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Abstract 11 

Machine learning based on graph data is a hard task due to the complex structure of graph data. When this 12 

topic comes to quantum machine learning, it becomes more challenging due to the limited resources in 13 

the current NISQ era, in particular when a neural network can have thousands or even millions of 14 

parameters. In this paper, to address these challenges, we proposed a novel quantum graph neural network 15 

that uses only a single qubit. In our novel work, a graph embedding method was leveraged to waive the 16 

needs of hyperparameters, leading to the single-qubit based implementation with the least number of 17 

parameters in the network. Our experiments show that our method can be adapted to graph data of 18 

different structures and sizes, and can be efficiently deployed on real quantum computers. Our sQGNN 19 

quantum graph neural network (sQGNN) exhibits a high capability of fault tolerance towards noisy NISQ 20 

devices. In the current NISQ era, our single-qubit-based quantum neural networks can maximize the use 21 

of limited qubits and enable the implementation of large quantum graph neural networks on resource-22 

limited VQCs, showing a new promising pathway to overcome the current major shortcomings of VQCs 23 

facing real-world applications.  24 
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Introduction 25 

Machine learning, particularly bioinspired deep learning, has been widely applied to enable many new 26 

applications [1,2]. Meanwhile, with the continuous development of information technology and the 27 

exponential increase in information density, the search for innovative approaches to the increasing 28 

complexity of machine learning has become imperative [3]. Quantum computing, as a promising 29 

candidate with its supremacy in computing power, has attracted the greatest interest of researchers in the 30 

field of artificial intelligence. Due to the quantum superposition mechanism, quantum computing has 31 

demonstrated its exponential acceleration advantages over classical computing when dealing with high-32 

dimensional data [3]. For example, quantum algorithms can factor numbers [4], simulate quantum 33 

systems [5], or solve systems of linear equations [6] with an exponential acceleration compared to 34 

classical methods.  The cross-disciplinary marriage of quantum computing and machine learning has 35 

brought out the celebrated birth of quantum machine learning, with a great hope to leverage the 36 

advantages of quantum computing to improve classical machine learning algorithms [7]. Quantum 37 

machine learning has emerged as a promising panacea for the challenges in the area of machine learning, 38 

despite of the hardware and software implementation challenges in the current noisy intermediate-scale 39 

quantum (NISQ) era of quantum computing [8]. 40 

Currently, quantum machine learning tends to utilize quantum mechanisms to implement or optimize 41 

various classical machine learning algorithms, such as Quantum Boltzmann Machines (QBM) [9], 42 

Quantum Principal Component Analysis (QPCA) [10], and Quantum Support Vector Machines (QSVM) 43 

[11][12]. Quantum neural networks were proposed initially in 1995 [13], and various possible quantum 44 

neural network models have been widely explored, such as the Quantum Perceptron Model [14], 45 

Quantum Tensor Neural Network [15] and Quantum Convolutional Neural Network [16]. The researchers 46 

hope to solve the problem of high-dimensional space and complexity in classical neural networks by 47 

transforming the classical neural network model into a quantum system with a network-like structure in 48 

Hilbert space. 49 
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Machine learning based on graph-structured data has always become one of the hottest topics in the field 50 

of machine learning, with many potential applications in social networks, point clouds, molecular 51 

chemistry and other fields [1] [17]. Most of the classical neural network algorithms are designed to 52 

process data with regular structures in Euclidean space. Due to the complex structure of graph data, 53 

classical neural networks inevitably face a drop in efficiency. Many graph-based problems are NP-hard 54 

[18], which is a big challenge for neural network computational performance. Taking advantage of 55 

quantum computing over classical methods has become one promising solution to tackle the 56 

computational complexity in processing graph data. Unlike classical machine learning, the data in 57 

quantum machine learning often presents in a high-dimensional Hilbert space represented by quantum 58 

states, while such high-dimensional Hilbert spaces have been shown to be beneficial for classification 59 

[19]. 60 

Although quantum computers have achieved good results [3], there are several big limitations in the 61 

NISQ era [8]. First, the number of qubits is limited in current quantum computers, and the state-of-the-art 62 

devices range in size from 50 to 100 qubits, which are expensive and have architectural limitations and 63 

limited programmability [8]. Second, the impact of noises is huge [20], and the advent of fault-tolerant 64 

quantum computers seems to be years or even decades away [8]. The real promise of quantum computers, 65 

the acceleration of real-world applications, often referred to as quantum supremacy [21], has yet to 66 

materialize. Therefore, the key technical question is how to fully utilize today's NISQ devices to achieve 67 

quantum advantages. Any such strategy must take into account: a limited number of qubits, limited qubit 68 

connectivity, and coherent and incoherent errors that limit the depth of quantum circuits. In addition to the 69 

limitations of quantum hardware, Variational Quantum Algorithms (VQAs) [22], which are widely used 70 

in quantum machine learning, also have many limits, including their trainability, accuracy and efficiency, 71 

especially the "barren plateau" can best reflect the limitations currently faced by VQA [23]. 72 

