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Abstract

This thesis investigates the superconformal Ward identities (SCWI) for higher-
point correlation functions within the maximally symmetric four-dimensional su-
perconformal field theory of N' = 4 Super Yang-Mills (SYM) theory. As a corner-
stone of theoretical physics, N' = 4 SYM is notable for its high degree of symmetry,
properties of integrability, and its duality through the AdS/CFT correspondence,
providing remarkable insights also into strongly coupled physics. The constraints
imposed by SCWI are essential for understanding the behavior of key objects in
this theory.

Studying SCWI for higher points, particularly five-point functions and beyond,
is crucial for extracting additional conformal field theory (CFT) data via the
bootstrap program and for gaining deeper understandings of phenomena such as
integrability, hidden symmetries and the AdS/CFT correspondence. This work
develops a systematic method utilising analytic superspace to derive these higher
point superconformal Ward identities for half-BPS multiplets. Although exempli-
fied through stress-tensor multiplets, the method is adaptable and applicable to
various superconformal setups. In particular, it is designed to work independently
of the number of inserted operators, addressing limitations of previous techniques
used for lower-point functions.

To further illustrate the adaptability of our approach, we also apply it to the
six-point function of displacement multiplets on the supersymmetric Wilson line
defect in N/ =4 SYM.
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1. Introduction

Symmetry, as wide or as narrow as you may define its meaning, is one idea by
which man through the ages has tried to comprehend and create order, beauty and
perfection. Hermann Weyl

Modern day theoretical physics is built upon two profound frameworks, Quantum
Field Theory (QFT) and General Relativity (GR).

On the one hand, there is Quantum Field Theory: a powerful mathematical frame-
work that arose to unify classical field theory, special relativity, and quantum me-
chanics.

Classical field theories from Maxwell and Einstein replaced instantaneous forces,
typical of Coulomb force and Newton’s laws, with local interactions mediated by
fields. This emphasis on locality motivated the development of a quantum field
approach, providing a unification between field theory and quantum mechanics.
This unification allows for instance to resolve the problem of identical particles in
quantum mechanics: emerging as excitations of the same quantum fields, identical
particles -such as two electrons- are truly and indistinguishably identical.

Special relativity, established in 1905, asserts that physical laws are covariant
across inertial frames and that the speed of light remains constant. Integrating
special relativity with quantum mechanics introduces for instance particle creation
and annihilation, a core feature that can only be explained within the framework
of QFT.

Accounting for these processes at the quantum level though often introduces diver-
gences that require careful regularisation and renormalisation. Yet, despite these
challenges, QFTs provide the most precise description of the microscopic world at
our disposal.

The key principle in constructing QFTs is symmetry. Particles and forces are given
as just different representations of the same underlying symmetry group.

Moreover, different theories are characterised by the different symmetry groups.
For instance, Quantum Electrodynamics (QED), the first fully consistent QFT,
that describes light-matter-interactions, is a gauge theory (i.e. it is invariant under



local transformations) with gauge symmetry group U(1). In contrast, Quantum
Chromodynamics (QCD), which describes the strong interactions between quarks,
is a gauge theory with symmetry group SU(3). This particular symmetry group
SU(3) introduces remarkable features like confinement and asymptotic freedom,
ensuring that quarks, which carry charge under this group, cannot be observed as
asymptotic states but only in bound states.

The theories of electromagnetism, and the strong and weak interactions are com-
bined into the Standard Model of Particle Physics, providing a framework that
not only predicts a variety of non-trivial effects but also describes the microscopic
world with exceptional accuracy.

A special class of Quantum Field Theories is represented by conformal field theories
(CFTs). These theories feature an extended spacetime symmetry group that goes
beyond the Poincaré symmetry group -comprising translations and Lorentz trans-
formations, foundational to any physically meaningful theory- to include scaling
and special conformal transformations, the latter being all angle-preserving trans-
formations.

The mathematical roots of CFTs trace back to the 1850s [1], and they were for-
mally introduced into physics in 1910 with the realization that Maxwell’s equations
exhibit conformal invariance [2,3].

CF'Ts find applications across a wide spectrum of theoretical physics. One notable
application lies in the study of second-order phase transitions between distinct
phases of matter, which are themselves characterised by symmetry properties. For
instance, the crystalline structure of solids breaks the translational and rotational
symmetries present in liquids and gases. The transition from one symmetry class
to another defines a phase transition.

Approaching the critical point of a second-order phase transition, the correlation
lengths diverge, resulting in fluctuations of arbitrary large size. This absence of a
characteristic length scale signifies scale invariance, making the critical points of
second order phase transitions describable by a CFTE

A classic example of this phenomenon is the liquid-gas transition observed, for
instance, in water. As the liquid approaches its critical point -here defined by the
critical temperature-, density fluctuations increase in length scale. When these
lengths exceed the wavelength of visible light, light scattering produces the ob-
served “cloudiness” of the fluid, known as critical opalescence.

IThe question of whether scale invariance extends to conformal invariance is subtle; however,
in most local, unitary theories, this is the case. In all examples considered in this thesis, scale
invariance is enhanced to conformal invariance.
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Interestingly, the CF'T describing this critical opalescence is the same CFT that
governs second-order phase transitions in ferromagnetic systems: the 3d Ising
model. Thus, two microscopically very different systems exhibit identical behavior
and share the same CFT at the phase transition, leading to identical measurable
quantities such as the critical exponents. This equivalence can be interpreted from
both systems belonging to the same universality class under the Renormalization
Group (RG) flow.

The concept of RG flow, developed for QFTs in the 1960s and 1970s [4,/5] and
subsequently applied to second-order phase transitions [6]7], describes how theo-
ries evolve as their parameters vary. By altering these parameters, theories either
diverge to infinity in theory space (i.e. the couplings become arbitrarily large when
following the RG flow) or converge towards a fixed point. Such a fixed point is
inherently scale invariant, thus describable by a CFT.

In the context of the above outlined second-order phase transitions, RG flow can be
interpreted as successively “zooming out” on microscopic degrees of freedom until
the fixed point, represented by a CF'T, is reached. In more general terms, this con-
cept bridges high-energy theories (in the ultraviolet, or UV regime), encompassing
for instance fundamental interactions and string theory, with low-energy theories
(in the infrared, or IR regime), such as those in condensed matter physics. The
fixed points of these bridges being described by CFTs highlights the prevalence of
conformal symmetry across the landscape of physical theories.

The additional symmetries of the conformal group impose stringent constraints on
the fundamental observables of CF'Ts, namely the correlation functions. Confor-
mal symmetry fully determines the form of two- and three-point functions, while
all higher-point correlators can be systematically related to these lower-point func-
tions through the Operator Product Expansion (OPE). This concept, developed by
Wilson and Kadanoff in 1969 [8,9], expresses products of two local operators as a
series of single local operators, thereby expressing multi-point correlators as a sum
of lower-point functions. In a CFT, the OPE has a finite radius of convergence,
meaning it is exact. Hence, we can interpret a CFT as solved once all two- and
three-point functions -or more specifically, their CFT data- are specified.

It should be noted that this simplification holds uniquely in CFTs. In general
QFTs, where the OPE is not exact but approximate, a full determination of the
theory would still require calculating all correlators.

This realisation has inspired an entire new research approach to compute these
correlators in a CFT using symmetry and consistency conditions alone, the con-
formal bootstrap program.

Unlike traditional perturbative methods, which are effective only in limited regimes
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-such as weak coupling or large charge- and rely on a Lagrangian formulation,
the conformal bootstrap provides a non-perturbative method intended to be valid
across all regimes of the theory and grounded solely in fundamental principles. By
leveraging the Operator Product Expansion (OPE) and the constraints on two-
and three-point functions imposed by conformal symmetry, the bootstrap seeks
to “solve” CFTs with minimal external assumptions, relying instead on intrinsic
symmetry properties and consistency requirements such as unitarity and OPE as-
sociativity.

Initially formulated in the 1970s for two-dimensional CFTs [10,|11], where the
conformal algebra corresponds to the infinite-dimensional Virasoro algebra, the
bootstrap was successfully applied to solve 2d minimal models, a series of CFTs
describing the critical points of the 2d Ising model, through purely symmetry-
based arguments [12].

The first significant breakthrough in higher-dimensional CFTs occurred in 2008,
when numerical bounds on scaling dimensions in a four-dimensional CF'T were
computed [13]. Since then, numerous “islands” and bounds on CFT data have
been established, culminating in the determination of some of the most precise
and numerically accurate critical exponents for the 3d Ising model [14-16].

While the numerical bootstrap provides highly accurate bounds on CFT data,
recent developments in the analytic bootstrap, initiated in 2012 [17,/18], aim to
uncover more universal results for general CFTs. Following this initial framework
of the large-spin bootstrap, various other methods, such as the large-charge boot-
strap [1920], Mellin-space bootstrap [21H23], and more, have emerged. For an
overview of these methodologies, see [24]25].

Our journey from the development of Quantum Field Theory (QFT) to the mod-
ern conformal bootstrap program reveals not only remarkable advancements in
theoretical physics, but also a recurring theme: many of these techniques remain
deeply rooted in symmetry principles.

However, despite the remarkable outlined successes of QFTs, and particularly Con-
formal Field Theories (CFTs), they do not yet provide a definitive description of
all fundamental forces in nature. This brings us to the second pillar of modern
theoretical physics: General Relativity (GR).

Formulated by Einstein in 1915, GR remains the most accurate theory describing
the gravitational force -the weakest but longest-ranging among the four funda-
mental interactions. GR revolutionised our understanding of space and time by
merging them into a unified concept of spacetime and relating its curvature di-
rectly to the energy and momentum of matter. Like QFT, GR is formulated as a
local field theory, with gravitational interactions being mediated by a field. Fur-
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thermore, it is as well grounded in symmetry principles: GR is invariant under
diffeomorphisms, meaning that the theory’s laws are independent of a specific la-
belling of spacetime points.

Thus, we have two foundational pillars in theoretical physics: QFTs, with the
special cases of CFTs, which describe the strong and electroweak forces at atomic
scales, and GR, which describes the gravitational force at larger distances where
significant masses are involved. Both theories predict their respective domains
with unparalleled accuracy. However, one of the major unresolved challenges in
theoretical physics is to describe scenarios involving large masses concentrated in
small regions of spacetime, such as in the vicinity of black hole singularities or in
the early moments following the Big Bang. These situations require the simultane-
ous consideration of both quantum and gravitational effects. A naive combination
of QFT and GR, such as attempting to quantise GR, is not possible as GR is non-
renormalisable, meaning that we cannot remove the divergencies emerging within
a quantum field theoretic framework.

Decades of research have yielded several approaches to address these challenges,
with one of the most promising being superstring theory. String theory, formulated
in the late 1960s, naturally encompasses both the gravitational theory of Einstein
at ordinary scales and a modified version at high energies or small distances, as
well as gauge theories of the type used to construct the Standard Model. However,
to make string theory consistent and to incorporate fermions, a new class of sym-
metry, supersymmetry, was introduced in this context [26], leading to superstring
theory.

Supersymmetry links the bosons and fermions of the theory, thus treating the
equations governing forces and matter on equal terms. It can also be incorporated
into field theories, resulting in superconformal field theories (SCFTs).

There are various superconformal field theories across different dimensions, with
one of the foremost examples being N' = 4 Super Yang-Mills (SYM) theory, the
maximally symmetric SCFT in four dimensions [27,28]. N = 4 SYM is a re-
markable theory with many unique features. It is UV-complete, meaning it lacks
the divergences typical of other QFTs, and it has a vanishing S-function, so that
its superconformal symmetry survives at the quantum level. This symmetry, the
highest achievable in four dimensions without including gravity, imposes stringent
constraints on the theory’s elements, leading to highly structured, computable
mathematical forms.

Interest in N’ = 4 SYM was raised tremendously by one of modern theoretical
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physics’ most exciting conjectures: Maldacena’s gauge-gravity duality [29]. In-
spired by ‘t Hooft’s work and the holographic principle (which has emerged from
black hole entropy being described by the surface area, rather than the volume),
this duality posits a correspondence between a gravity theory in d + 1 dimensions
and a theory without gravity on its d-dimensional asymptotic boundary. Known
also as the AdS/CFT correspondence, this duality often involves a CFT on the
boundary that reflects properties of a dual string theory on an Anti-de Sitter (AdS)
background, underscoring once again the special role of conformal field theories
in theoretical physics. Notably, the only known UV-complete examples of this
duality involve the higher symmetric superconformal theories. The most success-
ful and well-studied case of this correspondence relates N' = 4 SYM to type 1IB
superstring theory on AdSs x S°, as formulated in [29].

One particularly powerful feature of the AdS/CFT correspondence is its role as a
weak-strong duality. When fields on the CFT side are weakly coupled, the corre-
sponding fields in the dual string theory are strongly coupled, and vice versa. This
duality allows to apply perturbative methods on one side to gain insights into the
strongly coupled regime of the dual theory -an otherwise notoriously challenging
domain to analyse. This utility is a major factor driving the extensive studies
and breakthroughs achieved in N' = 4 SYM, standing out as the best understood
example of AdS/CFT.

However, many challenges are still present such as intermediate coupling regimes
that remain challenging to study, necessitating non-perturbative methods for a full
understanding of these theories.

As we have seen, conformal symmetry imposes strong constraints on observables,
inspiring the conformal bootstrap program. Given that superconformal field the-
ories possess even greater symmetry, thereby imposing stronger constraints, the
natural question arises of extending the conformal bootstrap to a superconformal
bootstrap program? With N = 4 SYM serving as the prime candidate for such
an endeavor, efforts in this direction have been initiated for instance in [30-34],
mostly for four-point correlators. Like all attempts of this nature, these efforts are
grounded in one essential question:

How does the underlying symmetry group constrain the observables of the theory?

The constraints emerging from this analysis are referred to as Superconformal Ward
Identities (SCWI), and are the primary focus of this thesis. Deriving these iden-
tities not only serves as a foundational step in potential bootstrap programs (as
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did e.g. the works of [35-37] for the above mentioned attempts in N' = 4 SYM),
but also provides valuable insights on its own.

Examining the implications of superconformal symmetry on the correlation func-
tions in N/ = 4 SYM has yielded, for instance, numerous non-renormalization
theorems concerning three- and four-point functions of so-called short multiplets
-multiplets that trivialise under a subset of the fermionic algebra. For relevant
studies, see [38-44].

