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Abstract. In this work, we have explored ground state properties of BeΛΛ
10  

hypernucleus in the light of recent observation of the experiment J-PARC E07 and the 

onset of stability for BeΛΞ
10  hypernucleus in the three-body framework using 

Hyperspherical Harmonics Expansion (HHE) method. An effective core-Y (Y= Λ, Ξ) 

Woods-Saxon potential with adjustable depth parameter is used to reproduce the 

observed ground state energy of the two-body subsystem by solving the two-body 

Schrödinger equation.  The core-Y potential so obtained is clubbed with the YY 

potential model of the Nijmegen group to obtain the observables of the double-

hyperon hypernuclei. Computed YY separation energy and YY bond energy are 

compared with the data available in the literature. 

1.  Introduction  

Hypernuclear physics is gaining popularity both in theory and in experiments, since the publication of 

the first discovery of Λ-hypernucleus by the Polish physicists Marion Danysz and Jerzy Pniewski [1].  

Hypernuclei are subatomic systems with a remarkable strangeness degree of freedom as compared 

with conventional nuclei. Such exotic kinds of nuclei are formed when one or more strange exotic 

hyperon(s) (like Λ, Σ, Ξ, etc) are injected into an atomic nucleus to replace or more nucleon(s) of the 

nucleus and the injected particles are coupled to the nuclear core [2,3]. One of the remarkable effects 

of the hyperons is that they act as glue-like particles leading to an extension of the proton and neutron 

driplines and the emergence of stable exotic nuclei as discussed by Hiyama [4]. The intrusion of 

hyperons in unstable nuclei as an impurity give some more interesting effects in nuclear systems like 

the shrinkage of the nuclear size reported by Hiyama et al. [5]; deformation of nuclear shape reported 

by Isaka et al. [6], Lu et al. [7]; modification of cluster structure by deep penetration inside the target 

nucleus as reported by Hagino et al. [8]; a shift of neutron dripline towards neutron-rich side discussed 

by Zhou et al. [9] and occurrence of the skin or halo structure of the nucleon and hyperon Hiyama et 

al. [10]. Apart from those they provide useful information on hyperon-nucleon (YN) and hyperon-

hyperon (YY) interactions, but precise data of YN and YY interactions are very limited due to 

difficulties in scattering experiments with hyperons as discussed by Vidana et al. [11], Rijken and 

Schulze [12], and Garcilazo [13]. Taking advantage of the significantly longer lifetimes of these 

strange nuclei as compared to typical reaction times, they can be helpful to investigate the models of 
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nuclear structure and the behavior of strange particles in the baryonic matter discussed by Sedrakian et 

al. [14]. The literature survey reveals that hyperons are the main constituent in the core of many stars 

and particularly in neutron stars when interior matter density becomes approximately double the 

matter density of ordinary nuclei. The YN and YY interactions have adequate demand for the solution 

of the equation of state (EoS) that describes the structure of a neutron star, its maximum mass, and 

size. Also, the interaction between hyperons takes care of additional stability conditions and cooling 

behavior of massive neutron stars as discussed by Schaffner-Bielich [15], Weissenborn et al. [16], and 

Fortin et al. [17]. 

 

Among the singly strange hypernuclei, the most extensively studied species is the single-Λ 

hypernuclei. So far bound states of more than 30 Λ-hypernuclei have been identified experimentally 

ranging from the lightest HΛ
3  to the heaviest PbΛ

208  as reported by Juric et al. [18], Hotchi et al. [19], 

Gal et al. [20], and Liu et al. [21]. Danysz et al. [22] first observed the existence of double-Λ 

hyperfragment by the capture of a Ξ−hyperon on a light emulsion of nucleus and confirmed the low 

energy ΛΛ interaction. Two-Λ separation energy SΛΛ, ΛΛ bond energy ∆BΛΛ for the HeΛΛ
6  

hypernuclei has reported by Prowse [23] and Nakazawa et al. [24] in the emulsion experiment. Ahn et 

al. [25] confirmed strong evidence for the production of HΛΛ
4  in reactions on 9Be in experiment E906 

at BNL-AGS collaboration. The production of BeΛΛ
10−12 , BΛΛ

13  hypernuclei, their two-Λ separation ΛΛ 

energy BΛΛ and ΛΛ bond energy ∆BΛΛ have been reported by Aoki et al. [26] with emulsion counter 

hybrid experiment (KEK E176), Ahn et al. [27] with nuclear emulsion and scintillating-fiber detectors 

(KEK-E373), Ekawa et al. [28] J-PARC E07 Collaboration and Ohnishi et al. [29] KEK-E373 (KEK-

E176) experiment. 

