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Abstract

In this work we study inflation from both theoretical and observational perspectives. In

the first chapter we investigate the accuracy of the slow-roll approximation given current

observational constraints. We find that the first order slow-roll approximation works better

than expected and that the higher order corrections do not improve the results as compared

to the exact numerical solutions.

In the second and third chapters we explore the current constraints on the cosmolog-

ical parameters using Markov Chain Monte Carlo method. We show, that for the first

year WMAP data, one should perform full marginalization over the foregrounds and exact

calculation of the likelihood function for low multipoles. Neglecting this produces signif-

icant inaccuracy in determination of basic cosmological parameters and prefers unnatu-

ral running of the primordial power spectrum from inflation. We also study the level of

Sunyaev-Zel’dovich effect in WMAP data and how it affects the cosmological parameters.

In the third chapter we perform joint analysis of Ly-alpha forest data with other available

cosmological datasets.

In the last chapter of this thesis we report our progress towards measuring the probability

distribution function of Ly-alpha forest flux from SDSS quasars. Combined together with

Ly-alpha forest flux power spectrum it can improve cosmological parameters that constrain

inflationary models.

iii



Acknowledgements

First, I would like to thank my advisor Uroš Seljak for his invaluable guidance and help
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Sarkisov, Vassos Soteriou, Peter Svrček, Fumin Zhang, Olga Zhilyaeva and many others

whom I did not mention here.

Special thanks to Patricia Li simply for sharing best moments with me.

I would especially like to thank my parents and my brother, whose constant support

was invaluable.

iv



Contents

Abstract iii

Acknowledgements iv

Contents v

List of Figures viii

List of Tables x

1 Introduction 1

2 Accuracy of Slow-Roll Inflation Given Current Observational Constraints 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Inflationary basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Quadratic potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Potential with a bump in the second derivative . . . . . . . . . . . . . . . . 16

2.5 Flow equations simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Is truncated Taylor expansion good? . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Markov Chain Monte Carlo in Application to Estimation of Cosmological

Parameters 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Effects on cosmological parameters of proper likelihood evaluations of low

multipole first year WMAP data . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Effect on cosmological parameters of Sunyaev-Zel’dovich effect in WMAP . 40

4 Cosmological parameter analysis including Ly-alpha forest 44

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Amplitude of fluctuations . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Optical depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.3 Neutrino mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.4 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.5 Spectral index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.6 Running of the spectral index . . . . . . . . . . . . . . . . . . . . . . 64

4.3.7 Matter density and Hubble parameter . . . . . . . . . . . . . . . . . 68

4.3.8 Dark energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Implications for inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Large field models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.2 Large positive curvature models . . . . . . . . . . . . . . . . . . . . 82

4.4.3 Large negative curvature models . . . . . . . . . . . . . . . . . . . . 83

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Progress in Measuring the Probability Distribution Function of Ly-α for-

est flux from SDSS quasars sample 88

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Theoretical PDF of Ly-α forest . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Reconstruction technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Smoothing the spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vi



5.5 Subtracting the noise through maximizing the likelihood . . . . . . . . . . . 93

5.5.1 Parameterization of PDF . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Corrections to the likelihood function . . . . . . . . . . . . . . . . . . . . . 94

5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A Inflationary Equations 99

A.1 Non-perturbed inflationary equations . . . . . . . . . . . . . . . . . . . . . . 100

A.2 Perturbation equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.2.1 Scalar mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.2.2 Tensor mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

References 107

vii



List of Figures

1.1 Different types of experiments let us probe different scales. . . . . . . . . . . 2

2.1 The current constraints in ns–αs plane from current data . . . . . . . . . . 11

2.2 Behavior of slow-roll parameters for potential V = m2φ2/2 . . . . . . . . . . 14

2.3 Power spectrum produced by V = m2φ2/2 . . . . . . . . . . . . . . . . . . . 15

2.4 Behavior of slow-roll parameters for potential (2.26) . . . . . . . . . . . . . 18

2.5 Power spectrum produced by potential (2.26) . . . . . . . . . . . . . . . . . 19

2.6 Behavior of slow-roll parameters for flow-equations reconstructed potential . 23

2.7 Power spectrum produced by potential reconstructed from flow-equations

simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Comparison of AKS approximation to Taylor series approximation . . . . . 27

3.1 Effects of proper likelihood calculation on Ωm constraints . . . . . . . . . . 34

3.2 Change in constraints on running αs . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Two dimensional contours in (αs, τ) and (αs, zri) planes . . . . . . . . . . . 36

3.4 Likelihood cotours in τ and αs plane . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Two-dimensional contours in (ωb, B) plane . . . . . . . . . . . . . . . . . . . 42

4.1 Contours in the planes of τ versus Ωm, h, σ8 and ns . . . . . . . . . . . . . 59

4.2 Constraints in the (r = T/S, ns) plane with and without SDSS-lya . . . . . 64

4.3 Contours in the (αs, ns) plane . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Contours in the (αs, r) plane . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Contours in the (Ωm, σ8) plane . . . . . . . . . . . . . . . . . . . . . . . . . 69

viii



4.6 Contours in the (Ωm, h) plane . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Contours in the (Ωm, w) plane . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.8 Contours in the (w, r) plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.9 Contours in the (w0, w1) plane . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 Constraints on w(z) versus redshift z . . . . . . . . . . . . . . . . . . . . . . 75

4.11 Same as Figure 4.10 but for MCMC with tensors. . . . . . . . . . . . . . . . 76

4.12 Contours in the (εV , ηV ) plane . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.13 Contours in the (ηV , ξV ) plane . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.14 Scatter plot of MCMC solutions with ns < 1 converted into the (p,N) plane

assuming relations valid for chaotic inflation models . . . . . . . . . . . . . 82

5.1 An example of correlations between different pdf bins within one redshift bin 97

5.2 Reconstruction results for the first redshift bin . . . . . . . . . . . . . . . . 98

ix



List of Tables

3.1 Cosmological parameters we use to run the MCMCs. . . . . . . . . . . . . . 32

3.2 Constraints on cosmological parameters from WMAP data alone . . . . . . 38

3.3 Constraints on cosmological parameters from WMAP+SDSS analysis . . . 39

3.4 Constraints on cosmological parameters with and without Sunyaev-Zeldovich

component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Constraints on basic 6 parameters and tensors . . . . . . . . . . . . . . . . . 54

4.2 Constraints on running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Neutrino mass constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Dark energy constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

x



Chapter 1

Introduction

Inflation is currently the leading paradigm explaining the initial conditions for our Universe.

Right after the Big Bang the Universe started exponentially expanding, which caused the

Universe to become approximately flat, homogeneous and isotropic. During this rapid ex-

pansion stage the initial quantum fluctuations transformed into classical fluctuations when

they crossed the horizon. The prediction for the produced fluctuations is that their spec-

trum is nearly scale-invariant with very little deviations. The deviations from the scale-

invariant Harrison-Zel’dovich spectrum depend on the so called inflationary potential, which

governed the accelerated expansion of the universe. Primordial fluctuations after reheating

transformed into photon and matter fluctuations, which later caused the Cosmic Microwave

Background anisotropy and the structure formation.

By measuring the fluctuations (e.g. from CMB, galaxy clustering, Ly-alpha forest etc.)

at the later times of the history of the Universe, going backwards in time we can get all

the way back to the initial inflationary potential. In this thesis we show some of the steps

which are directed towards learning more about the inflationary potential.

After WMAP [2] released their first-year data in 2003 an era of precision cosmology

came. Indeed, the accuracy of the measurements of most of the cosmological parameters

has enormousle increased. We learnt about the contents of our universe: that regular

baryonic matter composes only about 4% of the total mass of the Universe, some 22% is

1
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Figure 1.1: Different types of experiments let us probe different scales. The figure is taken
from Ref. [1].
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taken by invisible dark matter and the rest of 74% is covered by mysterious “dark energy”,

that acts as a sort of an anti-gravity.

Original first-year WMAP analysis included joint analysis of early Ly-α forest power

spectrum analysis, which detected 3σ deviation of the running of the primordial power spec-

trum from the inflationary prediction of zero running. Seljak, McDonald and Makarov [3]

showed that more rigorous analysis of the same Ly-α forest data reduced the significance

of the running discovered earlier.

A year later Slosar, Seljak and Makarov [4] demonstrated that a more accurate analysis

of low-multipole WMAP data further diminishes the running. They received this result

after proper foreground marginalization and more accurate likelihood function calculation

than in the original WMAP analysis.

Figure 1.1 shows how different experiments probe different scales. Thus, Cosmic Mi-

crowave Backgrounds measures the fluctuations at large scale of 102–104h−1Mpc, galaxy

clustering works at the scale of 102h−1Mpc and Ly-alpha forest probes small scale fluctua-

tions at the scale of 10h−1Mpc.

The initial WMAP analysis underestimated the fluctuations at both the smallest (low-

multipole CMB) and the largest scales (from early Ly-alpha forest), therefore getting sig-

nificant negative running of the slope of the primordial power spectrum of fluctuations.

This means that we have to be precise in our calculations, otherwise it can lead us to im-

proper conclusions. In this thesis, we present some of the necessary steps for more precise

measurement of the primordial fluctuations and other cosmological parameters.

In the second chapter, we look at the inflationary models that produce large negative

running. We look at how accurately slow-roll approximation can describe the primordial

spectrum of fluctuations for such models and whether we need more precise exact numerical

solutions of the inflationary equations.

In the third chapter of this thesis we look at how full foreground marginalization and

exact likelihood calculation of low-multipole data from WMAP affects the estimation of the

cosmological parameters. We also investigate how the level of Sunyaev-Zel’dovich effect in
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WMAP maps modifies our estimates.

In the fourth chapter, we present results of joint analysis of Ly-alpha forest power

spectrum together with CMB and galaxy clustering data. We find improved constraints

on the mass of neutrinos, the equation of state of the dark energy and the slope and the

running of primordial power spectrum.

In the last chapter, we report our progress towards measuring the probability distribu-

tion function of Ly-alpha forest flux from SDSS data sample. The pdf knowledge should

help improve measurement of the mean flux of Ly-alpha forest, and, therefore, to give better

estimates of the flux power spectrum. This technique should produce more precise deter-

mination of the amplitude of the primordial fluctuations on small scales. Combining with

future CMB experiments we will be able to determine the exact form of the inflationary

potential corresponding to the wide range of scales.



Chapter 2

Accuracy of Slow-Roll Inflation

Given Current Observational

Constraints

This chapter has been published as: A. Makarov, “On the accuracy of slow-roll inflation

given current observational constraints,” Phys. Rev. D 72, 083517 (2005) [5]

Original abstract: We investigate the accuracy of slow-roll inflation in light of current

observational constraints, which do not allow for a large deviation from scale invariance.

We investigate the applicability of the first and second order slow-roll approximations for

inflationary models, including those with large running of the scalar spectral index. We

compare the full numerical solutions with those given by the first and second order slow-roll

formulae. We find that even first order slow-roll is generally accurate; the largest deviations

arise in models with large running where the error in the power spectrum can be at the level

of 1-2%. Most of this error comes from inaccuracy in the calculation of the slope and not

of the running or higher order terms. Second order slow-roll does not improve the accuracy

over first order. We also argue that in the basis ε0 = 1/H, εn+1 = d ln |εn|/dN , introduced

by Schwarz et al. (2001), slow-roll does not require all of the parameters to be small. For

example, even a divergent ε3 leads to finite solutions which are accurately described by a

5
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slow-roll approximation. Finally, we argue that power spectrum parametrization recently

introduced by Abazaijan, Kadota and Stewart does not work for models where spectral index

changes from red to blue, while the usual Taylor expansion remains a good approximation.

2.1 Introduction

Inflation is a theory which postulates that a rapid expansion of the universe occurred right

after the Big Bang [6, 7, 8, 9]. Most inflationary models can be represented by an effective

single field model with effective potential V . The inflaton with mass m rolls down the po-

tential until the kinetic energy of the inflaton is greater than half of its potential energy. At

this point the inflationary expansion of the universe stops and the next phase of reheating

occurs. During the inflationary expansion, the initial quantum fluctuations exponentially

increase and become classical [10, 11, 12, 13, 14, 15]. These classical fluctuations also seed

the subsequent growth of large scale structure. There is a well defined procedure which

allows us to find the spectrum of the fluctuations given the inflationary potential. Because

exact solutions are numerically intensive several appoximations have been developed. The

most common approximation is the slow-roll approximation. Recently the so-called uni-

form approximation was suggested [16, 17]. Reference [18] developed improved WKB-type

approximation.

If the kinetic energy of the inflaton is much smaller than its potential energy, we say

that the inflaton is slowly rolling down its potential. In this slow-roll approximation we

can obtain analytical formulae for the produced power spectrum in the form of a Taylor

series expansion in a set of slow-roll parameters. The coefficients in the Taylor expansion

of the logarithm of the power spectrum in ln k effectively define the slope ns − 1, running

αs and higher derivatives. We usually derive the slow-roll formulae through the time delay

formalism or Bessel function approximation. Therefore there are some implied conditions

on the accuracy of the slow-roll approximation depending upon the slow-roll parameters.

References [19, 20] found that there are areas in the slow-roll parameter space where the

accuracy of slow-roll approximation is questionable. This usually requires a large deviation
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of ns from 1. However it contradicts the latest observations [2, 21, 22].

Recently there has been a lot of renewed interest in models with large running of the

scalar index [23, 24, 25]. It is not clear whether slow-roll approximation is accurate in this

area of parameter space, as in some expansions one of the slow roll parameters becomes

large and the expansion is no longer well controlled [20]. Another issue is the question of

where to stop the expansion. Although it is often assumed that the running is O
(

(ns − 1)2
)

,

reference [26] found that there are cases where it can be as large as ns − 1. In this case one

should also consider the effect of including the running of the running of ns, i.e. the second

derivative of ns over ln k. These are the issues addressed in this paper. We begin with a

short review of the basic physics of inflation and the algorithm of numerical solutions to

the inflationary equations, with more details given in appendix. We continue by comparing

the numerical solutions to those given by slow-roll approximations and finally we present

our conclusions.

In this paper we use a standard convention for reduced Planck mass mpl = G
−1/2
N .

2.2 Inflationary basics

In the “Hamilton-Jacobi” formulation, the evolution of the Hubble parameter H(φ) during

inflation with potential V (φ) is given by (e.g. see [27])

[

H ′(φ)
]2 − 12π

m2
pl

H2(φ) = −32π2

m4
pl

V (φ). (2.1)

The number of e-folds N since some initial time is related to the value of the scalar field

φ by

dN

dφ
= − 4π

m2
pl

H(φ)

H ′(φ)
. (2.2)

We will consider the situation when the value of the scalar field is growing in time, dφ/dt > 0.

Then by our convention dN/dt is also positive, dN/dt > 0.

In the literature, different sets of slow-roll parameters are used. Reference [28] introduce

potential slow-roll parameters which are constructed on the basis of the derivatives of the



8

inflationary potential V (φ). Authors of [29] define Hubble slow-roll parameters through the

derivatives of the Hubble parameter H(φ) with respect to the field φ during inflation

εH(φ) =
m2

pl

4π

(

H ′(φ)

H(φ)

)2

, (2.3)

ηH(φ) =
m2

pl

4π

H ′′(φ)

H(φ)
, (2.4)

nξH(φ) =

(

m2
pl

4π

)n
(H ′)n−1H(n+1)

Hn
. (2.5)

In this parameterization when the inequality εH(φ) < 1 fails, the inflation immediately

stops. Sometimes 2ξH is also denoted ξH or ξ2
H though it can take negative values. In this

paper we will use ξH ≡ 2ξH .

Reference [30] introduces another basis of “horizon-flow” slow-roll parameters through

the logarithmic derivative of the Hubble distance ε0 = dH = 1/H(N) with respect to the

number of e-folds N to the end of inflation

εn+1 =
d ln |εn|

dN
. (2.6)

The connection between any two of these sets can be found in e.g. [30]. Thus the first

three horizon-flow slow-roll parameters are connected to the first three Hubble slow-roll

parameters as [29, 31, 20]

ε1 = εH , (2.7)

ε2 = 2εH − 2ηH , (2.8)

ε2ε3 = 4ε2
H − 6εHηH + 2ξH . (2.9)

There is an analytical connection between Hubble slow-roll parameters and potential slow-

roll parameters [29].

References [32, 33, 34, 35] use differently defined sets of slow-roll parameters, but they

still can be converted to the ones we have described here (e.g. see [30]).

Thus any inflationary model can be completely described by the evolution of one of the

sets of the parameters.
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The condition for the inflation to occur is ε1 = εH < 1 or εV . 1 since εH = εV to first

order.

To find the power spectrum of the perturbations produced by a single field inflation, one

can follow the prescription of Grivell and Liddle [36]. One solves the equation [37, 38, 33]

d2uk

dτ2
+

(

k2 − 1

z

d2z

dτ2

)

uk = 0 (2.10)

for each mode with wavenumber k and initial condition uk(τ) → 1√
2k

e−ikτ as τ → −∞.

Then the spectrum of curvature perturbations is given by

PR(k) =
k3

2π2

∣

∣

∣

uk

z

∣

∣

∣

2
. (2.11)

The quantity z in equation (2.10) is defined as z = aφ̇/H for scalar modes and z = a for

tensor modes. Then for scalar modes [36]

1

z

d2z

dτ2
= 2a2H2

[

1 + εH − 3

2
ηH + ε2

H − 2εHηH +
1

2
η2

H +
1

2
ξH

]

. (2.12)

One can parametrize the power spectrum of the scalar and tensor modes of the fluctu-

ations amplified by the inflation as

ln
P(k)

P0
= (n − 1) ln

k

k∗
+

α

2
ln2 k

k∗
+

β

6
ln3 k

k∗
+ . . . (2.13)

around some conventional pivot point k∗. Leach et al. [20] give expressions for the scalar

spectral index ns, the running of the scalar spectral index αs, the tensor spectral index nt

and the running of the tensor spectral index αt in terms of the horizon-flow parameters.

Here we reproduce their second order formulae for ns − 1 and αs

ns − 1 = −2ε1 − ε2 − 2ε2
1

−(2C + 3)ε1ε2 − Cε2ε3, (2.14)

αs = −2ε1ε2 − ε2ε3, (2.15)

where C = γE + ln 2 − 2 ≈ −0.7296.

Reference [20] also analyzes the accuracy of the approximation (2.13) for parameteriz-

ing the inflationary power spectrum of fluctuations with β = 0 for different values of the

parameters r, ns and αs.
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In this paper we will also compare the second order formulae (2.14, 2.15) to the first

order formulae given by

ns − 1 = −2ε1 − ε2, (2.16)

αs = −2ε1ε2 − ε2ε3. (2.17)

The expression for αs is the same as in the second order formula because the expression

for αs is derived using only first order expression for ns. Thus the main difference between

first and second order formulae comes from the extra terms in the expression for ns − 1.

Current observational constraints on r, ns and αs are given by [39, 22, 4]. At 95%

confidence level, the tensor to scalar ratio is R < 0.50, which implies that the first horizon-

flow parameter ε1 is much smaller than one. Current constraints on the scalar spectral

index give us ns = 0.98 ± 0.02, which in turn means that the second horizon-flow slow-roll

parameter is much smaller than one.

Present data does not require the presence of running in the primordial power spectrum

[40], but running as large as ±0.03 is still allowed at 3-σ [22]. Regular inflationary models

usually predict |αs| ∼ (ns − 1)2 and so the running is of the order of 10−3, as is the case for

the minimally-coupled V (φ) = λφ4 model with 60 e-folds remaining.

But it is possible that |αs| � (ns − 1)2 and αs < 0, which means that the main part

in the running of the spectral index (2.15) is determined not by the first term −2ε1ε2, but

by the second term −ε2ε3. It happens when |ε3| � |ε1|, and therefore there might be a

situation when |ε3| > 1.

To summarize, if ns ≈ 1 and αs is a small negative number, at some scale we might have

ε1 � 1, ε2 � 1 and |ε3| > 1. Leach et al. [20] define inflation satisfying slow-roll under the

condition |εn| � 1, for all n > 0. In our case ε3 > 1, so the question arises as to whether

slow-roll in this case is accurate or whether the approximation breaks down and one must

also include terms with higher powers in ε3. Does it mean that the inflation is not slow-roll

and one must use full numerical solutions instead? And does it mean that one must also

include the running of the running? These are the main questions we address in this paper.