These short multiplets have remained central to much of the research on supercon-
formal Ward identities. Specifically, correlators with up to four multiplet insertions
are well-understood, and SCWI have been derived through various approaches
(see 35,136} 143,45,46] for some notable examples).

However, for five-point correlators involving half-BPS multiplets, substantially less
is known. The objective of this thesis is to further deepening this understanding
by deriving the corresponding superconformal Ward identities.

Defects

The understanding of (S)CFTs can be broadened by introducing defects into the
theory that break the underlying symmetries in a controlled manner. In the con-
text of conformal field theories, we focus particularly on conformal defects, which
still preserve part of the original conformal symmetry.

Consider a conformal theory in d dimensions, which is described by the symmetry
group SO(d,2). When a p-dimensional defect is introduced, this symmetry is
partially broken as follows:

SO(d,2) = SO(p,2) x SO(q), q=d—p.

This p-dimensional defect retains a p-dimensional conformal field theory on the
defect itself, even though it lacks a local stress tensor and thus corresponds to a
non-local CFT. Furthermore, the defect preserves a ¢-dimensional rotational sym-
metry around it, referred to as transverse spin from the defect perspective. Here, ¢
is known as the codimension, and allows for a characterisation of defects in terms
of its dimension and codimension.
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Defects with codimension one are either boundaries, if they exhibit a CFT on one
side, or interfaces, if there is a non-trivial CF'T on each side of the interface. These
defects are notable for not having a transverse spin, i.e. rotations around the de-
fects are absent. The foundational work on such defects within conformal field
theories can be traced back to Cardy [47,48].

Higher codimension defects, which allow for non-trivial transverse spin, can fur-
ther be classified by their dimensionality. For example, p = 1-dimensional defects,
termed [ine defects, may manifest either as time-extended point defects or as spa-
tial lines, which may either remain open or form closed loops. A prominent example
of this category is the Wilson line or Wilson loop, originally introduced by [49].
Similarly, p = 2-dimensional defects are referred to as surface defects, and so forth.

Given their considerable variety, including also non-conformal defects, they find
application across a plethora of physical setups. Being extended objects, they serve
as probes in gauge theories, providing insights into the properties of the associated
gauge groups, such as those related to confinement [49]. They also facilitate the
study of generalized symmetries (e.g., see [50]) and contribute additional structure
in the AdS/CFT correspondence (e.g., see [51]). Moreover, defects hold relevance
in experimental contexts, such as magnetic line defects in the Ising model, which
are used to model magnetic impurities [52,53].

From a bootstrap perspective, defects introduce novel CFT data and probe unique
dynamics, thereby enhancing the overall understanding of the theory. In addition
to modified bulk CFT data -such as non-vanishing one-point functions in the pres-
ence of a defect- one can analyse correlation functions of operators inserted solely
on the defect -which retain information about the original theory, for example,
through transverse spin. Interactions between bulk and defect operators provide
another rich area for exploration.

This interest in incorporating defects into the bootstrap framework has moti-
vated substantial research, culminating in the development of the defect bootstrap.
Foundational works and advances in this field for the various types of defects in-
clude [54H58]. Since these early contributions, research on the defect bootstrap
has expanded significantly.

Conformal defects can also be extended to include supersymmetry, yielding super-
conformal defects that preserve portions of the corresponding bulk superconformal
algebra.

The various types of superconformal line defects have been classified in [59]. A
particularly notable example is the supersymmetric Wilson line in AN/ = 4 Super
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Yang-Mills theory [60]. This line defect is dual to a two-dimensional string world-
sheet in AdS that terminates on the Wilson line in the boundary CFT [51]. Its high
degree of symmetry, coupled with its one-dimensional nature, makes this defect
especially well-suited to study it based on symmetry arguments only, as performed
in this thesis.

Outline of the thesis

The aim of this thesis is to derive the constraints imposed by superconformal
symmetry on higher-point functions of half-BPS multiplets, known as Supercon-
formal Ward identities (SCWI). We will primarily focus on the five-point function
of stress-tensor multiplets in NV = 4 Super Yang-Mills (SYM) theory. However, the
approach developed herein is adaptable and can be applied to various setups, as
will be demonstrated through toy models and the application of the same method-
ology to the six-point function of displacement multiplets on the supersymmetric
line defect in N/ =4 SYM.

This thesis is organized as follows:

Chapter 2] introduces the foundational aspects necessary for understanding the
analysis presented later. We discuss key features of four-dimensional supercon-
formal theories, focusing on the principles of superconformal symmetry and its
implications for correlation functions. We will particularly highlight the role of
analytic superspace, our primary tool for deriving SCWI.

Part Il represents the main body of this thesis, centering on the SCWI for five-point
function of the stress-tensor multiplet in N' = 4 SYM. In Chapter [3, we develop
a systematic method for deriving the SCWI. We detail the process of combining
the constraints of superconformal invariance on the correlator with constraints im-
posed by general group-theoretic properties of the half-BPS multiplets.

Along the way, we will derive the SCWI also for other cases, such as a five-point
function in the chiral algebra psu(1,1]2) and the four-point function of psu(2,2|4)
to build an understanding in a gradual way.

In Chapter 4] we analyse the derived SCWI. While the SCWTI for the simpler cases,
such as the one-dimensional setup of psu(1,1|2) and the four-point functions, can
be solved straightforwardly, the five-point functions present greater complexity.
Nonetheless, we provide evidence of the correctness of the derived equations and
make initial strides toward their simplification.

Part III explores other setups and further directions of the developed methodology.
In Chapter o, we illustrate the adaptability of our method by applying it to the
six-point function of displacement multiplets on the supersymmetric Wilson line
defect in N/ =4 SYM.

The thesis concludes with an outlook in Chapter [l on potential future directions.
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2. N =4 SYM

We begin by introducing the central theoretical framework of our study: N = 4
Super Yang-Mills (SYM) theory, with particular focus on its underlying symmetry
algebra, psu(2,2|4). We will establish the necessary foundational concepts required
for the analyses presented in this thesis.

In Section , we present the complete superconformal algebra psu(2,2|4), which
serves as the foundation for our discussion, before exploring the representations
of this algebra in Section [2.2] We first review conformal representations and the
Cartan classification before discussing the full superconformal representations.
The resulting objects, along with their correlation functions, will be studied within
the framework of analytic superspace, which is introduced in Section

In Section [2.4] we then turn to those correlation functions on analytic superspace,
particularly examining the kinematic properties of correlation functions involving
up to four operator insertions.

Further insights into the structure of these correlation functions can be obtained
via the (Super)Conformal Bootstrap approach, whose key concepts are outlined in
Section 2.5

Finally, in Section [2.6] we introduce the superconformal algebra psu(1,1]2), which,
as will be demonstrated, shares a close connection with the psu(2,2/4) algebra and
serves as a useful toy model for further exploration.

It should be noted that the first two sections, and intend to be a sum-
mary of well-established results that are extensively covered in several detailed
and comprehensive lecture notes and reviews. In particular, these sections closely
follow the material presented in |[61-66], to which the reader is referred for further
details.
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2.1. SUPERCONFORMAL ALGEBRA

2.1. Superconformal Algebra

We begin by introducing the main theory - the main stage - of this thesis, the max-
imally symmetric superconformal field theory (SCFT) in four dimensions: N = 4
Supersymmetric Yang-Mills (SYM) theory.

This theory comprises the following field content:

{0, Vo, Wia, Flu};

where [=1,...,6,:=1,...,4,
a,&=1,2 (sl(2) — indices),
pw=0,1,2,3 (so(4) — indices),

(2.1)

which consists of six scalar fields, ®', transforming in the fundamental represen-
tation of SO(6) ~ SU(4), four complex spinors ¥,; and their conjugates ¥;4, and
the field strength tensor F),,.

The dynamics of these fields are described by the Lagrangian:

1 1 . , 2
b <4F“”FW — g DI DPr + W 4 (0,) D — gZ[<I>I, ][y, @y
ig i 19 = . iy _ (22)
_5\1[“(01)%&6[@1, W] — E\Pza(gl)z‘jeaﬁ[fbl, \If,jé]> .

Here, D,, denotes the covariant derivative involving the gauge field, €** is the an-
tisymmetric su(2)-tensor, and the o-matrices are related to the Dirac matrices.
The Lagrangian incorporates the standard kinetic terms for each field, along with
a quartic scalar coupling and a Yukawa interaction between the scalar fields and
the spinors/l]

By construction, this Lagrangian is invariant under the N' = 4 Super-Poincaré
group, which is the supersymmetric extension of the Poincaré group, consisting of
translations and Lorentz transformations.

Moreover, with the field dimensions given by

, [Fuw] =2, (2.3)

'For a more detailed treatment of the field-theoretical content presented here, the reader is
referred to [64].

20



2.1. SUPERCONFORMAL ALGEBRA

it follows that the Lagrangian has dimension [£] = 4, ensuring that the action is
classically scale-invariant. As is the case for any local, unitary theory, this scale
invariance is enhanced to full conformal invariance. The combination of NV = 4
supersymmetry and conformal symmetry leads to N = 4 superconformal symme-
try, as evidenced by the corresponding algebra (see Equation below). This
superconformal symmetry is described by the group PSU(2,2(4).

In the case of N'= 4 SYM theory, this full superconformal symmetry is exact also
at the quantum level (i.e. the S-function vanishes at any loop order).

Having established the full symmetry group of the N' = 4 SYM Lagrangian, we
will now follow the bootstrap philosophy and forget about a specific Lagrangian
description alltogether.

Indeed, the subsequent analysis will focus solely on the group PSU(2,2[4), or
rather its algebra psu(2,2|4). Thus, the results derived in this thesis are in fact
valid for any maximally symmetric superconformal field theory in 4 dimensions,
irrespective of the gauge group.

2.1.1. psu(2,2/4)
The superconformal algebra psu(2,2|4) consists of the following subalgebras:

« The conformal algebra in four dimensions, so(4,2) = su(2, 2).
This algebra consists of the generators for translations P,, Lorentz trans-
formations or rotations M,,, dilatations D, and special conformal transfor-
mations K,. The special conformal transformations can be viewed as an
inversion, followed by a translation, and another inversion.

» The bosonic subalgebra representing the internal or R-symmetry transforma-
tions, su(4) g, which is generated by the elements R’ ;, where i,5 =1,..., N,
with N = 4 in this case.

o Lastly, there are 32 fermionic generators, consisting of the 16 supersymmet-
ric translations Q',, Qi where i = 1,...,4 and a,& = 1,2, and the 16
superconformal generators S; ©, S*.

The generators of su(2,2) and su(4)g commute with each other, allowing us to
organize the full superalgebra into the following block structure:

P My, K D Qo 5
( Qia, Si @ Rij ' (24)
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2.1. SUPERCONFORMAL ALGEBRA

The commutation relations between these generators, i.e., the full superalgebra, are
as follows, following the conventions of [66]. To begin, the superalgebra includes
the standard conformal algebra, given by

(M, P =i (nupPV - UVPPM) ’
(M, K] =i (WPKV - UVpKu) )

]
]
(M, Myo] =i (nupMW = NopMyuo — Npo My + nVUMHP) , (2.5)
[D7 PM] = iPM?
[D7 KM] = iKM?
K, P, =—2iM,, — 2in,,D,

where any commutators not explicitly mentioned are assumed to vanish.

The above generators of su(2,2) can be rewritten as elements of the algebra My,
with M\N =0,1,...,d+ 1 =5, as follows [66]

M, _%(P#_KH) _%(Pu+Kn)
My = %(Py - K,) 0 D . (2.6)
§(Pu + KM) -D 0

With this convention, the commutation relations in Eqn. (2.5) can be rewritten
in the form of the standard Lorentz algebra in d + 2 dimensions, so(d,2). In four
dimensions, we thus indeed recover so(4,2).

One way to derive the conformal algebra in Eqn. (2.5)) is through explicit compu-
tation from the representation of the generators acting as differential operators on
Minkowski spacetime coordinates, given by [63]

P, = —i0,,
M, = —i (%8” — xyé?u) , @)
D = —iz"0,, '

K,=—t (2%33”&, - :1:2@) )

Thus far, the conformal group and Lorentz group have been described using vector
indices so(4), i.e., u = 0,1,2,3. However, when extending to the supersymmetric
case with spinor fields (described by su(2) indices a, ), it is often more convenient
to express Minkowski spacetime in spinor notation: %% = (o,2*)**, exploiting the
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2.1. SUPERCONFORMAL ALGEBRA

fact that so(4) = su(2) @ su(2). The translation of the conformal generators into
su(2) notation is as follows [66]

Paéc = (Uu)ao}Ppa

Kac'x — (6_,u)ozo'sz

1
M,"? = —ZZ(O'“O' )a*BMW, (2.8)
7‘7{(1 ]' — v\& M

B ey —ZZ(O'MO' ) B nz

where o# are the standard Pauli matrices

In addition to the ordinary conformal algebra the completion to the full su-
perconformal algebra is given by [66]

{Qiom dec} - 25;‘P04d7 {Qiaan 5} = {Qida Q]B} =0

(5%, 8% =200 Ko, {5, 597} ={S5;*, 5;7} =0 (2.9)
{onm de} = Oa {Sia7 de} =0

[Maﬂ’ Q 'y] - 55@ a T 55562 2] [Maﬂa Sz ’Y] = _535’2,5 + 555527

VENS &) Lo VeI vais _ L o s
(M 5, Qi) = =05Qup + 505Qus, [M* 5, ST] = 635" — S05S7

; 1. . _ 1 -
(D, Q"] = §iQZOé7 (D, Qia] = 57‘@2& (2.10)
D,5%] = ~3iS.*, [D, 5] = —i5"
[KM’ Q_Z Oc] = _(Uu)adgida [Kw ch] = S_ia(gu)ad
[P/u Sid] = _(Uu)daQim [Pmsi * = Qm(au)da

(R, R* )] = 6FR' | — 6] R"
) ) 1 ) ) a a 1 7 e
[R5, Q%a] = 67Q" 0 — 70;Q" o, [R5, 8] = =075 + 265 (2.11)

- - 1 .- S . 1 .-,
[R): Qo] = =01Qja + 0;Qnay 15, $*] = 075" — 2855%.

