

1 **Quantum Graph Neural Networks on a Single Qubit**

2 **Author Information**

3 Yijie Zhu and Richard Jiang*

4 **Affiliations**

5 LIRA Center, University of Lancaster, Lancaster, UK

6 **Contributions**

7 Y.Z. contributed the paper drafting, the technical implementation, and the experimental exploration; R.J.

8 contributed the ideas, the experimental design and the paper writing.

9 **Corresponding author**

10 Correspondence to: Richard Jiang, r.jiang2@lancaster.ac.uk

11 **Abstract**

12 Machine learning based on graph data is a hard task due to the complex structure of graph data. When this
13 topic comes to quantum machine learning, it becomes more challenging due to the limited resources in
14 the current NISQ era, in particular when a neural network can have thousands or even millions of
15 parameters. In this paper, to address these challenges, we proposed a novel quantum graph neural network
16 that uses only a single qubit. In our novel work, a graph embedding method was leveraged to waive the
17 needs of hyperparameters, leading to the single-qubit based implementation with the least number of
18 parameters in the network. Our experiments show that our method can be adapted to graph data of
19 different structures and sizes, and can be efficiently deployed on real quantum computers. Our sQGNN
20 quantum graph neural network (sQGNN) exhibits a high capability of fault tolerance towards noisy NISQ
21 devices. In the current NISQ era, our single-qubit-based quantum neural networks can maximize the use
22 of limited qubits and enable the implementation of large quantum graph neural networks on resource-
23 limited VQCs, showing a new promising pathway to overcome the current major shortcomings of VQCs
24 facing real-world applications.

25 **Introduction**

26 Machine learning, particularly bioinspired deep learning, has been widely applied to enable many new
27 applications [1,2]. Meanwhile, with the continuous development of information technology and the
28 exponential increase in information density, the search for innovative approaches to the increasing
29 complexity of machine learning has become imperative [3]. Quantum computing, as a promising
30 candidate with its supremacy in computing power, has attracted the greatest interest of researchers in the
31 field of artificial intelligence. Due to the quantum superposition mechanism, quantum computing has
32 demonstrated its exponential acceleration advantages over classical computing when dealing with high-
33 dimensional data [3]. For example, quantum algorithms can factor numbers [4], simulate quantum
34 systems [5], or solve systems of linear equations [6] with an exponential acceleration compared to
35 classical methods. The cross-disciplinary marriage of quantum computing and machine learning has
36 brought out the celebrated birth of quantum machine learning, with a great hope to leverage the
37 advantages of quantum computing to improve classical machine learning algorithms [7]. Quantum
38 machine learning has emerged as a promising panacea for the challenges in the area of machine learning,
39 despite of the hardware and software implementation challenges in the current noisy intermediate-scale
40 quantum (NISQ) era of quantum computing [8].

41 Currently, quantum machine learning tends to utilize quantum mechanisms to implement or optimize
42 various classical machine learning algorithms, such as Quantum Boltzmann Machines (QBM) [9],
43 Quantum Principal Component Analysis (QPCA) [10], and Quantum Support Vector Machines (QSVM)
44 [11][12]. Quantum neural networks were proposed initially in 1995 [13], and various possible quantum
45 neural network models have been widely explored, such as the Quantum Perceptron Model [14],
46 Quantum Tensor Neural Network [15] and Quantum Convolutional Neural Network [16]. The researchers
47 hope to solve the problem of high-dimensional space and complexity in classical neural networks by
48 transforming the classical neural network model into a quantum system with a network-like structure in
49 Hilbert space.

50 Machine learning based on graph-structured data has always become one of the hottest topics in the field
51 of machine learning, with many potential applications in social networks, point clouds, molecular
52 chemistry and other fields [1] [17]. Most of the classical neural network algorithms are designed to
53 process data with regular structures in Euclidean space. Due to the complex structure of graph data,
54 classical neural networks inevitably face a drop in efficiency. Many graph-based problems are NP-hard
55 [18], which is a big challenge for neural network computational performance. Taking advantage of
56 quantum computing over classical methods has become one promising solution to tackle the
57 computational complexity in processing graph data. Unlike classical machine learning, the data in
58 quantum machine learning often presents in a high-dimensional Hilbert space represented by quantum
59 states, while such high-dimensional Hilbert spaces have been shown to be beneficial for classification
60 [19].

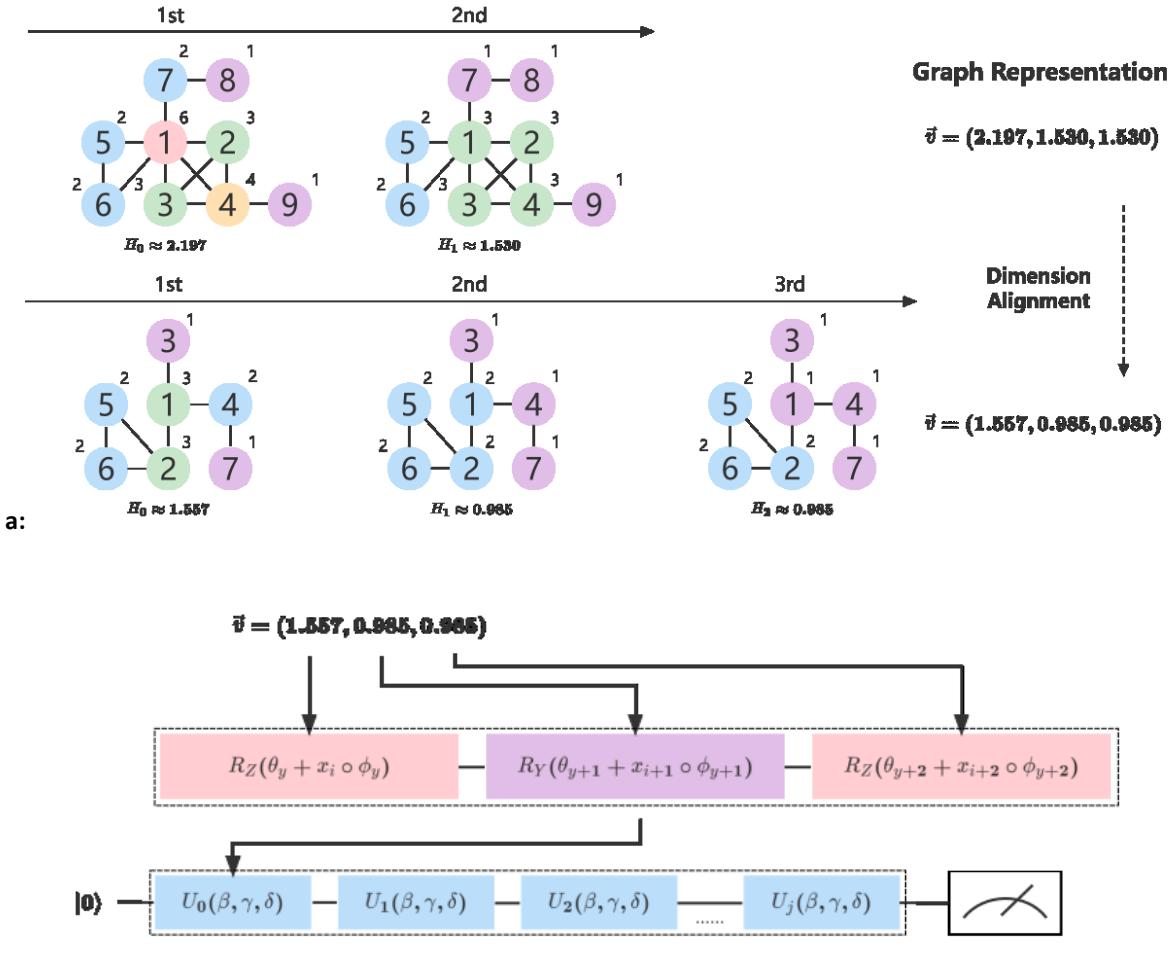
61 Although quantum computers have achieved good results [3], there are several big limitations in the
62 NISQ era [8]. First, the number of qubits is limited in current quantum computers, and the state-of-the-art
63 devices range in size from 50 to 100 qubits, which are expensive and have architectural limitations and
64 limited programmability [8]. Second, the impact of noises is huge [20], and the advent of fault-tolerant
65 quantum computers seems to be years or even decades away [8]. The real promise of quantum computers,
66 the acceleration of real-world applications, often referred to as quantum supremacy [21], has yet to
67 materialize. Therefore, the key technical question is how to fully utilize today's NISQ devices to achieve
68 quantum advantages. Any such strategy must take into account: a limited number of qubits, limited qubit
69 connectivity, and coherent and incoherent errors that limit the depth of quantum circuits. In addition to the
70 limitations of quantum hardware, Variational Quantum Algorithms (VQAs) [22], which are widely used
71 in quantum machine learning, also have many limits, including their trainability, accuracy and efficiency,
72 especially the "barren plateau" can best reflect the limitations currently faced by VQA [23].

