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Abstract

Machine learning based on graph data is a hard task due to the complex structure of graph data. When this
topic comes to quantum machine learning, it becomes more challenging due to the limited resources in
the current NISQ era, in particular when a neural network can have thousands or even millions of
parameters. In this paper, to address these challenges, we proposed a novel quantum graph neural network
that uses only a single qubit. In our novel work, a graph embedding method was leveraged to waive the
needs of hyperparameters, leading to the single-qubit based implementation with the least number of
parameters in the network. Our experiments show that our method can be adapted to graph data of
different structures and sizes, and can be efficiently deployed on real quantum computers. Our sSQGNN
quantum graph neural network (sQGNN) exhibits a high capability of fault tolerance towards noisy NISQ
devices. In the current NISQ era, our single-qubit-based quantum neural networks can maximize the use
of limited qubits and enable the implementation of large quantum graph neural networks on resource-
limited VQCs, showing a new promising pathway to overcome the current major shortcomings of VQCs

facing real-world applications.
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Introduction

Machine learning, particularly bioinspired deep learning, has been widely applied to enable many new
applications [1,2]. Meanwhile, with the continuous development of information technology and the
exponential increase in information density, the search for innovative approaches to the increasing
complexity of machine learning has become imperative [3]. Quantum computing, as a promising
candidate with its supremacy in computing power, has attracted the greatest interest of researchers in the
field of artificial intelligence. Due to the quantum superposition mechanism, quantum computing has
demonstrated its exponential acceleration advantages over classical computing when dealing with high-
dimensional data [3]. For example, quantum algorithms can factor numbers [4], simulate quantum
systems [5], or solve systems of linear equations [6] with an exponential acceleration compared to
classical methods. The cross-disciplinary marriage of quantum computing and machine learning has
brought out the celebrated birth of quantum machine learning, with a great hope to leverage the
advantages of quantum computing to improve classical machine learning algorithms [7]. Quantum
machine learning has emerged as a promising panacea for the challenges in the area of machine learning,
despite of the hardware and software implementation challenges in the current noisy intermediate-scale

quantum (NISQ) era of quantum computing [8].

Currently, quantum machine learning tends to utilize quantum mechanisms to implement or optimize
various classical machine learning algorithms, such as Quantum Boltzmann Machines (QBM) [9],
Quantum Principal Component Analysis (QPCA) [10], and Quantum Support Vector Machines (QSVM)
[11][12]. Quantum neural networks were proposed initially in 1995 [13], and various possible quantum
neural network models have been widely explored, such as the Quantum Perceptron Model [14],
Quantum Tensor Neural Network [15] and Quantum Convolutional Neural Network [16]. The researchers
hope to solve the problem of high-dimensional space and complexity in classical neural networks by
transforming the classical neural network model into a quantum system with a network-like structure in

Hilbert space.
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Machine learning based on graph-structured data has always become one of the hottest topics in the field
of machine learning, with many potential applications in social networks, point clouds, molecular
chemistry and other fields [1] [17]. Most of the classical neural network algorithms are designed to
process data with regular structures in Euclidean space. Due to the complex structure of graph data,
classical neural networks inevitably face a drop in efficiency. Many graph-based problems are NP-hard
[18], which is a big challenge for neural network computational performance. Taking advantage of
quantum computing over classical methods has become one promising solution to tackle the
computational complexity in processing graph data. Unlike classical machine learning, the data in
quantum machine learning often presents in a high-dimensional Hilbert space represented by quantum
states, while such high-dimensional Hilbert spaces have been shown to be beneficial for classification

[19].

Although quantum computers have achieved good results [3], there are several big limitations in the
NISQ era [8]. First, the number of qubits is limited in current quantum computers, and the state-of-the-art
devices range in size from 50 to 100 qubits, which are expensive and have architectural limitations and
limited programmability [8]. Second, the impact of noises is huge [20], and the advent of fault-tolerant
quantum computers seems to be years or even decades away [8]. The real promise of quantum computers,
the acceleration of real-world applications, often referred to as quantum supremacy [21], has yet to
materialize. Therefore, the key technical question is how to fully utilize today's NISQ devices to achieve
quantum advantages. Any such strategy must take into account: a limited number of qubits, limited qubit
connectivity, and coherent and incoherent errors that limit the depth of quantum circuits. In addition to the
limitations of quantum hardware, Variational Quantum Algorithms (VQAs) [22], which are widely used
in quantum machine learning, also have many limits, including their trainability, accuracy and efficiency,

especially the "barren plateau” can best reflect the limitations currently faced by VQA [23].

