target.
By Corollary 2.7, the induced A-linear functor F = f A : CA → A has a left adjoint
Fl : A → CA and F is corepresentable by Fl(1A) = E ∈ CA: F � HomA(E,−).
Thus given a Hochschild class k[i] → H H(C) adjoint to a natural transformation

Id!
C [i] α→ IdC , we get an induced natural transformation Id!

CA/A[i] αA→ IdCA and hence

an induced natural transformation F Id!
CA

Fr [i] FαA Fr→ F Fr . Post-composingwith the
counit F Fr → IdA and applying the tensor product mA : A ⊗ A → A, we obtain a
composite

F Id!
CA

Fr (1A)[i] αA→ F Fr (1A) → mA mr
A(1A).

Using the isomorphisms TrA(F Id!
CA

Fr ) � F Fl(1A) � EndA(E) and TrA(F Fr ) �
F Fr (1A) � EndA(E)∨ from Corollary 2.7, we obtain the composite

1A[i] → EndA(E)[i] → EndA(E)∨ → mA mr
A(1A). (4.14)

where 1A[i] → EndA(E)[i] is the shifted unit map. Note that under the isomor-
phism EndA(E)∨ � HomA(Id!

CA/A(E), E), the map EndA(E)[i] → EndA(E)∨ �
HomA(Id!

CA/A(E), E) identifies with HomA(−, E) applied to αA : Id!
CA/A[i] →

IdCA evaluated on E .

Proposition 4.7 Given a continuous adjunction F : C ↔ A : Fr with smooth source
and rigid target, the image of a Hochschild chain adjoint to α : Id!

C [i] → IdC

under the induced map H H(C) → H H(A) is obtained by applying the functor
HomA(1A,−) : A → Vectk to the composite (4.14) and precomposing with the unit
k[i] → EndA(1A)

Proof Using the above isomorphisms and naturality of trace with respect to induction
and restriction between k-linear and A-linear dg categories, we obtain a commutative
diagram
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Trk(Id!
C )[i] Trk(IdC )

resA
k TrA(Id!

CA
)[i] resA

k TrA(IdCA )

resA
k TrA(F Id!

CA
Fr )[i] resA

k TrA(F Fr )

resA
k EndA(E)[i] resA

k EndA(E)∨ resA
k mA mr

A(1A) � Trk(IdA)

Finally, note that the restriction functor resA
k : A → Vectk is just Homk(1A,−) 
�

4.3 Functions on the loop space and Hochschild chains

In order to encode the functoriality of base change maps (3.2), it is best to use the
2-category Corr(Aff) of correspondences with the symmetric monoidal structure
induced by the Cartesian monoidal structure on affine schemes Aff. At the level of
homotopy categories, the objects of Corr(Aff) are just affine schemes, a 1-morphism
in Corr(Aff) from U to V is a correspondence

Z
f

g

U

V

,

and a 2-morphism is a commutative diagram

Z

h f

g Z
′ f

′

g
′

U

V

with h proper.
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Composition of 1-morphisms is given by pullback:

Z
′ ×V Z Z U

Z
′

V

W

,

It is easy to check that all objects U ∈ Corr(Aff) are dualisable, with evaluation
and coevaluation

U



U × U

∗

U




∗

U × U

Applying the formalism of traces from Sect. 4.1, we obtain that the trace of IdU in
Corr(Aff) is the correspondence

U ×U×U U U




∗

U



U × U

∗

and is endowed with a natural S1-action. Decomposing the circle S1 into two intervals
glued along their endpoints, one obtains an identificationMap(S1, U ) � U×U×U U �
TrCorr(Aff)(IdU ), and one can identify the natural S1-action on TrCorr(Aff)(IdU ) with
‘loop rotation’ on Map(S1, U ).

Remark 4.8 The formalism of correspondences makes sense for more general
prestacks, usually with some restrictions on the arrows, but we shall only need to
use it for affine schemes.