To address them we have developed the numerical code described in appendix A.
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Figure 2.1: The current constraints (68% and 95% confidence level contours) in the ns–
αs plane from WMAP+SDSSgal (bigger, red) and WMAP+SDSSlya (smaller, green) data
[22, 4, 39, 21]. The constrained region clearly allows the value of the spectral scalar index ns

to be around 1 and the running αs of the scalar spectral index to be significantly non-zero
for either combination of the experiments.
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How natural is it for inflation with a given number from 50 to 70 e-folds remaining to

produce a power spectrum with a changing tilt? In the absence of theoretical guidance on the

inflationary space we cannot address this question simply. Authors of [23] have produced

about 200,000 simulations of the inflationary flow equations for more or less “random”

potentials, and calculated the observable parameters (ns, αs, r, nt, αt) of the resulting

power spectra about 40 to 70 e-folds before the end of the inflation for each potential.

About 80,000 of them fall into the area plotted on Fig. 2.1 and are marked as black dots.

Only the fifteen marked with larger yellow circles give a significant change in the tilt from

red to blue, i.e. ns ∼ 1, αs < −0.02.

Choosing the Hubble parameter to be represented by a Taylor expansion in φ with

uniformly distributed coefficients, as done in [23], does not necessarily correspond to the

real inflationary priors [41]. We do not address this issue here; instead we want to simply

stress that possibility of constructing a potential with a large running in the scalar power

spectrum 40-70 e-folds before the end of the inflation exists.

2.3 Quadratic potential

As a test of our code, in this section we investigate how well the slow-roll formulae work in

the slow-roll regime for one of the usual potentials that do not predict large running. As

an example we will consider a simple quadratic potential, V = m2φ2/2, which is a classic

example of chaotic inflation. The second panel from the bottom in Fig. 2.2 effectively shows

the dependence of z′′/z on the number of the e-folds for inflation with such a potential. The

behavior is monotonic and very smooth, which is due to the smoothness of the derivatives

of the potential. Since z′′/z scales as 2a2H2, we plot the quantity

1

2a2H2

z′′

z
− 1 (2.18)

instead (compare to equation (2.12)).

The top two panels show the dependence of εH , ηH and ξH on the number of e-folds. The

only significantly non-zero term is εH , which gradually grows to 1 at the end of inflation.
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The values of ηH and ξH are typically smaller by roughly 103 and 104 respectively.

Figure 2.3 shows the primordial power spectrum produced by the quadratic potential.

The second panel from the bottom describes the error produced by the slow-roll approx-

imations. The first order approximation gives less than 0.2% error in the observed range

of wavenumbers k. The second order approximation works slightly better; the error is just

above 0.1%. Both of these numbers are likely to be good enough for the upcoming ex-

periments. This is because the accuracy at large scales is limited by the finite number of

modes, while at small scales it is limited by the nonlinear evolution. So, while the overall

amplitude could in principle be determined to an accuracy of 0.1% when CMB and lensing

information is combined, it is unlikely that such a precision will be achieved separately at

two widely separated length scales.

Taking a more careful look at the error plot, one sees that the error curve in the observed

area is basically a straight line, meaning that the main source of error is not the imprecise

value of αs but the error in ns. Let us estimate now how precisely we need to know ns to

get an error of, say 0.2%, in the observed range. The imprecision δns in ns will give us the

uncertainty

δns
1

2
ln

kmax

kmin
= 0.002. (2.19)

Taking the observed range of k’s to be from 10−3 Mpc−1 to 1 Mpc−1, we find that one

needs to find ns with the precision of δns = 6 · 10−4.

The same allowed uncertainty δαs in αs is estimated from

1

2
δαs

(

1

2
ln

kmax

kmin

)2

= 0.002. (2.20)

Therefore δαs = 3 · 10−4 is the error which we can make in determining αs in order to get

an error in the power spectrum of 0.2% at the edges of the observed range of k’s.

The two top panels of Fig. 2.3 compare the numerically found dependence of ns and αs

on k to the one found from the slow-roll approximation with the first order αs and either

the first or second order for ns. One should compare the discrepancies between these to the

values of δns and δαs. The characteristic value of ns is .964 and the discrepancy between
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Figure 2.2: Panels from the bottom to the top: 1. Potential V = m2φ2/2 in the range of
φ’s where the inflation occurs around 50 e-folds before the end of inflation. The scale in
V is not COBE-normalized on this plot. 2. The dependence of z′′/z on the number of the
e-folds during the inflation. Number of e-folds N = 0 corresponds to our arbitrarily chosen
pivot scale of k = 0.05/Mpc. 3. Plots of Hubble slow-roll parameters εH , ηH , ξH . The value
of εH is non-negligible whereas ηH and ξH are essentially zeros. 4. Plots of horizon-flow
slow-roll parameters ε1, ε2, ε3 and the product of ε2ε3 for the same inflationary model. Since
in this case εH � ηH , ξH , the value of ε1 is essentially ε1 ≈ εH and ε2 ≈ ε3 ≈ 2εH . Nothing
unexpected is going on here for this model.
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Figure 2.3: Panels from the bottom to the top: 1. Power spectrum produced by inflation with
potential V = m2φ2/2. 2. Errors made by approximating the true scalar power spectrum
by (2.13) with calculating ns and αs from first order slow-roll formulae (2.16, 2.17), second
order slow-roll formulae (2.14, 2.15) and calculating them through numerical derivatives.
Numerical third order takes into account third logarithmic derivative of the power spectrum
βs in parameterization (2.13). 3. The evolution of ns−1 is calculated numerically and by the
first and second order slow-roll formulae. 4. The evolution of αs is calculated numerically
and by the slow-roll formulae (first and second order slow-roll are the same for αs). The
error plot clearly shows that the main error comes from the imprecision of ns − 1, whereas
the approximation for the αs works well enough. One can also see that in the case of this
potential both first and second order slow-roll formulae for ns − 1 overestimate the real
value of ns − 1.
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the exact value and the one found from the slow-roll approximation is comparable to δns.

Running αs takes values around −6.5 · 10−4. The discrepancy between the exact and the

slow-roll values is very small in comparison to δαs. One can also notice that in this case

|αs| ≈ 2δαs. Thus, even if we assigned αs = 0, we would not get a significant error in the

approximation of the primordial power spectrum of the scalar perturbations.

To summarize this section, for standard inflationary potentials, the slow-roll approxi-

mation suffices even at first order when compared to the expected accuracy of existing and

future experiments. The second order approximation, while improving the accuracy, is not

really necessary. The main error of slow-roll when considered in contrast to the numerical

solutions is the inaccuracy in the slope ns; inaccuracies in higher order expansion terms,

such as the running, are less important and can even be ignored.

2.4 Potential with a bump in the second derivative

We want to construct a potential which will give us a strong running and crossing of the

point ns = 1 in the observable power spectrum. We want to have ns > 1 at earlier times

in inflation, while at later times we want to have ns < 1. To get the desired result, one can

take two different potentials producing such features and smoothly connect them.

One can rewrite slow-roll formulae (2.14,2.15) through the potential slow-roll parameters

as

ns − 1 = −6εV + 2ηV , (2.21)

αs = 16εV ηV − 24ε2
V − 2ξV . (2.22)

Now let us just choose our potential to be

V (φ) = 1 − 0.01φ − 1.20φ2 (2.23)

for all φ > 0. This choice provides about 50 e-folds of inflation after φ = 0. Since the

local properties of the power spectrum are mostly determined by the local “history” of the

slow-roll parameters at the moment of the horizon crossing, we can get a red tilt of the
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scalar power spectrum ns ≈ 0.80 in the area where the “history” before point φ = 0 is

not very important. To get an approximately symmetric shape of the power spectrum we

choose V (φ) to be

V (φ) = 1 − 0.01φ + 1.20φ2 (2.24)

for all φ < 0. In this case for wave modes which cross the horizon far before the moment

when the scalar field takes the value of φ = 0, the spectral index of the primordial power

spectrum has a blue tilt ns ≈ 1.20. Thus between these two regions the spectral index

changes from 1.20 to 0.80. We can unite formulae (2.23) and (2.24) into

V (φ) = 1 − 0.01φ − 1.20φ2 sign φ. (2.25)

This potential has continuous first and second derivatives, but has a bump in its third

derivative. This makes
1

z

d2z

dτ2
in (2.12) discontinuous around φ = 0. According to [42] this

produces oscillations in the power spectrum, which we can indeed see for the potential (2.25).

To avoid the oscillations we smooth out the sign φ function, changing it to
2

π
arctan(200φ).

In this case (2.25) changes to

V (φ) = 1 − 0.01φ − 1.20φ2 2

π
arctan(200φ), (2.26)

which is shown on Fig. 2.4. We have chosen 200 as the coefficient in front of φ in the arctan

function so that the produced power spectrum has a nice shape as in Fig. 2.5.

The two top panels of Fig. 2.4 show the behavior of the slow-roll parameters εH , ηH ,

ξH and ε1, ε2, ε3, ε2ε3 correspondingly. While nothing unexpected happens to the behavior

of the conventional Hubble slow-roll parameters εH , ηH and ξH , there appears to be a

singularity for the horizon-flow parameter ε3. However, notice that the product ε2ε3 behaves

smoothly and remains small due to the fact that the parameter ε2 is changing its sign and

therefore crossing through zero. Thus the parameterization of equation (2.6) introduces a

singularity which is not physically present in the model.

Figure 2.5 shows the power spectrum produced by the model of inflation with the poten-

tial (2.25). The second panel from the bottom shows the errors made by different approx-

imations. We again observe a similar picture for the slow-roll formulae. The main source
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Figure 2.4: Panels from the bottom to the top: 1. Potential (2.26). 2. Effectively this plot
shows the dependence of z′′/z on the number of the e-folds during the inflation. 3. Plots
of Hubble slow-roll parameters εH , ηH , ξH . Though the potential has a singular behavior,
all the flow parameters are smooth. 4. Plots of horizon-flow slow-roll parameters ε1, ε2, ε3

and the product of ε2ε3 for the same inflationary model. While everything is fine with ε1,
ε2 and ε2ε3, the value of ε3 indeed flips over infinity.
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Figure 2.5: Panels from the bottom to the top: 1. Power spectrum produced by (2.26).
2. Errors made by approximating the true scalar power spectrum by (2.13) with calculating
ns and αs from first order slow-roll formulae (2.16, 2.17), second order slow-roll formulae
(2.14, 2.15) and calculating them through numerical differentiation. Numerical third order
takes into account third logarithmic derivative of the power spectrum βs in parameterization
(2.13). 3. The evolution of ns−1 is calculated numerically and by the first and second order
slow-roll formulae. 4. The evolution of αs is calculated numerically and by the slow-roll
formulae (first and second order slow-roll are the same for αs). The error plot clearly shows
that the main error comes from the imprecision of ns−1, whereas the approximation for the
αs works well enough. We see that in the case of this potential, first order slow-roll formula
for ns − 1 underestimates the real value, while the second order formula overestimates it.
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of error for either the first or second order approximations comes not from the value of αs

but from the error in the value of ns. From the second panel from the top, we can estimate

that the discrepancy is of the order of 0.01 for

δns = nexact
s − napprox

s (2.27)

which gives an error of

δns
1

2
ln

kmax

kmin
≈ 4% (2.28)

in the produced power spectrum at the edges of the observed range. Both the first and

second order slow-roll approximations for ns work somewhat unsatisfactory. The first order

slow roll underestimates ns and the second order overestimates it by about the same amount.

On the other hand, if our goal is to focus on running alone regardless of the slope

and use just that property to deduce something about the potential, then the slow-roll

does very well, since the differences between the slow-roll and numerical value of running

are very small even at the lowest order in slow-roll. Extra terms in the expansion (2.13)

further improve the accuracy. Adding running of the running improves the accuracy over

the observed range from 1% to 0.2%.

In summary, for potentials that lead to large running, slow-roll does not estimate the

slope ns very accurately at either first or second order, while the accuracy of the running

αs suffices for the existing and future experiments. If we observe over a wide range of scales

then it is useful to add the cubic term. Second order slow-roll does not seem to improve

the accuracy.

2.5 Flow equations simulations

Kinney [43] introduced a formalism based on the so-called flow equations, further discussed

in [41]. The basic idea is that if one fixes the Hubble slow-roll parameters (2.5) at some

point in time for εH , ηH and `ξH up to ` = M and assumes that all the other Hubble

slow-roll parameters are small enough that one can neglect them in one’s calculations (i.e.

`ξH = 0 for all ` ≥ M + 1) then, without any other assumptions about inflation being
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slow-roll, one can find the Hubble slow-roll parameters at any other moment of time using

the following hierarchy of linear ordinary differential equations:

dε

dN
= −2ε(η − ε), (2.29)

dη

dN
= εη − 2ξ, (2.30)

d `ξ

dN
= [`ε − (` − 1)η] `ξ − `+1ξ (2.31)

for all ` = 2 . . . M assuming M+1ξ = 0.

Usually when we set up an inflationary problem, we choose a potential V (φ) and then

reconstruct the form of the Hubble parameter during inflation using the main nonperturbed

Hamilton-Jacobi inflationary equation (2.1), which gives us an attractor solution H(φ) which

in the inflationary class of problems almost does not depend on the initial condition.

By following the method prescribed by [43] one avoids solving the main attractor in-

flationary equation (2.1), as pointed out by [41]. Indeed, the assumption `ξH = 0 for all

` ≥ M + 1 requires that H(`)(φ) = 0 for all ` ≥ M + 2. Consequently, H(φ) is a polynomial

of order M + 1:

H(φ) = H0(1 + A1φ + A2φ
2 + A3φ

3 + · · · + AM+1φ
M+1). (2.32)

In this case the function H(φ) is an attractor solution of equation (2.1) with a potential in

the form

V (φ) = −
m4

pl

32π2

(

[H ′(φ)]2 − 12π

m2
pl

H2(φ)

)

= −
m4

pl

32π2
H2

0

[

(

A1 + · · · + (M + 1)AM+1φ
M
)2

− 12π

m2
pl

(

1 + A1φ + · · · + AM+1φ
M+1

)2

]

. (2.33)

Thus the only differential equation one needs to solve in order to match up the number

of e-folds and the value of the scalar field φ is

dN

dφ
=

2
√

π

mpl

1
√

ε(φ)
. (2.34)
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Here again ε(φ) is defined as in the equation (2.5):

ε(φ) =
m2

pl

4π

(

H ′(φ)

H(φ)

)2

=
m2

pl

4π

(

A1 + 2A2φ + · · · + (M + 1)AM+1φ
M

1 + A1φ + A2φ2 + · · · + AM+1φM+1

)2

. (2.35)

We do not have to numerically solve the hierarchy of M differential flow equations.

Instead we have analytical expressions for V (φ) and H(φ).

The late attractor ε = `ξ = 0 and η = const, found by [43], corresponds to the situation

where the inflation proceeds to the value of the scalar field φ, which is a solution of the

equation ε = 0

A1 + 2A2φ + · · · + (M + 1)AM+1φ
M = 0. (2.36)

At this point if A2 6= 0, then η = const 6= 0 due to the definition of η, which does not

involve ε at all. All the other `ξ = 0 since any of them is a product of the first derivative of

the Hubble parameter (which is zero) with some higher order derivatives.

Peiris et al. [23] made M = 9-th order flow equation simulations; about 40, 000 are shown

as black dots on Fig. 2.1. Fifty points fall into the range |ns − 1| < 0.05 and αs < −0.02;

these are shown in yellow. Among these point we have chosen 13 which fall into the narrow

interval |ns−1| < 0.02, and we have reconstructed the corresponding inflationary potentials

for the inflationary models which give such significant running, together with ns extremely

close to 1.

The bottom panel in Fig. 2.6 shows a potential from such a model with an unusually

high value of the running αs. We notice that there is a small dip in the potential. Some of

the potentials with high αs from the simulations had unrealistically high values of the tensor

to the scalar ratio, but all of them had quite similar shapes. The second from the bottom

panel of Fig. 2.6 shows the characteristic behavior of the function z′′/z which influences the

scalar power spectrum as we have seen earlier. The top two panels show the dependence of

the slow-roll parameters on the number of e-folds. As in the other case with large running,

we find a singularity for the horizon-flow slow-roll parameter ε3, while the product ε2ε3

behaves smoothly and ε2 crosses zero.
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Figure 2.6: Panels from the bottom to the top: 1. Potential reconstructed from one of the
flow equations simulations. 2. Effectively this plot shows the dependence of z′′/z on the
number of the e-folds during the inflation for this potential. 3. Plots of Hubble slow-roll
parameters εH , ηH , ξH . All of them are smooth. 4. Plots of horizon-flow slow-roll parameters
ε1, ε2, ε3 and the product of ε2ε3 for the same inflationary model. While everything is fine
with ε1, ε2 and ε2ε3, the value of ε3 again flips over infinity.
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Figure 2.7: Panels from the bottom to the top: 1. Power spectrum produced by potential
on Fig. 2.6. 2. Errors made by approximating the true scalar power spectrum by (2.13) with
calculating ns and αs from first order slow-roll formulae (2.16, 2.17), second order slow-roll
formulae (2.14, 2.15) and calculating them through numerical differentiation. Numerical
third order takes into account third logarithmic derivative of the power spectrum βs in
parameterization (2.13). 3. The evolution of ns − 1 is calculated numerically and by the
first and second order slow-roll formulae. 4. The evolution of αs is calculated numerically
and by the slow-roll formulae (first and second order slow-roll are the same for αs). The
error plot clearly shows that the main error comes from the imprecision of ns − 1, whereas
the approximation for the αs works well enough. One can also see that in the case of this
potential first order slow-roll formula for ns − 1 underestimates the real value, while the
second order formula overestimates it.
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The bottom panel in Fig. 2.7 shows the power spectrum of scalar and tensor perturba-

tions produced by inflation with the potential under consideration. The second from the

bottom panel shows the error produced by every one of the approximations for the power

spectrum. We again see that both first and second order slow-roll formulae do not give a

satisfactory result for ns. One of them again overestimates ns; the other underestimates it.

The error for either of the approximations is about 2–4%.

The error introduced by the approximate formula for the running αs is a bit smaller than

the one for ns, but it is somewhat larger compared to the quadratic potential we considered

in the previous section.

Chen et al. [44] perform a similar analysis of slow-roll approximation. Using the flow-

equations technique, they found discrepancy of larger than 0.01 for ns between second

and third order slow-roll approximations for some of the models. Based on this fact they

conclude that third order slow-roll is better. For the model we considered in this section

we have found that the third order slow-roll does not improve the results of the second

order approximation. In our calculations both formulas give identical results leading to

approximately the same order of error as the first order approximation.

2.6 Is truncated Taylor expansion good?

Recently Abazajian, Kadota and Stewart [45] have argued that if

|αs ln(k/k∗)| & |ns − 1|, (2.37)

then the traditional truncated Taylor series parameterization is inconsistent, and hence

it can lead to incorrect parameter estimations. One can notice that Taylor expansions

P (x) =
∑

aix
i of functions x2 or cos x around x = 0 also violates the condition a1 & a2x,

but no one argues that these expansions are not valid. Abazajian et al. propose to use the

parameterization

lnP(k) = lnP0 +
(ns − 1)2

αs

[

(

k

k∗

)
αs

ns−1

− 1

]

(2.38)

instead.
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There is one significant disadvantage of this approach. In particular, using this pa-

rameterization to describe P as a function of k, one is able to describe only a growing or

decreasing function, which can be easily seen from the form of the function. The models we

study in this paper produce scalar power spectra which are not purely growing or decreasing

(e.g. see Fig. 2.7).

In the previous section we have considered the potential which produces power spec-

trum satisfying equation (2.37). On Fig. 2.8 we compare the traditional truncated to second

and third order Taylor expansion and the parameterization (2.38). We find that the pa-

rameterization (2.38) gives a significantly larger error than, e.g. the second order Taylor

expansion.

Thus we found that in this particular case though equation (2.37) holds, truncated

Taylor expansion is a good approximation and the AKS approach does not improve it.

There might be models for which equation (2.38) works better than Taylor expansion, but

it is definitely not an improvement for a general case and should be used with caution, if at

all.