In this paper, we offered a novel method by implementing the whole quantum graph neural network on a

single qubit [24][25], enabling the tackling of the complex graph data analysis on the limited NISQ
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VQCs. First, we use a graph embedding method based on DCH-E [26] to waive the need for any
hyperparameters to convert a graph data sample into a vector. Secondly, we utilize a new encoding
scheme that can easily encode the vectorized graph data onto quantum circuits, and utilize the properties
of quantum computing to drastically reduce the number of parameters that classical neural networks
usually need. In our experiments, the number of parameters was reduced to several tens from thousands
and beyond. Consequently, the occupancy of quantum volume will be drastically minimized. Thirdly, the
uploaded quantum graph data is fed into a novel quantum graph neural network classifier that uses only a
single qubit [24][25], which can be trained to fit the objective function through a variety of quantum

rotation gates.

Our proposed graph quantum neural networks can be used to encode various graph data of different
structures towards the single-qubit-based implementation without the need for hyperparameters. Our
above innovations enable the efficient quantum processing of complex graphics data possible in the real
world. We verified the feasibility of our model through experiments on both the simulated quantum
environments and the real quantum computer. The experimental results successfully validated that our
proposed single-qubit-based quantum graph neural networks (SQGNN) can handle the complex real-
world graph data with excellent performance on the resource-limited quantum computing platform,
demonstrating a novel pathway to offer a panacea for the great challenges in the current NISQ quantum

technologies.

Figure 1 shows the workflow, which consists of three steps: First, the DHC-E graph embedding method
converts raw graph data into a vector form that is easy to process without the need for hyperparameters.
Second, the processed graph representation vector is input into the single-qubit circuit in the order of
unitary operations, as shown in Figure 1. The single-qubit method can encode all data with a single qubit,
saving the total number of qubits in the NISQ era and effectively avoiding the "barren plateau"
phenomenon [23] caused by too many qubits in VQCs. Finally, we measure the single-qubit circuit,

calculate the fidelity and loss of the model, and update the parameters of the quantum circuits to achieve
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Figure. 1. (a) For the other states generated from the DHC updating process of a graph, the same rules are applied to calculate their
Shannon entropy. At the end of the DHC updating process, one obtains two Shannon entropy sequences of the two graphs (2.197, 1.530)
and (1.557, 0.985, 0.985), which are two graphs’ embeddings. The two embeddings are with unequal dimensions. Based on the highest
dimension of the two embeddings (i.e., 3), the last element of (2.197, 1.530) is used to expand (2.197, 1.530) to (2.197, 1.530, 1.530) for
dimension alignment. (b) The Single-Qubit quantum circuit. The elements in the representation vector of the graph are in units of 3, and are
encoded onto the qubits using a quantum revolving gate. Every three quantum revolving gates constitute a unitary operation, and the Single-
Qubit method uses this unitary operation as the basic unit of encoding and parameter training. The initial state of the quantum circuit is [0>,
after the state change of the quantum circuit through unitary operation, the expected value of the final state is obtained by measurement at
the end of the quantum circuit.

the effects of neural network training. From this training process, we get our trained quantum neural
network models. More details on these three steps are in the Methods. Following this, we carried out
experiments to evaluate our SQGNN method over several real-world datasets from chemistry and biology

domains.

Figure 2 shows a) the schematic diagrams of a classical neural network, b) a common quantum circuit,

and c) our single-qubit quantum circuit. As shown in the figure, the quantum circuits and the classical
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Figure. 2. This figure shows the similarities and differences between classical neural networks, general quantum circuits, and single-qubit
circuits.

neural network are logically similar. There are four neurons in the hidden layer of the classical neural
network (Fig.2a), which may be embodied as four qubits in the general quantum circuit in Fig.2b to carry
the corresponding data. Considering the dimensions of input data, this number may be much higher. In
the single qubit circuit, it can be embodied as four unitary operations on one qubit. When processing
high-dimensional data, a quantum rotary gate can be added in the unitary operation without adding more
qubits. According to the needs of specific input data, the number of unitary operations, and the number
and type of rotation gates in unitary operations can be adjusted accordingly. For common quantum
circuits, if the data size or dimension is high, it is inevitable to increase the number of qubits. For the
single-qubit method, a single qubit can carry as much data as possible by adding unitary operations if the
quantum volume allows. This structure cannot only make data easier to encode, but also save limited
qubit resources. Besides, fewer qubits can help avoid the problem of difficult model training caused by
the "barren plateau" [23], making our sSQGNN an ideal candidate for the challenging quantum processing

of graph data.



