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Abstract: In this work, we present updated models of the spectral energy distributions

(SEDs) for two high-frequency-peaked BL Lac objects (HBLs), that is, 1ES 0414+009 and

1ES 1959+650. The hard gamma-ray spectra observed during their flaring states suggest

the presence of an additional emission component beyond the standard synchrotron self-

Compton (SSC) scenario. We explore the possibility that this hard gamma-ray emission

arises from inverse Compton (IC) scattering by Bethe–Heitler pairs produced along the line

of sight, pointing to a more complex high-energy emission mechanism in these sources.

Keywords: high-synchrotron peaked BL Lacs; spectral energy distribution; Bethe–Heitler

pair production

1. Introduction

Active galactic nuclei (AGN) constitute a prominent population of energetic extragalac-

tic sources, with blazars representing an extreme subclass of radio-loud AGN. Blazars, a

subclass of jetted AGN that includes flat-spectrum radio quasars (FSRQs) and BL Lac objects

(BLOs), exhibit non-thermal continuum emission originating from relativistic jets aligned

close to our line of sight [1]. Moreover, they are characterized by distinctive characteristics

such as rapid variability, high luminosity, and strong polarization [2–6]. FSRQs are distin-

guished by their strong, broad emission lines, whereas BLOs exhibit weak or nearly absent

emission lines [7]. Their multiwavelength spectral energy distributions (SEDs) typically

feature a characteristic double-hump structure [3,4,8–11]. The low-energy hump, spanning

from the radio to the X-ray bands, is well explained by synchrotron radiation. However,

the origin of the high-energy hump, which falls within the MeV-TeV energy range, remains

an open question. Two theoretical models describe the high-energy photon emission in

blazars: the leptonic model and the hadronic model. In the leptonic model scenarios, the

high-energy component may result from inverse Compton (IC) scattering of relativistic
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electrons, either on synchrotron photons (Synchrotron Self-Compton, SSC [12,13]) or on

external photon fields (External Compton, EC [4,14,15]), such as the broad-line region

(BLR), accretion disk, or the external torus. In contrast, the hadronic model suggests that

high-energy gamma-rays are generated either through proton synchrotron radiation in

sufficiently strong magnetic fields [16–18] or via meson and lepton production in cascades

triggered by proton-proton or proton-photon interactions [19–22].

The position of the first peak in SEDs, νS
p (synchrotron peak frequency), classifies the

sources as low-frequency peaked BL Lacs (LBLs; e.g., νS
p < 1014 Hz), intermediate-frequency

peaked BL Lacs (IBLs; e.g., 1014 Hz < νS
p < 1015 Hz), and high-frequency peaked BL Lacs

(HBLs; e.g., νS
p > 1015 Hz) [8]. Several studies [12,23,24] have shown that the SEDs of BL

Lac objects, particularly HBLs, are well described by a pure SSC model. The formation

of relativistic jets in AGN remains an open question, with various models proposed to

explain their origin. Two of the most well-established theories are the Blandford-Znajek

mechanism [25], in which the jet derives energy from the black hole’s rotation, and the

Blandford-Payne mechanism [26], where the jet primarily extracts rotational energy from

the accretion disk. In both scenarios, magnetic fields play a crucial role in channeling energy

from the black hole or disk into the jet [27]. Initially, the jet’s energy is primarily carried by

Poynting flux, which progressively converts into the kinetic energy of the plasma as the

flow accelerates [28]. Theoretical studies on energy dissipation suggest that, in this scenario,

the emitting electrons and the electromagnetic field may share an equal distribution of

energy [29]. Understanding the strength of the magnetic field within the jet is essential for

unraveling its formation and energy distribution. By analyzing the frequency-dependent

position of the optically thick jet core [30], Zamaninasab et al. (2014) [31] found that the jet’s

magnetic flux on parsec scales correlates with the power of the corresponding accretion

current, aligning with predictions from magnetohydrodynamics. Another reliable approach

for estimating the magnetic field in the innermost emission region of the jet is through

modeling the SEDs of blazars [3,32–34].

Comparing multiwavelength emission from blazars with numerical models that simu-

late radiative emission and transfer under specific assumptions about particle content and

emission region characteristics is a key method for investigating the source’s microphysics

and physical parameters. Data from the very high-energy (VHE) segment of the SED

is essential for constraining model parameters of high-frequency peaked BL Lac objects,

which emit a significant portion of their radiation in this energy range. Additionally, VHE

observations are valuable for softer sources, as they probe the extreme limits of particle

acceleration and are particularly sensitive to photon-photon absorption within internal

or external radiation fields [35]. An essential element for understanding the high-energy

gamma-ray emission is the Bethe-Heitler pair production (also called the proton-photon

(pγ) pair production process), which occurs when relativistic protons interact with soft

photons (ambient synchrotron or external photons), leading to the production of electron-

positron pairs [36,37]. The generated electron-positron pairs then undergo synchrotron and

IC processes, contributing to the broadband gamma-ray emission observed from blazars.

