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Improvement of the Emittance in the Resonant Beam Ejection 

Y. Kohayashi and H. Takahashi 
Institute for Nuclear Study, University of Tokyo 

The resonant beam ejection from an AG Synchrotron, by the use of a quadrupole magnet and sextupole magnets, was proposed by Hereward1) and performed successfully with the CERN PS.2) A similar method by a current strip was first achieved at CEA.3) Although many studies have been made on this subject, most of them were made numerically or experimentally. In this paper is given an analytical approach to this subject based on an approxi­mate Hamiltonian. 
A radial emittance in the resonant ejection is fairly small, generally. However, according to the predictions of the theory, it can be reduced further. We have investigated numerically motions of particles in a phase space, and found that the reduction of the emittance was really possible. 

I. Hamiltonian 
Suppose an arrangement shown in Fig. 1, where Q is a quadrupole magnet, Κ is a kick magnet and M's are non-linear multi-pole magnets. We consider the radial motion in a phase space (x, y), where y = β √1 + α2 dx, ds β and α are betatron functions at Q, x is a radial displacement from an equilibrium orbit, and s is a distance along the orbit. Near a m-th resonance, the transfer matrix for one period, that is for m revolutions, from the center of the quadrupole magnet, which will be called the point Q, can be written as 

Γ=( 
cos ε - α sin ε 
- √1 + α2 sin ε 

√1 + α2 sin ε 
cos ε + α sin ε ) , (1) 

where ε is a small phase shift in one period. Coordinates xν and yν after ν periods are given by the relation 

( 
xν 
yν )=Γ( 

xν-1 
yν-1 )+( 

ξν 
ην 
), (2) 

where ξν and ην are non-linear displacements during the v-th period, and are given approximately by 

( 
ξν 
ην )=Γ 

n 
Σ 
ι=1 Γi-1( 

0 
β √1 + α2 • ψi), (3) 

ψi is a deflection due to Mi, Ti is the transfer matrix from Q to Mi, and 
Γi-1 is its inverse matrix. 

Let 
ψi = gixil 

where l is a positive integer, gi is a constant, and xi is the displacement of a particle from the axis of Μi, and let the matrix Γi be 

Γi=( 
ai 
ci 

bi 
ai ) (5) Then, rewriting eq. (3), we have 

ξv β 
√1 + α2 Σgi {ε√1 + α

2 ai - (1 - εα)bi} (aixν-1 + bixν-1)l (6) 
and 

ην β 
√1 + α2 

Σgi { (1 + εα)ai + ε√1 + α2bi}(ai-xν-1 + biyν-1)l . (7) 

Changes of the coordinates during one period can be given by the relations 
dx 
dν - εαx + ε√1 + α2y + ξ (8) 

and 
dy 
dν - ε√1 + α2 x + εαy + η (9) 

Using a transformation defined by 
x = X(√1 + α2 - α)1/2 cos π 4 
y = - X(√1 + α2 - α)½ sin 

+ Y(√1 + α2 + α)½ sin 
π 
4 

π 4 
+ Y(√1 + α2 + α)½ cos 

, 
π 
4 , 

(10) 

and neglecting small terms, we have 
dX dv εΥ -

+ 
β(√1 + α2 + α)½ 
√2 √1 + α2 Σgi.(ai + bi){ 

(√1 + a2 + α)½ (ai + bi) √2 

(√1 + α2 - α)½ (ai - bi) 
√2 X 

y}l (11) 

and 
dY 
dν - εΧ + 

+ 
β(√1 + α2 + α)½ 
√2 √1 + α2 Σgi(ai -bi){ 

(√1 + α2 + α)½ (ai + bi) 
√2 

(√1 + α2 -α)½ (ai - bi) J2 X 
X}l (12) 

Then, the Hamiltonian of the motion can be given by 
H = -

+ 
ε 
2 (Χ

2 + Y2) + β 
(l + 1)√1 + α2 

(√1 + α2 + α)½ (ai + bi) 
√2 

Σgi{ 
(√1 + α2 - α) (ai - bi) √2 Χ 

Y}l+1. (13) 
In the (x, y) plane, it can be rewritten as 

H = -ε 2 { √1 + α
2 x2-2αxy + √1 + α2 y2} + β 

(l + 1)√1 + α2 Σgi (ai x + bi y)
l+1. 

