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Abstract We have studied the leptonic EDM and the LFV
decays relating with the recent data of anomalous magnetic
moment of muon, (g − 2)μ in the leptonic dipole operator.
We have adopted the successful �2 modular invariant model
by Meloni–Parriciatu as the flavor symmetry of leptons. Sup-
pose the anomaly of (g − 2)μ, �aμ to be evidence of New
Physics (NP), we have related it with the anomalous mag-
netic moment of the electron �ae, the electron EDM de and
the μ → eγ decay. We found that the NP contributions to
�ae(μ) are proportional to the lepton masses squared likewise
the naive scaling �a� ∝ m2

� . The experimental constraint of
|de| is much tight compared with the one from the branching
ratio B(μ → eγ ) in our framework. Supposing the phase of
our model parameter δα for the electron to be of order one, we
have estimated the upper-bound of B(μ → eγ ), which is at
most 10−21 −10−20. If some model parameters are real, lep-
tonic EDMs vanish since the CP phase of the modular form
due to modulus τ does not contribute to the EDM. However,
we can obtain B(μ → eγ ) � 10−13 with non-vanishing
de in a specific case. The imaginary part of a parameter can
lead to de in the next-to-leading contribution. The predicted
electron EDM is below 10−32e cm, while B(μ → eγ ) is
close to the experimental upper-bound. The branching ratios
of τ → eγ and τ → μγ are also discussed.

1 Introduction

The electric and magnetic dipole moments of the charged
leptons are low-energy probes of New Physics (NP) beyond
the Standard Model (SM). The muon (g−2)μ experiment at
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Fermilab reported a new measurement of the muon magnetic
anomaly [1]. Improvements of the analysis and run condition
lead to more than a factor of two reduction in the systematic
uncertainties, which is compared with the E989 experiment
at Fermilab [2] and the previous BNL result [3]. This result
indicates the discrepancy of 5.1 σ with the SM prediction [4]
(see also [5–14]).

While there is a debatable point on the precise value of the
SM prediction, that is the contribution of the hadronic vac-
uum polarization (HVP). The current situation is still com-
plicated. The CMD-3 collaboration [15] released results on
the cross section that disagree at the (2.5−5)σ level with
all previous measurements. The origin of this discrepancy
is currently unknown. The Bell-II experiment is expected to
measure e+e− → π+π− cross section in the near future.1

The BMW collaboration published the first complete lattice-
QCD result with subpercent precision [17]. Their result is
closer to the experimental average (1.7σ tension for no NP
in the muon (g−2)μ). Further studies are underway to clarify
these theoretical differences.

If the muon (g−2)μ anomaly comes from NP, it possibly
appears in other observables of the charged lepton sector. The
interesting one is the electric dipole moments (EDM) of the
electron. A new upper-bound on the electron EDM, which is
|de| < 4.1 × 10−30e cm (90% confidence), was reported by
the JILA group [18]. It overcame the latest ACME collabora-
tion result obtained in 2018 [19]. Precise measurements of the
electron EDM will be rapidly being updated. The future sen-
sitivity at ACME III is expected to be |de| < 0.3×10−30 e cm
[20,21]. On the other hand, the present upper-bound of the
muon EDM [22] and tauon EDM [23–25] are not so tight.

1 Belle-II reported the measurement of the e+e− → π+π−π0 cross
section in the energy range 0.62 − 3.50 GeV. The result differs by 2.5
standard deviations from the most precise current determination [16].
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The lepton flavor violation (LFV) is also possible NP phe-
nomena of charged leptons. The tightest constraint for LFV is
the branching ratio of the μ → eγ decay. The recent experi-
mental upper-bound is B(μ+ → e+γ ) < 3.1×10−13 by the
combination of the MEG and MEG II experiments [26,27].
In contrast, the present upper-bounds of B (τ → μγ ) and
B (τ → eγ ) are not so tight such as 4.4 × 10−8 and
3.3 × 10−8 [28,29], respectively.

On the other hand, theoretical studies of the electric and
magnetic dipole moments of leptons are given in the SM
Effective Field Theory (SMEFT) [30–32], i.e., under the
hypothesis of new degrees of freedom above the electroweak
scale [33–36]. The phenomenological discussion of NP has
presented taking the anomaly of the muon (g − 2)μ and
the LFV bound in the SMEFT. The flavor symmetry is a
challenging hypothesis to reduce the number of independent
parameters of the flavor sector. Indeed, LFV decays and the
electron EDM have been studied in the light of the muon
(g − 2)μ anomaly by imposing U (2)L ⊗U (2)R flavor sym-
metry [37,38] and some other symmetries [39].

Recently, the modular invariance opened up a new promis-
ing approach to the flavor problem of quarks and leptons [40]
(see also Refs. [41–43]). Among finite �N modular groups,
the �3 modular group, which is isomorphic to A4 [44–50],
has been extensively used for understanding the origin of
the quark and lepton flavors [40,51–65]. Other finite modu-
lar groups have been also widely employed in flavor model
building (see, e.g., [41–43,66–77] and the reviews [78–89]).
Furthermore, the modular symmetry is also developing to the
strong CP problem [90–94] and modular inflation [95–98].
It is also remarked that the formalism of non-holomorphic
modular flavor symmetry is developed [99].

In the framework of the A4 modular flavor symmetry, LFV
decays and the electron EDM have been studied with the
muon (g − 2)μ anomaly [62,63]. In those works, assuming
NP to be heavy and given by the SMEFT Lagrangian, the
dipole operator of leptons and their Wilson coefficients were
discussed at the electroweak scale. Although modular flavor
models have been constructed in the supersymmetric frame-
work so far, the modular invariant SMEFT will be realized
in the so-called moduli-mediated supersymmetry breaking
scenario [100]. Furthermore, higher-dimensional operators
also keep the modular invariance in a certain class of the
string effective field theory in which n-point couplings of
matter fields are written by a product of 3-point couplings
[101]. This is called Stringy Ansatz to constrain the higher-
dimensional operators in the SMEFT.

In this work, we take the level 2 finite modular group, �2

[41], which is isomorphic to the S3 group, as the flavor sym-
metry. In the S3 group, irreducible representations are two
different singlets 1, 1′ and one doublet 2, which are assigned
to quarks or leptons. Similarly, the light two families are
assigned to 2 and the third one is 1 in the U (2) flavor model.

The U (2) flavor symmetry is successful in the quark sector
such as B meson physics [102,103]. On the other hand, the
drawback of the U (2) leptonic flavor model is in the diffi-
culty of building a simple neutrino mass matrix. Therefore,
the neutrino mass matrix is not specified in the analysis of
the LFV decays and the electron EDM by imposing U (2)

in Refs. [37,38]. In the S3 flavor model, simple lepton mass
matrices possibly reproduce the masses and neutrino mixing
angles under the �2 modular invariance, where the modular
symmetry and CP symmetry are broken by fixing the vacuum
expectation value (VEV) of modulus τ . Indeed, the success-
ful models of leptons have been presented [76,77]. Based
on these works, we investigate LFV decays and the electron
EDM relating with the muon (g − 2)μ anomaly.

The paper is organized as follows. In Sect. 2, we present
our framework, that is Stringy Ansatz and the level 2 modular
group. In Sect. 3, we show the flavor structure of the Wilson
coefficients of the leptonic dipole operator in mass basis with
input data. In Sect. 4, the �2 modular invariant models of
leptons are introduced. In Sect. 5, the Wilson coefficients are
obtained approximately in mass basis. In Sect. 6, we discuss
the phenomenology of the electron (g − 2)e, LFV decays
and the electron EDM numerically. Section 7 is devoted to
the summary. In Appendix A, we present the tensor product
of the S3 group. In Appendix B, we present the experimental
constraints on the leptonic dipole operator. In Appendix C
and D, we derive the left-handed and right-handed mixing
matrices. In Appendix E, model parameters are discussed in
the normal distribution.

2 Framework

2.1 Stringy ansatz

It was known that n-point couplings y(n) of matter fields are
written by products of 3-point couplings y(3) in a certain class
of string compactifications. For instance, 4-point couplings
y(4)
i jk� of matter fields are given by

y(4)
i jk� =

∑

m

y(3)
i jm y

(3)
mk�, (1)

up to an overall factor where the subscripts “{i, j, k, �}” indi-
cate states associated with corresponding 4-point interaction
[101]. Here, the virtual modes “m” are light or heavy modes,
depending on the compactifications. It indicates that the fla-
vor structure of 3-point couplings and higher-dimensional
operators has a common origin in string compactifications.
As discussed in Ref. [101], such a relation holds at the low-
energy scale below the compactification scale.