It is worth mentioning that this process is typically subdominant compared to proton

synchrotron or pion decay (which predict correlated neutrino and gamma-ray emissions)

mechanisms in hadronic models but can still play a role in shaping the observed SED

of blazars.

In this work, we investigate the SED of two blazars detected at TeV energies: 1ES

0414+009 and 1ES 1959+650. These high-energy sources provide valuable insights into

particle acceleration mechanisms and emission processes. By modeling their multiwave-

length emission, we aim to constrain the physical properties of their jets and explore the

contribution of leptonic and hadronic processes to their observed radiation. In Section 2,
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we introduce our sample. In Sections 3 and 4, we present the fitting tools and the fitting

process. Section 5 describes the results and provides a discussion. Finally, we present

the conclusion of this work in Section 5. Throughout the paper, we assume the Hubble

constant H0 = 67.77 km s−1 Mpc−1 , the matter energy density ΩM = 0.27, the radiation

energy density Ωr = 0, and the dimensionless cosmological constant ΩΛ = 0.73.

2. TeV Blazars: 1ES 0414+009 and 1ES 1959+650

In this section, we are going to present a brief description of the two TeV blazars

studied in this work and the set of data used in our analysis.

2.1. 1ES 0414+009

The BL Lac object 1ES 0414+009 was first detected by the HEAO 1 satellite [38] in

the 0.9–13.3 keV energy range and later identified in X-ray images from the Einstein

Observatory [39]. Situated at a redshift of z = 0.287 [40], it is powered by a supermassive

black hole (SMBH) with a mass of approximately 2 × 109 M⊙ [41]. According to the

scheme proposed by [42], 1ES 0414+009 belongs to the class of HBLs, which exhibit a

synchrotron-emission peak at UV/soft X-ray frequencies. In such sources, X-ray emission

is primarily dominated by synchrotron radiation. In the VHE gamma-ray domain, data

from the HEGRA experiment were used to establish an upper limit on the integral flux

of 1ES 0414+009, corresponding to 13.5 × 10−12 cm−2 s−1 above the threshold energy of

910 GeV [43]. Costamante & Ghisellini [44] identified 1ES 0414+009 as a strong candidate

for VHE emission based on its high X-ray and radio flux. Its detection became even more

probable following blazar gamma-ray spectrum analyses, which suggested a low intensity

of the diffuse extragalactic background light (EBL) [45].

The H.E.S.S. array of Cherenkov telescopes has detected significant VHE gamma-ray

emission from 1ES 0414+009. With an average flux of ∼0.6% of the Crab Nebula flux

above E > 200 GeV, this blazar is among the faintest extragalactic sources observed in

the TeV range. Additionally, 1ES 0414+009 was detected by the Fermi-LAT instrument

during its first 20 months of operation (2008–2010), exhibiting very faint emission in the

high-energy (HE) domain as well [46]. The HE and VHE spectra of 1ES 0414+009, corrected

for absorption using an EBL model close to the lower limits, exhibit a best-fit power law

with an index harder than 2, classifying it as a hard-TeV BL Lac object. The overall SED is

averaged over five years, though there is no strict simultaneity between Swift and H.E.S.S.

observations. With this limitation, the SED properties, particularly an IC peak energy above

1–2 TeV, are challenging to explain within the framework of a pure one-zone SSC model,

unless unusual parameter values are assumed [47].

The study of 1ES 0414+009 has implications beyond its characterization, extending to

the broader context of AGN and their role in multi-messenger astronomy [48]. This blazar,

along with others, has been proposed as a potential source of ultra-high-energy cosmic

rays [49]. These investigations collectively enhance our understanding of the extreme

environments surrounding supermassive black holes and their relativistic jets, contributing

to advancements in high-energy astrophysics [50,51].

2.2. 1ES 1959+650

The object 1ES 1959+650 [52], with a redshift of z = 0.047, was classified as a BL Lac

in 1993 using a specialized radio/optical/X-ray technique [53]. Its first detection at TeV

energies was reported by the Utah Seven Telescope Array collaboration during the 1998

observational season [54], revealing an excess with a statistical significance of 3.9σ above

600 GeV after 57 h of observation. In May 2002, 1ES 1959+650 experienced a powerful
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TeV outburst, observed by the VERITAS [55], HEGRA [56] collaborations. Significant flux

variations were recorded, reaching levels up to three times the Crab Nebula flux [57].