In this paper, we offered a novel method by implementing the whole quantum graph neural network on a 73 

single qubit [24][25], enabling the tackling of the complex graph data analysis on the limited NISQ 74 
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VQCs. First, we use a graph embedding method based on DCH-E [26] to waive the need for any 75 

hyperparameters to convert a graph data sample into a vector. Secondly, we utilize a new encoding 76 

scheme that can easily encode the vectorized graph data onto quantum circuits, and utilize the properties 77 

of quantum computing to drastically reduce the number of parameters that classical neural networks 78 

usually need. In our experiments, the number of parameters was reduced to several tens from thousands 79 

and beyond. Consequently, the occupancy of quantum volume will be drastically minimized. Thirdly, the 80 

uploaded quantum graph data is fed into a novel quantum graph neural network classifier that uses only a 81 

single qubit [24][25], which can be trained to fit the objective function through a variety of quantum 82 

rotation gates.  83 

Our proposed graph quantum neural networks can be used to encode various graph data of different 84 

structures towards the single-qubit-based implementation without the need for hyperparameters. Our 85 

above innovations enable the efficient quantum processing of complex graphics data possible in the real 86 

world. We verified the feasibility of our model through experiments on both the simulated quantum 87 

environments and the real quantum computer. The experimental results successfully validated that our 88 

proposed single-qubit-based quantum graph neural networks (sQGNN) can handle the complex real-89 

world graph data with excellent performance on the resource-limited quantum computing platform, 90 

demonstrating a novel pathway to offer a panacea for the great challenges in the current NISQ quantum 91 

technologies.  92 

Figure 1 shows the workflow, which consists of three steps: First, the DHC-E graph embedding method 93 

converts raw graph data into a vector form that is easy to process without the need for hyperparameters.  94 

Second, the processed graph representation vector is input into the single-qubit circuit in the order of 95 

unitary operations, as shown in Figure 1. The single-qubit method can encode all data with a single qubit, 96 

saving the total number of qubits in the NISQ era and effectively avoiding the "barren plateau" 97 

phenomenon [23] caused by too many qubits in VQCs. Finally, we measure the single-qubit circuit, 98 

calculate the fidelity and loss of the model, and update the parameters of the quantum circuits to achieve 99 
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the effects of neural network training. From this training process, we get our trained quantum neural 100 

network models. More details on these three steps are in the Methods. Following this, we carried out 101 

experiments to evaluate our sQGNN method over several real-world datasets from chemistry and biology 102 

domains.  103 

Figure 2 shows a) the schematic diagrams of a classical neural network, b) a common quantum circuit, 104 

and c) our single-qubit quantum circuit. As shown in the figure, the quantum circuits and the classical 105 

a:  

b:  

Figure. 1. (a) For the other states generated from the DHC updating process of a graph, the same rules are applied to calculate their 

Shannon entropy. At the end of the DHC updating process, one obtains two Shannon entropy sequences of the two graphs (2.197, 1.530) 

and (1.557, 0.985, 0.985), which are two graphs’ embeddings. The two embeddings are with unequal dimensions. Based on the highest 

dimension of the two embeddings (i.e., 3), the last element of (2.197, 1.530) is used to expand (2.197, 1.530) to (2.197, 1.530, 1.530) for 

dimension alignment. (b) The Single-Qubit quantum circuit. The elements in the representation vector of the graph are in units of 3, and are 

encoded onto the qubits using a quantum revolving gate. Every three quantum revolving gates constitute a unitary operation, and the Single-

Qubit method uses this unitary operation as the basic unit of encoding and parameter training. The initial state of the quantum circuit is |0>, 

after the state change of the quantum circuit through unitary operation, the expected value of the final state is obtained by measurement at 

the end of the quantum circuit. 
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neural network are logically similar. There are four neurons in the hidden layer of the classical neural 106 

network (Fig.2a), which may be embodied as four qubits in the general quantum circuit in Fig.2b to carry 107 

the corresponding data. Considering the dimensions of input data, this number may be much higher. In 108 

the single qubit circuit, it can be embodied as four unitary operations on one qubit. When processing 109 

high-dimensional data, a quantum rotary gate can be added in the unitary operation without adding more 110 

qubits. According to the needs of specific input data, the number of unitary operations, and the number 111 

and type of rotation gates in unitary operations can be adjusted accordingly. For common quantum 112 

circuits, if the data size or dimension is high, it is inevitable to increase the number of qubits. For the 113 

single-qubit method, a single qubit can carry as much data as possible by adding unitary operations if the 114 

quantum volume allows. This structure cannot only make data easier to encode, but also save limited 115 

qubit resources. Besides, fewer qubits can help avoid the problem of difficult model training caused by 116 

the "barren plateau" [23], making our sQGNN an ideal candidate for the challenging quantum processing 117 

of graph data.  118 

 