73 In this paper, we offered a novel method by implementing the whole quantum graph neural network on a
74 single qubit [24][25], enabling the tackling of the complex graph data analysis on the limited NISQ

75 VQCs. First, we use a graph embedding method based on DCH-E [26] to waive the need for any
76 hyperparameters to convert a graph data sample into a vector. Secondly, we utilize a new encoding
77 scheme that can easily encode the vectorized graph data onto quantum circuits, and utilize the properties
78 of quantum computing to drastically reduce the number of parameters that classical neural networks
79 usually need. In our experiments, the number of parameters was reduced to several tens from thousands
80 and beyond. Consequently, the occupancy of quantum volume will be drastically minimized. Thirdly, the
81 uploaded quantum graph data is fed into a novel quantum graph neural network classifier that uses only a
82 single qubit [24][25], which can be trained to fit the objective function through a variety of quantum
83 rotation gates.

84 Our proposed graph quantum neural networks can be used to encode various graph data of different
85 structures towards the single-qubit-based implementation without the need for hyperparameters. Our
86 above innovations enable the efficient quantum processing of complex graphics data possible in the real
87 world. We verified the feasibility of our model through experiments on both the simulated quantum
88 environments and the real quantum computer. The experimental results successfully validated that our
89 proposed single-qubit-based quantum graph neural networks (sQGNN) can handle the complex real-
90 world graph data with excellent performance on the resource-limited quantum computing platform,
91 demonstrating a novel pathway to offer a panacea for the great challenges in the current NISQ quantum
92 technologies.

93 Figure 1 shows the workflow, which consists of three steps: First, the DHC-E graph embedding method
94 converts raw graph data into a vector form that is easy to process without the need for hyperparameters.
95 Second, the processed graph representation vector is input into the single-qubit circuit in the order of
96 unitary operations, as shown in Figure 1. The single-qubit method can encode all data with a single qubit,
97 saving the total number of qubits in the NISQ era and effectively avoiding the "barren plateau"
98 phenomenon [23] caused by too many qubits in VQCs. Finally, we measure the single-qubit circuit,
99 calculate the fidelity and loss of the model, and update the parameters of the quantum circuits to achieve



b:

Figure 1. (a) For the other states generated from the DHC updating process of a graph, the same rules are applied to calculate their Shannon entropy. At the end of the DHC updating process, one obtains two Shannon entropy sequences of the two graphs (2.197, 1.530) and (1.557, 0.985, 0.985), which are two graphs' embeddings. The two embeddings are with unequal dimensions. Based on the highest dimension of the two embeddings (i.e., 3), the last element of (2.197, 1.530) is used to expand (2.197, 1.530) to (2.197, 1.530, 1.530) for dimension alignment. (b) The Single-Qubit quantum circuit. The elements in the representation vector of the graph are in units of 3, and are encoded onto the qubits using a quantum revolving gate. Every three quantum revolving gates constitute a unitary operation, and the Single-Qubit method uses this unitary operation as the basic unit of encoding and parameter training. The initial state of the quantum circuit is $|0\rangle$, after the state change of the quantum circuit through unitary operation, the expected value of the final state is obtained by measurement at the end of the quantum circuit.

100 the effects of neural network training. From this training process, we get our trained quantum neural
 101 network models. More details on these three steps are in the Methods. Following this, we carried out
 102 experiments to evaluate our sQGNN method over several real-world datasets from chemistry and biology
 103 domains.
 104 Figure 2 shows a) the schematic diagrams of a classical neural network, b) a common quantum circuit,
 105 and c) our single-qubit quantum circuit. As shown in the figure, the quantum circuits and the classical

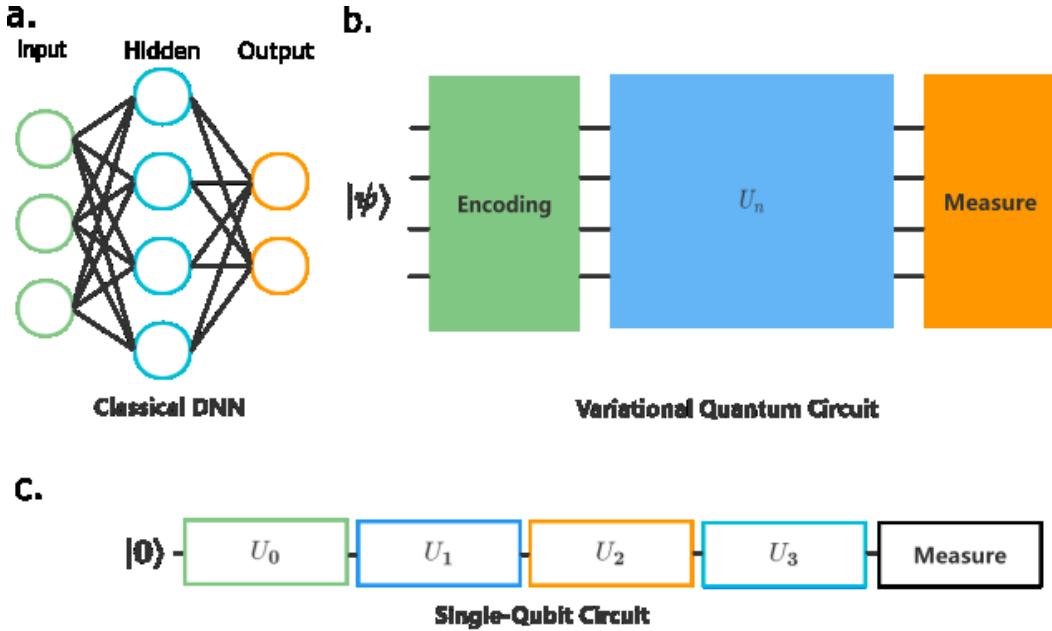


Figure. 2. This figure shows the similarities and differences between classical neural networks, general quantum circuits, and single-qubit circuits.