2.7 Conclusions

In this paper we have explored the accuracy of the slow-roll approximation given the ob-

servational constraints on the primordial scalar and tensor power spectra. The current

constraints can be roughly described by the tensor to scalar ratio r < 1, small deviation

from the scale invariance of the scalar power spectrum, |ns−1| < 0.05 and small but possibly

nontrivial running, |αs| < 0.03. These constraints allow for the particular case where ns ∼ 1

and |αs| > 0.01, which has previously been argued to not satisfy the slow-roll condition.

We have computed exact numerical solutions for the considered potentials and compared

them to those obtained from the first and second order slow-roll approximations.

We have found that for the potentials explored here, there is no substantial difference

when using first or second order slow-roll formulae for the power spectrum index ns. Both

of them either work well in the case of small running or have a comparable error in the case
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Figure 2.8: The bottom panel shows the numerically calculated power spectrum of the
potential we used in section 2.5 and it’s approximations by the second order Taylor ex-
pansion and by Abazajian, Kadota and Stewart (AKS) parameterization (2.38). The top
panel shows the error produced by each of the parameterizations. We have also added the
error produced by the third order Taylor expansion here. AKS parameterization acceptably
describes the true power spectrum in a very narrow range of k’s around the pivot point
k = 0.05 Mpc−1. It does not improve the truncated Taylor expansion over the wider range
of k’s.



28

of non-negligible running. Adding extra (cubic in lnk) terms in the approximation for the

scalar power spectrum extends the accuracy to a larger range of scales, but this accuracy

is most likely not necessary for existing and near future experiments. If the values of ns

and αs are known with the precision δns = 6 · 10−4 and δαs = 3 · 10−4, then the scalar

power spectrum will have an error of about 0.2% at the edge of the observable range of

wavenumbers k’s.

The horizon-flow basis εn+1 = d ln |εn|/dN introduces an artificial singularity for infla-

tionary models with negative running and the value of the spectral index crossing 1. Such

a divergence in one of the horizon-flow parameters does not indicate that the slow-roll ap-

proximation has been badly broken. We find that the slow-roll is still accurate at the 1-2%

level and most of the error comes from inaccuracies in the evaluation of the slope itself, and

not the running. Thus the first order slow-roll approximation is sufficiently accurate for the

current observations. Only if the running turns out to be large, while the slope remains

close to scale-invariant, are exact numerical calculations required to achieve sub-percent

accuracy. In the appendix we present a short guideline on performing such calculations.

One can request the code directly from the author.



Chapter 3

Markov Chain Monte Carlo in

Application to Estimation of

Cosmological Parameters

This and the next chapters are based on the work I have done in the following publications:

• U. Seljak, P. McDonald and A. Makarov, “Cosmological constraints from the CMB

and Ly-alpha forest revisited,” Mon. Not. Roy. Astron. Soc. 342, L79 (2003) [3]

• A. Slosar, U. Seljak and A. Makarov, “Exact likelihood evaluations and foreground

marginalization in low resolution WMAP data,” Phys. Rev. D 69, 123003 (2004) [4]

• K. M. Huffenberger, U. Seljak and A. Makarov, “Sunyaev-Zeldovich effect in WMAP

and its effect on cosmological parameters,” Phys. Rev. D 70, 063002 (2004) [46]

• U. Seljak, A. Makarov et al., “SDSS galaxy bias from halo mass-bias relation and its

cosmological Phys. Rev. D 71, 043511 (2005) [47]

• U. Seljak, A. Makarov et al. [SDSS Collaboration], “Cosmological Parameter Analysis

Including Sdss Ly-Alpha Forest And Galaxy Bias: Constraints On The Primordial

29
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Spectrum Of Fluctuations, Neutrino Mass, And Dark Energy,” Phys. Rev. D 71,

103515 (2005) [22]

• U. Seljak, A. Makarov, P. McDonald and H. Trac, “Can Sterile Neutrinos Be The

Dark Matter?,” arXiv:astro-ph/0602430 [48]

• N. Padmanabhan et al., “The Clustering of Luminous Red Galaxies in the Sloan

Digital Sky Survey Imaging Data,” [49]

3.1 Introduction

Very often in cosmological applications we need to find best fit cosmological parameters to

a combination of different datasets. Usually we have to deal with at least 6 parameters,

in one of our applications we were working in about 50 dimensions. For apparent reasons,

regular grid method for exploring the likelihood surfaces does not work. Indeed, if we had

to have 10 points in each of N dimensions, it would take us 10N likelihood evaluations.

Taking into account that the modern datasets require heavy numerical calculations to find

the likelihood, the problem becomes almost impossible to solve. Markov Chain Monte

Carlo approach drastically decreses the required number of calculations, for most of our

applications we did not more than 100, 000 likelihood function evaluations.

Markov Chain Monte Carlo approached is based on rejection Metropolis-Hastings algo-

rithm. By comparing likelihood of the current chain position to the likelihood of a randomly

chosen “candidate”, we either accept or reject it depending on the likelihood ratio of these

two points. Finally we end up with a chain of points which are distributed with proportion-

ally to the likelihood of the datasets of the interest. Markov Chain Monte Carlo method

has been widely used in biological applications for estimation of parameters, it was first

applied to cosmology in Ref. [50]. Later it became very popular [51, 52] and now it is one

of the primary methods used for estimation of the cosmological parameters.
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3.2 Method

We use Markov Chain Monte Carlo method in order to analyze the likelihood surfaces in

many dimensional paremeter space. We use the custom developed code which was also

used in [22, 47, 46, 4, 3]. A typical chain run consists of 15 or 31 independent chains. The

effective combined chain length is at least 3,000 and usually of the order of 5,000 – 10,000

noncorrelated chain elements. The acceptance rate varies depending on the dimensionality

of the parameter space and the datasets used and usually is about 30-60%. We also check the

sufficient convergence and mixing of the chains in terms of Gelman and Rubin R̂ statistics

[53]; in particular we require for all the chains to have at least R̂ < 1.05.

The most common parameter space we explore is

p = {ωb, ωm, ΩΛ, τ, ns, As, αs, r, w, Ωt,
∑

mν , b}, (3.1)

where ωb = Ωbh
2, where Ωb is baryon density in units of critical density and h is the Hubble

constant in units of 100 km/s/Mpc; ωm = Ωmh2 where Ωm is matter density in units of

critical density; ΩΛ is the dark energy today and w is its equation of state; Ωt is the total

density of the universe; τ is the optical depth;
∑

mν is the mass of massive neutrino masses

(we consider either 3 degenerate neutrino families or 1 massive in addition to 3 massless);

As, ns and αs are used to describe the primordial power spectrum of scalar perturbations

around pivot point k0 = 0.05/Mpc

P0(k) = As exp

[

(ns − 1) ln
k

k0
+

1

2
αs ln2 k

k0

]

. (3.2)

We calculate the linear power spectrum and Cosmic Microwave Background anisotropy

via cmbfast [54].

For the chains including tensors, we parametrize them through their amplitude At = rAs

at the same pivot point k0 = 0.05/Mpc. We fix the the tensor slope to be nt = −r/8. We

summarize this information in Table 3.1.

In fact to optimize the MCMC production we use the standard approach of selecting

the orthogonal set of the appropriate combinations of cosmological parameters (e.g., see
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Parameter Description Comment Prior

ωb Physical baryon density ωb = Ωbh
2

ωm Physical matter density ωm = Ωmh2

ΩΛ Dark energy density
h Hubble constant in units of 100 km/s/Mpc h2 = ωm/(Ωt − ΩΛ) 0.45 ≤ h ≤ 0.90
τ Reionization optical depth 0.0 ≤ τ ≤ 0.8
As Scalar fluctuation amplitude P0(k) at k0 = 0.05/Mpc
ns Scalar spectral index ns = d lnP0(k)/d ln k at k = k0 0.4 ≤ ns ≤ 1.6
αs Running of spectral index αs = d2P0(k)/d ln k2 at k = k0

r Tensor to scalar ratio r = At/As r ≥ 0
w Dark energy equation of state
Ωt Total desity of the universe Ωt = Ωm + ΩΛ 0.5 ≤ Ωt ≤ 1.5
∑

mν Sum of neutrino masses 3 massive, or 1 massive + 3 massless
∑

mν ≥ 0
b Galaxy bias factor Pgal(k) = b2Plin(k) b > 0

Table 3.1: Cosmological parameters we use to run the MCMCs.
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[55, 56]) as acoustic peak scale θs, CMB peak suppression factor e−2τ , etc. This parameters

effectively diagonalize the covariance matrix of the original parameter set. We do not report

the values of these parameters in our results. Also we do not report them for As; we present

the value of the amplitude of fluctuations σ8 instead.

3.3 Effects on cosmological parameters of proper likelihood

evaluations of low multipole first year WMAP data

This section primarily presents the results of reference [4]. When the WMAP [57, 21] re-

leased it first-year data, a question arose about the abnormally low value of the quadrupole,

which was also observed by COBE. As was pointed out in [58, 4], it can be explained by

the inaccuracy in the calculation of the likelihood function for low WMAP multipoles be-

cause of approximate calculation of the tails of the liklihood function away from its peak.

Reference [4] also tries to show the effects of the full marginalization of the foreground

contamination.

In this section we show the effect on the determination of the cosmological parameters

after proper treatment of the above problems.

Figure 3.1 shows the effect of the proper treatment of WMAP likelihood evaluation on

the constraint of the matter density Ωm. We can see that more accurate consideration of

the likelihood evaluation prefers a slightly lower value of Ωm. Thus Table 3.2 shows that

the original WMAP analysis gives Ωm = 0.29+0.08
−0.06, whereas e.g. VKP2 mask analysis gives

Ωm = 0.24+0.07
−0.05.

Figures 3.2 and 3.3 show the change in the constraints on the slope ns and running

αs from WMAP analysis together with SDSS galaxies clustering. One can see that the

main result here is that the new preferred value of the running is only half a sigma away

from zero, as opposed to the original WMAP analysis finding two-sigma deviation of the

running from zero. Actually, the simplest Harrison-Zel’dovich power spectrum of primordial

fluctuations with ns = 1 and αs = 0 lies in the center of the preferred region. Indeed, there
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Figure 3.1: Probability distribution p(Ωm) and its cumulative value
∫ Ωm

−∞ p(Ω′
m)dΩ′

m

for 5-parameter MCMCs of WMAPext data (bottom) and for 8-parameter MCMCs of
WMAPext+SDSS data (top). We present V frequency map and both KP0 and KP2 mask
results for the full likelihood analysis of 5-parameters MCMCs of WMAPext data and V
KP2 for full likelihood analysis of 8-parameter MCMCs of WMAPext+SDSS data. Also
shown for comparison are the results using regular (old) WMAP analysis routine.
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plane from WMAP+VSA and WMAP+VSA+SDSS data.

is a degeneracy between spectral index ns and running αs in CMB data. By reducing the

value of αs we also shift the preferred value of ns closer to 1.

Figure 3.4 shows the two-dimensional contours in αs−τ and αs−zri plane with just CMB

data and CMB and SDSS data together. One can see that without the galaxy clsutering data

there is a strong degeneracy between the running αs and the optical depth to reionization τ

which doesn’t allow us to constrain either of them. Addition of the SDSS galaxy information

helps us to resolve the degeneracy and allows us to forbid the area with extremely high

running of αs ∼ −0.15.

Tables 3.2 and 3.3 show the constraints on the rest of the parameters. One can see that

the effect on most other parameters is within one-sigma of the original value. For example

constraint on tensor component from the original analysis is T/S < 0.76 at 95% confidence

level, it changes to T/S < 0.81 for the new modified likelihood calculation.

To conclude, we have shown that the effects of the proper likelihood evaluation and

marginalization are really important for estimating the cosmological parameters from WMAP
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5p old 5p VKP2 5p VKP0 8p old 8p VKP2

102ωb 2.40+0.06
−0.06

+0.12
−0.13 2.38+0.06

−0.07
+0.13
−0.13 2.39+0.06

−0.06
+0.13
−0.13 2.37+0.17

−0.16
+0.35
−0.32 2.49+0.19

−0.17
+0.39
−0.34

Ωm 0.29+0.08
−0.06

+0.16
−0.11 0.24+0.07

−0.05
+0.15
−0.10 0.26+0.07

−0.06
+0.16
−0.11 0.20+0.07

−0.06
+0.16
−0.10 0.15+0.06

−0.04
+0.13
−0.07

ωcdm 0.12+0.017
−0.017

+0.03
−0.03 0.11+0.016

−0.016
+0.03
−0.03 0.11+0.017

−0.016
+0.03
−0.03 0.10+0.017

−0.017
+0.03
−0.03 0.09+0.016

−0.015
+0.03
−0.03

τ 0.17+0.04
−0.04

+0.08
−0.09 0.21+0.04

−0.04
+0.07
−0.08 0.19+0.04

−0.04
+0.08
−0.08 0.23+0.05

−0.08
+0.07
−0.16 0.24+0.05

−0.08
+0.06
−0.17

σ8 0.94+0.07
−0.08

+0.13
−0.17 0.90+0.08

−0.09
+0.15
−0.19 0.92+0.08

−0.09
+0.15
−0.19 0.81+0.12

−0.13
+0.25
−0.26 0.75+0.13

−0.13
+0.24
−0.25

h 0.72+0.05
−0.05

+0.10
−0.08 0.75+0.05

−0.05
+0.11
−0.09 0.73+0.05

−0.05
+0.11
−0.09 0.78+0.08

−0.07
+0.19
−0.13 0.87+0.09

−0.08
+0.19
−0.15

T/S 0 0 0 < 0.76 (95%) < 0.81 (95%)

ns 1 1 1 0.95+0.07
−0.07

+0.14
−0.15 1.02+0.07

−0.07
+0.15
−0.15

αs 0 0 0 −0.08+0.05
−0.06

+0.10
−0.13 −0.04+0.05

−0.06
+0.10
−0.13

Table 3.2: Median value, 1σ and 2σ constraints on cosmological parameters for various MCMCs based on WMAP data alone.
5p denotes varying 5 basic cosmological parameters in MCMCs, while 8p stands for 8 parameter chains. Old stands for the
evaluation of the WMAP likelihood using the current WMAP provided software, VKP2 is our new exact likelihood evaluation
analysis of V maps using KP2 mask and VKP0 is the same for KP0 mask.
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8p SDSS+old 8p SDSS+VKP2 8p SDSS+WKP2 7p SDSS+VSA+VKP2

102ωb 2.40+0.16
−0.16

+0.32
−0.30 2.48+0.16

−0.16
+0.30
−0.31 2.47+0.16

−0.16
+0.31
−0.30 2.34+0.18

−0.15
+0.52
−0.28

Ωm 0.31+0.06
−0.05

+0.13
−0.08 0.27+0.05

−0.03
+0.11
−0.06 0.28+0.05

−0.04
+0.11
−0.07 0.30+0.06

−0.05
+0.12
−0.10

ωcdm 0.128+0.009
−0.008

+0.019
−0.016 0.121+0.008

−0.007
+0.017
−0.014 0.123+0.008

−0.007
+0.017
−0.014 0.123+0.008

−0.008
+0.017
−0.018

τ 0.20+0.07
−0.08

+0.09
−0.14 0.20+0.07

−0.08
+0.09
−0.14 0.20+0.07

−0.08
+0.09
−0.14 0.19+0.11

−0.08
+0.26
−0.13

σ8 0.98+0.08
−0.09

+0.16
−0.16 0.97+0.09

−0.09
+0.16
−0.16 0.97+0.09

−0.09
+0.16
−0.16 0.93+0.12

−0.08
+0.29
−0.13

h 0.70+0.05
−0.05

+0.09
−0.09 0.73+0.04

−0.04
+0.08
−0.09 0.73+0.04

−0.04
+0.08
−0.09 0.70+0.05

−0.05
+0.14
−0.08

T/S < 0.46 (95%) < 0.46 (95%) < 0.47 (95%) 0

ns 0.97+0.06
−0.06

+0.11
−0.12 1.01+0.05

−0.06
+0.10
−0.11 1.02+0.05

−0.06
+0.10
−0.11 0.97+0.06

−0.06
+0.16
−0.11

αs −0.060+0.038
−0.039

+0.074
−0.083 −0.015+0.036

−0.037
+0.072
−0.080 −0.032+0.036

−0.038
+0.072
−0.080 −0.022+0.034

−0.032
+0.069
−0.062

Table 3.3: Same as Table 3.2 for WMAP+SDSS (8-parameter MCMCs with regular (old) or corrected (exact likelihood) anal-
ysis). The new analysis uses V KP2 with full marginalization and W KP2 with dust marginalization only. We also give
WMAP+SDSS+VSA (7-parameters). For the latter case we do not impose τ < 0.3.
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data. Thus the correct calculation prefers lower value for the matter density Ωm, less sig-

nificant running αs and slightly higher value of the slope ns.

3.4 Effect on cosmological parameters of Sunyaev-Zel’dovich

effect in WMAP

In the literature, several groups [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71] have tried

to determine the level of Sunyaev-Zel’dovich (SZ) contamination in WMAP data. Most

of them came to different conclusions, some of the recent ones (e.g. [69])found a high

level of SZ and, therefore, questioned the validity of the WMAP cosmological parameter

estimations.

We describe amplitude of SZ with B, the ratio of the SZ power spectrum and the

predicted spectrum, assuming they have the same shape. Thus the SZ amplitude is dimen-

sionless, and has a theoretically predicted value B = 1 for σ8 = 0.9 using the halo models

of [72].

In this section we estimate how much SZ signal is in the WMAP Cl power spectrum,

and investigate the effect of SZ on the determination of the cosmological parameters. For

this purpose we use the Markov Chain Monte Carlo (MCMC) approach, using software

described in more detail elsewhere [3, 4].

We ran two MCMCs, one without SZ and one allowing for an unconstrained SZ contri-

bution. We built a third chain from the second by importance sampling, allowing for an SZ

component but constraining it to limits derived based on frequency information in the pre-

vious section. We used the WMAP likelihood routine [57, 21]. Each of the chains contains

100,000 total chain elements. The success rate is 45–55 percent, the correlation length is

13–20 elements, and the effective length is 5,000–10,000 elements. Each chain comprises 23

independent sub-chains and, in terms of Gelman and Rubin R̂-statistics [53], we find the

chains are sufficiently converged and mixed (R̂ < 1.01, compared to the recommended value

of R̂ < 1.2).
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In the second chain, we added to the power spectrum an SZ-shaped contribution, pa-

rameterized in terms of amplitude B. The WMAP power spectrum combines the Q, V and

W bands in different ratios at each l, so the shape of the SZ contribution to the WMAP

power spectrum is not exactly given by the single frequency SZ template, because the effec-

tive frequency for every l varies. This dependence is small and we ignore it here. We find

that the SZ contribution to the WMAP combined temperature power spectrum, dominated

by V and W channels, may be approximated as 75% the contribution in RJ. One could also

add additional CMB experiments (e.g. CBI, VSA, etc.) into the analysis, but this would

incur complications to account for the different frequencies of these experiments. In the

third chain we add our multi-frequency analysis limit as an additional constraint.

We consider only the simplest model required by the data plus the SZ component,

since we want to analyze the effect of the latter on the cosmological parameters. WMAP

temperature data require neither tensor modes nor curvature nor running of the primordial

power spectrum of the scalar perturbations, so we do not consider them.

We work in a seven parameter space:

p = {ωb, ωcdm, Ωm, τ, As, ns, B}. (3.3)

Here ωb = Ωbh
2 is the baryonic content of the universe, ωcdm = Ωcdmh2 is the physical

density of the cold dark matter content, Ωm = Ωcdm + Ωb = 1 − ΩΛ is the matter density

today, τ is the optical depth to reionization, As is the amplitude of the primordial scalar

perturbations, ns is the primordial slope, and as before B is the amplitude of the SZ power

spectrum.

To reduce the degeneracies while running the MCMCs, we use ωb, ωcdm, angular size of

the sound horizon Θs, lg As, ns, lg As−τ−0.5 lg(ωb+ωcdm), and B, instead of the parameters

in equation 3.3. We adopt broad flat priors on these parameters, and additionally require

τ < 0.3.