Figure. 2. This figure shows the similarities and differences between classical neural networks, general quantum circuits, and single-qubit 

circuits. 
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Results  119 

Experiments in the Simulated Quantum Environment  120 

In our experiments, we first used a simulated quantum environment to test the performance of the model. 121 

Due to the functional limitations of quantum computers in the NISQ era, the influence of noises is 122 

inevitable and unignorable. To fully demonstrate the capabilities of our models, we set up multiple 123 

experiments under the simulated environments. We configured two simulation setups for our sQGNN 124 

models: one is the ideal quantum environment and another is the noisy environment in the presence of 125 

noise interference in the simulated NISQ devices. We hope to test the robustness of the sQGNN model 126 

through such an experimental environment. The test models include edGNN[27], R-GCN[28], GIN[29], 127 

sQGNN (the ideal quantum setup) in an ideal environment and a quantum environment with depolarizing 128 

error for noise testing.  129 

Table 1 shows the test results of the model in an ideal simulated quantum environment. From the results, 130 

we found that the sQGNN models had achieved the best performance on the four datasets of small 131 

TABLE 1. The average accuracy of the models over different real world graph datasets 

MODEL MUTAG PTC_FM PTC_FR PTC_MM PTC_MR 

EDGNN[27] 86.9±1.0 59.8±1.5 65.7±1.3 64.4±0.8 56.3±1.9 

R-GCN[28] 81.5±2.1 60.7±1.7 65.8±0.6 64.7±1.7 58.2±1.7 

GIN[29] 89.4±5.6 64.3±10.0 65.3±5.6 65.8±5.9 64.6±7.0 

SQGNN 87.3±4.8 65.2±7.3 66.9±5.5 65.9±4.2 65.9±5.5 

TABLE 2. The parameters of each model with MUTAG dataset. The parameters of GNN include all the 

parameters of the weight matrix to be trained, and the parameters of the quantum algorithm are the angles 

required by all quantum gates. 

MODELS EDGNN[27] R-GCN[28] GIN[29] SQGNN 

PARAMETERS 16704 9345 13000 8 
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molecule compounds, PTC_FM, PTC_FR, PTC_MM and PTC_MR [30]. The average accuracy rates of 132 

the sQGNN model on the PTC series datasets are 65.20%, 66.94%, 66.94%, and 65.93%, respectively. 133 

For the MUTAG dataset [31], the sQGNN model is slightly inferior to the GIN model.  134 

Our sQGNN models have obvious advantages on the PTC series dataset. According to research [32], as 135 

the number of processing layers (i.e. unitary operations) of the single-qubit method increases, the model 136 

will perform better, and this effect is most significant when the number of unitary operations is below 137 

three. This may also be caused by the relatively few feature elements of the graph representation vector of 138 

the DHC-E-processed MUTAG data. The MUATG dataset has only 4 features of each representation 139 

vector, while the PTC dataset has 12.  140 

 

Figure. 3. Training loss of sQGNN model in ideal quantum environment. 

TABLE 3. The average accuracy of the models with depolarizing error. 

DEPOLARIZATION 

PROBABILITY 
MUTAG PTC_FM PTC_FR PTC_MM PTC_MR 

0.001 87.3±3.3 65.0±7.2 66.5±9.1 65.3±42 65.8±4.4 

0.01 86.7±4.9 65.1±8.6 66.1±5.6 65.7±4.5 65.8±5.1 

0.1 84.8±6.4 64.0±7.7 65.0±8.4 63.7±4.8 64.5±4.5 
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From the comparison of the results in the ideal quantum environment, the overall accuracy of our sQGNN 141 

model is superior. In addition to accuracy, the advantage of the sQGNN method lies in the compact model 142 

structure. Classical graph neural networks are usually complex in terms of the model structure due to the 143 

complexity of graph data itself. Due to the graph embedding method without hyperparameters in our 144 

model and the use of Single-Qubits QGNN quantum circuits, our model achieves a huge advantage in the 145 

total number of parameters. Taking the MUTAG dataset as an example, our model requires only 8 146 

parameters, while a classical neural network such as GIN has 13,000 parameters as shown in Table 2, 147 

which fully shows the potential advantage of our model in efficiency. 148 

Figure 3 shows the training loss of sQGNN on five datasets in an ideal quantum environment. Relatively 149 

speaking, the PTC series dataset is more difficult to train than the MUTAG dataset because the PTC 150 

dataset is more complex. In the PTC dataset, PTC_MM and PTC_MR are relatively difficult to train. This 151 

can also be confirmed by the accuracy results. The overall accuracy of these two datasets for various 152 

models is relatively low.  153 

To verify the ability of the sQGNN method to resist the effects of noise when running on NISQ devices 154 

with noise, we train and test the models using a noisy simulated environment. As shown in Table 3, we 155 

set the depolarization error as the noise in the environment for the sQGNN model. When a group of 156 

qubits undergoes a depolarization error, a random Pauli (example: X, Y, Z) is applied to each qubit. The 157 

formula for depolarization error is as follows: 158 

𝐸(𝜌) = (1 − 𝜀)𝜌 + 𝜀𝑇𝑟[𝜌]
𝐼

2𝑛
(1) 159 

Where ε is the depolarizing error param, n is the number of qubits for the error channel and I is the Pauli 160 

matrix. 161 

We set 3 levels for the depolarization parameter to test how tolerant sQGNN is to depolarization errors. 162 

