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Abstract
A passive quantum key distribution (QKD) transmitter generates the quantum states prescribed by
a QKD protocol at random, combining a fixed quantum mechanism and a post-selection step. By
circumventing the use of active optical modulators externally driven by random number
generators, passive QKD transmitters offer immunity to modulator side channels and potentially
enable higher frequencies of operation. Recently, the first linear optics setup suitable for passive
decoy-state QKD has been proposed. In this work, we simplify the prototype and adopt sharply
different approaches for BB84 polarization encoding and decoy-state parameter estimation. In
particular, our scheme avoids a probabilistic post-selection step that is central to the former
proposal. On top of it, we elaborate a simple and tight custom-made security analysis.

1. Introduction

Quantum key distribution (QKD) allows for information-theoretically secure key exchange between distant
parties through an insecure channel [1, 2]. This possibility, which is inaccessible from the point of view of
classical communications, makes QKD a promising candidate for long-term communication security.
Nowadays, QKD represents one of the most mature applications of quantum information science, and it is
expected to become a prolific industry in the years to come. Notwithstanding, the security of real QKD
implementations is not fully established yet, due to the difficulty of experimentally guaranteeing that the
QKD devices stick to the assumptions and models presumed in the security proofs [3].

A particularly controversial assumption of most QKD security analyses is that no information leakage
occurs through the boundaries of Alice’s and Bob’s labs. This premise opens the door for the so-called Trojan
horse attacks (THAs) [4–8], where an adversary injects bright light pulses into a QKD transmitter/receiver
and then measures the back-reflected light, aiming to extract information about the setting choices. Notably,
a possible solution to deal with information leakage in the QKD transmitter consists of trying to upper bound
Eve’s accessible information gain and account for it in the estimation of the secret key length [9–12]. Note,
however, that this approach relies on modelling the information leakage to a certain extent, and it requires to
add significant optical isolation to prevent a severe drop of the secret key rate and the achievable distance.

On the contrary, an alternative solution that might rule out THAs once and for all is to consider a fully
passive (rather than active) QKD transmitter, as illustrated in figure 1.

In a passive transmitter (PT), the protocol states are generated at random using inherent quantum
randomness of the device, in so avoiding the use of quantum random number generators (QRNGs) to
actively modulate the protocol settings (e.g. intensity, phase or polarization), or the use of auxiliary optical
modulators of any kind. Indeed, the advantages of passive encoding go beyond the obvious security upgrade.
To be precise, the fact that a PT avoids using externally driven elements makes it very desirable to operate
QKD systems at high transmission rates, and to reduce the complexity (and thus the cost) of practical QKD
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Figure 1. Schematic depiction of (a) active and (b) passive decoy-state QKD transmission. In the active case, a polarization
modulator (Pol-M) and an intensity modulator (Decoy-IM) are driven by respective quantum random number generators
(QRNGs), responsible for implementing the protocol settings. In the passive case, one or more laser diodes generate pulses that
are sent through a linear optics network. Depending on the detection outcomes observed in the photodetectors ({Dj}), different
signal states are actually generated, avoiding the use of active modulators or QRNGs.

implementations [13]. Indeed, the possibility to reach an enhanced bandwidth by suppressing active
modulation has already been realized in [14], where the construction a modulator-free (although active)
QKD transmission chip is reported.

However, these advantages come at the price of decreasing the key generation rate for two main reasons.
On the one hand, in a PT, additional sifting is required to discard those rounds where the randomly
generated settings do not lie in certain acceptance regions. On the other hand, the finite size of these
acceptance regions is an inherent source of noise not present in the active case.

Various proposals exist for passive decoy-state generation with parametric down-conversion
sources [15–20], or using coherent light [21–24]. Notably, both alternatives have been demonstrated
experimentally [25–30]. In parallel, a simple alternative to passively generate random photon polarizations
in a plane was reported in [31], suitable for a passive implementation of the BB84 protocol [32]. What is
more, a PT preparing decoy-state BB84 signals with coherent pulses was introduced in [33]. Nevertheless,
this latter proposal relies on a non-linear optical effect called sum-frequency generation [34], which reduces
its practicality.

In short, a simple setup simultaneously generating random decoy states and random photon
polarizations in a fully passive way remained elusive for more than a decade. Recently though, a
linear-optics-based PT of this kind has been proposed in [35], combining the ideas of [22] and [31].
Specifically, in [35], a passive decoy-state BB84 protocol is considered, using a single intensity for the key
generation basis and three different intensities for the parameter estimation basis. In the present work, we
devise a simplified architecture for the prototype presented there and consider the standard decoy-state BB84
protocol instead, with three common intensity settings per basis. For symmetry reasons, our protocol uses
both bases for key generation.

Remarkably as well, to avoid the assessment of the security analysis with mixed polarization states, the
proposal in [35] relies on a facilitating assumption. Namely, that the actual protocol can be reduced to an
ideal one where perfect Bell pairs are prepared for the single photon events and the effect of the mixed
polarizations is incorporated a posteriori, adding post-processing noise at Alice’s local measurements. Here,
we circumvent this assumption by elaborating a custom-made security analysis for the mixed single-photon
states.

On top of it, the decoy-state method in [35] relies on an auxiliary post-selection probability to decouple
the intensity and the polarization of the output Fock states of the PT in the parameter estimation basis. This
step, which entails an undesired discard of raw data, requires a QRNG and might be cumbersome to
implement in practice. In this work, we avoid this extra sifting by tackling the decoy-state parameter
estimation with the intensity-setting-dependent Fock states directly.

The structure of the paper goes as follows. We present the PT and its mixed output state in section 2. In
section 3 we describe a simple approach to post-select decoy-state BB84 acceptance regions, together with the
quantum states that arise from this post-selection. Section 4 is dedicated to explain our decoy-state
parameter estimation method, and in section 5 we derive the single-photon phase-error rate of the problem
at hand. Coming next, in section 6 we evaluate the rate-distance performance of our passive QKD scheme
and compare it to the performance achieved in the active setting. Finally, section 7 provides a summarizing
discussion, and a series of appendices are included at the end of the paper to ensure the reproducibility of the
results.

2. A passive QKD transmitter

The PT we propose is depicted in figure 2. In the figure, we use the notation |τ⟩a,R(L) to denote a
right-handed (left-handed) circularly polarized weak coherent pulse (WCP) in the spatial mode a with
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Figure 2. Architecture of the PT. All input coherent states in the figure have a common large intensity ν and independent random
phases α, β, γ and δ. Red color is used to denote the relevant spatial modes, while unused modes are tagged by the symbol ‘⊗’.
The interference occurring in the 50:50 beamsplitter (BS) of the top (bottom) arm yields a coherent state with a random intensity
dependent on the phase difference β−α (δ− γ), while the polarization —common to both input states— is preserved.
Crucially, the polarization of the top arm (right-handed) is orthogonal to that of the bottom arm (left-handed). When combined
in the polarizing BS (PBS), these orthogonally polarized coherent pulses generate a final coherent state with random intensity and
random polarization in the RL Bloch sphere, coupled to each other. Lastly, this state enters a BS with transmittance t≪ 1, where
the intensity is attenuated to the single-photon level. Importantly, while the transmitted signal goes to the quantum channel, the
reflected signal reaches a photo-detection system that accurately measures its polarization and intensity for post-selection
purposes.

complex amplitude τ ∈ C. Namely, |τ⟩a,R(L) = exp
{
τa†R(L) − τ∗aR(L)

}
|vac⟩, where |vac⟩ is the vacuum state

and {a†R(L),aR(L)} denote the creation/annihilation operators of a right-handed (left-handed) circular

polarization state in spatial mode a. Notably, a†R |vac⟩ and a†L |vac⟩ shall be viewed as the north and the south
pole of a Bloch sphere throughout this work, which we shall refer to as ‘the RL Bloch sphere’. The selection of
the circularly polarized single-photon states as the poles of the sphere is such that the equator plane of the
sphere contains all possible linearly polarized single-photon states, the specific orientation being determined
by the azimuthal angle. In particular, the creation operator associated to an arbitrary polarization (θ,ϕ) in
the RL Bloch sphere reads

a†θ,ϕ = cos

(
θ

2

)
a†R + eiϕ sin

(
θ

2

)
a†L, (1)

where θ (ϕ) stands for the polar (azimuthal) angle of the sphere. Also, a WCP in spatial mode a, with
amplitude τ and polarization specified by (θ,ϕ) shall be denoted as |τ⟩a,θ,ϕ. This said, let us present the
output state of the PT.