We find that the amplitude of an SZ-shaped component to the WMAP power spectrum

is limited to B < 7.1 at 95 percent confidence. This limit means that the contribution to

the WMAP temperature power spectrum at the first peak is below 5 percent. This is a
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Figure 3.5: We show two-dimensional contours of 68% and 95% confidence levels in (ωb, B)
plane. The larger (blue) contours show the degeneracy using the WMAP combined tem-
perature power spectrum without any prior on SZ. The smaller (red) contours include our
multi-frequency cross-spectrum analysis as a prior. B = 1 is expected from halo models for
SZ when σ8 = 0.9.

weaker limit than from the combination of cross-spectra, where a factor of 2 better limit

was found.

Table 3.4 shows the comparison of the two MCMCs, showing the effect of including SZ in

the analysis. The inclusion of the additional parameter B into the likelihood analysis affects

only the determination of the baryon physical density ωb. Without SZ we find ωb = 0.0235,

whereas with SZ we find ωb = 0.0251, which is shifted by about 1.5σ away from the earlier

value. The confidence contours in the (ωb, B) plane are shown in Figure 3.5, showing that

there is a degeneracy between these two parameters. However, we can and should also use

the constraint from our multi-frequency cross-spectrum analysis as a prior. We can include

the Gaussian likelihood for B from reference [46], and perform importance sampling of the

chain with SZ. We then find ωb = 0.0243, different from the case without SZ by 0.6σ. The

likelihood contours including the prior are also shown in Figure 3.5. The other parameters



43

no SZ with SZ, no SZ prior with SZ prior

B 0 < 7.1 (95%) < 2.9 (95%)

ωb × 102 2.35+0.14
−0.13

+0.28
−0.26 2.51+0.21

−0.18
+0.47
−0.33 2.43+0.15

−0.15
+0.30
−0.29

Ωm 0.245+0.07
−0.06

+0.15
−0.10 0.234+0.07

−0.06
+0.15
−0.10 0.243+0.07

−0.06
+0.15
−0.10

ωcdm 0.111+0.016
−0.015

+0.033
−0.029 0.111+0.016

−0.016
+0.033
−0.030 0.111+0.016

−0.016
+0.033
−0.031

τ 0.19+0.07
−0.08

+0.10
−0.14 0.20+0.07

−0.08
+0.10
−0.14 0.19+0.07

−0.08
+0.10
−0.14

σ8 0.88+0.12
−0.11

+0.25
−0.20 0.86+0.12

−0.11
+0.24
−0.22 0.87+0.12

−0.11
+0.23
−0.22

h 0.74+0.06
−0.05

+0.12
−0.09 0.76+0.07

−0.06
+0.14
−0.11 0.75+0.06

−0.05
+0.13
−0.10

ns 0.99+0.04
−0.04

+0.07
−0.07 0.99+0.04

−0.04
+0.07
−0.07 0.99+0.04

−0.04
+0.07
−0.07

Table 3.4: The first two columns contain the median value and 1- and 2σ constraints on
cosmological parameters for two MCMCs without and with a Sunyaev-Zeldovich component
in the Cl power spectrum from WMAP data alone. For both chains there was an imposed
prior of τ < 0.3. The third column shows the constraints when the limit on SZ from our
cross-spectrum estimator is applied as a prior.

are much less affected by the SZ.

The next largest deviation from the first chain to the second is a shift in the median

h of about 0.3σ towards higher value, which is not statistically significant and the effect is

even smaller if the constraints from previous section are added to the chains.

By searching for an SZ-shaped component in the WMAP combined spectrum with a

Markov chain Monte Carlo we do not find any evidence of a signal, but we can only set

a weak limit. Another method [46] sets a stronger limit, at 95% confidence the amplitude

of SZ is below 2% of the CMB at the position of first peak in W band. Combining the

analyses, we show that the cosmological parameters are not affected by the SZ within the

range allowed by the multi-frequency analysis.



Chapter 4

Cosmological parameter analysis

including Ly-alpha forest

4.1 Introduction

Many different cosmological observations over the past decade have helped build what is

now called the standard cosmological model. These observations suggest that the universe

is spatially flat, contains baryons, dark matter and dark energy. The primordial spectrum

of fluctuations is approximately scale invariant and initial fluctuations are Gaussian and

adiabatic. This standard cosmological model can be described in terms of only a few

parameters, which explain a large number of observations, such as the cosmic microwave

background (CMB), galaxy clustering, supernova data, Hubble parameter determinations,

and weak lensing. The latest results come from Wilkinson Microwave Anisotropy Probe

(WMAP) CMB measurements [73, 57, 74], Sloan Digital Sky Survey (SDSS) and Two

degree Field (2dF) galaxy clustering analyses [1, 75, 76], and from the latest Supernovae

type Ia (SNIa) data [77, 78].

While the standard model is observationally well justified, many theoretical models

predict that there should be observable deviations from it. Perhaps the best motivated

among these are the predictions of how the universe was seeded by initial fluctuations.

44
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The standard paradigm is inflation, which predicts that the fluctuations should be almost,

but not exactly, scale invariant [27]. A typical deviation for the slope of the primordial

perturbations is predicted to be of order of a few parts in a hundred away from its scale

invariant value ns = 1 and could be of either sign. This should be observable with high

precision cosmological observations. Despite tremendous progress over the past couple of

years the current constraints do not yet distinguish between different inflationary models

[23, 39]. Alternative models also predict deviations from scale invariance similar to inflation

[79]. Another prediction of these models is that the rate of change of slope with scale is

rather small, αs = dns/d ln k ∼ (ns − 1)2 ∼ 10−3, which should not be observable in the

near future. A third prediction that can distinguish among the different models is the

amount of tensor perturbations they predict. Some models predict no detectable tensor

contribution [27, 80], while other models predict a tensor contribution to the large scale

CMB anisotropies comparable to that from scalars. It is clear that determining the shape

and amplitude of the scalar and tensor primordial power spectra will be one of the key tests

of various models of structure formation.

Current observational constraints on the primordial power spectrum are mostly limited

to scales larger than 10h−1Mpc. There are various reasons for this: CMB fluctuations are

damped on small scales and their detection would require high resolution, low noise de-

tectors, which are only now being built. Even with sufficient signal-to-noise and angular

resolution there may be secondary anisotropies that may contaminate the signal from pri-

mary anisotropies. On small scales, matter undergoes strongly nonlinear evolution, which

erases the initial spectrum of fluctuations and prevents galaxy clustering and weak lensing

surveys from extracting this information. On the other end, the largest observable scale is

the horizon scale seen by CMB fluctuations. The small number of available modes on the

sky prevents one from accurately determining the primordial spectrum on these scales from

the CMB. The largest scales probed by galaxy clustering are even smaller. As a result, the

primordial power spectrum is currently probed over a relatively narrow range of scales and

the shape of the primordial power spectrum cannot be accurately determined.
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To improve these constraints one should determine the fluctuation amplitude on smaller

scales. Nonlinear evolution prevents one from obtaining useful information at z = 0, so

one must look for probes at higher redshift. Of the current cosmological probes, the Ly-α

forest – the absorption observed in quasar spectra by neutral hydrogen in the intergalactic

medium (hereafter IGM) – has the potential to give the most precise information on small

scales [81]. It probes fluctuations down to megaparsec scales at redshifts between 2-4, so

nonlinear evolution, while not negligible, has not erased all of the primordial information.

In this chapter we combine CMB/LSS constraints with the new analysis of the Ly-α

forest from SDSS data [82]. The Sloan Digital Sky Survey [83] uses a drift-scanning imaging

camera [84] and a 640 fiber, double spectrograph on a dedicated 2.5 m telescope. The SDSS

data sample in data release two [85] consists of more than 3000 QSO spectra with z > 2.2,

nearly two orders of magnitude larger than previously available [86, 87, 88]. This large

data set allows one to determine the amplitude of the flux power spectrum to better than

1%. Theoretical analysis of this flux power spectrum shows that at the pivot point k=0.009

s/km in velocity coordinates, which is close to k=1h/Mpc in comoving coordinates for

standard cosmological parameters, the power spectrum amplitude is determined to about

15% and the slope to about 0.05, with the error budget dominated by uncertainties in

theoretical modelling [89, 90]. This is an accuracy comparable to that achieved by WMAP.

More importantly, it is at a much smaller scale, so combining the two leads to a significant

improvement in the constraints on primordial power spectrum shape over what can be

achieved from each data set individually.

A second theoretical prediction where the basic cosmological model is expected to re-

quire modifications is that neutrinos have mass. Atmospheric mixing and solar neutrino

results suggest that the total minimum neutrino mass is about 0.06eV [91, 92, 93]. These

observations are only sensitive to relative neutrino mass differences and not to the absolute

neutrino mass itself. Cosmology on the other hand can weigh neutrinos directly. Massive

neutrinos slow down the growth of structure on small scales and modify the amplitude

and shape of the matter power spectrum. They also modify the CMB power spectrum. If
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one measures both the CMB and matter power spectra with high precision across a wide

range of redshifts and scales then one can determine the neutrino mass with high accuracy

[94]. The question of neutrino mass is also interesting in light of recent Los Alamos Liquid

Scintillator Neutrino Detector (LSND) experimental results, which, if taken at a face value,

suggest mν > 0.9eV [95, 96], which should be observable by cosmological neutrino weighing.

A third theoretical prediction of departures from the standard model, and one whose

consequences would be particularly far reaching, is that dark energy is not simply a cos-

mological constant introduced already by Einstein, but something more complicated and

dynamical in nature. In the case where dark energy is a scalar field one would expect that

it has a kinetic energy term in addition to the potential term, which modifies its equation of

state. This is expected to evolve with time, but theoretical predictions are rather uncertain

and are suggestive at best. A change in equation of state changes both the rate of growth

of structure and the angular size of the acoustic horizon in the CMB. As a result these

changes can be observed both through the CMB and by comparing the growth of structure

at different redshifts.

Many different methods have been discussed in the literature on how to improve the

current constraints from methods such as supernovae type Ia (SNIa), CMB, weak lensing,

and cluster abundances. One method to constrain the nature of dark energy that has not

attracted much attention, yet has the potential to produce results on a relatively short time

scale, is comparing measurements of amplitude of fluctuations at high redshift from the

Lyα forest and CMB to that at low redshift from galaxy clustering. Dark energy affects

the rate of growth of structure, especially for z < 1 where dark energy is dynamically

important. In this paper we combine WMAP and SDSS Lyα forest measurements at high

redshifts, where dark energy is expected to be negligible, with the amplitude determination

at z = 0.1 from the SDSS galaxy bias analysis [47]. In general, galaxy clustering is believed

to be proportional to matter clustering on large scales up to a constant of proportionality.

This constant, the so called bias, is a free parameter that cannot be determined from the

clustering analysis itself. There are many different methods for how to determine the bias
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and thus the amplitude of matter fluctuations such as redshift space distortions [97, 1],

the bispectrum [98], or weak lensing [99, 100], but the current constraints are weak. A

recent analysis of the luminosity dependence of galaxy clustering [1], combined with a

determination of the halo mass distribution for these galaxies, provides a new constraint on

the bias and amplitude of fluctuations in SDSS data [47].

One difference of the current paper in comparison with previous analyses of this type is

that we present 68.32%, 95.5% and 99.86% confidence intervals (we denote these the 1, 2,

and 3-σ intervals, but note that they do not depend on the assumption of Gaussianity in the

error distribution) on all the parameters (or 95% and 99.9% confidence level upper limits in

the case of no detections). Sometimes the 3-σ intervals can be significantly different from

3 times the corresponding 1-σ intervals. This can happen if there are degeneracies in the

data that appear to be broken at 1-σ, but that the 2 or 3 σ contours allow. In this case

the 3-σ constraints are weaker than the corresponding 1-σ intervals would suggest. The

opposite can happen as well, especially if there is a natural boundary that the parameter

cannot cross (such as a parameter being positive definite). More generally, presenting 1-σ

contours alone is not very meaningful, since whatever is within 1-σ is essentially a good fit

to the data. One can argue that the goal of observations is to exclude regions of parameter

space and this is much better represented by reporting 2 and 3-σ contours than the best fit

value and its 1-σ range.

Another issue that we address in detail is the robustness of the constraints against the

number of parameters one is exploring. Sometimes the constraints change significantly if

new parameters are added to the mix because these new parameters are degenerate with

parameters one is interested in. However, often the quality of the fit is not improved at

all and moreover these new parameters may not be well motivated from the perspective

of fundamental theories or other considerations. In this case one is entitled to adopt an

Occam’s razor argument against the introduction of these parameters in the estimation. To

some extent this is always a subjective procedure, since what is natural for one person may

not be for someone else. It has also been argued that one should pay a penalty for each new
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parameter that is introduced which does not improve the quality of the fit [40]. However,

this procedure is also poorly defined and there is no unique choice for the penalty. In this

paper we explore both the solutions with the minimum number of parameters as well as

with several additional parameters. We believe that there is merit to the approach which

parametrizes the constraints with as few parameters as possible, so our main results are

given for this case. However, one also wants to know how robust and model independent are

the constraints, which we explore by adding several additional parameters to the analysis.

The outline of this paper is as follows. We first present the method, then our basic

results in several tables and then discuss them in detail. We focus particularly on the

question of how have the new results improved upon the previous constraints and how

robust are the conclusions upon removing one or more of the data ingredients. The latter

is particularly interesting in light of possible systematic effects that may be present both

in the new analyses of Lyα forest and bias as well as in previous analyses of WMAP, SDSS

galaxy clustering, and SNIa.

4.2 Method

We combine the constraints from the SDSS Ly-α forest [82] with the SDSS galaxy clustering

analysis [1], SDSS bias analysis [47], and CMB power spectrum observations from WMAP

[73, 57, 74]. We verified that including CBI, VSA, and ACBAR [101, 102, 103] makes very

little difference in the final results and we do not include them in the current analysis.

Similarly, we verified that including the latest 2dF power spectrum analysis [76] in addition

to SDSS does not make much difference, so we do not include those constraints either. We

could have used 2dF constraints instead of SDSS, but we chose not to because for 2dF

the bias constraints are somewhat weaker [98] and we would like to have an independent

verification of results that use the 2dF bias [2]. We will thus refer to CMB constraints

as WMAP, to LSS/galaxy clustering constraints as SDSS-gal, to SDSS bias constraints as

SDSS-bias and to SDSS Ly-α forest constraints as SDSS-lya. We have added earlier Lyα

forest constraints in a weak form [87, 104], which have a small, but not negligible effect. We
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do not include more recent Lyα forest constraints [86, 105] since there are signs of systematic

discrepancy and/or underestimation of errors when compared to SDSS Lyα forest data [82].

To this we add the latest supernova constraints as given in [77]. We do not use this full

combination in all calculations, since we want to emphasize what the new constraints bring

to the mix and we want to explore the sensitivity of the constraints to individual data sets.

For example, for the investigation of the shape of the primordial power spectrum we perform

the analysis using WMAP+SDSS-lya alone and show that this combination in itself suffices

to constrain the running by a factor of 3 better than combining everything else together. We

also perform several analyses by dropping one of the constraints and explore the robustness

of the conclusions. For example, we explore the constraints on the dark energy equation of

state with and without SNIa and with and without SDSS-bias and SDSS-lya.

Our implementation of the Monte Carlo Markov Chain (MCMC) method [3] uses CMB-

FAST [54] version 4.5.11 , outputting both CMB spectra and the corresponding matter

power spectra P (k). We evolve all the matter power spectra to a high k using CMBFAST

and we do not employ any analytical approximations. We output the transfer functions

at the redshifts of interest, between 2-4 for SDSS-Lyα forest and 0.1 for SDSS-gal. Note

that for massive neutrinos the high precision (HP) option must be used to achieve sufficient

accuracy in the transfer function.

A typical run is based on 16-24 independent chains, contains 50,000-200,000 chain el-

ements and requires several days of running on a computer cluster in a serial mode of

CMBFAST. The acceptance rate was of order 30-50%, correlation length 10-30 and the ef-

fective chain length of order 3,000-20,000 (see [39] for definitions of these terms). In terms of

Gelman and Rubin R̂-statistics [53] we find the chains are sufficiently converged and mixed,

with R̂ < 1.05, significantly more conservative than the recommended value R̂ < 1.2.

Our most general cosmological parameter space is

p = (τ, ωb, ωm,
∑

mν ,Ωλ, w,∆2
R, ns, αs, r), (4.1)

where τ is the optical depth, ωb = Ωbh
2, where Ωb is baryon density in units of the critical

1available at cmbfast.org
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density and h is the Hubble constant in units of 100km/s/Mpc, ωm = Ωmh2 where Ωm

is matter density in units of the critical density,
∑

mν is the sum of massive neutrino

masses (assuming either 3 degenerate neutrino families or 1 massive neutrino family in

addition to 3 massless), Ωλ is the dark energy density today and w its equation of state

(which is in general time dependent). Our pivot point for the primordial power spectrum

parameterization is at kpivot = 0.05/Mpc and we expand the primordial power spectrum at

that point, defining the amplitude of curvature perturbations ∆2
R, slope ns, and its running

αs = dns/d ln k. The choice of the pivot point is somewhat arbitrary, but is meant to

represent the scale somewhere in the middle of the observational range. In this case the

largest scales are probed by the CMB (k ∼ 10−3/Mpc) and the smallest scales are probed

by the Lyα forest (k ∼ 1/Mpc). In addition, this scale has been (arbitrarily) chosen as

a pivot point in CMBFAST and has been used by previous analyses, which facilitates the

comparison. Note that there is no Hubble parameter h in the definition of the pivot point:

if CMB data are used there is no advantage in defining the scale by taking out the Hubble

constant, unlike the case of galaxy clustering and Lyα forest.

We parametrize tensors in terms of their amplitude ∆2
h, and define the ratio relative to

scalars as r = T/S = ∆2
h/∆2

R. This is also defined at the pivot point k = 0.05/Mpc, just

as for the scalar amplitude, slope and running. We fix the tensor slope nT using r = −8nT .

We do not allow for non-flat models, since curvature is already tightly constrained by CMB

and other observations [2]. In addition, we will be testing particular classes of models, such

as inflation, which predict K = 0. For the more general models, such as those with freedom

in the dark energy equation of state, relaxing this assumption can lead to a significant

expansion of errors [39]. We are therefore testing a particular class of inflation inspired

models with K = 0 and not presenting model independent constraints on the equation of

state. Note that this assumption is implicit in most of the constraints published to date,

including those from the SNIa teams, which often assume a CMB prior on Ωm [77]. This

prior is affected by the choice of parameter space one is working in and a self-consistent

treatment is required. CMB constraints on Ωm using an analysis where the equation of
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state or curvature are not varied need not equal those where these are varied. We follow the

WMAP team in imposing a τ < 0.3 constraint. Upcoming polarization data from WMAP

will allow a verification of this prior.

From this basic set of parameters we can obtain constraints on several other parameters,

such as the baryon and matter densities Ωb and Ωm, Hubble parameter h = H0/(100km/s/Mpc)

and amplitude of fluctuations σ8. Since we do not allow for curvature we have Ωλ = 1−Ωm

and we use Ωm in all tables. In fact, our primary parameter is the angular scale of the

acoustic horizon, which is tightly constrained by the CMB. Similarly, although we use ∆2
R

as the primary parameter in the MCMC we present the amplitude in terms of the more

familiar σ8. In addition to the cosmological parameters above we also keep track of several

parameters related to the specific tracers, described below.

4.3 Results

The basic results for many different MCMC runs are given in Tables 4.1–4.4. We give results

for many different parameter combinations and different experiment combinations, with the

purpose of assessing the robustness of constraints on both the data and parameter space. For

most of the parameters we quote the median value (50%), [15.84%,84.16%] interval (±1σ),

[2.3%,97.7%] interval (±2σ) and [0.13%,99.87%] interval (±3σ). These are calculated from

the cumulative one-point distributions of MCMC values for each parameter and do not

depend on the Gaussian assumption. For the parameters without a detection we quote a

95% confidence upper limit and a 99.9% confidence upper limit. We have found that our

MCMC gives a reliable estimate of 3-sigma contours for one-dimensional projections. The

corresponding 2-d projections are however very noisy and we do not plot 3-sigma contours

in our 2-d plots.