2In this chapter, which is intended as an overview of the fundamental concepts, both so0(4)
and su(2) indices are used to describe Minkowski spacetime and the generators. The choice
of notation depends on the particular intention of each section. In subsequent parts of the
thesis, only spinor notation will be used. For the conventions employed, see Appendix
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Note that the structure of this algebra justifies the existence of the supercon-
formal generators S;® and S*. Their inclusion arises naturally due to the non-
commutative behavior between the conformal generators K, and the supersym-
metric translations Q°, and Qic.-

Additionally, from the commutation relations involving the R-symmetry genera-
tors, shown in Eqn. , it follows that for N" = 4, the trace R, (fori =1,...,4)
is central, i.e., it commutes with all other generators. This allows us, without loss
of generality, to set R'; = 0, reducing the R-symmetry algebra u(N') to su(4) in
the case of N' = 4. Consequently, this reduction leads to the irreducible supercon-
formal algebra psu(2,2[4), as opposed to su(2,2|N') for a general N.

In this work, we will only consider unitary theories under psu(2,2|4). Therefore,
it is necessary to establish the appropriate Hermiticity conditions. Following the
conventions of [66], the Hermiticity conditions are given by:

D' =D, P, =K., (M%) =M,

A _ _ A A 2.12
Q") =Qis, (ST =89 (R =R, (2.12)

2.2. Representations

In this section, we review the classification and characterisation of the possible
representations of the algebra psu(2,2[4).

The discussion is divided into three parts. First, we will review the representa-
tions of the ordinary conformal algebra su(2,2). The presented discussion shall
be viewed as a concise summary, with more comprehensive treatments available
in [61-63].

Next, we will briefly discuss the representation theory of su(4), or simple Lie al-
gebras in general. Our review will closely follow [65]66).

Finally, we present the representation theory of the full superconformal algebra
psu(2,2]4), based on the works of [66] and [67].

2.2.1. Representations of the conformal group

For simplicity and brevity, we will consider the representations of the conformal
group in vector notation, using spacetime indices =0, ..., 3.
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Starting with the conformal algebra in four dimensions, su(2,2), the action of the
generators on local operators is given by

[Py, O(x)] = i0, O( );
(M, O(2)] = i(2,0, — 2,0,)O(x) + O(2) 8,

D, 0(z)] = (.21:“8 + A)O(), (2.13)
K, O(x)] = ( 20, — 2x,2"0, — 2Ax#) O(z) —20(x)s,2",

where A is the scaling dimension of the operator O(z) inserted at spacetime point
x, and s,, is the finite-dimensional matrix specifying the representation under
Lorentz transformations so(4). Each operator is thus characterized by its quan-
tum numbers (A, s).

The above relations can be derived from the classical field transformations, as they
remain valid through any quantisation scheme. One particularly useful quantisa-
tion method for CFTs, which illustrates how operators are characterised by (A, s),
is radial quantisation.

Quantisation generally involves choosing a suitable foliation of spacetime and asso-
ciating a Hilbert space to each leaf, where suitable means respecting the generators
of the underlying symmetry group. In a conformal field theory, this foliation is over
spheres of varying radii, rather than time slices as in Poincaré-invariant theories.
The Hamiltonian, which can be viewed as translating between different Hilbert
spaces, then corresponds to the dilatation operator D, whose eigenvalue is the
scaling dimension A.

In radial quantisation, there is a one-to-one correspondence between local operators
and states. Inserting an operator Oa (0) of scaling dimension A at the origin creates
an eigenstate of the dilatation operator:

D|A) = D (OA(0)]0)) = iA |A)Y, (2.14)

where the action of D on Oa(0) is understood as in Eq. 2.13] and |0) denotes the
vacuum state, which is invariant under all transformations.

States at other points in spacetime can similarly be created by
|T) = e Op(0)e " |0) . (2.15)

Note that this is not an eigenstate of D, but a superposition of states with different
eigenvalues.
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Conversely, given a state, the corresponding operator can always be extracted.
This establishes a synonymy between local operators and states. For more de-
tailed discussions on radial quantisation and the operator-state correspondence, we
refer to the aforementioned lecture notes and reviews, such as [61}/62].

We then denote an eigenstates of D in a spin representation s as
|A,s) . (2.16)

The action of the other generators on these states can then be studied.

While the dilatation operator D and Lorentz transformations M, commute, trans-
lations and special conformal transformations raise and lower the scaling dimension
by one unit, respectively, as

DP,|A,s) = i(A+1)P,|A, s), (2.17)
DK, |A, s) = i(A — 1)K, |A, s). (2.18)

Thus, towers of states can be constructed by acting with P, and K, which act as
ladder operators.

In any unitary theory, energies must be bounded from below. Since in radial
quantisation, energy corresponds to the scaling dimension, there must exist a state
with the lowest scaling dimension, for which

K, |A, s)prim =0. (2.19)
This condition defines a conformal primary.
States of higher scaling dimensions are then generated by acting successively with
the raising operator P, on the primary state:

[T 1A, 8) i (2.20)

n

giving the so-called conformal descendants with scaling dimensions A + n, where
n € Zso.

Representations of the conformal algebra su(2,2) therefore organise into multi-
plets, characterised by the respective conformal primary of scaling dimension A
and spin representation s.ﬁ

3This creates what is known as an infinite highest-weight module. More details on modules,
particularly Verma modules, are provided in the section on representations of the internal

group.
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As already mentioned, in unitary theories, the scaling dimensions of operators
must be bounded from below. This condition for primary operators has already
been determined above, specifically in Eqn. 2.19] However, stronger bounds can be
derived by directly enforcing unitarity, i.e., allowing only states with non-negative
norms. By computing the norms of all primaries and descendants for each pos-
sible representation of the Lorentz group, one can derive a bound on the scaling
dimension for each representation. These bounds are referred to as the unitarity
bounds.

The norms are computed using the Hermitian conjugates defined in Eqn. [2.8
Translating these into vector notation yields:

M, =—-M,, =M

2

Pl =K, D' =D. (2.21)

As an example, we will compute the unitarity bounds for scalars |A, 0), following
the discussion in [68]. A more detailed treatment of unitarity bounds for spinning
operators can also be found in that reference.

We begin by declaring the highest weight state, the primary, to have unit norm:
1A, 0)]| =[(A,0]A,0)| = 1. The norm of the first-level descendant is then com-
puted as

|a"Pu1A, 0)|| = aa” (A, 0] K, P, A, 0)
= a"a” (A, 0| [K,, P| + PK, |A,0) (229
= 2a"a” (A, 0] (iMy, — i D) |A, 0)

= 2lal* A for any complex vector a*.

Demanding the norm to be non-negative, we derive the bound A > 0 for scalar
representations of the Lorentz group from this first-level descendant.

Proceeding to the second-level descendant, a similar computation shows:
d
AZ§—1 or A=0, (2.23)

where A = 0 corresponds to the identity operator.

In principle, one would compute the norms of higher-level descendants to deter-
mine if stronger bounds exist. However, it can be shown that no stronger bounds
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appear, and A > %l — 1 is the correct bound for scalar operators.

Similar computations yield the unitarity bounds for all other possible spin repre-
sentations. In four dimensions, where s0(4) = su(2) @ su(2) and the spin repre-
sentation is given by (7,7), the unitarity bounds are [6§]:

A =0 identity,

1 for j=7=0,

; i 7= 2.24
A> j+1 for 7>0,7=0, ( )

7+1 for j=0,7>0,

j+7+2 for j5>0,7>0.

2.2.2. Representations of the internal group

Before delving into the full superconformal case, a brief review of the representa-
tions under the second bosonic subalgebra, su(4)g, is provided.

SU(4) is the compact, simply connected Lie group of special unitary transforma-
tions, represented by 4 x 4 matrices with determinant equal to 1. For simply con-
nected Lie groups, there is a one-to-one correspondence between representations
of the group and those of its algebra. Therefore, we can equivalently consider the
Lie algebra su(4). su(4) is a finite-dimensional, simple Lie algebra, and its com-
plex representations are best studied via the Cartan classification. The complex
representations of the real algebra su(4) can be directly obtained from those of the
complexified algebra suc(4), to which the Cartan classification applies.E]E]

We will now briefly review the concepts of Cartan classification and apply them to
su(4). For a more detailed exposition of the general concepts, see, for instance, [65].
The details specific to su(4) follow [66).

A Cartan decomposition of a semi-simple Lie algebra of rank r in the standard
Cartan-Weyl basis starts by identifying the maximal set of commuting Hermitian

4Tt is noteworthy that both SU(2,2) and SU(4) complexify to SL(4;C), such that the complex
algebras are given by s[(4;C). To obtain the correct representation of the real groups, one
must take the appropriate real form. However, for the purposes of this thesis, it is sufficient
to treat the representations presented in the previous section as those of the conformal group,
while using the material in this section for the internal group, without delving into the details
of real forms.

5To maintain brevity and avoid possible confusion regarding the issue of real forms, in this
section we will use the notation su(4) even when referring to the complexified algebra.
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generators, which form the Cartan subalgebra:
A", W] =0 Vi,j=1,...,n (2.25)
Next, linear combinations e* of the remaining generators are formed such that

Nypge?t? ifa+ €,
(A e?] = ale”, [e*,e’]={ Za-h ifa=-3, (2.26)

laf?

0 otherwise,

where e® act as ladder operators, N, is a normalisation constant, and o =
(al,...,a") is called a root, corresponding to the non-zero eigenvalues of h’ in
this adjoint representation. ® denotes the set of all roots. Since the commutation
relations are determined by the roots, the roots encode all the essential informa-
tion about the algebra. The scalar product of the roots, which is properly defined
using the Killing form (see [65] for details), can be used to construct the Cartan
matriz. The Cartan matrix is thus a single object that encodes all the information
about the algebra. It is defined as

Ay = 2(0‘720‘3) (2.27)

&

As can be derived from above, there is a natural correspondence between the roots
a and the generators e, implying that the number of roots equals the dimension
of the algebra minus its rank.
Since the maximum number of independent roots, or simple roots (i.e., those not
expressible as a sum of two positive roots), equals the rank of the algebra, this
means that in most cases, linear dependencies arise. To focus solely on the simple
roots and simultaneously highlight the importance of the Cartan matrix, it is useful
to work in the Chevalley basis. In this basis, we assign to each simple root the
three generators:

20éi'h

’041,2 7

Bt B H =

i=1,...r (2.28)

Each such set of three generators forms an su(2) subalgebra with the standard
commutation relations:

[H',HI| =0, [Et* E~%]=0,H’ [H' E*]=+A;E*, (2.29)

where Aj; are the entries of the Cartan matrix.
The remaining generators can be obtained unambiguously thanks to the Serre
relations:

[ad(ETe)]' "4 gt =0, [ad(E~*)]'""YiE~% =0, (2.30)
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where “ad” refers to the adjoint map. These relations provide a procedure for
reconstructing the non-simple roots from the simple roots.

All the commutation relations in this basis, and thus all the information about
the algebra, are encoded in terms of the Cartan matrix. This underscores that the
Cartan matrix contains all the essential information about the respective algebra.
(This structure can be represented diagrammatically using Dynkin diagrams; for
more details, see [65].)

Thus far, everything has been defined in terms of the adjoint representation to
specify the algebra. For general representations, however, one can also find a basis
{|\)} such that

HY N = M|\, (2.31)

where H' are the generators defined in and A = (A',...,\") is called the
weight of the representation. For detailed relations between the weights and roots,
refer to [65].

The generators E*® from act as ladder operators on general representation
states, and hence most representations can be characterised by a highest-weight
state, defined by:

ET WY =0 Vi (2.32)

The full (infinite-dimensional) Verma module is then spanned by the successive
action of various lowering generators

1)

i

A (2.33)

producing states of lower weight.

For simple Lie algebras, all irreducible representations (irreps) are necessarily
finite-dimensional. This implies the existence of such a highest-weight state. Fur-
thermore, it tells us that the infinite Verma module corresponding to a simple Lie
algebra is reducible (i.e., it contains multiple highest-weight states). The finite-
dimensional irrep is obtained by taking a suitable quotient of the Verma module,
i.e., by removing all the states that belong to the next sub-highest-weight Verma
module. (The standard example for su(2) is V; = V;/V_,_4, yielding a 2j + 1-
dimensional representation on V;, where V denotes the Verma module.)

To summarise, the finite-dimensional irreps of simple Lie algebras are fully char-
acterised by the highest-weight state |\) = |A!,..., A"}, or more concisely, by its
Dynkin labels [A!, ... \"].
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Let us make these concepts more concrete by applying them to the su(4) algebra.
The Cartan matrix of su(4), which has rank 3, is given by

[Ay]=1-1 2 —1]. (2.34)

The generators of su(4)g, R;, can be expressed in the Chevalley basis. The commu-
tation relations in this basis, as indicated in equation , yield the established
algebra relations presented in equation [2.11} The specific matrix that expresses
the 16 generators in the Chevalley basis is given by [66]

1(38H1 + 2H> + Hs) Ef [EY, ES] (BT, (B, ES]
[Ri ‘] _ E; 1(—Hy +2H> + Hs) Ef [ES, Ef)
J —(E;, E; ] By —3(H1 +2H2 — H) Ey
By, [Ey, Ey]] —[Ey, E5] Es —i(H1 + 2H; + 3H3)
(2.35)

The various representations are specified by their respective highest weight states
|A1, Ao, /\3>hw, which satisfy the following conditions:

EF AL A )™ = Ry AL A A)™ =0 Vi=1,2,3,  (2.36)
(Hy, Hy, Hs) A, Aoy )™ = (A1, Ao, Ag) [ A, Ag, Ag)™ (2.37)
The remaining module is spanned as follows:
Ay Ag, Aa)™ = TR )™

[1E)™ |

i %

AL A )™ V=123, (2.38)

Upon restricting to the finite-dimensional irreducible representation, the dimension
of this representation, denoted by [A1, A2, A3, is given by the formula

dim([A1, A2, Ag]) = = (A + X2+ A3) (A + A2 +2) (Ao + A3 +2) (A +1) (A +1)(As+1).

(2.39)

1
13

It is customary to refer to the Dynkin labels for su(4) as [k,p,q| rather than
[A1, A2, Ag]. Henceforth, we will adopt this notation.

2.2.3. Superconformal Representations

The concepts developed previously can be straightforwardly extended to the su-
persymmetric case, which will be outlined below. The following discussion closely
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follows references [66] and [67], where further details and derivations of the state-
ments presented herein can be found.