As a HBL source, 1ES 1959+650 is generally faint in the Fermi-LAT energy range

(20 MeV–300 GeV) compared to nearby LBLs and exhibits weaker variability in this band

than in the X-ray and VHE ranges [58]. Notably, the 0.3–10 GeV flux did not display

significant long-term flares, with the photon flux derived from two-week binned data rarely

exceeding 4 × 10−8 photons cm−2 s−1 [59–61]. However, the source remained mostly above

this threshold between August 2015 and August 2016, during which two strong, long-term

HE flares were observed [62,63].

During intense X-ray flares in 2016–2017, the source exhibited very hard X-ray spectra,

with the 0.3–300 GeV photon index also remaining hard during the same periods [63].

While reproducing such hard gamma-ray spectra can be challenging for standard leptonic

models, certain hadronic scenarios may offer a more natural explanation under specific con-

ditions [64]. For example, the proton blazar model introduced by Mannheim [20] predicts

X-ray spectra with photon indices in the range 1.5–1.7 and can account for uncorrelated

X-ray–TeV variability, a feature reported for this source [58]. Nonetheless, leptonic models

remain widely favored in the literature (e.g., [12]), and further multiwavelength studies are

needed to distinguish between competing scenarios.

3. Multi-Wavelength SED Fitting of Jetted AGNs

Modeling the SEDs of jetted AGN across the electromagnetic spectrum, from radio to

gamma-rays, is essential for understanding the physical mechanisms governing relativistic

jets. Through multiwavelength SED fitting, we can investigate particle acceleration, energy

dissipation, and radiative processes responsible for the observed emission.

3.1. SED Leptonic Modeling

We employed the JetSeT v1.3.0 software package [65–67] for leptonic SED modeling.

JetSeT is an open-source C/Python framework designed to simulate radiative and particle

acceleration processes in relativistic jets and galactic sources, both beamed and unbeamed.

It supports various leptonic emission mechanisms, including synchrotron radiation, SSC,

and external Compton (EC) scattering of photons from the accretion disk, BLR, dusty torus

(DT), and the cosmic microwave background (CMB). The framework also includes γγ

absorption based on established EBL models [68–70].

To ensure consistency across sources, we adopted a one-zone synchrotron+SSC sce-

nario, where the emission originates from a spherical region of radius R = ctvarδ/(1 +

z) [71], with tvar set to one day [72,73]. The region moves relativistically with a Doppler

factor δ = [Γ(1 − β cos θ)]−1, where Γ is the bulk Lorentz factor and θ the viewing angle.

Electrons are assumed to follow a broken power-law distribution [12,23,28]:

N(γ) = N0







γ−p1 , γmin ≤ γ ≤ γb,

γ
p2−p1

b γ−p2 , γb < γ ≤ γmax,
(1)

where γmin, γb, and γmax are the minimum, break, and maximum electron Lorentz factors,

and N0 is the normalization constant.

JetSeT employs a two-stage fitting procedure. First, a phenomenological character-

ization of the SED is performed using the SEDShape module, which applies power-law

and log-parabolic fits to binned data spanning the radio to TeV range. This step provides

initial constraints on the synchrotron and SSC components, helping to define parameter

boundaries. Next, the ObsConstrain module is used to derive input parameters for the

physical modeling, where we adopt the broken power-law electron distribution defined in
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Equation (1). A Bayesian approach is adopted for the final model fitting, incorporating prior

constraints to ensure that all parameters remain within physically meaningful bounds.

Model parameters are implemented as Astropy quantities, allowing seamless inte-

gration with other Python-based astrophysical tools. JetSeT supports both frequentist

and Bayesian fitting approaches. For frequentist optimization, plugins are available for

iminuit [74] and SciPy’s bounded least squares method [75]. Bayesian inference is carried

out using a Markov chain Monte Carlo (MCMC) sampler through integration with the

emcee package [76]. In all cases, the redshift is fixed, and we assume a cold proton to

relativistic electron ratio of 0.1 [77].

3.2. SED Lepto-Hadronic Modeling

To explore scenarios involving hadronic contributions, we used the AM3 (astrophysical

multi-messenger modeling) framework [78], an open-source software package designed

to simulate time-dependent lepto-hadronic interactions in astrophysical sources. AM3

computes the coupled evolution of photon, electron, positron, proton, neutron, and neutrino

populations, along with intermediate products, within an isotropic magnetic field. It

includes non-linear processes such as electromagnetic cascades and secondary particle

feedback, providing a self-consistent description of particle interactions.