Indeed, the Ansatz Eq. (1) is used to predict NP of lep-
tonic phenomena in the modular flavor symmetry, as will be
discussed in the next sections.
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2.2 Modular forms of �2 modular group

The �2 modular group is isomorphic to S3 [41], where the
irreducible representations are

1, 1′, 2. (2)

These tensor products are given in Appendix A. By using the
Dedekind eta-function η(τ):

η(τ) = q1/24
∞∏

n=1

(1 − qn), q = e2π iτ , (3)

the modular forms of weight 2 corresponding to the S3 dou-
blet are given as [41],

Y(2)
2 =

(
Y1(τ )

Y2(τ )

)
, (4)

where

Y1(τ ) = 1

2
c

(
η′(τ/2)

η(τ/2)
+ η′((τ + 1)/2)

η((τ + 1)/2)
− 8η′(2τ)

η(2τ)

)
,

Y2(τ ) =
√

3

2
c

(
η′(τ/2)

η(τ/2)
− η′((τ + 1)/2)

η((τ + 1)/2)

)
. (5)

Here τ is the complex modulus. In these expressions, c is a
normalization constant. The S3 generators S and T are in the
doublet representation:

S = 1

2

( −1 −√
3

−√
3 1

)
, T =

(
1 0
0 −1

)
. (6)

Taking c as [76]:

c = i
7

25π
, (7)

the doublet modular forms of weight 2 have the following
q-expansions:

Y(2)
2 =

(
Y1(τ )

Y2(τ )

)
�

( 7
100 (1 + 24q + 24q2 + 96q3 + . . . )

14
25

√
3q1/2(1 + 4q + 6q2 + . . . )

)
.

(8)

In the basis of Eq. (6), we can construct modular forms
of weight 4 by the tensor product of the two doublets
(Y1(τ ),Y2(τ ))T :

1 : Y(4)
1 = Y1(τ )2 + Y2(τ )2,

2 : Y(4)
2 =

(
Y (4)

1

Y (4)
2

)
=

(
Y2(τ )2 − Y1(τ )2

2Y1(τ )Y2(τ )

)
. (9)

The S3 singlet 1′ modular form of the weight 4 vanishes.

Likewise, we obtain the modular forms of weight 6 by
tensor products of three modular forms with weight 2 as:

1 : Y(6)
1 = 3Y1(τ )Y2(τ )2 − Y1(τ )3,

1′ : Y(6)
1′ = Y2(τ )3 − 3Y1(τ )2Y2(τ ),

2 : Y(6)
2 =

(
Y (6)

1

Y (6)
2

)
=

(
Y1(τ )(Y1(τ )2 + Y2(τ )2)

Y2(τ )(Y1(τ )2 + Y2(τ )2)

)
. (10)

In the case of the large Im τ , the modular forms of Y1 and Y2

are given by q expansions in good approximation. By using
small parameter ε, the modular forms are written up to O(ε)

as:

Y(2)
2 =

(
Y1(τ )

Y2(τ )

)
� 7

100

(
1 + 24εp

8
√

3
√

ε p′(1 + 4εp)

)
, (11)

where

ε = exp [−2π Im τ ], p = exp [2π i Re τ ],
p′ = exp [π i Re τ ]. (12)

Modular forms of weight 4 and 6 are written in terms of ε, p
and p′ as:

Y(4)
1 �

(
7

100

)2

(1 + 240εp),

Y (4)
1 �

(
7

100

)2

(−1 + 144εp),

Y (4)
2 �

(
7

100

)2

(16
√

3
√

ε p′),

Y(6)
1 �

(
7

100

)3

(−1 + 504εp),

Y(6)
1′ �

(
7

100

)3

(−24
√

3
√

ε p′),

Y (6)
1 �

(
7

100

)3

(1 + 264εp),

Y (6)
2 �

(
7

100

)3

(8
√

3
√

ε p′). (13)

3 Constraints of Wilson coefficients of dipole operator

3.1 Input experimental data

The combined result from the E989 experiment at Fermilab
[1,2] and the E821 experiment at BNL [3] on aμ = (g −
2)μ/2, together with the SM prediction aSM

μ in [4], implies

�aμ = aExp
μ − aSM

μ = (249 ± 49) × 10−11 . (14)
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We suppose that �aμ comes from NP.
Although the precise value of the SM prediction of HVP

is still unclear, we take a following reference value (the dis-
crepancy of 5.1 σ with the SM prediction) as the input in our
numerical analysis:

�aμ = 249 × 10−11. (15)

We also impose the upper-bound of the absolute value of
electron EDM by the JILA group [18]:

|de| < 4.1 × 10−30 e cm = 6.3 × 10−14 TeV−1. (16)

On the other hand, the upper-bound of the muon EDM is
[22]:

|dμ| < 1.8 × 10−19 e cm = 2.76 × 10−3 TeV−1. (17)

The tauon EDM can be evaluated through the measure-
ment of CP-violating correlations in tauon-pair production
such as e+e− → τ+τ− [23] (see also [24]). The present
upper-bound on the tauon EDM dτ is given as [25]:

− 1.85 × 10−17e cm < Re dτ < 0.61 × 10−17e cm,

− 1.03 × 10−17e cm < Im dτ < 0.23 × 10−17e cm. (18)

Taking the bound of Re dτ , we have

|dτ | < 1.85 × 10−17e cm = 2.84 × 10−1 TeV−1. (19)

The experimental upper-bound for the branching ratio of
the μ → eγ decay is [26,27]:

B(μ+ → e+γ ) < 3.1 × 10−13. (20)

We also take account of the upper-bound for LFV decays
τ → μγ and τ → eγ [28,29]:

B(τ → μγ ) < 4.2 × 10−8, B(τ → eγ ) < 3.3 × 10−8.

(21)

These input data are summarized in Table 1. They are
converted into the magnitudes of the Wilson coefficients of
the leptonic dipole operator in the next subsection.

3.2 Wilson coefficients of leptonic dipole operator

We make the assumption that NP is heavy and can be given by
the SMEFT Lagrangian. Let us focus on the dipole operator
of leptons and their Wilson coefficients. The dipole operators

come from SMEFT Lagrangian at the weak scale as:

Oeγ
RL

= v√
2
ERσμνEL Fμν, C′

eγ
RL

=

⎛

⎜⎜⎜⎝

C′
eγ
ee

C′
eγ
eμ

C′
eγ
eτ

C′
eγ
μe

C′
eγ
μμ

C′
eγ
μτ

C′
eγ
τe

C′
eγ
τμ

C′
eγ
ττ

⎞

⎟⎟⎟⎠ ,

Oeγ
LR

= v√
2
ELσμνERFμν, C′

eγ
LR

= C′ †
eγ
RL

, (22)

where EL and ER denote three flavors of the left-handed
and right-handed charged leptons, respectively, and v denotes
the vacuum expectation value (VEV) of the Higgs field H .
The prime of the Wilson coefficients indicates the mass-
eigenstate basis of the charged leptons. (Later, we use the
notation of the Wilson coefficients without primes in the basis
of the non-diagonal charged lepton mass matrix.) The rele-
vant effective Lagrangian is written as:

Ldipole = 1

�2

(
C′
eγ
RL

Oeγ
RL

+ C′
eγ
LR

Oeγ
LR

)
, (23)

where � is a certain mass scale of NP in the effective theory.
The operator of Eq. (22) corresponds to the four-field oper-

ator of SMEFT [ERσμνELHFμν] by replacing v with H . In
the viewpoint of Stringy Ansatz of Eq. (1), the lightest mode
“m” corresponds to the Higgs doublet. If the mode “m” is
only Higgs doublet, the flavor structure of bilinear operator
[ ĒRσμνEL ] is exactly the same as the mass matrix. Obvi-
ously, the bilinear operator matrix is diagonal in the basis
for mass eigenstates. In this case the LFV processes such as
μ → e, τ → μ and τ → e never happen.

However, additional unknown modes “m” in Eq. (1) can
cause the flavor violation. We discuss such a case in our
numerical analysis.

In the following discussions, we take the �2 modular sym-
metry for leptons. Most of modular flavor models are super-
symmetric models. Since we discuss the model below the
supersymmetry breaking scale, the light modes are exactly
the same as the SM with two Higgs doublet models. Note
that the modular symmetry is still a symmetry of the low-
energy effective action below the supersymmetry breaking
scale, as confirmed in the moduli-mediated supersymmetry
breaking scenario [100]. Here the Wilson coefficients are
understood to be evaluated at the weak scale.2 Inputting the
value in Eq. (15), the μμ component of Wilson coefficients
is obtained as [37] (see Appendix B):

1

�2 Re [C′
eγ
μμ

] = 1.0 × 10−5 TeV−2. (24)

2 We neglect the small effect of running below the weak scale. The
one-loop effect is small as seen in [104].
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Table 1 Relevant observables and the corresponding values of Wilson coefficients, which are presented in 1/�2 (TeV−2) unit

Observables Exp.-SM/upper bound Wilson Coef. in 1/�2 (TeV−2)

�aμ 249 × 10−11 [1–3] Re [C′
eγ
μμ

] = 1.0 × 10−5

B(μ+ → e+γ ) < 3.1 × 10−13 [26] |C′
eγ

eμ(μe)

| < 1.8 × 10−10

B(τ → μγ ) < 4.2 × 10−8 [28,29] |C′
eγ

μτ(τμ)

| < 2.65 × 10−6

B(τ → eγ ) < 3.3 × 10−8 [28,29] |C′
eγ

eτ(τe)

| < 2.35 × 10−6

|de| < 4.1 × 10−30 e cm [18] Im [C′
eγ
ee

] < 1.8 × 10−13

|dμ| < 1.80 × 10−19 e cm [22] Im [C′
eγ
μμ

] < 7.9 × 10−3

|dτ | < 1.85 × 10−17 e cm [23] Im [C′
eγ
ττ

] < 8.2 × 10−1

The LFV process μ → eγ gives us more severe constraint
for the μe(eμ) component of Wilson coefficients by the
experimental data in Eq. (20). The upper-bound is obtained
[37] (see Appendix B):