Instead of referring to the independent and identically distributed phases α, β, γ and δ of figure 2, the
output state of the PT is better described in terms of the parameters α, δ1 = β−α, δ2 = γ−β and
δ3 = δ− γ, the last three phase differences being uniformly random and independent too. Particularly, for
specific values of α, δ1, δ2 and δ3, the output state at mode w in figure 2 reads

|Ψ⟩w =
∣∣∣√I(δ1, δ3) e

iψ(α,δ1)
〉
w,θ(δ1,δ3),ϕ(δ1,δ2,δ3)

, (2)

where the quantities I(δ1, δ3), ψ(α,δ1), θ(δ1, δ3) and ϕ(δ1, δ2, δ3) are given by

I(δ1, δ3) =2νt

[
sin2

(
δ1
2

)
+ sin2

(
δ3
2

)]
(intensity),

ψ(α,δ1) =α+
δ1 −π

2
(phase),

θ(δ1, δ3) =2arctan

[
sin

(
δ3
2

)/
sin

(
δ1
2

)]
(polar angle in the RL Bloch sphere),

ϕ(δ1, δ2, δ3) =δ2 +
δ1 + δ3

2
(azimuthal angle in the RL Bloch sphere). (3)

This is proven in appendix A using standard linear quantum optics.
If we now assume perfect phase-randomisation for the input coherent states, the mixed output state of

the transmitter is
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σw =
1

(2π)4

ˆ 2π

0

ˆ 2π

0

ˆ 2π

0

ˆ 2π

0
dαdδ1dδ2dδ3|Ψ⟩⟨Ψ|w. (4)

The integral in α is direct (the purpose of changing variables from β, γ and δ to δ1, δ2 and δ3 is to enable this
immediate integration in α) and yields a phase-randomised WCP,

1

2π

ˆ 2π

0
dα|Ψ⟩⟨Ψ|w =

∞∑
n=0

e−IIn

n!
|n⟩⟨n|θ,ϕ, (5)

with the n-photon Fock states |n⟩θ,ϕ given by

|n⟩θ,ϕ =

(
w†
θ,ϕ

)n

√
n!

|vac⟩ . (6)

Note that we have omitted the dependence on δ1, δ2 and δ3 in equation (5) for readability. Also, the spatial
mode w is not explicitly indicated any more.

The phase differences δ1, δ2 and δ3 uniquely determine the relevant output variables ϕ, θ and I, and it is
desirable to describe the output state of the transmitter (given in equation (4)) in terms of the latter instead.
The joint probability density function fϕ,θ,I(ϕ,θ, I) is obtained in appendix B and factors as

fϕ,θ,I(ϕ,θ, I) = fϕ(ϕ)× fθ,I(θ, I), (7)

where

fϕ(ϕ) =
1

2π
and fθ,I(θ, I) =

1

2νtπ2

√
1− I

2νtcos
2

(
θ

2

)√
1− I

2νt sin
2

(
θ

2

) , (8)

for ϕ ∈ (−π,π], θ ∈ [0,π] and I ∈ [0, Imax,θ), Imax,θ being defined as Imax,θ =min
{
2νt/cos2 (θ/2) ,

2νt/ sin2 (θ/2)
}
.

Notably, the above distribution exhibits azimuthal symmetry and is peaked towards the equator plane of
the RL Bloch sphere, given by θ = π/2. This makes the proposed architecture convenient for a passive
decoy-state BB84 protocol using ‘equator-plane BB84 states’. In the next section, we elaborate on this idea.

3. Post-selection of BB84 acceptance regions

From equation (4) to equation (8), it follows that the mixed output state of the transmitter reads

σ =
1

2π

ˆ π

−π
dϕ

ˆ π

0
dθ

ˆ Imax,θ

0
dIfθ,I(θ, I)

∞∑
n=0

e−IIn

n!
|n⟩⟨n|θ,ϕ (9)

if no post-selection step is performed. Coming next, we define acceptance regions in the (ϕ,θ, I) space for the
post-selection, which are presumed to be accurately identified by the photo-detection system in figure 2. For
the standard decoy-state BB84 protocol with three intensity settings, an obvious choice is

Ωx,j =

{
ϕ ∈ (x−∆ϕ,x+∆ϕ) ,θ ∈

(π
2
−∆θ,

π

2
+∆θ

)
, I ∈ Ij

}
, (10)

where x ∈ {0,π,π/2,−π/2} tags the BB84 polarization states,∆ϕ ∈ (0,π/4) and∆θ ∈ (0,π/2) define the
angular widths of the acceptance regions in the RL Bloch sphere (see figure 3), and Ij stands for the interval
of intensities that defines the jth intensity setting, j ∈ {s (‘signal’), d (‘decoy’), v (‘vacuum’)}. As the notation
suggests, we shall assume below that the key is extracted from the signal setting, while the decoy and the
vacuum settings are only used for parameter estimation.

The resulting post-selected states read σx,j = σ̃x,j/Tr
[
σ̃x,j

]
for

σ̃x,j =
1

2π

ˆ x+∆ϕ

x−∆ϕ

dϕ

ˆ π
2 +∆θ

π
2 −∆θ

dθ

ˆ
Ij

dIfθ,I(θ, I)
∞∑
n=0

e−IIn

n!
|n⟩⟨n|θ,ϕ. (11)
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Figure 3. Post-selection of BB84 acceptance regions in the RL Bloch sphere. The sphere is illustrated in figure (a). θ (ϕ)

provides the polar (azimuthal) angle, |R⟩= a†R |vac⟩ (|L⟩= a†L |vac⟩) denotes a right-handed (left-handed) circularly polarized

single-photon state, and
{
|x⟩=

(
|R⟩+ eix |L⟩

)
/
√
2
}
with x ∈ {0,π,π/2,−π/2} defines a set of four linearly polarized

single-photon states evenly spaced in the equator line, suitable for an ideal implementation of the BB84. Figure (b) exemplifies the
acceptance polarization region associated to the BB84 state |0⟩, given by a rectangular solid angle centered in this state with
angular widths 2∆ϕ and 2∆θ.

Note that

Tr
[
σ̃x,j

]
=

1

2π

ˆ x+∆ϕ

x−∆ϕ

dϕ

ˆ π
2 +∆θ

π
2 −∆θ

dθ

ˆ
Ij

dIfθ,I(θ, I) =
∆ϕ

π

ˆ π
2 +∆θ

π
2 −∆θ

dθ

ˆ
Ij

dIfθ,I(θ, I). (12)

That is to say, Tr
[
σ̃x,j

]
provides the probability that the output state lies in the acceptance region Ωx,j.

Notably as well, given the set {Ωx,j}x, the Z (X) basis acceptance region associated to the jth intensity setting
is constructed as ΩZ

j =Ω0,j ∪Ωπ,j (Ω
X
j =Ωπ

2 ,j
∪Ω−π

2 ,j
).

In what follows, we shall use the shorthand notation ⟨·⟩Ω to denote the triple integral of any input ‘·’
weighted by fϕ,θ,I(ϕ,θ, I) = fθ,I(θ, I)/2π in the region Ω of the (ϕ,θ, I)-space. As an example, with this
convention equation (11) reads

σ̃x,j =

〈 ∞∑
n=0

e−IIn

n!
|n⟩⟨n|θ,ϕ

〉
Ωx,j

, (13)

and Tr
[
σ̃x,j

]
= ⟨1⟩Ωx,j

. Also, with this notation, it is obvious that σx,j is a convex combination of Fock states.
To be precise, normalizing equation (13) immediately yields

σx,j =
∞∑
n=0

p
(
n|Ωx,j

)
σx,j,n, (14)

where p
(
n|Ωx,j

)
=
〈

e−IIn

n!

〉
Ωx,j

/〈
1
〉
Ωx,j

and

σx,j,n =

〈
e−IIn

n! |n⟩⟨n|θ,ϕ
〉
Ωx,j〈

e−IIn

n!