All of the restricted parameter space fits are acceptable based on χ2 values, starting

from the basic 6-parameter model p = (τ, ωb, ωm,Ωλ = 1−Ωm,∆2
R, ns). We denote this as

6-p in the tables. Introducing additional parameters such as tensors, running, equation of

state, or neutrino mass does not improve the fits. We do not report the values of nuisance
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parameters such as the galaxy bias or Lyα forest mean flux, temperature-density relation,

or filtering length. Some of these are discussed elsewhere [47, 89]. When comparing the

improvements over previous analyses we try to compare the results to our own MCMC

analysis of previous data. This is because small changes in the treatment, such as assumed

priors, can affect the parameters and so the constraints between different groups are not

directly comparable. When comparing our analysis to [39] we find in general a very good

agreement between the two, even though our MCMC implementation is independent. Our

primary goal is to determine how much the new data improve over the previous situation

and to answer this it is best to perform identical analyses with and without the new data.

Below we discuss the results from these tables in more detail.

4.3.1 Amplitude of fluctuations

From Tables 4.1–4.4 one can see that the value of σ8 is remarkably tight. For 6-p models

(Table 4.1) we find

σ8 = 0.897+0.033
−0.031

+0.065
−0.058

+0.097
−0.088 (4.2)

This value does not change significantly when running, tensors and massive neutrinos are

added to the mix, which shows that the constraint is model independent. In contrast, in

an analysis without the Lyα forest and bias σ8 changes from σ8 = 0.951+0.90
−0.079 (Table 4.1)

to σ8 = 0.786+0.119
−0.100 (Table 4.3) when massive neutrinos are added as a parameter (see also

[39]), so previous constraints were significantly more model dependent.

It is useful to analyze what drives the σ8 determination. WMAP alone cannot provide a

very tight determination, nor can the Lyα forest alone. But combining the two is extremely

powerful: from Table 4.1 we see that just these two data sets alone give σ8 = 0.895+0.034
−0.032

even with running. So this combination in itself provides nearly all of the information on σ8;

galaxy clustering and bias do not constrain this parameter any further when added to the

mix. They are however consistent with it: using WMAP and SDSS galaxy clustering with

bias and without Lyα forest gives σ8 = 0.89 ± 0.06 [47], in remarkable agreement with the

analysis of WMAP+SDSS-lya. Assuming that WMAP data are valid this implies that two
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6-p 6-p 6-p 6-p+r 6-p+r
WMAP+gal WMAP+gal+lya all WMAP+gal+lya all

102ωb 2.38+0.14

−0.12

+0.27

−0.23

+0.39

−0.33 2.31+0.09

−0.08

+0.17

−0.17

+0.26

−0.24 2.33+0.09

−0.08

+0.17

−0.17

+0.26

−0.25 2.40+0.12

−0.105

+0.26

−0.19

+0.47

−0.30 2.40+0.11

−0.10

+0.23

−0.19

+0.33

−0.27

Ωm 0.294+0.041

−0.034

+0.089

−0.061

+0.143

−0.082 0.299+0.037

−0.032

+0.082

−0.061

+0.133

−0.084 0.281+0.023

−0.021

+0.046

−0.040

+0.070

−0.061 0.278+0.036

−0.033

+0.076

−0.062

+0.118

−0.094 0.270+0.022

−0.021

+0.045

−0.041

+0.072

−0.060

ns 0.994+0.044

−0.035

+0.077

−0.060

+0.101

−0.080 0.971+0.023

−0.019

+0.048

−0.038

+0.070

−0.055 0.980+0.020

−0.019

+0.041

−0.037

+0.065

−0.051 1.00+0.034

−0.028

+0.070

−0.050

+0.124

−0.076 1.00+0.027

−0.024

+0.056

−0.045

+0.085

−0.063

τ 0.176+0.078

−0.071

+0.117

−0.124

+0.124

−0.161 0.133+0.052

−0.045

+0.104

−0.087

+0.148

−0.126 0.160+0.040

−0.041

+0.079

−0.080

+0.117

−0.120 0.138+0.050

−0.045

+0.096

−0.085

+0.151

−0.118 0.155+0.040

−0.040

+0.078

−0.077

+0.112

−0.114

σ8 0.951+0.090

−0.079

+0.173

−0.142

+0.124

−0.161 0.890+0.034

−0.032

+0.065

−0.060

+0.096

−0.089 0.897+0.033

−0.031

+0.065

−0.058

+0.097

−0.086 0.901+0.035

−0.033

+0.069

−0.062

+0.107

−0.096 0.904+0.035

−0.031

+0.069

−0.059

+0.106

−0.094

h 0.706+0.037
−0.034

+0.068
−0.065

+0.097
−0.091 0.694+0.030

−0.028
+0.059
−0.057

+0.092
−0.086 0.710+0.021

−0.021
+0.044
−0.040

+0.066
−0.061 0.719+0.036

−0.032
+0.076
−0.061

+0.133
−0.091 0.726+0.025

−0.023
+0.052
−0.045

+0.081
−0.068

r 0 0 0 < 0.38(0.55) < 0.36(0.51)

Table 4.1: Constraints on basic 6 parameters and tensors. Median value, 1σ, 2σ and 3σ intervals on cosmological parameters
combining WMAP, SDSS galaxies (gal), SDSS bias (bias), SDSS Lyα forest (lya) and SNIa (SN) data as derived from the MCMC
analysis. In each case we list individual data sets. Note that WMAP is included in all the chains. In the absence of a detection
we give 95% upper limit and (in brackets) 99.9% upper limit. All of the values are obtained from MCMC. The columns compare
different theoretical priors and different data sets. The parameters for 6 parameter models 6-p are τ, ωb, ωm,Ωm = 1−Ωλ, σ8, ns.
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6-p+αs 6-p+αs 6-p+αs 6-p+αs 6-p+αs + r
WMAP WMAP+gal WMAP+lya all WMAP+gal+lya

102ωb 2.33+0.16

−0.16

+0.33

−0.32

+0.50

−0.47 2.30+0.14

−0.14

+0.29

−0.27

+0.45

−0.38 2.36+0.11

−0.10

+0.22

−0.19

+0.32

−0.27 2.33+0.09

−0.09

+0.18

−0.17

+0.28

−0.25 2.42+0.12

−0.12

+0.24

−0.22

+0.39

−0.31

Ωm 0.246+0.072

−0.057

+0.159

−0.103

+0.263

−0.140 0.269+0.041

−0.033

+0.091

−0.062

+0.156

−0.095 0.257+0.055

−0.048

+0.105

−0.073

+0.151

−0.092 0.281+0.022

−0.021

+0.045

−0.043

+0.067

−0.062 0.273+0.037

−0.033

+0.077

−0.059

+0.119

−0.089

ns 0.977+0.061

−0.061

+0.122

−0.123

+0.181

−0.190 0.959+0.052

−0.053

+0.104

−0.107

+0.164

−0.161 0.990+0.032

−0.029

+0.063

−0.053

+0.090

−0.076 0.977+0.025

−0.021

+0.052

−0.040

+0.083

−0.058 1.00+0.034

−0.032

+0.070

−0.060

+0.102

−0.085

τ 0.204+0.070

−0.086

+0.092

−0.149

+0.0957

−0.192 0.195+0.065

−0.068

+0.097

−0.123

+0.103

−0.165 0.188+0.078

−0.075

+0.108

−0.130

+0.111

−0.171 0.163+0.041

−0.041

+0.083

−0.078

+0.123

−0.111 0.142+0.0493

−0.0465

+0.0979

−0.0879

+0.143

−0.117

σ8 0.873+0.115

−0.107

+0.24

−0.201

+0.381

−0.297 0.897+0.059

−0.059

+0.108

−0.104

+0.189

−0.137 0.895+0.034

−0.032

+0.068

−0.064

+0.102

−0.094 0.899+0.034

−0.030

+0.070

−0.058

+0.107

−0.085 0.900+0.034

−0.032

+0.069

−0.063

+0.100

−0.094

h 0.736+0.061

−0.054

+0.127

−0.103

+0.204

−0.146 0.716+0.039

−0.040

+0.079

−0.080

+0.135

−0.121 0.730+0.053

−0.046

+0.092

−0.080

+0.128

−0.107 0.709+0.022

−0.021

+0.046

−0.040

+0.072

−0.059 0.725+0.037

−0.035

+0.074

−0.066

+0.123

−0.094

r 0 0 0 0 < 0.45(0.64)

102αs −1.24+3.75

−3.63

+7.63

−7.23

+11.8

−11.1 −2.41+3.07

−3.10

+6.24

−6.14

+9.45

−9.20 −0.263+1.27

−1.13

+2.66

−2.21

+4.15

−3.22 −0.29+1.08

−1.00

+2.35

−1.84

+3.63

−2.61 −0.57+1.21

−1.14

+2.49

−2.26

+3.48

−3.39

Table 4.2: Constraints on running. Same format as for Table 4.1.
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6-p+3 × mν 6-p+3× mν 6-p+3 × mν 6-p+3 × mν + αs + r 6-p+1×mν

WMAP+gal WMAP+gal+lya all all all

102ωb 2.41+0.16

−0.14

+0.31

−0.25

+0.46

−0.37 2.34+0.08

−0.08

+0.17

−0.17

+0.25

−0.25 2.36+0.09

−0.09

+0.19

−0.18

+0.32

−0.29 2.47+0.13

−0.12

+0.26

−0.22

+0.38

−0.32 2.35+0.12

−0.10

+0.25

−0.19

+0.36

−0.28

Ωm 0.352+0.131

−0.080

+0.241

−0.120

+0.334

−0.149 0.316+0.029

−0.027

+0.067

−0.052

+0.124

−0.080 0.284+0.025

−0.023

+0.05

−0.044

+0.079

−0.060 0.277+0.025

−0.023

+0.051

−0.045

+0.086

−0.064 0.287+0.028

−0.025

+0.060

−0.048

+0.103

−0.069

ns 1.00+0.051

−0.041

+0.098

−0.071

+0.131

−0.095 0.978+0.023

−0.020

+0.051

−0.039

+0.069

−0.055 0.989+0.026

−0.023

+0.053

−0.042

+0.076

−0.060 1.020+0.033

−0.033

+0.066

−0.061

+0.094

−0.082 1.00+0.032

−0.025

+0.061

−0.047

+0.083

−0.067

τ 0.133+0.081

−0.060

+0.144

−0.101

+0.165

−0.128 0.153+0.055

−0.042

+0.107

−0.075

+0.140

−0.101 0.185+0.052

−0.046

+0.099

−0.089

+0.114

−0.125 0.206+0.059

−0.058

+0.088

−0.105

+0.093

−0.143 0.195+0.059

−0.055

+0.096

−0.102

+0.104

−0.147

σ8 0.786+0.119
−0.100

+0.230
−0.172

+0.301
−0.230 0.873+0.035

−0.032
+0.066
−0.065

+0.099
−0.093 0.890+0.035

−0.033
+0.071
−0.064

+0.098
−0.092 0.882+0.032

−0.030
+0.069
−0.057

+0.107
−0.087 0.895+0.035

−0.033
+0.067
−0.063

+0.10
−0.094

h 0.663+0.070

−0.076

+0.117

−0.113

+0.164

−0.146 0.684+0.023

−0.022

+0.047

−0.047

+0.070

−0.083 0.710+0.023

−0.022

+0.047

−0.044

+0.075

−0.067 0.723+0.027

−0.025

+0.054

−0.047

+0.082

−0.080 0.744+0.024

−0.023

+0.050

−0.047

+0.078

−0.072

r 0 0 0 < 0.47(0.63) 0

102αs 0 0 0 −0.18+1.23

−1.24

+2.46

−2.50

+3.78

−3.62 0

∑

mν 1.54 (2.26) eV 0.54 (0.86) eV 0.42 (0.67) eV 0.66 (0.93) eV 0.84(1.61) eV

Table 4.3: Neutrino mass constraints. Same format as for Table 4.1. All except last column are for the case of 3 degenerate
neutrino families. Last column is for 3 massless + 1 massive neutrino family.
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6-p+w 6-p+w 6-p+w 6-p+w+αs + r 6-p+w0 + w1

WMAP+gal+SN all WMAP+gal+bias+lya WMAP+gal+bias+lya all

102ωb 2.36+0.13
−0.11

+0.26
−0.21

+0.38
−0.31 2.33+0.10

−0.09
+0.20
−0.18

+0.32
−0.27 2.34+0.09

−0.09
+0.19
−0.16

+0.28
−0.25 2.48+0.15

−0.13
+0.29
−0.24

+0.43
−0.34 2.33+0.10

−0.09
+0.20
−0.17

+0.32
−0.25

Ωm 0.303+0.029

−0.028

+0.061

−0.052

+0.093

−0.072 0.282+0.023

−0.023

+0.047

−0.044

+0.074

−0.067 0.264+0.028

−0.025

+0.056

−0.046

+0.109

−0.062 0.260+0.024

−0.022

+0.050

−0.040

+0.077

−0.056 0.285+0.024

−0.023

+0.047

−0.045

+0.070

−0.066

ns 0.987+0.041

−0.030

+0.077

−0.054

+0.105

−0.075 0.981+0.027

−0.023

+0.055

−0.042

+0.080

−0.062 0.980+0.026

−0.020

+0.051

−0.038

+0.068

−0.059 1.020+0.041

−0.037

+0.080

−0.068

+0.114

−0.096 0.978+0.028

−0.022

+0.058

−0.041

+0.084

−0.059

τ 0.160+0.082

−0.067

+0.130

−0.116

+0.139

−0.153 0.163+0.064

−0.057

+0.121

−0.103

+0.135

−0.146 0.145+0.066

−0.056

+0.125

−0.109

+0.152

−0.142 0.201+0.057

−0.063

+0.091

−0.117

+0.098

−0.163 0.152+0.067

−0.056

+0.127

−0.101

+0.146

−0.136

σ8 0.945+0.089

−0.080

+0.187

−0.150

+0.290

−0.212 0.895+0.033

−0.031

+0.067

−0.059

+0.104

−0.089 0.920+0.040

−0.041

+0.084

−0.072

+0.12

−0.093 0.890+0.030

−0.028

+0.063

−0.056

+0.099

−0.089 0.897+0.033

−0.031

+0.068

−0.059

+0.104

−0.088

h 0.699+0.027

−0.026

+0.054

−0.050

+0.080

−0.073 0.708+0.023

−0.022

+0.046

−0.044

+0.069

−0.064 0.736+0.039

−0.038

+0.080

−0.069

+0.119

−0.112 0.726+0.025

−0.024

+0.050

−0.048

+0.078

−0.072 0.707+0.024

−0.023

+0.049

−0.046

+0.074

−0.066

r 0 0 0 < 0.51(0.67) 0

102αs 0 0 0 −1.07+1.24
−1.16

+2.64
−2.26

+4.15
−3.31 0

w −1.009+0.096

−0.112

+0.18

−0.24

+0.26

−0.38 −0.990+0.086

−0.093

+0.16

−0.20

+0.22

−0.35 −1.080+0.149

−0.193

+0.24

−0.37

+0.31

−0.54 −0.908+0.077

−0.091

+0.14

−0.19

+0.19

−0.32 −0.981+0.193

−0.193

+0.38

−0.37

+0.57

−0.52

w1 0 0 0 0 0.05+0.83
−0.65

+1.92
−1.13

+2.88
−1.38

Table 4.4: Dark energy constraints. Same format as for Table 4.1. All columns except last one assume constant equation of state
w. Last column gives constraints for the case where dark energy is time dependent as w = w0 + w1(1 − a).
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independent analyses of different data, SDSS-gal+bias and SDSS-lya, lead to essentially the

same value. Both improve upon previous constraints, by a factor of 1.5-2 for WMAP+SDSS-

gal+bias and a factor of 3-4 for WMAP+SDSS-lya. These new constraints remove almost

all of the degeneracy between σ8 and optical depth τ (figure 4.1).

There are many recent determinations of σ8 in the literature, which vary between 0.6

and 1.1. Recent discussion of some of these methods and results, such as weak lensing,

cluster abundance, galaxy bias determination, and SZ power spectrum can be found in

[39, 47]. The value found here is in good agreement with most of these constraints: it is on

the low end of the SZ constraints and on the upper end of some of the cluster abundance

constraints. It is also in good agreement with the 2dF bias constraints and with several

weak lensing constraints.

While in the tables we do not present results for the amplitude of metric (described

here with curvature fluctuation R) fluctuations at the pivot point we find it is also tightly

constrained to

∆2
R(kpivot = 0.05/Mpc) = (2.45 ± 0.23) × 10−9. (4.3)

4.3.2 Optical depth

The optical depth due to reionization is a parameter that has a strong effect on the CMB. It

suppresses the CMB on small scales and thus leads to a strong degeneracy with amplitude.

This degeneracy can be lifted by the polarization observations [106], but for WMAP 1st year

these are noisy and may contain significant contamination from foregrounds. The current

analysis based on 1st year data is rather unsatisfactory, since it is based on the existing

temperature-polarization cross-correlation analysis, which on large scales may suffer from

similar problems as the temperature auto-correlation analysis [4]. The upcoming 2nd year

data release of WMAP should provide polarization maps and the corresponding analysis may

help improve the situation. Until then we will use the current WMAP provided likelihood

code [21], but this should be taken as preliminary and the constraints on optical depth from

polarization, both the best fitted value and the associated errors, may change.
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Figure 4.1: 68% (inner, blue) and 95% (outer, red) contours in the plane of τ versus Ωm,
h, σ8 and ns, respectively, using all measurements.
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With the addition of new constraints from the Lyα forest and SDSS bias there remain

correlations between optical depth τ and several other parameters from 6-parameter analysis

on all data in Table 4.1. Results are shown in figure 4.1. The degeneracies are significantly

less severe than before, since the parameters are better determined with the new data. Still,

there is room to improve the constraints with a better determination of the optical depth.

For example, if the optical depth ends up being at the lower end of its allowed range this

would lead to a decrease in the best fitted value of ns, h and σ8 and to an increase in the

best fitted value of Ωm. Note that the values of τ do not extend up to the cutoff value

τ = 0.3 for the 95% contours, so these distributions are not affected by the choice of the

prior τ < 0.3. However, in chains with more parameters, such as dark energy equation of

state w, this is no longer the case. At the moment the only argument for adopting this prior

is that if τ > 0.3 this would possibly have led to detectable auto-correlation of polarization

in the WMAP data, but this argument is inconclusive since the polarization maps are not

available and such analysis has not been published yet. In the absence of any published

results we follow the WMAP team approach and adopt τ < 0.3.

4.3.3 Neutrino mass

Both the CMB and LSS are important as tracers of neutrino mass. At the time of de-

coupling, neutrinos are still relativistic, but become nonrelativistic later in the evolution

of the universe if their mass is sufficiently high. Neutrinos free-stream out of their poten-

tial wells, erasing their own perturbations on smaller scales. Below this suppression scale

the power spectrum shape is the same as in regular CDM models, so on small scales the

only consequence is the suppression of the amplitude relative to large scales. In the matter

power spectrum neutrinos leave a characteristic feature at the transition scale. The actual

shape of the transition depends on the individual masses of neutrinos and not just on their

sum. For masses of interest today the transition is occurring around k = 0.1h/Mpc, which

are the scales measured by SDSS-gal. Neutrinos with mass below 2eV are still relativistic

when they enter the horizon for scales around k = 0.1h/Mpc and are either relativistic or
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quasi-relativistic at the time of recombination, z ∼ 1100. As a result neutrinos cannot be

treated as a nonrelativistic component with regard to the CMB and are not completely

degenerate with the other relativistic components in the CMB.

From the joint analysis we find for the sum of all masses (Table 4.3)

∑

mν < 0.42eV (0.67eV) (3 families), (4.4)

at 95% (99.9%) c.l. for a single component and assuming no running, as was done in all of the

work to date. Our constraints improve upon WMAP+SDSS-gal, where we find mν < 1.54eV

and upon WMAP+2dF constraints, where mν < 0.69eV was found by combining WMAP

and 2dF with the bias determination from the bispectrum analysis [98].

If running and tensors are allowed, the parameter space expands. In this case, we find

mν < 0.66 (0.93)eV. Much of this is caused by running: as discussed in [47] running and

neutrino mass are anti-correlated. Negative runnings as large as -0.04 and neutrino masses

as high as 1.5eV are allowed at 2-sigma. Running is poorly motivated by inflationary models

and there is no evidence for it in the current data, so adopting the inflationary prior with

no running is reasonable, but one should be aware that the limits are model dependent.