As noted in [8] 5.5.3, base change isomorphisms for QCoh give rise to a symmetric
monoidal functor between 2-categories

QCoh : Corr(Aff) → (DGCat2cont)
2−op (4.15)

Concretely, QCoh : Corr(Aff) → (DGCat2cont)
2−op takes an objectU to QCoh(U ),

a morphism V
g← Z

f→ U to the functor g∗ f ∗ : QCoh(U ) → QCoh(V ), and a 2-
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morphism h : Z → Z
′
to a natural transformation g

′
∗ f

′ ∗ ⇒ g
′
∗h∗h∗ f

′ ∗ � g∗ f ∗
induced by the unit IdZ ′ ⇒ h∗h∗.

Remark 4.9 Note the contravariance between h and the induced natural transformation.
This is the reason for the ‘2-op’ in (DGCat2cont)

2−op. Note that the ‘2-op’ affects only
the direction of functoriality of trace, not the trace itself.

We end this section with a comparison of geometrically and algebraically defined
S1-actions.

Theorem 4.10 For an affine scheme U, there is a natural isomorphism of S1-
complexes

	(LU ,OLU ) � H H(QCoh(U ))

where the left-hand side has the S1-action coming from the identification LU =
TrCorr(Aff)(IdU ) and the right-hand side has the S1-action coming from the identifica-
tion H H(QCoh(U )) = TrDGCat2cont (IdQCoh(U )).

Proof Apply the naturality of S1-actions from Proposition 4.3 to the symmetric
monoidal functor QCoh : Corr(Aff) → (DGCat2cont)

2−op. 
�

5 Shifted symplectic and Lagrangian structures on themoduli of
objects

5.1 Graded S1-complexes

Given a groupprestackG, recall that its classifying prestack is the geometric realisation
of the corresponding simplicial prestack: BG := | · · · G × G →→→ G →→ ∗|. The dg-
category of representations ofG is by definition the category of quasi-coherent sheaves
on the classifying prestack BG: Rep(G) := QCoh(BG).

Consider the quotient map ∗ q→ BG and the map to a point BG
π→ ∗. We have

adjoint pairs of functors

q∗ : Rep(G) = QCoh(BG) ↔ Vectk : q∗
π∗ : Vectk ↔ QCoh(BG) = Rep(G) : π∗.

In terms of representations, q∗ forgets the G-action, q∗ coinduces from the trivial
group,π∗ gives the trivial representation, andπ∗ takes G-invariants. For G sufficiently
nice, the right adjoints are continuous.

More generally, given a map between group prestacks ϕ : G1 → G2, we have an
induced map f : BG1 → BG2 of classifying prestacks. In good circumstances, we
have a continuous adjunction f ∗ : Rep(G2) = QCoh(BG2) ←→ QCoh(BG1) : f∗,
which we refer to as restriction and coinduction of representations. 7

7 For classical group schemes, these functors correspond to the usual (derived) restriction and coinduction
functors.
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In particular, consider the abelian group S1 in PrStk. We define an S1-complex to
be a quasi-coherent sheaf on the classifying prestack BS1. 8 By [3] Corollary 3.11,
applying B to the affinisationmap9 S1 → BGa induces an equivalence under pullback

QCoh(B2Ga) � QCoh(BS1).

We may therefore identify S1-complexes with BGa-complexes, and we freely do so.
We shall also be interested in graded S1-complexes, which by definition are objects
of QCoh(B(BGa � Gm)). 10

Using the pullback square

B2Ga
i

π

B(BGa � Gm)

p

∗ q
BGm

(5.1)

and the section j : BGm → B(BGa � Gm) of p : B(BGa � Gm) → BGm ,
we can define various complexes and maps of complexes functorially associated to
(graded) S1-complexes.11 By definition, the negative cyclic complex HC−(E) of an
S1-complex E ∈ QCoh(B2Ga) is the complex of BGa-invariants:

HC−(E) := π∗E ∈ Vectk .

