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Abstract

In this work we study inflation from both theoretical and observational perspectives. In
the first chapter we investigate the accuracy of the slow-roll approximation given current
observational constraints. We find that the first order slow-roll approximation works better
than expected and that the higher order corrections do not improve the results as compared
to the exact numerical solutions.

In the second and third chapters we explore the current constraints on the cosmolog-
ical parameters using Markov Chain Monte Carlo method. We show, that for the first
year WMAP data, one should perform full marginalization over the foregrounds and exact
calculation of the likelihood function for low multipoles. Neglecting this produces signif-
icant inaccuracy in determination of basic cosmological parameters and prefers unnatu-
ral running of the primordial power spectrum from inflation. We also study the level of
Sunyaev-Zel’dovich effect in WMAP data and how it affects the cosmological parameters.
In the third chapter we perform joint analysis of Ly-alpha forest data with other available
cosmological datasets.

In the last chapter of this thesis we report our progress towards measuring the probability
distribution function of Ly-alpha forest flux from SDSS quasars. Combined together with
Ly-alpha forest flux power spectrum it can improve cosmological parameters that constrain

inflationary models.
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Chapter 1

Introduction

Inflation is currently the leading paradigm explaining the initial conditions for our Universe.
Right after the Big Bang the Universe started exponentially expanding, which caused the
Universe to become approximately flat, homogeneous and isotropic. During this rapid ex-
pansion stage the initial quantum fluctuations transformed into classical fluctuations when
they crossed the horizon. The prediction for the produced fluctuations is that their spec-
trum is nearly scale-invariant with very little deviations. The deviations from the scale-
invariant Harrison-Zel’dovich spectrum depend on the so called inflationary potential, which
governed the accelerated expansion of the universe. Primordial fluctuations after reheating
transformed into photon and matter fluctuations, which later caused the Cosmic Microwave
Background anisotropy and the structure formation.

By measuring the fluctuations (e.g. from CMB, galaxy clustering, Ly-alpha forest etc.)
at the later times of the history of the Universe, going backwards in time we can get all
the way back to the initial inflationary potential. In this thesis we show some of the steps
which are directed towards learning more about the inflationary potential.

After WMAP [2] released their first-year data in 2003 an era of precision cosmology
came. Indeed, the accuracy of the measurements of most of the cosmological parameters
has enormousle increased. We learnt about the contents of our universe: that regular

baryonic matter composes only about 4% of the total mass of the Universe, some 22% is
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Figure 1.1: Different types of experiments let us probe different scales. The figure is taken
from Ref. [1].



taken by invisible dark matter and the rest of 74% is covered by mysterious “dark energy”,
that acts as a sort of an anti-gravity.

Original first-year WMAP analysis included joint analysis of early Ly-« forest power
spectrum analysis, which detected 3o deviation of the running of the primordial power spec-
trum from the inflationary prediction of zero running. Seljak, McDonald and Makarov [3]
showed that more rigorous analysis of the same Ly-a forest data reduced the significance
of the running discovered earlier.

A year later Slosar, Seljak and Makarov [4] demonstrated that a more accurate analysis
of low-multipole WMAP data further diminishes the running. They received this result
after proper foreground marginalization and more accurate likelihood function calculation
than in the original WMAP analysis.

Figure 1.1 shows how different experiments probe different scales. Thus, Cosmic Mi-
crowave Backgrounds measures the fluctuations at large scale of 102-10*h~!Mpc, galaxy
clustering works at the scale of 102h~'Mpc and Ly-alpha forest probes small scale fluctua-
tions at the scale of 10h~'Mpc.

The initial WMAP analysis underestimated the fluctuations at both the smallest (low-
multipole CMB) and the largest scales (from early Ly-alpha forest), therefore getting sig-
nificant negative running of the slope of the primordial power spectrum of fluctuations.
This means that we have to be precise in our calculations, otherwise it can lead us to im-
proper conclusions. In this thesis, we present some of the necessary steps for more precise
measurement of the primordial fluctuations and other cosmological parameters.

In the second chapter, we look at the inflationary models that produce large negative
running. We look at how accurately slow-roll approximation can describe the primordial
spectrum of fluctuations for such models and whether we need more precise exact numerical
solutions of the inflationary equations.

In the third chapter of this thesis we look at how full foreground marginalization and
exact likelihood calculation of low-multipole data from WMAP affects the estimation of the

cosmological parameters. We also investigate how the level of Sunyaev-Zel’dovich effect in



WMAP maps modifies our estimates.

In the fourth chapter, we present results of joint analysis of Ly-alpha forest power
spectrum together with CMB and galaxy clustering data. We find improved constraints
on the mass of neutrinos, the equation of state of the dark energy and the slope and the
running of primordial power spectrum.

In the last chapter, we report our progress towards measuring the probability distribu-
tion function of Ly-alpha forest flux from SDSS data sample. The pdf knowledge should
help improve measurement of the mean flux of Ly-alpha forest, and, therefore, to give better
estimates of the flux power spectrum. This technique should produce more precise deter-
mination of the amplitude of the primordial fluctuations on small scales. Combining with
future CMB experiments we will be able to determine the exact form of the inflationary

potential corresponding to the wide range of scales.



Chapter 2

Accuracy of Slow-Roll Inflation
Given Current Observational

Constraints

This chapter has been published as: A. Makarov, “On the accuracy of slow-roll inflation
given current observational constraints,” Phys. Rev. D 72, 083517 (2005) [5]

Original abstract: We investigate the accuracy of slow-roll inflation in light of current
observational constraints, which do not allow for a large deviation from scale invariance.
We investigate the applicability of the first and second order slow-roll approximations for
inflationary models, including those with large running of the scalar spectral index. We
compare the full numerical solutions with those given by the first and second order slow-roll
formulae. We find that even first order slow-roll is generally accurate; the largest deviations
arise in models with large running where the error in the power spectrum can be at the level
of 1-2%. Most of this error comes from inaccuracy in the calculation of the slope and not
of the running or higher order terms. Second order slow-roll does not improve the accuracy
over first order. We also argue that in the basis ¢g = 1/H, €,41 = dIn|e,|/dN, introduced
by Schwarz et al. (2001), slow-roll does not require all of the parameters to be small. For

example, even a divergent e3 leads to finite solutions which are accurately described by a



slow-roll approximation. Finally, we argue that power spectrum parametrization recently
introduced by Abazaijan, Kadota and Stewart does not work for models where spectral index

changes from red to blue, while the usual Taylor expansion remains a good approximation.

2.1 Introduction

Inflation is a theory which postulates that a rapid expansion of the universe occurred right
after the Big Bang [6, 7, 8, 9]. Most inflationary models can be represented by an effective
single field model with effective potential V. The inflaton with mass m rolls down the po-
tential until the kinetic energy of the inflaton is greater than half of its potential energy. At
this point the inflationary expansion of the universe stops and the next phase of reheating
occurs. During the inflationary expansion, the initial quantum fluctuations exponentially
increase and become classical [10, 11, 12, 13, 14, 15]. These classical fluctuations also seed
the subsequent growth of large scale structure. There is a well defined procedure which
allows us to find the spectrum of the fluctuations given the inflationary potential. Because
exact solutions are numerically intensive several appoximations have been developed. The
most common approximation is the slow-roll approximation. Recently the so-called uni-
form approximation was suggested [16, 17]|. Reference [18] developed improved WKB-type
approximation.

If the kinetic energy of the inflaton is much smaller than its potential energy, we say
that the inflaton is slowly rolling down its potential. In this slow-roll approximation we
can obtain analytical formulae for the produced power spectrum in the form of a Taylor
series expansion in a set of slow-roll parameters. The coefficients in the Taylor expansion
of the logarithm of the power spectrum in In k effectively define the slope ng — 1, running
a;s and higher derivatives. We usually derive the slow-roll formulae through the time delay
formalism or Bessel function approximation. Therefore there are some implied conditions
on the accuracy of the slow-roll approximation depending upon the slow-roll parameters.
References [19, 20] found that there are areas in the slow-roll parameter space where the

accuracy of slow-roll approximation is questionable. This usually requires a large deviation



of ng from 1. However it contradicts the latest observations [2, 21, 22].

Recently there has been a lot of renewed interest in models with large running of the
scalar index [23, 24, 25]. It is not clear whether slow-roll approximation is accurate in this
area of parameter space, as in some expansions one of the slow roll parameters becomes
large and the expansion is no longer well controlled [20]. Another issue is the question of
where to stop the expansion. Although it is often assumed that the running is O ((nS — 1)2),
reference [26] found that there are cases where it can be as large as ngs — 1. In this case one
should also consider the effect of including the running of the running of ng, i.e. the second
derivative of ns over Ink. These are the issues addressed in this paper. We begin with a
short review of the basic physics of inflation and the algorithm of numerical solutions to
the inflationary equations, with more details given in appendix. We continue by comparing
the numerical solutions to those given by slow-roll approximations and finally we present
our conclusions.

In this paper we use a standard convention for reduced Planck mass m = G]_Vl/ 2,

2.2 Inflationary basics

In the “Hamilton-Jacobi” formulation, the evolution of the Hubble parameter H(¢) during

inflation with potential V'(¢) is given by (e.g. see [27])

T 2
[7(6)]? - %H%@ - —3;41 V(6. @)

The number of e-folds NV since some initial time is related to the value of the scalar field

¢ by
dN _ Am H(9)
do B mfﬂH’(qﬁ)

(2.2)

We will consider the situation when the value of the scalar field is growing in time, d¢/dt > 0.
Then by our convention dN/dt is also positive, dN/dt > 0.
In the literature, different sets of slow-roll parameters are used. Reference [28] introduce

potential slow-roll parameters which are constructed on the basis of the derivatives of the



inflationary potential V' (¢). Authors of [29] define Hubble slow-roll parameters through the

derivatives of the Hubble parameter H(¢) with respect to the field ¢ during inflation

m2 / 2

en(e) = T?(i;j;) : (2.3)
m2, !

mte) = 2T (2.4
m2 n N\n—1 gr(n+1)

"en(0) = <4—jj> o (25

In this parameterization when the inequality ey (¢) < 1 fails, the inflation immediately
stops. Sometimes ?£p is also denoted £z or f?{ though it can take negative values. In this
paper we will use £ = %€ .

Reference [30] introduces another basis of “horizon-flow” slow-roll parameters through
the logarithmic derivative of the Hubble distance ¢y = dgy = 1/H(N) with respect to the

number of e-folds N to the end of inflation

dln |e,|
En+l1 = AN .

(2.6)

The connection between any two of these sets can be found in e.g. [30]. Thus the first
three horizon-flow slow-roll parameters are connected to the first three Hubble slow-roll

parameters as [29, 31, 20]

€1 = €H, (2.7)
€ = 2y — 2nH, (2.8)
exes = Aefy — begny + 26y (2.9)

There is an analytical connection between Hubble slow-roll parameters and potential slow-
roll parameters [29].

References [32, 33, 34, 35| use differently defined sets of slow-roll parameters, but they
still can be converted to the ones we have described here (e.g. see [30]).

Thus any inflationary model can be completely described by the evolution of one of the

sets of the parameters.



The condition for the inflation to occur is €; = e < 1 or ey < 1 since ey = ey to first
order.
To find the power spectrum of the perturbations produced by a single field inflation, one

can follow the prescription of Grivell and Liddle [36]. One solves the equation [37, 38, 33|

d?uy, 1d%z
—_— k- ——— = 2.10
T ( zdr?) " (2.10)
for each mode with wavenumber k and initial condition wug(7) — ﬁe‘“ﬁ as T — —00.
Then the spectrum of curvature perturbations is given by
kg Uk 2
Prk) = 5 | =] 2.11
’R( ) 272 | & ( )

The quantity z in equation (2.10) is defined as z = a<;5/ H for scalar modes and z = a for
tensor modes. Then for scalar modes [36]

1d%z N 3 ) 1, 1
;p:2aH 1+6H—5?7H+6H—26HT]H+§7]H+§§H. (2.12)

One can parametrize the power spectrum of the scalar and tensor modes of the fluctu-

ations amplified by the inflation as

P(k) ko a ok [ 5k
—=n—-1)ln—+—=In* — +=In"— +... 2.1
P (n )nk*+2nk‘*+6nkz*+ (2.13)

In
around some conventional pivot point k.. Leach et al. [20] give expressions for the scalar
spectral index ng, the running of the scalar spectral index «, the tensor spectral index n;

and the running of the tensor spectral index oy in terms of the horizon-flow parameters.

Here we reproduce their second order formulae for ng — 1 and aj

ng—1 = —2¢ —e€y — 26%
—(2C + 3)6162 — Ceges, (2.14)
Qg = —26162 — €92€3, (2.15)

where C' = g +1In2 — 2 =~ —0.7296.
Reference [20] also analyzes the accuracy of the approximation (2.13) for parameteriz-
ing the inflationary power spectrum of fluctuations with § = 0 for different values of the

parameters 7, ns and «.
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In this paper we will also compare the second order formulae (2.14, 2.15) to the first

order formulae given by

Ng — 1 = —261 — €9, (2.16)

Qg = —26162—6263. (2.17)

The expression for a; is the same as in the second order formula because the expression
for ay is derived using only first order expression for ng. Thus the main difference between
first and second order formulae comes from the extra terms in the expression for ngs — 1.

Current observational constraints on r, ns and «ay are given by [39, 22, 4]. At 95%
confidence level, the tensor to scalar ratio is R < 0.50, which implies that the first horizon-
flow parameter €; is much smaller than one. Current constraints on the scalar spectral
index give us ng = 0.98 £ 0.02, which in turn means that the second horizon-flow slow-roll
parameter is much smaller than one.

Present data does not require the presence of running in the primordial power spectrum
[40], but running as large as £0.03 is still allowed at 3-0 [22]. Regular inflationary models
usually predict |as| ~ (ns —1)? and so the running is of the order of 1073, as is the case for
the minimally-coupled V (¢) = A¢* model with 60 e-folds remaining.

But it is possible that |ag| > (ns — 1)? and as < 0, which means that the main part
in the running of the spectral index (2.15) is determined not by the first term —2e;es, but
by the second term —eges. It happens when |es| > |e1], and therefore there might be a
situation when |eg| > 1.

To summarize, if ng &~ 1 and ay is a small negative number, at some scale we might have
€1 < 1, e < 1 and |eg]| > 1. Leach et al. [20] define inflation satisfying slow-roll under the
condition |e,| < 1, for all n > 0. In our case €3 > 1, so the question arises as to whether
slow-roll in this case is accurate or whether the approximation breaks down and one must
also include terms with higher powers in €3. Does it mean that the inflation is not slow-roll
and one must use full numerical solutions instead? And does it mean that one must also
include the running of the running? These are the main questions we address in this paper.

To address them we have developed the numerical code described in appendix A.
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Figure 2.1: The current constraints (68% and 95% confidence level contours) in the ng—
as plane from WMAP+SDSSgal (bigger, red) and WMAP+SDSSlya (smaller, green) data
[22, 4, 39, 21]. The constrained region clearly allows the value of the spectral scalar index ng
to be around 1 and the running «; of the scalar spectral index to be significantly non-zero
for either combination of the experiments.
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How natural is it for inflation with a given number from 50 to 70 e-folds remaining to
produce a power spectrum with a changing tilt? In the absence of theoretical guidance on the
inflationary space we cannot address this question simply. Authors of [23] have produced
about 200,000 simulations of the inflationary flow equations for more or less “random”
potentials, and calculated the observable parameters (ngs, as, 7, ng, o) of the resulting
power spectra about 40 to 70 e-folds before the end of the inflation for each potential.
About 80,000 of them fall into the area plotted on Fig. 2.1 and are marked as black dots.
Only the fifteen marked with larger yellow circles give a significant change in the tilt from
red to blue, i.e. ng ~ 1, ay < —0.02.

Choosing the Hubble parameter to be represented by a Taylor expansion in ¢ with
uniformly distributed coefficients, as done in [23], does not necessarily correspond to the
real inflationary priors [41]. We do not address this issue here; instead we want to simply
stress that possibility of constructing a potential with a large running in the scalar power

spectrum 40-70 e-folds before the end of the inflation exists.

2.3 Quadratic potential

As a test of our code, in this section we investigate how well the slow-roll formulae work in
the slow-roll regime for one of the usual potentials that do not predict large running. As
an example we will consider a simple quadratic potential, V = m?2¢?/2, which is a classic
example of chaotic inflation. The second panel from the bottom in Fig. 2.2 effectively shows
the dependence of 2”/z on the number of the e-folds for inflation with such a potential. The
behavior is monotonic and very smooth, which is due to the smoothness of the derivatives

of the potential. Since z”/z scales as 2a>H?, we plot the quantity

1 Z//
Sl 5 (2.18)
instead (compare to equation (2.12)).

The top two panels show the dependence of ef7, ng and £z on the number of e-folds. The

only significantly non-zero term is ez, which gradually grows to 1 at the end of inflation.
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The values of g and £ are typically smaller by roughly 10% and 10* respectively.

Figure 2.3 shows the primordial power spectrum produced by the quadratic potential.
The second panel from the bottom describes the error produced by the slow-roll approx-
imations. The first order approximation gives less than 0.2% error in the observed range
of wavenumbers k. The second order approximation works slightly better; the error is just
above 0.1%. Both of these numbers are likely to be good enough for the upcoming ex-
periments. This is because the accuracy at large scales is limited by the finite number of
modes, while at small scales it is limited by the nonlinear evolution. So, while the overall
amplitude could in principle be determined to an accuracy of 0.1% when CMB and lensing
information is combined, it is unlikely that such a precision will be achieved separately at
two widely separated length scales.