The emission region is modeled as a spherical blob of radius R′ moving with bulk

Lorentz factor Γ along the jet. Primary electrons and protons are injected isotropically into

this region. Electrons follow a broken power-law energy distribution, while protons follow a

single power-law extending up to γ′
p,max. These high-energy protons interact with ambient

photon fields following the framework of Hümmer et al. (2010) [79], producing charged

and neutral pions. The decay of pions gives rise to secondary gamma-rays, neutrinos,

electrons, and positrons, which in turn participate in electromagnetic cascades.

AM3 incorporates several key processes: synchrotron emission and self-absorption,

IC scattering by both electrons and protons, Bethe–Heitler pair production (p + γ → p +

e− + e+), photon-photon pair production and annihilation, and the evolution of secondary

particles. The magnetic field B′ is assumed to be randomly oriented within the blob, and

its turbulence plays a significant role in shaping the resulting SED and multi-messenger

signatures.

This approach allows us to assess the hadronic contribution to the SED and explore

scenarios where neutrino and gamma-ray emission arise from the same physical region,

providing insight into possible associations between high-energy astrophysical neutrinos

and blazar flares.

4. Results and Discussions

Based on the methods presented in Sections 3.1 and 3.2, it was possible to perform the

non-thermal multi-wavelength modeling of the blazars 1ES 0414+009 and 1ES 1959+650.

For this, data from space and ground-based observatories, ranging from radio to VHE

gamma-rays, were extracted from the Space Science Data Center (SSDC)1 and Firmamento2.

First, the multi-wavelength observations were fitted using the MCMC method in JetSeT,

and the best-fitting parameters were then used as input for the lepto-hadronic modeling

with AM3. Tables 1 and 2 summarize the observatories employed in the modeling of the

sources 1ES 0414+009 and 1ES 1959+650, respectively, together with the corresponding

energy/wavelength ranges covered by the data collected at each facility.
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Table 1. Observatory catalogs used in the modeling of the broadband SED of the source 1ES 0414+009,

listed with their respective energy ranges and references.

Observatory/Instrument Catalog(s) Energy/Wavelength Range Catalog Reference

NRAO 91-m Telescope NORTH20CM Radio (1.4 GHz) [80]
VLA NVSS, CRATES, CLASSSCAT Radio (1.4–8.4 GHz) [81–83]
Parkes Telescope PMN Radio (4.85 GHz) [84]
Green Bank Telescope GBE Radio (4.85 GHz) [85]
EXOSAT CMA CMA X-ray (0.05–2.0 keV) [86]
ROSAT RASS, RXS2CAT, WGACAT2 X-ray (0.1–2.4 keV) [87–89]
Einstein IPC IPC X-ray (0.15–4.5 keV) [39,52,90]
Swift-XRT 1SWXRT, 1SXPS X-ray (0.3–10 keV) [91,92]
BeppoSAX BeppoSAX Spectra X-ray/Gamma-ray (0.1–300 keV) [93]
NASA/IPAC Database
(Multi)

NED Multi-wavelength (Radio to Gamma-ray) [94]

Fermi-LAT Fermi1FGL, FERMI2FGL,
FERMI3FGL, 2FHL, FERMI
4FGL-DR3, BAND P5

Gamma-Ray (50 MeV–2 TeV) [95–100]

ARGO-YBJ ARGO2LAC Gamma-ray (0.3–10 TeV) [101]
VERITAS VERITAS VHE Gamma-ray (85 GeV–30 TeV) [102]
H.E.S.S. HESS VHE Gamma-ray (100 GeV–100 TeV) [47]

Table 2. Observatory catalogs used in the modeling of the broadband SED of the source 1ES 1959+650,

listed with their respective energy ranges and references.

Observatory/Instrument Catalog(s) Energy/Wavelength Range
Catalog
Reference

2MASS Survey 2MASS Near-Infrared (1.25–2.17 µm) [103]
WISE WISE Mid-Infrared (3.4–22 µm) [104]
Planck PCCS2143 Microwave (30–857 GHz) [105]
GMRT TGSS150 Radio (150 MHz) [106]
Green Bank Telescope (GB) GB6, GB87 Radio (4.85 GHz) [85,107]

VLA
CRATES, NVSS,
VLASSQL

Radio (1.4–8.4 GHz) [81,82,108]

NRAO 91-m Telescope NORTH20 Radio (1.4 GHz) [80]
Pan-STARRS PanSTARRS Optical (400–1000 nm) [109]
Gaia GAIA Optical (330–1050 nm) [110]
HST, GSC HSTGSC Optical (300–1000 nm) [111]
Compiled from multiple
optical surveys