The constraint from equation (4.4) is remarkably tight and implies the upper limit on

neutrino mass assuming degeneracy is 0.14eV at 95% c.l. Our constraint has been obtained

assuming 3 degenerate mass neutrino families, but if the neutrino mass splittings are small

the constraints on the sum are almost the same even if individual masses are not identical.

If the masses are very large compared to mass splittings then the neutrino masses are

close to degenerate. However, our upper limit is so low that including mass splittings is

necessary. Super-Kamionkande (SK) results find neutrino mass squared difference δm23 =

2.5×10−3eV2 [91, 92], while solar neutrino constraints find neutrino mass squared difference

δm12 = 8 × 10−5eV2 [107, 93]. This gives one neutrino family with minimum mass around

0.05eV and another with minimum mass close to 0.007eV. Since only the mass difference is

measured, it is in principle possible that the actual neutrino masses are larger than that.

Our constraints in combination with SK and solar neutrino constraints limit the mass of



62

the neutrino families to

m1 < 0.13eV, m2 < 0.13eV, m3 < 0.14eV, (4.5)

all at 95% c.l. These limits essentially exclude the range of masses argued by the Heidelberg-

Moscow experiment of neutrinoless double beta decay if neutrinos are Majorana particles

[108], although the two results may still be compatible given all the uncertainties in nuclear

matrix element calculations. From ∆m/m ∼ ∆m2/2m with m ∼ 0.13eV we find the

neutrino masses are not degenerate, but the limits are still weak: the ratios must satisfy

m3

m1
> 1.1, 1.1 <

m3

m2
< 7, (4.6)

where the upper limit on m3/m2 is determined solely from SK and solar neutrino constraints.

The mass limits presented above are based on 3 degenerate massive neutrino families. If

one assumes a model with 3 massless families and 1 massive family (such as a sterile neutrino

model), as motivated by LSND results [95], then the mass limits on the sum change, since

both the CMB and the matter power spectrum change (see figure 6 in [47]). These limits

are improved as well with the addition of SDSS-lya and SDSS-bias. We find

mν < 0.79eV (1.55eV) (3 + 1 families), (4.7)

at 95 % (99.9%), compared to the WMAP+2dF analysis without bias where the 95%

confidence limit is 1.4eV [96] and to the SDSS+WMAP analysis where the limit is 1.37eV

[47]. We have subtracted from the total sum in Table 4.3 the masses of the active neutrinos

to obtain the limit in equation (4.7). These limits are improved by almost a factor of 2

compared to previous analyses. These limits are more model independent, as there is little

correlation with running and/or tensors in this model: for the chains with running and

tensors we find mν < 0.88eV (1.40eV) at 95% (99.9%) c.l.

From the LSND experiment the allowed regions are four islands with the lowest mass

mν = 0.9eV and the next lowest 1.4eV [109, 95, 96, 110]. Thus the lowest island allowed by

LSND results is excluded at 95% c.l. and all the others at 99.9%. Our derived limits will

be tested directly with MiniBoone Experiment at Fermilab [111].
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4.3.4 Tensors

Gravity waves (tensors) are predicted in many models of inflation. The simplest single field

models of inflation predict a tight relation between tensor amplitude and slope, which we

assume here. We choose to parametrize them at the pivot point k = 0.05/Mpc, just as for

the amplitude, slope and running. This pivot differs from that in the WMAP analysis [23].

While tensors have their largest effect on large scales, within the single field model adopted

here the slope is assumed to be determined from the tensor amplitude. Thus there is no

need to parametrize tensors on large scales.

For 7-parameter model without running or neutrino mass, the limit on tensors is (Ta-

ble 4.1)

T/S < 0.36(0.51) (4.8)

at 95% (99.9%) c.l. This does not change significantly if neutrinos or running are added

to the mix (Tables 4.2–4.3), in the latter case we find r < 0.45(0.64). This constraint is

nearly a factor of two better than from WMAP analysis, a consequence of tighter constraint

on running from the Lyα forest. We return to these constraints below where we discuss

inflation.

4.3.5 Spectral index

Constraints on the scalar spectral index are primarily driven by the WMAP and SDSS-lya

combination. Using these two experiments alone one finds ns = 0.990+0.032
−0.029 for the chains

with running, compared to ns = 0.962+0.054
−0.056 for WMAP+SDSS-gal+SDSS-bias without

SDSS-lya and to ns = 0.975+0.028
−0.024 for the case where all observations are included (Table 4.2).

The inclusion of the SDSS Lyα forest thus reduces the error on the primordial slope by a

factor of 2. In the absence of running and with bias and SNIa, this constraint improves

further to

ns = 0.981+0.019
−0.018

+0.040
−0.037

+0.061
−0.053. (4.9)

Note that the scale invariant model ns = 1 is only 1-sigma away from the best fit. It is

remarkable that such a vast range of observational constraints can be reproduced with a
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Figure 4.2: 68% (inner, dark) and 95% (outer, light) contours in the (r = T/S, ns) plane
with and without SDSS-lya. There is a correlation between tensors and slope ns. Inclusion
of the Lyα forest significantly reduces the allowed region in this plane. Also shown are the
positions of two chaotic inflation models, V ∝ φ2 with N = 50 and V ∝ φ4 with N = 60.

scale invariant power spectrum with 4 parameters only, Ωb, Ωm, h and amplitude ∆2
R (plus

possibly optical depth τ to explain the polarization data).

Tensors are positively correlated with the slope (Figure 4.2) and their inclusion increases

the best fit slope value to ns = 1.00+0.034
−0.028. All of these are consistent with a scale invariant

spectrum and are in a good agreement with the WMAPext+2dF constraint ns = 0.97±0.03

[2]. While 2dF gives a slightly redder spectrum than SDSS the differences in different values

quoted in the literature reflect mostly the differences in the assumed parameter space, as

shown here for the example of tensors.

4.3.6 Running of the spectral index

The issue of the running of the primordial slope has generated a lot of interest lately. WMAP

argued for some weak evidence for negative running in their combined analysis, but some of

that evidence was based on Lyman alpha constraints by previous workers [86, 112], which
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were shown to underestimate the errors [3]. It was argued that even from WMAP alone,

or WMAP+2dF, there is some evidence for running, and the WMAP+SDSS-gal analysis

without bias information gave αs = −0.071±0.044 [39]. Similar values have been found from

the recent analyses including CBI [101] and VSA [102] data. However, much of this effect

comes from low l multipoles and a full likelihood analysis of WMAP+SDSS-gal changes

this value to −0.022 ± 0.033 [4]. Including the biasing constraints does not really change

this result. In the absence of massive neutrinos and tensors we find αs = −0.022+0.030
−0.032, so

αs = 0 is within one sigma of 0 and the error has not been reduced.

Including SDSS-lya reduces the errors dramatically. The constraint on running from

WMAP+SDSS-lya alone is αs = −0.0026+0.013
−0.011. Including everything this changes slightly

to

αs = −0.0029+0.011
−0.010

+0.023
−0.018

+0.036
−0.026, (4.10)

which is a factor of 3 improvement over previous constraints. Even with this significant

improvement we find no hint of running in the joint analysis. The result is in perfect

agreement with no running and 95% of chain elements have αs > −0.015. This should be

compared to values as low as αs ∼ −0.10 in figure 4.3. Similarly low values have been found

in recent analyses [101, 102]. Figure 4.3 shows old and new constraints in the (αs, ns) plane,

highlighting the dramatic reduction of available parameter space when CMB and Lyα forest

data are combined together. The implications of this result for inflation are discussed in

the next section.

If tensors are also included they induce weak anti-correlation with running, so the best

fit value becomes αs = −0.006+0.012
−0.011, which is still perfectly consistent with no running.

This is shown in figure 4.4, where we see that adding SDSS-lya to the mix dramatically

reduces the allowed region of parameter space. Specifically, without SDSS-lya, runnings

as negative as -0.15 are in the 95% confidence region, a consequence of strong correlation

between running and tensors. Our joint analysis eliminates these large negative running

solutions. We find no evidence for running in the current data, with or without tensors,

despite a factor of 3 reduction in the errors.
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Figure 4.3: 68% (inner, dark) and 95% (outer, light) contours in the (αs, ns) plane using
WMAP+SDSS-lya versus WMAP+SDSS-gal+bias. Adding the SDSS Lyα forest dramat-
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model with ns = 1 and αs = 0 is within 68% interval.
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Running is correlated with some of the “nuisance” parameters we marginalize over in

the analysis and additional observations constraining these could lead to a further reduction

of errors on the primordial slope and its running even with no additional improvements in

the observations. For example, in our current treatment of the filtering parameter kF (a

generalization of the Jeans length), we assume that the minimum reionization redshift is

around 10 with a reheating temperature of 25,000K. If we change the redshift to 7, this leads

to an increase in the maximum value of kF allowed. In this case we find for WMAP+SDSS-

lya analysis the running changes from αs = 0.0017 to -0.0045, with an error around 0.01

(see Table 4.2). If we change this redshift to 4, below its theoretically allowed lower limit of

6.5, to allow for any residual resolution issues in numerical simulations, we find αs = −0.009

with comparable errors. All the other parameters change much less. While these changes are

small and do not qualitatively change our conclusions, they may be important for the future

analyses where smaller errors may be obtained. In all these cases the data prefer a high

value of kF , i.e. a late epoch of reionization. Independent constraints on the tempetarure

evolution of IGM would be helpful to constrain this further.

4.3.7 Matter density and Hubble parameter

The matter density parameter Ωm has contributions from cold dark matter, baryons, and

neutrinos. We assume spatially flat universe, so matter density Ωm is related to dark

energy density Ωm = 1 − Ωλ. As emphasized in [113], the matter density is still allowed to

cover a wide range of values from the present data: in 7-parameter models with running

WMAP+SDSS-gal gives Ωm = 0.269+0.041
−0.033. WMAP+SDSS-lya gives a slightly lower value

with comparable error, Ωm = 0.257+0.055
−0.048 in models with running. Combining WMAP,

SDSS-gal and SDSS-lya gives Ωm = 0.299+0.037
−0.032. Including the bias and SNIa and ignoring

running brings the value to

0.282+0.021
−0.020

+0.043
−0.043

+0.066
−0.067 (4.11)

which is a factor of 2 improvement over previous constraints. The matter density is cor-

related with r and inclusion of tensors in the parameter space slightly reduces the density
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Figure 4.5: 68% and 95% contours in the (Ωm, σ8) plane showing previous constraints from
WMAP and galaxy clustering with the new data.

parameter. There is a significant improvement in (σ8,Ωm) plane with the addition of new

data (figure 4.5).

Despite the improvements the matter density remains strongly correlated with the Hub-

ble parameter h, as expected from the fact that Ωmh2 is better determined from the CMB

than each parameter separately. This is shown in figure 4.6 for 6-parameter models for the

analysis with and without inclusion of SDSS-lya.

For the Hubble parameter the best fit value and its error is h = 0.71 ± 0.02 in 6-

parameter space. In 9-parameter space with tensors, massive neutrinos and running we

find h = 0.74± 0.05. All of these fits are statistically acceptable and are in good agreement

with the HST key project value h = 0.72 ± 0.08 [114], although a different group using

almost the same data continues to find a significantly lower value h = 0.58 ± 0.06 [115].

The new data also improve significantly the age of the universe constraint. We find

t0 = 13.6+0.19
−0.19Gyr, compared to 14.1+1.0

−0.9Gyr found from the WMAP+SDSS-gal analysis

[39].
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WMAP constrains best the combination Ωmh2.

4.3.8 Dark energy

So far we have assumed dark energy in the form of a cosmological constant, w = −1. We

now relax this assumption and explore the constraints on w. To maximize the constraints

we add to some of the analyses the “gold” SNIa data [77]. Because we do not want to

limit ourselves to w > −1 we assume dark energy does not cluster (ndyn = 3 option in

CMBFAST4.5). Note that clustering of dark energy vanishes for w=-1 and so if w is close

to -1 then it makes very little difference if clustering is included or not. Figure 4.7 shows

the constraints in the (w,Ωm) plane. We find

w = −0.990+0.086
−0.093

+0.16
−0.201

+0.222
−0.351. (4.12)

We see that w = −1 is an acceptable solution. This should be compared to w = −1.01+0.097
−0.12

we find in the absence of bias and Lyα forest constraint, to w = −0.91+0.13
−0.15 using the new

SNIa data but just some of the LSS constraints [116], to w = −1.02+0.13
−0.19 using a simple

Ωm prior [77], and to w = −0.98+0.12
−0.12 from the WMAP 1st year analysis [2]. It is worth
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emphasizing the agreement and complementarity of the LSS, CMB, and SNIa constraints:

in the absence of SNIa data the constraint is w = −1.02+0.15
−0.19 and w is positively correlated

with Ωm (figure 4.7). These solutions allow phantom energy models (w < −1) with w as

low as -1.5 for low matter density values. On the other hand the two are anticorrelated for

the WMAP+SDSS-gal+SNIa data constraints, and phantom energy solutions are allowed

for high values of the matter density. Combing the two sets of constraints significantly

reduces the parameter space of allowed solutions. All of these different combinations give

very consistent results and the median value hardly changes at all and is in all cases very

close to w = −1. Our constraints are a factor of 1.5-2 better than previously published

constraints on the dark energy equation of state. Some of the improvement comes from

our more sophisticated analysis which includes all of the information previously available

and some from the new constraints from the bias and Lyα forest, which further reduce the

errors. This is an example of how combining different data sets leads not only to a significant

improvement in the accuracy of cosmological parameters, but also how consistency among

the different methods gives confidence in the resulting constraints.

The results are weakly model dependent, in the sense that they are sensitive to the

parameter space over which one is projecting. If we include tensors and running in the

analysis we find

w = −0.908+0.077
−0.091

+0.143
−0.197

+0.192
−0.324 , (4.13)

roughly a 1-sigma change in the central value compared to the case without tensors in

equation (4.12). Figure 4.8 shows that tensors and the equation of state are correlated.

The shift in the best fitted value of w reflects a large volume of parameter space associated

with r > 0 models and not any fit improvement when adding tensors and running: χ2

changes only by 1 and there is no need to introduce tensors (or w 6= −1) to improve the fit

to the data. We also find no correlation between the equation of state and running.

Our constraints eliminate a significant fraction of previously allowed parameter space,

with 95% contours at −1.19 < w < −0.83 without tensors and at −1.11 < w < −0.77 with

tensors. Thus a large fraction of the parameter space of ”phantom energy” models with
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out SDSS-lya and bias, constraints without SNIa, and combined constraints. In all cases
the data are consistent with a cosmological constant model (w = −1).

w < −1 [117] and tracker quintessence models with w ∼ −0.7 [118] appears to be excluded.

Other dark energy models which predict w ∼ −1 remain acceptable. It is interesting to

note that simplest quintessence solutions with w > −1 are more acceptable if tensors are

present at a level predicted by some inflationary models (r ∼ 0.2).

We also ran a MCMC simulation exploring a non-constant equation of state. We use a

second order expansion

w = w0 + (a − 1)w1 + (a − 1)2w2, (4.14)

where a = 1/(1 + z) is the expansion factor [119]. The advantage of this expansion is that

it is well behaved throughout the history of the universe from early times, when a ∼ 0, to

today (a = 1). This is in contrast to the often adopted expansion in terms of the redshift,

w = w0 + w′z, which diverges at high redshift and so can give artificially tight constraints

on w′ if CMB (or even BBN) constraints at high redshift are used, without actually saying

much about the time dependence of w in the relevant regime 0 < z < 1. In contrast, using
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our expansion 0 < z < 1 covers half of the full range of w so w1 is being constrained in the

regime of interest. If we impose w2 = 0 then the best fit values and errors we find using all

the data are

w0 = −0.981+0.193
−0.193

+0.384
−0.373

+0.568
−0.521

w1 = 0.05+0.83
−0.65

+1.92
−1.13

+2.88
−1.38. (4.15)

We find that w0 = −1, w1 = 0 is well within 1-σ contour and very close to the best fit

model (figure 4.9).

The parameters w0, w1 and w2 are strongly correlated, as shown in figure 4.9 for the first

two, so the error on w0 has expanded by a factor of 2 compared to the constant equation

of state case. We can explore less model dependent constraints on w(z) by computing the

median and 1, 2-σ intervals from MCMC outputs at any redshift. Over a narrow range of

redshift these contours will be nearly model independent as long as the equation of state is

a relatively smooth function of redshift. We find that the data constrain best the equation
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long as w is a smooth function of redshift. We find that the simplest solution, w = −1, fits
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of state w at z = 0.3, where we find w(z = 0.3) = −1.011+0.095
−0.099

+0.176
−0.215

+0.264
−0.357. Thus z = 0.3

is the pivot point for the current measurements of equation of state and the constraint here

is nearly model independent. This is confirmed by our analysis with w2. In this case we

find severe degeneracies among the 3 paramaters, but the value at z = 0.3 is

w(z = 0.3) = −0.981+0.106
−0.120

+0.205
−0.249

+0.269
−0.386, (4.16)

which is nearly the same as for the two parameter analysis with w2 = 0. These constraints

are shown in figure 4.10.

The corresponding constraint at z = 1 for two parameter (w0, w1) analysis is w(z =

1) = −1.00+0.17
−0.28

+0.27
−0.66

+0.33
−1.00. Adding w2 we find

w(z = 1) = −1.03+0.21
−0.28

+0.39
−0.58

+0.52
−0.85, (4.17)

so 1-σ contours are nearly the same, while 2 and 3-σ contours expand in the positive direction
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Figure 4.11: Same as Figure 4.10 but for MCMC with tensors.

and shrink in the negative direction compared to 2-parameter analysis. This value is thus

also relatively independent of parametrization.

Adding tensors and running to the 3-parameter expanasion of w gives,

w(z = 0.3) = −0.914+0.089
−0.106

+0.169
−0.225

+0.229
−0.343 (4.18)

and

w(z = 1.0) = −0.93+0.21
−0.25

+0.35
−0.56

+0.48
−0.90. (4.19)

This is shown in figure 4.11. Thus, in either case, there is no evidence for any time depen-

dence of the equation of state and its value is remarkably close to -1 even at z = 1. As

for a constant w analysis we find that tensors increase the preferred value of w by about

0.1. These constraints on the time dependence of w are significantly better compared to the

0.8-0.9 allowed variation between z = 0 and z = 1 found previously [77]. Lyα forest analysis

measures the growth of structure in the range 2 < z < 4 and so helps in constraining models

with a significant component of dark energy present at z > 2 [120].
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4.4 Implications for inflation

Inflation is currently the leading paradigm for explaining the generation of structure in

the universe. Inflation, an epoch of accelerated expansion in the universe, explains why

the universe is approximately homogeneous and isotropic and why it is flat [6, 7, 8, 9].

During this accelerated expansion quantum fluctuations are transformed into classical fluc-

tuations when they cross the horizon (i.e., their wavelength exceeds the Hubble length

during inflation) and can subsequently be observed as perturbations in the gravitational

metric [11, 12, 13, 14, 15]. A generic prediction of a single field inflation models is that the

perturbations are adiabatic (meaning that all the species in the universe are unperturbed

on large scales except for the overall shift caused by the perturbation in the metric) and

Gaussian. These predictions, together with flatness (K = 0), have been explicitly assumed

in our analysis.

We note here that cyclic/ekpyrotic models [121] are an alternative to inflation, which,

despite a very different starting point and without a period of accelerated expansion, lead to

almost identical predictions as inflation [79]. Specifically, these models predict no observable

tensor contribution, spectral index ns close to unity, and negligible running [80]. Very

specific forms of cyclic potentials have not been explored in much detail in these models

and for this reason we will not discuss them explicitly below, but most of our constraints

on the form of the inflationary potential can easily be translated into the corresponding

constraints on the form of cyclic model potential.