Taking a more careful look at the error plot, one sees that the error curve in the observed
area is basically a straight line, meaning that the main source of error is not the imprecise
value of oz but the error in n,. Let us estimate now how precisely we need to know ng to
get an error of, say 0.2%, in the observed range. The imprecision dng in ns will give us the

uncertainty

(5718% In Finax _ 0.002. (2.19)

min
Taking the observed range of k’s to be from 1072 Mpc™' to 1 Mpc™!, we find that one
needs to find ng with the precision of éng = 6 - 1072

The same allowed uncertainty dag in oy is estimated from

1 1. kmax )

Therefore dag = 3 - 10™* is the error which we can make in determining o in order to get
an error in the power spectrum of 0.2% at the edges of the observed range of k’s.

The two top panels of Fig. 2.3 compare the numerically found dependence of ns and ag
on k to the one found from the slow-roll approximation with the first order o and either
the first or second order for ns;. One should compare the discrepancies between these to the

values of dng and das. The characteristic value of ng is .964 and the discrepancy between
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Figure 2.2: Panels from the bottom to the top: 1. Potential V = m2¢?/2 in the range of
¢’s where the inflation occurs around 50 e-folds before the end of inflation. The scale in
V is not COBE-normalized on this plot. 2. The dependence of 2 /z on the number of the
e-folds during the inflation. Number of e-folds N = 0 corresponds to our arbitrarily chosen
pivot scale of k = 0.05/Mpc. 3. Plots of Hubble slow-roll parameters €x, ng, {i. The value
of ey is non-negligible whereas ny and &y are essentially zeros. 4. Plots of horizon-flow
slow-roll parameters €1, €2, €3 and the product of eses for the same inflationary model. Since
in this case ef > np, £, the value of € is essentially €; =~ ey and €5 = €3 ~ 2¢p. Nothing
unexpected is going on here for this model.
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Figure 2.3: Panels from the bottom to the top: 1. Power spectrum produced by inflation with
potential V' = m2$?/2. 2. Errors made by approximating the true scalar power spectrum
by (2.13) with calculating ns and «; from first order slow-roll formulae (2.16, 2.17), second
order slow-roll formulae (2.14, 2.15) and calculating them through numerical derivatives.
Numerical third order takes into account third logarithmic derivative of the power spectrum
Bs in parameterization (2.13). 3. The evolution of ns—1 is calculated numerically and by the
first and second order slow-roll formulae. 4. The evolution of oy is calculated numerically
and by the slow-roll formulae (first and second order slow-roll are the same for a;). The
error plot clearly shows that the main error comes from the imprecision of ng; — 1, whereas
the approximation for the a; works well enough. One can also see that in the case of this
potential both first and second order slow-roll formulae for ng — 1 overestimate the real
value of ng — 1.
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the exact value and the one found from the slow-roll approximation is comparable to dn.
Running a, takes values around —6.5 - 10~%4. The discrepancy between the exact and the
slow-roll values is very small in comparison to das. One can also notice that in this case
|as| & 20cs. Thus, even if we assigned a; = 0, we would not get a significant error in the
approximation of the primordial power spectrum of the scalar perturbations.

To summarize this section, for standard inflationary potentials, the slow-roll approxi-
mation suffices even at first order when compared to the expected accuracy of existing and
future experiments. The second order approximation, while improving the accuracy, is not
really necessary. The main error of slow-roll when considered in contrast to the numerical
solutions is the inaccuracy in the slope ng; inaccuracies in higher order expansion terms,

such as the running, are less important and can even be ignored.

2.4 Potential with a bump in the second derivative

We want to construct a potential which will give us a strong running and crossing of the
point n; = 1 in the observable power spectrum. We want to have ng > 1 at earlier times
in inflation, while at later times we want to have ny < 1. To get the desired result, one can
take two different potentials producing such features and smoothly connect them.

One can rewrite slow-roll formulae (2.14,2.15) through the potential slow-roll parameters

as

ng—1 = —b6ey + 2ny, (2.21)
as = 16eyny — 24€ — 28y (2.22)

Now let us just choose our potential to be
V($) =1—0.01¢ — 1.20¢> (2.23)

for all ¢ > 0. This choice provides about 50 e-folds of inflation after ¢ = 0. Since the
local properties of the power spectrum are mostly determined by the local “history” of the

slow-roll parameters at the moment of the horizon crossing, we can get a red tilt of the
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scalar power spectrum ng =~ 0.80 in the area where the “history” before point ¢ = 0 is
not very important. To get an approximately symmetric shape of the power spectrum we
choose V(¢) to be

V($) =1 —0.01¢ + 1.20¢> (2.24)

for all ¢ < 0. In this case for wave modes which cross the horizon far before the moment
when the scalar field takes the value of ¢ = 0, the spectral index of the primordial power
spectrum has a blue tilt ns; &~ 1.20. Thus between these two regions the spectral index

changes from 1.20 to 0.80. We can unite formulae (2.23) and (2.24) into
V(p) =1 —0.01¢ — 1.204* sign ¢. (2.25)

This potential has continuous first and second derivatives, but has a bump in its third
1d%z

derivative. This makes P in (2.12) discontinuous around ¢ = 0. According to [42] this
zdr

produces oscillations in the power spectrum, which we can indeed see for the potential (2.25).

2
To avoid the oscillations we smooth out the sign ¢ function, changing it to — arctan(2009).
0

In this case (2.25) changes to
2
V(¢) =1—0.01¢ — 1.20¢?= arctan(2004), (2.26)
7r

which is shown on Fig. 2.4. We have chosen 200 as the coefficient in front of ¢ in the arctan
function so that the produced power spectrum has a nice shape as in Fig. 2.5.

The two top panels of Fig. 2.4 show the behavior of the slow-roll parameters eg, 1y,
&g and €1, €9, €3, €g9€3 correspondingly. While nothing unexpected happens to the behavior
of the conventional Hubble slow-roll parameters e, ng and &g, there appears to be a
singularity for the horizon-flow parameter e5. However, notice that the product es€e3 behaves
smoothly and remains small due to the fact that the parameter €s is changing its sign and
therefore crossing through zero. Thus the parameterization of equation (2.6) introduces a
singularity which is not physically present in the model.

Figure 2.5 shows the power spectrum produced by the model of inflation with the poten-
tial (2.25). The second panel from the bottom shows the errors made by different approx-

imations. We again observe a similar picture for the slow-roll formulae. The main source
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Figure 2.4: Panels from the bottom to the top: 1. Potential (2.26). 2. Effectively this plot
shows the dependence of z”/z on the number of the e-folds during the inflation. 3. Plots
of Hubble slow-roll parameters €r, ng, £. Though the potential has a singular behavior,
all the flow parameters are smooth. 4. Plots of horizon-flow slow-roll parameters €1, €3, €3
and the product of ezeg for the same inflationary model. While everything is fine with €1,
€2 and eqeg, the value of €3 indeed flips over infinity.
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Figure 2.5: Panels from the bottom to the top: 1. Power spectrum produced by (2.26).
2. Errors made by approximating the true scalar power spectrum by (2.13) with calculating
ns and a, from first order slow-roll formulae (2.16, 2.17), second order slow-roll formulae
(2.14, 2.15) and calculating them through numerical differentiation. Numerical third order
takes into account third logarithmic derivative of the power spectrum ;s in parameterization
(2.13). 3. The evolution of ng—1 is calculated numerically and by the first and second order
slow-roll formulae. 4. The evolution of oy is calculated numerically and by the slow-roll
formulae (first and second order slow-roll are the same for o). The error plot clearly shows
that the main error comes from the imprecision of ng — 1, whereas the approximation for the
a works well enough. We see that in the case of this potential, first order slow-roll formula
for ng — 1 underestimates the real value, while the second order formula overestimates it.
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of error for either the first or second order approximations comes not from the value of ay
but from the error in the value of n,. From the second panel from the top, we can estimate

that the discrepancy is of the order of 0.01 for

dng = XAt _ pAPProx (2.27)
which gives an error of
1. k
5ns§ In kméx ~ 4% (2.28)
min

in the produced power spectrum at the edges of the observed range. Both the first and
second order slow-roll approximations for ny work somewhat unsatisfactory. The first order
slow roll underestimates ns and the second order overestimates it by about the same amount.

On the other hand, if our goal is to focus on running alone regardless of the slope
and use just that property to deduce something about the potential, then the slow-roll
does very well, since the differences between the slow-roll and numerical value of running
are very small even at the lowest order in slow-roll. Extra terms in the expansion (2.13)
further improve the accuracy. Adding running of the running improves the accuracy over
the observed range from 1% to 0.2%.

In summary, for potentials that lead to large running, slow-roll does not estimate the
slope ng very accurately at either first or second order, while the accuracy of the running
«; suffices for the existing and future experiments. If we observe over a wide range of scales
then it is useful to add the cubic term. Second order slow-roll does not seem to improve

the accuracy.

2.5 Flow equations simulations

Kinney [43] introduced a formalism based on the so-called flow equations, further discussed
in [41]. The basic idea is that if one fixes the Hubble slow-roll parameters (2.5) at some
point in time for ey, ng and ‘¢y up to £ = M and assumes that all the other Hubble
slow-roll parameters are small enough that one can neglect them in one’s calculations (i.e.

téy = 0 for all £ > M + 1) then, without any other assumptions about inflation being
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slow-roll, one can find the Hubble slow-roll parameters at any other moment of time using

the following hierarchy of linear ordinary differential equations:

de

N = —2¢(n — €), (2.29)
;—]7\7[ = - %, (2.30)
T e (e vy - o (2.31)
AN

for all £ =2... M assuming M+1¢ = 0.

Usually when we set up an inflationary problem, we choose a potential V(¢) and then
reconstruct the form of the Hubble parameter during inflation using the main nonperturbed
Hamilton-Jacobi inflationary equation (2.1), which gives us an attractor solution H(¢) which
in the inflationary class of problems almost does not depend on the initial condition.

By following the method prescribed by [43] one avoids solving the main attractor in-
flationary equation (2.1), as pointed out by [41]. Indeed, the assumption ‘¢ = 0 for all
¢ > M + 1 requires that H®(¢) = 0 for all £ > M + 2. Consequently, H(¢) is a polynomial
of order M + 1:

H(¢) = Ho(1+ A1¢p + Az® + A3d® + -+ + Apap™ ™). (2.32)

In this case the function H(¢) is an attractor solution of equation (2.1) with a potential in

the form

mA T
V() = — 22 <[Hf<¢>]2_%m<¢>>

3272 m?)

4

m 2
= —ﬁ}l& (Ai 4+ (M + 1) Apr19M)
—— (1+ Ao+ -+ Ay0™™)7|. (2.33)
my

Thus the only differential equation one needs to solve in order to match up the number

of e-folds and the value of the scalar field ¢ is

AN 27 1

o mp \/e(g)

(2.34)
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Here again €(¢) is defined as in the equation (2.5):

w055 (5

_my <A1 + 2450+ + (M + 1)AM+1¢M>2' (2.35)

dr \ 1+ A1p+ Agp? + - + AppyrpM+1

We do not have to numerically solve the hierarchy of M differential flow equations.
Instead we have analytical expressions for V(¢) and H(¢).

The late attractor e = ‘¢ = 0 and 1 = const, found by [43], corresponds to the situation
where the inflation proceeds to the value of the scalar field ¢, which is a solution of the

equation € =0

Ay + 2400+ 4+ (M + 1) Apr10M = 0. (2.36)

At this point if Ay # 0, then n = const # 0 due to the definition of 1, which does not
involve € at all. All the other ‘¢ = 0 since any of them is a product of the first derivative of
the Hubble parameter (which is zero) with some higher order derivatives.

Peiris et al. [23] made M = 9-th order flow equation simulations; about 40, 000 are shown
as black dots on Fig. 2.1. Fifty points fall into the range |ns — 1| < 0.05 and as < —0.02;
these are shown in yellow. Among these point we have chosen 13 which fall into the narrow
interval |ns—1| < 0.02, and we have reconstructed the corresponding inflationary potentials
for the inflationary models which give such significant running, together with ns extremely
close to 1.

The bottom panel in Fig. 2.6 shows a potential from such a model with an unusually
high value of the running ;. We notice that there is a small dip in the potential. Some of
the potentials with high o, from the simulations had unrealistically high values of the tensor
to the scalar ratio, but all of them had quite similar shapes. The second from the bottom
panel of Fig. 2.6 shows the characteristic behavior of the function z”/z which influences the
scalar power spectrum as we have seen earlier. The top two panels show the dependence of
the slow-roll parameters on the number of e-folds. As in the other case with large running,
we find a singularity for the horizon-flow slow-roll parameter e3, while the product eseg

behaves smoothly and ey crosses zero.
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Figure 2.6: Panels from the bottom to the top: 1. Potential reconstructed from one of the
flow equations simulations. 2. Effectively this plot shows the dependence of z”/z on the
number of the e-folds during the inflation for this potential. 3. Plots of Hubble slow-roll
parameters €z, g, Egr. All of them are smooth. 4. Plots of horizon-flow slow-roll parameters
€1, €2, €3 and the product of eses for the same inflationary model. While everything is fine
with €1, €5 and eseg, the value of €3 again flips over infinity.
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Figure 2.7: Panels from the bottom to the top: 1. Power spectrum produced by potential
on Fig. 2.6. 2. Errors made by approximating the true scalar power spectrum by (2.13) with
calculating ns and ag from first order slow-roll formulae (2.16, 2.17), second order slow-roll
formulae (2.14, 2.15) and calculating them through numerical differentiation. Numerical
third order takes into account third logarithmic derivative of the power spectrum s in
parameterization (2.13). 3. The evolution of ng — 1 is calculated numerically and by the
first and second order slow-roll formulae. 4. The evolution of ay is calculated numerically
and by the slow-roll formulae (first and second order slow-roll are the same for a;). The
error plot clearly shows that the main error comes from the imprecision of ng — 1, whereas
the approximation for the a; works well enough. One can also see that in the case of this
potential first order slow-roll formula for ny, — 1 underestimates the real value, while the
second order formula overestimates it.
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The bottom panel in Fig. 2.7 shows the power spectrum of scalar and tensor perturba-
tions produced by inflation with the potential under consideration. The second from the
bottom panel shows the error produced by every one of the approximations for the power
spectrum. We again see that both first and second order slow-roll formulae do not give a
satisfactory result for ns. One of them again overestimates ny; the other underestimates it.
The error for either of the approximations is about 2-4%.

The error introduced by the approximate formula for the running c is a bit smaller than
the one for ng, but it is somewhat larger compared to the quadratic potential we considered
in the previous section.

Chen et al. [44] perform a similar analysis of slow-roll approximation. Using the flow-
equations technique, they found discrepancy of larger than 0.01 for ns; between second
and third order slow-roll approximations for some of the models. Based on this fact they
conclude that third order slow-roll is better. For the model we considered in this section
we have found that the third order slow-roll does not improve the results of the second
order approximation. In our calculations both formulas give identical results leading to

approximately the same order of error as the first order approximation.

2.6 Is truncated Taylor expansion good?
Recently Abazajian, Kadota and Stewart [45] have argued that if
las In(k/ky)| 2 |ns — 1], (2.37)

then the traditional truncated Taylor series parameterization is inconsistent, and hence
it can lead to incorrect parameter estimations. One can notice that Taylor expansions
P(z) = Y a;a" of functions 22 or cosz around = = 0 also violates the condition a; 2 asx,
but no one argues that these expansions are not valid. Abazajian et al. propose to use the

parameterization

InP(k) =InPy + (”a;l)z [(;) L 1] (2.38)

instead.
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There is one significant disadvantage of this approach. In particular, using this pa-
rameterization to describe P as a function of k, one is able to describe only a growing or
decreasing function, which can be easily seen from the form of the function. The models we
study in this paper produce scalar power spectra which are not purely growing or decreasing
(e.g. see Fig. 2.7).

In the previous section we have considered the potential which produces power spec-
trum satisfying equation (2.37). On Fig. 2.8 we compare the traditional truncated to second
and third order Taylor expansion and the parameterization (2.38). We find that the pa-
rameterization (2.38) gives a significantly larger error than, e.g. the second order Taylor
expansion.

Thus we found that in this particular case though equation (2.37) holds, truncated
Taylor expansion is a good approximation and the AKS approach does not improve it.
There might be models for which equation (2.38) works better than Taylor expansion, but
it is definitely not an improvement for a general case and should be used with caution, if at

all.

2.7 Conclusions

In this paper we have explored the accuracy of the slow-roll approximation given the ob-
servational constraints on the primordial scalar and tensor power spectra. The current
constraints can be roughly described by the tensor to scalar ratio r < 1, small deviation
from the scale invariance of the scalar power spectrum, |ns—1| < 0.05 and small but possibly
nontrivial running, || < 0.03. These constraints allow for the particular case where ng ~ 1
and |ag| > 0.01, which has previously been argued to not satisfy the slow-roll condition.
We have computed exact numerical solutions for the considered potentials and compared
them to those obtained from the first and second order slow-roll approximations.

We have found that for the potentials explored here, there is no substantial difference
when using first or second order slow-roll formulae for the power spectrum index ng. Both

of them either work well in the case of small running or have a comparable error in the case



75
50
25

S0

S

o -25
-50
75
-100
2.0

15

b

(]

o

=

% 1.0

=,

<

o
0.5
0.0

T
o

“

.
.
‘.

2nd order Taylor
AKS parameterization
3rd order Taylor

”‘“““““I“””'“'“""'"."."."',"'--"'.'-ll-llllililbll.lllllllllII|||IlIlIIIIIIIII|I|||IIIIlII
L4

.
A d
i d
.
L d
.
.
.
.
.
.