DEBL Optical (350–950 nm) [112]

Swift-UVOT UVOT UV/Optical (170–650 nm) [113]
GALEX GALEX UV (135–280 nm) [114]
XMM-Newton Optical
Monitor

XMMOM UV/Optical (180–600 nm) [115]

Owens Valley + others OUNBLZ, OUSXB Optical (400–800 nm), X-ray (0.3–10 keV) [116,117]
Einstein IPC IPCSL X-ray (0.16–3.5 keV) [52]
ROSAT RASS X-ray (0.1–2.4 keV) [88]
Swift-XRT 2SXPS, XRTSPEC X-ray (0.3–10 keV) [118,119]
XMM-Newton 4XMM-DR10, XMMSL2 X-ray (0.2–12 keV) [120,121]
Swift-BAT BAT105m Hard X-ray (14–195 keV) [122]
BeppoSAX BeppoSAX X-ray/Gamma-ray (0.1–300 keV) [93]
Oulu Neutron Monitor OULC Cosmic-ray flux (secondary particles, ∼GeV range) [123]

Fermi-LAT
3FGL, 4FGL-DR2, 3FHL,
2FHL, 2BIGB, FMonLC

Gamma-ray (50 MeV–2 TeV) [95–99]

MAGIC MAGIC VHE Gamma-ray (50 GeV–50 TeV) [124]
VERITAS VERITAS VHE Gamma-ray (85 GeV–30 TeV) [59]
Whipple Telescope WHIPPLE VHE Gamma-ray (300 GeV–10 TeV) [125]
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4.1. SSC SED Fitting

In the fitting method, each free parameter has a specific physical boundary. We can

fix specific parameters and set the fitting range of the remaining parameters to speed up

the convergence of the fitting process. Given that all our samples are HBLs and we adopt

the one-zone lepton model Syn+SSC, we fix the redshift and the distance of the radiation

region from the central black hole, RH - 1017 cm (default value for JetSeT). To prevent

biased results, ensure that output parameters remain within physically meaningful ranges

(based on the literature [102,126]), and improve convergence, we define fitting ranges for

the radius of the emission region R, magnetic field strength B, γmin, γb, γmax, and the

spectral indexes (p and p1). The best-fitting values are described in Table 3.

Table 3. SSC model parameters for 1ES 0414+009 and 1ES 1959+650.

Symbol Description 1ES 0414+009 1ES 1959+650

γmin Minimum electron Lorentz factor 6.35 × 101 9.60 × 102

γbreak Break electron Lorentz factor 8.11 × 104 1.96 × 105

γmax Maximum electron Lorentz factor 1.70 × 106 2.40 × 106

B [G] Magnetic field strength 3.62 × 10−1 1.05 × 10−1

R [cm] Radius of the emitting region (blob) 1.02 × 1016 3.15 × 1015

θobs [deg] Viewing angle 1.61 2.9
N [cm−3] Particle number density 45.11 12.47
p Spectral index below γbreak 2.29 2.41
p1 Spectral index above γbreak 4.45 4.37
Γ Bulk Lorentz factor 15.02 37.25

Figure 1 shows the modeling via the SSC physical process for the 1ES 0414+009 source.

The first peak in the figure represents the synchrotron emission, which occurs at lower

frequencies, peaking at ∼ 1017 Hz, thus indicating that 1ES 0414+009 is a HSP BL Lac.

The second peak, at ∼ 1025 Hz, represents the emission due to IC scattering. According

to the residual plot at the bottom of the figure, the model fits the data well by plotting

the difference between actual and predicted values, with only one discrepancy in the TeV

region of the energy spectrum.

In JetSeT, jet power can be readily estimated by fitting the spectral energy distributions.

The jet kinetic power is carried by electrons, magnetic fields, and cold protons [28,71,127],

and is expressed as Li = πR2
Γ

2cUi, where Ui represents the energy density of each

component (i = e, p, B). Consequently, the total jet kinetic power is given by Lkin =

Le + LB + Lp. The derived energy densities and luminosities for the source 1ES 0414+009

are summarized in Table 4. The total radiative power is calculated as Lrad ≃ Lsyn + LSSC,

where Lsyn and LSSC are the powers emitted through synchrotron and synchrotron self-

Compton processes, respectively [13].