1

�2 |C′
eγ

eμ(μe)

| < 1.8 × 10−10 TeV−2. (25)

Taking into account Eqs. (24) and (25), one has the ratio [37]:

∣∣∣∣∣∣∣

C′
eγ

eμ(μe)

C′
eγ
μμ

∣∣∣∣∣∣∣
< 1.8 × 10−5. (26)

Thus, the magnitude of C′
eγ

eμ(μe)

is much suppressed compared

with C′
eγ
μμ

. This gives the severe constraint for parameters of

the flavor model.
The τ → eγ and τ → μγ decays also give us constraints

by the experimental data in Eq. (21). The upper-bounds of
corresponding components of the Wilson coefficients are
obtained as seen in Appendix B:

1

�2 |C′
eγ

μτ(τμ)

| < 2.65 × 10−6 TeV−2,

1

�2 |C′
eγ

eτ (τe)

| < 2.35 × 10−6 TeV−2. (27)

The electron EDM, de is defined in the operator:

Oedm = − i

2
de(μ) eσμνγ5eFμν, (28)

where de = de(μ = me). Therefore, the electron EDM is
extracted from the effective Lagrangian

LEDM= 1

�2 C′
eγ
ee

Oeγ
LR

+h.c.= 1

�2 C′
eγ
ee

v√
2
eLσμνeRFμν + h.c.,

(29)

which leads to

de = −√
2

v

�2 Im [C′
eγ
ee

], (30)

at tree level, where the small effect of running below the
electroweak scale is neglected.

Inputting the experimental upper-bound of the electron
EDM in Eq. (16) [18], we obtain ee component of the con-
straints of the Wilson coefficient:
1

�2 Im [C′
eγ
ee

] < 1.8 × 10−13 TeV−2. (31)

By taking the value in Eq. (24), we have a very small ratio:

Im [C′
eγ

eμ(μe)

]
Re [C′

eγ
μμ

] < 1.8 × 10−8. (32)

On the other hand, the experimental upper-bound of the
muon EDM in Eq. (17) gives:

1

�2 Im [C′
eγ
μμ

] < 7.9 × 10−3 TeV−2. (33)

The upper-bound of the tauon EDM in Eq. (19) also gives:

1

�2 Im [C′
eγ
ττ

] < 8.2 × 10−1 TeV−2. (34)

These upper-bounds of the Wilson coefficients are sum-
marized in Table 1. Using these upper-bounds of Wilson coef-
ficients, we discuss NP based on the �2 modular invariant
flavor model in the next section.
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Table 2 Assignments of S3 representations and weights in Model I

(e, μ)L , τL ec, μc, τ c Hu Hd

SU (2) 2 1 2 2

S3 2 1′ 1 1′ 1′ 1 1

k 2 2 0 − 2 0 0

4 �2 modular invariant model

4.1 Mass matrices of leptons

In the �2 modular invariant model, the successful lepton mass
matrices are presented in Ref. [76]. There are two-type charge
lepton mass matrices. The first one is the minimal model I,
where the weight 2 and 4 modular forms used, and the second
one is the hierarchical model II, where the weight 2 and 6
modular forms appear.

Let us discuss Model I, in which the assignments of the
weights for the relevant chiral superfields as in Table 2.

The superpotential terms of the charged lepton masses
wE(I) are written as:

wE(I) = α1e
cHd [(e, μ)LY

(4)
2 ]1 + β1μ

cHd [(e, μ)LY
(2)
2 ]1′

+ γ1τ
cHdτL . (35)

The charged lepton mass matrix is given as:

I : ME = vd

⎛

⎝
α1Y

(4)
1 α1Y

(4)
2 0

β1Y2 −β1Y1 0
0 0 γ1

⎞

⎠

RL

, (36)

where α1, β1 and γ1 are taken to be real positive parameters
without loss of generality, and vd denotes the VEV of Hd .

It is given approximately by using Eqs. (11) and (13) as:

I : ME � vd

⎛

⎝
−α̃1(1 − 144εp) 16

√
3α̃1

√
ε p′ 0

8
√

3β̃1
√

ε p′ −β̃1(1 + 24εp) 0
0 0 γ1

⎞

⎠

RL

,

(37)

where

α̃1 =
(

7

100

)2

α1, β̃1 =
(

7

100

)
β1, (38)

while γ1 is remained.
Next, we show Model II, in which the assignments of the

weights for the relevant chiral superfields as in Table 3.
The superpotential terms of the charged lepton masses

wE(II) are given

wE(II) = α2e
cHd [(e, μ)LY

(6)
2 ]1 + β2μ

cHd [(e, μ)LY
(2)
2 ]1′

Table 3 Assignments of S3 representations and weights in Model II

(e, μ)L , τL ec, μc, τ c Hu Hd

SU (2) 2 1 2 2

S3 2 1′ 1 1′ 1′ 1 1

k 4 2 0 − 2 0 0

+ γ2τ
cHdτL + αDe

cHdτLY
(6)

1′ . (39)

The charged lepton mass matrix is given in terms of 1′ mod-
ular form with weigh 6 in addition to S3 doublet modular
forms with weight 2 and 6 as:

II : ME = vd

⎛

⎝
α2Y

(6)
1 α2Y

(6)
2 αDY

(6)

1′
β2Y2 −β2Y1 0

0 0 γ2

⎞

⎠

RL

, (40)

where α2, αD , β2 and γ2 are real positive parameters without
loss of generality. It is given approximately as:

II : ME � vd
⎛

⎝
α̃2(1 + 264εp) 8

√
3α̃2

√
ε p′ −24

√
3α̃D

√
ε p′

8
√

3β̃2
√

ε p′ −β̃2(1 + 24εp) 0
0 0 γ2

⎞

⎠

RL

,

(41)

where

α̃2=
(

7

100

)3

α2, α̃D=
(

7

100

)3

αD, β̃2=
(

7

100

)
β2,

(42)

while γ2 is remained.
On the other hand, the Weinberg operator gives the neu-

trino mass matrix, which is common for Model I and Model
II:

Mν = 2g
v2
u

�

⎡

⎢⎢⎣

⎛

⎜⎜⎝

Y 2
1 − Y 2

2 2Y1Y2 2 g′
2g Y1Y2

2Y1Y2 Y 2
2 − Y 2

1
g′
2g (Y 2

1 − Y 2
2 )

2 g′
2g Y1Y2

g′
2g (Y 2

1 − Y 2
2 ) 0

⎞

⎟⎟⎠

+(Y 2
1 + Y 2

2 )

⎛

⎜⎝

g′′
g 0 0

0 g′′
g 0

0 0 gp
g

⎞

⎟⎠

⎤

⎥⎦ , (43)

where the g′, g′′ and gp are real positive parameters. It is
noted that CP is violated by fixing the modulus τ since the
imaginary part of the lepton mass matrices appear through
Re τ .

However, we do not discuss details of the neutrino mass
matrix in this work because its contribution to our result is
negligibly small due to small neutrino masses.
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4.2 Wilson coefficients of the leptonic dipole operator

The leptonic dipole operator is written in the flavor space
as seen in Eq. (22), where the charged lepton mass matrix is
non-diagonal, and given in Eqs. (36) or (40).

In Model I, the flavor structure of Ceγ
RL

is the same as the

Yukawa couplings YRL apart from coefficients α′
1, β ′

1 and γ ′
1.

It is given approximately by using Eq. (13) as:

I : Ceγ
RL

=

⎛

⎜⎜⎜⎝

Ceγ
ee

Ceγ
eμ

Ceγ
eτ

Ceγ
μe

Ceγ
μμ

Ceγ
μτ

Ceγ
τe

Ceγ
τμ

Ceγ
ττ

⎞

⎟⎟⎟⎠

�
⎛

⎝
−α̃′

1(1 − 144εp) 16
√

3α̃′
1
√

ε p′ 0
8
√

3β̃ ′
1
√

ε p′ −β̃ ′
1(1 + 24εp) 0

0 0 γ ′
1

⎞

⎠

RL

, (44)

where

α̃′
1 =

(
7

100

)2

α′
1, β̃ ′

1 =
(

7

100

)
β ′

1. (45)

Coefficients α′
1, β ′

1 and γ ′
1 are different from α1, β1 and γ1

in Eq. (36). Those are complex parameters in contrast to real
positive α1, β1 and γ1.