106 neural network are logically similar. There are four neurons in the hidden layer of the classical neural
 107 network (Fig.2a), which may be embodied as four qubits in the general quantum circuit in Fig.2b to carry
 108 the corresponding data. Considering the dimensions of input data, this number may be much higher. In
 109 the single qubit circuit, it can be embodied as four unitary operations on one qubit. When processing
 110 high-dimensional data, a quantum rotary gate can be added in the unitary operation without adding more
 111 qubits. According to the needs of specific input data, the number of unitary operations, and the number
 112 and type of rotation gates in unitary operations can be adjusted accordingly. For common quantum
 113 circuits, if the data size or dimension is high, it is inevitable to increase the number of qubits. For the
 114 single-qubit method, a single qubit can carry as much data as possible by adding unitary operations if the
 115 quantum volume allows. This structure cannot only make data easier to encode, but also save limited
 116 qubit resources. Besides, fewer qubits can help avoid the problem of difficult model training caused by
 117 the "barren plateau" [23], making our sQGNN an ideal candidate for the challenging quantum processing
 118 of graph data.

119 **Results**

120 **Experiments in the Simulated Quantum Environment**

121 In our experiments, we first used a simulated quantum environment to test the performance of the model.
122 Due to the functional limitations of quantum computers in the NISQ era, the influence of noises is
123 inevitable and unignorable. To fully demonstrate the capabilities of our models, we set up multiple
124 experiments under the simulated environments. We configured two simulation setups for our sQGNN
125 models: one is the ideal quantum environment and another is the noisy environment in the presence of
126 noise interference in the simulated NISQ devices. We hope to test the robustness of the sQGNN model
127 through such an experimental environment. The test models include edGNN[27], R-GCN[28], GIN[29],
128 sQGNN (the ideal quantum setup) in an ideal environment and a quantum environment with depolarizing
129 error for noise testing.

130 Table 1 shows the test results of the model in an ideal simulated quantum environment. From the results,
131 we found that the sQGNN models had achieved the best performance on the four datasets of small

TABLE 1. The average accuracy of the models over different real world graph datasets

MODEL	MUTAG	PTC_FM	PTC_FR	PTC_MM	PTC_MR
EDGNN[27]	86.9±1.0	59.8±1.5	65.7±1.3	64.4±0.8	56.3±1.9
R-GCN[28]	81.5±2.1	60.7±1.7	65.8±0.6	64.7±1.7	58.2±1.7
GIN[29]	89.4±5.6	64.3±10.0	65.3±5.6	65.8±5.9	64.6±7.0
SQGNN	87.3±4.8	65.2±7.3	66.9±5.5	65.9±4.2	65.9±5.5

TABLE 2. The parameters of each model with MUTAG dataset. The parameters of GNN include all the parameters of the weight matrix to be trained, and the parameters of the quantum algorithm are the angles required by all quantum gates.

MODELS	EDGNN[27]	R-GCN[28]	GIN[29]	SQGNN
PARAMETERS	16704	9345	13000	8

132 molecule compounds, PTC_FM, PTC_FR, PTC_MM and PTC_MR [30]. The average accuracy rates of
 133 the sQGNN model on the PTC series datasets are 65.20%, 66.94%, 66.94%, and 65.93%, respectively.
 134 For the MUTAG dataset [31], the sQGNN model is slightly inferior to the GIN model.
 135 Our sQGNN models have obvious advantages on the PTC series dataset. According to research [32], as
 136 the number of processing layers (i.e. unitary operations) of the single-qubit method increases, the model
 137 will perform better, and this effect is most significant when the number of unitary operations is below
 138 three. This may also be caused by the relatively few feature elements of the graph representation vector of
 139 the DHC-E-processed MUTAG data. The MUATG dataset has only 4 features of each representation
 140 vector, while the PTC dataset has 12.

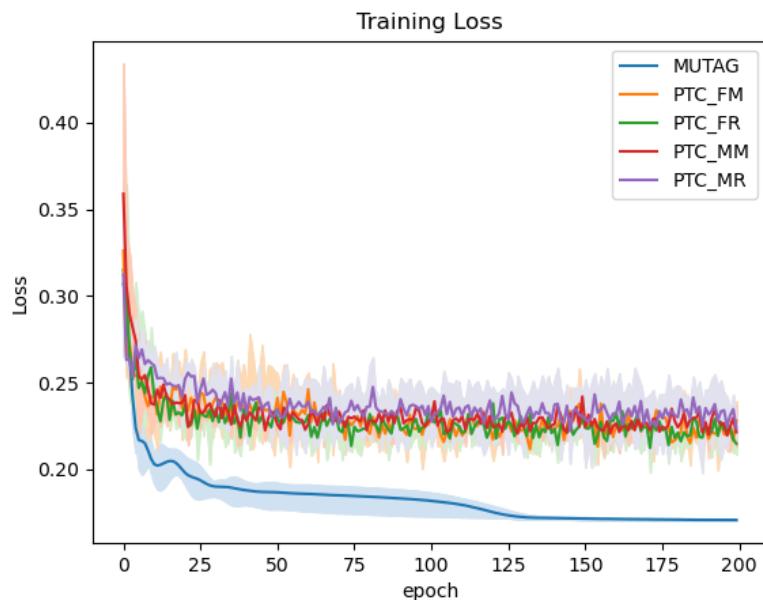


Figure. 3. Training loss of sQGNN model in ideal quantum environment.

TABLE 3. The average accuracy of the models with depolarizing error.

DEPOLARIZATION PROBABILITY	MUTAG	PTC_FM	PTC_FR	PTC_MM	PTC_MR
0.001	87.3±3.3	65.0±7.2	66.5±9.1	65.3±42	65.8±4.4
0.01	86.7±4.9	65.1±8.6	66.1±5.6	65.7±4.5	65.8±5.1
0.1	84.8±6.4	64.0±7.7	65.0±8.4	63.7±4.8	64.5±4.5

141 From the comparison of the results in the ideal quantum environment, the overall accuracy of our sQGNN
142 model is superior. In addition to accuracy, the advantage of the sQGNN method lies in the compact model
143 structure. Classical graph neural networks are usually complex in terms of the model structure due to the
144 complexity of graph data itself. Due to the graph embedding method without hyperparameters in our
145 model and the use of Single-Qubits QGNN quantum circuits, our model achieves a huge advantage in the
146 total number of parameters. Taking the MUTAG dataset as an example, our model requires only 8
147 parameters, while a classical neural network such as GIN has 13,000 parameters as shown in Table 2,
148 which fully shows the potential advantage of our model in efficiency.

149 Figure 3 shows the training loss of sQGNN on five datasets in an ideal quantum environment. Relatively
150 speaking, the PTC series dataset is more difficult to train than the MUTAG dataset because the PTC
151 dataset is more complex. In the PTC dataset, PTC_MM and PTC_MR are relatively difficult to train. This
152 can also be confirmed by the accuracy results. The overall accuracy of these two datasets for various
153 models is relatively low.

154 To verify the ability of the sQGNN method to resist the effects of noise when running on NISQ devices
155 with noise, we train and test the models using a noisy simulated environment. As shown in Table 3, we
156 set the depolarization error as the noise in the environment for the sQGNN model. When a group of
157 qubits undergoes a depolarization error, a random Pauli (example: X, Y, Z) is applied to each qubit. The
158 formula for depolarization error is as follows:

$$E(\rho) = (1 - \varepsilon)\rho + \varepsilon \text{Tr}[\rho] \frac{I}{2^n} \quad (1)$$

159 Where ε is the depolarizing error param, n is the number of qubits for the error channel and I is the Pauli
160 matrix.

