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The resonsnt beam ejection from an AG Synchrotron, by the use of a
quadrupole magnet and sextupole magnets, was proposed by Hereward and
performed successfully with the CERN ps.? A similar method by a current
strip was first achieved at CEA.-* Although many studies have been made on
this subject, most of them were made numerically or experimentally. In this
paper is given an analytical approach to this subject based on an approxi-
mate Hemiltonian.

A radial emittance in the resonant ejection is fairly small, generally.
However, according to the predictions of the theory, it can be reduced
further. We have investigated numerically motions of particles in a phase
space, and found that the reduction of the emittance was really possible.

I. Hamiltonian

Suppose an arrangement shown in Fig. 1, where Q is a quadrupole magnet,
K is a kick magnet and M's are non-linear multi-pole magnets. We consider
the radial motion in a phase space (x, y), where y = B dx, B and a
/1 + a? ds
are betatron functions at Q, x is a radial displacement from an equilibrium
orbit, and s 1s a distance along the orbit. Near a m-th resonance, the
transfer matrix for one period, that is for m revolutions, from the center
of the quadrupole magnet, which will be called the point Q, can be written
as
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where € is a small phase shift in one period. Coordinates x,and y, after
v periods are given by the relation

g
(xv> . (x\,_l>+( u), ()
W y\)—l Y]

vhere &y and n, are non-linear displacements during the v-th period, and are
given approximately by
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“’c is a deflection due to M&’ re is the transfer matrix from Q to M;, and

Ty -l is its inverse matrix.
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where £ is a positive integer, g, is a constant, and x, is the displacement
of a particle from the axis of M;, and let the matrix T, be
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Then, rewriting eq. (3), we have
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Changes of the coordinates during one period can be given by the relations
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Using a transformation defined by
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and neglecting small terms, we have
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Then, the Hamiltonian of the motion can be given by
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In the (x, y) plane, it can be rewritten as
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II. Integer Resoance

In an integer or a half-integer resonance, B is infinitely large, and o
is infinitely large or infinitesimally small at Q. When '0.' is infinitely
large, x#=y for a > O and x=-y for a < O, as can be seen in eq. {10). When
a is infinitesimally small, bg's are infinitesimally small. In either cases
the Hamiltonian can be rewritten as
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where + is for a > 0 and ~ is for o < Q.

Singular points given by the relations 3H/dx = O and 3H/dy = O are
called "unstable fixed points™ and are given by
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When f is even, there always exists only one unstable fixed point, whereas
vhen f is odd, there are two or none.

A separatrix, a boundary of stable region, is given by H{x, y)=H(x, ,y, )
and is written as

+1
2 32 = g2 [l- 1 2 x
x? + - T+ a%y)? = x a(Z
(ox y) N e ,[+lx1) J (18)
Next, some details of the integer resonance ejection will be investigated
for the lowest order non-linearity f= 2, which is given by a sextupole magnet.

Henceforth, phase space (x, x' = g—’s(-, 8R) will be used instead of (x, y),

throughout this article. Let the original matrix for one revolution from
Q be
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where
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and y_.° and X are the momentum compaction factor and its derivative at Q,
which“are deaned by
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Then, the condition for an integer resonance can be attained by
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B is the magnetic field on the central orbit, p is its radius of curvature,

is the length of the quadrupole magnet, and 9Bp/3x is its field gradient.
T@e transfer matrix l'o, then changes to
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When the displacement of the equilibrium orbit is Ax;, a deflection by
the ¢ -th sextupole magnet can be given by

Y =8 (xi + Axi)z = & xiz + 2gixi Ax; + 8; (AX;)Z, (27)

where gixiz gives a non-linear deflection, 2g, Ax;a shift of the phase advance,
and g,(Ax }2 a distortion of the equilibrium orbit. Then, the phase advance
for one revolution p for small amplitude oscillations around the equilibrium

orbit can be given by
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Since cos u = cos €, we have
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Betatron functions for these small amplitude oscillations are given by
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The displacement of the equilibrium orbit xgq and its derivative x4 at @

can be given by
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where T; is now defined in (x, x', Ap/p) plane. Then we have
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Since, near the integer resonance, a wave form of the equilibrium orbit is
similar to a free betatron oscillation, we have
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Then, from eq. (29), we have
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o
a0 < 9, eq.s (16) and (17) can be written as,
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Therefore, we have the following relations
1
Xeq = 7 3 X (39)
and
/ 1 s )
Xeq T -5 X - (Lk0)