Similarly, given a graded S1-complex F ∈ QCoh(B(BGa � Gm)), we define its
weight-graded negative cyclic complex as the pushforward to BGm :

HC−
w (F) := p∗F ∈ Vectgr

k � QCoh(BGm).

While the functors q∗ : QCoh(BGm) → Vectk and i∗ : QCoh(B(BGa �Gm)) →
QCoh(B2Ga) are given concretely by summing over theweight-graded components of
a graded (mixed) complex, for our purposes it will be more relevant to take the product
over the weight-graded components. More formally, we note that the right adjoint
functorsq∗ : Vectk → QCoh(BGm) and i∗ : QCoh(B2Ga) → QCoh(B(BGa�Gm))

can be shown to be continuous and satisfy the projection formula (using [7], Corollary
1.4.5, and the fact that the morphisms are qca), and hence themselves admit (non-
continuous) right adjoints (q∗)r and (i∗)r , which concretely are given by taking the

8 It is easy to show that this category of S1-complexes is equivalent to others in the literature, for example,
with the category of functors Fun(BS1,Vectk ).
9 Given a prestack X , the affinisation of X is by definition the prestack MapCAlgk

(	(X ,OX ), −) :
CAlg≤0

k → Spc. It is not hard to show that the affinisation of S1 is BGa . See [3], Lemma 3.13.
10 One can show that restriction of representations alongGm → BGa �Gm is conservative and preserves
limits, so restriction/coinduction is comonadic in this case. Thus we may identify QCoh(B(BGa � Gm ))

with certain comodules in QCoh(BGm ). One can use this to identify objects of QCoh(B(BGa � Gm ))

with S1-complexes in QCoh(BGm ), hence the name ‘graded S1-complex’.
11 Vorsicht: Quasi-coherent base change does not hold for the pullback square 5.1.
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product over weight-graded components. There are natural transformations

q∗ ⇒ (q∗)r

i∗ ⇒ (i∗)r (5.2)

concretely given by mapping the direct sum to the direct product. Equivalently, the
natural transformation q∗ ⇒ (q∗)r is adjoint to a natural transformation q∗q∗ ⇒
IdQCoh(BGm ) induced via the projection formula from the natural map q∗q∗OBGm →
OBGm corresponding to the projection k[t, t−1] → k of the regular representation onto
the trivial representation. An analogous construction gives the natural transformation
i∗ ⇒ (i∗)r .

The above long song and dance leads to the following simple and important obser-
vations.

Lemma 5.1 Given a graded mixed complex E ∈ QCoh(B(BGa � Gm)), there is a
natural map

HC−(i∗E) →
∏

p

HC−
w (E)(p)

and so in particular a natural ‘pth component’ map

HC−(i∗E) → HC−
w (E)(p) (5.3)

for each p.
Moreover, applying p∗ to the unit IdQCoh(B(BGa�Gm)) ⇒ j∗ j∗, we obtain a natural

transformation p∗ ⇒ j∗. Passing to weight-graded components, we obtain for each
p a natural map

HC−
w (E)(p) → E(p).

5.2 Closed differential forms

Given an affine schemeU , themap S1 → BGa induces an equivalenceMap(BGa, U )

� Map(S1, U ) = LU , by definition of affinisation. The action of BGa �Gm on BGa

then induces an action of BGa � Gm on LU and hence the functions on LU carry a
natural structure of graded S1-module.12 We thus obtain a direct sum decomposition

	(LU ,OLU ) =
⊕

p

	(LU ,OLU )(p)

into weight-graded components. On the other hand, we have isomorphisms

	(LU ,OLU ) � HomQCoh(LU )(OLU ,OLU ) � HomIndCoh(LU )(ωLU , ωLU )

12 For a more detailed discussion in the not necessarily affine case, see section 4 of [3].
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� HomU (π∗ωLU , ωU ) �
∏

p

	(U ,∧pT ∗(U )[p]),

where the first two isomorphisms are from (3.5) and the last isomorphism uses 3.12
and base change along the diagonal 
 : U → U × U . Altogether, we obtain an
identification