161 We set 3 levels for the depolarization parameter to test how tolerant sQGNN is to depolarization errors.
162 The test results are shown in Table 3. Under the influence of depolarization error, the sQGNN model is
163 slightly affected, almost unaffected at 0.001 and 0.01, and slightly affected at 0.1. In terms of average
164 accuracy, our sQGNN method shows good error tolerance, thanks to its unique single qubit

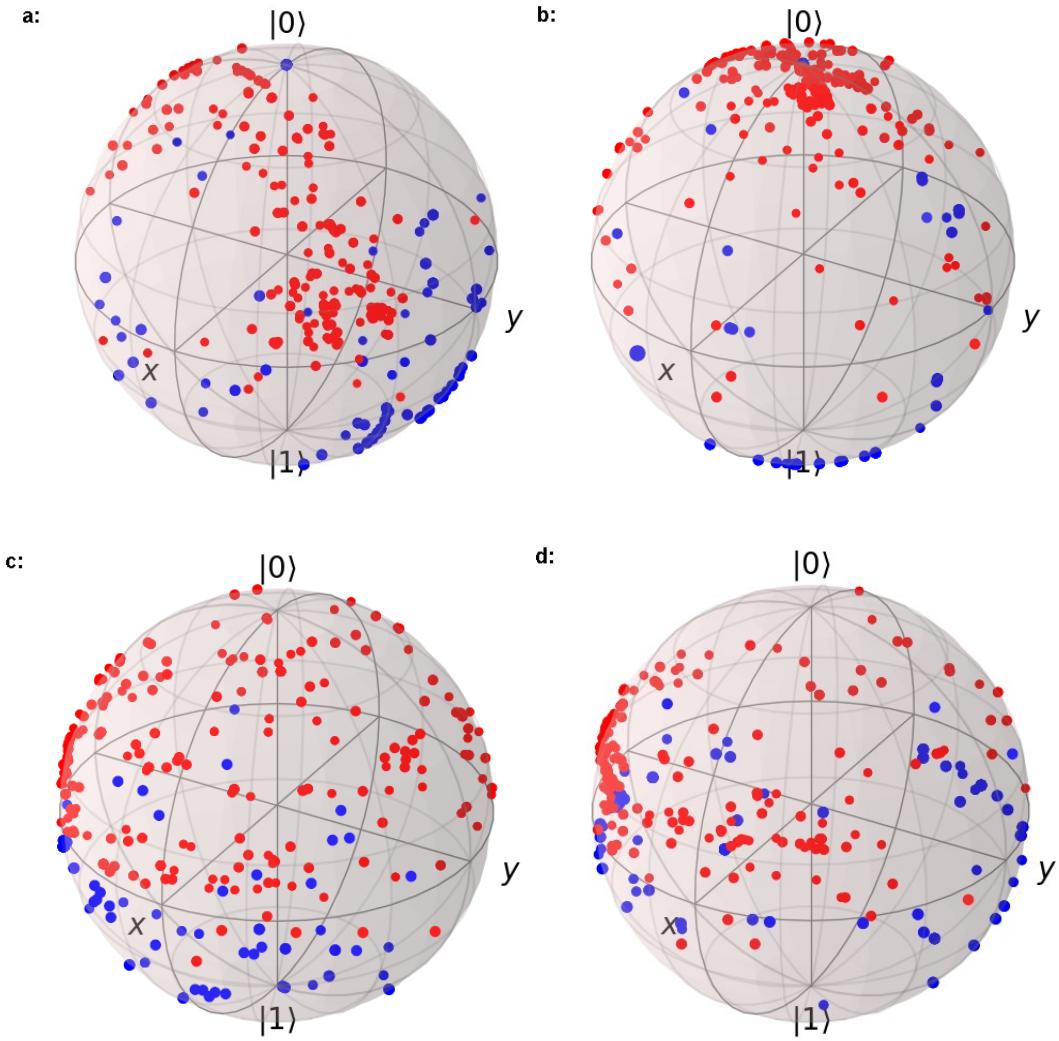


Figure 4. This figure is a demonstration of all graph data of the PTC_FM dataset in Hilbert space. The red dot is class 0 and the blue dot is class 1. In the figure a, b, c, d are PTC_FM, PTC_FR, PTC_MM, PTC_MR respectively.

166 implementation. Due to the functional limitations of quantum devices in the NISQ era, the influence of
 167 noises is unavoidable, and the resulting degradation is a great problem when coming to real quantum
 168 computers. From the results, the sQGNN model can stably maintain good performance under the noise
 169 impact.

170 Figure 4 also shows the distribution of all graphs in the PTC_FM dataset in Hilbert space that are
 171 displayed on the surface of Bloch spheres. Among them, the red points belong to Class 0, and the blue
 172 points are from Class 1. Overall, Class 0 is concentrated in the upper hemisphere, and Class 1 is
 173 concentrated in the lower hemisphere. It can be observed from the figure that the classification ability of

174 the model for Class 0 is stronger than that of Class 1, and Class 1 has some outlier data distributed in the
175 upper hemisphere, which may be caused by the initial state of the quantum circuit being set to $|0\rangle$. The
176 structure of graph data may also be a cause. Overall, our model can still maintain a good performance
177 under the influence of noise. According to our experimental results, the training difficulty of PTC_MM
178 and PTC_MR is relatively high, which can be confirmed by the accuracy and data distribution.

179 Real Quantum Device Test Experiment

180 In addition to the above experiments in the simulated quantum environments, we further designed the
181 experiment to run our sQGNN models on the real quantum computer offered by IBM. We deploy the
182 best-performing model on the MUTAG dataset from previous experiments in a simulated quantum
183 environment to a real quantum computer. Thanks to the online IBM's quantum computer [33] and IBM
184 Quantum Lab, we were able to deploy our single qubit models easily on a quantum computer provided by
185 IBM in relatively simple steps. Currently, IBM online service allows 4 qubits each user, restricted due to
186 the limited resources on their NISQ quantum computer. In addition, the quantum volume of a quantum
187 computer is limited, which limits the total amount of quantum gates that can be deployed in a quantum
188 circuit, and our method of combining parameters and encoding greatly reduces the required quantum
189 gates.

190 Figure 5 shows the test results of our model on the real quantum computer. Our model achieved an
191 accuracy rate of 88.89% on the MUTAG dataset on the real IBM quantum computer, with no degradation
192 in accuracy compared to the simulated quantum environment. As shown in Figure 5a, the classification
193 performance of the model on quantum computers is the same as in the simulation environment. Figure 5b
194 shows the measured results on the quantum computer. The number of results obtained in the
195 measurements of $|0\rangle$ and $|1\rangle$ is similar, that is, Class 0 is better than Class 1. The reasons for this
196 phenomenon are the same as in the simulation environment, namely the initial state is $|0\rangle$ and the
197 difference in the graph data structure of the two classes.