119

120

121

122

123

124

125

126

127

128

129

130

131

Results

Experiments in the Simulated Quantum Environment

In our experiments, we first used a simulated quantum environment to test the performance of the model.
Due to the functional limitations of quantum computers in the NISQ era, the influence of noises is
inevitable and unignorable. To fully demonstrate the capabilities of our models, we set up multiple
experiments under the simulated environments. We configured two simulation setups for our sQGNN
models: one is the ideal quantum environment and another is the noisy environment in the presence of
noise interference in the simulated NISQ devices. We hope to test the robustness of the sSQGNN model
through such an experimental environment. The test models include edGNN[27], R-GCN[28], GIN[29],
SQGNN (the ideal quantum setup) in an ideal environment and a quantum environment with depolarizing

error for noise testing.

Table 1 shows the test results of the model in an ideal simulated quantum environment. From the results,

we found that the SQGNN models had achieved the best performance on the four datasets of small

TABLE 1. The average accuracy of the models over different real world graph datasets

MODEL MUTAG PTC FM PTC_FR PTC MM PTC MR

EDGNN]J27] | 86.9£1.0 59.8+1.5 65.7+1.3 64.4+0.8 56.3+1.9

R-GCN[28] | 81.5+2.1 60.7+1.7 65.8+0.6 64.7£1.7 58.2+1.7

GINJ29] 89.4+5.6 64.3£10.0 65.3£5.6 65.8+5.9 64.6+7.0

SQGNN 87.3+4.8 65.2+7.3 66.9+5.5 605.9+4.2 65.9+5.5

TABLE 2. The parameters of each model with MUTAG dataset. The parameters of GNN include all the
parameters of the weight matrix to be trained, and the parameters of the quantum algorithm are the angles

required by all quantum gates.

MODELS EDGNN[27] R-GCN[28] GIN[29] SQGNN

PARAMETERS 16704 9345 13000 8
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molecule compounds, PTC_FM, PTC FR, PTC_MM and PTC MR [30]. The average accuracy rates of
the sSQGNN model on the PTC series datasets are 65.20%, 66.94%, 66.94%, and 65.93%, respectively.

For the MUTAG dataset [31], the SQGNN model is slightly inferior to the GIN model.

Our sQGNN models have obvious advantages on the PTC series dataset. According to research [32], as
the number of processing layers (i.e. unitary operations) of the single-qubit method increases, the model
will perform better, and this effect is most significant when the number of unitary operations is below
three. This may also be caused by the relatively few feature elements of the graph representation vector of
the DHC-E-processed MUTAG data. The MUATG dataset has only 4 features of each representation

vector, while the PTC dataset has 12.

Training Loss

—— MUTAG
—— PTC_FM
0.40 4 — PTICFR
— PTC_MM
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a
§ 0.30 1
0.25 A
0.20 4

T T T T T
0 25 50 75 100 125 150 175 200
epoch

Figure. 3. Training loss of sSQGNN model in ideal quantum environment.

TABLE 3. The average accuracy of the models with depolarizing error.

DEPOLARIZATION
PROBABILITY MUTAG PTC_FM PTC_FR PTC_MM PTC_MR
0.001 87.3£3.3  65.0+7.2  66.5+9.1 65.3+42 65.8+4.4
0.01 86.7£4.9 65.1£8.6  66.1x5.6  65.7+4.5 65.8£5.1
0.1 84.8£6.4 64.0+7.7 65.0+84  63.7+4.8 64.5+4.5
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From the comparison of the results in the ideal quantum environment, the overall accuracy of our SQGNN
model is superior. In addition to accuracy, the advantage of the SQGNN method lies in the compact model
structure. Classical graph neural networks are usually complex in terms of the model structure due to the
complexity of graph data itself. Due to the graph embedding method without hyperparameters in our
model and the use of Single-Qubits QGNN quantum circuits, our model achieves a huge advantage in the
total number of parameters. Taking the MUTAG dataset as an example, our model requires only 8
parameters, while a classical neural network such as GIN has 13,000 parameters as shown in Table 2,

which fully shows the potential advantage of our model in efficiency.