〉
Ωx,j

(15)

is a Fock state with photon number n. Notably, the conditional photon-number statistics p
(
n|Ωx,j

)
are

independent of x because of the azimuthal symmetry. Therefore, below we shall denote p
(
n|Ωx,j

)
simply as

pn|j for all x.
Similarly, the same symmetry shows that, if we focus on the acceptance region ΩZ

j =Ω0,j ∪Ωπ,j, the
post-selected output state of the transmitter reads

σZ
j =

1

⟨1⟩ΩZ
j

〈 ∞∑
n=0

e−IIn

n!
|n⟩⟨n|θ,ϕ

〉
ΩZ

j

=
∞∑
n=0

pn|jσ
Z
j,n (16)

with σZ
j,n =

(
σ0,j,n +σπ,j,n

)
/2.

Identically, for the X basis we have σX
j =

∑∞
n=0 pn|jσ

X
j,n with σ

X
j,n =

(
σπ

2 ,j,n
+σ−π

2 ,j,n

)
/2.

5
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4. Decoy-state analysis

In this section, we present the decoy-state equations for the Z basis, and the ones for the X basis are discussed
at the end.

In the first place, it is necessary to introduce some notation. Let QZ
j (E

Z
j ) be the probability that a ‘click’

(an ‘error’) is recorded conditioned on the event that σZ
j is post-selected and Bob performs his measurement

in the Z basis. Namely, QZ
j = p

(
click|σZ

j ,Z
)
and EZj = p

(
err|σZ

j ,Z
)
. Similarly, let yZj,n and eZj,n denote the

corresponding n-photon yield and n-photon error probability, respectively, such that yZj,n = p
(
click|σZ

j,n,Z
)

and eZj,n = p
(
err|σZ

j,n,Z
)
.

From the above definitions and equation (16), it follows that QZ
j =

∑∞
n=0 pn|jy

Z
j,n and EZj =

∑∞
n=0 pn|je

Z
j,n

for all j. Therefore, truncating the sums to a threshold photon number ncut, we find the constraints


QZ

j ⩾
ncut∑
n=0

pn|jy
Z
j,n,

QZ
j ⩽

ncut∑
n=0

pn|jy
Z
j,n + 1−

ncut∑
n=0

pn|j

and


EZj ⩾

ncut∑
n=0

pn|je
Z
j,n,

EZj ⩽
ncut∑
n=0

pn|je
Z
j,n + 1−

ncut∑
n=0

pn|j,

(17)

for j ∈ {s,d,v}. Setting a threshold photon number ncut as we do allows to define finite linear programs to
estimate the single-photon yield and the single-photon error probability of the signal intensity window
(i.e. the one devoted to key extraction).

Note that the Fock states σZ
j,n and σx,j,n are (generally) different for each setting j, and thus distinguishable

for Eve. This implies that the yields yZj,n and the error probabilities eZj,n might be setting-dependent. As a
consequence, it is mandatory to incorporate additional constraints in the decoy-state analysis. For this
purpose, the tool that we use is the TD argument [36], presented in appendix C. This tool fundamentally
limits the maximum bias that Eve may induce between the measurement statistics of two non-orthogonal
quantum states, thus naturally providing upper bounds on the differences |yZj,n − yZk,n| and |eZj,n − eZk,n| for all
j,k ∈ {s,d,v} (j ̸= k) and n ∈ N. If we denote these bounds respectively as∆Z

j,k,n and ∆̃Z
j,k,n, the resulting

linear programs that fulfil the decoy-state method read

min yZs,1

s.t. QZ
j ⩾

ncut∑
n=0

pn|jy
Z
j,n ( j ∈ {s,d,v}),

QZ
j ⩽

ncut∑
n=0

pn|jy
Z
j,n + 1−

ncut∑
n=0

pn|j ( j ∈ {s,d,v}),∣∣∣yZj,n − yZk,n

∣∣∣⩽∆Z
j,k,n ( j,k ∈ {s,d,v}, j ̸= k, n= 0, . . . ,ncut),

0⩽ yZj,n ⩽ 1 ( j ∈ {s,d,v}, n= 0, . . . ,ncut), (18)

for the signal-setting single-photon yield, and

max eZs,1

s.t. EZj ⩾
ncut∑
n=0

pn|je
Z
j,n ( j ∈ {s,d,v}),

EZj ⩽
ncut∑
n=0

pn|je
Z
j,n + 1−

ncut∑
n=0

pn|j ( j ∈ {s,d,v}),∣∣∣eZj,n − eZk,n

∣∣∣⩽ ∆̃Z
j,k,n ( j,k ∈ {s,d,v}, j ̸= k, n= 0, . . . ,ncut),

0⩽ eZj,n ⩽ 1 ( j ∈ {s,d,v}, n= 0, . . . ,ncut), (19)

for the signal-setting single-photon error probability.

6
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Importantly, replacing Z by X everywhere above, the relevant quantities —QX
j , E

X
j , y

X
j,n, e

X
j,n,∆

X
j,k,n and

∆̃X
j,k,n— and linear programs for the X basis follow. Coming next, we compute the specific values of∆Z

j,k,n,

∆X
j,k,n, ∆̃

Z
j,k,n and ∆̃X

j,k,n using the TD argument.

4.1. Calculation of∆Z
j,k,n and∆

X
j,k,n

For simplicity of the notation, the derivation below assumes collective attacks. Nevertheless, explicit
calculation easily shows that the resulting bounds hold against fully general attacks too. This feature follows
from the tensor product structure of the global state of all protocol rounds.

Let ÛBE denote Eve’s unitary operation in any given round, acting on the system B transmitted through
the channel and a probe system E under Eve’s control, initialized in a certain state |φ⟩E. Also, for the purpose
of evaluating the yields, Bob’s possible measurement outcomes are either ‘click’ or ‘no click’. Therefore, his Z
basis measurement is described by a positive-operator-valued measure (POVM) with elements
{M̂click

B ,M̂no click
B }, where M̂no click

B = 1B − M̂click
B . Note that we are assuming the basis-independent detection

efficiency condition here, such that no basis dependence is included in the POVM elements.

Now, recalling that yZj,n = p
(
click|σZ

j,n,Z
)
, it follows that

yZj,n = Tr
[
Û†

BEM̂
click
B ÛBE

(
σZ
j,n ⊗ |φ⟩⟨φ|E

)]
(20)

for all j ∈ {s,d,v} and n ∈ N. Note that, aiming to keep the notation introduced in section 2, the subscript B
of Bob’s system is not made explicit in the state between brackets. From equation (20), direct application of
the TD argument (see appendix C) yields∣∣∣yZj,n − yZk,n

∣∣∣⩽ D
(
σZ
j,n,σ

Z
k,n

)
(21)

for all j,k ∈ {s,d,v} and n ∈ N, where

D
(
σZ
j,n,σ

Z
k,n

)
=

1

2
Tr

[√(
σZ
j,n −σZ

k,n

)2
]
=∆Z

j,k,n (22)

is the TD between σZ
j,n and σ

Z
k,n.

A similar procedure leads to∆X
j,k,n = D

(
σX
j,n,σ

X
k,n

)
, and in virtue of the azimuthal symmetry it follows

that∆X
j,k,n =∆Z

j,k,n for all possible inputs. To finish with, we remark that evaluating the TD values∆Z
j,k,n

requires to provide a matrix representation of the input density matrices. In this regard, a natural
representation is given in appendix D.

4.2. Calculation of ∆̃Z
j,k,n and ∆̃

X
j,k,n

For the purpose of evaluating the Z basis error probabilities, finer-grained measurement operators are
required, in a one-to-one correspondence with Bob’s possible outcomes ‘0’, ‘π’ and ‘no click’ (as usual,
double clicks are randomly assigned to a detection event, i.e. ‘0’ or ‘π’ in this case). Therefore, error-wise,
Bob’s measurement is described by a POVM with elements {M̂0

B,M̂
π
B ,M̂

no click
B }, where M̂0

B + M̂π
B = M̂click

B .