*
L d
*

numerical
2nd order Taylor
AKS parameterization ======x

10™

10°  10% 10%
k [Mpc™]

27

Figure 2.8: The bottom panel shows the numerically calculated power spectrum of the
potential we used in section 2.5 and it’s approximations by the second order Taylor ex-
pansion and by Abazajian, Kadota and Stewart (AKS) parameterization (2.38). The top
panel shows the error produced by each of the parameterizations. We have also added the
error produced by the third order Taylor expansion here. AKS parameterization acceptably
describes the true power spectrum in a very narrow range of k’s around the pivot point
k = 0.05 Mpc~!. It does not improve the truncated Taylor expansion over the wider range

of k’s.



28

of non-negligible running. Adding extra (cubic in Ink) terms in the approximation for the
scalar power spectrum extends the accuracy to a larger range of scales, but this accuracy
is most likely not necessary for existing and near future experiments. If the values of ng
and o, are known with the precision dns = 6 - 107* and das = 3 - 1074, then the scalar
power spectrum will have an error of about 0.2% at the edge of the observable range of
wavenumbers k’s.

The horizon-flow basis €,+1 = dIn|e,|/dN introduces an artificial singularity for infla-
tionary models with negative running and the value of the spectral index crossing 1. Such
a divergence in one of the horizon-flow parameters does not indicate that the slow-roll ap-
proximation has been badly broken. We find that the slow-roll is still accurate at the 1-2%
level and most of the error comes from inaccuracies in the evaluation of the slope itself, and
not the running. Thus the first order slow-roll approximation is sufficiently accurate for the
current observations. Only if the running turns out to be large, while the slope remains
close to scale-invariant, are exact numerical calculations required to achieve sub-percent
accuracy. In the appendix we present a short guideline on performing such calculations.

One can request the code directly from the author.



Chapter 3

Markov Chain Monte Carlo in
Application to Estimation of

Cosmological Parameters

This and the next chapters are based on the work I have done in the following publications:

e U. Seljak, P. McDonald and A. Makarov, “Cosmological constraints from the CMB
and Ly-alpha forest revisited,” Mon. Not. Roy. Astron. Soc. 342, L79 (2003) [3]

A. Slosar, U. Seljak and A. Makarov, “Exact likelihood evaluations and foreground

marginalization in low resolution WMAP data,” Phys. Rev. D 69, 123003 (2004) [4]

e K. M. Huffenberger, U. Seljak and A. Makarov, “Sunyaev-Zeldovich effect in WMAP
and its effect on cosmological parameters,” Phys. Rev. D 70, 063002 (2004) [46]

U. Seljak, A. Makarov et al., “SDSS galaxy bias from halo mass-bias relation and its

cosmological Phys. Rev. D 71, 043511 (2005) [47]

U. Seljak, A. Makarov et al. [SDSS Collaboration], “Cosmological Parameter Analysis

Including Sdss Ly-Alpha Forest And Galaxy Bias: Constraints On The Primordial
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Spectrum Of Fluctuations, Neutrino Mass, And Dark Energy,” Phys. Rev. D 71,
103515 (2005) [22]

e U. Seljak, A. Makarov, P. McDonald and H. Trac, “Can Sterile Neutrinos Be The
Dark Matter?,” arXiv:astro-ph/0602430 [48]

e N. Padmanabhan et al., “The Clustering of Luminous Red Galaxies in the Sloan

Digital Sky Survey Imaging Data,” [49]

3.1 Introduction

Very often in cosmological applications we need to find best fit cosmological parameters to
a combination of different datasets. Usually we have to deal with at least 6 parameters,
in one of our applications we were working in about 50 dimensions. For apparent reasons,
regular grid method for exploring the likelihood surfaces does not work. Indeed, if we had
to have 10 points in each of N dimensions, it would take us 10V likelihood evaluations.
Taking into account that the modern datasets require heavy numerical calculations to find
the likelihood, the problem becomes almost impossible to solve. Markov Chain Monte
Carlo approach drastically decreses the required number of calculations, for most of our
applications we did not more than 100, 000 likelihood function evaluations.

Markov Chain Monte Carlo approached is based on rejection Metropolis-Hastings algo-
rithm. By comparing likelihood of the current chain position to the likelihood of a randomly
chosen “candidate”, we either accept or reject it depending on the likelihood ratio of these
two points. Finally we end up with a chain of points which are distributed with proportion-
ally to the likelihood of the datasets of the interest. Markov Chain Monte Carlo method
has been widely used in biological applications for estimation of parameters, it was first
applied to cosmology in Ref. [50]. Later it became very popular [51, 52| and now it is one

of the primary methods used for estimation of the cosmological parameters.
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3.2 Method

We use Markov Chain Monte Carlo method in order to analyze the likelihood surfaces in
many dimensional paremeter space. We use the custom developed code which was also
used in [22, 47, 46, 4, 3]. A typical chain run consists of 15 or 31 independent chains. The
effective combined chain length is at least 3,000 and usually of the order of 5,000 — 10,000
noncorrelated chain elements. The acceptance rate varies depending on the dimensionality
of the parameter space and the datasets used and usually is about 30-60%. We also check the
sufficient convergence and mixing of the chains in terms of Gelman and Rubin R statistics
[53]; in particular we require for all the chains to have at least R < 1.05.

The most common parameter space we explore is

pP= {Wby Wi, QA T, ng, Ag, s, 7, w, Uy, me b}7 (31)

where wy, = Qyh?, where €, is baryon density in units of critical density and h is the Hubble
constant in units of 100 km/s/Mpc; wy, = k% where €, is matter density in units of
critical density; €25 is the dark energy today and w is its equation of state; 2; is the total
density of the universe; 7 is the optical depth; >~ m,, is the mass of massive neutrino masses
(we consider either 3 degenerate neutrino families or 1 massive in addition to 3 massless);
A, ns and ay are used to describe the primordial power spectrum of scalar perturbations

around pivot point ky = 0.05/Mpc

ko1 k
Po(k) = Agexp |(ns — 1)In — 4 —a,In? = | . (3.2)
ko 2 ko

We calculate the linear power spectrum and Cosmic Microwave Background anisotropy
via CMBFAST [54].

For the chains including tensors, we parametrize them through their amplitude 4; = rA,
at the same pivot point kg = 0.05/Mpc. We fix the the tensor slope to be ny = —r/8. We
summarize this information in Table 3.1.

In fact to optimize the MCMC production we use the standard approach of selecting

the orthogonal set of the appropriate combinations of cosmological parameters (e.g., see



Parameter Description Comment Prior
wp Physical baryon density wy = Qph?
Wm Physical matter density W, = Qnh?
Qa Dark energy density
h Hubble constant in units of 100 km/s/Mpc  h% = w,, /(2 — Q) 0.45 < h <0.90
T Reionization optical depth 00708
A Scalar fluctuation amplitude Po(k) at ko = 0.05/Mpc
Ns Scalar spectral index ns =dIlnPy(k)/dInk at k = ko 0.4<ng<1.6
g Running of spectral index as = d*Po(k)/dInk? at k = kg
r Tensor to scalar ratio r=A;/As r >0
w Dark energy equation of state
Q; Total desity of the universe Q =Q,, +Qa 05<Q; <15
> omy Sum of neutrino masses 3 massive, or 1 massive + 3 massless >omy, >0
b Galaxy bias factor Pyai (k) = b2 Piin (k) b>0

Table 3.1: Cosmological parameters we use to run the MCMCs.
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[55, 56]) as acoustic peak scale 8, CMB peak suppression factor e =27, etc. This parameters
effectively diagonalize the covariance matrix of the original parameter set. We do not report
the values of these parameters in our results. Also we do not report them for Ag; we present

the value of the amplitude of fluctuations og instead.

3.3 Effects on cosmological parameters of proper likelihood

evaluations of low multipole first year WMAP data

This section primarily presents the results of reference [4]. When the WMAP [57, 21] re-
leased it first-year data, a question arose about the abnormally low value of the quadrupole,
which was also observed by COBE. As was pointed out in [58, 4], it can be explained by
the inaccuracy in the calculation of the likelihood function for low WMAP multipoles be-
cause of approximate calculation of the tails of the liklihood function away from its peak.
Reference [4] also tries to show the effects of the full marginalization of the foreground
contamination.

In this section we show the effect on the determination of the cosmological parameters
after proper treatment of the above problems.

Figure 3.1 shows the effect of the proper treatment of WMAP likelihood evaluation on
the constraint of the matter density §2,,. We can see that more accurate consideration of
the likelihood evaluation prefers a slightly lower value of €2,,. Thus Table 3.2 shows that
the original WMAP analysis gives 2, = O.29J_r8:8§, whereas e.g. VKP2 mask analysis gives
Q= 0.2415:07,

Figures 3.2 and 3.3 show the change in the constraints on the slope ngs and running
as from WMAP analysis together with SDSS galaxies clustering. One can see that the
main result here is that the new preferred value of the running is only half a sigma away
from zero, as opposed to the original WMAP analysis finding two-sigma deviation of the
running from zero. Actually, the simplest Harrison-Zel’dovich power spectrum of primordial

fluctuations with ng = 1 and a; = 0 lies in the center of the preferred region. Indeed, there
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Figure 3.1:
for 5-parameter MCMCs of WMAPext data (bottom) and for 8-parameter MCMCs of
WMAPext+SDSS data (top). We present V frequency map and both KP0 and KP2 mask
results for the full likelihood analysis of 5-parameters MCMCs of WMAPext data and V
KP2 for full likelihood analysis of 8-parameter MCMCs of WMAPext+SDSS data. Also
shown for comparison are the results using regular (old) WMAP analysis routine.
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Figure 3.2: Probability distribution p(as) and its cumulative value [ p(a)dal, for old
and new MCMCs using WMAPext+SDSS data. We use V frequency map and KP2 mask
in the full likelihood analysis.
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Figure 3.3: Two dimensional contours of 68% and 95% probability in (as,7) and (as, 2ri)
plane from WMAP+VSA and WMAP+VSA+SDSS data.

is a degeneracy between spectral index ng and running «; in CMB data. By reducing the
value of g we also shift the preferred value of ng closer to 1.

Figure 3.4 shows the two-dimensional contours in as—7 and oz — 2,4 plane with just CMB
data and CMB and SDSS data together. One can see that without the galaxy clsutering data
there is a strong degeneracy between the running « and the optical depth to reionization 7
which doesn’t allow us to constrain either of them. Addition of the SDSS galaxy information
helps us to resolve the degeneracy and allows us to forbid the area with extremely high
running of ag ~ —0.15.

Tables 3.2 and 3.3 show the constraints on the rest of the parameters. One can see that
the effect on most other parameters is within one-sigma of the original value. For example
constraint on tensor component from the original analysis is 7'/S < 0.76 at 95% confidence
level, it changes to T'/S < 0.81 for the new modified likelihood calculation.

To conclude, we have shown that the effects of the proper likelihood evaluation and

marginalization are really important for estimating the cosmological parameters from WMAP
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Figure 3.4: Blue dashed contours show 1 and 2-¢ contours for the CMB data in 7 and «
plane. One can see that the addition of the small scale information from the clustering of
galaxies from SDSS (red solid contours) significantly affects the location of the countours
in this plane. This is mostly due to the fact that CMB alone (first year WMAP and VSA)
does not constrain reionization well.



5p old 5p VKP2 5p VKPO 8p old 8p VKP2

102wb 2.40-1-0.06 +0.12 2.38—1—0'06 +0.13 2'394-0.06 +0.13 2.37-1-0.17 +0.35 2.49-1-0.19 +0.39

—0.06 —0.13 —0.07 —-0.13 —0.06 —0.13 —0.16 —0.32 —0.17 —-0.34
+0.08 +0.16 +0.07 +0.15 +0.07 +0.16 +0.07 +0.16 +0.06 +0.13
O 0‘29—0.06 -0.11 0‘24—0.05 -0.10 0‘26—0.06 —-0.11 0‘20—0.06 —0.10 0‘15—0.04 —0.07

0 12—1—0.017 +0.03 0 11+0.016 +0.03 0 11+0.017 +0.03 0 10—1—0.017 +0.03 0 09—1-0.016 +0.03

Wedm —0.017 —-0.03 —0.016 —0.03 —0.016 —0.03 —0.017 —-0.03 —0.015 —-0.03
T 0TI Toe 0215551 Toos  019%00; fhos  0-23T65% ToNE 024758 o
os 0945568 Toa7 0905559 Tong 09270065 1oy 0815635 105 075105 1ok
b 0725008 Toos 0755003 Toos  0.73%005 Tooe  0-78%007 Tous 087Ios Tong
T/S 0 0 0 <0.76 (95%) < 0.81 (95%)

n, 1 1 1 09520057 o5 1025667 1613
a 0 0 0 —0.08%555 Toas —0.04%056 103

Table 3.2: Median value, 10 and 20 constraints on cosmological parameters for various MCMCs based on WMAP data alone.
5p denotes varying 5 basic cosmological parameters in MCMCs, while 8p stands for 8 parameter chains. Old stands for the
evaluation of the WMAP likelihood using the current WMAP provided software, VKP2 is our new exact likelihood evaluation
analysis of V maps using KP2 mask and VKPO is the same for KP0O mask.
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8p SDSS—+old

8p SDSS+VKP2

8p SDSS+WKP2

7p SDSS+VSA+4VKP2

102wb

Wedm

o8

T/8

s

Qs

+0.16 +0.32
2‘40—0.16 —0.30

+0.06 +0.13
0‘31—0.05 —0.08

+0.009 +0.019
0. 128—0.008 —0.016

+0.07 +0.09
0'20—0.08 —0.14

+0.08 +0.16
0'98—0.09 —0.16

+0.05 +0.09
0'70—0.05 —0.09

< 0.46 (95%)

+0.06 +0.11
0'97—0.06 —0.12

+0.038 40.074
_0'060—0.039 —0.083

+0.16 +0.30
2‘48—0.16 -0.31

+0.05 +0.11
0‘27—0.03 —0.06

+0.008 +0.017
0‘121—0.007 —0.014

+0.07 +0.09
0'20—0.08 —0.14

+0.09 +0.16
0'97—0.09 —0.16

+0.04 +0.08
0'73—0.04 —0.09

< 0.46 (95%)

+0.05 +0.10
1'01—0.06 -0.11

+0.036 40.072
_0'015—0.037 —0.080

+0.16 +0.31
2‘47—0.16 —0.30

+0.05 +0.11
0‘28—0.04 —0.07

+0.008 +0.017
0‘123—0.007 —0.014

+0.07 +0.09
0'20—0.08 —0.14

+0.09 +0.16
0'97—0.09 —0.16

+0.04 +0.08
0'73—0.04 —0.09

< 0.47 (95%)

+0.05 +0.10
1'02—0.06 -0.11

+0.036 +0.072
_0'032—0.038 —0.080

+0.18 +0.52
2‘34—0.15 —0.28

+0.06 +0.12
0‘30—0.05 —0.10

+0.008 +0.017
0‘123—0.008 —0.018

+0.11 +0.26
0'19—0.08 -0.13

+0.12 +0.29
0'93—0.08 —0.13

+0.05 +0.14
0'70—0.05 —0.08

0

+0.06 +0.16
0'97—0.06 -0.11

+0.034 +0.069
_0'022—0.032 —0.062

Table 3.3: Same as Table 3.2 for WMAP+SDSS (8-parameter MCMCs with regular (old) or corrected (exact likelihood) anal-

ysis).

The new analysis uses V KP2 with full marginalization and W KP2 with dust marginalization only.

WMAP+SDSS+VSA (7-parameters). For the latter case we do not impose 7 < 0.3.

We also give

6€
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data. Thus the correct calculation prefers lower value for the matter density €2,,, less sig-

nificant running o and slightly higher value of the slope ng.

3.4 Effect on cosmological parameters of Sunyaev-Zel’dovich

effect in WMAP

In the literature, several groups [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71] have tried
to determine the level of Sunyaev-Zel’dovich (SZ) contamination in WMAP data. Most
of them came to different conclusions, some of the recent ones (e.g. [69])found a high
level of SZ and, therefore, questioned the validity of the WMAP cosmological parameter
estimations.

We describe amplitude of SZ with B, the ratio of the SZ power spectrum and the
predicted spectrum, assuming they have the same shape. Thus the SZ amplitude is dimen-
sionless, and has a theoretically predicted value B = 1 for og = 0.9 using the halo models
of [72].

In this section we estimate how much SZ signal is in the WMAP C; power spectrum,
and investigate the effect of SZ on the determination of the cosmological parameters. For
this purpose we use the Markov Chain Monte Carlo (MCMC) approach, using software
described in more detail elsewhere [3, 4].

We ran two MCMCs, one without SZ and one allowing for an unconstrained SZ contri-
bution. We built a third chain from the second by importance sampling, allowing for an SZ
component but constraining it to limits derived based on frequency information in the pre-
vious section. We used the WMAP likelihood routine [57, 21]. Each of the chains contains
100,000 total chain elements. The success rate is 45-55 percent, the correlation length is
1320 elements, and the effective length is 5,000-10,000 elements. Each chain comprises 23
independent sub-chains and, in terms of Gelman and Rubin R-statistics [53], we find the
chains are sufficiently converged and mixed (]A% < 1.01, compared to the recommended value

of R < 1.2).
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In the second chain, we added to the power spectrum an SZ-shaped contribution, pa-
rameterized in terms of amplitude B. The WMAP power spectrum combines the @, V and
W bands in different ratios at each [, so the shape of the SZ contribution to the WMAP
power spectrum is not exactly given by the single frequency SZ template, because the effec-
tive frequency for every [ varies. This dependence is small and we ignore it here. We find
that the SZ contribution to the WMAP combined temperature power spectrum, dominated
by V and W channels, may be approximated as 75% the contribution in RJ. One could also
add additional CMB experiments (e.g. CBI, VSA, etc.) into the analysis, but this would
incur complications to account for the different frequencies of these experiments. In the
third chain we add our multi-frequency analysis limit as an additional constraint.