198 Figure 5c shows the resulting visual image of the Wigner quasi-probabilistic equations [34]. This figure
199 relates the wave function to a probability distribution in phase space. We can see that the model clearly
200 distinguishes between the two classes and is less affected by NISQ device noise. Mostly the initial state of
201 available quantum computers is $|0\rangle$. If the initial state is set to $|1\rangle$, the result may be the opposite. Due to
202 the limitations of the physical system itself, the initial state of $|0\rangle$ may be the normal state of quantum
203 computers for a period of time, and therefore the algorithm needs to be optimized for this problem.
204 Although the phenomenon in the simulated environment still exists, it also illustrates the robustness of
205 our model. The performance of our sQGNN model on quantum computers does not degrade and
206 maintains high accuracy and interpretability in the simulated environments. The experience validates the
207 real-world feasibility of our model with the huge benefits of our single-qubit approach.

208 **Discussion**

209 In the previous section, we presented our experimental results and analyzed them in details. In general,
210 considering the research purpose and experimental environment, our work results are good and can
211 provide some valuable reference methods for the development of related fields. We use the single-qubit
212 method to construct quantum circuits and realize the efficient use of finite qubits to encode graph
213 representation vectors. In the absence of quantum computing resources in the NISQ era, our method can
214 save a lot of quantum resources. Theoretically, we only need a single qubit to implement any neural
215 networks with thousands or even millions of parameters.

216 In the NISQ era, the noise of quantum devices is an unavoidable problem. The existence of noise makes
217 some methods that perform well in ideal simulation environments but difficult to put into practical use in
218 NISQ devices. The experimental results show that our single-qubit models achieved good performance in
219 our tests and exhibited a good anti-noise ability in the simulation environment and quantum computers, as
220 shown in Table 1 and 3. Against the depolarizing error (Table 3), our method shows steady performance
221 over different levels of noises.

222 Due to the efficient use of the sQGNN method for a single qubit, we can keep the total number of qubits
223 to a very low level, and thus avoid the training difficulties on the "barren plateau" issues widely existing
224 in VQCs. Although some studies [23, 40 & 41] have proposed some methods to alleviate the "barren
225 plateau", this problem has not been solved fundamentally. In the current state of quantum machine
226 learning methods applying VQA, the "barren plateau" may accompany quantum machine learning for a
227 while. However, our method provides a fundamental way to avoid it at all.

228 In our work, we explored a hyperparameter-free graph embedding method, which greatly reduces the
229 required computing resources in the graph embedding stage. The total number of parameters of our
230 quantum neural networks can be several orders of magnitude smaller than classical methods, as shown in
231 Table 2. This makes our model much more efficient. Moreover, our quantum circuit structure can be
232 combined with other quantum or classical models to suit different tasks. In this paper, the sQGNN is
233 combined with the preprocessing steps on graph data using the DHC algorithm.

234 We deployed our models to IBM's quantum computer to validate, and the test results confirmed there is
235 no degradation on its performance from the simulated ones. Our single-qubit model uses only one qubit
236 and its quantum circuits can be easily deployed in quantum computers as they require the least number for
237 qubits, enabling the practical implementation on real variational quantum circuits with limited resources.
238 Predictably, our method will enable a wide range of practical use towards various real world data, besides
239 the biological molecular datasets in this paper.

240 At this stage, learning and reasoning on quantum simulators are computationally expensive processes
241 compared to classical neural network models. Although the purpose of quantum machine learning is to
242 utilize quantum mechanisms to improve the performance of neural networks, the limitation of physical
243 conditions still exists as the simulation of multiple qubits are compute-intensive. However, the sQGNN
244 method provides an efficient option for using fewer qubits in the NISQ era, and the sQGNN method can
245 maximize the use of the finite qubits on VQCs and provides a novel practical way towards the practical
246 application of quantum neural networks in the NISQ era. With its simple structure and high utilization,

247 the single-qubit method can be applied to more challenging tasks and bring out a revolution towards the
248 real world applications of NISQ devices.

249 **Conclusion**

250 Graph learning has been extensively studied in the field of deep learning, but little work has been done
251 exploring it in the context of quantum machine learning. Due to limited quantum resources as well as
252 some shortcomings of VQA, quantum machine learning has difficulties in generalizing to more complex
253 data types, and our single-qubit method can help to solve this problem. In this work, we proposed a novel
254 quantum graph classification method, namely sQGNN, which leverages a hyperparameter-free graph
255 embedding method to minimize the size of quantum graph neural networks. We conduct multiple
256 experiments on different datasets to explore various experimental results towards in-depth analysis.
257 Experimental results show that our model achieved excellent capability in the classification of biological
258 molecular structures, while the number of parameters is several orders of magnitude lower than that of
259 classical graph neural networks. We also shows our model achieved robust performance on real quantum
260 computers. Our concise model structure enables the model to be deployed on quantum devices in the
261 NISQ era and is easy to use, and has a good ability to resist noises. Our work clearly shows that our new
262 work enlightens a pathway to implement many very complicated neural networks on a single qubit, and
263 offered a panacea solution to the bottleneck of realizing various machine learning algorithms over
264 resource-limited VQC devices in the NISQ era.

265 **Methods**

266 In this paper, we develop a novel quantum-classical hybrid machine learning algorithm for small-
267 molecule compound graph structure data. The idea is to replace Euclidean space-based transformation
268 matrices in classical deep learning with unitary matrices for quantum computing and implement the
269 quantum neural networks with the least number of parameters over a single qubit. In this way, we
270 incorporate the theoretical ideas of quantum machine learning into deep learning in the graph domain.

271 **Graph Embedding**

272 DHC-E is a simple and hyperparameter-free graph embedding method that combines the generalized
 273 DHC theorem and Shannon entropy (E) for network compression and representation. The DHC theorem
 274 [35] reveals the relationship between degree, H-index, and centrality: the H-index of a node is computed
 275 according to the degree centrality of its neighbours, and ~~its H index can be calculated according to its~~
 276 ~~T~~the previous H-index of the neighbour is updated. A node's H-index (short for Hirsch index) [36] is the
 277 maximum value h such that it has at least h neighbours with a degree no less than h [35]. A node's
 278 coreness further takes its location in the graph into account, measuring its influence based on the k-core
 279 decomposition process [37], where a larger coreness indicates that a node locates more centrally in the
 280 graph. Such an update process continues iteratively, yielding a sequence of H-indexes of nodes. DHC-E
 281 utilizes H-index sequences for graph embedding. DHC-E first calculates the probability distribution of the
 282 node's iterative H-index and then calculates its Shannon entropy. Shannon entropy's formula is:

$$H = - \sum_{i=1}^n p_i \log_2 p_i \quad (2)$$

283 Since the iterations of the above DHC update process on different graphs are usually dimensionally
 284 unequal, the generated whole graph embeddings are not compatible for some downstream machine
 285 learning tasks (graph classification). To align them, DHC-E further converts all generated graphs into the
 286 maximum dimensions of all embeddings as the baseline, and any other elements with fewer dimensions
 287 will be supplemented with its last element to the max ones.