In Model II, it is given approximately as:

II : Ceγ
RL

=

⎛

⎜⎜⎜⎝

Ceγ
ee

Ceγ
eμ

Ceγ
eτ

Ceγ
μe

Ceγ
μμ

Ceγ
μτ

Ceγ
τe

Ceγ
τμ

Ceγ
ττ

⎞

⎟⎟⎟⎠

�
⎛

⎝
α̃′

2(1 + 264εp) 8
√

3α̃′
2
√

ε p′ −24
√

3α̃′
D

√
ε p′

8
√

3β̃ ′
2
√

ε p′ −β̃ ′
2(1 + 24εp) 0

0 0 γ ′
2

⎞

⎠

RL

,

(46)

where

α̃′
2 =

(
7

100

)3

α′
2, α̃′

D =
(

7

100

)3

α′
D,

β̃ ′
2 =

(
7

100

)
β ′

2. (47)

Coefficients α′
2, β ′

2, α′
D and γ ′

2 are different from α2, β2, αD

and γ2 in Eq. (40) and complex parameters in general.
The mass matrix ME in Eqs. (37) and (41) is diagonal-

ized by the bi-unitary transformation U †
RMEUL . We can

obtain UL and UR by diagonalizing U †
LM

†
EMEUL and

U †
RMEM

†
EUR , respectively. Finally, we obtain C′

eγ
RL

in the

real diagonal basis of the charged lepton mass matrix as

C′
eγ
RL

= U †
R Ceγ

RL

UL for both Model I and Model II. Approxi-

mate matrices of UL and UR are given in Appendix C and D
for Model I and Model II, respectively.

5 Wilson coefficients in mass basis

5.1 Wilson coefficients in Model I

In the flavor basis, the Wilson coefficients are given in
Eq. (44) for Model I. We move to the basis of the diagonal
mass matrix of the charged leptons as follows:

C′
eγ
RL

� UT
R1P

∗
R1

⎛

⎝
−α̃′

1(1 − 144εp) 16
√

3α̃′
1
√

ε p′ 0
8
√

3β̃ ′
1
√

ε p′ −β̃ ′
1(1 + 24εp) 0

0 0 γ ′
1

⎞

⎠

PL1UL1, (48)

where PL1, UL1, PR1 and UR1, are given in Eqs. (84), (86),
(93) and (94) of Appendix C, respectively. Here, we take
α̃1 
 β̃1 and |α̃′

1| 
 |β̃ ′
1|.

We obtain the Wilson coefficients up to O(
√

ε) as fol-
lows::

C′
eγ
ee

� −α̃′
1, C′

eγ
μμ

� −β̃ ′
1, C′

eγ
ττ

= γ ′
1,

C′
eγ
eμ

� 8
√

3α̃′
1
√

εe−i(φR+πτR)

[
1 + 2e2iπτR − α̃1

α̃′
1

β̃ ′
1

β̃1
ei(φR+πτR)

√
5 + 4 cos 2πτR

]

= 8
√

3α̃′
1
√

ε
√

5 + 4 cos 2πτR

(
1 − α̃1

α̃′
1

β̃ ′
1

β̃1

)
,

C′
eγ
μe

� 8
√

3α̃′
1
α̃1

β̃1

√
ε

[
− α̃1

α̃′
1

β̃ ′
1

β̃1
(1 + 2e−2iπτR )ei(φR+πτR) + √

5 + 4 cos 2πτR

]

= 8
√

3α̃′
1
α̃1

β̃1

√
ε
√

5 + 4 cos 2πτR

(
1 − α̃1

α̃′
1

β̃ ′
1

β̃1

)
,

C′
eγ
eτ

= C′
eγ
τe

= 0, C′
eγ
μτ

= C′
eγ
τμ

= 0. (49)

It is noted that C′
eγ
eμ

and C′
eγ
μe

vanish if α̃′
1 = α̃1 and β̃ ′

1 = β̃1 are

put. In this model, e-τ and μ-τ transitions never occur. It is
also remarked that the imaginary part of Wilson coefficients
vanish in full orders of ε if α̃′

1, β̃ ′
1 and γ̃ ′

1 are real. That is, the
imaginary parts of α̃′

1, β̃ ′
1 and γ̃ ′

1 are the origin of the leptonic
EDM.

123



 1329 Page 8 of 20 Eur. Phys. J. C          (2024) 84:1329 

Taking a constraint of Eq. (32), we have

∣∣∣∣∣
Im α̃′

1

Re β̃ ′
1

∣∣∣∣∣ < 1.8 × 10−8. (50)

Thus, the imaginary part of α′
1 should be tiny. This tiny imag-

inary part is discussed in the standpoint of Stringy Anzatz in
the next section.

5.2 Wilson coefficients in Model II

In the Model II, the Wilson coefficients are given in Eq. (46).
In the basis of the diagonal mass matrix of the charged lep-
tons, we have: as follows:

C′
eγ
RL

� vdU
T
R2P

∗
R2

⎛

⎝
α̃′

2(1 + 264εp) 8
√

3α̃′
2
√

ε p′ −24
√

3α̃′
D
√

ε p′
8
√

3β̃ ′
2
√

ε p′ −β̃ ′
2(1 + 24εp) 0

0 0 γ ′
2

⎞

⎠

PL2UL2, (51)

where PL2,UL2, PR2 andUR2, are given in Eqs. (107), (109),
(116) and (118) of Appendix D, respectively. Here, we take
α̃2 ∼ α̃D 
 β̃2 
 γ2 and |α̃′

2| ∼ |α̃′
D| 
 |β̃ ′

2| 
 |γ̃ ′
2|.

The Wilson coefficients are given explicitly up to O(
√

ε)

as follows:

C′
eγ
ee

� α̃′
2, C′

eγ
μμ

� −β̃ ′
2, C′

eγ
ττ

� γ ′
2,

C′
eγ
eμ

� 8
√

3α̃′
2
√

ε ie−iπτR

(
−1 + e2iπτR − 2i

α2

α′
2

β ′
2

β2
eiπτR sin πτR

)

= −16
√

3α̃′
2
√

ε sin πτR

(
1 − α2

α′
2

β ′
2

β2

)
,

C′
eγ
μe

� 8 i eiπτR
√

3β̃ ′
2
α̃2

2

β̃2
2

√
ε

(
−1 + e−2iπτR + 2i

α′
2

α2

β2

β ′
2
e−iπτR sin πτR

)

= 16
√

3β̃ ′
2
α̃2

2

β̃2
2

sin πτR
√

ε

(
1 − α′

2

α2

β2

β ′
2

)
,

C′
eγ
eτ

� −24
√

3α̃′
D

√
ε

(
1 − α̃D

α̃′
D

γ ′
2

γ2

)
,

C′
eγ
τe

� −24
√

3α′
2
α̃D

γ2

√
ε

(
1 − α̃2

α̃′
2

γ ′
2

γ2

)
,

C′
eγ
μτ

∼ α̃′
D O

(
α̃2

β̃2
ε

)
, C′

eγ
τμ

∼ α̃′
2 O

(
α̃D

γ2
ε

)
. (52)

It is easily found that C′
eγ
eμ

and C′
eγ
μe

vanish if α̃′
2 = α̃2 and

β̃ ′
2 = β̃2 are put. The coefficient C′

eγ
eτ

(C′
eγ
τe

) also vanishes if

α̃′
D = α̃D (α̃′

2 = α̃2) and γ̃ ′
2 = γ̃2 are impose. Since other

coefficientsC′
eγ
τe

,C′
eγ
μτ

andC′
eγ
τμ

are suppressed, we present them

in order estimates.
It is also remarked that the imaginary part of Wilson coef-

ficients vanish in full orders of ε if α̃′
2, β̃ ′

2 and γ̃ ′
2 are real. That

is, the imaginary part of α̃′
2, β̃ ′

2 and γ̃ ′
2 lead to the leptonic

EDM.
Taking a constraint of Eq. (32), the imaginary part of α′

2
should be also tiny as discussed in Sect. 5.1.

6 Numerical analyses

6.1 Parametrization

As discussed in Sect. 3.2, the lightest mode “m” corre-
sponds to Higgs doublet H in Stringy Ansatz of Eq. (1). If
the mode “m” is only H , the flavor structure of bilinear oper-
ator [ ĒRσμνEL ] is exactly the same as the mass matrix.
Therefore, the LFV process such as μ → e never happen.

However, additional unknown modes “m” in Eq. (1) cause
the flavor violation. We discuss such a case in our numerical
analysis. Let us introduce a small parameter δα to see the
difference between α̃1(2) and α̃′

1(2). In the same way, δβ , δγ

and δD are introduced. They are expected to be of the same
order and given as follows:

α̃′
1(2)

α̃1(2)

= 1 + δα,
β̃ ′

1(2)

β̃1(2)

= 1 + δβ,

γ̃ ′
1(2)

γ̃1(2)

= 1 + δγ ,
α̃′
D

α̃D
= 1 + δD, (53)

where δα , δβ , δγ and δD are complex and tiny from unknown
modes of “m” in Eq. (1), which may be higher excited modes
of Higgs.

Indeed, if δα , δβ , δγ and δD vanish, off diagonal Wilson
coefficients vanishes as seen in Eqs. (49) and (52) of Sect. 5 up
to O(

√
ε). We constrain those small parameters by inputting

the experimental upper-bounds in Sect. 3.1.
In the following analyses, small parameters δα et al. are

put statistically in the normal distribution with an average 0
and standard deviation σ . Then, we can take |δα| � |δβ | �
|δγ | � |δD| � σ as seen in Appendix E.