The test results are shown in Table 3. Under the influence of depolarization error, the sQGNN model is 163 

slightly affected, almost unaffected at 0.001 and 0.01, and slightly affected at 0.1. In terms of average 164 

accuracy, our sQGNN method shows good error tolerance, thanks to its unique single qubit 165 
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implementation. Due to the functional limitations of quantum devices in the NISQ era, the influence of 166 

noises is unavoidable, and the resulting degradation is a great problem when coming to real quantum 167 

computers. From the results, the sQGNN model can stably maintain good performance under the noise 168 

impact.  169 

Figure 4 also shows the distribution of all graphs in the PTC_FM dataset in Hilbert space that are 170 

displayed on the surface of Bloch spheres. Among them, the red points belong to Class 0, and the blue 171 

points are from Class 1. Overall, Class 0 is concentrated in the upper hemisphere, and Class 1 is 172 

concentrated in the lower hemisphere. It can be observed from the figure that the classification ability of 173 

 

 

Figure. 4. This figure is a demonstration of all graph data of the PTC_FM dataset in Hilbert space. The red dot is class 0 and the blue dot is 

class 1. In the figure a, b, c, d are PTC_FM, PTC_FR, PTC_MM, PTC_MR respectively. 
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the model for Class 0 is stronger than that of Class 1, and Class 1 has some outlier data distributed in the 174 

upper hemisphere, which may be caused by the initial state of the quantum circuit being set to |0⟩. The 175 

structure of graph data may also be a cause. Overall, our model can still maintain a good performance 176 

under the influence of noise. According to our experimental results, the training difficulty of PTC_MM 177 

and PTC_MR is relatively high, which can be confirmed by the accuracy and data distribution.  178 

Real Quantum Device Test Experiment 179 

In addition to the above experiments in the simulated quantum environments, we further designed the 180 

experiment to run our sQGNN models on the real quantum computer offered by IBM. We deploy the 181 

best-performing model on the MUTAG dataset from previous experiments in a simulated quantum 182 

environment to a real quantum computer. Thanks to the online IBM's quantum computer [33] and IBM 183 

Quantum Lab, we were able to deploy our single qubit models easily on a quantum computer provided by 184 

IBM in relatively simple steps. Currently, IBM online service allows 4 qubits each user, restricted due to 185 

the limited resources on their NISQ quantum computer. In addition, the quantum volume of a quantum 186 

computer is limited, which limits the total amount of quantum gates that can be deployed in a quantum 187 

circuit, and our method of combining parameters and encoding greatly reduces the required quantum 188 

gates. 189 

Figure 5 shows the test results of our model on the real quantum computer. Our model achieved an 190 

accuracy rate of 88.89% on the MUTAG dataset on the real IBM quantum computer, with no degradation 191 

in accuracy compared to the simulated quantum environment. As shown in Figure 5a, the classification 192 

performance of the model on quantum computers is the same as in the simulation environment. Figure 5b 193 

shows the measured results on the quantum computer. The number of results obtained in the 194 

measurements of | 0 ⟩ and | 1 ⟩ is similar, that is, Class 0 is better than Class 1. The reasons for this 195 

phenomenon are the same as in the simulation environment, namely the initial state is |0⟩ and the 196 

difference in the graph data structure of the two classes.  197 
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Figure 5c shows the resulting visual image of the Wigner quasi-probabilistic equations [34]. This figure 198 

relates the wave function to a probability distribution in phase space. We can see that the model clearly 199 

distinguishes between the two classes and is less affected by NISQ device noise. Mostly the initial state of 200 

available quantum computers is |0⟩. If the initial state is set to |1⟩, the result may be the opposite. Due to 201 

the limitations of the physical system itself, the initial state of |0⟩ may be the normal state of quantum 202 

computers for a period of time, and therefore the algorithm needs to be optimized for this problem. 203 

Although the phenomenon in the simulated environment still exists, it also illustrates the robustness of 204 

our model. The performance of our sQGNN model on quantum computers does not degrade and 205 

maintains high accuracy and interpretability in the simulated environments. The experience validates the 206 

real-world feasibility of our model with the huge benefits of our single-qubit approach. 207 

Discussion  208 

In the previous section, we presented our experimental results and analyzed them in details. In general, 209 

considering the research purpose and experimental environment, our work results are good and can 210 

provide some valuable reference methods for the development of related fields. We use the single-qubit 211 

method to construct quantum circuits and realize the efficient use of finite qubits to encode graph 212 

representation vectors. In the absence of quantum computing resources in the NISQ era, our method can 213 

save a lot of quantum resources. Theoretically, we only need a single qubit to implement any neural 214 

networks with thousands or even millions of parameters. 215 

In the NISQ era, the noise of quantum devices is an unavoidable problem. The existence of noise makes 216 

some methods that perform well in ideal simulation environments but difficult to put into practical use in 217 