We consider only the simplest model required by the data plus the SZ component,
since we want to analyze the effect of the latter on the cosmological parameters. WMAP
temperature data require neither tensor modes nor curvature nor running of the primordial
power spectrum of the scalar perturbations, so we do not consider them.

We work in a seven parameter space:
P = {Wb, Wedm s Qm7 7, A87 Ns, B} (33)

Here wp, = Qph? is the baryonic content of the universe, weqm = Qedmh? is the physical
density of the cold dark matter content, 0,; = Qcam + Q2 = 1 — Q4 is the matter density
today, 7 is the optical depth to reionization, A, is the amplitude of the primordial scalar
perturbations, ng is the primordial slope, and as before B is the amplitude of the SZ power
spectrum.

To reduce the degeneracies while running the MCMCs, we use wp, Wegm, angular size of
the sound horizon Oy, 1g A, ns, 1g As—7—0.5lg(wp+weam ), and B, instead of the parameters
in equation 3.3. We adopt broad flat priors on these parameters, and additionally require
T < 0.3.

We find that the amplitude of an SZ-shaped component to the WMAP power spectrum
is limited to B < 7.1 at 95 percent confidence. This limit means that the contribution to

the WMAP temperature power spectrum at the first peak is below 5 percent. This is a
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Figure 3.5: We show two-dimensional contours of 68% and 95% confidence levels in (wy, B)
plane. The larger (blue) contours show the degeneracy using the WMAP combined tem-
perature power spectrum without any prior on SZ. The smaller (red) contours include our
multi-frequency cross-spectrum analysis as a prior. B = 1 is expected from halo models for
SZ when og = 0.9.

weaker limit than from the combination of cross-spectra, where a factor of 2 better limit
was found.

Table 3.4 shows the comparison of the two MCMCs, showing the effect of including SZ in
the analysis. The inclusion of the additional parameter B into the likelihood analysis affects
only the determination of the baryon physical density wy. Without SZ we find wy, = 0.0235,
whereas with SZ we find wy, = 0.0251, which is shifted by about 1.50 away from the earlier
value. The confidence contours in the (wp, B) plane are shown in Figure 3.5, showing that
there is a degeneracy between these two parameters. However, we can and should also use
the constraint from our multi-frequency cross-spectrum analysis as a prior. We can include
the Gaussian likelihood for B from reference [46], and perform importance sampling of the
chain with SZ. We then find w;, = 0.0243, different from the case without SZ by 0.60. The

likelihood contours including the prior are also shown in Figure 3.5. The other parameters
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no SZ with SZ, no SZ prior with SZ prior
B 0 < 7.1 (95%) < 2.9 (95%)
o107 23R o e 2art
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Table 3.4: The first two columns contain the median value and 1- and 20 constraints on
cosmological parameters for two MCMCs without and with a Sunyaev-Zeldovich component
in the C; power spectrum from WMAP data alone. For both chains there was an imposed
prior of 7 < 0.3. The third column shows the constraints when the limit on SZ from our
cross-spectrum estimator is applied as a prior.

are much less affected by the SZ.

The next largest deviation from the first chain to the second is a shift in the median
h of about 0.3¢ towards higher value, which is not statistically significant and the effect is
even smaller if the constraints from previous section are added to the chains.

By searching for an SZ-shaped component in the WMAP combined spectrum with a
Markov chain Monte Carlo we do not find any evidence of a signal, but we can only set
a weak limit. Another method [46] sets a stronger limit, at 95% confidence the amplitude
of SZ is below 2% of the CMB at the position of first peak in W band. Combining the
analyses, we show that the cosmological parameters are not affected by the SZ within the

range allowed by the multi-frequency analysis.



Chapter 4

Cosmological parameter analysis

including Ly-alpha forest

4.1 Introduction

Many different cosmological observations over the past decade have helped build what is
now called the standard cosmological model. These observations suggest that the universe
is spatially flat, contains baryons, dark matter and dark energy. The primordial spectrum
of fluctuations is approximately scale invariant and initial fluctuations are Gaussian and
adiabatic. This standard cosmological model can be described in terms of only a few
parameters, which explain a large number of observations, such as the cosmic microwave
background (CMB), galaxy clustering, supernova data, Hubble parameter determinations,
and weak lensing. The latest results come from Wilkinson Microwave Anisotropy Probe
(WMAP) CMB measurements [73, 57, 74], Sloan Digital Sky Survey (SDSS) and Two
degree Field (2dF) galaxy clustering analyses [1, 75, 76], and from the latest Supernovae
type Ia (SNIa) data [77, 78].

While the standard model is observationally well justified, many theoretical models
predict that there should be observable deviations from it. Perhaps the best motivated

among these are the predictions of how the universe was seeded by initial fluctuations.
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The standard paradigm is inflation, which predicts that the fluctuations should be almost,
but not exactly, scale invariant [27]. A typical deviation for the slope of the primordial
perturbations is predicted to be of order of a few parts in a hundred away from its scale
invariant value ny; = 1 and could be of either sign. This should be observable with high
precision cosmological observations. Despite tremendous progress over the past couple of
years the current constraints do not yet distinguish between different inflationary models
[23, 39]. Alternative models also predict deviations from scale invariance similar to inflation
[79]. Another prediction of these models is that the rate of change of slope with scale is
rather small, oy = dng/dInk ~ (ns — 1)2 ~ 1073, which should not be observable in the
near future. A third prediction that can distinguish among the different models is the
amount of tensor perturbations they predict. Some models predict no detectable tensor
contribution [27, 80], while other models predict a tensor contribution to the large scale
CMB anisotropies comparable to that from scalars. It is clear that determining the shape
and amplitude of the scalar and tensor primordial power spectra will be one of the key tests
of various models of structure formation.

Current observational constraints on the primordial power spectrum are mostly limited
to scales larger than 10h~'Mpc. There are various reasons for this: CMB fluctuations are
damped on small scales and their detection would require high resolution, low noise de-
tectors, which are only now being built. Even with sufficient signal-to-noise and angular
resolution there may be secondary anisotropies that may contaminate the signal from pri-
mary anisotropies. On small scales, matter undergoes strongly nonlinear evolution, which
erases the initial spectrum of fluctuations and prevents galaxy clustering and weak lensing
surveys from extracting this information. On the other end, the largest observable scale is
the horizon scale seen by CMB fluctuations. The small number of available modes on the
sky prevents one from accurately determining the primordial spectrum on these scales from
the CMB. The largest scales probed by galaxy clustering are even smaller. As a result, the
primordial power spectrum is currently probed over a relatively narrow range of scales and

the shape of the primordial power spectrum cannot be accurately determined.
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To improve these constraints one should determine the fluctuation amplitude on smaller
scales. Nonlinear evolution prevents one from obtaining useful information at z = 0, so
one must look for probes at higher redshift. Of the current cosmological probes, the Ly-a
forest — the absorption observed in quasar spectra by neutral hydrogen in the intergalactic
medium (hereafter IGM) — has the potential to give the most precise information on small
scales [81]. It probes fluctuations down to megaparsec scales at redshifts between 2-4, so
nonlinear evolution, while not negligible, has not erased all of the primordial information.

In this chapter we combine CMB/LSS constraints with the new analysis of the Ly-«
forest from SDSS data [82]. The Sloan Digital Sky Survey [83] uses a drift-scanning imaging
camera [84] and a 640 fiber, double spectrograph on a dedicated 2.5 m telescope. The SDSS
data sample in data release two [85] consists of more than 3000 QSO spectra with z > 2.2,
nearly two orders of magnitude larger than previously available [86, 87, 88]. This large
data set allows one to determine the amplitude of the flux power spectrum to better than
1%. Theoretical analysis of this flux power spectrum shows that at the pivot point k=0.009
s/km in velocity coordinates, which is close to k=1h/Mpc in comoving coordinates for
standard cosmological parameters, the power spectrum amplitude is determined to about
15% and the slope to about 0.05, with the error budget dominated by uncertainties in
theoretical modelling [89, 90]. This is an accuracy comparable to that achieved by WMAP.
More importantly, it is at a much smaller scale, so combining the two leads to a significant
improvement in the constraints on primordial power spectrum shape over what can be
achieved from each data set individually.

A second theoretical prediction where the basic cosmological model is expected to re-
quire modifications is that neutrinos have mass. Atmospheric mixing and solar neutrino
results suggest that the total minimum neutrino mass is about 0.06eV [91, 92, 93]. These
observations are only sensitive to relative neutrino mass differences and not to the absolute
neutrino mass itself. Cosmology on the other hand can weigh neutrinos directly. Massive
neutrinos slow down the growth of structure on small scales and modify the amplitude

and shape of the matter power spectrum. They also modify the CMB power spectrum. If
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one measures both the CMB and matter power spectra with high precision across a wide
range of redshifts and scales then one can determine the neutrino mass with high accuracy
[94]. The question of neutrino mass is also interesting in light of recent Los Alamos Liquid
Scintillator Neutrino Detector (LSND) experimental results, which, if taken at a face value,
suggest m,, > 0.9eV [95, 96], which should be observable by cosmological neutrino weighing.

A third theoretical prediction of departures from the standard model, and one whose
consequences would be particularly far reaching, is that dark energy is not simply a cos-
mological constant introduced already by Einstein, but something more complicated and
dynamical in nature. In the case where dark energy is a scalar field one would expect that
it has a kinetic energy term in addition to the potential term, which modifies its equation of
state. This is expected to evolve with time, but theoretical predictions are rather uncertain
and are suggestive at best. A change in equation of state changes both the rate of growth
of structure and the angular size of the acoustic horizon in the CMB. As a result these
changes can be observed both through the CMB and by comparing the growth of structure
at different redshifts.

Many different methods have been discussed in the literature on how to improve the
current constraints from methods such as supernovae type Ia (SNIa), CMB, weak lensing,
and cluster abundances. One method to constrain the nature of dark energy that has not
attracted much attention, yet has the potential to produce results on a relatively short time
scale, is comparing measurements of amplitude of fluctuations at high redshift from the
Lya forest and CMB to that at low redshift from galaxy clustering. Dark energy affects
the rate of growth of structure, especially for z < 1 where dark energy is dynamically
important. In this paper we combine WMAP and SDSS Ly« forest measurements at high
redshifts, where dark energy is expected to be negligible, with the amplitude determination
at z = 0.1 from the SDSS galaxy bias analysis [47]. In general, galaxy clustering is believed
to be proportional to matter clustering on large scales up to a constant of proportionality.
This constant, the so called bias, is a free parameter that cannot be determined from the

clustering analysis itself. There are many different methods for how to determine the bias
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and thus the amplitude of matter fluctuations such as redshift space distortions [97, 1],
the bispectrum [98], or weak lensing [99, 100], but the current constraints are weak. A
recent analysis of the luminosity dependence of galaxy clustering [1], combined with a
determination of the halo mass distribution for these galaxies, provides a new constraint on
the bias and amplitude of fluctuations in SDSS data [47].

One difference of the current paper in comparison with previous analyses of this type is
that we present 68.32%, 95.5% and 99.86% confidence intervals (we denote these the 1, 2,
and 3-o intervals, but note that they do not depend on the assumption of Gaussianity in the
error distribution) on all the parameters (or 95% and 99.9% confidence level upper limits in
the case of no detections). Sometimes the 3-¢ intervals can be significantly different from
3 times the corresponding 1-o intervals. This can happen if there are degeneracies in the
data that appear to be broken at 1-o, but that the 2 or 3 ¢ contours allow. In this case
the 3-0 constraints are weaker than the corresponding 1-¢ intervals would suggest. The
opposite can happen as well, especially if there is a natural boundary that the parameter
cannot cross (such as a parameter being positive definite). More generally, presenting 1-o
contours alone is not very meaningful, since whatever is within 1-o is essentially a good fit
to the data. One can argue that the goal of observations is to exclude regions of parameter
space and this is much better represented by reporting 2 and 3-0 contours than the best fit
value and its 1-o range.

Another issue that we address in detail is the robustness of the constraints against the
number of parameters one is exploring. Sometimes the constraints change significantly if
new parameters are added to the mix because these new parameters are degenerate with
parameters one is interested in. However, often the quality of the fit is not improved at
all and moreover these new parameters may not be well motivated from the perspective
of fundamental theories or other considerations. In this case one is entitled to adopt an
Occam’s razor argument against the introduction of these parameters in the estimation. To
some extent this is always a subjective procedure, since what is natural for one person may

not be for someone else. It has also been argued that one should pay a penalty for each new
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parameter that is introduced which does not improve the quality of the fit [40]. However,
this procedure is also poorly defined and there is no unique choice for the penalty. In this
paper we explore both the solutions with the minimum number of parameters as well as
with several additional parameters. We believe that there is merit to the approach which
parametrizes the constraints with as few parameters as possible, so our main results are
given for this case. However, one also wants to know how robust and model independent are
the constraints, which we explore by adding several additional parameters to the analysis.

The outline of this paper is as follows. We first present the method, then our basic
results in several tables and then discuss them in detail. We focus particularly on the
question of how have the new results improved upon the previous constraints and how
robust are the conclusions upon removing one or more of the data ingredients. The latter
is particularly interesting in light of possible systematic effects that may be present both
in the new analyses of Ly« forest and bias as well as in previous analyses of WMAP, SDSS

galaxy clustering, and SNIa.

4.2 Method

We combine the constraints from the SDSS Ly-« forest [82] with the SDSS galaxy clustering
analysis [1], SDSS bias analysis [47], and CMB power spectrum observations from WMAP
[73, 57, 74]. We verified that including CBI, VSA, and ACBAR [101, 102, 103] makes very
little difference in the final results and we do not include them in the current analysis.
Similarly, we verified that including the latest 2dF power spectrum analysis [76] in addition
to SDSS does not make much difference, so we do not include those constraints either. We
could have used 2dF constraints instead of SDSS, but we chose not to because for 2dF
the bias constraints are somewhat weaker [98] and we would like to have an independent
verification of results that use the 2dF bias [2]. We will thus refer to CMB constraints
as WMAP, to LSS/galaxy clustering constraints as SDSS-gal, to SDSS bias constraints as
SDSS-bias and to SDSS Ly-a forest constraints as SDSS-lya. We have added earlier Ly«

forest constraints in a weak form [87, 104], which have a small, but not negligible effect. We
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do not include more recent Ly« forest constraints [86, 105] since there are signs of systematic
discrepancy and/or underestimation of errors when compared to SDSS Ly« forest data [82].
To this we add the latest supernova constraints as given in [77]. We do not use this full
combination in all calculations, since we want to emphasize what the new constraints bring
to the mix and we want to explore the sensitivity of the constraints to individual data sets.
For example, for the investigation of the shape of the primordial power spectrum we perform
the analysis using WMAP+SDSS-lya alone and show that this combination in itself suffices
to constrain the running by a factor of 3 better than combining everything else together. We
also perform several analyses by dropping one of the constraints and explore the robustness
of the conclusions. For example, we explore the constraints on the dark energy equation of
state with and without SNIa and with and without SDSS-bias and SDSS-lya.

Our implementation of the Monte Carlo Markov Chain (MCMC) method [3] uses CMB-
FAST [54] version 4.5.1' | outputting both CMB spectra and the corresponding matter
power spectra P(k). We evolve all the matter power spectra to a high k using CMBFAST
and we do not employ any analytical approximations. We output the transfer functions
at the redshifts of interest, between 2-4 for SDSS-Lya forest and 0.1 for SDSS-gal. Note
that for massive neutrinos the high precision (HP) option must be used to achieve sufficient
accuracy in the transfer function.

A typical run is based on 16-24 independent chains, contains 50,000-200,000 chain el-
ements and requires several days of running on a computer cluster in a serial mode of
CMBFAST. The acceptance rate was of order 30-50%, correlation length 10-30 and the ef-
fective chain length of order 3,000-20,000 (see [39] for definitions of these terms). In terms of
Celman and Rubin R-statistics [53] we find the chains are sufficiently converged and mixed,
with R < 1.05, significantly more conservative than the recommended value R<12.

Our most general cosmological parameter space is
p: (TawbawmuZmV7QA7w7A’%€7n87a87T)7 (41)

where 7 is the optical depth, wy, = Qyh%, where Q is baryon density in units of the critical

Lavailable at cmbfast.org
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density and h is the Hubble constant in units of 100km/s/Mpc, wy, = Q,,h? where Q,,
is matter density in units of the critical density, Y m, is the sum of massive neutrino
masses (assuming either 3 degenerate neutrino families or 1 massive neutrino family in
addition to 3 massless), 2 is the dark energy density today and w its equation of state
(which is in general time dependent). Our pivot point for the primordial power spectrum
parameterization is at kpivot = 0.05/Mpc and we expand the primordial power spectrum at
that point, defining the amplitude of curvature perturbations A%, slope ng, and its running
as = dng/dInk. The choice of the pivot point is somewhat arbitrary, but is meant to
represent the scale somewhere in the middle of the observational range. In this case the
largest scales are probed by the CMB (k ~ 1073 /Mpc) and the smallest scales are probed
by the Ly« forest (k ~ 1/Mpc). In addition, this scale has been (arbitrarily) chosen as
a pivot point in CMBFAST and has been used by previous analyses, which facilitates the
comparison. Note that there is no Hubble parameter h in the definition of the pivot point:
if CMB data are used there is no advantage in defining the scale by taking out the Hubble
constant, unlike the case of galaxy clustering and Ly« forest.