Here we will explore a class of single field inflation models, in which there is a single

field responsible for the dynamics of inflation (even though additional fields may be present

or even required to end inflation, as in the case of hybrid inflation [122]). We will assume

the early universe is dominated by a minimally coupled scalar field φ, which we will express

in Planck mass units setting 8πG = 1. During inflation the energy density is dominated by

potential V . The Hubble parameter H2 = V/3 is nearly constant and the equation of state

is w = p/ρ ∼ −1. Since H = d ln a/dt it follows that the expansion factor is exponentially

increasing with time, a = aendeH(t−tend). One can introduce the number of e-folds before
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the end of inflation at time t0 as

N = ln(aend/a0) =

∫ tend

t0

H(t)dt =

∫ φend

φ0

V

V ′dφ, (4.20)

which can be computed for any specific form of the potential. Here we will define it to be

the number of e-folds before the end of inflation when the pivot point, kpivot = 0.05/Mpc,

crosses the horizon. Note that the usual definition is with respect to the largest observable

scale, k ∼ 10−3/Mpc, which corresponds to ∆N = 4 larger number of efolds. The latter

number is expected to be between 50-60 efolds for standard inflation (64 for V ∝ φ4), but

could be as low as 20 or as high as 100 in special cases [123, 124]. For our pivot point choice

we will thus adopt N = 50 as the standard value (60 for V ∝ φ4), but also explore more

general constraints on it.

If the kinetic energy density were negligible all the time the universe would keep expo-

nentially expanding and there would be no end to inflation. Typically therefore one must

have deviations from the pure w = −1 case. These deviations lead not only to a finite

number of efolds, but also break the scale invariance of the primordial power spectrum.

Since we know from current observational constraints that r < 1 and ns ∼ 1 we can adopt

the slow-roll approximation to relate the form of the potential to the observed quantities r,

ns, αs, and ∆2
R. The slow-roll parameters are defined as [27]

εV =
1

2

(

V ′

V

)2

ηV =
V ′′

V

ξV =
V ′V ′′′

V 2
. (4.21)

Note that in some early literature the 3rd slow-roll parameter ξ was denoted as ξ2 to

emphasize the point that it is generically of second order in ε or η [125]. We will not use

this notation since ξ can be positive or negative and since it does not have to be of second

order in the slow-roll expansion.
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The relations between the slow-roll parameters and observables are

∆2
R =

V

24π2εV

r = 16εV

ns − 1 = −6εV + 2ηV

αs = 16εV ηV − 24ε2
V − 2ξV . (4.22)

As mentioned in the previous section, we assume r = −8nT and do not consider the running

of the tensor spectral index, both of which should be valid for single field inflation in the

relevant regime.

Traditionally the inflationary models are divided into separate classes depending on the

value of first two slow-roll parameters [126, 127, 27]. Figure 4.12 shows the distribution

in the (εV , ηV ) plane. We see that both positive and negative values of η are allowed

and that there is a strong correlation between the two from the observational constraints,

a consequence of positive correlation between tensors and primordial slope. Figure 4.13

shows the distribution in the (ηV , ξV ) plane. Both parameters are consistent with 0. The

basic constraints are ε < 0.03, −0.04 < η < 0.12 and −0.015− < ξV < 0.035, so all slow

roll parameters are small.

4.4.1 Large field models

The simplest inflationary models are the monomial potentials, V = V0φ
p, for which the

first two parameters are comparable, ε ∼ η, and the curvature is positive, η > 0. These

potentials occur in chaotic inflation models [128]. In these models a deviation from scale

invariance, ns − 1 = −(2 + p)/2N , also implies a significant tensor contribution, r = 4p/N ,

while running is negligible, αs = −2(ns − 1)2/(p + 2) = −(p + 2)/2N2. Because both slow-

roll parameters are of order (p/φ)2 these chaotic inflation-type potentials require a large

field, φ > 1, to satisfy observationally required r < 1 and ns ∼ 1. For this reason these

models are sometimes called large field models. While this may limit their particle physics

motivation there are brane inspired models where this property can be justified [129]. More
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all the measurements without running (Table 4.1, 5th column). Also shown are the regions
occupied by the 3 classes of inflationary models. All 3 classes of models are allowed, but
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energy models (εV = 0) with large positive curvature (ηV > 0), typical of hybrid inflation
models, as well as models where both εV is large and ηV < εV /2, typical of chaotic inflation
models with steep potentials.
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generic parametrization of these models in terms of curvature is 0 < ηV < 2εV .

With the exception of p = 2, chaotic models are not particularly favored from our

analysis. Figure 4.2 shows the position in the (r, ns) plane for two representative cases,

p = 2 and p = 4. We find that the V ∝ φ2 model (ns = 0.96, r = 0.16 for N=50) is within

the 2-sigma contour, while the V ∝ φ4 model (ns = 0.95, r = 0.27 for N=60) is outside

the 3-sigma contour, since it predicts more tensors and a redder spectrum for that tensor

amplitude than observed. Figure 4.14 shows all chain elements with ns < 1 converted to

(p,N) values using the expressions above. For standard inflation we require N < 60 and

this limits us to p < 3. Similarly, figure 4.12 shows that εV > ηV /2 with large εV models

are disfavored.

For specific models we also minimized χ2 by exploring all of the parameter space of the

remaining parameters and compared that to the global minimum in χ2. We find ∆χ2 = 5

for the V ∝ φ2 model and ∆χ2 = 13 for the V ∝ φ4 model. These results are in agreement

with the MCMC results and show that the latter case is excluded at more than 3 − σ
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Figure 4.14: Scatter plot of MCMC solutions with ns < 1 converted into the (p,N) plane
assuming relations valid for chaotic inflation models. Here p is the slope of the inflationary
potential and N is the number of e-folds. For N < 60 we require p < 3.

confidence.

4.4.2 Large positive curvature models

We turn next to models with positive large curvature, η > 2ε. A generic potential of this

type can be obtained by adding a constant to the monomial potential, V = V0(1 + cφp),

where c is a positive dimensionless constant. These models allow small field solutions to

inflation, φ � 1, and so are popular for model building in the context of supersymmetry. In

this limit, and if dimensionless c is not too large, one has ε � 1. In such models, inflation

never ends (since the potential never drops to zero), so another field must be brought in

to accomplish this. Hybrid inflation is an example of such a mechanism [122]. If ε is small

then these models predict r ∼ 0 and ns > 1 (equations (4.22), the latter condition requires

ε < η/3). For p = 2 the slope is constant, ns − 1 = 2c and there is no running, while for

p > 2 running is negative and is given by αs = −(p− 2)/(p− 1)[(ns − 1)]2/2. This is always

small since a large deviation in the ns > 1 direction is strongly disfavored, so αs ∼ 0. Some
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of these models are disfavored: for r = 0 and in the absence of running we find ns < 1.0 at

90% confidence and ns < 1.04 at 99.9% confidence, so if εV ∼ 0 then ηV > 0.02 is excluded

at 3 sigma. Thus the deviations from scale invariance have to be very small for these models

to be acceptable.

4.4.3 Large negative curvature models

The most promising models from the observational perspective are negative curvature mod-

els, η < 0. As noted above, the main reason that large positive curvature models are disfa-

vored is that in the absence of tensors the data favor ns < 1, while small positive curvature

models are disfavored because they predict large tensors and a red spectrum at the same

time, whereas the data are more consistent with blue spectrum if tensors are significant.

A generic potential of negative curvature models can be obtained by switching the sign on

the hybrid potential form, V = V0(1 − cφp), where c is a positive dimensionless constant.

In these models the field φ is slowly rolling from low to high values until reaching the point

where the potential vanishes at cφp = 1, at which point inflation stops. This is a generic

scenario of spontaneous symmetry breaking models as in the first working inflation model,

that of new inflation [8]. For p = 2 the slope is again constant at ns − 1 = −2c and there

is no running.

In these models one has ns − 1 = −2(p− 1)/(p− 2)/N and αs = −(p− 2)/(p− 1)[(ns −

1)]2/2. The running is of order (ns − 1)2/2 and the prefactor is unity at best, so running is

negligible. The slope ns ranges between 0.96 (in the limit of |p| → ∞,where ns−1 = −2/N)

and 1, in excellent agreement with observational constraints.

One finds good agreement using other potentials proposed in the literature, such as

the potential based on one-loop correction in a spontaneous symmetry broken SUSY [130].

The potential is of the form V = V0[1 + α ln(φ/Q)]. In this model the number of e-folds

is of the order N = φ2/2α (this expression works best if α � 1). This model predicts

ns − 1 = −2α[1 + 3α/2]/φ2 and αs = −(ns − 1)2[2α + 3α2/2 + 1/2]/[1 + 3α/2]2. Running

is again negligible. Solutions with φ � 1 require α � φ2 � 1, in which case the slope
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becomes ns − 1 = −1/N = −0.02 for N = 50, in excellent agreement with the observed

value ns = 0.971+0.023
−0.019.

Many other models in this class also work. A model often mentioned as an example of

allowing a large running is the softly broken SUSY model with V = V0(1− cφ2(ln(φ/φ∗)−

1/2)/2. This model has a large 3rd derivative for small field φ, V ′′′/V0 = −c/φ, so it can

lead to large ξ and large runnings. For this model there is an inequality relation between

slope and running of the form αs > −1
4(ns − 1)2 > −2 × 10−3, so a large negative running

cannot be accommodated in this model for the allowed values of ns. Our solutions do not

favor large negative runnings anyways, unless one is willing to consider models with massive

neutrinos whose mass exceeds 0.3eV, so this model is acceptable, but it can overpredict the

running on the positive side.

There are also examples of models which can change from one inflationary case to the

other, such as hybrid model with one-loop correction [131],

V = V0

[

1 + α

(

ln(φ/Q) +
c

4

(

φ

φ0

)p)]

,

which under specially arranged conditions causes the slope to change from ns > 1 on large

scale to ns < 1 on small scale. Again, there is no evidence for such a transition in the data,

so there is no need to consider these special cases.

Finally, there are models that predict the simplest possible case of r = 0, ns = 1 and

αs = 0 [132]. These models are perfectly acceptable from our data.

While we only surveyed a small subset of inflationary models here, it is clear that their

generic prediction is a nearly scale invariant spectrum, |ns − 1| < 0.05, little or no tensors,

r < 1 and small running, αs ∼ 10−3. All of these predictions agree with our constraints.

Running is a particularly powerful test of standard inflationary (and cyclic) models in the

sense that if running turned out to be large, a large class of inflationary models would

have been eliminated. The original suggestions of running in the WMAP data sparked

a lot of theoretical interest in inflationary models with running [24, 25], but such models

are unnatural in the sense that they require a feature in the potential at exactly the scale

of observations today. Our results suggest that the natural prediction of inflation, small
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running, is confirmed by observations.

4.5 Conclusions

In this paper we performed a joint cosmological analysis of WMAP, the SDSS galaxy power

spectrum and its bias, the SDSS Lyα forest power spectrum, and the latest supernovae SNIa

sample. We work in the context of current structure formation models, such as inflation or

cyclic models, so we assume spatially flat universe and adiabatic initial conditions. We also

ignore more exotic components such as warm dark matter. The new ingredients, SDSS Lyα

forest and SDSS bias, lead to a significant reduction of the errors on all the parameters.

Many parameters are improved in accuracy by factors of two or more. For example, for

the amplitude of fluctuations we find σ8 = 0.90 ± 0.03 and for the matter density we find

Ωm = 0.28 ± 0.02, both a significant improvement over previous constraints. From the

fundamental physics perspective the highlights of the new constraints are:

1) The scale invariant primordial power spectrum is a remarkably good fit to the data

and there is no evidence that the spectral index deviates from the scale invariant value

ns = 1, nor is there any evidence of its running with scale. We also find no evidence of

tensors in the joint analysis. The constraints on running have improved by a factor of 3

compared to an analysis without the new Lyα forest constraints. These provide a data

point at 2 < z < 4 and k ∼ 1/Mpc, a significantly smaller scale than scales traced by the

CMB and galaxies.

2) There is no cosmological evidence of neutrino mass yet. In the standard models with

3 neutrino families we find for the total neutrino mass
∑

mν < 0.42eV (95% c.l.). When

our analysis is combined with atmospheric and solar neutrino experiments [92, 93] we find

that neutrino masses are not degenerate: the most massive neutrino family has to be at

least 10% more massive than the least massive family, m3/m1 > 1.1: the mass of the least

massive neutrino family has to be m1 < 0.13eV, and that of the most massive neutrino

family m3 < 0.15eV, both at 95 % c.l. In alternative models with a 4th massive neutrino

family in addition to 3 (nearly) massless ones we find mν < 0.79eV, excluding all of the
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allowed LSND islands at 95% c.l.

3) Dark energy continues to be best characterized as a standard cosmological constant

with constant energy density and equation of state w = −1. When all the data is combined

together the error on w is 0.09, a reduction compared to previously published values [2,

116, 77]. A cosmological constant with w = −1 is remarkably close to the best fit value

for a variety of different subsamples of the data. A significant region of phantom energy

parameter space with w < −1 is excluded, as are some of the tracker quintessence models

with w ∼ −0.7. The current data do not support any time dependence of the equation of

state.

As the statistical errors are being reduced the required level at which systematics must

be controlled increases as well. Our limits on cosmological parameters assume that the

errors from the SDSS Lyα forest SDSS power spectrum shape, SDSS bias, WMAP CMB

power spectrum, and the SNIa data are all properly characterized by the authors and that

there are no additional sources of systematic error. Each one of these ingredients has to

be tested and redundancy is necessary for the results to be believable. In our extensive

tests we find no evidence of a disagreement between the different observational inputs, but

further tests with these and other data sets are needed to verify and confirm our results. In

addition, the upcoming 2 year analysis of WMAP polarization will improve the constraints

on the optical depth and reduce the errors on parameters correlated with it.

Tests of the basic model are particularly important for Lyα forest , which is responsi-

ble for most of the improvement on the primordial power spectrum shape and amplitude.

Despite the extensive tests presented in [90], more work is needed to investigate all possible

physical effects that can modify its distribution and to see how these may affect the conclu-

sions reached in this paper. Some of these tests will come from the ongoing work on SDSS

data, such as the bispectrum analysis. Similarly, more work is needed to verify the accuracy

of simulations with independent hydrodynamic codes. The present analysis, together with

its sister papers [89, 90], is not the final word on this subject, but merely a first attempt to

take advantage of the enormous increase in statistical power given by the SDSS data [82].
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Current analysis marginalizes over many physical processes that have little or no external

constraints and as a result the statistical power of cosmological constraints from the Lyα

forest is weakened. Better theoretical understanding of these processes together with ex-

ternal constraints from additional observational tests could lead to a significant reduction

of observational errors on the primordial slope and its running even with no additional

improvements in the observations.

In summary, adding SDSS Lyα forest and SDSS bias constraints to cosmological param-

eter estimation leads to a significant improvement in the precision with which the cosmolog-

ical parameters can be determined. Despite these improvements we find no surprises. Many

of these results are not unexpected, but the tightness of the constraints is rapidly elimi-

nating many of the alternative models of structure formation, neutrinos and dark energy.

Future cosmological observations and improvements in theoretical modelling will allow us

to verify the constraints found here and improve them further. As the constraints become

tighter there may be additional surprises awaiting us in the future.



Chapter 5

Progress in Measuring the

Probability Distribution Function

of Ly-α forest flux from SDSS

quasars sample

5.1 Introduction

Ly-α forest absorption is usually observed in quasar spectra. It arises from continuosly fluc-

tuating photoionized gas in the intergalactic meduim, with density near the universal mean

and temperatures around 104 K. The behavior of the absorption field can be acquired from

primordial spectrum of fluctuations with reasonable accuracy using numerical simulations

[89, 133].

The observations of the Ly-α forest are usually described in the form of transmitted

flux fraction, F (λ) = exp[−τ(λ)]. Usually power spectrum PF (k, z) of the transmitted flux

fraction is used to compare the observations [133]. There have been attempts to study the

bispectrum of Ly-α forest [120].

In this chapter we present our progress in measuring the probability distribution function

88



89

p(F ) of the flux F . Measurement of the probability distribution function of the transmitted

flux should help to constrain better the mean transmitted flux, which is one of the essential

parameters in the measurement of the power spectrum. Better measurement of Ly-α forest

absorption lets us better constrain the primordial spectrum of fluctuations, and, therefore,

lets us better constrain the inflationary potential.

In order to apply our method for measuring the probability distribution function, we

first investigate how well it works on simulated MOCK spectra.

5.2 Theoretical PDF of Ly-α forest

The linear theory of Ly-α forest used for the generation of the MOCK spectra is based on

the following equations:

F = e−τ , (5.1)

τ = Aρα, (5.2)

ρ = eδ+C . (5.3)

Here δ is a Gaussian random variable with variance σ, τ is the optical depth to Ly-α

absorption, and ρ is the mass density. The value of α usually lies in the range between 1.6

and 2.0. In Mock spectra simulations we used C = −σ2/2 and α = 2. The probability

distribution function of δ is given by the expression

p(δ) =
1

σ
√

2π
exp

(

− δ2

2σ2

)

. (5.4)

In order to find the distribution of F , we just use the fact that

p(δ)dδ = p(F )dF. (5.5)

After plugging in the expression for F through δ

F = exp
(

−Aeα(δ+C)
)

= exp
(

−AeαC eαδ
)

. (5.6)
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Now for simplicty we denote A′ = AeαC and σ′ = ασ. Then for the probability distribution

function of F we get

p(F ) =
1

σ′
√

2π

1

F (− ln F )
exp

(

− 1

2σ′2 ln2 − lnF

A′

)

. (5.7)

From here we see that the original values of σ, α, C and A do not significantly matter since

they are swept into just two variables σ′ and A′.

It is easy to check that the following equalities for equation (5.7) hold:

ln A′ =

∫ 1

0
ln(− ln F ) p(F )dF, (5.8)

σ′2 =

∫ 1

0

(

ln(− ln F ) − ln A′)2 p(F )dF. (5.9)

Equation (5.7) is what one could observe with ideal instruments. After pixelizations and

smoothing the spectra by SDSS resolution, the probability distribution function function

changes: the peak of the function becomes narrower and taller, and the tails get more

power. Nevertheless we will use these formula (5.7) in order to estimate the tilt and the

curvature of our probability distribution function within the bins.

5.3 Reconstruction technique

We divide all the data into 13 redshift bins of width 0.2 between redshifts 2.1 and 4.7.

Within each redshift bin we use maximum likelihood method in order to reconstruct the

probability distribution function (pdf) of Ly-α forest flux. We parametrize the pdf in the

form of N bins each with equal width of dF within each redshift bin.

We choose dF to be less than 95–65% flux rms errors for all the pixels in one redshift bin.

Lower redshift bins contain up to 200, 000 pixels from about 2000 spectra, higher redshift

bins contain down to 7, 000 pixels from about 50 spectra.

5.4 Smoothing the spectra

We know the flux at each pixel up to some “constant”. If the “constant” is the same

everywhere, we can just found the average of the flux all over the pixels and get rid of the
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constant by making the transformation

fj = Fj/F̄ . (5.10)

In this case the value of fj would not depend on the normalization “constant.” The flux

from the quasar is not exactly flat and one needs to take into account the deviations from

being exactly flat.

In order to take into account the changing mean flux due to different effects in the

emission quasar spectra, we find the “local” mean flux by averaging the flux around the

point of interest:

F̄l =
N−1
∑

j=0

Fj
∆v

vsm

√
2π

e−∆v2

lj
/2v2

sm (5.11)

Here summation is assumed over every pixel j. The value F̄l is the mean flux at pixel l.

The comoving difference in speeds between pixels l and j can be expressed as

∆vlj = c
∆λlj

λ
, (5.12)

where c is the speed of light and λ is the wavelength. Usually we have ∆λ � λ, therefore it

does not make difference if we take λi or λj as λ. Since pixels are about the same wavelength

apart from each other, we can assume that

∆vlj = (l − j)∆v, (5.13)

where ∆v ≈ 68 − 72 km/s is the comoving velocity difference between any two adjacent

pixels.

We take the smoothing velocity vsm = 750 km/s, this is the characteristic scale beyond

which Ly-α forest power is not significant. This scale is also used in the reconstruction of

the Ly-α forest power spectrum in [133].

If Fj has a Fourier transform Fk in the form of

Fj =
1

N

N−1
∑

k=0

Fke
i2π k

N
vj , (5.14)



92

and F̄i is transformed through F̄k in the form of

F̄l =
1

N

N−1
∑

k′=0

F̄k′ei2π k′

N
vl . (5.15)

Equation (5.11) is equivalent to

F̄k = Fke
− 4π2k2

N2∆v2
v2
sm/2. (5.16)

for Fourier transforms of the original and smoothed fluxes F and F̄ .