(14) 
II. Integer Resoance 

In an integer or a half—integer resonance, β is infinitely large, and α is infinitely large or infinitesimally small at Q. When |α| is infinitely large, x÷y for α > 0 and x÷-y for α < 0, as can be seen in eq. (10). When α is infinitesimally small, bi's are infinitesimally small. In either cases the Hamiltonian can be rewritten as 

Η - ε 2 (√1 + α
2x2 - 2αxy + √1 + α2y2) + βxl+1 

(l+ 1)√1 +α2 Σgi.(ai ± bi)
l+1, 

(15) where + is for α > 0 and - is for α < 0. 
Singular points given by the relations ∂H/∂x = 0 and ∂H/∂y = 0 are called "unstable fixed points" and are given by 

x1l-1 = ε 
βΣgi(ai ± bi)l+1 (16) 

and 

y1 = α 
√1+α2x1 (17) 

When l is even, there always exists only one unstable fixed point, whereas when l is odd, there are two or none. 
A separatrix, a boundary of stable region, is given by H(x, y)=H(x, ,y,) and is written as 

x2 + (αx - √1 + α2y)2 - x12 ( l-1 l+1 + 
2 

l+1 ( 
x 
x1 )

l+1). (18) 
Next, some details of the integer resonance ejection will be investigated for the lowest order non-linearity l=2, which is given by a sextupole magnet. 
Henceforth, phase space (x, x' = dx/ds, ∆p/p) will be used instead of (x, y), 

throughout this article. Let the original matrix for one revolution from Q be 

Γ0 =[ 
cos μ0 - α0 sin μο 

- 1 + α02 β0 
sin μ0 

0 

β0 sin μ0 A13 
cos μο + α0 sin μ0 A23 

0 1 
] (19) 
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where 

A13 = γQ°{1 - (cos µ0 - α0 sin µ0)} KQ° βQ sin µ0, (20) 

A23 =γQ° 1 + α0
2 

βQ sin µ0 + KQ°{1 - (cos μ0 + α0 sin µ0)}, (21) 
and γQ° and KQ° are the momentum compaction factor and its derivative at Q, which -are defined by 

γQ° = ∆xQ/ Δp 
p , (22) 

and 
KQ°=( d∆x ds )Q/ 

Δp 
p , (23) 

Then, the condition for an integer resonance can be attained by 
Φ2 
lQ 
=- 2(1 - cos μ0) β0 sin µ0 , (24) 

where 
Φ = √ 1 

Bρ 
∂Bz ∂x • lQ, (25) 

Β is the magnetic field on the central orbit, ρ is its radius of curvature, lQ is the length of the quadrupole magnet, and ∂Bz/∂x is its field gradient. The transfer matrix Γο, then changes to 

Γ ( 

1 - α0 sin μ0 
1 + α02 β0 sin μ0 
0 

β0 sin μ0 
1 + α0 sin μ0 

0 

A13 
A23 - Φ2 

2lQ 
A13 Λ13 

1 

) . (26) 

When the displacement of the equilibrium orbit is Δxi, a deflection by the i-th sextupole magnet can be given by 
Ψi = 8i(xi + Δxi)2 = gi xi2 + 2gi xi Δxi + gi (Δxi)2, (27) 

where gi-xi2 gives a non-linear deflection, 2gi Δxi a shift of the phase advance, and gi(∆xi)2 a distortion of the equilibrium orbit. Then, the phase advance for one revolution μ for small amplitude oscillations around the equilibrium orbit can be given by 
cos μ 1 + β0 sin μ0 Σgi ∆xi(ai + bi' α0 β0 )

2, (28) 
where bi' = β √1 + α2 bi. Since cos μ = cos Є, we have 

ε2 - 2β0 sin μ0 Σgi ∆xi(ai + bi' α0 β0 )
2, (29) 

Betatron functions for these small amplitude oscillations are given by 
β β0 sin μ0 ε (30) 

and 
α α0 sin μ0 

ε 
(31) 

The displacement of the equilibrium orbit xeq and its derivative xeq' at Q 
can be given by 

( 
xeq 
xeq' Δp/p ) = Γ ( 

xeq 
xeq' 
Δp/p 

+ ΣΓΓi-1 (gi 
0 
(Δxi)2 
0 ) , (32) 

where Γi is now defined in (x, x', Δp/p) plane. Then we have 
xeq' = α0 β0 

xeq (33) 
and 
∆p 
Ρ 
= -β0 sin μ0 2(1 - cos μ0) γQ° Σgi(∆xi)