 

 Apart from the experimental study, hypernuclear physics has also been extensively investigated theo-

retically. The structure of double-Λ hypernuclei such as HΛΛ
5 , HeΛΛ

5 , HeΛΛ
6 , BeΛΛ

10 , BΛΛ
13  and other sever-

al hypernuclear systems adopting core + Λ + Λ three-body model in the G-matrix theory approach 

using various Nijmegen potential models investigated by Himeno et al. [30], Yamamoto et al. [31] and 

Lanskoy et al. [32]; in Hartree-Fock (HF) and variational approaches Caro et al. [33] and Nemura et 

al. [34]; Faddeev-Yakubovsky calculations adopting few-body cluster model Filikhin et al. [35]; five-

body cluster model Hiyama et al. [5,36]. Bhowmick et al. [37] predicted the single- and double-Λ sep-

aration energies for the ground and excited states of several hypernuclei using the Relativistic Mean 

Field (RMF) formalism. Pal et al. [38,39] studied the binding energies in the ground and excited states 

of different single Λ and double-Λ hypernuclei in the light to heavy mass region within the framework 

of the non-relativistic Schr𝑜̈dinger equation. A Hulth𝑒́n type of core-hyperon screening potential was 

used for their calculation. Also, in the last few years, microscopic calculations for these energies were 

carried out for light, medium and heavy nuclei in the framework of relativistic mean field (RMF). 

Shen et al. [40], Brueckner Hartree Fock (BHF) Schulze et al. [41], quark mean field (QMF) models 

Hu et al. [42], generalized mass formula Samanta et al. [43,44] and microscopic cluster model Kana-

da-En’yo [45], all these theoretical models provide excellent descriptions as well as good agreement 

with experimental data.  

 

A hyperon-nucleus Woods-Saxon potential taken for a two-body calculation of BeΛ
9 , we reproduced 

single-Λ energies BΛ by adjusting the potential depth parameter which will be used to get a bound 

state in the three-body calculation of BeΛΛ
10  and BeΛΞ

10  hypernucleus. One boson exchange hard core and 

soft-core Nijmegen potential models used for the YY interaction pair were simulated [31,32] in three-

range Gaussian and two-range Yukawa forms where ΛΛ two-body systems must be unbound. The 

paper is organized as follows. In section 2, we introduced and discussed the HHE method for our pre-

sent study of a three-body system consisting of two hyperon particles. Section 3, reported the potential 

used, numerical results and discussion. Finally, in section 4, we shall summarize and draw our conclu-

sions. 
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2.  Theoretical method 

We adopted here HHE method is basically an appropriate and precise method without any 

approximation other than an ultimate truncation of the expansion basis due to computer memory 

limitations, in which any desired precision and convergence trend can be obtained by gradually 

increasing the size of the expansion basis [46]. The labeling scheme in this approach and choice of 

Jacobi coordinates for a general three-body system consisting of a relatively heavier core nucleus and 

two valence hyperons are shown in ‘figure 1’ The analytical representation of the set of Jacobi 

coordinates corresponding to the partition “i” in which particle labeled “i” is the spectator and those 

labeled as “j” and “k” form the interacting pair are: 

 

 
 

Figure 1. Label scheme and choice of Jacobi coordinates for a in general three-body configuration 

(CYY) in the partition “i”, [i=1,2,3 - cyclic]. 

ηi⃗⃗  ⃗ = [
mjmkM

mi(mj+mk)
2]

1

4

(rj⃗⃗ − rk⃗⃗  ⃗)  ;  ξi⃗⃗ = [
mi(mj+mk)

mjmkM
]

1

4
(ri⃗⃗ −

mjrj⃗⃗⃗  −mkrk⃗⃗⃗⃗ 

mj+mk
)                         (1)                                     

Where χ⃗ = ∑
miri

M
3
i=1   is the centre of mass coordinate, M = (mi + mj + mk) is the total mass of the system, 

and the sign of ηi⃗⃗  ⃗ is determined by the condition that (i, j, k) form a cyclic permutation of (1, 2, 3). 