NISQ devices. The experimental results show that our single-qubit models achieved good performance in 218 

our tests and exhibited a good anti-noise ability in the simulation environment and quantum computers, as 219 

shown in Table 1 and 3. Against the depolarizing error (Table 3), our method shows steady performance 220 

over different levels of noises. 221 
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Due to the efficient use of the sQGNN method for a single qubit, we can keep the total number of qubits 222 

to a very low level, and thus avoid the training difficulties on the "barren plateau" issues widely existing 223 

in VQCs. Although some studies [23, 40 & 41] have proposed some methods to alleviate the "barren 224 

plateau", this problem has not been solved fundamentally. In the current state of quantum machine 225 

learning methods applying VQA, the "barren plateau" may accompany quantum machine learning for a 226 

while. However, our method provides a fundamental way to avoid it at all. 227 

In our work, we explored a hyperparameter-free graph embedding method, which greatly reduces the 228 

required computing resources in the graph embedding stage. The total number of parameters of our 229 

quantum neural networks can be several orders of magnitude smaller than classical methods, as shown in 230 

Table 2. This makes our model much more efficient. Moreover, our quantum circuit structure can be 231 

combined with other quantum or classical models to suit different tasks. In this paper, the sQGNN is 232 

combined with the preprocessing steps on graph data using the DHC algorithm. 233 

We deployed our models to IBM's quantum computer to validate, and the test results confirmed there is 234 

no degradation on its performance from the simulated ones. Our single-qubit model uses only one qubit 235 

and its quantum circuits can be easily deployed in quantum computers as they require the least number for 236 

qubits, enabling the practical implementation on real variational quantum circuits with limited resources. 237 

Predictably, our method will enable a wide range of practical use towards various real world data, besides 238 

the biological molecular datasets in this paper. 239 

At this stage, learning and reasoning on quantum simulators are computationally expensive processes 240 

compared to classical neural network models. Although the purpose of quantum machine learning is to 241 

utilize quantum mechanisms to improve the performance of neural networks, the limitation of physical 242 

conditions still exists as the simulation of multiple qubits are compute-intensive. However, the sQGNN 243 

method provides an efficient option for using fewer qubits in the NISQ era, and the sQGNN method can 244 

maximize the use of the finite qubits on VQCs and provides a novel practical way towards the practical 245 

application of quantum neural networks in the NISQ era. With its simple structure and high utilization, 246 
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the single-qubit method can be applied to more challenging tasks and bring out a revolution towards the 247 

real world applications of NISQ devices. 248 

Conclusion  249 

Graph learning has been extensively studied in the field of deep learning, but little work has been done 250 

exploring it in the context of quantum machine learning. Due to limited quantum resources as well as 251 

some shortcomings of VQA, quantum machine learning has difficulties in generalizing to more complex 252 

data types, and our single-qubit method can help to solve this problem. In this work, we proposed a novel 253 

quantum graph classification method, namely sQGNN, which leverages a hyperparameter-free graph 254 

embedding method to minimize the size of quantum graph neural networks. We conduct multiple 255 

experiments on different datasets to explore various experimental results towards in-depth analysis. 256 

Experimental results show that our model achieved excellent capability in the classification of biological 257 

molecular structures, while the number of parameters is several orders of magnitude lower than that of 258 

classical graph neural networks. We also shows our model achieved robust performance on real quantum 259 

computers. Our concise model structure enables the model to be deployed on quantum devices in the 260 

NISQ era and is easy to use, and has a good ability to resist noises. Our work clearly shows that our new 261 

work enlightens a pathway to implement many very complicated neural networks on a single qubit, and 262 

offered a panacea solution to the bottleneck of realizing various machine learning algorithms over 263 

resource-limited VQC devices in the NISQ era.  264 

Methods  265 

In this paper, we develop a novel quantum-classical hybrid machine learning algorithm for small-266 

molecule compound graph structure data. The idea is to replace Euclidean space-based transformation 267 

matrices in classical deep learning with unitary matrices for quantum computing and implement the 268 

quantum neural networks with the least number of parameters over a single qubit. In this way, we 269 

incorporate the theoretical ideas of quantum machine learning into deep learning in the graph domain. 270 

Graph Embedding 271 
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DHC-E is a simple and hyperparameter-free graph embedding method that combines the generalized 272 

DHC theorem and Shannon entropy (E) for network compression and representation. The DHC theorem 273 

[35] reveals the relationship between degree, H-index, and centrality: the H-index of a node is computed 274 

according to the degree centrality of its neighbours, and its H-index can be calculated according to its 275 