	(LU ,OLU )(p) � 	(U ,∧pT ∗(U )[p])

of the weight-graded components of the functions on LU .13

We introduce the following terminology, following [19]:
The space of p-forms of degree n on an affine scheme U is

Ap(U , n) := |	(LU ,OLU )(p)[n − p]| � |∧pT ∗(U )[n]|

The space of closed p-forms of degree n on U is

Ap,cl(U , n) := |HC−
w (	(LU ,OLU ))(p)[n − p]|

The natural map HC−
w (	(LU ,OLU )(p) → 	(LU ,OLU )(p) from the second part

of Lemma 5.1 induces a map

Ap,cl(U , n) → Ap(U , n)

giving the ‘underlying p-form’ of a closed p-form. The constructions being functorial
in U , we obtain a map of prestacks

Ap,cl(−, n) → Ap(−, n) (5.4)

on Aff.
Following [19], for a general laft-def prestack X , we define the space of closed

p-forms and the space of p-forms, as well as the map between them, by applying
Map(X ,−) to 5.4:

Ap,cl(X , n) = Map(X ,Ap,cl(−, n)) → Map(X ,Ap(−, n)) = Ap(X , n).

We now give the central construction of this paper.
For a prestack X , we tautologically write X = colim(Aff /X) U . Then

Ap,cl(X , n − p) := Map(X ,Ap,cl(−, p − n)) � lim
U∈(Aff /X)op

Ap,cl(U , p − n)

� lim
U∈(Aff /X)op

|HC−
w (U )(p)[−n]|.

13 The fact that the direct sum and direct product agree depends on the fact that T ∗(U ) is connective.
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Remark 5.2 In [19], it is shown that if X is a locally geometric stack, thenAp(X , n) �
|	(X ,∧pT ∗(X)[n])|, so the above notion of the space of forms is at least reasonable
in this case. Since the moduli spaceMC is locally Artin when C is of finite type, this
will suffice for our purposes. For a general laft-def prestack, it is perhaps more natural
to work directly with the Hodge filtration on de Rham cohomology.

The universal continuous adjunction FC : C ←→ Ind(Perf(MC )) : Fr
C gives

an S1-equivariant map H H(C) → H H(Ind(Perf(MC ))). Composing with the natu-
ral S1-equivariant map H H(Ind(Perf(MC ))) → limU∈(Aff /X)op H H(QCoh(U )) �
limU∈(Aff /X)op 	(LU ,OLU ), taking invariants, and using Lemma 5.1, we obtain for
each p a natural map

HC−(C) → lim
U∈(Aff /X)op

HC−
w (	(LU ,OLU ))(p).

Truncating and shifting gives a map κ̃p : |HC−(C)[−n]| → Ap,cl(MC , p − n).
Similarly, define a map κp : |H H(C)[−n]| → Ap(MC , p − n). Functoriality of
invariants and of the pth component map 5.3 gives the following.

Proposition 5.3 For each n ∈ Z, p ∈ N, there is a commutative square of spaces

|HC−(C)[−n]| κ̃p Ap,cl(MC , p − n)

|H H(C)[−n]| κp Ap(MC , p − n)

In words: from a negative cyclic class α : k[n] → HC−(C) of degree n, we obtain
for each p a closed p-form κ̃(α)p of degree p − n on the moduli space MC , and the
underlying p-form is associated to the underlying Hochschild class.

Wenow describe how to compute the p-forms onMC corresponding toHochschild
classes k[n] → H H(C), in the case of a smooth dg category C . Using the isomor-
phism 4.9, we represent a Hochschild class by a map of endofunctors α : Id!