We parametrize tensors in terms of their amplitude A?, and define the ratio relative to
scalars as r = T//S = A? /A% . This is also defined at the pivot point k = 0.05/Mpc, just
as for the scalar amplitude, slope and running. We fix the tensor slope ny using r = —8nrp.
We do not allow for non-flat models, since curvature is already tightly constrained by CMB
and other observations [2]. In addition, we will be testing particular classes of models, such
as inflation, which predict K = 0. For the more general models, such as those with freedom
in the dark energy equation of state, relaxing this assumption can lead to a significant
expansion of errors [39]. We are therefore testing a particular class of inflation inspired
models with K = 0 and not presenting model independent constraints on the equation of
state. Note that this assumption is implicit in most of the constraints published to date,
including those from the SNIa teams, which often assume a CMB prior on €,, [77]. This
prior is affected by the choice of parameter space one is working in and a self-consistent

treatment is required. CMB constraints on (2, using an analysis where the equation of
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state or curvature are not varied need not equal those where these are varied. We follow the
WMAP team in imposing a 7 < 0.3 constraint. Upcoming polarization data from WMAP
will allow a verification of this prior.

From this basic set of parameters we can obtain constraints on several other parameters,
such as the baryon and matter densities €, and €,,,, Hubble parameter h = H/(100km/s/Mpc)
and amplitude of fluctuations og. Since we do not allow for curvature we have Q) =1—Q,,
and we use €),, in all tables. In fact, our primary parameter is the angular scale of the
acoustic horizon, which is tightly constrained by the CMB. Similarly, although we use A%
as the primary parameter in the MCMC we present the amplitude in terms of the more
familiar og. In addition to the cosmological parameters above we also keep track of several

parameters related to the specific tracers, described below.

4.3 Results

The basic results for many different MCMC runs are given in Tables 4.1-4.4. We give results
for many different parameter combinations and different experiment combinations, with the
purpose of assessing the robustness of constraints on both the data and parameter space. For
most of the parameters we quote the median value (50%), [15.84%,84.16%] interval (+10),
[2.3%,97.7%)] interval (+20) and [0.13%,99.87%)] interval (+30). These are calculated from
the cumulative one-point distributions of MCMC values for each parameter and do not
depend on the Gaussian assumption. For the parameters without a detection we quote a
95% confidence upper limit and a 99.9% confidence upper limit. We have found that our
MCMC gives a reliable estimate of 3-sigma contours for one-dimensional projections. The
corresponding 2-d projections are however very noisy and we do not plot 3-sigma contours
in our 2-d plots.

All of the restricted parameter space fits are acceptable based on x? values, starting
from the basic 6-parameter model p = (7, wp, Wi, 2y = 1 — Qyy, A%, ns). We denote this as
6-p in the tables. Introducing additional parameters such as tensors, running, equation of

state, or neutrino mass does not improve the fits. We do not report the values of nuisance
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parameters such as the galaxy bias or Ly« forest mean flux, temperature-density relation,
or filtering length. Some of these are discussed elsewhere [47, 89]. When comparing the
improvements over previous analyses we try to compare the results to our own MCMC
analysis of previous data. This is because small changes in the treatment, such as assumed
priors, can affect the parameters and so the constraints between different groups are not
directly comparable. When comparing our analysis to [39] we find in general a very good
agreement between the two, even though our MCMC implementation is independent. Our
primary goal is to determine how much the new data improve over the previous situation
and to answer this it is best to perform identical analyses with and without the new data.

Below we discuss the results from these tables in more detail.

4.3.1 Amplitude of fluctuations

From Tables 4.1-4.4 one can see that the value of og is remarkably tight. For 6-p models
(Table 4.1) we find

_ +0.033 +0.065 +0.097
o8 = 0.897Z 037 Z0'058 —0.088 (4.2)

This value does not change significantly when running, tensors and massive neutrinos are
added to the mix, which shows that the constraint is model independent. In contrast, in
an analysis without the Ly« forest and bias og changes from og = 0.9511'8:8(7)9 (Table 4.1)
to og = 0.786J_r8&ég (Table 4.3) when massive neutrinos are added as a parameter (see also
[39]), so previous constraints were significantly more model dependent.

It is useful to analyze what drives the og determination. WMAP alone cannot provide a
very tight determination, nor can the Ly« forest alone. But combining the two is extremely
powerful: from Table 4.1 we see that just these two data sets alone give og = 0.895J_r8:8§‘21
even with running. So this combination in itself provides nearly all of the information on og;
galaxy clustering and bias do not constrain this parameter any further when added to the
mix. They are however consistent with it: using WMAP and SDSS galaxy clustering with
bias and without Ly« forest gives og = 0.89 £ 0.06 [47], in remarkable agreement with the

analysis of WMAP+SDSS-lya. Assuming that WMAP data are valid this implies that two
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Table 4.1: Constraints on basic 6 parameters and tensors. Median value, 1o, 20 and 3¢ intervals on cosmological parameters
combining WMAP, SDSS galaxies (gal), SDSS bias (bias), SDSS Ly« forest (lya) and SNIa (SN) data as derived from the MCMC
analysis. In each case we list individual data sets. Note that WMAP is included in all the chains. In the absence of a detection
we give 95% upper limit and (in brackets) 99.9% upper limit. All of the values are obtained from MCMC. The columns compare
different theoretical priors and different data sets. The parameters for 6 parameter models 6-p are 7, wp, Wy, 2y = 1 — Oy, 08, 1.
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Table 4.2: Constraints on running. Same format as for Table 4.1.
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Table 4.3: Neutrino mass constraints. Same format as for Table 4.1. All except last column are for the case of 3 degenerate
neutrino families. Last column is for 3 massless + 1 massive neutrino family.
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Table 4.4: Dark energy constraints. Same format as for Table 4.1. All columns except last one assume constant equation of state
w. Last column gives constraints for the case where dark energy is time dependent as w = wy + wi(1 — a).
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independent analyses of different data, SDSS-gal+bias and SDSS-lya, lead to essentially the
same value. Both improve upon previous constraints, by a factor of 1.5-2 for WMAP+SDSS-
gal+bias and a factor of 3-4 for WMAP+4SDSS-lya. These new constraints remove almost
all of the degeneracy between og and optical depth 7 (figure 4.1).

There are many recent determinations of og in the literature, which vary between 0.6
and 1.1. Recent discussion of some of these methods and results, such as weak lensing,
cluster abundance, galaxy bias determination, and SZ power spectrum can be found in
[39, 47]. The value found here is in good agreement with most of these constraints: it is on
the low end of the SZ constraints and on the upper end of some of the cluster abundance
constraints. It is also in good agreement with the 2dF bias constraints and with several
weak lensing constraints.

While in the tables we do not present results for the amplitude of metric (described
here with curvature fluctuation R) fluctuations at the pivot point we find it is also tightly
constrained to

A% (kpivot = 0.05/Mpc) = (2.45 +0.23) x 107°. (4.3)

4.3.2 Optical depth

The optical depth due to reionization is a parameter that has a strong effect on the CMB. It
suppresses the CMB on small scales and thus leads to a strong degeneracy with amplitude.
This degeneracy can be lifted by the polarization observations [106], but for WMAP 1st year
these are noisy and may contain significant contamination from foregrounds. The current
analysis based on 1st year data is rather unsatisfactory, since it is based on the existing
temperature-polarization cross-correlation analysis, which on large scales may suffer from
similar problems as the temperature auto-correlation analysis [4]. The upcoming 2nd year
data release of WMAP should provide polarization maps and the corresponding analysis may
help improve the situation. Until then we will use the current WMAP provided likelihood
code [21], but this should be taken as preliminary and the constraints on optical depth from

polarization, both the best fitted value and the associated errors, may change.
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Figure 4.1: 68% (inner, blue) and 95% (outer, red) contours in the plane of 7 versus €,
h, og and ng, respectively, using all measurements.
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With the addition of new constraints from the Ly« forest and SDSS bias there remain
correlations between optical depth 7 and several other parameters from 6-parameter analysis
on all data in Table 4.1. Results are shown in figure 4.1. The degeneracies are significantly
less severe than before, since the parameters are better determined with the new data. Still,
there is room to improve the constraints with a better determination of the optical depth.
For example, if the optical depth ends up being at the lower end of its allowed range this
would lead to a decrease in the best fitted value of ng, h and og and to an increase in the
best fitted value of €0,,. Note that the values of 7 do not extend up to the cutoff value
7 = 0.3 for the 95% contours, so these distributions are not affected by the choice of the
prior 7 < 0.3. However, in chains with more parameters, such as dark energy equation of
state w, this is no longer the case. At the moment the only argument for adopting this prior
is that if 7 > 0.3 this would possibly have led to detectable auto-correlation of polarization
in the WMAP data, but this argument is inconclusive since the polarization maps are not
available and such analysis has not been published yet. In the absence of any published

results we follow the WMAP team approach and adopt 7 < 0.3.

4.3.3 Neutrino mass

Both the CMB and LSS are important as tracers of neutrino mass. At the time of de-
coupling, neutrinos are still relativistic, but become nonrelativistic later in the evolution
of the universe if their mass is sufficiently high. Neutrinos free-stream out of their poten-
tial wells, erasing their own perturbations on smaller scales. Below this suppression scale
the power spectrum shape is the same as in regular CDM models, so on small scales the
only consequence is the suppression of the amplitude relative to large scales. In the matter
power spectrum neutrinos leave a characteristic feature at the transition scale. The actual
shape of the transition depends on the individual masses of neutrinos and not just on their
sum. For masses of interest today the transition is occurring around k = 0.1h/Mpc, which
are the scales measured by SDSS-gal. Neutrinos with mass below 2eV are still relativistic

when they enter the horizon for scales around k£ = 0.1h/Mpc and are either relativistic or
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quasi-relativistic at the time of recombination, z ~ 1100. As a result neutrinos cannot be
treated as a nonrelativistic component with regard to the CMB and are not completely
degenerate with the other relativistic components in the CMB.

From the joint analysis we find for the sum of all masses (Table 4.3)
> my, < 0.42eV (0.67eV) (3 families), (4.4)

at 95% (99.9%) c.1. for a single component and assuming no running, as was done in all of the
work to date. Our constraints improve upon WMAP+4SDSS-gal, where we find m,, < 1.54eV
and upon WMAP+2dF constraints, where m, < 0.69eV was found by combining WMAP
and 2dF with the bias determination from the bispectrum analysis [98].

If running and tensors are allowed, the parameter space expands. In this case, we find
my < 0.66 (0.93)eV. Much of this is caused by running: as discussed in [47] running and
neutrino mass are anti-correlated. Negative runnings as large as -0.04 and neutrino masses
as high as 1.5eV are allowed at 2-sigma. Running is poorly motivated by inflationary models
and there is no evidence for it in the current data, so adopting the inflationary prior with
no running is reasonable, but one should be aware that the limits are model dependent.

The constraint from equation (4.4) is remarkably tight and implies the upper limit on
neutrino mass assuming degeneracy is 0.14eV at 95% c.l. Our constraint has been obtained
assuming 3 degenerate mass neutrino families, but if the neutrino mass splittings are small
the constraints on the sum are almost the same even if individual masses are not identical.
If the masses are very large compared to mass splittings then the neutrino masses are
close to degenerate. However, our upper limit is so low that including mass splittings is
necessary. Super-Kamionkande (SK) results find neutrino mass squared difference dmog =
2.5x1073eV?2 [91, 92], while solar neutrino constraints find neutrino mass squared difference
dmia = 8 x 107°eV? [107, 93]. This gives one neutrino family with minimum mass around
0.05eV and another with minimum mass close to 0.007eV. Since only the mass difference is
measured, it is in principle possible that the actual neutrino masses are larger than that.

Our constraints in combination with SK and solar neutrino constraints limit the mass of
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the neutrino families to
mp < 0.13eV, mo < 0.13eV, mg < 0.14eV, (4.5)

all at 95% c.l. These limits essentially exclude the range of masses argued by the Heidelberg-
Moscow experiment of neutrinoless double beta decay if neutrinos are Majorana particles
[108], although the two results may still be compatible given all the uncertainties in nuclear
matrix element calculations. From Am/m ~ Am?/2m with m ~ 0.13eV we find the

neutrino masses are not degenerate, but the limits are still weak: the ratios must satisfy

M3 o191, 11<8 <7, (4.6)
mi ma

where the upper limit on mg/ms is determined solely from SK and solar neutrino constraints.

The mass limits presented above are based on 3 degenerate massive neutrino families. If
one assumes a model with 3 massless families and 1 massive family (such as a sterile neutrino
model), as motivated by LSND results [95], then the mass limits on the sum change, since
both the CMB and the matter power spectrum change (see figure 6 in [47]). These limits
are improved as well with the addition of SDSS-lya and SDSS-bias. We find

my, < 0.79eV (1.55eV) (3 4 1 families), (4.7)

at 95 % (99.9%), compared to the WMAP+2dF analysis without bias where the 95%
confidence limit is 1.4eV [96] and to the SDSS+WMAP analysis where the limit is 1.37eV
[47]. We have subtracted from the total sum in Table 4.3 the masses of the active neutrinos
to obtain the limit in equation (4.7). These limits are improved by almost a factor of 2
compared to previous analyses. These limits are more model independent, as there is little
correlation with running and/or tensors in this model: for the chains with running and
tensors we find m, < 0.88e¢V (1.40eV) at 95% (99.9%) c.l.

From the LSND experiment the allowed regions are four islands with the lowest mass
m, = 0.9eV and the next lowest 1.4eV [109, 95, 96, 110]. Thus the lowest island allowed by
LSND results is excluded at 95% c.l. and all the others at 99.9%. Our derived limits will

be tested directly with MiniBoone Experiment at Fermilab [111].



63

4.3.4 Tensors

Gravity waves (tensors) are predicted in many models of inflation. The simplest single field
models of inflation predict a tight relation between tensor amplitude and slope, which we
assume here. We choose to parametrize them at the pivot point & = 0.05/Mpc, just as for
the amplitude, slope and running. This pivot differs from that in the WMAP analysis [23].
While tensors have their largest effect on large scales, within the single field model adopted
here the slope is assumed to be determined from the tensor amplitude. Thus there is no
need to parametrize tensors on large scales.
For 7-parameter model without running or neutrino mass, the limit on tensors is (Ta-
ble 4.1)
T/S < 0.36(0.51) (4.8)

at 95% (99.9%) c.l. This does not change significantly if neutrinos or running are added
to the mix (Tables 4.2-4.3), in the latter case we find r < 0.45(0.64). This constraint is
nearly a factor of two better than from WMAP analysis, a consequence of tighter constraint
on running from the Ly« forest. We return to these constraints below where we discuss

inflation.

4.3.5 Spectral index

Constraints on the scalar spectral index are primarily driven by the WMAP and SDSS-lya
combination. Using these two experiments alone one finds n; = 0.990J_r8:8§§ for the chains
with running, compared to ng = O.962f8:8§§ for WMAP+SDSS-gal+SDSS-bias without
SDSS-lya and to ng = 0‘975458:8%2 for the case where all observations are included (Table 4.2).
The inclusion of the SDSS Ly« forest thus reduces the error on the primordial slope by a

factor of 2. In the absence of running and with bias and SNla, this constraint improves

further to

_ 40.019 40.040 +0.061
ns = 0.98170 018 Z0'037 ~0.053 (4.9)

Note that the scale invariant model ngs = 1 is only 1-sigma away from the best fit. It is

remarkable that such a vast range of observational constraints can be reproduced with a
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Figure 4.2: 68% (inner, dark) and 95% (outer, light) contours in the (r = T'/S,ns) plane
with and without SDSS-lya. There is a correlation between tensors and slope ng. Inclusion
of the Ly« forest significantly reduces the allowed region in this plane. Also shown are the
positions of two chaotic inflation models, V o ¢? with N = 50 and V o ¢* with N = 60.

scale invariant power spectrum with 4 parameters only, 2, ., h and amplitude A% (plus
possibly optical depth 7 to explain the polarization data).

Tensors are positively correlated with the slope (Figure 4.2) and their inclusion increases
the best fit slope value to ng; = 1.00f8:8§§. All of these are consistent with a scale invariant
spectrum and are in a good agreement with the WMAPext+2dF constraint ng = 0.974+0.03
[2]. While 2dF gives a slightly redder spectrum than SDSS the differences in different values
quoted in the literature reflect mostly the differences in the assumed parameter space, as

shown here for the example of tensors.

4.3.6 Running of the spectral index

The issue of the running of the primordial slope has generated a lot of interest lately. WMAP
argued for some weak evidence for negative running in their combined analysis, but some of

that evidence was based on Lyman alpha constraints by previous workers [86, 112], which
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were shown to underestimate the errors [3]. It was argued that even from WMAP alone,
or WMAP+2dF, there is some evidence for running, and the WMAP+SDSS-gal analysis
without bias information gave oy = —0.0714+0.044 [39]. Similar values have been found from
the recent analyses including CBI [101] and VSA [102] data. However, much of this effect
comes from low [ multipoles and a full likelihood analysis of WMAP+SDSS-gal changes
this value to —0.022 4 0.033 [4]. Including the biasing constraints does not really change
this result. In the absence of massive neutrinos and tensors we find o, = —O.O22J_r8:8§g, SO
as = 0 is within one sigma of 0 and the error has not been reduced.