289 Data Encoding

290 For many ML tasks, data is often presented as column vectors. Traditionally, this D -dimensional vector of
 291 classical data can be encoded either by initializing the $2D$ qubit quantum states to their binary string
 292 equivalents (basic encoding), or by transforming the data dimensions into their corresponding
 293 superposition state probability magnitudes (amplitude encoding). Although these data encoding schemes
 294 have been used in other work [3], their implementation is often very expensive or impractical and

295 susceptible to error-prone quantum operations. Therefore, these encoding schemes may not always be an
296 efficient means of minimizing qubit usage. Single-qubit encoding, developed in [24], is a strategy to
297 encode a vector of classical data into a characteristic Hilbert space using a series of single operations
298 acting on each input data dimension, using only one single qubit. The unitary operation of single-qubit
299 encoding can be expressed by the following formula:

300
301
$$U = e^{i\alpha} R_Z(\beta) R_Y(\gamma) R_Z(\delta) \quad (3)$$

302

303 With a global phase factor α , Euler angles $\beta, \gamma, \delta, \in \mathbb{R}$ that define the extent of each rotation (R) around
304 the Z, Y and Z axes respectively. Within this method of encoding, these Euler angles are parameterized
305 further and defined as:

306
307
$$\beta = \theta_i + x_i \cdot \phi_i \quad (4)$$

308
$$\gamma = \theta_{i+1} + x_{i+1} \cdot \phi_{i+1} \quad (5)$$

309
$$\delta = \theta_{i+2} + x_{i+2} \cdot \phi_{i+2} \quad (6)$$

310

311 Where θ_i and ϕ_i are trainable weight parameters assigned to x_i , the value of the input vector x at
312 dimension i . Therefore, the extent of rotation β, γ, δ is with respect to the weighted value of the input.
313 Using the above parameter definitions, a maximum of three input dimensions can be encoded per unitary
314 operation applied. Here, the input vector will be continually cycled through, encoding a series of three-
315 dimensional values at a time, until the entirety of the input has been encoded. This is known as a full
316 'upload layer' of the input data. The single-qubit encoding method can be flexibly deployed on quantum
317 circuits that process graph data of different structures and can increase the amount of data that each qubit
318 can carry. The graph data processed by DHC-E is a high-dimensional vector, and the number of qubits
319 required for basic encoding and amplitude encoding is large. Using single-qubit encoding, the number of
320 qubits in the quantum circuits can be easily reduced to less than 10, thereby avoiding the "barren plateau"
321 problem [23] in VQA training.

322 **Quantum Circuit Design**

323 Quantum circuits are the core part of quantum computing, and most functions are realized by the
324 combination of qubits and quantum gates in quantum circuits. In our single-qubit approach, we limit the
325 number of qubits to one. The single-qubit method can theoretically use quantum circuits with multiple
326 qubits. In this case, CNOT gates are used to create quantum entanglement between qubits, and each qubit
327 is equivalent to a hidden layer of a neural network. We stick to using one qubit in this model in order to
328 better demonstrate the efficiency of the single-qubit approach. When the graph data processed by the
329 DHC-E method is embedded in the quantum circuit according to the above method, we treat each
330 combination of RZ, RY and RZ gates as a unitary operation. Taking this unitary operation as the basic
331 unit, how many unitary operations are set on a unique qubit is determined according to the size of the
332 input data. In our method, each unitary operation is able to encode 3 inputs with 6 parameters. Taking
333 data of size 8 as an example, in order for the data to be encoded into a quantum circuit, 3 unitary
334 operations will be set on a single qubit. In this case, after the encoding of the graph data is complete, there
335 is still a gap. At this time, this vacancy will be replaced by 0 to ensure that this vacancy will not affect the
336 quantum state in the final measurement. In this way, the single-bit method can be scaled according to the
337 size of the input data and can be widely used.

338 **Measurement**

339 In the measurement part, we will observe the quantum circuit to obtain the final state of the circuit. Unlike
340 the general direct measurement of the state of the qubit, for application to classification tasks, we adopt a
341 fidelity-based measurement method. The overall goal of this measurement method is to minimize the
342 fidelity between a set of data encodings and their respective target states. For binary classification tasks,
343 given a set size D of images with corresponding class values in $\{0,1\}$, assign each image a corresponding
344 target state $|0\rangle$ or $|1\rangle$. Any number of classes can be merged using this method, provided that the target
345 states are at the greatest distance from each other. Fidelity F is a measure of the similarity or proximity
346 between two quantum states, where $0 \leq F \leq 1$. The higher the fidelity of two quantum states, the more

347 similar they are in direction. The highest class fidelity value given is then considered the classification
 348 result. For example, for a graph with a label of 0, its corresponding target state is $|0\rangle$, when we measure,
 349 we get the result $\{\alpha|0\rangle, \beta|1\rangle\}$ where $\alpha + \beta = 1$ and α is the fidelity of class 0. The formula of the fidelity
 350 is shown as follow:

351
$$F(\vec{x}, \vec{\theta}, \vec{\phi}) = |\langle \vec{\psi}_l | \psi_{output}(\vec{x}_i, \vec{\theta}, \vec{\phi}) \rangle|^2 \quad (7)$$

 352

353 **Loss calculation and model training**

354 The role of the loss function is to describe the gap between the predicted value of the model and the true
 355 value. The loss function can find a criterion to help the training mechanism optimize the parameters at
 356 any time in order to find the parameters at the highest accuracy of the network. From the measurement
 357 section, we use fidelity to measure the similarity between results and labels. Therefore, the loss function
 358 of our model is also designed based on fidelity. The formula of the loss function is as follows:

359
$$\mathcal{L}(\vec{x}, \vec{\theta}, \vec{\phi}) = \sum_{i=1}^M \left(1 - |\langle \vec{\psi}_l | \psi_{output}(\vec{x}_i, \vec{\theta}, \vec{\phi}) \rangle|^2 \right) \quad (8)$$

360 Where $\vec{\psi}_l$ is the correct label state of the data point.

361 Having obtained the loss, we can use the optimizer to maximize the sum of the fidelity of all data points
 362 and find the best weight for classification, the parameters θ and ϕ in the unitary operation above. With
 363 the optimization of parameters, the operation of the quantum revolving gate on qubits is also optimized,
 364 so that the entire model can be trained.

365 **Quantum Barren Plateau**

366 A typical gradient descent algorithm of quantum circuits is shown:

367
$$\theta(t+1) - \theta(t) \equiv \delta\theta_\mu = -\eta \frac{\partial \mathcal{L}}{\partial \theta} \quad (9)$$

368 Where \mathcal{L} is the loss function and θ_μ is the variational angle of quantum circuits.

369 For large variational quantum circuits, the gradient of the objective function has an average value
 370 of zero, and the probability that any given instance of such a quantum circuit deviates from this
 371 average value by a small constant decreases exponentially with the number of qubits [23]. When
 372 the measure of the space is concentrated in this way, the value of any reasonably smooth
 373 function tends to its mean with exponential probability, which means that the gradient is zero
 374 over a wide range of quantum space, like the situation in Figure 6. This is the plateau of quantum
 375 barrenness (Barren plateaus in quantum neural network training landscapes).