2(ai + bi' α0 β0 ). (34) 
Since, near the integer resonance, a wave form of the equilibrium orbit is similar to a free betatron oscillation, we have 

∆xi (ai + bi'. α0 β0 )xeq. (35) 
Then, from eq. (29), we have 

xeq = - ε2 
2βo sin µoΣgi (ai + bi' αo/βo)3 . (36) 

Since bi = √1 + α
2 

β bi' ± bi' α0 β0 , where + is for αo > 0 and - is for αo < 0, eq.s (16) and (17) can be written as, for l = 2, 
x1 = ε2 βo sin µoΣgi.(ai + bi' αo/βo)3 (37) 

and 
x1' = α0 β0 x1. (38) 

Therefore, we have the following relations 
xeq = - 1 2 x1 (39) 

1 and 
xeg' = -1 2 x1'. (40) 

When α0 equals zero as usual, as can easily be shown, the maximum 
amplitude of the oscillation can be obtained at a point Κ whose phase advance 
from the exit of the quadrupole magnet is approximately nπ + , and the 
amplitude at Κ is given by 

XK XQ/cos µ0 2 , where xQ is the amplitude at Q. The rate of the amplitude blow up at Κ is given, in the limit ε goes to zero, by 

| dxK dν |=√ 
2 
3 β0 sin μ0 cos 

µ0 2 Σgi ai
3 xK3. (41) 

In Fig. 2 are shown examples of separatrices. As can be seen there, the accuracy of the theory is fairly good for the integer resonance ejection with sextupole magnets. 
III. Third Resonance 

Non-linear fields of l = 2 will be assumed also in this case. In the third resonance ejection, particles will pass each sextupole magnet three times in one period. Therefore, first, we should take summations of contributions from each non-linear field over one period. Then we can rewrite eq. (13) as 
Η = -ε 2 (Χ

2 + Y2) + β 3 (AX(X
2 - 3Y2) + ΒΥ(Υ2 - 3Χ2)), (42) 

where A = 3 8√2 √1 + α
2 - α)3/2 Σ'gi(ai - bi){(ai - bi)2 - 3(√1 + α2 + α)2(ai+bi)2} 

(43) and 
B = 3 8√2 (√1+α

2 + α)3/2Σ'gi(ai + bi){(ai + bi)2 - 3(√1+α2 - α)2(ai - bi)2}. 
(44) 

The summation Σ' in these equations is, now, taken over one period. 
Making a rotation of the coordinates by an angle φ given by 
tan 3φ = - B/A, (45) 

where 3φ should be taken so that 3φ = π for tan 3φ = 0, we can rewrite eq. (42) as 
Η = -ε 2 (Χ'

2 + Y'2) + β√Α
2+Β2 
3 X'(X'2-3Y'2). (46) 

Then, we have following three unstable fixed points; 
X1' = ε 

√A2 +B2 

Y ' = 0 1 }, 

X2' = -

Y2' = 

X1' 2 
√3 
2 X1' 

} and X3' = -

Y2' = -

Χ1' 2 
√3 
2 X1' 

}. (47) 

The separatrix in (X', Y') phase space is given by 
(X' + Y1' 2 )(Χ' - √3Υ' - X1')(X' + √3Υ' - Χ1') 0. (48) 
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Transforming back to the (x, y) plane, we have 

and 

x1 = G cos (φ - x) 
y1 = G sin (φ-π 2 + X), 
x2 - G cos (φ - X + 
y2 = G sin (φ + X + 

2π 3 
π 6 

) 
, 

x3 = G cos (φ - X -

y3 = G sin (φ + X -

2π 3 
7π 
6 

) 

), 

} (49) 

where 
G = ε(1 + α2)¼ β√Α2+Β2 (50) 

and 
X = tan-1(√1+α2 + a). (51) 
A third resonance can he attained by 
Φ2 lQ 

1 + 2 cos μ0 
β0 sin μ0 

(52) 
instead of eq. (24 in the integer resonance, and betatron functions at Q 
are given by 

β 
a 

2 
√3 2 
√3 

B0|sin μ0| 
α0|sin μ0| 

(53) 