Hyperspherical variables associated with the Jacobi coordinates described elaborately by Khan [46] 

are: 

ηi = ρcosΦi; ξi = ρsinΦi 

Where ρ = √ηi
2 + ξi

2;Φi = tan−1 (
ξi

ηi
). The motion of the three-body system in relative coordinates 

can be described by the Schrödinger's equation  

[
−ћ2

2μ
{
∂2

ρ5 +
5

ρ

∂

∂ρ
+

K̂2(Ωi)

ρ2 } + V(ρ,Ωi) − E]Ψ(ρ, Ωi) = 0                       (2) 

Where μ =
mimjmk

M
 is is an effective mass parameter, V(ρ, Ωi) = Vjk + Vki + Vij  is the total interaction 

potential, Ωi = {Φi, θηi
, Φηi

, θξi , Φξi} represents hyper-angles. The wave function Ψ(ρ, Ωi)  in any 

chosen partition (say in partition ‘i’) is expanded as  

Ψ(ρ, Ωi) = ∑ ρ
−5

2 Ukσi
(ρ)Θkσi

(Ωi)kσi
                                               (3) 

where the square of hyper angular momentum operator satisfies an eigenvalue equation [76] 

K̂2(Ωi)Θkσi
(Ωi) = K(K + 4)Θkσi

(Ωi) 

Where Θkσi
(Ωi) is called the hyperspherical harmonics (HH), ni =

(K−lηi
−lξi

)

2
, ni being non-negative 

integer and the quantity K is the hyperangular momentum quantum number; σi = {lηi
, lξi , L,M} angu-

lar momenta lηi
, lξi   corresponding to ηi, ξi  motions are coupled to give the total orbital angular mo-

mentum L⃗ = lηi
⃗⃗⃗⃗ + lξi

⃗⃗  ⃗, M is the projection of  L⃗ . Substitution of expansion of equation (3)’ in equation 

(2)’ and use of the orthonormality of HH leads to an infinite set of couple differential equations (CDE) 

in ρ 
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[
−ћ2

2μ

d2

dρ2
+

ћ2

2μ

(K +
3
2) (K +

5
2)

ρ2
− E]Ukσi

(ρ) + ∑ M
KK′
σiσi

′

UK′σi
′(ρ) = 0        (4)

k′σi
′

 

Where   M
KK′
σiσi

′

= Kσi|V(ρ, Ωi)|K
′σi

′ ≥ ∫ΘKσi

∗ (Ωi)V(ρ, Ωi)ΩK′σi
′(Ωi)dΩi                                           (5)  

represents the coupling potential matrix elements. Expansion in equation (3)’ is truncated to a finite set 

due to practical limitations, resulting in a finite set of CDE. The imposition of symmetry and conserva-

tion requirements father reduces the expansion basis to a solvable set of CDE. After the evaluation of 

coupling potential matrix elements following the prescription of Khan [46], the set of CDE equation 

(5)’ is solved numerically subject to proper boundary conditions to get the energy E and the partial 

waves WKσi
(ρ).  

 
2.1.  The application to 𝐵𝑒𝑌𝑌

10  system 

In the physics of hypernuclei "critical stability" is one of the most fascinating subjects. When nucleons 

are added to an ordinary nucleus, they tend to be localized outside the core due to the Pauli exclusion 

principle whereas the core of the hypernucleus has only nucleons and when a hyperon is added to the 

core nucleus, no Pauli symmetry requirements under exchange of valance hyperon(s) and nucleons 

occur.  As a result, hyperons can reach deep inside, and attract the surrounding nucleons towards the 

interior of the core nucleus. This "glue-like" role produces a shrinkage effect and plays a crucial role 

in the binding mechanism. However, symmetry requirement arises due to (a) antisymmetrization of the 

nuclear wave function under the exchange nucleons, which is suppressed in the choice of the core as a 

building block and (b) antisymmetrization of the three-body wave function under the exchange of the 

valence hyperons have been correctly incorporated by restricting lηi
 values. Most of the observed dou-

ble-hyperon hypernuclei have total angular momentum J = 0, and even parity in their ground state. For 

spin-less nuclear core (i.e., sc = 0), total spin (S = sc + sY + sY) of the three-body system has two al-

lowed values either 0 or 1, since hyperons are fermions having odd-half spins. Since, J = 0, then for S 