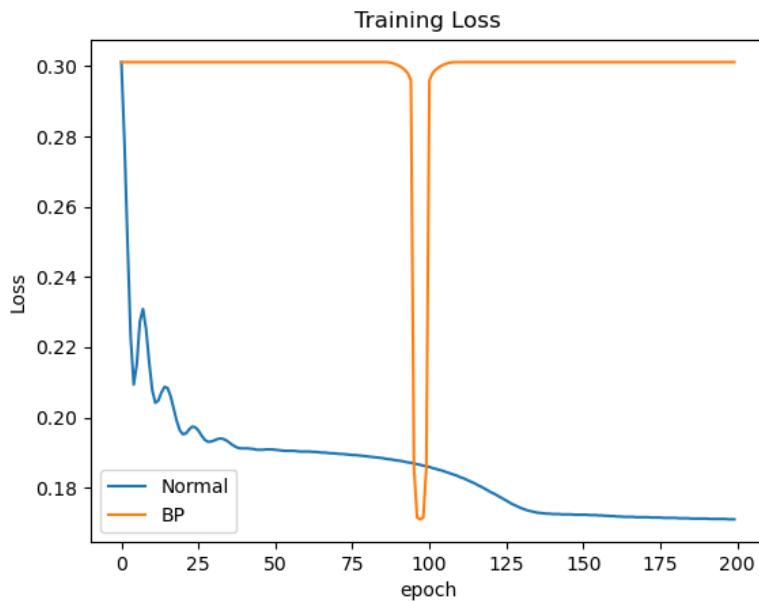


Figure. 6. Schematic diagram of a barren plateau.

376 In VQA, the expected value of the quantum circuit needs to be obtained. Consider an objective
 377 function $E(\theta)$ expressed as the expectation value over some Hermitian operator H :

378
$$E(\vec{\theta}) = \langle 0 | U(\vec{\theta})^\dagger H U(\vec{\theta}) | 0 \rangle \quad (10)$$

379

380 The gradient of the objective function:

381
$$\partial_k E \equiv \frac{\partial E(\vec{\theta})}{\partial \theta_k} = i \langle 0 | U_-^\dagger [V_k, U_+^\dagger H U_+] U_- | 0 \rangle \quad (11)$$

382

383 V is a Hermitian operator. U_+ and U_- are two circuits, both match the Haar distribution up to
 384 the second moment, and the circuits are independent. The average value of the gradient can then
 385 be expressed as:

386
$$\langle \partial_k E \rangle = \int dU p(U) \partial_k \langle 0 | U(\vec{\theta})^\dagger H U(\vec{\theta}) | 0 \rangle \quad (12)$$

387

388 Where $p(U)$ is the probability distribution function of U . In different cases, its
 389 variance is:

390
$$\text{Var}[\partial_k E] \approx \begin{cases} -\frac{\text{Tr}(\rho^2)}{(2^{2n} - 1)} \text{Tr}([V, u^\dagger H u]^2)_{U_+} \\ -\frac{\text{Tr}(H^2)}{(2^{2n} - 1)} \text{Tr}([V, u^\dagger \rho u]^2)_{U_-} \\ \frac{1}{2^{(3n-1)}} \text{Tr}(H^2) \text{Tr}(\rho^2) \text{Tr}(V^2) \end{cases} \quad (13)$$

391

392 Among them, the number of qubits is n . This means that when the number of qubits is large, in
 393 most cases, the gradient of the cost function approaches 0, that is, any training method based on
 394 VQA will not be able to make the cost function converge.

395

Experimental Setup

396 We choose MUTAG dataset and PTC series dataset as experimental data. The MUTAG dataset contains
 397 188 nitro compounds. The labels are used to determine whether the compound is aromatic or
 398 heteroaromatic. The graph data belongs to the isomer graph. The full name of PTC is Predictive
 399 Toxicology Challenge, which is used to develop advanced SAR technology predictive toxicology models.
 400 This dataset contains carcinogenicity-labelled compounds in rodents. According to the experimental
 401 rodent species, there are a total of 4 datasets: PTC_FM (female mice), PTC_FR (female rats), PTC_MM
 402 (male mice), and PTC_MR (male rats). The specific parameters of the dataset are shown in the table
 403 below.

404 In this experiment, the experimental flow of our method is as follows: the graph data is embedded using
405 the DHC-E method, and then the graph data is encoded into a single-qubit circuit. According to the size of
406 the embedded graph data, a corresponding number of unitary operations will be set on the qubits. In the
407 measurement part, the expected values of the target states $|0\rangle$ and $|1\rangle$ are measured to calculate the fidelity
408 of the corresponding data. The training of the neural network is achieved by evaluating the effect of the
409 above loss function and updating the parameters at the quantum revolving gate. The model with the best
410 parameters is obtained after many iterations and evaluated with test data.

411 We use PennyLane [38] and PyTorch [39] to perform experiments. PennyLane is an open-source python-
412 based framework that enables automatic differentiation of hybrid quantum-classical computations. It is
413 compatible with mainstream machine learning frameworks like PyTorch and has a huge plugin
414 ecosystem. The quantum computer we use is the ibm_manila node provided by IBM [33]. The number of
415 qubits available to this quantum computer is 5, the Quantum volume is 32, it can perform 2800 Circuit
416 layer operations per second, and the processor model is Falcon r5.11L.

417 **References**

- 418 1. Min, S., Lee, B., & Yoon, S. Deep learning in bioinformatics. *Briefings in bioinformatics*, **18**(5),
419 851-869 (2017).
- 420 2. Gligorijević, V., et al. Structure-based protein function prediction using graph convolutional
421 networks. *Nature communications*, **12**(1), 1-14 (2021).
- 422 3. Schuld, M., Sinayskiy, I., & Petruccione, F. An introduction to quantum machine
423 learning. *Contemporary Physics*, **56**(2), 172-185 (2015).
- 424 4. Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In *Proceedings*
425 *35th annual symposium on foundations of computer science* (pp. 124-134). IEEE (1994).
- 426 5. Lloyd, S. Universal quantum simulators. *Science*, **273**(5278), 1073-1078 (1996).

427 6. Harrow, A. W., Hassidim, A., & Lloyd, S. Quantum algorithm for linear systems of
428 equations. *Physical review letters*, **103**(15), 150502 (2009).

429 7. Huang, H. Y., et al. Power of data in quantum machine learning. *Nature communications*, **12**(1), 1-9
430 (2021).

431 8. Preskill, J. Quantum computing in the NISQ era and beyond. *Quantum*, **2**, 79 (2018).

432 9. Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B., & Melko, R. Quantum boltzmann
433 machine. *Physical Review X*, **8**(2), 021050 (2018).

434 10. Lloyd, S., Mohseni, M., & Rebentrost, P. Quantum principal component analysis. *Nature
435 Physics*, **10**(9), 631-633 (2014).

436 11. Rebentrost, P., Mohseni, M., & Lloyd, S. Quantum support vector machine for big data
437 classification. *Physical review letters*, **113**(13), 130503 (2014).

438 12. Havlíček, V., et al. Supervised learning with quantum-enhanced feature spaces. *Nature*, **567**(7747),
439 209-212 (2019).

440 13. Kak, S. C. Quantum neural computing. *Advances in imaging and electron physics*, **94**, 259-313
441 (1995).

442 14. Kapoor, A., Wiebe, N., & Svore, K. Quantum perceptron models. *Advances in neural information
443 processing systems*, 29 (2016).

444 15. Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R., & Tkatchenko, A. Quantum-chemical
445 insights from deep tensor neural networks. *Nature communications*, **8**(1), 1-8 (2017).

446 16. Cong, I., Choi, S., & Lukin, M. D. Quantum convolutional neural networks. *Nature Physics*, **15**(12),
447 1273-1278 (2019).

448 17. Xia, F., et al. Graph learning: A survey. *IEEE Transactions on Artificial Intelligence*, **2**(2), 109-127
449 (2021).

450 18. Caetano, T. S., McAuley, J. J., Cheng, L., Le, Q. V., & Smola, A. J. Learning graph matching. *IEEE*
451 *transactions on pattern analysis and machine intelligence*, **31**(6), 1048-1058 (2009).