6.2 Input parameter

Since we adopt the �2 modular flavor models in Ref. [76],
the parameters of charged lepton mass matrix are fixed.
We list them for the charged lepton sector in Table 4 as
follows:
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Table 4 Best fit values of parameters of the charged leptons in �2 modular flavor model [76], where α, β and γ correspond to α1, β1 and γ1 for
Model I, and α2, β2 and γ2 for Model II, respectively. Values in “Seesaw Model” are also listed [77]

Model I Model II “Seesaw Model”

τ ±0.0895 + 1.697 i ±0.090 + 1.688 i ±0.244 + 1.132 i

β/α 14.33 1.03 0.92

γ /α 17.39 1.26 −1.20

αD/α − 1.33 10−13.4

We have not discussed the “Seesaw Model” in Table 4
since the charged lepton mass matrix is the same flavor struc-
ture as Model II. We only comment on the numerical result
for “Seesaw Model” in Summary of section 7. We use these
values in our numerical calculations.

6.3 Constraints of δα and δβ from |de| and B(μ → eγ )

The tight constraints come from the experimental upper-
bounds of |de| and B(μ → eγ ). The relevant Wilson coef-
ficients C′

eγ
ee

and C′
eγ
eμ

are given in Eqs. (49) and (52). Let us

consider the Model I to see the magnitude of constraint from
|de| and B(μ → eγ ). By using the approximate forms in
Eq. (127) of Appendix E, we have a simple expressions of
the ratio of the Wilson coefficients:

∣∣∣∣∣∣∣

C′
eγ
eμ

C′
eγ
μμ

∣∣∣∣∣∣∣
� 8

√
3
√

ε
√

5 + 4 cos 2πτR

∣∣∣∣∣
α̃′

1

β̃ ′
1

(
1 − α̃1

α̃′
1

β̃ ′
1

β̃1

)∣∣∣∣∣

� 8
√

3
√

ε
√

5 + 4 cos 2πτR

∣∣∣∣∣
α̃′

1

β̃ ′
1

∣∣∣∣∣ σ. (54)

Putting the numerical values of Model I in Table 4, we have

∣∣∣∣∣∣∣

C′
eγ

eμ(μe)

C′
eγ
μμ

∣∣∣∣∣∣∣
� 10−3σ, (55)

where |α̃′
1/β̃

′
1| � (7/100) × α1/β1 and

√
ε = 5 × 10−3 are

used. Since the upper-bound of this ratio is 1.8 × 10−5 as
seen in Eq. (26), we have

σ � |δα| � |δβ | < 10−2. (56)

Indeed, in our numerical calculations, the statistical param-
eters δα and δβ with the average 0 and σ = 0.01 reproduce
B(μ → eγ ) consistent with the experimental upper-bound.

It is remarked that the NP signal of the μ → eγ process
comes from the operator ēRσμνμL mainly in our scheme
because we have a ratio

∣∣∣∣∣∣∣

C′
eγ
μe

C′
eγ
eμ

∣∣∣∣∣∣∣
�

∣∣∣∣
α̃1

β̃1

∣∣∣∣ = 7

100

α1

β1
� 5 × 10−3, (57)

from Eq. (49) and Table 4. This prediction is contrast to the
prediction of the μ̄RσμνeL dominant decay in theU (2) flavor
model [38]. The angular distribution with respect to the muon
polarization can distinguish between μ+ → e+

L γ and μ+ →
e+
Rγ [105].

On the other hand, the constraint of |de| is very tight. As
seen in Eq. (49),

Im [C′
eγ

eμ(μe)

]
Re [C′

eγ
μμ

] �
∣∣∣∣
α̃1

β̃1

∣∣∣∣ Im δα. (58)

Since the upper-bound of this ratio is 10−8 as seen in Eq. (32),
we have

Im δα < 10−6. (59)

The constraints of Eqs. (56) and (59) suggest us that the elec-
tron EDM gives stronger constraint than the μ → eγ decay
for NP if the phase of δα is of order one. Then, the μ → eγ
decay is much suppressed compared with the present experi-
mental upper-bound. This numerical prediction is presented
in the next subsection. However, if δα is real, the electron
EDM does not give constraint for NP, but its magnitude is a
prediction through the next-to-leading contribution, which is
omitted in Eq. (49). The numerical results are also presented
in this case in the next subsections.

6.4 Electron (g − 2)e

The NP of (g − 2)μ and (g − 2)e appears in the diagonal
components of the Wilson coefficient of the dipole operator at
the mass basis. We have the ratios of the diagonal coefficients
from Eq. (49) as:

Re C′
eγ
ee

Re C′
eγ
μμ

�
∣∣∣∣∣
α̃1(2)

β̃1(2)

∣∣∣∣∣ � 4.9 (4.8) × 10−3, (60)
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where numerical values of Table 4 are put for β1(2)/α1(2).
These predicted ratios are almost in agreement with the
charged lepton mass ratio me/mμ = 4.84 × 10−3.

By inputting the experimental value of Eq. (14), the real
part of the Wilson coefficient of the muon C′

eγ
μμ

has been

obtained as seen in Eq. (24) [37]. Now, we can estimate the
magnitude of the electron (g − 2)e anomaly by using the
relation in Eq. (60) as:

�ae = 4me

e

v√
2

1

�2 Re [C′
eγ
ee

] � 5.8 × 10−14. (61)

It is easily seen that �ae and �aμ are proportional to the
lepton masses squared. This result is in agreement with the
naive scaling �a� ∝ m2

� [106].
In the electron anomalous magnetic moment, the experi-

ments [107] give

aExp
e = 1 159 652 180.73(28) × 10−12, (62)

while the SM prediction crucially depends on the input value
for the fine-structure constant α. Two latest determination
[108,109] based on Cesium and Rubidium atomic recoils
differ by more than 5σ . Those observations lead to the dif-
ference from the SM prediction:

�aCs
e = aExp

e − aSM,CS
e = (−8.8 ± 3.6) × 10−13,

�aRb
e = aExp

e − aSM,Rb
e = (4.8 ± 3.0) × 10−13. (63)

Our predicted value is smaller of order one than the observed
one at present. We need the precise observation of the fine
structure constant to test our model.

6.5 Electron EDM and μ → eγ decay

The LFV process is severely constrained by the experimen-
tal bound B(

μ+ → e+γ
)

< 3.1 × 10−13 by the combi-
nation of the MEG and MEG II experiments [26,27]. As
seen in Sect. 6.3, the parameter δα and δβ are constrained in
Eq. (56). On the other hand, the constraint of |de| by the JILA
experiment [18] is much tight compared with the one from
B(

μ+ → e+γ
)

as seen in Eq. (59).
At first, suppose the phase of δα being of order one. Then,

the upper-bound of the absolute value of δα is around 10−6

as seen in Eq. (59). Since δβ and δγ are also of the same order
10−6 (See Eq. (53)), we can estimate the branching ratio of
the μ → eγ decay by taking σ � |δα| � |δβ | � |δγ | as
presented in Appendix E.

In Fig. 1, we plot B(μ → eγ ) versus the electron EDM
|de| taking σ = 10−6 in Model I. It is found that the elec-
tron EDM is almost consistent with the experimental upper-
bound. Then, the branching ratio of the μ → eγ decay is at

Fig. 1 Plot of B(μ → eγ ) versus |de| in Model I, where σ = 10−6 is
put. The grey region is excluded by the experimental upper-bound of
|de|

Fig. 2 Plot of B(μ → eγ ) versus |de| in Model II, where σ = 10−6

is put. The grey region is excluded by the experimental upper-bound of
|de|

Fig. 3 Plot of |dμ| versus |de| in Model I where σ = 10−6 is put. The
grey regions are excluded by the experimental upper-bounds of |de| and
|dμ|

123



Eur. Phys. J. C          (2024) 84:1329 Page 11 of 20  1329 

Fig. 4 Plot of |dμ| versus |de| in Model II, where σ = 10−6 is put. The
grey regions are excluded by the experimental upper-bounds of |de| and
|dμ|

most 10−20. In Fig. 2, we also plot B(μ → eγ ) versus the
electron EDM |de| taking σ = 10−6 in Model II. It is found
that the branching ratio of the μ → eγ decay is also at most
10−21. There is no hope to observe the μ → eγ decay in the
near future for both models.

In Fig. 3, we show the muon EDM |dμ| versus the elec-
tron EDM |de| in Model I. The predicted upper-bound of
|dμ| is around 10−27e cm. In Fig. 4, we also show the muon
EDM |dμ| versus the electron EDM |de| in Model II. The
predicted upper-bound of |dμ| is also around 10−27e cm. In
both models, the ratio of |de/dμ| is expected to be the mass
ratio me/mμ approximately.