Tthe previous H-index of the neighbour is updated. A node’s H-index (short for Hirsch index) [36] is the 276 

maximum value h such that it has at least h neighbours with a degree no less than h [35]. A node’s 277 

coreness further takes its location in the graph into account, measuring its influence based on the k-core 278 

decomposition process [37], where a larger coreness indicates that a node locates more centrally in the 279 

graph. Such an update process continues iteratively, yielding a sequence of H-indexes of nodes. DHC-E 280 

utilizes H-index sequences for graph embedding. DHC-E first calculates the probability distribution of the 281 

node's iterative H-index and then calculates its Shannon entropy. Shannon entropy's formula is: 282 

𝐻 = −∑𝑝𝑖 𝑙𝑜𝑔2 𝑝𝑖

𝑛

𝑖=1

(2) 283 

Since the iterations of the above DHC update process on different graphs are usually dimensionally 284 

unequal, the generated whole graph embeddings are not compatible for some downstream machine 285 

learning tasks (graph classification). To align them, DHC-E further converts all generated graphs into the 286 

maximum dimensions of all embeddings as the baseline, and any other elementa with fewer dimensions 287 

will be supplemented with its last element to the max ones. 288 

Data Encoding  289 

For many ML tasks, data is often presented as column vectors. Traditionally, this 𝐷-dimensional vector of 290 

classical data can be encoded either by initializing the 2𝐷 qubit quantum states to their binary string 291 

equivalents (basic encoding), or by transforming the data dimensions into their corresponding 292 

superposition state probability magnitudes (amplitude encoding). Although these data encoding schemes 293 

have been used in other work [3], their implementation is often very expensive or impractical and 294 
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susceptible to error-prone quantum operations. Therefore, these encoding schemes may not always be an 295 

efficient means of minimizing qubit usage. Single-qubit encoding, developed in [24], is a strategy to 296 

encode a vector of classical data into a characteristic Hilbert space using a series of single operations 297 

acting on each input data dimension, using only one single qubit. The unitary operation of single-qubit 298 

encoding can be expressed by the following formula: 299 

  300 
𝑈 = 𝑒𝑖𝛼𝑅𝑍(𝛽)𝑅𝑌(𝛾)𝑅𝑍(𝛿) (3) 301 

 302 

With a global phase factor 𝛼, Euler angles 𝛽, 𝛾, 𝛿, ∈ ℝ that define the extent of each rotation (R) around 303 

the Z, Y and Z axes respectively. Within this method of encoding, these Euler angles are parameterized 304 

further and defined as: 305 

  306 
𝛽 = 𝜃𝑖 + 𝑥𝑖 ⋅ 𝜙𝑖 (4) 307 

𝛾 = 𝜃𝑖+1 + 𝑥𝑖+1 ⋅ 𝜙𝑖+1 (5) 308 
𝛿 = 𝜃𝑖+2 + 𝑥𝑖+2 ⋅ 𝜙𝑖+2 (6) 309 

 310 

Where 𝜃𝑖 and 𝜙𝑖 are trainable weight parameters assigned to 𝑥𝑖, the value of the input vector 𝑥 at 311 

dimension 𝑖. Therefore, the extent of rotation 𝛽, 𝛾, 𝛿 is with respect to the weighted value of the input. 312 

Using the above parameter definitions, a maximum of three input dimensions can be encoded per unitary 313 

operation applied. Here, the input vector will be continually cycled through, encoding a series of three-314 

dimensional values at a time, until the entirety of the input has been encoded. This is known as a full 315 

‘upload layer’ of the input data. The single-qubit encoding method can be flexibly deployed on quantum 316 

circuits that process graph data of different structures and can increase the amount of data that each qubit 317 

can carry. The graph data processed by DHC-E is a high-dimensional vector, and the number of qubits 318 

required for basic encoding and amplitude encoding is large. Using single-qubit encoding, the number of 319 

qubits in the quantum circuits can be easily reduced to less than 10, thereby avoiding the "barren plateau" 320 

problem [23] in VQA training. 321 



17 
 

Quantum Circuit Design 322 

Quantum circuits are the core part of quantum computing, and most functions are realized by the 323 

combination of qubits and quantum gates in quantum circuits. In our single-qubit approach, we limit the 324 

number of qubits to one. The single-qubit method can theoretically use quantum circuits with multiple 325 

qubits. In this case, CNOT gates are used to create quantum entanglement between qubits, and each qubit 326 

is equivalent to a hidden layer of a neural network. We stick to using one qubit in this model in order to 327 

better demonstrate the efficiency of the single-qubit approach. When the graph data processed by the 328 