Let us now assume that each pixel with flux Fj has an error of the flux measurement of

σj. Let us find the error of the “local” average flux σF̄l
.

We assume the errors of the adjacent pixels to be independent, then accoring to the rule

of summing independent measurements from equation (5.11) we get

σ2
F̄l

=

N−1
∑

j=0

(

σj
∆v

vsm

√
2π

e−∆v2

lj
/2v2

sm

)2

. (5.17)

Bringing equation (5.17) to the form of equation (5.11) we find that

σ2
F̄l

=
∆v

2vsm
√

π

N−1
∑

j=0

σ2
j

∆v
√

2

vsm

√
2π

exp

(

−
∆v2

lj

2(vsm/
√

2)2

)

, (5.18)

i.e. that the variance of the average is the smoothed with kernel vsm/
√

2 variance of indi-

vidual pixels multiplied by a constant.

Since we are primarily interested in the value of

f =
F

F̄
, (5.19)

its error is given as

σ2
f

f2
=

σ2
F

F 2
+

σ2
F̄

F̄ 2
− corr(F, F̄ )

√

σ2
F̄

F̄ 2

σ2
F

F 2
. (5.20)

We will use these expressions to estimate the errors of the value of f for reconstructing the

probability distribution function. By our estimates the correlation corr(F, F̄ ) between F

and F̄ is of the order of 1/10 and we disregard it. Taking the average error into account

increases the error by 1–2% for an average spectrum.
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5.5 Subtracting the noise through maximizing the likelihood

The likelihood function for all the pixels in one redshift bin can be written as

L =
∏

λ

[
∫ fmax

0
p(f) exp

(

−1

2

(f − fλ)2

σ2
λ

)

df

]

. (5.21)

(we are looking into option of considering σλ,f instead of σλ in order to take into account

not exactly “gaussianity” of the noise due to poisson noise contribution from the quasar

continuum)

In equation (5.21) we have a product of likelihoods of individual pixels λ. The value of

fmax is chosen to cover the whole range of possible values of fluxes. Function p(f) is the

probability distribution function we are looking for.

5.5.1 Parameterization of PDF

At first we parameterize p(f) to be constant within each bin dF , we also choose numbers

x0, x1, . . . , xn corresponding to each bin so, that

p(f ∈ i-th bin) =
x2

i
∑

j
x2

j

. (5.22)

We assign xi for one of the bins in the center of the probability distribution function (f = 1)

where we most certainly have non-zero value of probability distribution function to 1 and

assign number N to it. This way our parameterization looks as

i 0 . . . N . . . N − 1

pi
x2

0

1 +
∑

j
x2

j

. . .
1

1 +
∑

j
x2

j

. . .
x2

N−1

1 +
∑

j
x2

j

. (5.23)

This parameterization provides us with always non-negative probability distribution

function and it also constrains the integral of the probability distribution function p(f)

over f to 1:
∫ fmax

0
p(f) df = 1. (5.24)
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Using this parameterization, the logarithm of the likelihood function (5.21) looks as

lnL =
∑

λ

ln

[∑

i αi,λx2
i

1 +
∑

i x
2
i

+
αN,λ

1 +
∑

i x
2
i

]

=
∑

λ

[

ln(αN,λ +
∑

i

αi,λx2
i ) − ln(1 +

∑

i

x2
i )

]

(5.25)

Here we defined αi,λ as

αi,λ =

∫

dfi

p(f) exp

(

−1

2

(f − fλ)2

σ2
λ

)

df

∫

dfi

p(f) df
. (5.26)

with the integration performed over i-th bin. Equation (5.26) can be simplified in case of a

constant p(f) within the bin:

αi,λ =

∫

dfi

exp

(

−1

2

(f − fλ)2

σ2
λ

)

df

∫

dfi

df
. (5.27)

For minimization routine we will need the first derivatives of the logarithm of the likelihood

function (5.25) over xj :

∂ lnL
∂xj

= 2xj

∑

λ

[

αj,λ

αN,λ +
∑

i αi,λx2
i

− 1

1 +
∑

i x2
i

]

(5.28)

We use standard minimization routines from Gnu Scientific Library which require the

calculation of the function and its derivatives for the minimization.

5.6 Corrections to the likelihood function

While testing our noise subtraction routine on simple distributions, we found that for such

large volumes of data as we have in the first several redshift bins from SDSS with, it is not

enough to consider the probability distribution function to be a constant within a f -bin. We

cannot reduce the size of the bin, since the minimization routine becomes highly unstable

and produces a “forest”-like probability distribution function . For the low-redshift bins we

have the rms of about 90% pixels larger than the width of our parameterization bin. It is

impossible to reduce the size of the bins for the level of noise we have in our data.
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We found disagreement with our test models in the bins where the slope of the proba-

bility distribution function is large, i.e. where there is a big sudden change in the value of

probability distribution function between adjacent bins. In order to correct for this effect

we take a function which somewhat looks like a pdf we need to reconstruct. It is important

to note that we neither require this function A(f) to be exactly like the probability distri-

bution function we are trying to reconstruct, nor do we even need it to have properties of

probability distribution function such as e.g.

∫ fmax

0
A(f) df = 1. (5.29)

We just require that the function approximately had a slope similar to the slope of the

underlying probability distribution function in the problematic bins.

It is easy to correct for this effect if one takes a look at equation (5.26), we can just

substitute p(f) with A(f) as

αi,λ =

∫

dfi

A(f) exp

(

−1

2

(f − fλ)2

σ2
λ

)

df

∫

dfi

A(f) df
. (5.30)

In this case our underlying probability distribution function will be approximated within

the bins in the following manner:

p(f) = pi
A(f)dfi
∫

dfi

A(f) df
(5.31)

5.7 Results

Current results are present at Figure 5.2. At first glance one can wrongly assume that our

reconstruction ("mock.noiseless.averages.dat" u 1:2:3) is a good fit to the original

noiseless MOCK spectra ("mock.fake.PDF.00.dat" in 0 u 1:2). Actually, one should

compare our results to the same binning noiseless MOCK spectra probability distribution

function histotram ("mock.fake.PDF.00.dat.1" in 0 u 1:2). For 15 data points we get

χ2 value of 150 if one takes the correlations between the bins into account (see Figure-

fig:correlation). Without taking the correlations between the bins χ2 reduces to 50.
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Apparently the MOCK simulations produce spectra with correlated flux and its noise due

to Poisson noise simulation from the quasar continuum. We tried to simulate uncorrelated

noise for each pixel and in this case our noise subtraction procedure worked fine. Currently

we are trying to include the Poisson noise correction into our algorithm.

To conclude, in this chapter we demonstrated that our approach of finding the probabil-

ity distribution function through minimizing the likelihood function using the parameteri-

zation (5.23) workse reliably well. We managed to reconstruct the probability distribution

function from data which contained 95% pixels with noise level larger than the width of the

bin.
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Figure 5.1: An example of correlations between different pdf bins within one redshift bin.
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Figure 5.2: "mock.fake.PDF.00.dat" in 0 u 1:2 is the fine-binning histogram of the noiseless MOCK data.
"mock.fake.PDF.00.dat.1" in 0 u 1:2 is our reconstruction algorithm binning histogram of the noiseless MOCK data.
"mock.noiseless.PDF.00.dat" in 0 u 1:2 is the result after the subtraction of noise under the assumption of con-
stant probability distribution function within each bin width. "mock.noiseless.PDF.00.dat" in 8 u 1:2 is the similiar
to "mock.noiseless.PDF.00.dat" in 0 u 1:2, but if you assume that the probability distribution function behaves like
"mock.noiseless.PDF.00.dat" in 9 u 1:2 within each bin. "mock.noiseless.averages.dat" u 1:2:3 shows the errors on
the probability distribution function in each bin found from bootstrapping over all the quasars.



Appendix A

Inflationary Equations

In this appendix we describe the technical details of the code we ran to get the results

presented in the main part of the paper. The code is given a potential V (φ) and some point

φ0 which lies in the observable range of wave-modes and, say, corresponds to the moment

when wavelengths with k = 0.05 Mpc−1 exit the horizon. We want to find the power

spectrum produced by inflation with the potential V (φ). For this purpose we first have to

go backwards in time about 50 e-folds and then start the inflation there. This guarantees

that the inflationary dynamics are not affected by the choice of the initial condition and we

indeed have the attractor solution.

Now we evolve the universe from our “beginning of inflation” to the end of inflation, the

moment which is determined by the violation of the inequality ä > 0. This part is described

below in the “non-perturbed inflationary equations” section. Usually we require 50 to 70

e-folds between φ0 and the end of inflation.

After we already have the complete background history of the evolution of the universe

during the inflationary stage of the expansion, we can start working out the evolution of

the perturbations during inflation, as discussed in the second part of the appendix.

99
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A.1 Non-perturbed inflationary equations

The unperturbed dynamics of inflation are described by the equation of motion of the scalar

field φ with potential V (φ) in the expanding universe with the Hubble parameter H ≡ ȧ/a

φ̈ + 3Hφ̇ + V ′(φ) = 0 (A.1)

and the Friedman equation with only the scalar field component present in the universe

H2 =
8π

3m2
pl

[

V (φ) +
1

2
φ̇2

]

. (A.2)

The equations (A.1, A.2) are equivalent to the pair of Hamilton-Jacobi equation (2.1)

and

φ̇ = −
m2

pl

4π
H ′(φ). (A.3)

The Hamilton-Jacobi equation connects the Hubble parameter and the value of the

potential of the scalar field during the inflation. In the case when we know the behavior

of the Hubble parameter it is easy to find the potential. The method of flow equations is

entirely based on this fact. In contrast, if we know the shape of the potential and want to

reconstruct the behavior of the Hubble parameter, the problem is not as simple. First of

all, as for any first order differential equation, we would like to have an initial condition

H0 = H(φ0). Due to the attractor nature of the equation (2.1) its solution does not really

depend on the initial condition H0 (we have found from numerical simulations that one

needs about 6 e-folds to forget the history). Thus it does not really matter which initial

condition we choose.

Hamilton-Jacobi equation requires that

H2(φ) ≥ 8π

3m2
pl

V (φ). (A.4)

If we are going to use a method such as Runge-Kutta for the integration of the differential

equation(2.1), we might try values of H which would violate the inequality (A.4).

To avoid this complication, we reparametrize our equation using a new function δ(φ) so

that

H2(φ) =
8π

3m2
pl

V (φ)
(

1 + eδ(φ)
)

. (A.5)
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Then substituting our new definition into equation (2.1) we get

H ′(φ) = −4π
√

2

m2
pl

√

V (φ)eδ(φ)/2. (A.6)

Combining this with the expression for H ′ obtained from the direct differentiation of H

in (A.5), we get a differential equation for δ′(φ)

δ′ = −
√

1 + e−δ

[

V ′

V

√

1 + e−δ +
4
√

3π

mpl

]

. (A.7)

This equation is much more pleasant to deal with numerically than equation (2.1), since it

does not have a weird boundary for δ, as H did before. One can also check the attractor

nature of the equation (A.7), that it does not remember the prior history. We see now that

in the case when the potential is changing slowly δ′ ≈ 0 and we have

eδ =

[

48π

m2
pl (V

′/V )2
− 1

]−1

≈
m2

pl

48π

(

V ′

V

)2

. (A.8)

We can use this approximate solution of the equation as the initial condition for our dif-

ferential equation since it is quite close to the true solution and it will make our numerical

solution evolve into the attractor solution faster.

One can check that the expressions for εH , ηH and 2ξH are given by the following

formulae

ε =
m2

pl

4π

(

H ′

H

)2

=
3

1 + e−δ
, (A.9)

η =
m2

pl

4π

H ′′

H

= 3 +
mpl

4

√

3

π

V ′

V

1
√

eδ(1 + eδ)
, (A.10)

2ξ =
m4

pl

16π2

H ′H ′′′

H2

= 3(ε + η) − η2 −
3m2

pl

8π

V ′′

V

1

1 + eδ
. (A.11)

From these expressions we can expect that in general ε and η are continuous functions,

whereas 2ξ does not have to be continuous at points where V ′′ is not continuous.
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The condition for inflation to take place (ä > 0) follows from the derivative of the

Friedman equation

ä

a
=

8π

3m2
pl

[

V (φ) − φ̇2
]

= H2(φ)(1 − ε), (A.12)

or

ä

a
=

8π

3m2
pl

[

V (φ) −
m4

pl

16π2

(

H ′(φ)
)2

]

=
8π

3m2
pl

V (φ)(1 − 2eδ). (A.13)

The first of these two equations implies that the end of inflation happens when the inequality

ε < 1 is violated. The same thing occurs when the inequality δ < − ln 2 is violated in the

second equation. The latter also means that the inflation continues while the kinetic energy

of the inflaton is less than half of its potential energy

K

Π
=

φ̇2/2

V (φ)
= eδ(φ) <

1

2
. (A.14)

Thus we come to a physical definition of our parameter eδ(φ) as the ratio of the kinetic

energy φ̇2/2 to the potential energy V (φ).

In the next subsection we will be working with inflationary perturbations and it will

not be very convenient for us to work with the value of the scalar field φ as an independent

variable. For this purpose we will use the number of e-folds defined as

Ñ = ln
(aH)

(aH)0
. (A.15)

Note that this is the actual number of e-folds and is not the same as N = ln(a/a0). The

connection between Ñ and φ is determined through the derivative

dÑ

dφ
=

2
√

π

mpl

1 − ε(φ)
√

ε(φ)
. (A.16)

We are almost done describing the background evolution of the universe, except we

have not yet chosen the initial value of the scalar field φi. We only have the value φ0 which

corresponds to the moment when the mode k = 0.05 Mpc−1 exits the horizon. We want

to move backwards in time for about 50 e-folds. Equation (A.7) has an attractor behavior
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only when we are moving in the positive direction along the φ-axis. It diverges from the

attractor solution in the negative direction. As a useful trick, let us modify equation (2.1)

to the following form

[H ′(φ)]2 =
12π

m2
pl

[

8π

3m2
pl

V (φ) − H2(φ)

]

. (A.17)

In this form, when we move backwards in time the value of H(φ) is bound by the value

of
√

8πV/3m2
pl from the top and the solution cannot diverge. In addition we temporarily

redefine δ(φ) to satisfy

H2(φ) =
8π

3m2
pl

V (φ)(1 − eδ(φ)). (A.18)

Thus we get an equation analogous to the equation (A.7)

δ′ =
√

1 − e−δ

[

V ′

V

√

1 − e−δ +
4
√

3π

mpl

]

. (A.19)

Equation (A.19) does not carry any physical meaning; we just use this equation to go

“upwards” to the higher values of the potential, still tracking the general behavior of V (φ).

If we go backwards in time 50 e-folds using (A.19) and then forward in time 50 e-folds

using (A.7), we will not return to the same point φ0, since the behavior of δ(φ) in the

equation (A.19) is determined by the area which is to the right of the current value of φ

and in the equation (A.7) is determined by the area which is on the left side. Nevertheless,

this method gives us a good estimate of what initial value of φi we should take.

It is also worth mentioning that this approach is not more difficult to deal with than

the inflationary flow equations (2.29–2.31).

A.2 Perturbation equations

A.2.1 Scalar mode

The algorithm for finding the scalar mode primordial power spectrum is described in the

main text (see equation (2.10) and below). Here we will just mention some technical details.

Equation (2.10) is not very convenient to solve in its current form. First of all we would

like to set the independent variable, the conformal time τ , in such a way that τ → −0 as
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inflation goes on. In this case we would be able to numerically integrate equation (2.10) up

to as small values of τ as we want. But in numerical realizations we cannot really choose

such an initial value of τi that gives us τ → −0 at the end of the inflation. Suppose that at

the end of the inflation we have τ → 1−0. In this case the numerical error on τ will be of the

order of 10−15 which is a reasonable machine precision. Hence the limit on corresponding

dτ is of the same order and we can explore the range of changing the scale factor a from

∼ 1 to ∼ 1015, i.e. about 35 e-folds. This might be enough, but to be safe we will use

a different independent variable, the true number of e-folds Ñ defined by equation (A.15)

which is the same as

dÑ =
d(aH)

aH
. (A.20)

Then the mode equation (2.10) can be rewritten as

(1 − a)
d2uk

dÑ2
+ (1 + b)

duk

dÑ

+

[

(

k

k0

)2

e−2(Ñ−Ñ0) − 2(1 + c)

]

uk = 0, (A.21)

where coefficient a, b and c can be exactly expressed through εH , ηH and 2ξH as

a = 2ε − ε2, (A.22)

b = −2ε − ε2 + 2εη, (A.23)

c = ε − 3

2
η + ε2 − 2εη +

1

2
η2 +

1

2
2ξ. (A.24)

In equation (A.21), k is the wavelength of the interest, while k0 and Ñ0 are constants

conveniently chosen for normalization purposes.

Further, equation (2.10) has a solution

uk ∝ 1√
2k

e−ikτ (A.25)

at the beginning of the inflation when τ → −∞ and k2 � 1

z

d2z

dτ2
. We also know the

approximate behavior of uk at later times when τ → −0 and k2 � 1

z

d2z

dτ2
:

uk ∝ z. (A.26)
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Thus it is natural to decompose uk into growing and oscillating parts

uk = eA+iφ, (A.27)

where both functions A and φ are real functions of conformal time τ or of the true number

of e-folds Ñ . Then the equation (A.21) can be split into 4 ordinary differential equations

with 2 new functions Ap and φp defined as below

dA

dÑ
= Ap, (A.28)

dAp

dÑ
=

− (k2/k2
0) e−2Ñ + 2(1 + c) − (1 + b)Ap

1 − a

−(A2
p − φ2

p), (A.29)

dφ

dÑ
= φp, (A.30)

dφp

dÑ
= −φp

(1 + b) + 2(1 − a)Ap

1 − a
. (A.31)

This system of differential equations looks a bit more complicated than the single equa-

tion (2.10), but it is actually much easier to solve numerically. Indeed, at earlier times we

have dA/dÑ ≡ Ap = 0. This instaneously gives us the initial condition on dφ/dÑ ≡ φp

from (A.29)

φ2
p =

(k2/k2
0) e−2Ñ − 2(1 + c)

1 − a
(A.32)

as τ → −∞, i.e. Ñ → −∞. To be consistent with the initial condition on

uk ∝ 1√
2k

e−ikτ

as τ → −∞ we also require that

A = −1

2
ln k

as Ñ → −∞. As the inflation continues, the terms

−k2

k2
0

e−2Ñ

1 − a

and φ2
p will balance each other on the right hand side of the equation (A.29) until Ap is not

negligible in comparison to 1 in equation (A.31). Thus, around Ñ = ln(k/k0) the oscillating
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part φp will decrease more rapidly than before, finally exponentially dropping to zero. At

the same time Ap, and therefore A, start exponentially growing. The final power spectrum

is given by

Pk =
k3

2π2

∣

∣

∣

uk

z

∣

∣

∣

2
∝ k3

2π2
e2Ak . (A.33)

Thus we even do not need information about the phase φ and we can freely drop equa-

tion (A.30) from our system. Also while being in the stage of inflation where uk has an

oscillatory behavior, if one were to use the usual method without our substitution, one

would have to find the values of uk for at least 6 points per oscillation period. However

with our substitution, we easily pass this area, which does not have any interest for us since

we analytically know the behavior of uk here, and therefore move directly to the place where

we cannot solve it analytically. By our estimates this technique gives a gain of a factor of

10 in computational time, which is of particular interest if one wants to calculate the power

spectrum for e.g. 100 wavemodes.

A.2.2 Tensor mode

The calculation of the tensor mode power spectrum of perturbations is absolutely analogous

to the one for scalars, except instead of equation (2.10) one has to solve

d2uk

dτ2
+

(

k2 − 1

a

d2a

dτ2

)

uk = 0 (A.34)

with the same initial condition

uk(τ) → 1√
2k

e−ikτ

as τ → −∞, where a is the usual scale factor of the Friedman universe. One can show that

1

a

d2a

dτ2
= 2a2H2

(

1 − 1

2
ε

)

. (A.35)

Mode equations for the amplitude and the phase of the wave (A.28-A.31) of the tensor

mode look similar except in the equations (A.22-A.24) where we have to change c to d

defined as

d = −1

2
ε. (A.36)
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