Our prediction of B(μ → eγ ) depends on the value of
σ � |δα| � |δβ |. The absolute value of δα should be lower
than around 10−2 from the upper-bound of B(μ → eγ ) as
seen in Eq. (56). While Im δα should be much smaller than
|δα| to avoid the constraint of electron EDM. If B(μ → eγ )

will be observed at the little bit below the present experimen-
tal upper-bound O(10−13) in the near future, the phase of δα

is severely suppressed. The simplest expectation is δα being
real

without fine-tuning of the CP phase. Leptonic EDMs van-
ish in both Model I and Model II under the condition of real
δα , δβ and δγ . It is remarked that the CP phase of the modular
form (comes from modulus τ ) do not contribute to the EDM
as far as δα , δβ and δγ are real because the 3×3 Wilson coef-
ficient matrix has the same phase structure as the charged
lepton mass matrix.

However, we can consider the alternative case that δβ and
δγ are complex while only δα is real. Then, the imaginary
part of δβ can contribute to the electron EDM in the next-to-
leading order of ε. Indeed, we find

|de| ∼ α̃1(2)

β̃1(2)

ε Im β̃ ′
1(2) = α̃1(2) ε Im δβ,

Fig. 5 Branching ratios of μ → eγ versus |de| in Model I with σ =
10−2 and Im δα = 0. The grey regions are excluded by the experimental
upper-bounds

Fig. 6 Branching ratios of μ → eγ versus |de| in Model II with σ =
10−2 and Im δα = 0. The grey regions are excluded by the experimental
upper-bounds

|dμ| ∼ Im β̃ ′
1(2) = β̃1(2)Im δβ, |dτ | ∼ Im γ ′

1(2)

= γ1(2)Im δγ , (64)

where Im δβ ∼ |δβ | and Im δγ ∼ |δγ |. Under this set up of
those phases, we predict the leptonic EDM in Model I and
Model II.

In Fig. 5, we show B(μ → eγ ) versus |de| taking σ =
10−2 with real δα in Model I. It is found that the electron EDM
is almost below 10−32e cm, which is of two order smaller than
the present experimental upper bound, while B(μ → eγ ) is
close to the experimental present upper-bound. In Fig. 6, we
also plot B(μ → eγ ) versus |de| taking σ = 10−2 with real
δα in Model II. It is found that the branching ration of the
μ → eγ and the electron EDM are smaller than of one order
than the ones in Model I.

In Fig. 7, we show also the muon EDM, dμ versus |de| in
Model I. The predicted upper-bound of |dμ| is rather large
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Fig. 7 The muon EDM versus electron EDM in Model I with σ =
10−2 and Im δα = 0. The grey regions are excluded by the experimental
upper-bounds

Fig. 8 The muon EDM versus electron EDM in Model II with σ =
10−2 and Im δα = 0. The grey regions are excluded by the experimental
upper-bounds

Fig. 9 The tauon EDM versus electron EDM in Model I with σ =
10−2 and Im δα = 0. The grey regions are excluded by the experimental
upper-bounds

Fig. 10 The tauon EDM versus electron EDM in Model II with σ =
10−2 and Im δα = 0. The grey regions are excluded by the experimental
upper-bounds

Fig. 11 Branching ratios of τ → eγ versus μ → eγ in Model II
with σ = 10−2 and Im δα = 0. The grey regions are excluded by the
experimental upper-bounds

around 10−23e cm. The both EDMs are almost proportional
to each other, which is expected in Eq. (64). In Fig. 8, we show
the muon EDM dμ versus |de| in Model II. The predicted
upper-bound of |dμ| is also around 10−23e cm.

The tauon EDM dτ is also predicted versus |de| for Model
I and Model II in Figs. 9 and 10, respectively. The rather large
tauon EDM is predicted to be |dτ | � 10−22e cm compared
with the muon EDM because the ratio of |dμ/dτ | is expected
to be the mass ratio mμ/mτ approximately.

6.6 LFV decays of tauon in Model II

In Model I, τ → eγ and τ → μγ decays never occur
because the tauon decouples to the muon and electron as
seen in Eq. (37). On the other hand, in Model II , the tauon
couples directly the electron as seen in Eq. (41). Therefore, it
also couples to the muon in the next-to-leading order. Indeed,
we can predict the τ → eγ and τ → μγ decays numerically.
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Fig. 12 Branching ratios of τ → eγ and τ → μγ in Model II with
σ = 10−2 and Im δα = 0. The grey regions are excluded by the exper-
imental upper-bounds

Let us take σ = 10−2, where σ � |δα| � |δβ | � |δγ | with
Im δα = 0. In Fig. 11, we plot the branching ratios of τ → eγ
versus μ → eγ in Model II. The branching ratios of τ → eγ
is expected to be 10−15.

In Fig. 12, we plot the branching ratios of τ → eγ and
τ → μγ .

with σ = 10−2 and Im δα = 0. The branching ratio of
τ → μγ is almost proportional to the one of τ → eγ . This
behavior is understandable that the τ −μ coupling is induced
through τ − e coupling in Model II. The branching ratio is
at most 10−22, which is far from the present experimental
upper-bound.

7 Summary

We have studied the leptonic EDM and the LFV decays relat-
ing with the recent data of anomalous magnetic moment
(g − 2)μ in the leptonic dipole operator. In order to con-
trol the 4-point couplings of SMEFT, we employ the relation
Eq. (1) as Stringy Ansatz, that is, higher-dimensional opera-
tors are related with 3-point couplings. We have adopted the
�2 modular invariant model to control the flavor structure
of leptons, which gives the successful lepton mass matrices
[76]. There are two-type mass matrices for the charged lep-
tons. The first one is the minimal model, where the tauon
decouples to the muon and the electron. In the second one,
the tauon directly couples to the electron.

Suppose the anomaly of the anomalous magnetic moment
of the muon �aμ to be evidence of NP, we have related it
with the anomalous magnetic moment of the electron �ae,
the electron EDM de and the μ → eγ decay. It is found that
the NP contribution to ae and aμ is proportional to the lepton
masses squared likewise the naive scaling �a� ∝ m2

� . The

predicted value of the anomaly of (g − 2)e is small of one
order compared with the observed one at present.

It is also remarked that the NP signal of the μ → eγ
process comes from the operator ēRσμνμL in our scheme.
This prediction is contrast to the one in theU (2) flavor model
[38].

The constraint of |de| by the JILA experiment [18] is much
tight compared with the one from B(

μ+ → e+γ
)

in our
framework. Supposing the phase of δα being of order one, the
upper-bound of the absolute value of δα is around 10−6. Since
δβ and δγ are also of the same order 10−6, we can estimate
the branching ratio of the μ → eγ decay. Then, the branch-
ing ration of the μ → eγ decay is at most 10−20 (10−21) in
Model I (II).

The smallness of |de| comes from the tiny Im δα . If δα ,
δβ and δγ are real, leptonic EDMs vanish in both models
since the CP phase of the modular form due to modulus τ

do not contribute to EDMs. However, there is a possibility to
obtain B(μ → eγ ) � 10−13 while non-vanishing electron
EDM. We have considered the case that δβ and δγ are com-
plex while only δα is real with |δα| � |δβ | � |δγ | � 0.01.
Then, the imaginary part of δβ can contribute to the electron
EDM in the next-to-leading order of ε. The predicted elec-
tron EDM is below 10−32e cm, while B(μ → eγ ) is close to
the experimental present upper-bound in Model I. In Model
II, the branching ration of the μ → eγ and the magnitude of
the electron EDM are smaller than of one order than the ones
in Model I. The predicted upper-bound of |dμ| is rather large,
around 10−23e cm and of |dτ | is 10−22e cm in both models.

Our prediction of the electron EDM is compared with
other ones of models with the non-Abelian flavor symme-
try. In the �3 (A4) modular invariant model, the constraint
of |de| is much looser than our result. Indeed, B(μ → eγ )

is bounded lower than O(10−16) by imposing the experi-
mental constraint of |de| [63], while it is bounded lower than
O(10−20) in our model. On the other hand, |de| is predicted
near the present upper-bound, O(10−30 − 10−31)e cm in the
U (2)L ⊗ U (2)R flavor symmetry [38]. Thus, the prediction
of |de| depends on the flavor symmetry.

In other words, the observation of the electron EDM is
good test to distinguish models with flavor symmetry.

In Model I, τ → eγ and τ → μγ decays never occur
because the tauon decouples to the muon and electron as
seen in Eq. (37). On the other hand, in Model II, the tauon
couples directly the electron as seen in Eq. (41). Therefore, it
also couples to the muon in the next-to-leading order. Taking
σ = 10−2 in Model II , the branching ratios of τ → eγ is
expected to be 10−15 and of τ → μγ is at most 10−22, which
are far from the present experimental upper-bound.

In our numerical analyses, we do not include the renor-
malization group (RG) contribution. The RG evolution con-
tribution of the leptonic dipole operators has been discussed
in Ref. [37,63] to estimate the RG effect on the numeri-
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cal results at the low-energy. Our numerical result is not so
changed even if the RG effect is included as well as in Ref.
[63].