Recalling that eZj,n = p
(
err|σZ

j,n,Z
)
and that σZ

j,n =
(
σ0,j,n +σπ,j,n

)
/2, it follows that

eZj,n =
1

2

[
p
(
err|σ0,j,n,Z

)
+ p

(
err|σπ,j,n,Z

)]
=
1

2

{
Tr
[
Û†

BEM̂
π
B ÛBE

(
σ0,j,n ⊗ |φ⟩⟨φ|E

)]
+Tr

[
Û†

BEM̂
0
BÛBE

(
σπ,j,n ⊗ |φ⟩⟨φ|E

)]}
(23)

for all j ∈ {s,d,v} and n ∈ N. That is to say, upon post-selection of σ0,j,n (σπ,j,n), an error occurs if Bob
records the outcome ‘π’ (‘0’). Hence, defining e0,j,n = p

(
err|σ0,j,n,Z

)
and eπ,j,n = p

(
err|σπ,j,n,Z

)
, the TD

argument provides the constraints

|e0,j,n − e0,k,n|⩽ D
(
σ0,j,n,σ0,k,n

)
and |eπ,j,n − eπ,k,n|⩽ D

(
σπ,j,n,σπ,k,n

)
(24)

for all j,k ∈ {s,d,v} and n ∈ N. From equation (24) and the triangle inequality, the desired bound on the
bias |eZj,n − eZk,n| follows. Namely,

7
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∣∣∣eZj,n − eZk,n

∣∣∣⩽ 1

2

[
D
(
σ0,j,n,σ0,k,n

)
+D

(
σπ,j,n,σπ,k,n

)]
(25)

for all j,k ∈ {s,d,v} and n ∈ N. In conclusion, ∆̃Z
j,k,n =

[
D
(
σ0,j,n,σ0,k,n

)
+D

(
σπ,j,n,σπ,k,n

)]/
2. What is

more, the azimuthal symmetry assures that D
(
σ0,j,n,σ0,k,n

)
= D

(
σπ,j,n,σπ,k,n

)
, and thus

∆̃Z
j,k,n = D

(
σ0,j,n,σ0,k,n

)
. (26)

Again, proceeding identically and invoking the symmetry, for the X basis one finds ∆̃X
j,k,n =

D
(
σπ

2 ,j,n
,σπ

2 ,k,n

)
= D

(
σ0,j,n,σ0,k,n

)
= ∆̃Z

j,k,n for all possible inputs. As before, the reader is referred to

appendix D for a matrix representation of the σx,j,n, necessary for the calculation of the TD values ∆̃Z
j,k,n.

5. Entanglement-based protocol and single-photon phase-error rate

As in the previous section, we assume the restricted scenario of collective attacks, and recall that this suffices
to establish a valid asymptotic key rate analysis against coherent attacks in virtue of the de Finetti
theorem [37] or the post-selection technique [38].

Throughout this section, we shall only refer to the single-photon component σx,s,1 of the output states
σx,s (see equation (15)), where we recall that we set j= s because we assume that the key is extracted from the

signal intensity window, Is. For convenience, we define |R⟩= a†R |vac⟩ and |L⟩= a†L |vac⟩ (poles of the RL
Bloch sphere).

The formulation of the virtual entanglement-based (EB) protocol proceeds in two steps. In a first step, we
consider a purification of σx,s,1 via a shield qubit system A inaccessible to all Alice, Bob and Eve. In particular,
this requires diagonalizing σx,s,1 first. In a second step, we consider an additional purification via an ancillary
system A ′ held by Alice, which determines the states she prepares for Bob via projective measurements as
usual. Bob’s system shall be denoted by the subscript B.

For the purpose of diagonalizing σx,s,1 = ⟨e−II|1⟩⟨1|θ,ϕ⟩Ωx,s/⟨e−II⟩Ωx,s , we use again the matrix
representation provided in appendix D. In particular, from equation (D7), straightforward algebra leads to

σx,s,1 =
1B

2
+∆s

(
eix|L⟩⟨R|B + e−ix|R⟩⟨L|B

)
(27)

in the orthonormal basis {|R⟩ , |L⟩}, where 1B denotes the identity operator and

∆s =
sin(∆ϕ)

2∆ϕ
×

ˆ π
2 +∆θ

π
2 −∆θ

dθ sinθ

ˆ
Is

dIfθ,I(θ, I)e
−II

ˆ π
2 +∆θ

π
2 −∆θ

dθ

ˆ
Is

dIfθ,I(θ, I)e
−II

. (28)

Naturally, σx,s,1 is diagonal in the {|x⟩B , |x+π⟩B} basis, where |x⟩B =
1√
2

(
|R⟩B + eix |L⟩B

)
. Note that |x⟩B is a

pure state in the RL Bloch sphere with θ = π/2 and ϕ= x. In particular, explicit diagonalization yields

σx,s,1 =

(
1

2
+∆s

)
|x⟩⟨x|B +

(
1

2
−∆s

)
|x+π⟩⟨x+π|B, (29)

such that after attaching the shield system A—with, say, orthonormal basis {|0⟩A , |π⟩A}—, the purified state
reads

|Ψx,s,1⟩AB =
∑

δ∈{0,π}

(
1

2
+ eiδ∆s

)1/2

|δ⟩A |x+ δ⟩B . (30)

As stated above, in the virtual EB approach Alice holds an ancillary polarization qubit A ′ maximally
entangled to Bob’s purified qubit AB. That is to say, whenever ΩZ

s is post-selected and a single-photon is
emitted, the equivalent three-partite state prepared by Alice in the EB protocol reads

8
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|Ψs,1⟩A ′AB =
1√
2

(
|0⟩A ′ |Ψ0,s,1⟩AB + |π⟩A ′ |Ψπ,s,1⟩AB

)
, (31)

where again we are using the RL Bloch sphere notation |y⟩A ′ = 1√
2

(
|R⟩A ′ + eiy |L⟩A ′

)
. Importantly, it is

shown in appendix E that equation (31) can be rewritten as

|Ψs,1⟩A ′AB =
1√
2

(∣∣∣π
2

〉
A ′

∣∣Ψ−π
2 ,s,1

〉
AB

+
∣∣∣−π

2

〉
A ′

∣∣Ψπ
2 ,s,1

〉
AB

)
. (32)

Therefore, the Z basis phase-error probability ϕZ
s is defined as the bit-error probability between the

outcomes XA ′ and XB, reached by measuring the polarization qubits A ′ and B in the test bases [39] (i.e.
{|π/2⟩⟨π/2|A ′ , |−π/2⟩⟨−π/2|A ′} and {|π/2⟩⟨π/2|B, |−π/2⟩⟨−π/2|B}, respectively). In the
prepare-and-measure picture, this matches the bit-error probability that arises when ΩX

s is post-selected, a
single-photon is emitted (these two features are equivalent to asserting that σX

s,1 is post-selected), and Bob
selects the X basis. Namely,

ϕZ
s =

p
(
err|σX

s,1,X
)

p
(
click|σX

s,1,X
) =

eXs,1
yXs,1

. (33)

As usual, one can define the X basis single-photon phase-error probability ϕX
s in an entirely identical fashion,

and it can be computed as ϕX
s = eZs,1/y

Z
s,1 following the same argument presented here.

6. Performance

The secret key rate formula of our passive QKD scheme is determined by the fact that we consider a
decoy-state BB84 protocol, with the minor difference that one must deal with the continuous post-selection
regions introduced by the PT.

Naturally, we assume that both bases are used for key extraction, because they are equally likely to be
post-selected. In short, the secret key rate reads K= KZ +KX with

KM = qM ×
{〈

e−II
〉
ΩM

s
yMs,1

[
1− h

(
ϕM
s

)]
− fEC ⟨1⟩ΩM

s
QM

s h

(
EMs
QM

s

)}
, (34)

whereM ∈ {Z,X}, qM stands for Bob’s probability to select basisM (qM = 1/2 being optimal for symmetry
reasons), h(·) stands for Shannon’s binary entropy function, and fEC denotes the error correction efficiency.