C [n] →
IdC . Inducing the universal continuous adjunctionFC : C ←→ Ind(Perf(MC )) : Fr

C
along the symmetric monoidal functor ϒ : Ind(Perf(MC )) → IndCoh(MC ), we
obtain a continuous adjunction

F̃C : IndCoh(MC ) ⊗ C ←→ IndCoh(MC ) : F̃r
C

in which the left adjoint F̃C is corepresentable by ϒ(EC ) ∈ IndCoh(MC ) ⊗ C .
Applying the induced map of endofunctors α̃ : Id!

CMC
[n] → IdCMC

to the object

F̃r
C (ωMC ) followed by applying the functor F̃C = HomMC

(ϒEC ,−), we obtain a
map

EndMC
(ϒEC )[n] α̃→ EndMC

(ϒEC )∨.
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Here we have used the isomorphisms EndMC
(ϒEC ) � F̃C Id!

CMC
F̃r

C (ωMC ) and

EndMC
(ϒEC )∨ � F̃C F̃r

C (ωMC ) induced by (2.7). Pre-composing with the isomor-
phism (3.16) and the trace map of Corollary 2.6, we obtain a map

α1 : T (MC )[−1 + n] � EndMC
(ϒEC )[n] α̃→ EndMC

(ϒEC )∨ tr→ ωMC . (5.5)

Proposition 5.4 Let C be a smooth dg category. Given a Hochschild chain k[n] →
H H(C) corresponding to a map of endofunctors α : Id!

C [n] → IdC , the correspond-
ing 1-form of degree 1 − n on MC is (dual to) the map α1 from (5.5), while the
corresponding p-form κp(α) of degree p − n is (dual to) the composite

Sym p(T (MC )[−1])[n] → T (MC )[−1]⊗p[n] ◦→ T (MC )[−1][n] tr→ ωMC ,

where the map Sym p(T (MC )[−1]) → T (MC )[−1]⊗p is symmetrisation, the map

T (MC )[−1]⊗p ◦→ T (MC )[−1] is the p-fold multiplication in the associative alge-

bra structure on T (MC )[−1], and the map T (MC )[−1][n] tr→ ωMC is induced by
the trace map of Corollary 2.6.

Proof The maps are defined globally, so to check that the composite is dual to that
giving the p-form κp(α), it is enough to check this by restricting along each map
U → MC from an affine U of finite type. For such a map, we use Lemma 4.7 on
Hochschild maps with smooth source and rigid target. Taking the Grothendieck-Serre
dual of this map as in Lemma 3.8 and using the isomorphism 3.12 completes the
identification of the p-form κp(α). 
�

5.3 Symplectic and Lagrangian structures on themoduli of objects

Recall from [4] that a Calabi–Yau structure of dimension d on a smooth dg
category C is an S1-equivariant map θ : k[d] → H H(C) (equivalently, a map
k[d] → HC−(C) = H H(C)S1 ) such that the corresponding map of endofunctors
Id!

C [d] → IdC is an isomorphism. More generally, given a continuous adjunction
f : C ↔ D : f r between smooth dg categories, a relative Calabi–Yau structure of
dimension d on the functor f is a map η : k[d] → fib(HC−(C) → HC−(D)) such
that in the induced diagram

Id!
D[d] f Id!

C [d] f r cof

fib f f r IdD

(5.6)

all vertical arrows are isomorphisms.14 Here let us note that the map Id!
D[d] →

f Id!
C [d] f r is that given by 4.13.

14 In [4], this was called a ‘left relative Calabi–Yau structure’. Since ‘right Calabi–Yau structures’ do not
appear explicitly in this paper, we drop ‘left’.
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In particular, a relative Calabi–Yau structure on 0 → D of dimension d is just a
Calabi–Yau structure of dimension d +1 on D. We are especially interested in relative
Calabi–Yau structures giving an absolute Calabi–Yau structure on C .

We have the following easy lemma, which will be used in the proof of the main
theorem below.