= 0, L = 0; and for S = 1, L = 1. Hence, the spectroscopic notation for the ground state of double hy-

peron hypernuclei is 1S0 and 3P0 corresponding to J = 0, S = 0, L = 0 and J = 0, S = 1, L = 1 respective-

ly. The core nucleus being spinless, S = 0 corresponds to zero total spin of the valence hyperons (i.e., 

SYY = 0), hence the spin part of the three-body wave function is antisymmetric under the exchange of 

spins of two hyperons, leaving the spatial part of the wavefunction symmetric under exchange of their 

spatial coordinates. Under pair exchange operator PYY, which interchanges particles 2 and 3, ηi → -ηi 

and ξi remain unchanged. Thus, PYY acts like the parity operator for the pair (YY) only. If we consider 

two valance hyperons in spin singlet state (which is spin anti-symmetric), the space part of their wave 

function must be symmetric under PYY. This restricts lηi
 to take even values only. As for the spin sin-

glet state, total orbital angular momentum L = 0, we must have lηi
= lξi  = even integer. Again, ni =

(lηi
− lξi − K) 2⁄ , for ni is a non-negative integer, K must be even and 

lηi
= lξi

= 0,2,4,…… ,
K

2
[(

K

2
− 1)] for K/2 even or odd respectively.                     (6) 

For S = 1, the two valence hyperons will be in the symmetric spin triplet state SYY = 1 while the corre-

sponding space wavefunction must be antisymmetric under PYY, allowing only lηi
= odd integral val-

ues. As, the total orbital angular momentum L = 1; |(lηi
− 1)| ≤ lξi ≤ lηi

− 1, but parity conservation 

allows lξi = lηi
 only. Thus ni = (lηi

− lξi − K) 2⁄ , with ni a non-negative integer, allows only even 

values of K, so 

lηi
= lξi

= 1,3,5,…… ,
K

2
[(

K

2
− 1)] for K/2 odd or even respectively                     (7) 

In the practical calculation, the HH expansion basis given by equation (3)’ is truncated to a maximum 

value (Kmax) of K and 0 ≤ (lηi
+ lξi) ≤ K For each allowed K ≤ Kmax with K = even integers, all al-

lowed values of  lηi
 are included. The even values of  lηi

 correspond to L = 0, S = 0 while the odd val-
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ues of  lηi
 correspond to L =1, S = 1. This truncates equation (4)’ to a set of N coupled differential 

equations given by 

N =
1

8
(Kmax

2 + 6Kmax + 8);when
Kmax

2
 is even and 

                                       N =
1

8
(Kmax + 2)2;when

Kmax

2
is odd.                                                     (8) 

 

 It follows that the number of CDE's increases in quadratic form with Kmax, hence in practice equation 

(4)’ is truncated to a manageable size depending on the available computer facility, and the resulting 

set of CDE's are solved using hyperspherical adiabatic approximation (HAA) [47]. 

3.   Choice of Core-Λ, ΛΛ and ΛΞ potentials  

For the core-Λ subsystem we have chosen Woods-Saxon potential [19] with the original parameters 

V0
Λ = −30 MeV, Rc = r0A

1 3⁄  is the radius of the core nucleus; where A is mass of the core of hyper-

nucleus, r0 = 1.1 fm, surface diffuseness a = 0.6 fm given by   

Vc−Λ(r) =
V0

Λ

1+exp[(r−Rc) a⁄ ]
                                                             (9) 

For the two-body model of BeΛ
9  hypernucleus an effective core-hyperon potential is obtained by ad-

justing the depth parameter 𝑉0
𝛬 to reproduce the observed single-Λ separation energy (BΛ) for the 

ground state keeping other parameters alike. All these parameters will be used in the case of double-Λ 

and ΛΞ separation energy calculation for the three-body model of BeΛΛ
10  and BeΛΞ

10 systems respectively. 