The comparison between the parameters of the SSC model for 1ES 0414+009 obtained

in this work and those reported by Aliu et al. (2012) [102] reveals important similarities

despite differences in the modeling approaches and data selections. Both studies find a

comparable size for the emitting region, with R ∼ 1016−17 cm, consistent with a compact

emission zone typical of high-frequency peaked BL Lac objects. In addition, the viewing

angle (θobs ∼ 1.61◦) and the general SSC framework adopted for the SED modeling are sim-

ilar, indicating a shared assumption of a relativistic jet closely aligned with the observer’s

line of sight. Both works also conclude that purely leptonic models face challenges in fully

reproducing the broadband SED, particularly in explaining the hard TeV spectra, thus

motivating the consideration of more complex scenarios, such as lepto-hadronic contribu-

tions. Although there are differences in specific parameter values, such as the minimum
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Lorentz factor, magnetic field strength, and bulk Lorentz factor, these arise naturally from

the focus of each study: Aliu et al. (2012) [102] emphasized modeling the TeV emission with

extreme parameters, while our work provides a global fit to a broader, multiwavelength

dataset. Overall, both studies reinforce the notion that 1ES 0414+009 exhibits characteristics

requiring detailed modeling beyond the simplest SSC assumptions.

Figure 1. Broadband SED of 1ES 0414+009 modeled using a one-zone SSC model. The solid red line

shows the best-fit SED, and the filled gray area represents the 1σ statistical uncertainty of the fit.

Radio data points (low-energy range, <10−4 eV) are included for completeness but are not fitted, as

synchrotron self-absorption in the compact emission region renders them unconstraining within this

modeling framework.

Similarly to the previous source, Figure 2 shows the modeling of 1ES 1959+650 using

the SSC physical process, considering also the presence of the host galaxy component

(emission peak at approximately 1015 Hz). As indicated by the figure, the synchrotron

emission peaks at ∼ 1018 Hz, classifying the source as an extreme high-frequency peaked

BL Lac (EHBL) with ν
peak
sync > 1016 Hz. The second peak, located at higher energies, is

attributed to IC scattering. The best-fitting parameters are summarized in Table 3. For this

source, as found for most HBLs, the kinetic powers carried by electrons and protons (Le

and Lp) dominate over the magnetic contribution LB [28].

A comparison between Tables 3 and 4 from this work and Table 5 from Tavecchio

et al. (2010) [12] highlights similarities in the physical parameters derived for 1ES 1959+650.

Both studies model the broadband emission using a one-zone leptonic scenario dominated

by synchrotron and SSC processes, adopting similar assumptions for the jet composition

and emission region structure. The magnetic field strength (B ∼ 0.1 G) and the size of the

emission region (R ∼ 3 × 1015 cm) are consistent across the studies, suggesting comparable

estimates for the energy balance within the jet. The inferred jet kinetic powers are also

similar, with both analyses concluding that the power carried by particles (electrons and

cold protons) largely exceeds the magnetic contribution, a common characteristic of high-

frequency-peaked BL Lac objects. These similarities reinforce the model of the one-zone

SSC interpretation for the quiescent state of 1ES 1959+650, as presented in both studies.
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Table 4. Derived physical quantities for 1ES 0414+009 and 1ES 1959+650.

Symbol Description 1ES 0414+009 1ES 1959+650

Ue [erg cm−3] Electron energy density 9.19 × 10−3 3.04 × 10−2

UB [erg cm−3] Magnetic energy density 5.22 × 10−3 4.37 × 10−4

Usync [erg cm−3] Synchrotron photon energy density 1.22 × 10−3 3.54 × 10−4

Lsyn [erg s−1] Synchrotron radiative power 3.33 × 1042 3.98 × 1041

LSSC [erg s−1] SSC radiative power 5.83 × 1041 1.81 × 1041

Lrad [erg s−1] Total radiated power 3.91 × 1042 5.79 × 1041

Lkin [erg s−1] Jet kinetic power 2.09 × 1044 5.52 × 1043

Figure 2. Broadband SED of 1ES 1959+650 modeled using a one-zone SSC model. The solid red line

shows the best-fit SED, and the filled gray area represents the 1σ statistical uncertainty of the fit.

Radio data points (low-energy range, <10−3 eV) are included for completeness but are not fitted, as

synchrotron self-absorption in the compact emission region renders them unconstraining within this

modeling framework.