Lemma 5.5 Let C and D be compactly generated smooth dg categories, f : C →
D : f r a continuous adjunction equipped with a relative Calabi–Yau structure of
dimension d, and x ∈ D a right proper object so that FD = HomD(−, x)∗ : D →
Vectk has continuous right adjoint Fr

D. Then we have a commutative diagram

FD Id!
D Fr

D[d]
�

FD f Id!
C f r Fr

D[d]
�

FDcofFr
D

�

FDfibFr
D FD f f r Fr

D FD Fr
D

of endofunctors of Vectk induced by applying Fr
D on the right and FD the left of the

diagram 5.6. When evaluated on k, we obtain a commutative diagram

EndD(x)[d]
�

EndC ( f r (x))[d]
�

c̃of

�

fĩb EndC ( f r (x))∗ EndD(x)∗

(5.7)

in which the upper left horizontal arrow is induced by applying the functor f r : D →
C and the lower right horizontal arrow is dual to that induced by f r .

Proof If we define FC := FD f , then for any compact object y ∈ C , FC (y) =
HomD( f (y), x)∗ � HomC (y, f r (x))∗, naturally in y, hence FC �
HomC (−, f r (x))∗. The other assertions then follow easily from Corollary 2.7. 
�

We are now ready to prove the main theorem of this paper.

Theorem 5.6 (1) Given a smooth dg category C with Calabi–Yau structure θ :
k[d] → HC−(C) of dimension d, the corresponding closed 2-form κ̃2(θ) ∈
A2,cl(MC , 2− d) is non-degenerate. In words, a Calabi–Yau structure of dimen-
sion d on a smooth dg category C induces on the moduli space of objects MC a
symplectic form of degree 2 − d.

(1) Given a continuous adjunction f : C ←→ D : f r between smooth dg categories
equipped with a relative Calabi–Yau structure η : k[d] → fib(HC−(C) →
HC−(D)) of dimension d that agrees with the absolute Calabi–Yau structure θ ,
there is an induced Lagrangian structure on the map of moduli spaces

MD → MC .
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Proof The proof of 1) is immediate from Lemma 5.4: the pairing T (MC )[−1] ⊗
T (MC )[−1] → ωMC [−d] given by the underlying 2-form is exactly the Serre pairing
of Corollary 2.6, after using the isomorphism EndMC

(ϒE) � T (MC )[−1].
For the proof of 2), we have to describe the induced isotropic structure. For this,

we use naturality of the map |HC−(−)[d]| → A2,cl(M−, 2− d) to obtain a diagram
of fibre sequences

fib(|HC−( f )|) |HC−(C)[−d]| |HC−( f )| |HC−(D)[−d]|

fib(ϕ∗
cl) A2,cl(MC , 2 − d)

ϕ∗
cl A2,cl(MD, 2 − d)

fib(ϕ∗) A2(MC , 2 − d)
ϕ∗

A2(MD, 2 − d)

The relative Calabi–Yau structure k → fib(|HC−(C)[−d]| → |HC−(D)[−d]|)
determines a point in fib(|HC−( f )|), which maps under the upper left vertical arrow
to a point in fib(ϕ∗

cl), determining an isotropic structure.
To prove non-degeneracy of the isotropic structure, note that the maps of functors

from Lemma 3.10, together with the relative Calabi–Yau structure, induce a commu-
tative diagram of functors

FD Id!
D Fr

D[d] ϕ∗FC Id!
C Fr

C [d]
�

fib

cof ϕ∗FCFr
C FDFr

D

.

Evaluating this diagram on OMD and applying ϒ gives a commutative diagram

T (MD)[−1 + d] φ!T (MC )[−1 + d]
�

T (MD/MC )[d]

ϒT ∗(MD/MC ) ϕ!ϒT ∗(MC )[1] ϒT ∗(MD)[1]

in which the upper left horizontal arrow is the shifted tangent map and the lower right
horizontal arrow is the shifted cotangent map.