Finally, it is noted that alternative lepton flavor model with
the �2 modular symmetry [77], which is “Seesaw Model” in
Table 4 leads to the similar result to the one of Model I. Thus,
the modular flavor symmetry is powerful to investigate NP
of leptons in the framework of SMEFT if the symmetry is
specified.
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Appendix

A Tensor product of S3 group

We take the generators of S3 group for the doublet as follows:

S = 1

2

( −1 −√
3

−√
3 1

)
, T =

(
1 0
0 −1

)
. (65)

In this basis, the multiplication rules are:

(
a1

a2

)

2
⊗

(
b1

b2

)

2

= (a1b1 + a2b2)1 ⊕ (a1b2 − a2b1)1′ ⊕ 1

3(−a1b1 + a2b2

a1b2 + a2b1

)

2
, (66)

1 ⊗ 1 = 1, 1′ ⊗ 1′ = 1,

1′ ⊗
(
a1

a2

)

2
=

(−a2

a1

)

2
, (67)

where

S(1) = 1, S(1′) = 1, T (1′) = 1, T (1′) = −1.

(68)

Further details can be found in the reviews [79–81].

B Experimental constraints on the dipole operators

From the experimental data of the muon (g − 2)μ and
μ → eγ , Ref. [37] gave the constraints on the dipole oper-
ators. We summarize briefly them on the dipole operators in
Eq. (22). Below the scale of electroweak symmetry breaking,
the leptonic dipole operators are given as:

Oeγ
rs

= v√
2
eRr σ

μνeLs Fμν, (69)

where {r, s} are flavor indices e, μ, τ and Fμν is the elec-
tromagnetic field strength tensor. The effective Lagrangian
is

Ldipole = 1

�2

(
C′
eγ
rs

Oeγ
rs

+ C′
eγ
rs

Oeγ
rs

)
, (70)

where � is a certain mass scale of NP in the effective theory.
The corresponding Wilson coefficient C′

eγ
rs

is denoted in the

mass-eigenstate basis of leptons.
The tree-level expression for �aμ in terms of the Wilson

coefficient of the dipole operator is

�aμ = 4mμ

e

v√
2

1

�2 Re [C′
eγ
μμ

], (71)

where v ≈ 246 GeV. Let us input the value

�aμ = 249 × 10−11, (72)

then, we obtain the Wilson coefficient as:

1

�2 Re [C′
eγ
μμ

] = 1.0 × 10−5 TeV−2, (73)

where e � 0.3028 is put in the natural unit.
The tree-level expression of a radiative LFV rate in terms

of the Wilson coefficients is

B(�r → �sγ ) = m3
�r

v2

8π��r

1

�4

(
|C′

eγ
rs

|2 + |C′
eγ
sr

|2
)

. (74)

Taking the experimental bound B(
μ+ → e+γ

)
< 3.1 ×

10−13 (90% C.L.) obtained by the combination of data from
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MEG and MEG II experiments [26,27] in Eq. (20), we obtain
the upper-bound of the Wilson coefficient as:

1

�2 |C′
eγ

eμ(μe)

| < 1.8 × 10−10 TeV−2. (75)

On the other hand, by taking the following experimen-
tal upper-bound of the branching ratios, B(τ → μ + γ ) <

4.2×10−8 andB(τ → eγ ) < 3.3×10−8 [28,29], we obtain
the upper-bound of the Wilson coefficient as:

1

�2 |C′
eγ

μτ(τμ)

| < 2.65 × 10−6 TeV−2,

1

�2 |C′
eγ

eτ (τe)

| < 2.35 × 10−6 TeV−2, (76)

respectively.

C UL1 and UR1 in Model I

We discuss the charged lepton mass matrix in Model I:

I : ME � vd

⎛

⎝
A1 X1 p′ 0
Y1 p′ B1 0

0 0 γ1

⎞

⎠

RL

, (77)

where

A1 = −α̃1(1 − 144εp) � −α̃1

B1 = −β̃1(1 + 24εp) � −β̃1,

X1 = 16
√

3α̃1
√

ε, Y1 = 8
√

3β̃1
√

ε. (78)

It is written as:

ME � vd

⎛

⎝
−α̃1 X1eiπτR 0

Y1eiπτR −β̃1 0
0 0 γ1

⎞

⎠ , (79)

where τR ≡ Re τ , and O(ε) is neglected. Then, we have

M†
EME � v2

d

⎛

⎝
α̃2

1 + Y 2
1 ZL1 0

Z∗
L1 β̃2

1 + X2
1 0

0 0 γ 2
1

⎞

⎠ . (80)

Taking α̃1 
 β̃1, we have

ZL1 � −8
√

3β̃2
1
√

ε

(
1 + 2

α̃2
1

β̃2
1

e2iπτR

)
e−iπτR

� −8
√

3β̃2
1
√

ε

(
1 + 2

α̃2
1

β̃2
1

cos 2πτR

)
e−iπτR eiφL1 ,(81)

where

φL1 � 2
α̃2

1

β̃2
1

sin 2πτR . (82)

By using phase matrix PL1, it is rewritten as:

M†
EME � v2

d PL1

⎛

⎝
α̃2

1 −|ZL1| 0
−|ZL1| β̃2

1 0
0 0 γ 2

1

⎞

⎠ P∗
L1, (83)

PL1 =
⎛

⎝
1 0 0
0 ei(πτR−φL1) 0
0 0 1

⎞

⎠ , (84)

where

|ZL1| = 8
√

3β̃2
1
√

ε

(
1 + 2

α̃2
1

β̃2
1

cos 2πτR

)
. (85)

The diagonal form of M†
EME is obtained by using the fol-

lowing orthogonal matrix UL1 as UT
L1(P

∗
L1M

†
EME PL1)UL1:

UL1 =
⎛

⎝
cos θL1 sin θL1 0

− sin θL1 cos θL1 0
0 0 1

⎞

⎠ �
⎛

⎝
1 θL1 0

−θL1 1 0
0 0 1

⎞

⎠ , (86)

where

tan 2θL1 = −2|ZL1|
β̃2

1 − α̃2
1

∼ −2|ZL1|
β̃2

1

(
1 − α̃2

1

β̃2
1

)−1

− 16
√

3
√

ε

[
1 + α̃2

1

β̃2
1

(1 + 2 cos 2πτR)

]
. (87)

Then, we have

θL1 � −8
√

3
√

ε

[
1 + α̃2

1

β̃2
1

(1 + 2 cos 2πτR)

]
. (88)

Let us discuss MEM
†
E to obtain the right-handed mixing:

MEM
†
E � v2

d

⎛

⎝
α̃2

1 + X2
1 ZR1 0

Z∗
R1 β̃2

1 + Y 2
1 0

0 0 γ 2
1

⎞

⎠

RR

, (89)

where

ZR1 = −α̃1Y1e
−iπτR − β̃1X1e

iπτR

= −8
√

3α̃1β̃1
√

ε(e−iπτR + 2eiπτR )

= −8
√

3α̃1β̃1
√

ε(3 cos πτR + i sin πτR)
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= −8
√

3α̃1β̃1
√

ε
√

5 + 4 cos 2πτRe
iφR , (90)

where

tan φR = 1

3
tan πτR . (91)

By using the phase matrix PR , we have

MEM
†
E � v2

d PR1

⎛

⎝
α̃2

1 + X2
1 −|Z1R | 0

−|Z1R | β̃2
1 + Y 2

1 0
0 0 γ 2

1

⎞

⎠

RR

P∗
R1, (92)

PR1 =
⎛

⎝
1 0 0
0 e−iφR 0
0 0 1

⎞

⎠ . (93)

The diagonal form of MEM
†
E is obtained by using the fol-

lowing orthogonal matrix UR as UT
R1(P

∗
R1MEM

†
E PR1)UR1:

UR1 =
⎛

⎝
cos θR1 sin θR1 0

− sin θR1 cos θR1 0
0 0 1

⎞

⎠ �
⎛

⎝
1 θR1 0

−θR1 1 0
0 0 1

⎞

⎠ , (94)

where

tan 2θR1 = −2|ZR1|
β̃2

1 − α̃2
1

� −2|ZR1|
β̃2

1

�

− 16
√

3
√

ε
α̃1

β̃1

√
5 + 4 cos 2πτR . (95)

Finally, we get

θR1 � −8
√

3
√

ε
α̃1

β̃1

√
5 + 4 cos 2πτR . (96)

In order to obtain the approximate diagonal mass matrix
from Eq. (79) by using the mixing angles of Eqs. (88), (96)
and phase matrix PL1 of Eq. (84), PR1 of Eq. (93), we calcu-
lateUT

R1P
∗
R1ME PL1UL1. Then we obtain the diagonal matrix

elements up to O(
√

ε) as follows:

ME (1, 1)� − α̃1, ME (2, 2)� − β̃1, ME (3, 3) = γ1,

ME (1, 2) � 8
√

3α̃1
√

εe−i(φR+πτR)

[
1 + 2e2iπτR − ei(φR+πτR)

√
5 + 4 cos 2πτR

]
= 0,

ME (2, 1) � 8
√

3α̃1
α̃1

β̃1

√
ε

[
−(1 + 2e−2iπτR )ei(φR+πτR) + √

5 + 4 cos 2πτR

]
= 0,

ME (1, 3) = ME (3, 1) = ME (2, 3) = ME (3, 2) = 0, (97)

where the phases of diagonal matrix elements are removed
by the redefinition of charged lepton fields. In ME (1, 2) and
ME (2, 1), we have used following equations:

tan φR = 1

3
tan πτR,

1 + 2e2iπτR = √
5 + 4 cos 2πτR ei(φR+πτR). (98)