4.2. Lepto-Hadronic SED Modeling

The lepto-hadronic SED modelling was performed using the open-source AM3 soft-

ware. The non-thermal lepton distribution in the source came from the JetSeT fitting

process (section above), where the electron luminosity in the jet is Le ∼ 2.50 × 1043 erg/s

for 1ES 0414+009 and Le ∼ 3.93 × 1043 erg/s for 1ES 1959+650. For the hadronic interaction

process, the proton luminosity Lp was estimated to be less than or equal to the Eddington

luminosity (Lp ≤ LEdd) [128], where LEdd = 1.3 × 1038(MBH/M⊙) erg/s. Assuming that

MBH ∼ 2 × 109 M⊙ for 1ES 0414+009 [47], LEdd ∼ 2.52 × 1047 erg/s. For 1ES 1959+650

we also assumed Lp ≤ LEdd [128], where MBH ∼ 3.16 × 108 M⊙ [129] and the resulting

Eddington luminosity is LEdd ∼ 3.98× 1046 erg/s. Although jet loading at super-Eddington

rates may occur during brief episodes of flaring activity, it is unrealistic to expect such

conditions to persist during extended periods of steady, quiescent emission [128]. For both

sources, the injection of protons follows a simple power-law distribution with γmin = 100,

γmax = 106 and αp = 1 (spectral index).

Figure 3 and 4 display the multiwavelength SED for the blazars 1ES 0414+009 and

1ES 1959+650 along with observational data from several catalogs, including BeppoSAX,

VERITAS, Fermi-LAT and others, covering frequencies from radio to gamma-rays. The
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dark blue and red lines correspond to synchrotron emission and IC scattering of primary

electrons (best fitting parameters from JetSeT). The black line represents synchrotron

emission and IC scattering of protons. The light blue line represents Bethe-Heitler pair

production (pγ → pe+e−) from 10−3 eV to 1015 eV (in the case of 1ES 0414+009) and 1016

eV (in the case of 1ES 1959+650). The green line refers to the synchrotron emission and

IC scattering of electron-positron pair production (γγ → e+e−), which is observed in the

energy range from 10−3 eV to 1015 eV (in the case of 1ES 0414+009) and 1017 eV (in the

case of 1ES 1959+650). The yellow line corresponds to the multi-wavelength emission

from proton-photon interaction generating charged pions (pγ → π± → µ± → e±) in the

range from 10−1 eV to 1015 eV (in the case of 1ES 0414+009) and 1017 eV (in the case of 1ES

1959+650). The purple dotted curve illustrates the gamma-ray emission resulting from the

decay of neutral pions produced in proton–photon interactions (pγ → π0 → γγ) observed

in the range from 1011 eV to 1016 eV (in the case of 1ES 0414+009) and 1010 eV to 1017 eV

(in the case of 1ES 1959+650). The gamma-ray emission from the decay of neutral pions

produced in proton–proton interactions (pp → π0 → γγ) is illustrated by the dark blue

dashed line, which is observed in the range 1011 eV to 1015 eV (in the case of 1ES 0414+009)

and 109 eV to 1017 eV (in the case of 1ES 1959+650).

Figure 3. Lepto-hadronic SED modeling and multi-wavelength data of 1ES 0414+009 (see Table 1 for

detailed observatory data used in the modeling). In comparison to the purely leptonic model, the

lepto-hadronic model is characterized by the dominant contributions to the emissions of high-energy

photons and neutrinos. These processes originate from the following interactions: proton–photon

interactions (pγ, purple dotted curve) are observed from 1011 eV to 1017 eV. Pion production from

proton–proton interactions (pp → π0, dark blue dashed curve) is mainly observed from approximately

1011 to 1015 eV, while proton-driven SSC processes (black curve) are significant from 106 to 1016 eV.
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Figure 4. Lepto-hadronic SED modeling and multi-wavelength data of 1ES 1959+650 (see Table 2 for

detailed observatory data used in the modeling). In comparison to the purely leptonic model, the

lepto-hadronic model is characterized by the dominant contributions to the emissions of high-energy

photons and neutrinos. These processes originate from the following interactions: proton–photon

interactions (pγ, purple dotted curve) are observed from 1011 eV to 1017 eV. Pion production from

proton–proton interactions (pp → π0, dark blue dashed curve) is mainly observed from approximately

1011 to 1015 eV, while proton-driven SSC processes (black curve) are significant from 106 to 1016 eV.

In Figure 3, the model suggests a possible hadronic contribution within the energy

range of 108 to 2 × 1012 eV. In this scenario, Bethe–Heitler pair production, arising from the

interaction of ultra-high-energy protons with ambient photon fields, generates secondary

electron–positron pairs that undergo IC scattering. These IC interactions upscatter low-

energy ambient photons into the gamma-ray regime, producing the high-energy bump seen

in the light blue curve, which matches the gamma-ray flux of 1.78 × 10−11 erg cm−2 s−1

at 1.08 × 1012 eV, as reported in the 2FHL catalog by Fermi-LAT [98]. Additionally, a

lower energy flux of 5.2 × 10−12 erg cm−2 s−1 at approximately 0.2 GeV, detected by

Fermi-LAT (Fermi 1FGL catalog) [95], can be attributed either to synchrotron emission

by secondary electrons from muon decay, originating from pion decay in proton-photon

interactions, or possibly to inverse Compton scattering by electrons produced in Bethe–

Heitler pair production. Both data points are highlighted with dashed-line circles in the

figure. Thus, emissions from both Bethe–Heitler pairs and secondary electrons from muon

decay contribute significantly to the broadband emission of the source, offering a coherent

and self-consistent interpretation of the multiwavelength observations.