Figure 3 shows the training loss of SQGNN on five datasets in an ideal quantum environment. Relatively
speaking, the PTC series dataset is more difficult to train than the MUTAG dataset because the PTC
dataset is more complex. In the PTC dataset, PTC_MM and PTC_MR are relatively difficult to train. This
can also be confirmed by the accuracy results. The overall accuracy of these two datasets for various

models is relatively low.

To verify the ability of the SQGNN method to resist the effects of noise when running on NISQ devices
with noise, we train and test the models using a noisy simulated environment. As shown in Table 3, we
set the depolarization error as the noise in the environment for the SQGNN model. When a group of
qubits undergoes a depolarization error, a random Pauli (example: X, Y, Z) is applied to each qubit. The
formula for depolarization error is as follows:

E(p) = (1 —e)p +Trlo] o W
Where ¢ is the depolarizing error param, » is the number of qubits for the error channel and / is the Pauli

matrix.

We set 3 levels for the depolarization parameter to test how tolerant SQGNN is to depolarization errors.
The test results are shown in Table 3. Under the influence of depolarization error, the SQGNN model is
slightly affected, almost unaffected at 0.001 and 0.01, and slightly affected at 0.1. In terms of average

accuracy, our sQGNN method shows good error tolerance, thanks to its unique single qubit
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Figure. 4. This figure is a demonstration of all graph data of the PTC_FM dataset in Hilbert space. The red dot is class 0 and the blue dot is
class 1. In the figure a, b, ¢, d are PTC_FM, PTC_FR, PTC_MM, PTC_MR respectively.

implementation. Due to the functional limitations of quantum devices in the NISQ era, the influence of
noises is unavoidable, and the resulting degradation is a great problem when coming to real quantum
computers. From the results, the sSQGNN model can stably maintain good performance under the noise

impact.

Figure 4 also shows the distribution of all graphs in the PTC_FM dataset in Hilbert space that are
displayed on the surface of Bloch spheres. Among them, the red points belong to Class 0, and the blue
points are from Class 1. Overall, Class 0 is concentrated in the upper hemisphere, and Class 1 is
concentrated in the lower hemisphere. It can be observed from the figure that the classification ability of

10
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the model for Class 0 is stronger than that of Class 1, and Class 1 has some outlier data distributed in the
upper hemisphere, which may be caused by the initial state of the quantum circuit being set to |0). The
structure of graph data may also be a cause. Overall, our model can still maintain a good performance
under the influence of noise. According to our experimental results, the training difficulty of PTC_MM

and PTC_MR is relatively high, which can be confirmed by the accuracy and data distribution.

Real Quantum Device Test Experiment

In addition to the above experiments in the simulated quantum environments, we further designed the
experiment to run our SQGNN models on the real quantum computer offered by IBM. We deploy the
best-performing model on the MUTAG dataset from previous experiments in a simulated quantum
environment to a real quantum computer. Thanks to the online IBM's quantum computer [33] and IBM
Quantum Lab, we were able to deploy our single qubit models easily on a quantum computer provided by
IBM in relatively simple steps. Currently, IBM online service allows 4 qubits each user, restricted due to
the limited resources on their NISQ quantum computer. In addition, the quantum volume of a quantum
computer is limited, which limits the total amount of quantum gates that can be deployed in a quantum
circuit, and our method of combining parameters and encoding greatly reduces the required quantum

gates.

Figure 5 shows the test results of our model on the real quantum computer. Our model achieved an
accuracy rate of 88.89% on the MUTAG dataset on the real IBM quantum computer, with no degradation
in accuracy compared to the simulated quantum environment. As shown in Figure Sa, the classification
performance of the model on quantum computers is the same as in the simulation environment. Figure 5b
shows the measured results on the quantum computer. The number of results obtained in the
measurements of | 0 ) and | 1 ) is similar, that is, Class 0 is better than Class 1. The reasons for this
phenomenon are the same as in the simulation environment, namely the initial state is |0) and the

difference in the graph data structure of the two classes.