When o, equals zero as usual, as can easily be shown, the maximum
amplitude of the oscillation can be obtained at a point K whose phase advance
from the exit of the quadrupole magnet is approximately nm + H%, and the

amplitude at K is given by
xg = xq/cos %ﬂ y
where X is the amplitude at Q. The rate of the amplitude blow up at K is

given, in the 1imit € goes to zero, by

g.’i&l =\/%60 sin uo cos % Zgi a? XK3 . (k1)

In Fig. 2 are shown examples of separatrices. As can be seen there, the
accuracy of the theory is fairly good for the integer resonance ejection with
sextupole magnets.

III. Third Resonance

Non-linear fields of £ = 2 will be assumed also in this case. In the
third resonance ejection, particles will pass each sextupole magnet three times
in one period. Therefore, first, we should take summations of contributions
from each non-linear field over one period. Then we can rewrite eq. (13)
as
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The summation I in these equations is, now, taken over one period.

Making a rotation of the coordinates by an angle ¢ given by

tan 3¢= - B/A, (45)
where 3% should be taken so that 3¥= m for tan 3%= 0, we can rewrite
(k2) as
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Then, we have following three unstable fixed points;
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The separatrix in (X', Y') phase space is given by
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Transforming back to the (x, y) plane, we have
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A third resonance can be attained by
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instead of eq. (24) in the integer resonance, and betatron functions at Q
are given by
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where - is for 1/3 resonance and + is for 2/3 resonance. Yp and y; in
eq. (54) are the momentum compaction factors at Q and M; respectively, and
are given by
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where y;o is the original value of y; . In the third resonance, a distortion
of the equilibrium orbit caused by non-linear fields will usually be small,
we can obtain the equilibrium orbit at Q by the relation
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where T' is the transfer matrix for one revolution from Q and is given by
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where - is for 1/3 resonance and + is for 2/3 resonance. In Fig. 3 is shown
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an example. We can see here that the accuracy of the theory is not so good
as in an integer resonance, but it is still fairly good. This good accuracy,
however, will be lost when a displacement of the equilibrium orbit becomes
large as in a case of minimizing the emittance.

IV. Emittance

(1) Integer resonance

First, the emittance for sextupole magnets will be investigated. From
eq. (18), after some calculations, we have a separatrix of the form
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Since displacements of the orbit from the central orbit are Xg =% - 53
x .
and xg' = x - %Q._ﬁ , we can rewrite eq. (61), for fxqi§>xl, as
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The change of amplitude in one revolution at Q is given approximately by
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Since Ap/p is very small in an integer resonance, the phase space area
qu'qu is approximately equals to Axk'Axk, where Axk‘ and Ax, are defined
at K in the same way as 0xq' and Axq. Therefore, the emittance of the
ejected beam will be given by
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As can be seen in eq. (65), the emittance in an integer resonance is in-
dependent of arrangements of sextupole magnets.

In order teo reduce the emittance we must have some higher order non-~
linear fields. The theory indicates that this will be possible by the use
of octupole magnets in addition to the sextupole magnets or by the use of
ten-pole magnets instead of sextupole magnets, but the theory is not so
powerful to give quantitative predictions for this problem, because there is
a sextupole component which gives large contributions to the motiom.
Therefore, we have studied this problem numerically, and obtained following
results;

(a) The use of octupole magnets is not effective for this purpose, because
a decrease of Ax,' is offset by a increase of qu and, moreover, octupole
magnets limit the size of separatrices.

(b) The emittance can be appreciably reduced by the use of ten-pole masgnets.
Examples are shown in Pig. 5 and Fig. 6. In this case, the emittance can

be reduced by a factor of three compared with that in an integer resonance,
for the same initial amplitude. A disadventage of the use of ten-pole
magnets is that the rate of amplitude blow up changes somewhat rapidly with
the amplitude, compared with the case of sextupole magnets. This dis-
advantage may be removed if the field distribution at a large displacement
be shaped so as to show gx“-like distribution.