In Figure 4, the model indicates a potential hadronic contribution that fills the “gap”

between the two characteristic broadband emission features. In this scenario, Bethe–Heitler

pair production by ultra-high-energy protons accounts for the X-ray fluxes observed in this

intermediate region. These X-ray emissions originate from synchrotron radiation produced

by secondary electron–positron pairs generated through the Bethe–Heitler process. Addi-

tionally, the IC component, represented by the high-energy bump in the same light blue

curve, contributes significantly to explaining the observational data between approximately

1011 eV and 1014 eV. This energy range corresponds to VHE gamma-rays detected during

flaring activity by the Whipple observatory. Notably, on 4 June 2002, the source exhibited a

dramatic gamma-ray flare without a simultaneous increase in the X-ray band, marking the

first clear detection of an “orphan” gamma-ray flare from a blazar [130]. The analysis of
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such sources underscores the necessity of adopting a lepto-hadronic framework to fully

account for their high-energy emission behavior. This approach has important implications,

as it suggests the potential for future neutrino detections and provides strong support for

the existence of nuclear acceleration processes in these environments [131–134].

5. Conclusions

We employed the open-source softwares JetSeT and AM3 to model the SEDs of

two high-frequency peaked BL Lac (HBL) sources: 1ES 0414+009 and 1ES 1959+650. We

determined the best-fit model parameters by matching the predicted multiwavelength

emission to publicly available observational data for both sources. Initial modeling using

a purely leptonic scenario yielded fits that could not adequately reproduce the observed

hard gamma-ray spectra during flaring states, particularly above 1011 eV. We therefore

extended our analysis to a lepto-hadronic model, incorporating proton-proton (pp) and

proton-photon (pγ) interactions within the jet environment. The inclusion of the pγ com-

ponent indicates that hadronic processes may contribute significantly in the high-energy

emission of these two HBLs during flaring episodes. For both sources, Bethe–Heitler pair

production (pγ → p + e+ + e−) by ultra-high-energy protons plays a key role in shaping

the high-energy emission. In 1ES 1959+650, secondary electron–positron pairs generated

through this process produce synchrotron radiation that accounts for the X-ray fluxes

observed in the intermediate energy range, while their IC scattering of ambient photons

contributes to the VHE gamma-ray emission. In 1ES 0414+009, the VHE gamma-ray flux

can likewise be partially attributed to IC scattering by Bethe–Heitler secondaries. Thus,

in both cases, Bethe–Heitler pair production injects relativistic leptons into the emission

region, where they radiate via synchrotron and/or IC processes. These contributions

complement the emission from primary electrons and offer a coherent explanation for the

broadband spectral features observed during flaring episodes. In conclusion, the lepto-

hadronic framework effectively reproduces the multiwavelength observations across a

broad energy spectrum for the two sources, underscoring the importance of incorporating

hadronic processes to achieve a comprehensive understanding of BL Lac emission.
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Abbreviations

The following abbreviations are used in this manuscript:

AGNs Active Galactic Nuclei

FSRQ flat-spectrum radio quasar

AGN Active Galactic Nuclei

FSRQ Flat-Spectrum Radio Quasar

BLO BL Lac Object

SED Spectral Energy Distribution

LBL Low-Frequency Peaked BL Lac

IBL Intermediate-Frequency Peaked BL Lac

HBL High-Frequency Peaked BL Lac

EHBL Extreme High-Frequency Peaked BL Lac

Syn Synchrotron

IC Inverve Compton

EC External Compton

BLR Broad-Line Region

DT Dusty Torus

SMBH Supermassive Black Hole

CMB Cosmic Microwave Background

EBL Extragalactic Background Light

SSC Synchrotron Self-Compton

MCMC Markov Chain Monte Carlo

SSDC Space Science Data Center

HE High-Energy

VHE Very High-Energy

Notes

1 https://www.ssdc.asi.it/, accessed on 1 February 2025.
2 https://firmamento.hosting.nyu.edu/home, accessed on 1 February 2025.
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