For the ΛΛ pair we choose Nijmegen group one boson exchange (OBE) hard core and softcore models 

[48-50] for both ΛΛ and ΛΞ interaction. In the case of the first five models, we used as an input 

Three-range Gaussian forms (TRG) s-wave form with parameters simulated from G-matrix calculation 

[31,32] given as 

VΛΛ(r) = ∑ Vi
3
i=1 exp (

r2

γi
)                                                          (10) 

The ΛΛ interaction pair is limited to a singlet s-wave channel respecting the Pauli principle. The prop-

er significance of three-term potential equation (10)’ as the first term for i=1 represent the strength of 

only the attraction part, second term for i=2 control the strength of the interim midrange attractive part, 

and finally short-range third term for i=3 provides hard-core and soft-core repulsion strength for the 

respective potential model, which are excellent to produce the double-Λ separation energy and ΛΛ 

bond energy. The last model ESC08c used as an input two-term Yukawa potential s-wave form con-

sists of an attractive and repulsive part with parameters obtained from the solution of three-body and 

four-body bound state problems in terms of Faddeev equations and generalized Gaussian variational 

method respectively [51]. 

VYY(r) = (−Vaexp(−βar) + Vrexp(−βrr)) r⁄                               (11) 

 

Table 1. Parameters of the ΛΛ interaction potential for three-range Gaussian (TRG) equation (10)’ 

and ΛΛ and ΛΞ two-range Youkawa-type format equation (11)’ where all the potential entries are in 

MeV and range parameters are in fm. 
 

ΛΛ interaction for three-range Gaussian (TRG) form equation (10)’ 

 

γi      Vi      NHC-D      NSC97f       NSC97e      NSC89         NHC-f          NF            NS 

 

 1.5    V1     -5.659        -5.380          -5.227         -2.447          -1.768         -4.769        -3.622 

       0.9    V2        -177.8            -157.3          -168.7         -98.60          -105.9         -91.72        -45.81 

       0.5    V3      925.0         810.0            867.0          436.0           462.0          675.7         136.0 

YY interaction for two-range Yukawa-type potential [ESC08c] equation (11)’ 

ΛΛ              βa = 1.74         Va = 121.0         βr = 6.04         Vr = 926.0 

ΛΞ              βa = 2.20         Va = 370.0         βr = 3.90         Vr = 970.0 
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3.1.  Results and discussions  

The effective core-Λ potential and energy parameters of the BeΛ
9  hypernuclei in the ground state is 

listed in table 2. ‘Figure 2’ represents the variation of (a) effective core-Λ potential for BeΛ
9  and (b-d) 

hyperon-hyperon interaction potential of various potential models with the radial distance. Also, ‘fig-

ure 3’ shows the three-body effective potential varies with the hyper radial distance corresponding to 

the Nijmegen ΛΛ potential models (a-h) for BeΛΛ
10  and (i) for BeΛΞ

10  hypernuclei. Calculated double-Y 

separation energies and ΛΛ bond energies for the corresponding double-hyperon hypernucleus form-

ing a three-body system is also presented in table 3. The incremental binding energy ∆BΛΛ and relative 

convergence trend β of the energy with increasing Kmax are defined as 

 

∆BΛΛ = BΛΛ( BeΛΛ
10 ) − 2BΛ( BeΛ

9 )                                                  (12) 

 

β =
B(K + 4) − B(K)

B(K + 4)
 

Table 2. Parameters of potential component generated for the core-Λ bound states using Woods-

Saxon potential and corresponding single-Λ separation energy (BΛ) for BeΛ
9  hypernucleus. All the 

parameters are in MeV unit. 

 

                              Our results                                     Expt.(BΛ)               Theoretical (BΛ) 

 

Λ
9Be    6.7108    -27.9963       -27.1757               6.71 ± 0.04 [18]               5.7810 [53] 

                                                                             6.30 ± 0.10 [52]        7.438−0.223
+0.183 [38] 

 

 

 

 
Figure 2. Plot of (a) effective core-Λ potential due to Woods-Saxon potential for BeΛ

9 , (b-d) ΛΛ and 

ΛΞ potentials for hard core and softcore Nijmegen potential models. 