Including SDSS-lya reduces the errors dramatically. The constraint on running from
WMAP+SDSS-lya alone is agy = —0.0026f8:8ﬁ’. Including everything this changes slightly

to

_ +0.011 +0.023 +0.036
as = —0.0029%5010 Zo'018 —0.026> (4.10)

which is a factor of 3 improvement over previous constraints. Even with this significant
improvement we find no hint of running in the joint analysis. The result is in perfect
agreement with no running and 95% of chain elements have «s > —0.015. This should be
compared to values as low as as ~ —0.10 in figure 4.3. Similarly low values have been found
in recent analyses [101, 102]. Figure 4.3 shows old and new constraints in the («g, ns) plane,
highlighting the dramatic reduction of available parameter space when CMB and Ly« forest
data are combined together. The implications of this result for inflation are discussed in
the next section.

If tensors are also included they induce weak anti-correlation with running, so the best
fit value becomes ay = —0.006f8:83, which is still perfectly consistent with no running.
This is shown in figure 4.4, where we see that adding SDSS-lya to the mix dramatically
reduces the allowed region of parameter space. Specifically, without SDSS-lya, runnings
as negative as -0.15 are in the 95% confidence region, a consequence of strong correlation
between running and tensors. Our joint analysis eliminates these large negative running

solutions. We find no evidence for running in the current data, with or without tensors,

despite a factor of 3 reduction in the errors.
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Figure 4.3: 68% (inner, dark) and 95% (outer, light) contours in the (as,ns) plane using
WMAP+SDSS-lya versus WMAP+SDSS-gal+bias. Adding the SDSS Ly« forest dramat-
ically reduces the allowed region of parameter space in this plane. Note that the simplest
model with ny = 1 and o, = 0 is within 68% interval.
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Figure 4.4: 68% (inner, dark) and 95% (outer, light) contours in the (as,7) plane using
WMAP+SDSS-lya versus WMAP+SDSS-gal+bias. Adding the SDSS Ly« forest dramat-
ically reduces the allowed region of parameter space in this plane. Note that the simplest
model with ag = 0 and r = 0 is within the 68% interval.
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Running is correlated with some of the “nuisance” parameters we marginalize over in
the analysis and additional observations constraining these could lead to a further reduction
of errors on the primordial slope and its running even with no additional improvements in
the observations. For example, in our current treatment of the filtering parameter kp (a
generalization of the Jeans length), we assume that the minimum reionization redshift is
around 10 with a reheating temperature of 25,000K. If we change the redshift to 7, this leads
to an increase in the maximum value of kr allowed. In this case we find for WMAP-+SDSS-
lya analysis the running changes from a; = 0.0017 to -0.0045, with an error around 0.01
(see Table 4.2). If we change this redshift to 4, below its theoretically allowed lower limit of
6.5, to allow for any residual resolution issues in numerical simulations, we find ag = —0.009
with comparable errors. All the other parameters change much less. While these changes are
small and do not qualitatively change our conclusions, they may be important for the future
analyses where smaller errors may be obtained. In all these cases the data prefer a high
value of kp, i.e. a late epoch of reionization. Independent constraints on the tempetarure

evolution of IGM would be helpful to constrain this further.

4.3.7 Matter density and Hubble parameter

The matter density parameter €2,, has contributions from cold dark matter, baryons, and
neutrinos. We assume spatially flat universe, so matter density 2, is related to dark
energy density €, =1 — Q). As emphasized in [113], the matter density is still allowed to
cover a wide range of values from the present data: in 7-parameter models with running
WMAP+SDSS-gal gives ,,, = O.269f8:8§§. WMAP+SDSS-lya gives a slightly lower value
with comparable error, €,, = 0.2574_'8:822 in models with running. Combining WMAP,

SDSS-gal and SDSS-lya gives €2, = 0.299f8:8§; Including the bias and SNIa and ignoring

running brings the value to

40.021 40.043 +0.066
0.282%020 Z0:043 —0.067 (4.11)

which is a factor of 2 improvement over previous constraints. The matter density is cor-

related with r and inclusion of tensors in the parameter space slightly reduces the density
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Figure 4.5: 68% and 95% contours in the (€,,,03s) plane showing previous constraints from
WMAP and galaxy clustering with the new data.

parameter. There is a significant improvement in (og, §2,,) plane with the addition of new
data (figure 4.5).

Despite the improvements the matter density remains strongly correlated with the Hub-
ble parameter h, as expected from the fact that Q,,h? is better determined from the CMB
than each parameter separately. This is shown in figure 4.6 for 6-parameter models for the
analysis with and without inclusion of SDSS-lya.

For the Hubble parameter the best fit value and its error is h = 0.71 + 0.02 in 6-
parameter space. In 9-parameter space with tensors, massive neutrinos and running we
find h = 0.74 £ 0.05. All of these fits are statistically acceptable and are in good agreement
with the HST key project value h = 0.72 £ 0.08 [114], although a different group using
almost the same data continues to find a significantly lower value h = 0.58 £ 0.06 [115].

The new data also improve significantly the age of the universe constraint. We find
to = 13.6f8:ig(}yr, compared to 14.1f(1):8Gyr found from the WMAP+SDSS-gal analysis

[39).
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Figure 4.6: 68% (inner, dark) and 95% (outer, light) contours in the (£,,,h) plane with
and without SDSS-lya. There is a strong correlation between the two parameters because
WMAP constrains best the combination €,,,h?.

4.3.8 Dark energy

So far we have assumed dark energy in the form of a cosmological constant, w = —1. We
now relax this assumption and explore the constraints on w. To maximize the constraints
we add to some of the analyses the “gold” SNIa data [77]. Because we do not want to
limit ourselves to w > —1 we assume dark energy does not cluster (ndyn = 3 option in
CMBFAST4.5). Note that clustering of dark energy vanishes for w=-1 and so if w is close
to -1 then it makes very little difference if clustering is included or not. Figure 4.7 shows

the constraints in the (w,€2,,) plane. We find

w = —0.990%5555 T5a01 Zo.351- (4.12)
We see that w = —1 is an acceptable solution. This should be compared to w = —1.0115-957
we find in the absence of bias and Lya forest constraint, to w = —0.917) 2 using the new
SNIa data but just some of the LSS constraints [116], to w = —1.02f8:%g using a simple

Q,,, prior [77], and to w = —0.987513 from the WMAP 1st year analysis [2]. It is worth
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emphasizing the agreement and complementarity of the LSS, CMB, and SNla constraints:
in the absence of SNIa data the constraint is w = —1.02f8:}g and w is positively correlated
with Q,, (figure 4.7). These solutions allow phantom energy models (w < —1) with w as
low as -1.5 for low matter density values. On the other hand the two are anticorrelated for
the WMAP+SDSS-gal+SNIa data constraints, and phantom energy solutions are allowed
for high values of the matter density. Combing the two sets of constraints significantly
reduces the parameter space of allowed solutions. All of these different combinations give
very consistent results and the median value hardly changes at all and is in all cases very
close to w = —1. Our constraints are a factor of 1.5-2 better than previously published
constraints on the dark energy equation of state. Some of the improvement comes from
our more sophisticated analysis which includes all of the information previously available
and some from the new constraints from the bias and Ly« forest, which further reduce the
errors. This is an example of how combining different data sets leads not only to a significant
improvement in the accuracy of cosmological parameters, but also how consistency among
the different methods gives confidence in the resulting constraints.

The results are weakly model dependent, in the sense that they are sensitive to the
parameter space over which one is projecting. If we include tensors and running in the
analysis we find

w = —0.908¥5:667 T0107 T0ai - (4.13)
roughly a 1-sigma change in the central value compared to the case without tensors in
equation (4.12). Figure 4.8 shows that tensors and the equation of state are correlated.
The shift in the best fitted value of w reflects a large volume of parameter space associated
with 7 > 0 models and not any fit improvement when adding tensors and running: x?
changes only by 1 and there is no need to introduce tensors (or w # —1) to improve the fit
to the data. We also find no correlation between the equation of state and running.

Our constraints eliminate a significant fraction of previously allowed parameter space,
with 95% contours at —1.19 < w < —0.83 without tensors and at —1.11 < w < —0.77 with

tensors. Thus a large fraction of the parameter space of ”phantom energy” models with
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Figure 4.7: 68% and 95% contours in the (€,,,w) plane showing previous constraints with-
out SDSS-lya and bias, constraints without SNIa, and combined constraints. In all cases
the data are consistent with a cosmological constant model (w = —1).

w < —1 [117] and tracker quintessence models with w ~ —0.7 [118] appears to be excluded.
Other dark energy models which predict w ~ —1 remain acceptable. It is interesting to
note that simplest quintessence solutions with w > —1 are more acceptable if tensors are
present at a level predicted by some inflationary models (r ~ 0.2).

We also ran a MCMC simulation exploring a non-constant equation of state. We use a
second order expansion

w = wy + (a — D)w; + (a — 1)%w,, (4.14)

where a = 1/(1 + z) is the expansion factor [119]. The advantage of this expansion is that
it is well behaved throughout the history of the universe from early times, when a ~ 0, to
today (a = 1). This is in contrast to the often adopted expansion in terms of the redshift,
w = wo + w'z, which diverges at high redshift and so can give artificially tight constraints
on w' if CMB (or even BBN) constraints at high redshift are used, without actually saying

much about the time dependence of w in the relevant regime 0 < z < 1. In contrast, using
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Figure 4.8: 68% and 95% contours in the (w,r) plane using the WMAP+SDSS-
gal+bias+lya+SNIa constraints. The presence of tensors favors a slightly lower value of
w, but the quality of the fit is only marginally improved and the cosmological constant
model (w = —1) is near the 68% contours.
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Figure 4.9: 68% (inner, blue) and 95% (outer, red) contours in the (wg,w;) plane using
WMAP+SDSS-gal+bias+lya+SNIa measurements. We find that the simplest solution,
wo = —1, w1 = 0 (marked by a cross), fits the data best.

our expansion 0 < z < 1 covers half of the full range of w so w; is being constrained in the

regime of interest. If we impose wy = 0 then the best fit values and errors we find using all

the data are

_ +0.193 +0.384 +0.568
wo = —0.98175793 “o573 To501

_ +0.83 4+1.92 +2.88
wr = 0.05Z565 1175 118 (4.15)

We find that wg = —1, wy = 0 is well within 1-0 contour and very close to the best fit
model (figure 4.9).

The parameters wg, w1 and woy are strongly correlated, as shown in figure 4.9 for the first
two, so the error on wqy has expanded by a factor of 2 compared to the constant equation
of state case. We can explore less model dependent constraints on w(z) by computing the
median and 1, 2-0 intervals from MCMC outputs at any redshift. Over a narrow range of
redshift these contours will be nearly model independent as long as the equation of state is

a relatively smooth function of redshift. We find that the data constrain best the equation
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Figure 4.10: Median (central line), 68% (inner, red) and 95% (outer, yellow) intervals of
w(z) using all the data in the chains without tensors and with a 3 parameter expansion of
equation of state with respect to the expansion factor. Very similar results are found for
the 2 parameter expansion of w, so the constraints are reasonably model independent as
long as w is a smooth function of redshift. We find that the simplest solution, w = —1, fits
the data at all redshifts.

of state w at z = 0.3, where we find w(z = 0.3) = —1.0111“8:833 fgé{g fg:gg?. Thus z = 0.3

is the pivot point for the current measurements of equation of state and the constraint here
is nearly model independent. This is confirmed by our analysis with ws. In this case we

find severe degeneracies among the 3 paramaters, but the value at z = 0.3 is
0.106 +0.205 +0.269
w(z = 0.3) = —0.98155 150 L0219 o356, (4.16)

which is nearly the same as for the two parameter analysis with wy = 0. These constraints
are shown in figure 4.10.
The corresponding constraint at z = 1 for two parameter (wp, wi) analysis is w(z =

1) = —1.0053% 1927 033 Adding wo we find
w(z =1) = ~1.03743 103 408, (4.17)

so 1-o contours are nearly the same, while 2 and 3-¢ contours expand in the positive direction
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Figure 4.11: Same as Figure 4.10 but for MCMC with tensors.

and shrink in the negative direction compared to 2-parameter analysis. This value is thus
also relatively independent of parametrization.

Adding tensors and running to the 3-parameter expanasion of w gives,
w(z = 0.3) = ~0.914%5355 T5355 0345 (4.18)

and

w(z =1.0) = —0.931) 31 T0-8% +0-95. (4.19)

This is shown in figure 4.11. Thus, in either case, there is no evidence for any time depen-
dence of the equation of state and its value is remarkably close to -1 even at z = 1. As
for a constant w analysis we find that tensors increase the preferred value of w by about
0.1. These constraints on the time dependence of w are significantly better compared to the
0.8-0.9 allowed variation between z = 0 and z = 1 found previously [77]. Ly« forest analysis
measures the growth of structure in the range 2 < z < 4 and so helps in constraining models

with a significant component of dark energy present at z > 2 [120].
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4.4 Implications for inflation

Inflation is currently the leading paradigm for explaining the generation of structure in
the universe. Inflation, an epoch of accelerated expansion in the universe, explains why
the universe is approximately homogeneous and isotropic and why it is flat [6, 7, 8, 9].
During this accelerated expansion quantum fluctuations are transformed into classical fluc-
tuations when they cross the horizon (i.e., their wavelength exceeds the Hubble length
during inflation) and can subsequently be observed as perturbations in the gravitational
metric [11, 12, 13, 14, 15]. A generic prediction of a single field inflation models is that the
perturbations are adiabatic (meaning that all the species in the universe are unperturbed
on large scales except for the overall shift caused by the perturbation in the metric) and
Gaussian. These predictions, together with flatness (K = 0), have been explicitly assumed
in our analysis.

We note here that cyclic/ekpyrotic models [121] are an alternative to inflation, which,
despite a very different starting point and without a period of accelerated expansion, lead to
almost identical predictions as inflation [79]. Specifically, these models predict no observable
tensor contribution, spectral index ng close to unity, and negligible running [80]. Very
specific forms of cyclic potentials have not been explored in much detail in these models
and for this reason we will not discuss them explicitly below, but most of our constraints
on the form of the inflationary potential can easily be translated into the corresponding
constraints on the form of cyclic model potential.

Here we will explore a class of single field inflation models, in which there is a single
field responsible for the dynamics of inflation (even though additional fields may be present
or even required to end inflation, as in the case of hybrid inflation [122]). We will assume
the early universe is dominated by a minimally coupled scalar field ¢, which we will express
in Planck mass units setting 87G = 1. During inflation the energy density is dominated by
potential V. The Hubble parameter H? = V//3 is nearly constant and the equation of state
isw=p/p~ —1. Since H = dlna/dt it follows that the expansion factor is exponentially

increasing with time, a = aenge’ (t=tend) . One can introduce the number of e-folds before
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the end of inflation at time tg as

tend Bend |/

N = In(aepq/ao) = t H(t)dt = / quﬁ, (4.20)

0 $o
which can be computed for any specific form of the potential. Here we will define it to be
the number of e-folds before the end of inflation when the pivot point, kpivor = 0.05/Mpc,
crosses the horizon. Note that the usual definition is with respect to the largest observable
scale, k ~ 1073 /Mpc, which corresponds to AN = 4 larger number of efolds. The latter
number is expected to be between 50-60 efolds for standard inflation (64 for V o< ¢?), but
could be as low as 20 or as high as 100 in special cases [123, 124]. For our pivot point choice
we will thus adopt N = 50 as the standard value (60 for V o ¢*), but also explore more
general constraints on it.

If the kinetic energy density were negligible all the time the universe would keep expo-
nentially expanding and there would be no end to inflation. Typically therefore one must
have deviations from the pure w = —1 case. These deviations lead not only to a finite
number of efolds, but also break the scale invariance of the primordial power spectrum.
Since we know from current observational constraints that » < 1 and ngs ~ 1 we can adopt

the slow-roll approximation to relate the form of the potential to the observed quantities r,

ng, (g, and A%. The slow-roll parameters are defined as [27]

1/V'\?
w3

V//
nvo= v
Vlvl/l

Note that in some early literature the 3rd slow-roll parameter ¢ was denoted as &2 to
emphasize the point that it is generically of second order in € or n [125]. We will not use
this notation since £ can be positive or negative and since it does not have to be of second

order in the slow-roll expansion.
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The relations between the slow-roll parameters and observables are

v
Ay = ——
R 24m2ey,
r = 16ey
ng—1 = —6ey + 2ny
as = 16eyny — 24€ — 28y (4.22)
As mentioned in the previous section, we assume r = —8nr and do not consider the running

of the tensor spectral index, both of which should be valid for single field inflation in the
relevant regime.

Traditionally the inflationary models are divided into separate classes depending on the
value of first two slow-roll parameters [126, 127, 27]. Figure 4.12 shows the distribution
in the (ey,ny) plane. We see that both positive and negative values of 7 are allowed
and that there is a strong correlation between the two from the observational constraints,
a consequence of positive correlation between tensors and primordial slope. Figure 4.13
shows the distribution in the (ny,&y) plane. Both parameters are consistent with 0. The
basic constraints are € < 0.03, —0.04 < n < 0.12 and —0.015— < &y < 0.035, so all slow

roll parameters are small.