In what follows, we evaluate the rate-distance performance of the PT illustrated in figure 2. For this
purpose, in the absence of experimental data, we consider a natural channel and detector model presented in
appendix F. The model is specified by the channel transmittance, ηch = 10−αattL/10 —where αatt denotes the
attenuation coefficient of the channel and L stands for its transmission length—, the detector efficiency of
Bob’s detectors, ηBob, and their dark count rate, pd. For illustration purposes, we set these parameters to
typical values of αatt = 0.2 dB km−1 (telecom wavelength attenuation), ηBob = 65% and pd = 10−6. As for
the input settings of the PT, we assume that no intensity value in the accessible range (0,4νt) is withdrawn,
such that the intervals Iv, Id and Is are strictly consecutive and exhaustive in this range. Also, we fix the width
of Iv/4νt and Id/4νt to a reasonable small value of 5× 10−3 for the numerics. Hence, Iv/4νt= (0,5)× 10−3

and Id/4νt= (5,10)× 10−3. The product νt and the angular widths∆θ and∆ϕ of the post-selection regions
are numerically optimized to maximize the secret key rate for each value of L, and the optimization reveals a
roughly constant optimal value νt≈ 0.25. Finally, we set the threshold photon number for the decoy-state
linear programs to ncut = 3. Importantly, the loss of generality of the above numerical specifications is very
small, as we check that the delivered secret key rate is remarkably close to the perfect decoy-state parameter
estimation limit (which we compute under full optimization as well). The results are shown in figure 4,
where we further include the secret key rate reached in the active setting for comparison purposes.

The figure shows that the security and simplicity upgrades of the PT come at the price of lowering the
secret key rate by a factor∼1/20. As mentioned in section 1, the origin of this discrepancy is twofold. In the
first place, the post-selection of acceptance regions requires additional sifting compared to the active setting.
In the second place, the post-selected σx,j,n are in a mixed polarization state. This represents an inherent
source of noise not present in the active case, where one typically considers pure states with fixed
polarizations.

9
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Figure 4. Rate-distance performance of our fully passive decoy-state BB84 proposal. For the sake of comparison, we include the
secret key rate attained in the active setting as well (solid red line). The experimental parameters are set as specified in the main
text.

7. Discussion

Active QKD systems often rely on the use of externally driven modulators, whose imperfections lead to
security loopholes and side-channels (e.g. THAs), and whose frequency of operation typically limits the
repetition rate of the system. Therefore, replacing all externally driven elements by a passive mechanism could
be a very appealing feature for QKD: it provides immunity to modulator side channels and, in principle, it
enables the operation of QKD systems at higher repetition rates. On top of it, passive architectures could
reduce the complexity (and thereby the cost) of QKD infrastructures. Needless to say, this would entail an
advantage in many practical situations, for instance, when it comes to deploying QKD on a satellite.

Despite the intense research in the field, working out a fully passive linear-optics setup for the celebrated
decoy-state BB84 protocol remained an open problem for more than a decade. Nonetheless, the present
work, together with that in [35], elucidate this possibility for the first time, and explicitly construct different
fully passive protocols with very diverse approaches to polarization encoding and decoy-state parameter
estimation. This clearly illustrates the versatility of the considered prototype. On top of it, we provide a
detailed security analysis for the mixed single-photon states generated by the transmitter, tightening a loose
end present in [35].

For implementation purposes, we remark that the usage of four independent lasers in the PT is not a
necessity by any means, but rather an instrument we use for theoretical convenience. Identically as
in [35] —where a detailed discussion is included—, the same physical states can be generated by using a
single laser and suitable Mach–Zehnder interferometry. This configuration benefits from an enhanced
simplicity, because high-visibility interference demands photon indistinguishability, which is typically hard
to enforce when using independent lasers.

Furthermore, despite the resilience to modulator side-channels or THAs, certain other vulnerabilities
may affect a PT. For instance, Eve could try to perform a laser-seeding attack to modify the phase/intensity of
the laser pulses generated in the PT [40–42]. Attacks of this kind, known to threaten actively modulated
systems too, could invalidate the estimation of the secret key length in the passive scenario. What is more, in
the case of a PT, Eve could launch a laser-seeding attack to alter the measurement outcome of its
photo-detection system. To counter these problems, optical isolation must be incorporated at the output
port of the transmitter, as it is done to protect active systems against attacks that inject light from the channel
(like e.g. THAs). Notwithstanding, current security proofs against THAs in the active setting typically require
the intensity of the back-reflected light to be minuscule for the information leakage to be irrelevant (as an
example, the analyses in [10–12] demand such intensity to lie below 10−7 or 10−8 photons/pulse). In contrast
to this, much less isolation is expected to be required to deal with laser-seeding attacks in the PT. This is so
because ‘classical’ (high intensity) light pulses are generated in the PT and arrive at Alice’s measurement unit,
say, containing 106–108 photons/signal. Therefore, as long as the intensity of the injected light is attenuated
well below this level, its effect on the generated pulses or on the reading of the detection scheme will probably
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be negligible. Moreover, any slight modification of the actual measurement outcome due to Eve’s action
could be readily incorporated in the security proof. Similarly, laser-damage attacks [43] —which, again, have
been proposed against active systems—may as well jeopardize the security of the PT. An attack of this kind
might try to reduce the optical isolation of the transmitter, or to manipulate the behaviour of its internal
components. As in the active setting, protection against laser-damage may be achieved with optical isolators,
circulators, filters or even an optical fuse [44, 45]. In any case, a detailed analysis of these and other potential
attacks where Eve actively meddles with the hardware lies beyond the scope of this work.

Leaving active tampering aside, potential information leakage via back-flash emission from the detection
system might be another weakness of a PT that deserves further experimental investigation. If needed, this
could probably be circumvented by simply using an anti-reflective coating. Also, we remark that Alice’s
intensity and polarization measurements are presumed to be noiseless in our analysis. However, to provide
protection against a noisy measurement, the noise must be characterized to a certain extent because it affects
the post-selected light pulses. Once characterized, it could be incorporated to the security analysis using
similar techniques as it is done in the active setting to deal with e.g. state preparation flaws or intensity
fluctuations.

After these various pending tasks are properly addressed, passive schemes could play a crucial role in the
development of practical and affordable QKD solutions, in view of the increasing concerns related to the
implementation security of QKD. This being the case, the present work is a valuable input to the topic.
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Appendix A. Calculation of the pure output state of the transmitter

Here, we derive equations (2) and (3) using elementary quantum optics. Let us consider, say, the top arm of
the PT in figure 2. Given ν ∈ R+, α ∈ [0,2π) and β ∈ [0,2π), the input state of the 50:50 beamsplitter (BS)
reads

|φin⟩ab =
∣∣√νeiα〉

a,R

∣∣√νeiβ〉
b,R

= exp
{√

νeiαa†R −
√
νe−iαaR

}
× exp

{√
νeiβb†R −

√
νe−iβbR

}
|vac⟩ ,

(A1)

and the unitary transformation of the BS is given by
{
a†R → 1√

2

(
c†R + d†R

)
, b†R → 1√

2

(
d†R − c†R

)}
. This leads

to

|φout⟩cd = exp

{√
ν

(
eiα− eiβ√

2
c†R −

e−iα− e−iβ

√
2

cR

)}
× exp

{√
ν

(
eiα+ eiβ√

2
d†R −

e−iα+ e−iβ

√
2

dR

)}
|vac⟩

(A2)
in the output modes c and d, after regrouping terms. Since mode d is not used, from now on we focus on
mode c, and refer to the corresponding state in equation (A2) as |φout⟩c. Factoring

(
eiα− eiβ

)
/
√
2 into

modulus and phase yields
∣∣(eiα− eiβ

)
/
√
2
∣∣=√

1− cos(β−α) and

Arg

(
eiα− eiβ√

2

)
=

eiα− eiβ√
2
[
1− cos(β−α)

] =
cosα− cosβ

2sin
(
β−α
2

) + i
sinα− sinβ

2sin
(
β−α
2

)
= sin

(
α+β

2

)
− icos

(
α+β

2

)
= ei(

α+β
2 −π

2 ), (A3)
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where the identity
√
2
[
1− cos(β−α)

]
= 2

∣∣∣sin(β−α2 )∣∣∣= 2sin
(
β−α
2

)
is used in the second equality, and

the identities cosα− cosβ = 2sin
(
α+β
2

)
sin

(
β−α
2

)
and sinα− sinβ =−2cos

(
α+β
2

)
sin

(
β−α
2

)
are used

in the third equality. Putting it all together,

|φout⟩c = exp

{√
ν
[
1− cos(β−α)

][
ei(

α+β
2 −π

2 )c†R − e−i(α+β
2 −π

2 )cR
]}

|vac⟩

=

∣∣∣∣√ν
[
1− cos(β−α)

]
ei(

α+β
2 −π

2 )
〉

c,R

. (A4)

Similarly, the output state of the bottom arm in mode r reads |ψout⟩r =
∣∣∣√ν

[
1− cos(δ− γ)

]
ei(

γ+δ
2 −π

2 )
〉
r,L
.