It remains to see that the outer two vertical arrows in the above diagram are isomor-
phisms. SinceMD is laft, it is enough to check isomorphisms on fibres over k-points
x ∈ MD , which by definition of the moduli space correspond to right proper objects
x ∈ D giving dg functors FD = HomD(−, x)∗ : D → Vectk with continuous right
adjoint. By Lemma 3.10, the fibre at x of the upper left horizontal arrow is the map
EndD(x)[d] → EndC ( f r (x))[d] induced by the functor f r : D → C and the fibre
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of the lower right horizontal map is dual to that, up to a shift. That the fibres of the
outer two vertical maps are isomorphisms now follows from Lemma 5.5. 
�

6 Applications and examples

In this section, we apply Theorem 5.6 to a number of examples of relative Calabi–Yau
structures on functors C → D to produce Lagrangian structures on the corresponding
maps of moduli spacesMD → MC . The example of local systems onmanifolds with
boundary and some version of the example of ind-coherent sheaves on Gorenstein
schemes with anti-canonical divisors are also treated by Calaque [5], using different
methods. The example coming from An-quivers was known in some form to experts.
See for example [21], 5.3.

6.1 Orientedmanifolds and Calabi–Yau schemes

Given a closed oriented manifold M of dimension d, Cohen-Gantra [6] constructed
an absolute Calabi–Yau structure on the dg category Loc(M) of local systems on M .
More generally, given an oriented manifold N of dimension d + 1 with boundary
∂ N = M , Theorem 5.7 of [4] gives a relative Calabi–Yau structure of dimension
d + 1 on the induction functor

i! : Loc(∂ N ) → Loc(N ). (6.1)

Applying Theorem 5.6 to this relative Calabi–Yau structure, we obtain the following.

Corollary 6.1 The relative Calabi–Yau structure on the functor 6.1 induces a
Lagrangian structure on the corresponding map of moduli spaces

MLoc(N ) → MLoc(∂ N ).

Similarly, given a finite type Gorenstein scheme X of dimension d together with
a trivialisation θ : OX � K X of its canonical bundle, Proposition 5.12 of [4] gives
an absolute Calabi–Yau structure of dimension d on IndCoh(X). Given a Gorenstein
scheme Y of dimension d + 1 with an anticanonical section s ∈ K −1

Y having a zero-
scheme X of dimension d, there is an induced trivialisation θ : OX � K X , and
Theorem 5.13 of [4] gives a relative Calabi–Yau structure of dimension d + 1 on the
pushforward functor

i∗ : IndCoh(X) → IndCoh(Y ).

Applying Theorem 5.6 to this relative Calabi–Yau structure, we obtain the following.

Corollary 6.2 The relative Calabi–Yau structure on the functor 6.2 induces a
Lagrangian structure on the corresponding map of moduli spaces

MY → MX
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6.2 Lagrangian correspondences and exact sequences

One of the basic examples of a relative Calabi–Yau structure, treated in [4], Theorem
5.14, comes from the representation theory of quivers of type An . Specifically, there
is a natural functor

�n+1
i=1 Vectk → Mod(An)

with a relative Calabi–Yau structure of dimension 1. Denoting the moduli space of
objects in Vectk by M1 and the moduli space of objects in Mod(An) by Mn , Theo-
rem 5.6 endows the induced map

Mn → �n+1
i=1M1

with a Lagrangian structure.
Let us explain the case n = 2 in more detail. For the quiver A2, we have two simple

modules S1 and S2, which we denote schematically by k → 0 and 0 → k respectively,
and the extension P of S1 by S2, denoted schematically as k → k.