452 19. Schuld M. Machine learning in quantum spaces. *Nature*, **567**(7747), 179–181 (2019).

453 20. Clerk, A. A., et al. Introduction to quantum noise, measurement, and amplification. *Reviews of*
454 *Modern Physics*, **82**(2), 1155 (2010).

455 21. Preskill, J. Quantum computing and the entanglement frontier. Preprint at
456 <https://doi.org/10.48550/arXiv.1203.5813> (2012).

457 22. Cerezo, M., et al. Variational quantum algorithms. *Nature Reviews Physics*, **3**(9), 625-644 (2021).

458 23. McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R., & Neven, H. Barren plateaus in
459 quantum neural network training landscapes. *Nature communications*, **9**(1), 1-6 (2018).

460 24. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., & Latorre, J. I. Data re-uploading for a
461 universal quantum classifier. *Quantum*, **4**, 226 (2020).

462 25. Easom-McCaldin, P., Bouridane, A., Belatreche, A., Jiang, R., & Al-Maadeed, S. Efficient Quantum
463 Image Classification Using Single Qubit Encoding. *IEEE Transactions on Neural Networks and*
464 *Learning Systems* (2022).

465 26. Wang, H., Deng, Y., Lü, L., & Chen, G. Hyperparameter-free and explainable whole graph
466 embedding. Preprint at <https://doi.org/10.48550/arXiv.2108.02113> (2021).

467 27. Jaume, G., Nguyen, A. P., Martínez, M. R., Thiran, J. P., & Gabrani, M. edGNN: a Simple and
468 Powerful GNN for Directed Labeled Graphs. Preprint at <https://doi.org/10.48550/arXiv.1904.08745>
469 (2019).

470 28. Schlichtkrull, M., et al. Modeling relational data with graph convolutional networks. In *European*
471 *semantic web conference*. Springer, Cham. 593-607 (2018).

472 29. Xu, K., Hu, W., Leskovec, J., & Jegelka, S. How powerful are graph neural networks?. Preprint at
473 <https://doi.org/10.48550/arXiv.1810.00826> (2018).

474 30. Helma, C., King, R. D., Kramer, S., & Srinivasan, A. The predictive toxicology challenge 2000–
475 2001. *Bioinformatics*, **17**(1), 107-108 (2001).

476 31. Debnath, A. K., Lopez de Compadre, R. L., Debnath, G., Shusterman, A. J., & Hansch, C. Structure-
477 activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with
478 molecular orbital energies and hydrophobicity. *Journal of medicinal chemistry*, **34**(2), 786-797
479 (1991).

480 32. Easom-Mccaldin, P., Bouridane, A., Belatreche, A., & Jiang, R. On Depth, Robustness and
481 Performance Using the Data Re-Uploading Single-Qubit Classifier. *IEEE Access*, **9**, 65127-65139
482 (2021).

483 33. IBM Quantum. estimator primitive (ibm_manila) [computer software]. <https://quantum->
484 computing.ibm.com/ (2022).

485 34. Hiley, B. J. Phase space descriptions of quantum phenomena. In Proc. Int. Conf. Quantum Theory:
486 Reconsideration of Foundations, **2**, 267-86 (2004).

487 35. Lü, L., Zhou, T., Zhang, Q. M., & Stanley, H. E. The H-index of a network node and its relation to
488 degree and coreness. *Nature communications*, **7**(1), 1-7 (2016).

489 36. Hirsch, J. E. An index to quantify an individual's scientific research output. *Proceedings of the*
490 *National academy of Sciences*, **102**(46), 16569-16572 (2005).

491 37. Dorogovtsev, S. N., Goltsev, A. V., & Mendes, J. F. F. K-core organization of complex
492 networks. *Physical review letters*, **96**(4), 040601 (2006).

493 38. Bergholm, V., et al. PennyLane: Automatic differentiation of hybrid quantum-classical
494 computations. Preprint at <https://doi.org/10.48550/arXiv.1811.04968> (2018).

495 39. Paszke, A., et al. Pytorch: An imperative style, high-performance deep learning library. *Advances in*
496 *neural information processing systems*, **32** (2019).

497 40. Grant, E., et al. An initialization strategy for addressing barren plateaus in parametrized quantum
498 circuits. *Quantum*, **3**, 214 (2019).

499 41. Stokes, J., et al. Quantum natural gradient. *Quantum*, **4**, 269 (2020).

500 **Acknowledgements (optional)**

501 Keep acknowledgements brief and do not include thanks to anonymous referees or editors, or effusive
502 comments. Grant or contribution numbers may be acknowledged.

503 **Ethics declarations**

504 **Competing interests**

505 Submission of a competing interests statement is required for all content of the journal.

506 **Supplementary Information**

507 The basic concept and architecture of the Single-Qubit method were first proposed in "Data re-uploading
 508 for a universal quantum classifier". They propose a hybrid classical-quantum algorithm based on the
 509 angle of reuploading classical data to a single qubit multiple times along a circuit. Along with the data
 510 points, other parameters are introduced into the circuit and tuned by classically minimizing the cost
 511 function. The quantum classifier structure in this paper is shown in the formula:

512
$$\tilde{U}(\vec{\phi}, \vec{x}) = U(\vec{\phi}_N)U(\vec{x}) \dots U(\vec{\phi}_1)U(\vec{x}) \quad (1)$$

513 which acts as:

514
$$|\psi\rangle = \tilde{U}(\vec{\phi}, \vec{x})|\theta\rangle \quad (2)$$

515 where ψ is the final state, U is the unitary operation, ϕ is the parameter, and x is the input classical data.
 516 The final classification of the pattern will come from the measurement of $|\psi\rangle$. We can introduce the
 517 concept of processing layers as compositions to combine unitary operations:

518
$$L(i) = U(\vec{\phi}_i)U(\vec{x}) \quad (3)$$

519 so the formula of the whole quantum classifier can be:

520
$$\tilde{U}(\vec{\phi}, \vec{x}) = L(N) \dots L(1) \quad (4)$$

521 The depth of the quantum circuit is $2N$. The higher the number of layers, the stronger the representation
 522 capability of the quantum circuit and the more powerful the classifier will be, analogous to the hidden
 523 layers of a classical neural network.

524 In this paper, we take the approach of combining parameters and input data into the same unitary
 525 operation with the following formula:

526
$$L(i) = U(\vec{\theta}_i + \vec{\omega}_i \circ \vec{x}) \quad (5)$$

527 where θ and ω are parameters. This method is more efficient for quantum gates, especially on real
 528 quantum computers with limited quantum volume.

529 Depth settings for single-qubit methods

530 The single-qubit circuit we apply sets the dimension of each unitary operation to three, that is, each
531 unitary unit consists of three quantum revolving gates that encode three data. As the depth of the quantum
532 circuit increases, that is, the processing layers increase, the dimension of the input data also increases
533 accordingly. According to the experimental results of "On Depth, Robustness and Performance Using the
534 Data Re-Uploading Single-Qubit Classifier", the deeper the quantum circuit depth, usually improves the
535 average classification performance, and the largest improvement usually occurs in layers 1, 2 and 3.
536 between depth increments. A clear advantage of increasing depth is the ability to produce more complex
537 data maps by visualizing the difference between depth increments. Likewise, higher depths consistently
538 exhibit higher stability as depth increases. Any advantage in robustness during model training appears to
539 level off as depth increases.

540