Next, |φout⟩c and |ψout⟩r interfere at a polarizing BS (PBS) that maps c†R to v†R and r†L to v†L. Explicit
calculation shows that the output state of the PBS at mode v reads

|Υ⟩v = exp

{√
ναβ + νγδ e

iταβ

[√
ναβ

ναβ + νγδ
v†R +

√
νγδ

ναβ + νγδ
ei(τγδ−ταβ)v†L

]
− ĥ.c.

}
|vac⟩ , (A5)

where we have defined νρσ = ν
[
1− cos(σ− ρ)

]
and τρσ = ρ+σ

2 − π
2 for ρ ∈ [0,2π) and σ ∈ [0,2π). Also, we

introduce the shorthand notation ‘ĥ.c.’ to denote the hermitian conjugate of the first term between keys.
Equation (A5) triggers the definition of I ′ = ναβ + νγδ , ψ = ταβ and θ ∈ [0,π], ϕ ∈ [0,2π) such that

θ
2 = arctan

√
νγδ/ναβ and ϕ= τγδ − ταβ . In terms of I

′
, ψ, θ and ϕ, |Υ⟩v reads

|Υ⟩v = exp

{√
I ′eiψ

[
cos

(
θ

2

)
v†R + sin

(
θ

2

)
eiϕv†L

]
− ĥ.c.

}
|vac⟩

= exp
{√

I ′eiψv†θ,ϕ− ĥ.c.
}
|vac⟩=

∣∣∣√I ′ eiψ
〉
v,θ,ϕ

, (A6)

where we recall that the notation v†θ,ϕ is presented in equation (1). Lastly, |Υ⟩v enters a BS with transmittance

t, which maps v†θ,ϕ to (
√
t w†

θ,ϕ+
√
1− t y†θ,ϕ). This trivially leads to the final output state

|Ψ⟩wy =
∣∣∣√tI ′ eiψ

〉
w,θ,ϕ

∣∣∣√(1− t)I ′ eiψ
〉
y,θ,ϕ

in modes w and y. In particular, setting I= tI ′, the state that is

sent to the channel reads

|Ψ⟩w =
∣∣∣√I eiψ

〉
w,θ,ϕ

. (A7)

Making the dependence on ν, α, β, γ, δ and t explicit, we see that

I=νt
[
2− cos(β−α)− cos(δ− γ)

]
= 2νt

[
sin2

(
β−α

2

)
+ sin2

(
δ− γ

2

)]
, ψ =

α+β

2
− π

2
,

θ =2arctan

√
1− cos(δ− γ)

1− cos(β−α)
= 2arctan

[
sin

(
δ− γ

2

)/
sin

(
β− γ

2

)]
and ϕ=

γ+ δ

2
− α+β

2
,

(A8)

where the first identity invoked in equation (A3) has been used again. Note that equations (A7) and (A8)
respectively match equations (2) and (3) exactly, as we wanted to show.

Appendix B. Calculation of the output probability density function of the transmitter

In this appendix, we shall use bold letters to denote random variables (RVs). The starting point is the
definition of the output RVs ϕ, θ and I of the PT, given in equation (3):

ϕ= δ2+
δ1+ δ3

2
,

θ = 2arctan

[
sin

(
δ3
2

)/
sin

(
δ1
2

)]
,

I= 2νt

[
sin2

(
δ1
2

)
+ sin2

(
δ3
2

)]
. (B1)
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B.1. Distribution and independence of ϕ
In the first place, since δ1, δ2 and δ3 are independent and uniformly distributed in [0,2π), it trivially follows
that ϕ is uniformly distributed in [0,2π) too. Namely, fϕ(ϕ) = 1/2π for all ϕ ∈ [0,2π). We discuss the
independence of ϕ from the bivariate RV (θ, I) next. In fact, it suffices to notice that, according to
equation (B1), ϕ

∣∣
(δ1,δ3)=(δ1,δ3)

is of the form ‘constant phase plus uniformly distributed phase’, such that

fϕ|(δ1,δ3)=(δ1,δ3)(ϕ) = 1/2π = fϕ(ϕ) for all δ1, δ3. This independence between ϕ and (δ1,δ3)
straightforwardly implies the independence of ϕ from (θ, I).

B.2. Distribution of θ and I
Here, we compute the joint PDF of θ and I, fθ,I, and recall that fϕ,θ,I = fϕ × fθ,I in virtue of the previous
discussion.

The starting point is the joint PDF of the independent variables δ1 and δ3 —given by fδ1,δ3(δ1, δ3) =
1/(2π)2 for all (δ1, δ3) ∈R= [0,2π)× [0,2π)— and the function g that maps (δ1,δ3) to (θ, I). For
convenience, we shall deal with the dimensionless variable y= I/2νt, such that the relevant function G
(identical to g up to a constant prefactor in the second component) reads

G :


θ = 2arctan

[
sin

(
δ3
2

)/
sin

(
δ1
2

)]

y= sin2
(
δ1
2

)
+ sin2

(
δ3
2

)
.

(B2)

Despite the non-injectiveness of G inR, G is symmetric with respect to the axes δ1 = π and δ3 = π, and its
restriction G|Qk to any of the four quadrants Qk ofR defined by these axes is injective. Therefore, any (θ,y)
in the interior of G(R) accumulates the probability densities coming from all G−1(θ,y)∩Qk (related with
each other by reflections with respect to the axes), and in virtue of the bivariate transformation theorem it
follows that

fθ,y(θ,y) =
4∑

k=1

fδ1,δ3
(
G−1(θ,y)∩Qk

)
|JG

(
G−1(θ,y)∩Qk

)
|−1, (B3)

where JG is the Jacobian determinant of the G function,

JG(δ1, δ3) = det

 ∂θ

∂δ1

∂θ

∂δ3
∂y

∂δ1

∂y

∂δ3

=−cos

(
δ1
2

)
cos

(
δ3
2

)
. (B4)

We remark that the r.h.s. in equation (B4) follows from explicit calculation of the derivatives and the
determinant. Notably, |JG (δ1, δ3)| is invariant under reflections with respect to δ1 = π and/or δ3 = π, such
that |JG

(
G−1(θ,y)∩Qk

)
| in equation (B3) takes the same value for all four contributions to the preimage of

(θ,y). Since, in addition, fδ1,δ3 (δ1, δ3) = 1/(2π)2 for all pairs (δ1, δ3), equation (B3) simplifies as

fθ,y(θ,y) = π−2|JG
(
G−1(θ,y)∩Q1

)
|−1. (B5)

At the symmetry axes δ1 = π and δ3 = π, which are necessarily mapped to the boundary of G(R), JG (δ1, δ3)
vanishes. As a consequence, fθ,y is divergent in this frontier. Note, however, that this feature does not
compromise the normalization of fθ,y or the finiteness of any physical quantity relevant to the problem.

All that remains is to write down the Jacobian determinant of equation (B4) in terms of θ and y. In order
to do this, it suffices to notice that

cos2
(
θ

2

)
=

sin2
(
δ1
2

)
sin2

(
δ1
2

)
+ sin2

(
δ3
2

) and sin2
(
θ

2

)
=

sin2
(
δ3
2

)
sin2

(
δ1
2

)
+ sin2

(
δ3
2

) (B6)

in virtue of equation (B2), such that

1− ycos2
(
θ

2

)
= cos2

(
δ1
2

)
and 1− y sin2

(
θ

2

)
= cos2

(
δ3
2

)
. (B7)
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Substituting these two relations in equation (B4) and plugging the result in equation (B5) yields

fθ,y(θ,y) =
1

π2

√
1− ycos2

(
θ

2

)√
1− ysin2

(
θ

2

) . (B8)

To finish with, let us explicitly identify the domain of fθ,y(θ,y), given by the image of the domainR via
G. In virtue of the symmetry of G, G(R) = G(Qk) for all k, and thus it suffices to show that Gmaps, say, the
quadrant Q1 = [0,π]× [0,π] to the region

G(Q1) =

{
θ ∈ [0,π],y ∈ [0,ymax,θ]

}
, (B9)

where ymax,θ =min
{
1/cos2 (θ/2) ,1/ sin2 (θ/2)

}
. For this purpose, we identify the image of the boundary of

Q1 via G, which certainly defines the boundary of G(Q1). If, for instance, we label the sides of the rectangle
Q1 as L1 = {δ1 ∈ [0,π], δ3 = 0}, L2 = {δ1 ∈ [0,π], δ3 = π}, L3 = {δ1 = 0, δ3 ∈ [0,π]} and
L4 = {δ1 = π,δ3 ∈ [0,π]}, one can readily show that L1 contributes with the border
G(L1) = {θ = 0,y ∈ [0,1]}, L2 with the border G(L2) = {θ ∈ [π/2,π],y= sin(θ/2)−2}, L3 with the border
G(L3) = {θ = π,y ∈ [0,1]} and L4 with the border G(L4) = {θ ∈ [0,π/2],y= cos(θ/2)−2}. These four
borders (together with the defining constraint y⩾ 0) shape the boundary of the region G(Q1) = G(R)

defined in equation (B9).
Needless to say, fθ,I(θ, I) follows trivially from fθ,y(θ,y) and the fact that y= I/2νt, leading to

equation (8) in the main text (where the border {θ ∈ [0,π],y= ymax,θ} is excluded because of the divergence
of fθ,I).