DHC-E method is embedded in the quantum circuit according to the above method, we treat each 329 

combination of RZ, RY and RZ gates as a unitary operation. Taking this unitary operation as the basic 330 

unit, how many unitary operations are set on a unique qubit is determined according to the size of the 331 

input data. In our method, each unitary operation is able to encode 3 inputs with 6 parameters. Taking 332 

data of size 8 as an example, in order for the data to be encoded into a quantum circuit, 3 unitary 333 

operations will be set on a single qubit. In this case, after the encoding of the graph data is complete, there 334 

is still a gap. At this time, this vacancy will be replaced by 0 to ensure that this vacancy will not affect the 335 

quantum state in the final measurement. In this way, the single-bit method can be scaled according to the 336 

size of the input data and can be widely used. 337 

Measurement 338 

In the measurement part, we will observe the quantum circuit to obtain the final state of the circuit. Unlike 339 

the general direct measurement of the state of the qubit, for application to classification tasks, we adopt a 340 

fidelity-based measurement method. The overall goal of this measurement method is to minimize the 341 

fidelity between a set of data encodings and their respective target states. For binary classification tasks, 342 

given a set size D of images with corresponding class values in {0,1}, assign each image a corresponding 343 

target state |0⟩ or |1⟩. Any number of classes can be merged using this method, provided that the target 344 

states are at the greatest distance from each other. Fidelity 𝐹 is a measure of the similarity or proximity 345 

between two quantum states, where 0 ≤ 𝐹 ≤ 1. The higher the fidelity of two quantum states, the more 346 
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similar they are in direction. The highest class fidelity value given is then considered the classification 347 

result. For example, for a graph with a label of 0, its corresponding target state is |0⟩, when we measure, 348 

we get the result {𝛼|0⟩, 𝛽|1⟩} where 𝛼 + 𝛽 = 1 and α is the fidelity of class 0. The formula of the fidelity 349 

is shown as follow: 350 

𝐹(𝑥⃗, 𝜃⃗, 𝜙⃗⃗) = |〈𝜓⃗⃗𝑙|𝜓𝑜𝑢𝑡𝑝𝑢𝑡(𝑥⃗𝑖 , 𝜃⃗, 𝜙⃗⃗)〉|
2

(7) 351 

 352 

Loss calculation and model training 353 

The role of the loss function is to describe the gap between the predicted value of the model and the true 354 

value. The loss function can find a criterion to help the training mechanism optimize the parameters at 355 

any time in order to find the parameters at the highest accuracy of the network. From the measurement 356 

section, we use fidelity to measure the similarity between results and labels. Therefore, the loss function 357 

of our model is also designed based on fidelity. The formula of the loss function is as follows: 358 

ℒ(𝑥⃗, 𝜃⃗, 𝜙⃗⃗) =∑(1 − |〈𝜓⃗⃗𝑙|𝜓𝑜𝑢𝑡𝑝𝑢𝑡(𝑥⃗𝑖, 𝜃⃗, 𝜙⃗⃗)〉|
2
)

𝑀

𝑖=1

(8) 359 

Where 𝜓⃗⃗𝑙 is the correct label state of the data point. 360 

Having obtained the loss, we can use the optimizer to maximize the sum of the fidelity of all data points 361 

and find the best weight for classification, the parameters 𝜃 and 𝜙 in the unitary operation above. With 362 

the optimization of parameters, the operation of the quantum revolving gate on qubits is also optimized, 363 

so that the entire model can be trained. 364 

Quantum Barren Plateau 365 

A typical gradient descent algorithm of quantum circuits is shown: 366 

𝜃(𝑡 + 1) − 𝜃(𝑡) ≡ 𝛿𝜃𝜇 = −𝜂
𝜕ℒ

𝜕𝜃
(9) 367 

Where ℒ is the loss function and 𝜃𝜇 is the variational angle of quantum circuits. 368 
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For large variational quantum circuits, the gradient of the objective function has an average value 369 

of zero, and the probability that any given instance of such a quantum circuit deviates from this 370 

average value by a small constant decreases exponentially with the number of qubits [23]. When 371 

the measure of the space is concentrated in this way, the value of any reasonably smooth 372 

function tends to its mean with exponential probability, which means that the gradient is zero 373 

over a wide range of quantum space, like the situation in Figure 6. This is the plateau of quantum 374 

barrenness (Barren plateaus in quantum neural network training landscapes).  375 

In VQA, the expected value of the quantum circuit needs to be obtained. Consider an objective 376 

function E(θ) expressed as the expectation value over some Hermitian operator H: 377 

𝐸(𝜃⃗) = ⟨0|𝑈(𝜃⃗)
†
𝐻𝑈(𝜃⃗)|0⟩ (10) 378 

 379 

The gradient of the objective function: 380 

𝜕𝑘𝐸 ≡  
𝜕𝐸(𝜃⃗)

𝜕𝜃𝑘
= 𝑖⟨0|𝑈_

†[𝑉𝑘 , 𝑈+
†𝐻𝑈+]𝑈_|0⟩ (11) 381 

 382 

 

Figure. 6. Schematic diagram of a barren plateau. 
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V is a a Hermitian operator. U and _U  are two circuits, both match the Haar distribution up to 383 

the second moment, and the circuits are independent. The average value of the gradient can then 384 

be expressed as:  385 

⟨𝜕𝑘𝐸⟩ = ∫𝑑𝑈𝑝(𝑈)𝜕𝑘⟨0|𝑈(𝜃⃗)
†
𝐻𝑈(𝜃⃗)|0⟩ (12) 386 

 387 

Where p(U) is the probability distribution function of U. In different cases, its 388 

variance is: 389 

Var[𝜕𝑘𝐸] ≈

{
  
 