By a similar procedure to that in the integer resonance we have 
ε ± 2√5 xeq β0 sin μ0 Σ'giγi ((ai + ?n β0 

bi')2 + 3 4 ( bi' β0 sin μ0 )
2), (54) 

where - is for 1/3 resonance and + is for 2/3 resonance. γQ and γi in eq. (54 are the momentum compaction factors at Q and Mi respectively, and are given by 
γQ = 2 3 (1 - cos µ0)γQo (55) 

and γi = γio - (ai + αo/βo bi') (1+2 cos µo 3 γQo -1 + 2 cos μ0 2 βo sin μo bi'γQ
o, (56) 

where γi0 is the original value of γi. In the third resonance, a distortion of the equilibrium orbit caused by non-linear fields will usually be small, we can obtain the equilibrium orbit at Q by the relation 

( 
xeq 
xeq' 
Δp/p )=Γ( 

xeq 
xeq' 
Δp/p ) , 

where Γ is the transfer matrix for one revolution from Q and is given by 

Γ = ( (-
1 
2 - α0 sin µ0 

- 3 + 4 α02 sin µ0 4 β0 sin µ0 
\ 0 

Bo sin μo 

_ 1/2 + α sin μ0 

A13 
A23 -

0 

1+2 cos μo/A13 2 βo sin μo 
1 

) (57) 

Then we have 
xeq 2(1 - cos μ0) 3 γQ0 

Δp 
p , (58) 

xeq'[KQ0- α0γQ0 3β0 (1+2 cos µ0)] 4p 
p , (59) 

and 
Δρ 
Ρ = Ψ 

ε 
2√3 βo sin μo Σ'gi γi [(ai + bi α0 β0 

)2 + 3 4 ( b i ' ) 2 
β0 sin μ0 ] 

, (60) 

where - is for 1/3 resonance and + is for 2/3 resonance. In Fig. 3 is shown 

an example. We can see here that the accuracy of the theory is not so good as in an integer resonance, but it is still fairly good. This good accuracy, however, will be lost when a displacement of the equilibrium orbit becomes large as in a case of minimizing the emittance. 
IV. Emittance 
(1) Integer resonance 

First, the emittance for sextupole magnets will be investigated. From eq. (18), after some calculations, we have a separatrix of the form 
x' = α0 β0 

X ± 
Σgi (ai + α0 β0 β0 sin μ0 x13[ 

1 
3 + 

2 
3 ( 
x 
x1 
)3 - ( X x1 

)2]. (61) 

Since displacements of the orbit from the central orbit are xq = x -x1/2 and xq' = x -α0 β0 x1 2 , we can rewrite eq. (6l), for |xq|x1, as 

xq'= α0 β0 xq ±√ 
2 
3 
Σgi (ai + α0 β0 bi')

3 

β0 sin µ0 xq
3 [1- 3 8 ( 

x1 

xq )
2] , (62) 

Therefore, the difference between Xq's for ε = 0 and ε = ε is given by 
∆xq' = (xq')ε - (xq')0 

± 3 8 ( x1 xq )2√ 2 3 Σgi (ai + 
α0 β0 bi')3 β0 sin µ0 xq3 . (63) 

The change of amplitude in one revolution at Q is given approximately by 
Δxq = dx dν ·± √ 2 

3 β0 sin µ0Σgi (ai + α0 β0 bi')
3xq3 · (64) 

Since Δp/p is very small in an integer resonance, the phase space area ∆xq'∆xq is approximately equals to ∆xk'∆xk, where Δxk' and ∆xk are defined at Κ in the same way as ∆xq' and Δxq. Therefore, the emittance of the ejected beam will be given by 
E = ∆xq'∆xq = 3 8 ( x1 xq 

)2 (Δxq)2 
β0 |sin μ0| 

3 8 ( x1 xk )
2 (Δxk)2 β0 |sin µ0| . (65) 

As can be seen in eq. (65), the emittance in an integer resonance is independent of arrangements of sextupole magnets. 
In order to reduce the emittance we must have some higher order nonlinear fields. The theory indicates that this will be possible by the use of octupole magnets in addition to the sextupole magnets or by the use of ten-pole magnets instead of sextupole magnets, but the theory is not so powerful to give quantitative predictions for this problem, because there is a sextupole component which gives large contributions to the motion. Therefore, we have studied this problem numerically, and obtained following results; 