In addition to the bosonic subalgebras su(2, 2) and su(4) z, there are the 32 fermionic
charges Q° ,, Qia, S; ¢, and S**, which are utilized to construct the supermultiplet.

Analogous to ordinary conformal field theory, a supermultiplet under psu(2,24)
is characterized by its respective superprimary state, denoted as |A; k, p, ¢; 7, j>hw.
This state satisfies the following conditions:

(Kad7R§+17 J+7 j—i—aska?Skd) |A7k7pJQ7j7j>hw = 07 VZ - 172737 k = ]-7 s 747

= . =\ hw .= . .\ hw
(D; Hy, Hoy Ha; J3, J3) [ Ak, p, g3, 3) = (A5 k,p, a5 5,5) | Ky pyg; 5, )™
(2.40)

It is noteworthy that |A;k, p, q; j,j>hw not only is a conformal primary state and
a highest weight state in an su(4) representation but also defines a highest weight
state under the four-dimensional Lorentz transformations so(4) = su(2) & su(2),
represented as

[Maﬂ]=<j3 _‘]}3> [Mﬂ'd]:Gf j}3> (2.41)

where the sets {Js, J+} and {Js, J+} satisfy the standard su(2) commutation re-
lations.

The state is rendered a full superconformal primary by imposing additionally the
equivalence of the primary condition in the supersymmetric case; specifically, the
requirement that it vanishes under the action of the superconformal generators
S, and Sy,

The highest-weight state |A; k, p, ¢; 7, j>hw can also be compactly represented as

The full Verma module is then spanned by

L (R Q) (@) N ) (R )™ (A pras ™
4,7,k,01=1,2,3,4;k>
’ a,,3,4=1,2

(2.43)

where Npg, N, N, Ny =0,1,2,... and nig, n;5 = 0, 1. It is important to note that
only a finite number of applications of @ and @ charges are allowed due to their
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fermionic nature.

In particular, we can separate the fermionic and bosonic generators above by
rendering the bosonic generators implicit. Consequently, a supermultiplet can be
expressed as

H (QZ B)niﬁ<QjB)ﬁjB |A;kap7q;jvj>hw7 niﬁyﬁjﬁ' = 071; (244)
i,j=1,2,3,4;
jﬁ,B:l,z

where each application of Q5 and Q 4 creates a distinct module under su(2,2) x
su(4)g, identified by their primary highest weight state. Given the fermionic na-
ture of the supercharges, the issue of infinite-dimensional Verma modules affects
only the bosonic representations. Thus, finite-dimensional irreducible representa-
tions can be obtained by taking quotients as described aboveﬁ

The Dynkin labels of the bosonic multiplets constructed by acting with @', and
Qi on the respective superprimary states are derived by adding the weights of the
supercharges to those of the superprimary.

The weights of the supercharges can be readily inferred from the commutation
relations given in equation and the matrix in equation [2.35] For instance, we
have:

[H1,Q'| = [R' - R%,Q', ] = Q' [Hi,Q'] =0fori=23 |Ef,Q",| =0

[Hs, Q@J = [333 - R447Q4a] = Qua {Hia Q4@] =0fori=1,2, [E;F7Q4a} =0,
(2.45)

where H; = R', — R?, and H3 = R3; — R*, are not unique. Furthermore, we can
observe

QLB Q% BB QL (2.46)
Qua = Qsa = Q24 = Q1a- (2.47)

Thus, @', and Q4 correspond to the highest weight states in the [1,0,0] and
[0, 0, 1] representations, respectively.

6With this consideration, we will henceforth omit the notion of modules and refer directly to
the finite-dimensional multiplets.
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The weights of the complete set of supercharges can be computed similarly:

Qla ~[1,0,0)11 0); Q*, ~ [~1,1,0](21,0),
[0, -1 1]i o @'~ 10,0, =111 ),
[

[

~J

(2.48)

~Y

001]01) Q3a [717—1](0i)7
26~ [1,=1,00021),  Qia~[=1,0,0[1).

The correct construction of the full supermultiplet, especially when adding the
above weights to the respective state produces negative quantum numbers, is given
for instance by the Racah-Speiser algorithm (for a detailed description see [66]).
However, for the supermultiplets considered in this thesis, it suffices to consider
all possible applications of the () and @ charges that yield non-negative Dynkin
labels, while “ignoring” the rest.

The resulting supermultiplets can be categorised into three distinct classes, as
derived in [66,69].

The full, unconstrained action of all 16 supercharges on the superprimary state
[k, p,q] @J) gives rise to a so-called long supermultiplet, denoted as the A-series:

A[hl’a‘]]é’]—)' (249)
The dimension of a long supermultiplet is given by:
dim(A) = 28 dim(k, p, q)(25 + 1)(27 + 1), (2.50)

where dim(k, p, ¢) represents the dimension of the su(4)g representation described
in equation 2339

In a manner analogous to the bosonic case, unitarity imposes a lower bound on the
scaling dimensions of long multiplets. This unitarity bound has been calculated
in reference [69] to be:

A>2+2j+ - (2k;+2p+q) & A>2+4+2j+ = (k+2p+3q) (2.51)

Furthermore, there are the so-called shortened or BPS-supermultiplets.
The short supermultiplet is characterised by additional BPS-shortening conditions
of the form

Q' |k, p, g3, )™ =0 fora=1,2, (2.52)
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Qua |A;k,p, g3 5, )™ =0 for a = 1,2, (2.53)

which can be demanded for various values of i. From the superconformal algebra
[2.10] one can see that imposing these equations automatically leads to j = 0 or j =
0, respectively. Furthermore, it automatically leads to the additional constraint

(0158 = R') Ak, p, G4, )™ =0, 1=1,234, (2.54)
1
(050 = R'9) [ Ak, p.gig, )™ =0, 1=1,2,34, (2.55)

which allows us to compute the scaling dimensions for these multiplets exactly.
In particular, this means that those scaling dimensions do not receive quantum
corrections, but are protected.

The various BPS-shortenings are then denoted by t and ¢, which are the fraction
of charges for which the above condition holds, as

i=1  wt=3e A=;Bk+2p+q)

i=1,2 ©t=is A=12p+q) k= (2.56)
i=1,2,3,4 <t=1< A =0, (Identity)

1=14 “t=1s A=1(k+2p+3q)

1=34 <t=1is A=3(k+2p),q¢=0 (2.57)
1=1,2,3,4 <t=1<%« A =0, (Identity)

E|In this thesis, we will only consider multiplets for which ¢ = ¢.

Those relevant short multiplets or B-series can be summarized as follows:

(o)

000 With A =p (half-BPS) (2.58)

ST S

oV

SRI= TSNl

j with A =p+2¢q (quarter-BPS). (2.59)

#1](0,0)

The dimensions of these multiplets are given by:

11
dim(By' 10.0) = 28 dim(0,p — 2,0),
i 12 ’
dlm(B[qpq](OO)) =2 d1m<q - 27p7 Q)
"For further details on t = %, t= %, see [66]. Due to no relevance for this thesis, they have been

omitted.
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For the sake of brevity, we will denote the half-BPS multiplets as O,, where p
represents the R-symmetry charge, given in [0, p, 0].

Additionally, we consider the semi-short supermultiplets, defined by shortening
conditions applicable for 7 > 0 and j > 0. Specifically, these conditions are

. 1 , . _\h
5 — J_Q5 | |Ak : Y'=0 2.61
<Q2 2]+1 Ql)‘ ) 7p7q7.77]> ) ( )
_ 1 - = . ~\h
7. _—7°]7 1 Auka , 45 7, W:O' 262
<Q1 T Q2>| Psq; 3, 7) (2.62)

These constraints can be applied for different portions of the supersymmetric gen-
erators, yielding exactly computable scaling dimensions:

i=1 Gt=19 A=2+2j+503k+2p+q)

4
i=1,2 ©t=5i& A=2+2j+3(2p+¢q), k=0 (2.63)
i=1,234 ot=1& A=2+2j
1=4 “t=1s A=2+2j+1(k+2p+3q)
1=34 ©it=5& A=2+2j+3(k+2p),q=0 (2.64)
1=1,2,34 ot=1< A =2+ 27, (Identity)

It is important to note that, while the scaling dimensions are precisely computable,
semi-short multiplets are not necessarily protected against quantum corrections.
Under certain circumstances, they may recombine (also with quarter-BPS multi-
plets) into long multiplets, for which the acquisition of an anomalous dimension
can occur.

In this thesis, we focus on the following semi-short supermultiplets, which are

denoted as the C-series:
1

l 5 .

Clipoy,,, With A =2+2j+p, (2.65)
1 . . . . -

Cliomal,,, With kb —q=2(j —j) and A =2+ +j+p+2, (2.66)
1,1 . .

6[070’0]04_) Wlth A — 2 + 2] (267)

Those A, B, and C series characterise the principal representations under the su-
perconformal group in four dimensions, psu(2,2|4), which will be the focus of our

study.
A special emphasis of this thesis will be placed on the so-called stress-tensor su-
permultiplet, which will be introduced in the subsequent section.
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2.2.4. The Stress-Tensor Supermultiplet

Among the possible representations of the superconformal algebra psu(2,2]|4), a
particularly important role is played by the stress-tensor supermultiplet, which will
be elaborated in detail in this section.

The stress-tensor supermultiplet is a half-BPS multiplet, characterised by the su-
perprimary in the [0, 2, 0](%7:(3 representation. Specifically, we define the multiplet

as 11

T = OQ = Bg’5 (268)

[07270](0,0) ’

which will be denoted as T for clarity and distinction from other BPS multiplets.

The full structure of this supermultiplet is depicted in Figure [66]. In the dia-
gram, arrows pointing to the left represent the action of Q' , with ¢ = 3,4, while
arrows pointing to the right indicate the action of Q;4 with i = 1,2, such that the
resulting quantum numbers remain non-negative.

The stress-tensor supermultiplet is the simplest non-trivial gauge-invariant multi-
plet in N = 4 Super-Yang-Mills theory (SYM) [70]. Its field content makes it of
significant physical interest, and we introduce its components using the notation
employed throughout this thesis.

To begin, the multiplet is spanned by the 20’-operator, which corresponds to the
[0, 2,0](0,0) representation and is denoted as Oy .

Additionally, the multiplet contains the stress tensor 7', after which it is named.
The stress tensor 7' is associated with the [0, 0, 0] (AL:{)‘ representation.
Furthermore, the Lagrangian £, represented by [0, 0, 0] (AQ:O?, is included in the mul-
tiplet. This Lagrangian can be obtained by applying four @)-charges to the su-
perprimary (i.e., £ corresponds to the [0,0, 0](%’:0‘)1 representation on the left side
of Figure . Its conjugate, £ ~ [0,0, 0], is located on the right side of Fig-
ure [2.1] obtained through the action of four Q-charges on the superprimary.
Finally, the stress-tensor supermultiplet incorporates all the conserved currents.
These include the SU(4)g current J,4(x), which transforms as [1, 0, 1](%7%), as well
as the spinor currents in the representations [0, 0, 1}(%71) and [1,0,0](17%), respec-
tively.

The negative representations in Figure [2.1] are there to ensure finite-dimensional
irreducible representations of the currents.
However, they get eliminated when the respective conservation equations are ap-
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A
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Figure 2.1.: The structure of the stress-tensor supermultiplet 7. The superpri-
mary is a scalar transforming as the 20’-operator, corresponding to the
[0, 2, 0] representation of su(4)g. The successive actions of Q)-charges
(left arrows) and Q-charges (right arrows) on the superprimary gener-
ate the full multiplet. Each entry in the figure represents a complete
bosonic multiplet under su(2,2) x su(4)g. Representations with a
negative overall sign are eliminated upon imposing the conservation
equations on the currents. The figure is adapted from [66].

plied on the fields. For instance, for the SU(4)g current, the conservation equation
takes the form 5

EaﬁE(iﬁ al_gﬁ \.7040'4 — O7

which eliminates the representations —[1,0, 1] in Figure

This elimination can be understood through the relationship between the cur-
rents and these negative-sign representations. For example, the representation
—[1,0,1}0,0) at A = 4 is related to the SU(4)r current [1,0, 1](%7%) as follows
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(schematically):

[ ] 2,2)’
{ (Vla the action of Pyg ~ Jj45), (2.69)
=[1,

Thus, the conservation equation implies that J vanishes, as 07,4 ~ J. Similarly,
the remaining representations with negative signs in Figure [2.1]are eliminated [66].

2.2.5. Fundamental Multiplet

Throughout this thesis, we will also encounter the so-called fundamental super-
multiplet. Thus, a brief summary of this multiplet is given.

The fundamental multiplet of N' = 4 SYM is a half-BPS multiplet under the
superconformal algebra psu(2,2[4), generated by a superprimary of charge p = 1.

This can be expressed as
1

— 2
0, = B[O,I,O](o,o) )

(2.70)

The structure of this supermultiplet is depicted in Figure [66], where the graph-
ical representation follows the same rules as the stress-tensor supermultiplet (see

Figure 2.1)).

From a field-theoretic perspective, this multiplet contains all of the fundamental
fields of N/ = 4 SYM. At the bosonic level, represented at the top of Figure [2.2]

we find the six scalar fields ®, where I = 1,...,6, corresponding to the superpri-
mary Og ~ [0,1,0]0). Recall that [0,1,0] is the 6-dimensional representation of
su(4)g.

At level one, after a single action of Q or @, we encounter the representations
0,0, 1](%70) and [1,0, O](o,%)- These correspond to the four complex fermions Wi
and their conjugates W’ where i =1,...,4.

At level two, the field strength tensor F),, = —F,,, (split into su(2)-indices)
emerges in the structure of the multiplet.