Appendix C. Trace distance argument

Let ρ and σ be two density matrices of a quantum system of dimension d. The TD between them is defined as

D(ρ,σ) = 1
2Tr

[√
(ρ−σ)

2
]
, and the TD argument states that D(ρ,σ) =max

{
Tr

[
Ô(ρ−σ)

]}
, where the

maximization is taken over all positive operators Ô⩽ I [36].
Notably, from the definition of the TD it follows that D(ρ,σ) =

∑d
i=1|λi|, where the λi are the

eigenvalues of ρ−σ.

Appendix D. Numerical evaluation of the trace distance constraints

In order to evaluate the TD constraints of section 4, we express the Fock states σx,j,n (defined in
equation (15)) in a computational basis. For this purpose, we work with the unnormalized states

σ̃x,j,n =

〈
e−IIn

n!
|n⟩⟨n|θ,ϕ

〉
Ωx,j

(D1)

instead, and recall that σx,j,n = σ̃x,j,n/Tr
[
σ̃x,j,n

]
with Tr

[
σ̃x,j,n

]
=
〈
e−IIn/n!

〉
Ωx,j

. The preferred basis that we

use here is the one induced by the creation operators a†R and a†L presented in section 2:

Bn =

{
|n− k,k⟩= a†n−k

R a†kL√
(n− k)!k!

|vac⟩ , k= 0, . . . ,n

}
. (D2)

Notably, Bn is an orthonormal basis of the Hilbert spaceHn of n indistinguishable photons distributed across
two modes, such that dimHn = n+ 1. In particular, the states |n⟩⟨n|θ,ϕ (defined in equation (6)) trivially
decompose as

|n⟩⟨n|θ,ϕ =
n∑

k=0

n∑
l=0

√(
n

k

)(
n

l

)
ei(k−l)ϕ cos2n−(k+l)

(
θ

2

)
sink+l

(
θ

2

)
|n− k,k⟩⟨n− l, l| (D3)

in virtue of Newton’s binomial formula. Now, in contrast to the states |n⟩θ,ϕ, the basis elements |n− k,k⟩ are
independent of θ and ϕ, thereby allowing us to proceed with the angular integrals in〈

e−IIn

n!
|n⟩⟨n|θ,ϕ

〉
Ωx,j

=
1

2π

ˆ x+∆ϕ

x−∆ϕ

dϕ

ˆ π
2 +∆θ

π
2 −∆θ

dθ

ˆ
Ij

dIfθ,I(θ, I)
e−IIn

n!
|n⟩⟨n|θ,ϕ. (D4)
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Specifically, the relevant azimuthal integral in equation (D4) is given by

1

2π

ˆ x+∆ϕ

x−∆ϕ

dϕei(k−l)ϕ =


∆ϕ

π
if k= l,

sin [(k− l)∆ϕ]

(k− l)π
ei(k−l)x if k ̸= l,

(D5)

such that

1
2π

ˆ x+∆ϕ

x−∆ϕ

dϕ|n⟩⟨n|θ,ϕ =
n∑

k=0

(
n
k

)
∆ϕ

π
cos2(n−k)

(
θ

2

)
sin2k

(
θ

2

)
|n− k,k⟩⟨n− k,k|

+
n∑

k=1

∑
l<k

√√√√(n
k

)(
n
l

)
sin [(k− l)∆ϕ]

(k− l)π
cos2n−(k+l)

(
θ

2

)
sink+l

(
θ

2

)
×
[
ei(k−l)x|n− k,k⟩⟨n− l, l|+ e−i(k−l)x|n− l, l⟩⟨n− k,k|

]
. (D6)

Note that this result is obtained by simply splitting |n⟩⟨n|θ,ϕ in equation (D3) into diagonal and off-diagonal
terms (in the Bn basis), and then using equation (D5) for the integration in ϕ. Finally, plugging
equation (D6) into equation (D4) yields

σ̃x,j,n =
n∑

k=0

(
n
k

)
∆ϕ

π

{ˆ π
2
+∆θ

π
2
−∆θ

dθ cos2(n−k)
(
θ

2

)
sin2k

(
θ

2

)ˆ
Ij

dIfθ,I(θ, I)
e−IIn

n!

}
× |n− k,k⟩⟨n− k,k|

+
n∑

k=1

∑
l<k

√√√√(n
k

)(
n
l

)
sin [(k− l)∆ϕ]

(k− l)π

{ˆ π
2
+∆θ

π
2
−∆θ

dθ cos2n−(k+l)
(
θ

2

)
sink+l

(
θ

2

)ˆ
Ij

dIfθ,I(θ, I)
e−IIn

n!

}

×
[
ei(k−l)x|n− k,k⟩⟨n− l, l|+ e−i(k−l)x|n− l, l⟩⟨n− k,k|

]
. (D7)

Now, we make use of the canonical isomorphism:

|n,0⟩ → [10 . . . 0]t, |n− 1,1⟩ → [01 . . . 0]t, . . . , |0,n⟩ → [0 . . . 01]t. (D8)

This provides a natural matrix representation of the σx,j,n, where the (r, s)th entry is given by

⟨n− r+ 1, r− 1|σx,j,n |n− s+ 1, s− 1⟩ (D9)

for r, s= 1, . . . ,n+ 1. These matrices can be written down in any scientific computing tool for the numerical
calculation of the TD via the eigenvalues, as indicated in appendix C.

Appendix E. Derivation of equation (32)

The goal is to show that

1√
2

(
|0⟩A ′ |Ψ0,s,1⟩AB + |π⟩A ′ |Ψπ,s,1⟩AB

)
=

1√
2

(∣∣∣π
2

〉
A ′

∣∣Ψ−π
2 ,s,1

〉
AB

+
∣∣∣−π

2

〉
A ′

∣∣Ψπ
2 ,s,1

〉
AB

)
. (E1)

From the RL Bloch sphere notation, |y⟩A ′ = 1√
2

(
|R⟩A ′ + eiy |L⟩A ′

)
, one can readily show that

|0⟩A ′ =
e−iπ4
√
2

(∣∣∣π
2

〉
A ′

+ i
∣∣∣−π

2

〉
A ′

)
and |π⟩A ′ =

ei
π
4

√
2

(∣∣∣π
2

〉
A ′

− i
∣∣∣−π

2

〉
A ′

)
, (E2)

where we keep the global phases for clarity. Plugging these relations into the l.h.s. of equation (E1) and
reordering yields

1√
2

(
|0⟩A ′ |Ψ0,s,1⟩AB + |π⟩A ′ |Ψπ,s,1⟩AB

)
=

1√
2

(∣∣∣π
2

〉
A ′

e−iπ4 |Ψ0,s,1⟩AB + ei
π
4 |Ψπ,s,1⟩AB√

2
+
∣∣∣−π

2

〉
A ′

ei
π
4 |Ψ0,s,1⟩AB + e−iπ4 |Ψπ,s,1⟩AB√

2

)
. (E3)
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Similarly, from the definition of |Ψx,s,1⟩AB (given in equation (30)) and the RL Bloch sphere notation for
system B, |x⟩B =

1√
2

(
|R⟩B + eix |L⟩B

)
, one can easily show that

e−iπ4 |Ψ0,s,1⟩AB + ei
π
4 |Ψπ,s,1⟩AB√

2
=
∣∣Ψ−π

2 ,s,1

〉
AB

and
ei

π
4 |Ψ0,s,1⟩AB + e−iπ4 |Ψπ,s,1⟩AB√

2
=
∣∣Ψπ

2 ,s,1

〉
AB
. (E4)

Plugging these relations into equation (E3), equation (E1) follows.