The functor

�3
i=1 Vectk → Mod(A2).

taking the first copy of k to the simple module S1, the second copy of k to P ,
and the third copy of k to the simple module S2 carries an essentially unique
relative Calabi–Yau structure. Indeed, there is an isomorphism of S1-complexes
H H(�3

i=1 Vectk) � k⊕k⊕k given by the classes of the three copies of k, and similarly
an isomorphism H H(Mod(A2)) � k⊕k givenby the classes of S1 and S2.With respect
to these isomorphisms, the exact sequence H H(Mod(A2),�3

i=1 Vectk)[−1] →
H H(�3

i=1 Vectk) → H H(Mod(A2)) identifies with the exact sequence

k

(
1−1
1

)

k ⊕ k ⊕ k

(
1 1 0
0 1 1

)

k ⊕ k .

By examining the action of the relevant functors on the simple modules of A2, it is not
hard to check that the identification k � H H(Mod(A2),�3

i=1 Vectk)[−1] satisfies
the non-degeneracy necessary for a relative Calabi–Yau structure.

Now consider the induced map M2 → M1 × M1 × M1. A k-point in M2 is
a continuous functor Mod(A2) → Vectk with continuous right adjoint. The image
of the exact sequence S2 → P → S1 under this functor essentially determines the
functor, and so we can consider M2 as the moduli space of exact sequence, with the
first and last factor ofM2 → M1 ×M1 ×M1 picking out the beginning and end of
the sequence and the middle factor giving the middle term of the sequence.

Note that the Lagrangian structure on the map M2 → M1 × M1 × M1 is with
respect to the degree 2 symplectic form (ω,−ω,ω) on the target, where ω is the
standard degree 2 symplectic form on M1.
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We consider now a generalisation of the above construction to the moduli space of
An-representations in a Calabi–Yau category C of dimension d.

Lemma 6.3 Given dualisable dg categories C and D, there is a Künneth isomor-
phism H H(C ⊗ D) � H H(C) ⊗ H H(D) of S1-complexes. When C and D are
smooth, the underlying k-linear Künneth isomorphism factors as H H(C ⊗ D) �
HomEnd(C⊗D)(Id!

C⊗D, IdC⊗D) � HomEnd(C)(Id!
C , IdC ) ⊗ HomEnd(D)(Id!

D, IdD) �
H H(C) ⊗ H H(D).

Proof The general Künneth theorem for traces follows from the trace formalism that
we reviewed in Sect. 4.1. The underlying k-linear isomorphism comes from the iden-
tification (C ⊗ D)∨ ⊗ (C ⊗ D) � (D∨ ⊗ D) ⊗ (C∨ ⊗ C) and the corresponding
identification evC⊗D � evC ⊗ evD . In the case of smooth categories, passing to left
adjoints gives a corresponding identification Id!

C⊗D � Id!
C ⊗ Id!

D , whence the second
claim follows. 
�

Proposition 6.4 Given smooth dg categories A, B, and C with a relative Calabi–Yau
structure θ1 ∈ HomS1(k[d1], H H(B, A)) of dimension d1 on a functor f : A → B,
and an absolute Calabi–Yau structure θ2 ∈ HomS1(k[d2], H H(C)) of dimension d2,
the tensor product f ⊗ IdC : A ⊗ C → B ⊗ C has an induced relative Calabi–Yau
structure θ1 ⊗ θ2 of dimension d1 + d2.

In particular, setting A = 0, we see that the tensor product of two dg categories
with Calabi–Yau structures has an induced Calabi–Yau structure.

Proof This follows easily from the Künneth formula of Lemma 6.3. 
�

We state explicitly an important special case of Proposition 6.4.

Corollary 6.5 Let (C, θ) be a non-commutative Calabi–Yau of dimension d and set
Cn = Mod(An) ⊗ C. Then the functor

�n+1
i=1 C → Cn

induced by tensoring 6.2 with (C, θ) carries a relative Calabi–Yau structure of dimen-
sion d + 1, and the induced map of moduli

MCn →
n+1∏

i=1

MC

carries a Lagrangian structure with respect to the degree 2 − d symplectic structure
on MC .15

15 Note: The exact form of the relative Calabi–Yau structure on 6.2 introduces a sign into one of the factors
of the symplectic structure on

∏n+1
i=1 MC .
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