It is important to note that this fundamental multiplet is the simplest and shortest
multiplet under psu(2,2[4). However, it is not gauge-invariant on its own. There-
fore, when moving from the algebraic analysis of psu(2,2]4) to the full theoretical
framework of NV = 4 SYM, the lowest gauge-invariant multiplet encountered is the
stress-tensor supermultiplet, as discussed earlier.
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A
1 ;] 1, ﬂ]m’({‘
% [O 0 l](é_.n) [1 0 n]m%)
/ N
2 0,0 0}(1& [0,0,0]0,1
% *[ﬂs&l](u.%) *[1 O:“](% 0)
SN N
3 —[0,0,0](% 1) —[0,1 ﬂ]wm -[0,0 0](% L
%
4 0,0, 0] (0,0) 0,0, O]wm

Figure 2.2.: Representations in the fundamental supermultiplet O; in psu(2,2[4).
The superprimary is the Og-operator: a scalar transforming in the
[0,1,0] (or the 6) representation of su(4)g. Successive actions of Q-
charges (left arrows) and Q-charges (right arrows) span the multiplet.
Each representation represents a full bosonic multiplet under su(2, 2) x
su(4)r. Representations with a negative overall sign are eliminated
by imposing the equations of motion on the fundamental fields. The
figure is adapted from [66].

2.3. Analytic Superspace

In the previous sections, we introduced the algebra psu(2,2|4) and its possible
representations, with a special focus on the half-BPS stress-tensor multiplet. The
next step is to relate these representations to fields that are supported on a spe-
cific space to study their kinematics. In this section, we introduce such a space,
on which the corresponding fields are supported: the analytic superspace, a special
form of harmonic superspace.

Harmonic superspaces were introduced in 1984 in the context of N' = 2 super-
conformal field theories [71]. The idea behind harmonic superspace is to extend
Minkowski superspacetime by an internal manifold, typically taken to be a coset
space of the internal symmetry group, to facilitate a more efficient study of the cor-
responding superconformal field theory. The resulting superspace not only makes
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2.3. ANALYTIC SUPERSPACE

superconformal symmetry manifest but also allows the theory’s field content to be
encapsulated into a single superfield living on the harmonic superspace.

When a field is Grassmann-analytic (a generalization of chirality or, in the nota-
tion of this thesis, half-BPS), the corresponding analyticity constraints must be
imposed on the field on harmonic superspace. These constraints can be solved
in terms of the coordinates of harmonic superspace, leading to a reduction in the
number of fermionic coordinates. For example, in N’ = 2 superspace, this reduc-
tion is from 4 fermionic coordinates (6%,6;), i = 1,2 to 2 fermionic coordinates
(62,0,) [72]. The resulting space is referred to as analytic superspace.

Fields representing half-BPS multiplets can then be described by simple scalar
superfields on this analytic superspace [72,73], making it the most natural frame-
work for studying these objects. The concepts of N' = 2 harmonic superspace
have been further generalized to different AV-superspaces associated with 4d com-
plex Minkowski spacetime, including N' = 4 SYM [74,[75]. In particular, these
works relate analytic superspace to a coset space of the (complexified) supercon-
formal group, enabling simple superconformal transformations of this space.

In this section, we will provide a complete definition and description of the analytic
superspace used for NV = 4 SYM, as developed in a series of papers by Heslop,
Howe, and West [42}73,76-78]. We will then show how this space is derived from
a coset space construction of the complexified superconformal group SL(4;C) and
further examine the advantages of using this space in more detaﬂﬂ

2.3.1. Definition of Analytic Superspace

Following the conventions of [79], analytic superspace for N' = 4 superconfor-
mal field theories can be defined in terms of local coordinates as a (4]4) x (4|4)-
supermatrix:

XAA — :COé(.jt pOél:l
ﬁaa yaa Y
with A = (a]a), A =(dla) and a,& =1,2; a,a=1,2,

(2.71)

where 2% = (zt0,)** are the coordinates of complexified Minkowski spacetime
R13 S C4 The coordinates 42 provide a second set of bosonic coordinates that

parametrise the internal manifold associated with the complexified internal group

8The coset space construction involves working with complexified groups and spaces. For the
purposes of this thesis, the distinction between real and complex vector spaces is not critical,
so the established results will be used without further comments.
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SL(4;Cf}

The off-diagonal terms, p®* and p®, represent fermionic (i.e. Grassmann-odd)
coordinates. Thus, N' = 4 analytic superspace has a total of 8 bosonic and 8
fermionic coordinates. The reduction from 16 fermionic coordinates in N = 4
superspace to 8 fermionic coordinates in analytic superspace can be understood as
generalized chirality, as described above.

The manifolds described by the bosonic coordinates % and y%¢ share the same
complexification: both SU(2,2) and SU(4) complexify to the group SL(4;C).
However, while 2% parametrise a non-compact spacetime, the y* coordinates
parametrise a compact group. This introduces strong analyticity constraints on
the internal coordinates, the effects of which will be examined later.

Further details regarding the conventions and basic definitions of supermatrices
used in this thesis can be found in Appendix

2.3.2. Coset Space Construction

This analytic superspace makes superconformal symmetry manifest, allowing su-
perconformal transformations to act in a straightforward manner, which for in-
stance greatly simplifies constructing invariants (see Section . This simplicity
becomes evident when examining the origin of this space, which follows the dis-
cussion presented in [70].

Analytic superspace in this form is equivalent to the big cell of the super Grass-
mannian Gr(2|2,4|4), which is defined as the space of (2|2)-planes in a (4|4)-
dimensional complex vector space [70]. The concept of super Grassmannians is
a straightforward supersymmetric generalization of the “ordinary” Grassmannian
Gr(2,4), which describes the space of 2-planes in a 4-dimensional complex vector
space, C*.

In the context of conformal field theories (CFTs), Gr(2,4) provides not only a
suitable compactification of Minkowski spacetime but also serves as a homogeneous
space for the complexified conformal group SL(4;C). This means that SL(4;C)

9These coordinates are closely related to the null coordinates y!, I = 1,...,6, with y'y; =0,
which are often used to describe internal symmetry (see Section. They are connected via
the Pliicker embedding. For more details, see [70] or [80].
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acts transitively on Gr(2,4), and we can define the diffeomorphism:
Gr(2,4) = L% C) (2.72)

where Fj is the isotropy group.
In local coordinates, this diffeomorphism can be understood as follows: Gr(2,4)
is the space of 2-planes in C*, so a point in Gr(2,4) is determined by two vectors

spanning the corresponding plane, i.e., 2% with « = 1,2 and B = 1,...,4. On
the right-hand side of Eqn. [2.72] elements of SL(4;C) are matrices 2%, A, B =
1,...,4, and the coset space is defined as:

coset space: { % ~ ha% 2% € SL(4;C), h€ Py = {(ZL 2)} , (2.73)

where m, p € GL(2).
This coset space can be restricted to the Grassmannian space, yielding Eqn.
as

Gr(2,4) = {xO‘B ~m® 2’y 1 x € SL(4;C), m" € GL(Q)}. (2.74)
We can fix the equivalence relation by choosing a representative class. Following

[70], we define the Grassmannians as:
% = <5°‘/3,x°‘/3) : (2.75)

where splitting the SL(4)-index B into B = (3, 3) does not break any symmetry.
It can be shown that the isometry group of the matrix 2% in the big cell is the
Poincaré group, and thus z*° corresponds to Minkowski spacetime.

This logic extends to the supersymmetric case, allowing us to define the super
Grassmannian as a quotient space of the superconformal group:

Gr(2|2,4|4) ~ SL(4‘47 C)/PO’ with Py = {(N P) : M,N,P € GL(2|2)} .
(2.76)
In local coordinates, this defines the super Grassmannian as:
Gr(2[2,4]4) = {a's ~ ML 2% : MG € GL(2|2)}, (2.77)

where A = (ala) and V4 = (V4, VA) = (Vo|[V2, VE|V,) (describing a (2]4]2) vec-
tor). Fixing a representative, the super Grassmannian is expressed as:

g ~ (0%, XAP), (2.78)
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where the space in the right cell corresponds to the analytic superspace defined in

Eqn. B-71] [70).

One key advantage of the Grassmannian formulation is the simplicity of supercon-
formal transformations, which, in these conventions, act as matrix multiplications
from the right. The transformation of analytic superspace under superconformal
transformations (SCTs) can be deduced as follows.

Let

G = (é g) € SL(4|4:C). (2.79)

Then, the transformation of 24 under G is given by:

A G A ~C A AC ACB BCB
a'p = e Grg = (670, X77) C.. DB
CB C

: : YN B 2.80
— (ACB +XACCC'B,BAB +XACDCB) ( )

- <5AB, (A+X-C)'(B+X- D))AB> ,

where the last step uses the equivalence relation to rescale back to the chosen
representative class. Thus, the transformation of analytic superspace under SCTs
can be extracted to be

XS (A+X-C)'(B+X-D) VG e SL(4J4;C). (2.81)

EU] In its infinitesimal form, this transformation defines the action of the supercon-
formal generators, as introduced in Eqn. [2.4] on analytic superspace. These are

listed in Appendix [A.2]

2.3.3. Half-BPS Multiplets in Analytic Superspace

Analytic superspace provides the most natural setting for studying half-BPS mul-
tiplets, which are central to this thesis. Due to the reduced number of fermionic

10Tn some literature, this transformation is written as:
XS (A-X+B)(C-X+D)"' VG e SL(4[4;C), (2.82)

which is equivalent to the transformation described here and depends only on the conventions
used to define the coset space.
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coordinates, half-BPS multiplets are expressed as simple scalar superfields in an-
alytic superspace [70].

These superfields can be intuitively derived by the consecutive action of super-
charges on the superprimary field. Following [81], we can represent the half-BPS
superfield as:

0,(X) = exp (paana + ﬁaana) Op(z,y)

| o (2.83)
= Oy, y) + p* "W+ UE + .

where the fields corresponding to different components of the half-BPS multiplet
appear at successive orders in the fermionic expansion variables p and p.

In this notation, O,(z,y) represents the superprimary field of the full half-BPS
multiplet O,(X) with charge p. (Recall, that A = p for half-BPS multiplets). The
detailed structure of these expansions, especially for the stress tensor multiplet,

will be developed in Section [3.3]

A B

c D) € SL(4]4; C), half-BPS mul-

Under superconformal transformations G = (
tiplets transform as [41]:

00,(X) = (V +pA) 0y (X),

2.84
where A = str (A + XC), (2.84)

with V being the vector field that generates all superconformal transformations,

given in Appendix[A.2]

2.4. Correlation Functions

A significant advantage of analytic superspace, or equivalently the Grassmannian
formalism, is the relative simplicity in constructing invariants for correlation func-
tions involving half-BPS multiplets.

As outlined in [70], the n-point correlation functions of half-BPS multiplets -which
are denoted by O,(X), where p corresponds to the su(4)pg-representation [0, p, 0]
and p = A- are expressed as

(0p,(X7)...0,, (X)) - (2.85)
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These correlation functions depend on the n insertion points X {4‘4, e ,X;‘A, which
in the Grassmannian formalism become (1), ..., (7,)%. In this context, super-
conformal transformations in SL(4]4;C) act as simple matrix multiplications from
the right. Consequently, invariants can be readily formed by contracting the in-
dices as follows:

(25) 5 ()BC, (2.86)

€1

where (27)% is defined as the plane perpendicular to (2;)%. A straightforward

calculation gives:
R —(X. BC
(xj)“':( (572 ) (2.87)
B

Thus, the invariant in (2.86]) evaluates to:

(@55 = (0%, (%) (*f@?m) — X[ XM= X (289)

The object X{}C is superconformally invariant. However, it must also be verified
that this object is defined on a valid Grassmannian, meaning it must transform
correctly under the GL(2]2) matrix M+ (and the corresponding matrix for the
perpendicular plane) as defined in Eqn. 2.77]

For half-BPS operators, which transform under GL(2|2) transformations by only a
scaling factor, this requirement is ensured by taking the superdeterminant as [70]:

gij = sdet (Xl-j) . (2.89)

The objects g;; are then proper superconformal invariants of the theory, whose
inverse are defining the superpropagators, which can be utilized to express corre-
lation functions.

Studies of the correlation functions of half-BPS multiplets on analytic superspace
have been initiated soon after its introduction; for the case of N' = 4 SYM for
instance in [82,83].

In the case of 2- and 3-pt functions of half-BPS multiplets, superconformal sym-
metry entirely fixes those correlation functions. They can be computed exactly
and are protected against any quantum corrections.

The 2pt function can be constrained to be proportional to the above constructed
superpropagator as

(0p,(X1)0,,(X2)) = (&12)p with 6212 = gf; = ] and p = p; = ps.

1
sdet (X12
(2.90)
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The propagator ciij = sdet (X );]1 is, with the conventions given in Appendix [A.1]
given by

2
7~ Yij . ~ aa aa —ad(,.— aa
dij = 72] with 43" = yij" — 035 (xijl)dapij (2.91)

]

2
Yij
—

ij

and equals thus the supersymmetrisation of the bosonic propagators

Also the 3pt function is by pure symmetry arguments constrained to be of the
simple form [83]

A P1+pP2—P3 , A P1+pP3—P2 , A p2+pP3—P1

(0p, (X1)0p, (X2)0p (X3)) o (dia) 2 (diz) 2 (dag) 2,  (2.92)

where the proportionality constant has been shown to be independent of the cou-
pling such that also 3pt functions do not receive quantum corrections [83].

The four-point functions of half-BPS operators are not entirely fixed by the su-
perconformal symmetry group PSU(2,2|4) anymore; rather, they are proportional
to functions of the cross ratios, which encapsulate the dynamical information of
the theory. This can be understood by observing that each operator insertion in
analytic superspace introduces eight fermionic degrees of freedom, resulting in a
total of 16, 24, and 32 degrees of freedom for two-, three-, and four-point functions,
respectively. Conversely, there exist 32 fermionic charges that impose constraints
on these degrees of freedom. Consequently, after the constraints on the two- and
three-point functions have been applied to eliminate all fermionic degrees of free-
dom, the operators retain a shared amount of supersymmetry that constrains the
correlator and prevents quantum corrections. In the case of four-point functions,
it is as well possible to eliminate all 32 fermionic degrees of freedom. However, the
resulting correlator “does not possess any remaining supersymmetry”; leading to
the emergence of quantum corrections, which are captured by unknown functions
of the cross ratios.

The fully constrained form of the four-point functions of half-BPS operators, de-
rived from pure symmetry arguments, is given by |46, 70]

<Op1 (Xl)opz (X2>OP3(X3)OP4(X4)> = prefactor X f (27 2'%@)

with f (2, 2|y, 5) = a +

(z,y)+z<—>2>+y<—>gj}

+(z—y)(z —y)(z = y)(z —y)c(z, 2|y, v),

(2.93)
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where the prefactor captures the transformation behavior of the correlator and can
be expressed in terms of the superpropagators CZU

The variables {z, z,y,y} refer to the conformal and internal cross ratios, respec-
tively, and are defined as follows [36]

2 .2 2,2
2 =" (1 g)(1-z) = B
T13T24 T13L2q (2'94)
y%33/§4 ’ Zl%3y%4

As the primary objective of this thesis is to derive the equations leading to such
expressions, the superconformal Ward identities (SCWI), for higher-point func-
tions, notably five-point functions, it is beneficial to briefly examine the key ideas
and strategies that resulted in the four-point expression .