11
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Figure 5c shows the resulting visual image of the Wigner quasi-probabilistic equations [34]. This figure
relates the wave function to a probability distribution in phase space. We can see that the model clearly
distinguishes between the two classes and is less affected by NISQ device noise. Mostly the initial state of
available quantum computers is |0). If the initial state is set to |1), the result may be the opposite. Due to
the limitations of the physical system itself, the initial state of |0) may be the normal state of quantum
computers for a period of time, and therefore the algorithm needs to be optimized for this problem.
Although the phenomenon in the simulated environment still exists, it also illustrates the robustness of
our model. The performance of our SQGNN model on quantum computers does not degrade and
maintains high accuracy and interpretability in the simulated environments. The experience validates the

real-world feasibility of our model with the huge benefits of our single-qubit approach.

Discussion

In the previous section, we presented our experimental results and analyzed them in details. In general,
considering the research purpose and experimental environment, our work results are good and can
provide some valuable reference methods for the development of related fields. We use the single-qubit
method to construct quantum circuits and realize the efficient use of finite qubits to encode graph
representation vectors. In the absence of quantum computing resources in the NISQ era, our method can
save a lot of quantum resources. Theoretically, we only need a single qubit to implement any neural

networks with thousands or even millions of parameters.

In the NISQ era, the noise of quantum devices is an unavoidable problem. The existence of noise makes
some methods that perform well in ideal simulation environments but difficult to put into practical use in
NISQ devices. The experimental results show that our single-qubit models achieved good performance in
our tests and exhibited a good anti-noise ability in the simulation environment and quantum computers, as
shown in Table 1 and 3. Against the depolarizing error (Table 3), our method shows steady performance

over different levels of noises.

12
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Due to the efficient use of the sQGNN method for a single qubit, we can keep the total number of qubits
to a very low level, and thus avoid the training difficulties on the "barren plateau" issues widely existing
in VQCs. Although some studies [23, 40 & 41] have proposed some methods to alleviate the "barren
plateau", this problem has not been solved fundamentally. In the current state of quantum machine
learning methods applying VQA, the "barren plateau" may accompany quantum machine learning for a

while. However, our method provides a fundamental way to avoid it at all.

In our work, we explored a hyperparameter-free graph embedding method, which greatly reduces the
required computing resources in the graph embedding stage. The total number of parameters of our
quantum neural networks can be several orders of magnitude smaller than classical methods, as shown in
Table 2. This makes our model much more efficient. Moreover, our quantum circuit structure can be
combined with other quantum or classical models to suit different tasks. In this paper, the SQGNN is

combined with the preprocessing steps on graph data using the DHC algorithm.

We deployed our models to IBM's quantum computer to validate, and the test results confirmed there is
no degradation on its performance from the simulated ones. Our single-qubit model uses only one qubit
and its quantum circuits can be easily deployed in quantum computers as they require the least number for
qubits, enabling the practical implementation on real variational quantum circuits with limited resources.
Predictably, our method will enable a wide range of practical use towards various real world data, besides

the biological molecular datasets in this paper.

At this stage, learning and reasoning on quantum simulators are computationally expensive processes
compared to classical neural network models. Although the purpose of quantum machine learning is to
utilize quantum mechanisms to improve the performance of neural networks, the limitation of physical
conditions still exists as the simulation of multiple qubits are compute-intensive. However, the sSQGNN
method provides an efficient option for using fewer qubits in the NISQ era, and the SQGNN method can
maximize the use of the finite qubits on VQCs and provides a novel practical way towards the practical

application of quantum neural networks in the NISQ era. With its simple structure and high utilization,
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the single-qubit method can be applied to more challenging tasks and bring out a revolution towards the

real world applications of NISQ devices.

Conclusion

Graph learning has been extensively studied in the field of deep learning, but little work has been done
exploring it in the context of quantum machine learning. Due to limited quantum resources as well as
some shortcomings of VQA, quantum machine learning has difficulties in generalizing to more complex
data types, and our single-qubit method can help to solve this problem. In this work, we proposed a novel
quantum graph classification method, namely sQGNN, which leverages a hyperparameter-free graph
embedding method to minimize the size of quantum graph neural networks. We conduct multiple
experiments on different datasets to explore various experimental results towards in-depth analysis.
Experimental results show that our model achieved excellent capability in the classification of biological
molecular structures, while the number of parameters is several orders of magnitude lower than that of
classical graph neural networks. We also shows our model achieved robust performance on real quantum
computers. Our concise model structure enables the model to be deployed on quantum devices in the
NISQ era and is easy to use, and has a good ability to resist noises. Our work clearly shows that our new
work enlightens a pathway to implement many very complicated neural networks on a single qubit, and
offered a panacea solution to the bottleneck of realizing various machine learning algorithms over

resource-limited VQC devices in the NISQ era.