 

      BΛ             V0
Λ    V(c-Λ)min 
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Table 3. Comparison of double-Λ separation energy (BΛΛ), ΛΛ bond energy (ΔBΛΛ) with experi-

mental results for BeΛΛ
10  hypernucleus using various ΛΛ interactions models and BΛΞ for the predicted 

BeΛΞ
10  hypernucleus. 

 

        Energy             Our results for ΛΛ and ΛΞ potential models                               Expt. 

           (MeV) 
NHC-D   NSC97e   NSC97f   NSC89   NHC-F   ESC08c    NF       NS 

 

ΛΛ
10Be   BΛΛ   15.877   15.717    15.565   14.820   14.867  15.438  13.078  14.064  15.05 ± 0.09 [28] 

            ΔBΛΛ   2.455     2.295      2.144    1.398     1.446    2.016    -0.343    0.642     1.63 ± 0.09 [28] 

 

ΛΞ
10Be   BΛΞ                                                                           17.826 

 

 

 
 

Figure 3. Three-body effective potential V(ΛΛ)c(ρ) as function of hyperradial distance ρ corresponding 

to all ΛΛ Nijmegen potential models (a) NHC-D, (b) NHC-F, (c) NSC97e, (d) NSC97f, (e) NSC89, 

(f) NF, (g) NS, (h) ESC08c for BeΛΛ
10  and ΛΞ Nijmegen potential model (i) ESC08c for BeΛΞ

10  hypernu-

cleus. 

 

In addition to energy, some geometrical observables of the three-body system BeΛΛ
10  have also been 

computed and listed in table 4, using the ground state wave function. These include the root mean 

squared (R. M. S.) radius of the three-body system defined as 

R3b = [
AcRc

2+mΛRcΛ
2

Ac+2x
]
1 2⁄

    

where Ac, mΛ are the masses of the core and the hyperon in units of the nucleon mass, x = mY. The R. 

M. S. core-Λ separation is obtained using the expression RcΛ = [⟨r13
2 + r12

2 ⟩ 2⁄ ]
1 2⁄

. The calculated 

energy, R. M. S. radii and correlation coefficient defined as ϑ = ⟨
r(ΛΛ)c
2

ρ2 ⟩ computed using the ground 

state wavefunction for increasing Kmax = 0, 4, 8, ... etc. up to 24 for BeΛΛ
10  are presented in table 5. A 
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small value of this coefficient indicates that that the two valence hyperons are positioned on two oppo-

site sides of the core nuclei (i.e., a cigar shape where the hyperons are anti-correlated) and a relatively 

larger value (≤ 1) will suggest the possibility of YY correlation. 

 

Table 4. Geometrical size parameters for Kmax = 24 of light neutron-rich BeΛΛ
10  hypernucleus for the 

different ΛΛ potential models. 

 

Potential                                                R.M.S. radii (fm)                                                       ϑ 

   models 

  R3B              RcΛ                       RΛΛ            R(ΛΛ)c           Rc
CM            RΛ

CM 

 

      NHC-D      2.2239        2.3025         3.0742          1.7143          0.3929         2.0270         0.2835 

      NSC97e     2.2263        2.3125         3.0946          1.7186          0.3939         2.0369         0.2825 

      NSC97f     2.2289        2.3235         3.1165           1.7234          0.3934        2.0476          0.2813 

      NSC89      2.2411        2.3743          3.2193          1.7453          0.4000         2.0978         0.2768 

      NHC-F      2.2400        2.3698          3.2108          1.7431          0.3995         2.0935         0.2772 

      ESC08c     2.2283        2.3210          3.1242          1.7166          0.3934         2.0472         0.2815 

      NF             2.2752        2.5116          3.4532          1.8240          0.4180         2.2266         0.2668 

      NS             2.2460        2.3944          3.2413           1.7625         0.4040         2.1148         0.2792 

 

 

Table 5. Pattern of convergence of ΛΛ separation energy (BΛΛ in MeV), relative convergence rate of 

energy β in equation (12), R.M.S radii and geometrical size parameters as a function of K= Kmax = 24 

of light neutron-rich BeΛΛ
10  hypernucleus for the ESC08c potential models. 