The exploration of superconformal Ward identities (SCWTI) for four-point functions
of half-BPS operators with charge 2 commenced in 2000 for N' = 2 Superconformal
Field Theories [84]. Utilizing analytic superspace, an ansatz for the superprimary
correlation function, compatible with the bosonic symmetries, was formulated,
followed by the application of the remaining supersymmetry transformations to
establish a frame with all fermionic coordinates set to zero['J] Thus, all relevant
information is encapsulated in the superprimary correlator, which, through ana-
lyticity arguments, has been shown to depend solely on a single unknown function
of the conformal cross ratios [84].

The first complete set of SCWI for four-point functions of stress tensor multiplets
in N/ = 4 SYM was derived shortly thereafter in [43]. By employing field theo-
retical input and the point-permutation symmetry of the four identical operators,
the authors demonstrated that this four-point correlator is also proportional to a

"' The studies of the 4pt function of half-BPS operators have been deep and numerous. Thus,
this summary is by no means complete but should be rather viewed as a collection of some
major landmarks in the development of the expression @

12For four-point functions, such a purely bosonic frame is possible, as illustrated by the counting
argument provided above. For instance, the equivalence of the standard conformal frame
offers such a frame, expressed as:

N

XM S50 XM S0, XM 0, XM (2.95)

Y

Here, only a GL(2|2) symmetry, which exchanges the eigenvalues, remains.
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single function of the two conformal cross ratios, in addition to a single-variable
function of only one cross ratio. In particular, they showed that this single-variable
function does not receive quantum corrections and is thus protected. This result
is known as the partial non-renormalization theorem [43]. This theorem has been
confirmed perturbatively (e.g., [85]) as well as on the SUGRA side [86,87].

In 2002, this result was re-derived without the assumption of permutation symme-
try for general half-BPS operators in N’ = 4 SYM [36]. By employing a component
field approach (entirely within Minkowski spacetime), the authors showed that,
without imposing permutation symmetry, there exist in fact two single-variable
functions that remain protected against quantum corrections. Furthermore, these
single-variable functions encode only information about short and semi-short mul-
tiplets [36]["

Throughout this derivation, the variables z, z for the conformal cross ratios (see
Eqgn were introduced, significantly simplifying the SCWI.

In the same year, four-point functions of identical operators with arbitrary charge
p > 2 were studied using analytic superspace methods [45]. In a manner analogous
to the construction of two-point invariants on analytic superspace presented above,
the four-point invariant matrix

7 =X Xi3' Xay X5t (2.96)

was constructed, such that that the complete superconformal invariants are func-
tions of Z under the adjoint action of the remaining GL(2|2), i.e., [45]

f(Z) = f(G'ZG) with G € GL(2]2). (2.97)

Functions that satisfy these properties include supertraces, thus allowing the full
four-point function to be expressed in terms of the Schur polynomials of Z, de-
fined as Sg(Z) = str (R(Z)), where R denotes a finite-dimensional representation
of GL(2|2). For more details, see [45]. Moreover, by rotating Z into a diagonal
form (similar to , it was demonstrated that the eigenvalues of the resulting
rotated matrix correspond exactly to the z, z variables introduced in [36].

In 2004, Nirschl and Osborn revisited their previous results to enhance the under-
standing of the various contributions to the operator product expansion (OPE)

13The removal of permutation symmetry allows the usage of the derived results for the operator
product expansion (OPE) and the resulting superconformal blocks, which are superconfor-
mally invariant but not crossing symmetric. In this manner, it was demonstrated that the
single-variable functions allow for an OPE over only short and semi-short multiplets. The
topic of OPEs and superconformal block expansions will be outlined in
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[46]. In this process, utilizing polarisation vectors for the internal symmetry group
(see below), the SCWI were re-derived, leading to the expression for four-
point functions stated in [2.93]

Finally, these results were generalized to various dimensions d = 3,4,5,6 in [35].
The authors employed the appropriate analytic superspace formalism for each
dimension. Once again, supersymmetry was used to rotate into a frame where
all fermionic coordinates were set to zero, a process feasible for four-point func-
tions. In this context, the full supercorrelator is encoded in the superprimary
function, as previously established. The invariance under bosonic transformations
can then be applied to this superprimary function, demonstrating that in d = 4,
it is parametrized by six functions of the conformal cross ratios.

To derive a valid and general expression for the full four-point supercorrelator, it is
essential to revert from this frame, effectively extending the constructed covariants
to full supersymmetric invariants. In the case of four-point functions, there are
no nilpotent invariants arising (as can be seen by the aforementioned counting).
Thus, it suffices to supersymmetrise the bosonic covariants, as for instance the
propagator in Equation [2.91] However, it is crucial to ensure that the analyticity
conditions in the y-variables are satisfied. Ensuring this results in the supercon-
formal Ward identities. These Ward identities effectively reduce the six functions
of the cross ratios to a single unknown function of the cross ratios, providing con-
sistency with previous derived results.

These equations, leading to the result in are given by [35]

(0: +05) Gu (. 20,m) | =0, (2.98)

y—z

where {z, z,y, y} are the cross ratios defined in [2.94] and G, (z, Z; ¥, y) denotes the
four-point function of half-BPS operators of arbitrary charge.

These results concerning the four-point functions of half-BPS multiplets in N = 4
SYM can be reformulated in terms of two topological twists derived in [88] and [89].
The first twist, which we will refer to as the Drukker-Plefka twist, aligns the internal
polarization vectors y;, defined as

Ol (z) — yr®'(2) = ®(z,y), wyry' =0, (2.99)

with the Minkowski spacetime coordinates as follows:

i = ( i}, 5 (1= (@), 5 (1+ <x~>>) . (2.100)
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The resulting twisted correlator is shown to be topological, meaning it is indepen-
dent of the insertion points, or, in other words, it is a constant. This constraint
arises from supersymmetry and holds for any n-point function. In analytic super-
space coordinates, the twist can be straightforwardly rewritten as y; = ;.

The second twist is termed the chiral algebra twist and is defined when inserting
all operators on a plane. For four-point functions, this can be easily accomplished
by rotating into the frame defined in [

This configuration is described by the coordinates of the respective plane, z, z (and
y, y for the corresponding internal plane), with the twist amounting to setting y = z
(or equivalently, y = z). The resulting twisted correlator is demonstrated to be a
meromorphic function of the variable z (or Z) only [89], encoding the chiral algebra
data.

This can be formulated as a differential constraint:

0.G(z,zlz,y) =0 and 0:G(z,zly,z) = 0. (2.101)

The resulting meromorphic functions capturing the chiral algebra data correspond
exactly to the single-variable functions derived in [36].

These two constraints, arising from twisting the correlator, lead to the expression
in[2.93 and are thus equivalent to the full superconformal Ward identities for four-
point functions.

The chiral algebra of psu(2,2|4) is introduced in Section [2.6]

2.5. (Super)Conformal Bootstrap

The utility of (super-)conformal symmetry lies in its ability to relate the above four-
point as well as higher-point functions to the fully determined two- and three-point
functions by leveraging the Operator Product Expansion (OPE). This principle is
the foundational motivation for the bootstrap program, which aims to use further
the associativity of the OPE to constrain the higher-point function further, thereby
enabling the extraction of Conformal Field Theory (CFT) data -namely, the scaling
dimensions and three-point coefficients- associated with the constituent two- and
three-point functions.

141t is important to note that for higher-point functions, a plane configuration cannot be achieved
using superconformal transformations. Consequently, this twist will only impose constraints
on a restricted part of the full higher-point function.
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In this section, we will provide the conceptual kinematical preliminaries necessary
to perform further bootstrap analyses.

2.5.1. Operator Product Expansion (OPE)

The Operator Product Expansion (OPE) posits that two operators, when brought
infinitesimally close together (specifically, with no other operator inserted between
them), can be expressed as a sum over local operators. In a conformal field theory,
this expansion has a non-zero radius of convergence, enabling it to serve as an
exact analytical tool. Of simplest instance is the OPE between scalar operators,
that is schematically expressed as

Oy, (2)O0p,1,(0 261% { 2)Oa,1,.(0) + .. } , (2.102)

where the sum spans all conformal primaries in the theory. The function C,(z)
is known, and the terms represented by ... correspond to the descendants of the
conformal primary Oa, ., with spin indicated by [j.

The coefficients cyox, known as OPE coefficients or structure constants, are propor-
tional to the coefficients of the three-point functions, thus allowing direct access
to the CFT data through the OPE.

2.5.2. (Super)Conformal Blocks

The OPE then enables higher-point functions to be expanded in terms of conformal
blocks. For example, a four-point function can be written as

(On, (21)On, (22) Oy (73)On, (74)) = zk: CranCaar g(u, v), (2.103)

where v and v are the standard conformal cross ratios. The function g(u, v), known
as the conformal block, is fully determined by conformal symmetry and resums the
contributions from a conformal multiplet in the OPE expansion, here taken be-
tween the operator pairs Oa, (21)Oa,(z2) and Oa,(23)Oa,(24).

These conformal blocks can be derived explicitly, for instance, as eigenfunctions of

the quadratic conformal Casimir operator, as originally developed by Dolan and
Osborn [90491].

The conformal bootstrap framework then proceeds from the observation that the
OPE could alternatively be performed between different pairs of operators, such
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as Oa, (21)Oa,(23) and Op,(22)Op,(x4). This imposes additional constraints on
the CFT data, known as crossing equations, which the bootstrap program seeks
to solve.

The methods used to solve these equations are, for instance, reviewed in [24,25]
and are not subject of this thesis.

The expansion of four-point and higher-point functions in conformal blocks can
also be adapted for short supermultiplets within a superconformal field theory.
Dolan and Osborn pioneered this approach in [36,[37], leveraging superconformal
Ward identities as formulated in [46].

For example, the four-point function of half-BPS multiplets with charges p; can
be expanded as [81]

<OP1 (X1)0p2 <X2)0P3 (X3)Op4 (X4>> {x“yz Z Cm,l,RCPSIl)R g{Apj,R<xwylﬂplﬂpl>
AR

(2.104)
where ggjl}R(asl, Ui, pi, pi) defines a superblock encompassing the entire supermul-
tiplet. The sum runs over all superprimaries in the OPE of the external operators
n (12) and (34), characterised by their scaling dimension A, spin representation
[, and R-symmetry representation R. The term L£({x;,v;}) denotes a so-called leg
factor encapsulating the correct transformation behavior of the correlator under
the bosonic subgroups.

These four-point superblocks can for instance also be studied via the two-point
quadratic Casimir of the complete superconformal algebra, as elaborated in [81].

Likewise, higher-point functions can be expanded in superconformal blocks.
However, the study of superconformal blocks presents certain complexities, and
thus we will limit further details to the specific example examined in section [4.2]
where we study in particular how these superblocks are constrained by the super-
conformal Ward identities.

2.6. psu(l,1]2)

The chiral algebra twist introduced in Section [2.4| restricts psu(2,2]4) to its chiral
algebra psu(1,1|2), which is also occasionally referred to as small N = 4 SYM.
Given that this algebra will also be explored throughout this thesis, this section
provides a brief overview of the algebra and its representations, the corresponding
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analytic superspace, and the precise connections to the full four-dimensional max-
imally symmetric algebra psu(2,2(4).

psu(1,1|2) consists of the following subalgebras:

o The conformal algebra in one dimensions su(1, 1), which is generated by
translations P, dilatations D and special conformal transformations K. Note
that there are no rotations in one dimension.

o The 3-dimensional internal or R-symmetry algebra su(2)g, which is gener-
ated by the R-symmetry generators R%, = R?,, a = 1, 2.

o Furthermore, there are the 4 supersymmetric translations Q*, Qu, a = 1,2
and the 4 superconformal generators S,, 5% a =1,2.

The complexification of psu(1,1|2) is given by

psu(1,1)2) 5 psl(2]2; C) (2.105)
with su(1,1) S sl(2:C) & su(2)g > sl(2;C), (2.106)

such that we can package the 6 bosonic generators into a single object K% =
—K" a,b=1,...4o0beying the standard algebra relations of s0(4; C) = su(2;C)®
su(2; C) [92] 7]

2.6.1. Representations of psu(1,1|2)

Rather than directly studying all possible representations of psu(1,1|2) (or its com-
plexification) from the superalgebra, we will focus on the representations relevant
to this thesis by utilizing the chiral algebra twist constructed in [89], which has
also been applied to representations in [93]]16]

In [89], the authors identified subsectors of four-dimensional N’ = 2 SCFTs that
form a two-dimensional infinite chiral algebra. This chiral map is expressed as
follows:

x: 4dN =2SCFTs — 2d chiral algebra

sl(42) = sl(2) x sl(22) (2.107)

15The full superalgebra can be found in [92] as well. We will not make explicit use of the algebra
and hence do not state it here.

16We will utilize the results established here for ps((2|2;C) in relation to psu(1,1]|2) without
delving into the specifics of taking real forms. Additionally, we will omit the notation C for
complex algebras henceforth.
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This map can be extended to psl(4|4) (the complexification of psu(2,2|4)) since
the V' = 2 algebra is embedded within the NV = 4 algebra as
psl(4]4) D sl(4]2) @ sl(2). (2.108)

Consequently, the map acts on the irreducible representations of psl(4]4), reducing
them to irreducible representations of ps((2|2) as demonstrated in [93]:

X : Irreps of psl(4]4) —  Irreps of psl(2]2) (2.109)
X <B[%):1§70](0,0)> = S(n=1»)
X (Béz:§7q](o,o>> - E(h,j):(ﬁ%pép) (2.110)
X (C[’“»quhmi)) = Ling)=(Lhrpra)+i+7+2.3)
x (A) =0,

where j denotes the Dynkin label (i.e., the highest weight) of the sl(2)x represen-
tation, and h labels the representation of the complexified su(1,1).
Note that this convention allows for half-integer representation labels.