4.4.1 Large field models

The simplest inflationary models are the monomial potentials, V' = Vy¢P, for which the
first two parameters are comparable, € ~ 7, and the curvature is positive, n > 0. These
potentials occur in chaotic inflation models [128]. In these models a deviation from scale
invariance, ns — 1 = —(2+ p)/2N, also implies a significant tensor contribution, r = 4p/N,
while running is negligible, a; = —2(n, —1)*/(p +2) = —(p +2)/2N?. Because both slow-
roll parameters are of order (p/¢)? these chaotic inflation-type potentials require a large
field, ¢ > 1, to satisfy observationally required r < 1 and ns ~ 1. For this reason these
models are sometimes called large field models. While this may limit their particle physics

motivation there are brane inspired models where this property can be justified [129]. More
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Figure 4.12: 68% (inner, blue) and 95% (outer, red) contours in the (ey,ny) plane using
all the measurements without running (Table 4.1, 5th column). Also shown are the regions
occupied by the 3 classes of inflationary models. All 3 classes of models are allowed, but
individual models within each class are constrained. Note that the solutions disfavor low
energy models (e = 0) with large positive curvature (ny > 0), typical of hybrid inflation
models, as well as models where both ey is large and 7y < ey /2, typical of chaotic inflation
models with steep potentials.
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Figure 4.13: 68% (inner, blue) and 95% (outer, red) contours in the (ny,&y) plane from
MCMC with running and tensors.

generic parametrization of these models in terms of curvature is 0 < ny < 2ey.

With the exception of p = 2, chaotic models are not particularly favored from our
analysis. Figure 4.2 shows the position in the (r,n,) plane for two representative cases,
p=2and p = 4. We find that the V oc $? model (ns = 0.96, » = 0.16 for N=50) is within
the 2-sigma contour, while the V' o ¢* model (ns = 0.95, r = 0.27 for N=60) is outside
the 3-sigma contour, since it predicts more tensors and a redder spectrum for that tensor
amplitude than observed. Figure 4.14 shows all chain elements with ns; < 1 converted to
(p, N) values using the expressions above. For standard inflation we require N < 60 and
this limits us to p < 3. Similarly, figure 4.12 shows that ey > ny /2 with large ey models
are disfavored.

For specific models we also minimized x? by exploring all of the parameter space of the
remaining parameters and compared that to the global minimum in y2. We find Ax? = 5
for the V' o< ¢? model and Ax? = 13 for the V o ¢* model. These results are in agreement

with the MCMC results and show that the latter case is excluded at more than 3 — o
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Figure 4.14: Scatter plot of MCMC solutions with ns < 1 converted into the (p, N) plane
assuming relations valid for chaotic inflation models. Here p is the slope of the inflationary
potential and N is the number of e-folds. For N < 60 we require p < 3.

confidence.

4.4.2 Large positive curvature models

We turn next to models with positive large curvature, n > 2e. A generic potential of this
type can be obtained by adding a constant to the monomial potential, V' = Vi(1 4 c¢?),
where ¢ is a positive dimensionless constant. These models allow small field solutions to
inflation, ¢ < 1, and so are popular for model building in the context of supersymmetry. In
this limit, and if dimensionless ¢ is not too large, one has ¢ < 1. In such models, inflation
never ends (since the potential never drops to zero), so another field must be brought in
to accomplish this. Hybrid inflation is an example of such a mechanism [122]. If € is small
then these models predict r ~ 0 and ns; > 1 (equations (4.22), the latter condition requires
e < n/3). For p = 2 the slope is constant, ns — 1 = 2¢ and there is no running, while for
p > 2 running is negative and is given by as = —(p—2)/(p—1)[(ns — 1)]?/2. This is always

small since a large deviation in the ng > 1 direction is strongly disfavored, so ag ~ 0. Some
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of these models are disfavored: for r = 0 and in the absence of running we find n, < 1.0 at
90% confidence and ng < 1.04 at 99.9% confidence, so if €y ~ 0 then 7y > 0.02 is excluded
at 3 sigma. Thus the deviations from scale invariance have to be very small for these models

to be acceptable.

4.4.3 Large negative curvature models

The most promising models from the observational perspective are negative curvature mod-
els, 7 < 0. As noted above, the main reason that large positive curvature models are disfa-
vored is that in the absence of tensors the data favor ng < 1, while small positive curvature
models are disfavored because they predict large tensors and a red spectrum at the same
time, whereas the data are more consistent with blue spectrum if tensors are significant.
A generic potential of negative curvature models can be obtained by switching the sign on
the hybrid potential form, V' = V(1 — ¢¢P), where c is a positive dimensionless constant.
In these models the field ¢ is slowly rolling from low to high values until reaching the point
where the potential vanishes at c¢? = 1, at which point inflation stops. This is a generic
scenario of spontaneous symmetry breaking models as in the first working inflation model,
that of new inflation [8]. For p = 2 the slope is again constant at ng — 1 = —2¢ and there
is no running.

In these models one has ng —1=—-2(p—1)/(p —2)/N and as = —(p —2)/(p — 1)[(ns —
1)]2/2. The running is of order (ns — 1)?/2 and the prefactor is unity at best, so running is
negligible. The slope ns ranges between 0.96 (in the limit of [p| — co,where ng—1 = —2/N)
and 1, in excellent agreement with observational constraints.

One finds good agreement using other potentials proposed in the literature, such as
the potential based on one-loop correction in a spontaneous symmetry broken SUSY [130].
The potential is of the form V = V[1 + aln(¢/Q)]. In this model the number of e-folds
is of the order N = ¢?/2a (this expression works best if & < 1). This model predicts
ns — 1= —2afl +3a/2]/¢? and a; = —(ns — 1)%[2a + 3a2/2 + 1/2]/[1 + 3a/2]%. Running

is again negligible. Solutions with ¢ < 1 require a < ¢? < 1, in which case the slope
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becomes ng — 1 = —1/N = —0.02 for N = 50, in excellent agreement with the observed
value ng = 0.971f8:8?g.

Many other models in this class also work. A model often mentioned as an example of
allowing a large running is the softly broken SUSY model with V = V(1 — c¢?(In(¢/¢x) —
1/2)/2. This model has a large 3rd derivative for small field ¢, V""" /Vj = —c¢/¢, so it can
lead to large £ and large runnings. For this model there is an inequality relation between
slope and running of the form a4 > —%(ns —1)2 > -2 x 1073, s0 a large negative running
cannot be accommodated in this model for the allowed values of ns;. Our solutions do not
favor large negative runnings anyways, unless one is willing to consider models with massive
neutrinos whose mass exceeds 0.3eV, so this model is acceptable, but it can overpredict the
running on the positive side.

There are also examples of models which can change from one inflationary case to the

other, such as hybrid model with one-loop correction [131],

V=V, [1 +a <1n(¢/Q) + 2 (%)pﬂ ’

which under specially arranged conditions causes the slope to change from ngs > 1 on large
scale to ng < 1 on small scale. Again, there is no evidence for such a transition in the data,
so there is no need to consider these special cases.

Finally, there are models that predict the simplest possible case of r = 0, ng = 1 and
as = 0 [132]. These models are perfectly acceptable from our data.

While we only surveyed a small subset of inflationary models here, it is clear that their
generic prediction is a nearly scale invariant spectrum, |ns — 1| < 0.05, little or no tensors,
r < 1 and small running, a; ~ 1072, All of these predictions agree with our constraints.
Running is a particularly powerful test of standard inflationary (and cyclic) models in the
sense that if running turned out to be large, a large class of inflationary models would
have been eliminated. The original suggestions of running in the WMAP data sparked
a lot of theoretical interest in inflationary models with running [24, 25|, but such models
are unnatural in the sense that they require a feature in the potential at exactly the scale

of observations today. Our results suggest that the natural prediction of inflation, small
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running, is confirmed by observations.

4.5 Conclusions

In this paper we performed a joint cosmological analysis of WMAP, the SDSS galaxy power
spectrum and its bias, the SDSS Ly« forest power spectrum, and the latest supernovae SNIa
sample. We work in the context of current structure formation models, such as inflation or
cyclic models, so we assume spatially flat universe and adiabatic initial conditions. We also
ignore more exotic components such as warm dark matter. The new ingredients, SDSS Ly«
forest and SDSS bias, lead to a significant reduction of the errors on all the parameters.
Many parameters are improved in accuracy by factors of two or more. For example, for
the amplitude of fluctuations we find og = 0.90 + 0.03 and for the matter density we find
Q. = 0.28 + 0.02, both a significant improvement over previous constraints. From the
fundamental physics perspective the highlights of the new constraints are:

1) The scale invariant primordial power spectrum is a remarkably good fit to the data
and there is no evidence that the spectral index deviates from the scale invariant value
ns = 1, nor is there any evidence of its running with scale. We also find no evidence of
tensors in the joint analysis. The constraints on running have improved by a factor of 3
compared to an analysis without the new Ly« forest constraints. These provide a data
point at 2 < z < 4 and k ~ 1/Mpc, a significantly smaller scale than scales traced by the
CMB and galaxies.

2) There is no cosmological evidence of neutrino mass yet. In the standard models with
3 neutrino families we find for the total neutrino mass Y m, < 0.42eV (95% c.l.). When
our analysis is combined with atmospheric and solar neutrino experiments [92, 93] we find
that neutrino masses are not degenerate: the most massive neutrino family has to be at
least 10% more massive than the least massive family, ms/my > 1.1: the mass of the least
massive neutrino family has to be m; < 0.13eV, and that of the most massive neutrino
family mg < 0.15eV, both at 95 % c.l. In alternative models with a 4th massive neutrino

family in addition to 3 (nearly) massless ones we find m, < 0.79eV, excluding all of the
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allowed LSND islands at 95% c.1.

3) Dark energy continues to be best characterized as a standard cosmological constant
with constant energy density and equation of state w = —1. When all the data is combined
together the error on w is 0.09, a reduction compared to previously published values [2,
116, 77]. A cosmological constant with w = —1 is remarkably close to the best fit value
for a variety of different subsamples of the data. A significant region of phantom energy
parameter space with w < —1 is excluded, as are some of the tracker quintessence models
with w ~ —0.7. The current data do not support any time dependence of the equation of
state.

As the statistical errors are being reduced the required level at which systematics must
be controlled increases as well. Our limits on cosmological parameters assume that the
errors from the SDSS Lya forest SDSS power spectrum shape, SDSS bias, WMAP CMB
power spectrum, and the SNIa data are all properly characterized by the authors and that
there are no additional sources of systematic error. Each one of these ingredients has to
be tested and redundancy is necessary for the results to be believable. In our extensive
tests we find no evidence of a disagreement between the different observational inputs, but
further tests with these and other data sets are needed to verify and confirm our results. In
addition, the upcoming 2 year analysis of WMAP polarization will improve the constraints
on the optical depth and reduce the errors on parameters correlated with it.

Tests of the basic model are particularly important for Ly« forest , which is responsi-
ble for most of the improvement on the primordial power spectrum shape and amplitude.
Despite the extensive tests presented in [90], more work is needed to investigate all possible
physical effects that can modify its distribution and to see how these may affect the conclu-
sions reached in this paper. Some of these tests will come from the ongoing work on SDSS
data, such as the bispectrum analysis. Similarly, more work is needed to verify the accuracy
of simulations with independent hydrodynamic codes. The present analysis, together with
its sister papers [89, 90], is not the final word on this subject, but merely a first attempt to

take advantage of the enormous increase in statistical power given by the SDSS data [82].
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Current analysis marginalizes over many physical processes that have little or no external
constraints and as a result the statistical power of cosmological constraints from the Ly«
forest is weakened. Better theoretical understanding of these processes together with ex-
ternal constraints from additional observational tests could lead to a significant reduction
of observational errors on the primordial slope and its running even with no additional
improvements in the observations.

In summary, adding SDSS Ly« forest and SDSS bias constraints to cosmological param-
eter estimation leads to a significant improvement in the precision with which the cosmolog-
ical parameters can be determined. Despite these improvements we find no surprises. Many
of these results are not unexpected, but the tightness of the constraints is rapidly elimi-
nating many of the alternative models of structure formation, neutrinos and dark energy.
Future cosmological observations and improvements in theoretical modelling will allow us
to verify the constraints found here and improve them further. As the constraints become

tighter there may be additional surprises awaiting us in the future.



Chapter 5

Progress in Measuring the
Probability Distribution Function
of Ly-a forest flux from SDSS

quasars sample

5.1 Introduction

Ly-a forest absorption is usually observed in quasar spectra. It arises from continuosly fluc-
tuating photoionized gas in the intergalactic meduim, with density near the universal mean
and temperatures around 10* K. The behavior of the absorption field can be acquired from
primordial spectrum of fluctuations with reasonable accuracy using numerical simulations
[89, 133].

The observations of the Ly-« forest are usually described in the form of transmitted
flux fraction, F'(A) = exp[—7(A)]. Usually power spectrum Pg(k, z) of the transmitted flux
fraction is used to compare the observations [133]. There have been attempts to study the
bispectrum of Ly-a forest [120].

In this chapter we present our progress in measuring the probability distribution function

88
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p(F') of the flux F'. Measurement of the probability distribution function of the transmitted
flux should help to constrain better the mean transmitted flux, which is one of the essential
parameters in the measurement of the power spectrum. Better measurement of Ly-« forest
absorption lets us better constrain the primordial spectrum of fluctuations, and, therefore,
lets us better constrain the inflationary potential.

In order to apply our method for measuring the probability distribution function, we

first investigate how well it works on simulated MOCK spectra.

5.2 Theoretical PDF of Ly-a forest

The linear theory of Ly-a forest used for the generation of the MOCK spectra is based on

the following equations:

F=eT, (5.1)
T = Ap°, (5.2)
p=etC, (5.3)

Here § is a Gaussian random variable with variance o, 7 is the optical depth to Ly-«
absorption, and p is the mass density. The value of o usually lies in the range between 1.6
and 2.0. In Mock spectra simulations we used C = —02/2 and a = 2. The probability
distribution function of § is given by the expression

p(6) = — exp< 52). (5.4)

ov2r o\ 207

In order to find the distribution of F', we just use the fact that
p(0)dd = p(F)dF. (5.5)
After plugging in the expression for F' through ¢

F =exp (—Aea(5+c)> = exp (—Aeac ea5) . (5.6)
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Now for simplicty we denote A’ = Ae®® and ¢’ = ao. Then for the probability distribution

function of F' we get

| | 1 ,—InF
p(F) = G T F) exp <—ﬁln T > . (5.7)

From here we see that the original values of o, o, C' and A do not significantly matter since

they are swept into just two variables o/ and A’.

It is easy to check that the following equalities for equation (5.7) hold:
1
InA = / In(—In F) p(F)dF, (5.8)
0
1
o? = / (In(—InF) — In A')2 p(F)dF. (5.9)
0

Equation (5.7) is what one could observe with ideal instruments. After pixelizations and
smoothing the spectra by SDSS resolution, the probability distribution function function
changes: the peak of the function becomes narrower and taller, and the tails get more
power. Nevertheless we will use these formula (5.7) in order to estimate the tilt and the

curvature of our probability distribution function within the bins.

5.3 Reconstruction technique

We divide all the data into 13 redshift bins of width 0.2 between redshifts 2.1 and 4.7.
Within each redshift bin we use maximum likelihood method in order to reconstruct the
probability distribution function (pdf) of Ly-a forest flux. We parametrize the pdf in the
form of N bins each with equal width of dF within each redshift bin.

We choose dF to be less than 95-65% flux rms errors for all the pixels in one redshift bin.
Lower redshift bins contain up to 200,000 pixels from about 2000 spectra, higher redshift

bins contain down to 7,000 pixels from about 50 spectra.

5.4 Smoothing the spectra

We know the flux at each pixel up to some “constant”. If the “constant” is the same

everywhere, we can just found the average of the flux all over the pixels and get rid of the
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constant by making the transformation
f; = Fj/F. (5.10)

In this case the value of f; would not depend on the normalization “constant.” The flux
from the quasar is not exactly flat and one needs to take into account the deviations from
being exactly flat.

In order to take into account the changing mean flux due to different effects in the
emission quasar spectra, we find the “local” mean flux by averaging the flux around the

point of interest:

N-1 Av ) )
_ F e—A”U/zvsm 5.11
RO .11

Here summation is assumed over every pixel j. The value Fj is the mean flux at pixel [.

The comoving difference in speeds between pixels [ and j can be expressed as

AN
A b

Avyj =c (5.12)

where c¢ is the speed of light and A is the wavelength. Usually we have AX < A, therefore it
does not make difference if we take \; or \; as A. Since pixels are about the same wavelength

apart from each other, we can assume that
Avy; = (I = j)Av, (5.13)

where Av ~ 68 — 72 km/s is the comoving velocity difference between any two adjacent
pixels.

We take the smoothing velocity vgy, = 750 km/s, this is the characteristic scale beyond
which Ly-a forest power is not significant. This scale is also used in the reconstruction of
the Ly-a forest power spectrum in [133].

If F; has a Fourier transform Fj, in the form of

—1
1 2 £ g
Fj =< kz_o Fje>™ i (5.14)
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and F; is transformed through F}, in the form of
1 Nl K
oo 2T
Fi=+ I;_:()Fk/e N, (5.15)

Equation (5.11) is equivalent to

_ ,"2 2
Fy = Fje~ a2 m/? (5.16)

for Fourier transforms of the original and smoothed fluxes F and F.
Let us now assume that each pixel with flux F; has an error of the flux measurement of
;. Let us find the error of the “local” average flux o .
We assume the errors of the adjacent pixels to be independent, then accoring to the rule
of summing independent measurements from equation (5.11) we get
P <J. Av_ A/) (5.17)
B P o om . .