Methods

In this paper, we develop a novel quantum-classical hybrid machine learning algorithm for small-
molecule compound graph structure data. The idea is to replace Euclidean space-based transformation
matrices in classical deep learning with unitary matrices for quantum computing and implement the
quantum neural networks with the least number of parameters over a single qubit. In this way, we

incorporate the theoretical ideas of quantum machine learning into deep learning in the graph domain.

Graph Embedding

14
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DHC-E is a simple and hyperparameter-free graph embedding method that combines the generalized
DHC theorem and Shannon entropy (E) for network compression and representation. The DHC theorem
[35] reveals the relationship between degree, H-index, and centrality: the H-index of a node is computed
according to the degree centrality of its neighbours, and its-H-index-ecan-be-calenlated-acecordingto-its
Fthe previous H-index of the neighbour is updated. A node’s H-index (short for Hirsch index) [36] is the
maximum value h such that it has at least h neighbours with a degree no less than h [35]. A node’s
coreness further takes its location in the graph into account, measuring its influence based on the k-core
decomposition process [37], where a larger coreness indicates that a node locates more centrally in the
graph. Such an update process continues iteratively, yielding a sequence of H-indexes of nodes. DHC-E
utilizes H-index sequences for graph embedding. DHC-E first calculates the probability distribution of the

node's iterative H-index and then calculates its Shannon entropy. Shannon entropy's formula is:

n
H= —sz log, pi (2)
i=1

Since the iterations of the above DHC update process on different graphs are usually dimensionally
unequal, the generated whole graph embeddings are not compatible for some downstream machine
learning tasks (graph classification). To align them, DHC-E further converts all generated graphs into the
maximum dimensions of all embeddings as the baseline, and any other elementa with fewer dimensions

will be supplemented with its last element to the max ones.

Data Encoding

For many ML tasks, data is often presented as column vectors. Traditionally, this D-dimensional vector of
classical data can be encoded either by initializing the 2D qubit quantum states to their binary string
equivalents (basic encoding), or by transforming the data dimensions into their corresponding
superposition state probability magnitudes (amplitude encoding). Although these data encoding schemes

have been used in other work [3], their implementation is often very expensive or impractical and
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susceptible to error-prone quantum operations. Therefore, these encoding schemes may not always be an
efficient means of minimizing qubit usage. Single-qubit encoding, developed in [24], is a strategy to
encode a vector of classical data into a characteristic Hilbert space using a series of single operations
acting on each input data dimension, using only one single qubit. The unitary operation of single-qubit

encoding can be expressed by the following formula:

U = e"Rz(B)Ry (¥)Rz(8) (3)

With a global phase factor a, Euler angles B, v, 8, € R that define the extent of each rotation (R) around

the Z, Y and Z axes respectively. Within this method of encoding, these Euler angles are parameterized

further and defined as:

B=0i+x; ¢ (4)
Yy=0i1+x41- 9, (5)
§=0i2+x12- b, (6)

Where 0i and ¢i are trainable weight parameters assigned to xi, the value of the input vector x at
dimension i. Therefore, the extent of rotation S, y, § is with respect to the weighted value of the input.
Using the above parameter definitions, a maximum of three input dimensions can be encoded per unitary
operation applied. Here, the input vector will be continually cycled through, encoding a series of three-
dimensional values at a time, until the entirety of the input has been encoded. This is known as a full
‘upload layer’ of the input data. The single-qubit encoding method can be flexibly deployed on quantum
circuits that process graph data of different structures and can increase the amount of data that each qubit
can carry. The graph data processed by DHC-E is a high-dimensional vector, and the number of qubits
required for basic encoding and amplitude encoding is large. Using single-qubit encoding, the number of
qubits in the quantum circuits can be easily reduced to less than 10, thereby avoiding the "barren plateau"

problem [23] in VQA training.
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Quantum Circuit Design