(2) Third Resonance

The emittance in a third resonance ejection depends largely on arrange-
ments of an ejection system, and usually it is substantially larger than
that in an integer resonance. In the third resonance, however, a size of
the separatrix and a displacement of the equilibrium orbit can be determined
independently, and in principle it is always possible to realize a condition
that an out-going separatrix, a extension of a side of separatrix, passes
the origin of the phase space. When such a condition is realized at a point,
where the beam leaves the orbit, the emittance of the ejected beam will be
reduced substantially. An example is shown in Fig. 7. As illustrated here,
the emittance can be reduced to the same order of magnitude with that in an
integer resonance. Since, in such cases, a displacement of the equilibrium
orbit is large, the theory loses its accuracy and behaviors of the orbit
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becomes complicated. In order to illustrate the complexity, an example of
a relation between the phase space area of the separatrix and the fractional
momentum difference is shown in Fig. 8. 1In this case there are two orbits
on which resonance conditions are met and phase space diagrams show complex
behaviors. Therefore, considerable amocunts of computor works will be re-
quired to have the optimum parameters. In spite of such complexities, a
third resonance ejection has an obvious advantage that it will give us a
longer and more uniform spill of the beam than in an integer resonance.
Because, the fractional momentum difference Ap/p is more than ten times
larger than that in an integer resonance, and the required stability of the
guiding magnetic field to have longer spill time is considerably lower than
that in an integer resonance.
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Fig. 1 A schematic diagram showing the arrangement of beam ejection
system.

THIRD RESONANCE

------- THEORY
——  NUMERICAL
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Fig. 3 A separatrix for a third resonance at K,, where A, B and C are
unstable fixed points and D is a stable fixed point.
g1 = -0.2102 and gp = g3 =0

DISCUSSION (condensed and reworded)

M.Q. Barton (BNL): Does Figure 8 represent a numerical

or theoretical value?

Kobayashi: This is the result of numerical calculation.

Barton: The non linearity that gave this orbit shift does
not cause the separatrices extended to close. Did you
have any trouble with the separatrices turning and coming
back?

Kobayashi: When the non-linear field is very strong, there
is some complicated behavior. In this case the non-linear
field is not so strong, so even if the disc diameter con-

verges,it would be larger than the aperture of the donut.
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Fig. 2 Separatrices for an integer resonance excited by sextupole
magnets. The positions of magnets are indicated in Fig. 4 and
separatrices were calculated at Kj. Parameters of sextupoles

are g, = 83 = - 0.02102 and g, = 0.02102. Phase space area of
the separatrices are; g ~-- 0, b ==~ 0.117 cm*mrad and
¢ ~== 0.280 cm*mrad.

ARRANGEMENT OF BEAM EJECTION SYSTEM USED FOR  NUMERICAL
CALCULATIONS

CSS -t COLLINS  STRAIGHT

SECTION

SIORUCTURE OF A SUPER-PERICD
AND LOCATIONS OF  MAGNETS

NORMAL  CELL(& PERIODS)

Fig. k4 The arrangement of beam ejection system used for Numerical
calculations, where Q is a quadrupole magnet, M;'s are non-
linear magnets and K 's are points at which separatrices are
obtained. Q, M; and Ky are at the center of straight sections
between radially focusing sectors.
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Fig. 5§ Separatrices for an integer resonance excited by a ten-pole
magnet calculated at Ky. g1 =~ 70 and gp = g3 = 0. Phase

space area; & --- 0, b =—— 0.181 cm*mrad. and ¢ --- 0.329 cme-mrad.
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Fig. 7 Separatrices for a third resonance at K. 87 = - 0.1051,

8o = 0 and g3 = 0.06. Phase space area; a -—- 0.56 cmemrad,
b --- 1.63 cmemrad. and ¢ --- 3.85 cmemrad..

RADIAL  EMITTANCE IN INTEGER RESONANCE  EJECTION

£ {mrad.)
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Fig. 6 Emittance of ejected beams in the integer resonance ejection.
E = 0.063 cmemrad for a (the case ¢ in Fig. 2) and E =
0.023 cm*mrad for b (the case ¢ in Fig. 5).
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Fig. 8 An example of the relation between the phase space area of the
separatrix and the fractional momentum difference.
gy = - 0.420k4, go = 0 and g3 = 0.3000.
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