  
 −

Tr(𝜌2)

(22𝑛 − 1)
Tr⟨[𝑉, 𝑢†𝐻𝑢]2⟩

𝑈+

−
Tr(𝐻2)

(22𝑛 − 1)
Tr⟨[𝑉, 𝑢†𝜌𝑢]2⟩

𝑈−

1

2(3𝑛−1)
Tr(𝐻2)Tr(𝜌2)Tr(𝑉2)

(13) 390 

 391 

Among them, the number of qubits is n. This means that when the number of qubits is large, in 392 

most cases, the gradient of the cost function approaches 0, that is, any training method based on 393 

VQA will not be able to make the cost function converge.  394 

Experimental Setup 395 

We choose MUTAG dataset and PTC series dataset as experimental data. The MUTAG dataset contains 396 

188 nitro compounds. The labels are used to determine whether the compound is aromatic or 397 

heteroaromatic. The graph data belongs to the isomer graph. The full name of PTC is Predictive 398 

Toxicology Challenge, which is used to develop advanced SAR technology predictive toxicology models. 399 

This dataset contains carcinogenicity-labelled compounds in rodents. According to the experimental 400 

rodent species, there are a total of 4 datasets: PTC_FM (female mice), PTC_FR (female rats), PTC_MM 401 

(male mice), and PTC_MR (male rats). The specific parameters of the dataset are shown in the table 402 

below. 403 
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In this experiment, the experimental flow of our method is as follows: the graph data is embedded using 404 

the DHC-E method, and then the graph data is encoded into a single-qubit circuit. According to the size of 405 

the embedded graph data, a corresponding number of unitary operations will be set on the qubits. In the 406 

measurement part, the expected values of the target states |0⟩ and |1⟩ are measured to calculate the fidelity 407 

of the corresponding data. The training of the neural network is achieved by evaluating the effect of the 408 

above loss function and updating the parameters at the quantum revolving gate. The model with the best 409 

parameters is obtained after many iterations and evaluated with test data. 410 

We use PennyLane [38] and PyTorch [39] to perform experiments. PennyLane is an open-source python-411 

based framework that enables automatic differentiation of hybrid quantum-classical computations. It is 412 

compatible with mainstream machine learning frameworks like PyTorch and has a huge plugin 413 

ecosystem. The quantum computer we use is the ibm_manila node provided by IBM [33]. The number of 414 

qubits available to this quantum computer is 5, the Quantum volume is 32, it can perform 2800 Circuit 415 

layer operations per second, and the processor model is Falcon r5.11L. 416 
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Supplementary Information  506 

The basic concept and architecture of the Single-Qubit method were first proposed in "Data re-uploading 507 

for a universal quantum classifier". They propose a hybrid classical-quantum algorithm based on the 508 

angle of reuploading classical data to a single qubit multiple times along a circuit. Along with the data 509 

points, other parameters are introduced into the circuit and tuned by classically minimizing the cost 510 

function. The quantum classifier structure in this paper is shown in the formula:  511 

   (1)  512 

which acts as:  513 

    (2)  514 

where ψ is the final state, U is the unitary operation, ф is the parameter, and x is the input classical data.  515 

The final classification of the pattern will come from the measurement of |ψ⟩. We can introduce the 516 

concept of processing layers as compositions to combine unitary operations:  517 

    (3)  518 

so the formula of the whole quantum classifier can be:  519 

    (4)  520 

The depth of the quantum circuit is 2N. The higher the number of layers, the stronger the representation 521 

capability of the quantum circuit and the more powerful the classifier will be, analogous to the hidden 522 

layers of a classical neural network.  523 

In this paper, we take the approach of combining parameters and input data into the same unitary 524 

operation with the following formula:  525 

    (5)  526 

where θ and ω are parameters. This method is more efficient for quantum gates, especially on real 527 

quantum computers with limited quantum volume.  528 
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Depth settings for single-qubit methods  529 

The single-qubit circuit we apply sets the dimension of each unitary operation to three, that is, each 530 

unitary unit consists of three quantum revolving gates that encode three data. As the depth of the quantum 531 

circuit increases, that is, the processing layers increase, the dimension of the input data also increases 532 

accordingly. According to the experimental results of "On Depth, Robustness and Performance Using the 533 

Data Re-Uploading Single-Qubit Classifier", the deeper the quantum circuit depth, usually improves the 534 

average classification performance, and the largest improvement usually occurs in layers 1, 2 and 3. 535 

between depth increments. A clear advantage of increasing depth is the ability to produce more complex 536 

data maps by visualizing the difference between depth increments. Likewise, higher depths consistently 537 

exhibit higher stability as depth increases. Any advantage in robustness during model training appears to 538 

level off as depth increases.  539 

 540 