Quantum circuits are the core part of quantum computing, and most functions are realized by the
combination of qubits and quantum gates in quantum circuits. In our single-qubit approach, we limit the
number of qubits to one. The single-qubit method can theoretically use quantum circuits with multiple
qubits. In this case, CNOT gates are used to create quantum entanglement between qubits, and each qubit
is equivalent to a hidden layer of a neural network. We stick to using one qubit in this model in order to
better demonstrate the efficiency of the single-qubit approach. When the graph data processed by the
DHC-E method is embedded in the quantum circuit according to the above method, we treat each
combination of RZ, RY and RZ gates as a unitary operation. Taking this unitary operation as the basic
unit, how many unitary operations are set on a unique qubit is determined according to the size of the
input data. In our method, each unitary operation is able to encode 3 inputs with 6 parameters. Taking
data of size 8 as an example, in order for the data to be encoded into a quantum circuit, 3 unitary
operations will be set on a single qubit. In this case, after the encoding of the graph data is complete, there
is still a gap. At this time, this vacancy will be replaced by 0 to ensure that this vacancy will not affect the
quantum state in the final measurement. In this way, the single-bit method can be scaled according to the

size of the input data and can be widely used.

Measurement

In the measurement part, we will observe the quantum circuit to obtain the final state of the circuit. Unlike
the general direct measurement of the state of the qubit, for application to classification tasks, we adopt a
fidelity-based measurement method. The overall goal of this measurement method is to minimize the
fidelity between a set of data encodings and their respective target states. For binary classification tasks,
given a set size D of images with corresponding class values in {0,1}, assign each image a corresponding
target state |0) or |1). Any number of classes can be merged using this method, provided that the target
states are at the greatest distance from each other. Fidelity F is a measure of the similarity or proximity

between two quantum states, where 0 < F < 1. The higher the fidelity of two quantum states, the more
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similar they are in direction. The highest class fidelity value given is then considered the classification
result. For example, for a graph with a label of 0, its corresponding target state is |0), when we measure,
we get the result {a|0), 8|1)} where @ + B = 1 and a is the fidelity of class 0. The formula of the fidelity

1s shown as follow:

F(%,6,8) = |1l ¥oucpue (G0 6. 8| )

Loss calculation and model training

The role of the loss function is to describe the gap between the predicted value of the model and the true
value. The loss function can find a criterion to help the training mechanism optimize the parameters at
any time in order to find the parameters at the highest accuracy of the network. From the measurement
section, we use fidelity to measure the similarity between results and labels. Therefore, the loss function

of our model is also designed based on fidelity. The formula of the loss function is as follows:

M
L(f; é, (]3)) = Z (1 - |<$l|¢output(5éi’ é, 5))|2) (8)

Where 1/_; 1 is the correct label state of the data point.

Having obtained the loss, we can use the optimizer to maximize the sum of the fidelity of all data points
and find the best weight for classification, the parameters 6 and ¢ in the unitary operation above. With
the optimization of parameters, the operation of the quantum revolving gate on qubits is also optimized,

so that the entire model can be trained.

Quantum Barren Plateau

A typical gradient descent algorithm of quantum circuits is shown:

oL
0(t+1)—6(t) =466, = —n%

Where L is the loss function and 6, is the variational angle of quantum circuits.

9)
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For large variational quantum circuits, the gradient of the objective function has an average value
of zero, and the probability that any given instance of such a quantum circuit deviates from this
average value by a small constant decreases exponentially with the number of qubits [23]. When
the measure of the space is concentrated in this way, the value of any reasonably smooth
function tends to its mean with exponential probability, which means that the gradient is zero
over a wide range of quantum space, like the situation in Figure 6. This is the plateau of quantum

barrenness (Barren plateaus in quantum neural network training landscapes).

Training Loss
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Figure. 6. Schematic diagram of a barren plateau.
In VQA, the expected value of the quantum circuit needs to be obtained. Consider an objective
function E(0) expressed as the expectation value over some Hermitian operator H:

E(8) = (01u(8) HU(8)|0) (10)

The gradient of the objective function:

0E(6
OcE = % = i(0|Ut[v,, UTHU, U |0) (11)
k
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Vis a a Hermitian operator. U,and U are two circuits, both match the Haar distribution up to

the second moment, and the circuits are independent. The average value of the gradient can then

be expressed as:

(0,E) = f dUp(U) ak(OIU(§)+HU(§)|0) (12)

Where p(U) is the probability distribution function of U. In different cases, its

variance 1s:

2
Tr(H*) ([V, u-rpu]2>u_ (13)

T 2

[ (22rn(p_)1) oV, Hul?),,
Var[d,E]

| @D

=)

1 2 2 2
2GnD Tr(H=)Tr(p=)Tr(V*)

Among them, the number of qubits is n. This means that when the number of qubits is large, in
most cases, the gradient of the cost function approaches 0, that is, any training method based on

VQA will not be able to make the cost function converge.