Bringing equation (5.17) to the form of equation (5.11) we find that

9 Av =, Avy2 < A?lej >
exp [ — :

g —— E 0'2'7
F, 2’Usmﬁ =0 .Y,Usm /271'

NG (5.18)

i.e. that the variance of the average is the smoothed with kernel vgy,/ V/2 variance of indi-
vidual pixels multiplied by a constant.

Since we are primarily interested in the value of

F
f= 7 (5.19)
its error is given as
2 2 2 2 92
g o OA _ 0% 0
f_]; — F—§+F—g—corr(F,F) F—I;F—I; (5.20)

We will use these expressions to estimate the errors of the value of f for reconstructing the
probability distribution function. By our estimates the correlation corr(F, F) between F
and F is of the order of 1/10 and we disregard it. Taking the average error into account

increases the error by 1-2% for an average spectrum.
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5.5 Subtracting the noise through maximizing the likelihood

The likelihood function for all the pixels in one redshift bin can be written as

c=TI [ /0 " b exp (—%“;#) df] - (5.21)

A
(we are looking into option of considering o) ¢ instead of o in order to take into account
not exactly “gaussianity” of the noise due to poisson noise contribution from the quasar
continuum)
In equation (5.21) we have a product of likelihoods of individual pixels A. The value of
fmaz 1s chosen to cover the whole range of possible values of fluxes. Function p(f) is the

probability distribution function we are looking for.

5.5.1 Parameterization of PDF

At first we parameterize p(f) to be constant within each bin dF', we also choose numbers

Ty, T1,...,Ty corresponding to each bin so, that

p(f € i-th bin) =

(5.22)

We assign x; for one of the bins in the center of the probability distribution function (f = 1)
where we most certainly have non-zero value of probability distribution function to 1 and

assign number N to it. This way our parameterization looks as

1 0 N N-1
. 3 1 7 T (5.23)
‘ 1+Zaz? 1+Zaz? 1+Zaz?
J J J

This parameterization provides us with always non-negative probability distribution
function and it also constrains the integral of the probability distribution function p(f)

over f to 1:

fmaz
/O p(f) df =1. (5.24)



94

Using this parameterization, the logarithm of the likelihood function (5.21) looks as

S qiax? N
l ,C: 1 1 ] T ]
ne= 3l R R

Z[lnow,\—i-ZaMw ln1+Zw (5.25)

A i

Here we defined o; ) as

I olf eXp( 2(f 2h)>df

df; D)

A T o) df
df;

(5.26)

with the integration performed over i-th bin. Equation (5.26) can be simplified in case of a

constant p(f) within the bin:

L(f—fr)?
d£ exp <—§70§ ) df

Qg \ = f df
df;

(5.27)

For minimization routine we will need the first derivatives of the logarithm of the likelihood

function (5.25) over x;:

Ooln L TN 1
= 2x; S, — 5.28
du; EA: [aN,A +3 el 14307 (529

We use standard minimization routines from Gnu Scientific Library which require the

calculation of the function and its derivatives for the minimization.

5.6 Corrections to the likelihood function

While testing our noise subtraction routine on simple distributions, we found that for such
large volumes of data as we have in the first several redshift bins from SDSS with, it is not
enough to consider the probability distribution function to be a constant within a f-bin. We
cannot reduce the size of the bin, since the minimization routine becomes highly unstable
and produces a “forest”-like probability distribution function . For the low-redshift bins we
have the rms of about 90% pixels larger than the width of our parameterization bin. It is

impossible to reduce the size of the bins for the level of noise we have in our data.
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We found disagreement with our test models in the bins where the slope of the proba-
bility distribution function is large, i.e. where there is a big sudden change in the value of
probability distribution function between adjacent bins. In order to correct for this effect
we take a function which somewhat looks like a pdf we need to reconstruct. It is important
to note that we neither require this function A(f) to be exactly like the probability distri-
bution function we are trying to reconstruct, nor do we even need it to have properties of

probability distribution function such as e.g.

fmaz
/0 A(f)df = 1. (5.29)

We just require that the function approximately had a slope similar to the slope of the
underlying probability distribution function in the problematic bins.

It is easy to correct for this effect if one takes a look at equation (5.26), we can just

substitute p(f) with A(f) as

[anen (3120 o

_dfi DY

“r = TA(f)df
df;

(5.30)

In this case our underlying probability distribution function will be approximated within

the bins in the following manner:

A(f)dfs

~PTAG df
df;

p(f) (5.31)

5.7 Results

Current results are present at Figure 5.2. At first glance one can wrongly assume that our
reconstruction ("mock.noiseless.averages.dat" u 1:2:3) is a good fit to the original
noiseless MOCK spectra ("mock.fake.PDF.00.dat" in 0 u 1:2). Actually, one should
compare our results to the same binning noiseless MOCK spectra probability distribution
function histotram ("mock.fake.PDF.00.dat.1" in O u 1:2). For 15 data points we get
x? value of 150 if one takes the correlations between the bins into account (see Figure-

fig:correlation). Without taking the correlations between the bins x? reduces to 50.



96

Apparently the MOCK simulations produce spectra with correlated flux and its noise due
to Poisson noise simulation from the quasar continuum. We tried to simulate uncorrelated
noise for each pixel and in this case our noise subtraction procedure worked fine. Currently
we are trying to include the Poisson noise correction into our algorithm.

To conclude, in this chapter we demonstrated that our approach of finding the probabil-
ity distribution function through minimizing the likelihood function using the parameteri-
zation (5.23) workse reliably well. We managed to reconstruct the probability distribution
function from data which contained 95% pixels with noise level larger than the width of the

bin.
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"Res_sort10/mock.noiseless.correlatio

Figure 5.1: An example of correlations between different pdf bins within one redshift bin.
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Figure 5.2: "mock.fake.PDF.00.dat" in O u 1:2 is the fine-binning histogram of the noiseless MOCK data.

"mock.fake.PDF.00.dat.1" in O u 1:2 is our reconstruction algorithm binning histogram of the noiseless MOCK data.
"mock.noiseless.PDF.00.dat" in O u 1:2 is the result after the subtraction of noise under the assumption of con-
stant probability distribution function within each bin width. "mock.noiseless.PDF.00.dat" in 8 u 1:2 is the similiar
to "mock.noiseless.PDF.00.dat" in O u 1:2, but if you assume that the probability distribution function behaves like
"mock.noiseless.PDF.00.dat" in 9 u 1:2 within each bin. "mock.noiseless.averages.dat" u 1:2:3 shows the errors on
the probability distribution function in each bin found from bootstrapping over all the quasars.
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Appendix A

Inflationary Equations

In this appendix we describe the technical details of the code we ran to get the results
presented in the main part of the paper. The code is given a potential V' (¢) and some point
¢o which lies in the observable range of wave-modes and, say, corresponds to the moment

I exit the horizon. We want to find the power

when wavelengths with & = 0.05 Mpc™
spectrum produced by inflation with the potential V' (¢). For this purpose we first have to
go backwards in time about 50 e-folds and then start the inflation there. This guarantees
that the inflationary dynamics are not affected by the choice of the initial condition and we
indeed have the attractor solution.

Now we evolve the universe from our “beginning of inflation” to the end of inflation, the
moment which is determined by the violation of the inequality & > 0. This part is described
below in the “non-perturbed inflationary equations” section. Usually we require 50 to 70
e-folds between ¢g and the end of inflation.

After we already have the complete background history of the evolution of the universe

during the inflationary stage of the expansion, we can start working out the evolution of

the perturbations during inflation, as discussed in the second part of the appendix.
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A.1 Non-perturbed inflationary equations

The unperturbed dynamics of inflation are described by the equation of motion of the scalar

field ¢ with potential V'(¢) in the expanding universe with the Hubble parameter H = a/a
$+3Ho+V'(¢) =0 (A1)

and the Friedman equation with only the scalar field component present in the universe

2 _ 8T 12
H? = o [V(¢) + 59 ] . (A.2)

The equations (A.1, A.2) are equivalent to the pair of Hamilton-Jacobi equation (2.1)

and
2

0= ——2H(), (A3)

The Hamilton-Jacobi equation connects the Hubble parameter and the value of the
potential of the scalar field during the inflation. In the case when we know the behavior
of the Hubble parameter it is easy to find the potential. The method of flow equations is
entirely based on this fact. In contrast, if we know the shape of the potential and want to
reconstruct the behavior of the Hubble parameter, the problem is not as simple. First of
all, as for any first order differential equation, we would like to have an initial condition
Hy = H(¢p). Due to the attractor nature of the equation (2.1) its solution does not really
depend on the initial condition Hy (we have found from numerical simulations that one
needs about 6 e-folds to forget the history). Thus it does not really matter which initial
condition we choose.

Hamilton-Jacobi equation requires that

H(9) 2 V() (A.4)
ms)
If we are going to use a method such as Runge-Kutta for the integration of the differential
equation(2.1), we might try values of H which would violate the inequality (A.4).
To avoid this complication, we reparametrize our equation using a new function 6(¢) so

that

V(o) (1+69). (A.5)

pl

H*(¢) =

3m
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Then substituting our new definition into equation (2.1) we get

H'(¢) = —‘%5 VV(@)e . (A.6)

Combining this with the expression for H' obtained from the direct differentiation of H

in (A.5), we get a differential equation for §(¢)

!
5 =—\V1+e" % [ 4o Vom) (A7)

mp1

This equation is much more pleasant to deal with numerically than equation (2.1), since it
does not have a weird boundary for §, as H did before. One can also check the attractor
nature of the equation (A.7), that it does not remember the prior history. We see now that

in the case when the potential is changing slowly ¢’ ~ 0 and we have

-1 2 2
4 m /
L (K) . (A.8)
me (V'/V) 48T \ 'V

We can use this approximate solution of the equation as the initial condition for our dif-

1)

ferential equation since it is quite close to the true solution and it will make our numerical
solution evolve into the attractor solution faster.

One can check that the expressions for ey, ny and 2¢y are given by the following

formulae
2 N\ 2
mp H 3
= _— R _ - A
¢ ir \H 14ed (A-9)
_ A
TS 4 H
my [3V! 1
= 34 —_—— A.10
4 TV 66(1+€5) ( )
25 B mél H'H"
~ 1672 H?
3m? v 1
= 3 2o TR : Al
(e +m) 8t V 1+4¢ ( )

From these expressions we can expect that in general € and 7 are continuous functions,

whereas 2¢ does not have to be continuous at points where V' is not continuous.
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The condition for inflation to take place (¢ > 0) follows from the derivative of the

Friedman equation

O V) -] = @) o), (A.12)
a 3mp1
i3 Ny - (H’<<z>>)2]
a 3m1231 1672
:%%WWLJ&.Mﬁ)
pl

The first of these two equations implies that the end of inflation happens when the inequality
e < 1 is violated. The same thing occurs when the inequality 6 < —1In2 is violated in the
second equation. The latter also means that the inflation continues while the kinetic energy

of the inflaton is less than half of its potential energy

K _ /2 _ s _

T~ V9 (A.14)

1
5
Thus we come to a physical definition of our parameter %) as the ratio of the kinetic
energy ¢2/2 to the potential energy V (¢).

In the next subsection we will be working with inflationary perturbations and it will

not be very convenient for us to work with the value of the scalar field ¢ as an independent

variable. For this purpose we will use the number of e-folds defined as

X (aH)

N =1In . A.15
(aH)o (4.15)

Note that this is the actual number of e-folds and is not the same as N = In(a/ag). The

connection between N and ¢ is determined through the derivative

dN _ 2yl —e(¢) (A.16)

do Mpl ()

We are almost done describing the background evolution of the universe, except we

have not yet chosen the initial value of the scalar field ¢;. We only have the value ¢y which

1

corresponds to the moment when the mode k£ = 0.05 Mpc™" exits the horizon. We want

to move backwards in time for about 50 e-folds. Equation (A.7) has an attractor behavior
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only when we are moving in the positive direction along the ¢-axis. It diverges from the
attractor solution in the negative direction. As a useful trick, let us modify equation (2.1)

to the following form
o 127

8w
= |le—=
ms)

[H' ()]

V(g) - H2(¢)] : (A.17)

3ml2)1
In this form, when we move backwards in time the value of H(¢) is bound by the value
of \/87V/ 3m1231 from the top and the solution cannot diverge. In addition we temporarily

redefine §(¢) to satisfy
8T

= 2
3mp1

H*(¢) V(g)(1 — '), (A.18)

Thus we get an equation analogous to the equation (A.7)

/ /
§=y1—e9 K\/1—6_‘5—1—4 il . (A.19)
Vv mpl

Equation (A.19) does not carry any physical meaning; we just use this equation to go
“upwards” to the higher values of the potential, still tracking the general behavior of V' (¢).
If we go backwards in time 50 e-folds using (A.19) and then forward in time 50 e-folds
using (A.7), we will not return to the same point ¢g, since the behavior of §(¢) in the
equation (A.19) is determined by the area which is to the right of the current value of ¢
and in the equation (A.7) is determined by the area which is on the left side. Nevertheless,
this method gives us a good estimate of what initial value of ¢; we should take.

It is also worth mentioning that this approach is not more difficult to deal with than

the inflationary flow equations (2.29-2.31).

A.2 Perturbation equations

A.2.1 Scalar mode

The algorithm for finding the scalar mode primordial power spectrum is described in the
main text (see equation (2.10) and below). Here we will just mention some technical details.
Equation (2.10) is not very convenient to solve in its current form. First of all we would

like to set the independent variable, the conformal time 7, in such a way that = — —0 as
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inflation goes on. In this case we would be able to numerically integrate equation (2.10) up
to as small values of 7 as we want. But in numerical realizations we cannot really choose
such an initial value of 7; that gives us 7 — —0 at the end of the inflation. Suppose that at
the end of the inflation we have 7 — 1—0. In this case the numerical error on 7 will be of the
order of 10~ which is a reasonable machine precision. Hence the limit on corresponding
dr is of the same order and we can explore the range of changing the scale factor a from
~ 1 to ~ 10'5, i.e. about 35 e-folds. This might be enough, but to be safe we will use
a different independent variable, the true number of e-folds N defined by equation (A.15)

which is the same as
d(aH)

dN =
aH

(A.20)
Then the mode equation (2.10) can be rewritten as

d?uy, duy,
(1-a) TR (1+0) i

2
+ <k> e 2N=No) _9(1 4 ¢)| up =0, (A.21)

ko

where coefficient a, b and ¢ can be exactly expressed through ez, ng and 26y as

a = 2€—¢, (A.22)

b = —2— €+ 2, (A.23)
1 1

c = e—gn+e2—2en+§n2+§2§. (A.24)

In equation (A.21), k is the wavelength of the interest, while ky and Ny are constants
conveniently chosen for normalization purposes.

Further, equation (2.10) has a solution

"
up, X ——e T A.25
o (A.25)
. . . 9 1d%z
at the beginning of the inflation when 7 — —oo and k° > Sd2 We also know the
zdr
1 d?
approximate behavior of uy, at later times when 7 — —0 and k? < _d—§:
zdr

Up X 2. (A.26)
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Thus it is natural to decompose uy into growing and oscillating parts
uy = e, (A.27)

where both functions A and ¢ are real functions of conformal time 7 or of the true number
of e-folds N. Then the equation (A.21) can be split into 4 ordinary differential equations

with 2 new functions A, and ¢, defined as below

dA
i A,, ~ (A.28)
d4, =K/} e N +2(1+c)— (1+b)A4,
dN 1—a
_(AI% - (2512))7 (A.29)
dp
dep (1+b)+2(1—a)4,
= —¢p — . (A.31)

This system of differential equations looks a bit more complicated than the single equa-
tion (2.10), but it is actually much easier to solve numerically. Indeed, at earlier times we
have dA/dN = A, = 0. This instaneously gives us the initial condition on d¢/ dN = op
from (A.29)

g2 — (B/K) e N =201+ (A.3)

p 1—a

as T — —o0, i.e. N — —0o. To be consistent with the initial condition on

1 —ikT
Up X ——e
V2k
as T — —oo we also require that
1
A=—=-Ink
2

as N — —oo. As the inflation continues, the terms
k2 o—2N
_k‘_g l1-a

and qbf, will balance each other on the right hand side of the equation (A.29) until A, is not

negligible in comparison to 1 in equation (A.31). Thus, around N = In(k/ko) the oscillating
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part ¢, will decrease more rapidly than before, finally exponentially dropping to zero. At
the same time A,, and therefore A, start exponentially growing. The final power spectrum
is given by

_ R k2 B
22 O<27T2e

Py (A.33)

z

Thus we even do not need information about the phase ¢ and we can freely drop equa-
tion (A.30) from our system. Also while being in the stage of inflation where wuy has an
oscillatory behavior, if one were to use the usual method without our substitution, one
would have to find the values of uy for at least 6 points per oscillation period. However
with our substitution, we easily pass this area, which does not have any interest for us since
we analytically know the behavior of uy here, and therefore move directly to the place where
we cannot solve it analytically. By our estimates this technique gives a gain of a factor of
10 in computational time, which is of particular interest if one wants to calculate the power

spectrum for e.g. 100 wavemodes.

A.2.2 Tensor mode

The calculation of the tensor mode power spectrum of perturbations is absolutely analogous

to the one for scalars, except instead of equation (2.10) one has to solve

dPuy, 1d%a
with the same initial condition
1 e—ikT

uk(T) — ﬁ

as T — —o0, where «a is the usual scale factor of the Friedman universe. One can show that

1d%a 27172 1
———==2a"H"(1— =€]. A.
a dr? “ < 2€> (A-35)
Mode equations for the amplitude and the phase of the wave (A.28-A.31) of the tensor

mode look similar except in the equations (A.22-A.24) where we have to change ¢ to d
defined as
d=—=e. (A.36)
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