The full construction of the respective supermultiplets under psu(1,1|2), as listed
above, adheres to the same principles described in the previous section of super-
conformal representations.

L ;) refers to long multiplets of psu(1,1]2), i.e., supermultiplets spanned by the
complete action of all four Q)- and ()-charges on the superprimary.

Conversely, S<h: 1pj=1p) denotes half-BPS or short multiplets of psu(1,1]2). The
superprimaries within these multiplets satisfy shortening conditions of the form

Q' h )™ =0 & Qalh, )™ =0, (2.111)

such that only Q2% and Q; act non-trivially.

It is important to note that under the chiral algebra map, the long representations
of psu(2,2|4) vanish, implying that the chiral algebra captures only the short and
semi-short contributions of psu(2,2[4). This reinforces the idea that the single-
variable functions of the four-point function in PSU(2,2(4) (introduced in [2.4),
which admit an operator product expansion only over short and semi-short multi-
plets [36], indeed encapsulate the chiral algebra data.

As an explicit example, consider the projection of the stress-tensor multiplet under

the chiral map. This projection is given by:

X (T) = Sh=1,j=1)- (2.112)
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This supermultiplet can be easily constructed from the superprimary (j = 1) =1
as illustrated in Figure[2.3][66]. The multiplet depicted in this figure is constructed
from left to right. The potential negative contributions to this supermultiplet are

Figure 2.3.: Short supermultiplet of charge j = 1 in psu(1,1]|2). The superpri-
mary is a scalar transforming in the (1) (or the 3-dimensional) rep-
resentation of su(2)g. Successive actions of @)-charges (indicated by
downward arrows) and Q-charges (indicated by upward arrows) on
the superprimary span the multiplet. Representations with a negative
overall sign are eliminated when imposing conservation equations and
are thus omitted.

eliminated when enforcing the conservation equations, following analogous reason-
ing as presented in the case of psu(2,2|4). Therefore, these representations have
been directly excluded in Figure |2.3|

There are different notations for su(2)-multiplets and their respective represen-
tations. In this discussion, the highest-weight notation for half-integer spins has
been employed, wherein the label (1) corresponds to the three-dimensional repre-
sentation 3 of SU(2). This notation clarifies particularly the chiral algebra map.
However, we will now transition to a highest-weight notation that permits only
integer spins, such that representations are labeled by p = 2j. For a better dis-
tinction, we will denote half-BPS multiplets under psu(1,1]2) using this notation
as

Shj — W, with p=2j. (2.113)

This notation facilitates a more straightforward and intuitive application of super-
space methods, as will be elaborated below.

To elucidate this, we present the following representations in the W, supermultiplet
in all various notations including the corresponding field notation:

1
J(z,y) ~3-dim. rep. of su(2)g <> Dynkin 1. (2) <> iinteger spin: (1)  (2.114)
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1
T(z) ~1-dim. rep. of su(2)r <> Dynkin l. (0) <> iinteger spin: (0)  (2.115)

1 1
G(z,y) ~2-dim. rep. of su(2)g <> Dynkin 1. (1) < iinteger spin: (5) (2.116)

1 1
G(z,y) ~2-dim. rep. of su(2)g <> Dynkin 1. (1) < iinteger spin: (5), (2.117)

with the half-integer spin notation being omitted from now own.
G(z) correspond to the supercurrent and 7'(z) is the Stress-Energy Tensor in 1d.

2.6.2. Analytic superspace of psu(1,1|2)

In a manner analogous to the full four-dimensional case, the half-BPS multiplets
of psu(1,1|2) are most effectively described on analytic superspace.
For psu(1, 1]2), the analytic superspace takes the following form:

x44 - (% P, (2.118)
Py

where x denotes the one-dimensional spacetime coordinate, y represents the single

bosonic coordinate that parametrizes the internal symmetry group SU(2)g, and

p and p correspond to the two non-trivial supersymmetry charges Q* and @, as
outlined in Equation [2.111]

Each subspace of this analytic superspace is one-dimensional, rendering psu(1, 1]2),
in addition to its significance as the chiral algebra of psu(2, 2|4), a particularly sim-
ple toy model.

Again, half-BPS supermultiplets are represented as simple scalar superfields within
the analytic superspace framework, that can be derived from the following expres-
sion:

Wy(X) = exp (pQ + 5Q) Op(x, 1), (2.119)

where O, denotes the superprimary of the short multiplet W, with charge p.
The precise fermionic expansions of the multiplets under consideration are devel-
oped in Section [3.2]

The two-point functions of the half-BPS multiplets of psu(1,1|2) can be computed
using the superpropagator discussed in Section [2.4] Utilizing the analytic super-
space of psu(1,1]|2) from Equation [2.118] the two-point function thus takes the
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form

Wor (X)W (X2)) = sdet (1X12)p - (

- 1
Y12 — P12T19 P12
T12

P
) ,  with py =ps =p.

(2.120)
Note that in this one-dimensional context, the determinants of the subspaces cor-

respond directly to the coordinates.
2

Consequently, covariants such as y—z represent the literal squares of the respective
x

variables.
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3. Constraining the Correlator

3.1. Introduction

The previous chapter outlined the extensive research that has been performed on
the kinematics of correlation functions of half-BPS operators and provided the
necessary background to understand these studies. In particular, correlation func-
tions with up to four operator insertions are by now well understood from the
kinematical point of view.

However, much less is known about five- and higher-point correlation functions,
despite their significant importance. The study of higher-point correlators is cru-
cial for several reasons.

One main reason is the wealth of CFT data encoded within higher-point (scalar)
functions, which cannot be extracted from four-point functions of scalar opera-
tors. The CFT data, comprising the scaling dimensions A; of all operators in
the spectrum and their three-point structure constants \;j, contains the complete
information about the theory. In principle, this data is fully determined by the
two- and three-point functions, as shown in Equations and 2.92] However, in
practice, extracting this data from those functions is extremely challenging, as it
requires solving an infinite amount of increasingly difficult equations.

As outlined in section [2.5] an alternative approach is to utilize the operator prod-
uct expansion (OPE) to express a single multi-point function as an infinite sum
of three-point functions, thereby accessing all the respective CFT data of those
three-point functions from the single multi-point function. For example, the four-
point function of external half-BPS multiplets studied in Section is equiv-
alent to infinitely many three-point functions involving two half-BPS operators
and one unprotected (non-BPS) operator when taking the OPE limit. However,
three-point functions involving multiple unprotected operators cannot be accessed
through four-point functions of external half-BPS multiplets. This type of infor-
mation about the theory is most efficiently obtained through the study of higher-
point functions. For instance, a five-point function of half-BPS operators in the
double-OPE limit encapsulates an infinite sum of three-point functions that in-
volve multiple non-BPS operators.
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This reasoning similarly applies to the study of higher-point functions in general
CF'Ts, where it is necessary to study higher-point functions in order to access CF'T
data of multiple spinning operators.

The study of higher-point functions is further motivated by numerous other rea-
sons. For instance, there exists a two-fold duality involving half-BPS correlators
and scattering amplitudes. Through the AdS/CFT correspondence, correlation
functions of half-BPS multiplets in A/ = 4 SYM are dual to on-shell scattering
amplitudes of type IIB supergravitons in AdS.

Additionally, there is a correlator /amplitude duality between half-BPS correlators
and scattering amplitudes within A/ = 4 SYM. In the planar polygonal lightlike
limit, half-BPS correlators can be directly related to scattering amplitudes in the
planar limit, even directly at the level of the integrand [94-96]. For instance, the
integrand of the four-point function of stress tensor multiplets in the lightlike limit
is dual to the square of the integrand of a planar four-gluon scattering amplitude.
These dualities have not only provided efficient computational tools for scattering
amplitudes, but they have also offered new insights into general aspects of the
theory. To further investigate multi-particle scattering and explore these dualities
in greater depth, it is crucial to develop a more comprehensive understanding of
higher-point functions.

Moreover, a hidden symmetry originating from the ten-dimensional theory, dis-
covered in [97], can be used to organize all four-point tree-level correlators in
AdS5 x S5. This phenomenon has also been observed in the planar limit on the
dual CF'T side, where the integrands of four-point correlators of half-BPS oper-
ators with arbitrary charges can be derived from the stress tensor correlator, i.e.
the four-point correlator of lowest charge (see, for example, [98,99]). Whether this
symmetry is specific to four points or extends to higher-point functions can only
be answered by studying higher-point correlators.

For these and more reasons, the primary aim of this thesis is to advance the un-
derstanding of higher-point functions by focusing on the fundamental step in the
analysis of superconformal correlation functions: the derivation and examination
of superconformal Ward identities (SCWI).

The SCWI encode the full constraints imposed by the underlying superconformal
symmetry group. When applied to correlation functions, they significantly reduce
the complexity of the correlators, enabling a more efficient and systematic analy-
sis.

Moreover, the SCWI provide a pathway to important theoretical insights, such
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as the partial non-renormalization theorem that has been derived for four-point
functions [43], and play a central role in an efficient computation of holographic
correlators in AdS (see for instance [100] for a recent study of higher point corre-
lators). These and more reason make superconformal Ward identities essential for
a thorough exploration of five-point functions and beyond.

In Chapter [2] it was established that two- and three-point correlation functions
are completely fixed by superconformal symmetry. However, starting from 4-point
functions, this is no longer the case, and additional considerations and strate-
gies are needed. Various methods for deriving the SCWI for four-point functions,
stated in Equation [2.98] were discussed in Section [2.4] Many of these approaches,
however, leverage the fact that four-point functions of half-BPS multiplets do not
involve nilpotent invariants (in other words, we can turn off all fermionic depen-
dence with the superconformal transformations, showing that the correlator is
entirely determined by the superprimary correlator). Extending these methods to
five-point functions and beyond, where nilpotent invariants are present, introduces
considerable challenges.

The construction of these higher-point nilpotent invariants has been initiated
in [101,/102], where the invariants for the chiral half of general n-point functions
have been constructed. This has been utilised in [70] to construct the superpri-
mary contribution of the five-point correlator of stress-tensor multiplets, which
represents the current state-of-the art. |I|

However, this construction has not been generalised to the full fermionic and non-
perturbative dependence, emphasising the necessity of developing new strategies
to derive the SCWI for higher-point functions.

Two subclasses of such identities have been established in earlier studies: those
arising from the Drukker-Plefka twist [88] and from the chiral algebra twist [89].
The Drukker-Plefka twist imposes conditions from supersymmetry that hold for
any n-point function and should therefore be included in the complete set of su-
perconformal Ward identities. In contrast, the chiral algebra twist is only defined
when all operators are inserted on plane. Consequently, since higher-point func-
tions are not generally restricted to planar configurations, the chiral algebra twist
impacts only a subset of the correlator. This naturally leads to the expectation that
the full superconformal Ward identities are stronger than these two constraints.

In this chapter, we begin addressing these questions by introducing a new ap-

LA generalization of the construction proposed in [101,102] to the full non-chiral n-point corre-
lation functions of stress-tensor multiplets in the Born approximation was developed in [103].
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proach to derive the superconformal Ward identities for half-BPS correlators in a
safe and reliable way, independent of the number of insertion points and thus espe-
cially suited for higher point functions. Specifically, we will examine the five-point
function of stress-tensor multiplets, as introduced in Section [2.2.4] and denoted by

Ga2aoa({Xi}) = (T(X) T (Xo)T(Xs) T(Xa)T (X)) = (22222),  (3.1)

where we use the shorthand notation (22222) to indicate that the stress-tensor
multiplet is a half-BPS multiplet with charge p = 2.

Considerations of this correlator include expressions from the SUGRA side [104]
as well as perturbative expressions from weak coupling [105]. Recently, the inte-
grand of the superprimary contribution to this correlator has been computed up to
three loops [106]. These expressions can be used for cross-checks with the derived
identities.

Before proceeding with the strategy and derivation of the superconformal Ward
identities, it is worth completing this introduction to five- and higher-point func-
tions by highlighting several efforts undertaken to study these objects in general
d-dimensional (S)CFTs from a bootstrap perspective. These efforts include both
analytic approaches [100107-110] and numerical studies [111,112]. However, boot-
strapping higher-point functions remains a challenging endeavour, as explicit re-
sults for five-point conformal blocks are generally unavailable. An exception is the
conformal block for scalar exchange, which was computed in [113]. Additionally, a
series expansion of five-point conformal blocks with exchanged spinning operators
was presented in [104]. Beyond these results, higher-point conformal blocks have
been linked to mathematical frameworks such as Gaudin models [114H117] and
more.

Strategy to obtain higher-point SCWI.

In order to derive the SCWTI for the above five-point correlation function ad-
ditional constraints or strategies must be employed beyond the basic invariance
under the generators of the superconformal group, as was the case for the four-
point functions. To this end, we combine superconformal invariance with general
properties of half-BPS multiplets in analytic superspace.

As introduced in Section half-BPS supermultiplets are most naturally studied
in the framework of Analytic Superspace, where they can be systematically de-
scribed through an expansion in the fermionic coordinates p and p. The complete
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expansion of a half-BPS multiplet is governed by the differential constraintf]

p+1
((;() 0,(X) =0 w. graded symmetrisation, (3.2)
where O,(X) denotes a half-BPS multiplet of charge p, and X represents the ana-
lytic superspace corresponding to the superconformal group under consideration.
This constraint should be understood with graded symmetrisation. Specifically, it
involves symmetrising the latin indices (a,a), while anti-symmetrising the greek
indices («,&). This convention ensures unitary representations and is preferred
over the anti-symmetric representation (where (a, &) are symmetrised and (a, @)
are anti-symmetrised), which would yield non-unitary representations.

The origin and details of this constraint will be further elaborated in Section [3.3]

By combining this constraint on the half-BPS multiplet, that extends to hold on
the correlator (see |A.3), with the requirement of full superconformal invariance,
we have the following system of equations at our disposal:

o pit+l
(55) Gnomltxn o 53
T G (X)) =0 VT € pou(2,208), 3.4

where J represents the generators of the superconformal group psu(2,2|4).
These two types of constraints will lead to the full superconformal Ward identities.