Appendix F. Channel model

Here, we present the channel model that we use for the simulations. As shown in section 2, the PT generates
the phase-randomized WCP

ρI,θ,ϕw =
∞∑
n=0

e−IIn

n!
|n⟩⟨n|θ,ϕ (F1)

in, say spatial mode w, with a known probability density function fϕ,θ,I. This state can also be written in the
form

ρI,θ,ϕw =
1

2π

ˆ 2π

0
dψ|

√
I eiψ⟩⟨

√
I eiψ|w,θ,ϕ, (F2)

such that one can apply the channel model to the pure state
∣∣√I eiψ

〉
w,θ,ϕ

first and proceed with the

phase-averaging later on. This is what we do next. The process that
∣∣√I eiψ

〉
w,θ,ϕ

undergoes is illustrated in
figure 5.

The BS transformation simply maps
∣∣√I eiψ

〉
w,θ,ϕ

(in spatial mode w in the figure) to
∣∣√Iη eiψ

〉
a,θ,ϕ

(in
spatial mode a in the figure). Now, in order to describe the measurement statistics of the basis-matched
events, it suffices to contemplate one basis. For instance, let us consider that the generated state

∣∣√I eiψ
〉
w,θ,ϕ

lies in the Z basis acceptance region—meaning that (ϕ,θ, I) ∈ ΩZ
j for some j ∈ {s,d,v}— and Bob selects the

Z basis for his measurement too —meaning that the polarization rotator does not alter the incident
polarization—. Aiming to incorporate the action of the PBS, we recall that∣∣√Iη eiψ

〉
a,θ,ϕ

= exp
{√

Iηeiψa†θ,ϕ−
√
Iηe−iψaθ,ϕ

}
|vac⟩ with a†θ,ϕ = cos(θ/2)a†R + eiϕ sin(θ/2)a†L, and

rewrite this state in terms of the creation operators associated to the Z basis, defined as a†H = a†π
2 ,0

,

a†V = a†π
2 ,π

. This yields

∣∣∣√Iη eiψ
〉
a,θ,ϕ

= exp

{√
Iη

2
eiψ

[(
cos(θ/2)+ eiϕ sin(θ/2)

)
a†H

+
(
cos(θ/2)− eiϕ sin(θ/2)

)
a†V

]
− ĥ.c.

}
|vac⟩ .

(F3)

The transformation of the PBS reads
{
a†H → b†H, a

†
V → c†V

}
, which maps

∣∣√Iη eiψ
〉
a,θ,ϕ

to∣∣∣∣∣
√

Iη

2
eiψ

(
cos(θ/2)+ eiϕ sin(θ/2)

)〉
b,π2 ,0

∣∣∣∣∣
√

Iη

2
eiψ

(
cos(θ/2)− eiϕ sin(θ/2)

)〉
c,π2 ,π

=

∣∣∣∣∣
√

Iη (1+ sinθ cosϕ)

2
eiΓ+

〉
b,π2 ,0

∣∣∣∣∣
√

Iη (1− sinθ cosϕ)

2
eiΓ−

〉
c,π2 ,π

, (F4)

for known phases Γ+ and Γ− irrelevant to the discussion.
Coming next, the measurement implemented by each photo-detector is described by a POVM with

elements {Êno click = (1− pd)|0⟩⟨0|, Êclick = 1− Êno click}, where pd stands for the dark count probability and
1 stands for the identity operator (note that detector loss has already been accounted for in the channel).
Denoting the first (second) ket in the r.h.s. of equation (F4) by |B⟩ (|C⟩), it follows that detectors ‘H’ and ‘V’
in figure 5 record a click with independent probabilities pH = Tr

[
Êclick|B⟩⟨B|

]
and pV = Tr

[
Êclick|C⟩⟨C|

]
, such

that

pH = 1− (1− pd)e
− Iη (1+ sinθ cosϕ)

2 and pV = 1− (1− pd)e
− Iη (1− sinθ cosϕ)

2 . (F5)

16



Quantum Sci. Technol. 8 (2023) 025014 V Zapatero et al

Figure 5. Schematic of the channel model. The quantum states generated in the PT undergo (1) a lossy quantum channel and (2)
a quantum measurement at Bob’s lab. The measurement is modelled with a polarization rotator (PR) that selects Bob’s basis
setting, followed by a PBS that splits orthogonal polarizations in the Z basis (say, H and (V). A noisy-and-lossy threshold detector
is located in each output port of the PBS and we assume that both detectors are equal. Notably, channel and detector loss are
jointly accounted for with a BS of effective transmittance η = ηchηdet, where ηch (ηdet) stands for the channel transmittance
(detection efficiency). Also, the relevant spatial modes are indicated in red.

These probabilities do not depend on the phase ψ, which implies that they remain unchanged after phase
averaging. In short, ρI,θ,ϕw triggers a click when measured in the Z basis with overall probability

p
(
click

∣∣ρI,θ,ϕw ,Z
)
= 1− p

(
noclick

∣∣ρI,θ,ϕw ,Z
)
= 1− (1− pH)(1− pV) = 1− (1− pd)

2e−Iη. (F6)

Notably, equation (F6) does not use the fact that ρI,θ,ϕw belongs to a Z basis acceptance region in any way.
This consideration only matters for the calculation of the error probability p

(
err

∣∣ρI,θ,ϕw ,Z
)
, which we do

next. For this purpose, we further assume that ρI,θ,ϕw belongs to an acceptance region associated to the
horizontal polarization. This amounts to saying that ϕ ∈ [x−∆ϕ,x+∆ϕ] with x= 0, or equivalently that
(ϕ,θ, I) ∈ Ω0,j for some j ∈ {s,d,v}. In this case, a bit error occurs if the outcome ‘V’ is recorded.
Considering, as usual, that double-clicks are randomly assigned to a specific outcome, this means that
p
(
err

∣∣ρI,θ,ϕw ,Z
)
= pV(1− pH)+ pVpH/2 for all (ϕ,θ, I) ∈ Ω0,j, which is easily taken to the form

p
(
err

∣∣ρI,θ,ϕw ,Z
)
=

1

2

[
1− (1− pd)

2e−Iη
]
− 1

2
(1− pd)

e− Iη (1− sinθ cosϕ)

2 − e
− Iη (1+ sinθ cosϕ)

2

 .
(F7)

Finally, given equations (F6) and (F7), it is straightforward to compute QZ
j = p

(
click|σZ

j ,Z
)
and

EZj = p
(
err|σZ

j ,Z
)
. To be precise, since σZ

j =
〈
ρI,θ,ϕw

〉
ΩZ

j
/⟨1⟩ΩZ

j
, it follows that

QZ
j =

〈
p
(
click

∣∣ρI,θ,ϕw ,Z
)〉

ΩZ
j

⟨1⟩ΩZ
j

= 1− (1− pd)
2

〈
e−Iη

〉
ΩZ

j

⟨1⟩ΩZ
j

. (F8)

On the other hand, EZj =
(
p
(
err|σ0,j,Z

)
+ p

(
err|σπ,j,Z

))
/2, and both σ0,j and σπ,j are equally likely to

trigger an error for symmetry reasons within our channel model. Therefore, EZj = p
(
err|σ0,j,Z

)
, and thus

EZj =

〈
p
(
err

∣∣ρI,θ,ϕw ,Z
)〉

Ω0,j

⟨1⟩Ω0,j

=
1

2

1− (1− pd)
2

〈
e−Iη

〉
Ω0,j

⟨1⟩Ω0,j



− 1

2
(1− pd)



〈
e
− Iη (1− sinθ cosϕ)

2

〉
Ω0,j

⟨1⟩Ω0,j

−

〈
e
− Iη (1+ sinθ cosϕ)

2

〉
Ω0,j

⟨1⟩Ω0,j


. (F9)
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