D UL2 and UR2 in Model II

We discuss the charged leptom mass matrix in Model II :

II : ME � vd

⎛

⎝
A2 X2 p′ F2 p′
Y2 p′ B2 0

0 0 γ2

⎞

⎠

RL

, (99)

where

A2 = α̃2(1 + 264εp) � α̃2,

B2 = −β̃2(1 + 24εp) � −β̃2,

X2 = 8
√

3α̃2
√

ε, Y2 = 8
√

3β̃2
√

ε,

F2 = −24
√

3α̃D
√

ε. (100)

It is written as:

ME � vd

⎛

⎝
α̃2 X2eiπτR F2eiπτR

Y2eiπτR −β̃2 0
0 0 γ2

⎞

⎠ , (101)

where τR ≡ Re τ . Then, we have

M†
EME � v2

d

⎛

⎝
α̃2

2 + Y 2
2 ZL2 α̃2F2 eiπτR

Z∗
L2 β̃2

2 + X2
2 X2F2

α̃2F2 e−iπτR X2F2 γ 2
2

⎞

⎠ , (102)

where

ZL2 = −8
√

3β̃2
2
√

εe−iπτR

(
1 − α̃2

2

β̃2
2

e2iπτR

)

� −8
√

3β̃2
2
√

εe−iπτR eiφL2

∣∣∣∣∣1 − α̃2
2

β̃2
2

e2iπτR

∣∣∣∣∣

� −8
√

3β̃2
2
√

εe−iπτR eiφL2

(
1 − α̃2

2

β̃2
2

cos 2πτR

)
, (103)

and

φL2 � − α̃2
2

β̃2
2

sin 2πτR . (104)
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Up to O(
√

ε), we have

M†
EME � v2

d⎛

⎝
α̃2

2 −|ZL2|e−i(πτR−φL2) α̃2F2 eiπτR

−|ZL2|ei(πτR−φL2) β̃2
2 X2F2

α̃2F2 e−iπτR X2F2 γ 2
2

⎞

⎠ ,

(105)

where the (2,3) and (3,2) entries are O(ε). By using phase
matrix PL2, it is rewritten as:

M†
EME � v2

d P2L

⎛

⎝
α̃2

1 −|ZL2| −24
√

3α̃2α̃D
√

ε

−|ZL2| β̃2
2 −576 α̃2α̃D ε e−i(2πτR−φL2)

−24
√

3α̃2α̃D
√

ε −576 α̃2α̃D ε ei(2πτR−φL2) γ 2
2

⎞

⎠ P∗
2L , (106)

where

PL2 =
⎛

⎝
1 0 0
0 ei(πτR−φL2) 0
0 0 e−iπτR

⎞

⎠ , (107)

and

|ZL2| � 8
√

3β̃2
2
√

ε

(
1 − α̃2

2

β̃2
2

cos 2πτR

)
. (108)

The diagonal form of M†
EME is obtained by using the

following unitary matrix UL2 as U †
L2(P

∗
L2M

†
EME PL2)UL2.

Since (1,3), (3,1), (2,3) and (3,2) elements of M†
EME is much

smaller than β̃2
2 and |ZL2|, it is given approximately:

UL2 �
⎛

⎝
cos θL2 sin θL2 θL13

− sin θL2 cos θL2 VL23

−θL13 −V ∗
L23 1

⎞

⎠ �
⎛

⎝
1 θL2 θL13

−θL2 1 VL23

−θL13 −V ∗
L23 1

⎞

⎠ ,

(109)

where

tan 2θL2 = −2|ZL2|
β̃2

2 − α̃2
2

� −2|ZL2|
β̃2

2

(
1 − α̃2

2

β̃2
2

)−1

� −16
√

3
√

ε

[
1 + α̃2

2

β̃2
2

(1 − cos 2πτR)

]
. (110)

Then, we have

θL2 � −8
√

3
√

ε

[
1 + α̃2

2

β̃2
2

(1 − cos 2πτR)

]
. (111)

On the other hand, we have

θL13 � −24
√

3α̃2α̃D

γ 2
2

√
ε,

VL23 � 576α̃2α̃D

γ 2
2

ε
[
1 − ei(φL2−2πτR)

]
. (112)

Let us discuss MEM
†
E to obtain the right-handed mixing:

MEM
†
E � v2

d

⎛

⎝
α̃2

2 + X2
2 + F2

2 ZR2 F2γ2 p′
Z∗
R1 β̃2

2 + Y 2
2 0

F2γ2 p′∗ 0 γ 2
2

⎞

⎠

RR

,

(113)

where

ZR2 = α̃2Y2e
−iπτR − β̃2X2e

iπτR

= 8
√

3α̃2β̃2
√

ε(e−iπτR − eiπτR )

= −16i
√

3α̃2β̃2
√

ε sin πτR . (114)

By using the phase matrix P2R , we have

MEM
†
E � v2

d PR2
⎛

⎝
α̃2

2(1 + 192ε) −|ZR2| −24
√

3α̃Dγ2
√

ε

−|ZR2| β̃2
2 (1 + 192ε) 0

−24
√

3α̃Dγ2
√

ε 0 γ 2
2

⎞

⎠

RR

P∗
R2,

(115)

where

PR2 =
⎛

⎝
1 0 0
0 −i 0
0 0 e−iπτR

⎞

⎠ , (116)

and

|ZR2| = 16
√

3α̃2β̃2
√

ε sin πτR . (117)

The diagonal form of MEM
†
E is obtained by using the fol-

lowing orthogonal matrixUR2 asUT
R2(P

∗
R2MEM

†
E PR2)UR2:

UR2 �
⎛

⎝
cos θR2 sin θR2 θR13

− sin θR2 cos θR2 0
−θR13 0 1

⎞

⎠ �
⎛

⎝
1 θR2 θR13

−θR2 1 0
−θR13 0 1

⎞

⎠ ,

(118)

123
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where

tan 2θR2 = −2|ZR2|
β̃2

2 − α̃2
2

� −2|ZR2|
β̃2

2

� −32
√

3
√

ε
α̃2

β̃2
sin πτR .

(119)

Therefore, we get approximately

θR2 � −16
√

3
√

ε
α̃2

β̃2
sin πτR . (120)

On the other hand, we have

θR13 � −24
√

3
α̃D

γ2

√
ε. (121)

In order to obtain the approximate diagonal mass matrix
from Eq. (101) by using the mixing angles of Eqs. (111),
(120) and phase matrix PL2 of Eq. (107), PR2 of Eq. (116), we
calculate UT

R2P
∗
R2ME PL2UL2. Then we obtain the approxi-

mate mass matrix elements up to O(
√

ε) as follows:

ME (1, 1) � α̃2, ME (2, 2) � −β̃2, ME (3, 3) � γ2,

ME (1, 2) � 8
√

3α̃2
√

ε ie−iπτR

(
−1 + e2iπτR − 2i eiπτR sin πτR

)
= 0,

ME (2, 1) � 8 i eiπτR
√

3α̃2
α̃2

β̃2√
ε(e−2iπτR − 1 + 2i sin πτRe

−iπτR ) = 0,

ME (1, 3) � −24
√

3α̃2
α̃2α̃D

γ 2
2

√
ε,

ME (3, 1) � −4608
√

3α̃2
α̃D

γ2
ε
√

εe2iπτR ,

ME (2, 3) ∼ α̃2 O
(

α̃D

β̃2
ε

)
,

ME (3, 2) ∼ α̃2 O
(

α̃D

γ2

α̃2
2

β̃2
2

ε

)
, (122)

where the phases of diagonal matrix elements are removed
by the redefinition of charged lepton fields. In ME (1, 2) and
ME (2, 1), we have used the identity:

1 − e2iπτR = −2i eiπτR sin πτR . (123)

E Model parameters in Normal distribution

In our analyses, we scatter the parameters δα , δβ , δγ and δD
in the normal distribution with an average 0 and the standard
deviation σ in Eq. (53)

F = F0 exp

(
− x2

2σ 2

)
, (124)

where F0 is a normalization constant. Since the mean square
of x is 〈x2〉 = σ 2, we have
√

〈δ2
α〉 =

√
〈δ2

β〉 =
√

〈δ2
γ 〉 =

√
〈δ2

D〉 = σ. (125)

In our statistical discussions, we take

|δα| �
√

〈δ2
α〉, |δβ | �

√
〈δ2

β〉,
|δγ | �

√
〈δ2

γ 〉, |δD| �
√

〈δ2
D〉. (126)

Therefore, we obtain the relevant factors as:
∣∣∣∣∣1 − α1(2)

α′
1(2)

β ′
1(2)

β1(2)

∣∣∣∣∣ � σ,

∣∣∣∣1 − αD

α′
D

γ ′
2

γ2

∣∣∣∣ � σ, (127)

which appear in the coefficients of Eqs. (49) and (52).
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