 

Kmax    BΛΛ           β                                            R.M.S. radii (fm)                                                 ϑ 

 

 

0         14.1578     0.0384    2.2297       2.3267      3.0702      1.7485       0.4007        2.0428      0.2848 

4         14.7239     0.0192    2.2388       2.3648      3.1846      1.7484       0.4007        2.0861      0.2766 

8         15.0118     0.0127    2.2352       2.3499      3.1659      1.7367       0.3980        2.0731      0.2785 

12       15.2046     0.0078    2.2317       2.3353      3.1375      1.7299       0.3965        2.0589      0.2808 

16       15.3236     0.0046    2.2298       2.3274      3.1186      1.7278       0.3960        2.0506      0.2825 

20       15.3944     0.0027    2.2289       2.3237      3.1073      1.7279       0.3960        2.0464      0.2837 

24       15.4365                    2.2286       2.3221      3.1007      1.7288       0.3962        2.0443      0.2845 

 

The surface and contour plot in ‘figure 4’ displays the density distribution of position probability of 

the hyperons and nucleons of BeΛΛ
10  and BeΛΞ

10  hypernuclei respectively. First, from surface plots it is 

clearly seen that the peak of density distribution at the centre of BeΛΞ
10  hypernucleus is slightly higher 

than BeΛΛ
10  hypernucleus. Second, in contour plots the contour lines figure out the nuclear density dis-

tributions while uniform background of the colour contour layers reflects that there will be a foot print 

of the valance hyperons in BeΛΛ
10  and BeΛΞ

10  hypernuclei, both are looks like a deformed pear-like shape. 

The contour layers are more closed at the centre region of the contour plots indicates a relatively high-

er density arise around the nucleus. Thus, the plot also reflects an interesting fact that the hyperons are 

more concentrated in the vicinity of the nucleus in case of BeΛΞ
10  hypernucleus. Therefore, we conclude 

that the shrinkage effect arises due to impurity of Λ and Ξ hyperons which is theoretically investigated 

by Hiyama et al. [5].  

 

 

R3B             RcΛ                 RΛΛ           R(ΛΛ)c         Rc
CM            RΛ

CM 
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Figure 4. Surface and contour plots reflect probability density distribution of (left) Λ hyperons and 

nucleons for BeΛΛ
10  and (right) Ξ hyperons and nucleons for BeΛΞ

10  with the ESC08c Nijmegen potential 

model. 

 

4.  Conclusion 

 In our present work, we estimated the ground state binding energies of BeΛ
9 , BeΛΛ

10  hypernuclei and 

proposed a ΛΞ mixing hypernucleus BeΛΞ
10 . We have chosen Woods-Saxon Λ-nucleus potential for the 

two-body subsystem and Nijmegen model potentials for the interaction between hyperons pair in case 

of three-body model calculation of double hyperon hypernuclei. The results are found to be in good 

agreement with the experimental values (see table 2 and table 3). The estimated binding energies of 

BeΛΞ
10  corresponding to NHC-D, NSC97e, NSC97f, and ESC08c potential models are found to be 

slightly higher (2.578% to 5.495%) than the experimental values whereas the binding energies 

corresponding to NSC89, NHC-F, NF, and NS potential models are found to be slightly lower 

(1.216% to 13.103%) compared to the experimental findings. The binding energies of BeΛΛ
10  differ 

from BeΛΞ
10  in our calculation is 2.388 MeV. The influence of additional Λ and Ξ hyperon(s) on the 

nuclear core has been investigated by comparing the density distribution profile between the neutron-

rich nucleus BeΛΛ
10  and BeΛΞ

10  hypernuclei. The shrinkage effect is clearly observed by the footprint of 

the contour plot background of the density distribution profile in ‘figure 4’. In table 5, we have listed 

double-Λ binding energy and radius parameters which show a convergence trend up to Kmax = 24. We 

will get more accurate BΛΛ and ΛΛ-bond energies ∆BΛΛ, higher configuration computer facilities are 

needed to obtain a successful convergence rate which will make the desire result. However, our 

method adopted here is a punchy one for the description of any nuclear or atomic few-body systems 

subject to the appropriate choice of two-body potentials and symmetry requirements.  
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