Experimental Setup

We choose MUTAG dataset and PTC series dataset as experimental data. The MUTAG dataset contains
188 nitro compounds. The labels are used to determine whether the compound is aromatic or
heteroaromatic. The graph data belongs to the isomer graph. The full name of PTC is Predictive
Toxicology Challenge, which is used to develop advanced SAR technology predictive toxicology models.
This dataset contains carcinogenicity-labelled compounds in rodents. According to the experimental
rodent species, there are a total of 4 datasets: PTC_FM (female mice), PTC_FR (female rats), PTC_MM
(male mice), and PTC_MR (male rats). The specific parameters of the dataset are shown in the table

below.
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In this experiment, the experimental flow of our method is as follows: the graph data is embedded using
the DHC-E method, and then the graph data is encoded into a single-qubit circuit. According to the size of
the embedded graph data, a corresponding number of unitary operations will be set on the qubits. In the
measurement part, the expected values of the target states |0) and |1) are measured to calculate the fidelity
of the corresponding data. The training of the neural network is achieved by evaluating the effect of the
above loss function and updating the parameters at the quantum revolving gate. The model with the best

parameters is obtained after many iterations and evaluated with test data.

We use PennyLane [38] and PyTorch [39] to perform experiments. PennyLane is an open-source python-
based framework that enables automatic differentiation of hybrid quantum-classical computations. It is
compatible with mainstream machine learning frameworks like PyTorch and has a huge plugin
ecosystem. The quantum computer we use is the ibm_manila node provided by IBM [33]. The number of
qubits available to this quantum computer is 5, the Quantum volume is 32, it can perform 2800 Circuit

layer operations per second, and the processor model is Falcon r5.11L.
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Supplementary Information

The basic concept and architecture of the Single-Qubit method were first proposed in "Data re-uploading
for a universal quantum classifier". They propose a hybrid classical-quantum algorithm based on the
angle of reuploading classical data to a single qubit multiple times along a circuit. Along with the data
points, other parameters are introduced into the circuit and tuned by classically minimizing the cost

function. The quantum classifier structure in this paper is shown in the formula:

0(9.2) U@ (). U (@) u(z) (1)

which acts as:

%0530 o

where i is the final state, U is the unitary operation, ¢ is the parameter, and x is the input classical data.
The final classification of the pattern will come from the measurement of |y). We can introduce the

concept of processing layers as compositions to combine unitary operations:

Z)-v()u () 5

so the formula of the whole quantum classifier can be:

U(4.7)- L(N)...L(1) @

The depth of the quantum circuit is 2N. The higher the number of layers, the stronger the representation
capability of the quantum circuit and the more powerful the classifier will be, analogous to the hidden
layers of a classical neural network.

In this paper, we take the approach of combining parameters and input data into the same unitary

operation with the following formula:

L(#) =U(6, +8, o%) )

where 0 and o are parameters. This method is more efficient for quantum gates, especially on real

quantum computers with limited quantum volume.
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Depth settings for single-qubit methods

The single-qubit circuit we apply sets the dimension of each unitary operation to three, that is, each
unitary unit consists of three quantum revolving gates that encode three data. As the depth of the quantum
circuit increases, that is, the processing layers increase, the dimension of the input data also increases
accordingly. According to the experimental results of "On Depth, Robustness and Performance Using the
Data Re-Uploading Single-Qubit Classifier", the deeper the quantum circuit depth, usually improves the
average classification performance, and the largest improvement usually occurs in layers 1, 2 and 3.
between depth increments. A clear advantage of increasing depth is the ability to produce more complex
data maps by visualizing the difference between depth increments. Likewise, higher depths consistently
exhibit higher stability as depth increases. Any advantage in robustness during model training appears to

level off as depth increases.
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