(a) The use of octupole magnets is not effective for this purpose, because a decrease of Δxq' is offset by a increase of Δxq and, moreover, octupole magnets limit the size of separatrices. 
(b) The emittance can be appreciably reduced by the use of ten-pole magnets. Examples are shown in Fig. 5 and Fig. 6. In this case, the emittance can be reduced by a factor of three compared with that in an integer resonance, for the same initial amplitude. A disadvantage of the use of ten-pole magnets is that the rate of amplitude blow up changes somewhat rapidly with the amplitude, compared with the case of sextupole magnets. This disadvantage may be removed if the field distribution at a large displacement be shaped so as to show gx2-like distribution. 
(2) Third Resonance 

The emittance in a third resonance ejection depends largely on arrangements of an ejection system, and usually it is substantially larger than that in an integer resonance. In the third resonance, however, a size of the separatrix and a displacement of the equilibrium orbit can be determined independently, and in principle it is always possible to realize a condition that an out-going separatrix, a extension of a side of separatrix, passes the origin of the phase space. When such a condition is realized at a point, where the beam leaves the orbit, the emittance of the ejected beam will be reduced substantially. An example is shown in Fig. 7. As illustrated here, the emittance can be reduced to the same order of magnitude with that in an integer resonance. Since, in such cases, a displacement of the equilibrium orbit is large, the theory loses its accuracy and behaviors of the orbit 



350 
becomes complicated. In order to illustrate the complexity, an example of a relation between the phase space area of the separatrix and the fractional momentum difference is shown in Fig. 8. In this case there are two orbits on which resonance conditions are met and phase space diagrams show complex behaviors. Therefore, considerable amounts of computor works will be required to have the optimum parameters. In spite of such complexities, a third resonance ejection has an obvious advantage that it will give us a longer and more uniform spill of the beam than in an integer resonance. Because, the fractional momentum difference Δp/p is more than ten times larger than that in an integer resonance, and the required stability of the guiding magnetic field to have longer spill time is considerably lower than that in an integer resonance. 
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Fig. 1 A schematic diagram showing the arrangement of beam ejection system. 

Fig. 3 A separatrix for a third resonance at K1, where A, B and C are unstable fixed points and D is a stable fixed point. g1 = -0.2102 and g2 = g3 = 0 

DISCUSSION (condensed and reworded) 

M.Q. Barton (BNL): Does Figure 8 represent a numerical 
or theoretical value? 

Kobayashi: This is the result of numerical calculation. 

Barton: The non linearity that gave this orbit shift does 
not cause the séparatrices extended to close. Did you 
have any trouble with the separatrices turning and coming 
back? 

Kobayashi: When the non-linear field is very strong, there 
is some complicated behavior. In this case the non-linear 
field is not so strong, so even if the disc diameter converges, 
it would be larger than the aperture of the donut. 

Fig. 2 Separatrices for an integer resonance excited by sextupole 
magnets. The positions of magnets are indicated in Fig. 4 and 
separatrices were calculated at K1. Parameters of sextupoles 
are g1 = g3 = - 0.02102 and g2 = 0.02102. Phase space area of 
the separatrices are; a --- 0, b --- 0.117 cm·mrad and 
c --- 0.280 cm·mrad. 

Fig. 4 The arrangement of beam ejection system used for Numerical calculations, where Q is a quadrupole magnet, Μi's are nonlinear magnets and K's are points at which separatrices are obtained. Q, Mi and K1 are at the center of straight sections between radially focusing sectors. 
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Fig. 5 Separatrices for an integer resonance excited by a ten-pole 
magnet calculated at K1. g1 = - 70 and g2 = g3 = 0. Phase space area; a --- 0, b --- 0.181 cm·mrad. and c --- 0.329 cm·mrad. 

Fig. 6 Emittance of ejected beams in the integer resonance ejection. Ε = 0.063 cm·mrad for a (the case c in Fig. 2) and Ε = 0.023 cm·mrad for b (the case e in Fig. 5). 

Fig. 7 Separatrices for a third resonance at K2. g1 = - 0.1051, g2 = 0 and g3 = 0.06. Phase space area; a --- 0.56 cm·mrad, b --- 1.63 cm·mrad. and c --- 3.85 cm·mrad.. 

Fig. 8 An example of the relation between the phase space area of the separatrix and the fractional momentum difference. g1 = - 0.4204, g2 = 0 and g3 = 0.3000. 