The general procedure for deriving the SCWI through the constraints [3.3] and
[3.4] can be outlined as follows. Solving the constraint on the half-BPS multiplet
provides the complete and fully specified expansion of the multiplet in fermionic
coordinates, with the superprimary appearing at zero order and the various de-
scendants emerging at higher orders. This expansion can then be substituted into
the correlator defined in Equation [3.1] resulting in an expansion of the correlation
function itself in terms of the fermionic coordinates p and p. At zero order, this
expansion contains the superprimary correlator

<(920'($1, y1)020'(I2, y2)020' ($37 y3>O20' ($47 y4)(’)20/ ($5; y5)> ) (3-5)

and at higher orders, it includes correlators involving descendant operators.
Importantly, all the correlators appearing in this expansion are fully bosonic, with

2Tt should be noted that this is not any external constraint in the common sense, but simply
reflects the analyticity properties of half-BPS multiplets. For more details see [78].
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the fermionic dependence entirely captured by the expansion variables p and p. We
will denote these correlators appearing in the full expansion of the supercorrelator
Gp:}, that involve only conformal and R-symmetry primaries, as GO1+On where
O; refers to the respective conformal primary and R-symmetry highest weight op-
erator.

Once this expansion is obtained, the constraints from superconformal invariance, as
schematically expressed in Equation[3.4] can be applied to the correlation function.

Invariance under the bosonic subgroups allows us to factorize the correlators (of
conformal and R-symmetry primaries) into a basis of prefactors, which carry the
correct transformation properties of the correlator, and unknown functions of the
theory’s invariants, the cross ratios. We refer to these conformal and R-symmetry
prefactors as structures, and can thus schematically express the correlator as

GOl"'O”({LL’i, yi}) = Z (y-structure - X-structure)i - fi{u}), (3.6)

i=1

where NNV is the dimension of the basis, i.e. the maximal number of independent
structures, and {u} denotes the respective set of conformal cross ratios. It is im-
portant to note that the functions f;({u}) depend only on the conformal cross
ratios and not on the equivalent R-symmetry cross ratios. This is because, in this
ansatz, the analyticity conditions on the internal coordinates, originating from the
R-symmetry group being compact, are directly implemented by excluding possi-
ble singularities, which would arise when having arbitrary factors of cross ratios.
Instead, the entire y-dependence is polynomial and is fully encoded within the
R-symmetry structures.

Writing the bosonic correlators in this form - in a basis of known structures multi-
plying unknown functions of the cross ratios - exhausts all the bosonic symmetries,
such that only the supersymmetry constraints remain to be applied.

Supersymmetric invariance on the full supercorrelator in analytic superspace trans-
lates into the following simple condition:

n a ~
> ) Gy (@i yi iy pi}) = 0 (3.7)
=1 ?

n a ~
> a*ﬁ,g{pi}({xi,yi,pi,m}) =0, (3.8)
i=1 ¢

since the only non-trivial supercharges act as simple shifts in these fermionic co-
ordinates (see Appendix for further reference). Note that it suffices to impose
the invariance under the above fermionic charges. Invariance under the remaining
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fermionic charges follows then from the superalgebra

Imposing these constraints on the correlator expansion of Gy, affects only the
fermionic variables, yielding J-functions that establish relations among the various
bosonic correlators G1+». By writing the bosonic correlators in a manner that
is consistent with the bosonic symmetries, as outlined above (Eqn. , we can
compare coefficients of each independent structure, ultimately deriving relations
that involve only the unknown functions of the conformal cross ratios. These re-
lations culminate in the formulation of the superconformal Ward identities.

The outline of this chapter is as follows. We will begin in Section by detailing
the procedure using the simpler case of the correlator

S = (W (X 1) Wa(Xa) Wa(Xa)Wa(X4) Wa(X5)) (3.9)

invariant under psu(1, 1/2). The purpose of this section is to elucidate the outlined
main strategy and to demonstrate its efficacy before transitioning to the more
complex psu(2,2]4) case. Due to the emphasis on the practical strategy, certain
details, such as the origin of the multiplet constraint in Eqn. [3.2] will be deferred
to section B.3

Subsequently, we will focus on the psu(2,2|4) case for the remainder of the chapter.
In Section [3.3] we will examine the multiplet constraint [3.3] for the stress tensor
multiplet, providing a thorough explanation of its origin and all relevant details.
In Section |3.4] we will construct the non-trivial conformal and R-symmetry struc-
tures required to express all the bosonic correlators present in the full supercorre-
lator B.11

Next, in Section [3.5] we will apply the constraints from supersymmetry to de-
rive the superconformal Ward identities (SCWI). This section will focus however
momentarily on the four-point function of stress tensors again, as the implemen-
tation and the resulting equations are considerably simpler than those for the
five-point functions. Thus, the four-point function serves as an excellent starting
point to illustrate how the supersymmetric invariance can be implemented in the
four-dimensional case while also confirming that it aligns with known results from
the literature.

Finally, in Section (3.6 we will obtain the SCWTI for the five-point function of stress
tensor multiplets invariant under psu(2,2[4).
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3.2. psu(1,1|2) as a toy model

To illustrate the methodology, we begin by examining correlation functions con-
strained by the symmetry group PSU(1, 1]2), which can be interpreted via a chiral
algebra twist of the full superconformal group in four dimensions (see Section .
Specifically, we consider the five-point function of the half-BPS multiplet with
charge p = 2, denoted as W, (X)), which is obtained by performing the chiral alge-
bra twist to the stress tensor multiplet of PSU(2,2|4). The considered correlation
function is thus

Doosy (LX) = (Wa(X)Wa(Xa)Wa(X3) Wa (Xa)Wa(X5)). (3.10)

For details on this multiplet and the relevant conventions, refer to Section [2.6]

This section serves as an outline of the main strategy to aid in understanding the
procedure before delving into the full five-point function in PSU(2,2|4). Thus,
many details will be omitted here, focusing instead on the general procedure.

3.2.1. Multiplet Field Expansion in Analytic Superspace

The first set of constraints used to derive the five-point function gg;;‘gg’””({xi})
arise from general properties of half-BPS multiplets in analytic superspace. These
are encoded in the following equation:

o p+1 .
AA

The origin and detailed discussion of this constraint are provided in Section [3.3]

For the purposes of this section, we will present only the results and focus on the

implications of the constraint.

For the multiplet with charge p = 2, we obtain the specific constraint:

3
<8X8AA> Wh(XA) =0  w. graded sym. (3.12)
This constraint should be understood with graded symmetrisation, meaning it
decomposes into various derivatives on the subspaces, with a symmetrisation over
the latin indices (a, @) and an antisymmetrisation over the greek indices (a, &). For
the one-dimensional subspaces present here, this results in the absence of higher-
order derivatives of x. Additionally, no higher-order derivatives of the coordinates
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p and p are present due to their fermionic nature.
The relevant components of are:

0? 0% 0 0% 0 000 100

0 0 0 0 0 0

dydxdp’ Dy dxdp’
Details on how these derivatives are extracted from the constraint in equation [3.12]
will be provided in the discussion of the four-dimensional case.
As the constraints hold however in particular on the correlators, these equations
can be confirmed through the two-point function.

—_—— + -
Oyodpdp  20y?ox (3.13)

These constraints act on the general ansatz for the half-BPS multiplet W,(X) in
analytic superspace. Since the multiplet is constructed via the successive action
of the @ and Q-charges, which are parameterized by p and p, the ansatz can be
formulated as an expansion in these fermionic coordinates as

Wa(X) = J(x,y) + pG(x,y) + pG(z,y) + ppAlz,y). (3.14)

The constraints apply at each power of p and p, specifying the corresponding field
content.

For example, at the order zero (level zero), the only non-trivial constraint is:

o 0
o (WQ(X)]/JZPZ()) = 8—y3J(x,y) = 0. (3.15)

Expanding J(z,y) in the internal coordinates, this constraint truncates the Taylor
expansion at cubic order, implying:

0J(,y) 20%J (7, y)

B e PR e e WY
Since each order in y corresponds to an internal degree of freedom, J(z,y) de-

scribes thus indeed the 3-dimensional representation of su(2)g, corresponding to
the label (2), which is indeed the superprimary of Wh(X).

J(z,y) = J(z,0) +y (3.16)

83
Applying this constraint ﬁ( ..) = 0 at higher orders in the fermionic expansion
Y
restricts the respective fields very similarly, limiting their Taylor expansions to
quadratic order in y. However, those fields get further constrained by:
9% 0 9% 0
d
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3.2. PSU(1,1|2) AS A TOY MODEL

At orders p and p (level 1), these constraints ensure that the fields G(z,y)
and G(x,y) indeed correspond to the 2-dimensional representations (1) of SU(2)g.

At order pp, the constraint

000 10* 0
_ (0900 19 9\ 1
0 <3yap8p+28y28x>w2< ) (3.18)
yields:
0 10 0
e (A(%y) +28g/8:tj($’y)> =0. (3.19)

This constraint affects only the y-dependent part of A(x,y). Thus, expanding
A(z,y) as
OA(z, y)
A = A(x,0 —
where we have used the aforementioned constraints B.17to truncate after the linear
order, we observe that the y-dependent term at order pp is given by the derivative

of the superprimary, i.e.

(3.20)

Az,y) = A(z,0) — ;aaijJ(m,y). (3.21)

The term A(z,0) can be identified with the stress tensor representation (0)o, yield-
ing

Alz,y) =T(z) — ——=—J(z,y). (3.22)

Solving all constraints in a similar fashion, we obtain the full field expansion:

1o
Wa(X) = (1 ~ 2" azay

) Ja,y) + pGlay) + pGlay) + ppT(e), (329

where the fields correspond to the representations in the supermultiplet as derived
above. The field expansion is now in correspondence with the notation used in
with J(z,), G(z,y), G(z,y), T(x) being the conformal primaries and high-
est weights under su(2) g as discussed.

A special emphasis should be placed on the fact that the superprimary reappears
at higher fermionic orders. This will prove to be crucial in the derivation of the
Superconformal Ward identities.
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3.2.2. Constraining the Correlator

The objective is to derive the correlator Qg;;(;z’IIQ)({XZ-}) in its most constrained

form, where the constraints are purely kinematical, i.e. being determined solely by
the symmetry group.

The properties established above for the half-BPS multiplet W,(X) on Analytic
Superspace can be utilized by inserting the multiplet field expansion into the
correlation function 95532121'2)({XZ}). This yields the following fermlomc expansion
of the full supercorrelator itself:

Sases P ({X0}) = (W (X0)Wa(Xa) Wa (X3 )Wa(Xa) Wa(X5))
= <J($1> y1)J (22, y2)J (23, y3) J (24, Y1) J (25, Ys5))

+szpz Z'J,y])J(ZEk;,y,lg)J(l’l,yl)J(l’m,ym»

9 0

1 5
5
Z

(J(x1, 1) (22, y2) (23, y3) S (24, Ya) S (25, Y5))

Z¢ pin; (G (i, i) G (5, y5) I (s o) I (20, 90) I (T Yim))
T
(3.24)

where i # j # k #1# m € {1,2,3,4,5}. The correlators at order O(p), O(p) are
excluded due to symmetry constraints. We will initiate our analysis by considering
everything up to order O(pp) and thus, higher order terms in the expansion have
been suppressed.

In this form, the supercorrelator comprises the superprimary correlator at zero or-
der, in addition to three contributions at order O(pp). These contributions include
two superdescendant correlators, i.e. correlators with at least one superdescendent.
Moreover, due to the correction term at order pp in the multiplet expansion, the
superprimary correlator reappears at this order.

With the correlator expressed in this expanded form, we can impose the constraints
arising from invariance under the superconformal symmetry group psu(1, 1|2).

In this section, we will commence by applying the conditions for supersymmet-
ric invariance, before turning to the bosonic subgroups. This order demonstrates
how supersymmetric invariance leads to relations between the purely bosonic cor-
relators only, and thus allows the generators of the remaining bosonic subgroups

on analytic superspace to be reduced to the conventional bosonic generators of
su(l,1) x su(2)g.
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3.2.3. Invariance under supersymmetry

Invariance under supersymmetry dictates that the correlator remains unchanged
under the action of the fermionic generators of psu(1,1]|2). The charges, that act
non-trivially on the half-BPS multiplets, act as simple shifts in the coordinates
p and p and thus, the non-trivial constraints arising from this supersymmetric
invariance in the context of psu(1,1|2) can be expressed as:

0= z ';;;;2”2 ({x:}) (3.25)

0= z 5 Bonos | ({X}). (3.26)

By inserting the fermionic expansion of the correlator derived in into the
constraints (3.25) and (3.26)), it becomes evident that these constraints act solely
on the fermionic expansion variables, leaving the purely bosonic correlators unaf-

fected.

Specifically, applying the first constraint (3.25) to gg;g;;p ({X:}) (up to the order
considered in our analysis) yields

0= = 53 g (s ) ) ) ) .15)
+ Zl pi (T (i) J (25, y;) (@ yi) I (@0, 90) I (T Y )) (3.27)
o ; 27& IEJ <G(xl> yl)é(xjv y])‘](xlm yk)‘](xh yl)J(xrm ym)>

This constraint must hold for all values of p;. Consequently, we can perform a
comparison of coefficients for the various p;, demonstrating that Equation (3.27))
in fact provides five constraints. For instance, for the terms proportional to p;, we
obtain:

10 0

0=-— 5871:18341 <J($17y1)J($2>y2)J($37 y3)J(5U4, y4)<](955>ys)>

(T(21)J (2, y2) J (23, y3) S (24, Ya) (25, Y5))

21, 1) G2, Y2) I (3, Y3) S (24, ya) J (25, Ys)
v1,y1)J (22, ¥2)G (23, y3) S (24, Ya) J (25, Y5)
z1,91)J (22, Y2) S (23, y3) G (24, ya) J (25, Ys5)
1, Y1) (22, Y2) J (23, Y3) J (24, y4) G (25, Y5)

) (3.28)
)
)
)

—_ o~ =

To,Y2)J
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Analogously, constraints for terms proportional to ps, ps3, ps, and ps can be derived.
Further, five additional constraints can be obtained in an identical manner from
Equation [3.26] The complete list of all ten constraints imposed by supersymmetry
on g;’;;‘g; ({X;}) is provided in Appendix With these ten equations, we
have fully exhausted the implications of invariance under the fermionic part of
psu(1,1]2) (up to order (pp)), leaving only the bosonic symmetry to be applied.

3.2.4. Invariance under the bosonic subgroups

To obtain the most constrained expression for the correlator, there are further
bosonic symmetries to be applied. These symmetries act on each of the ten
constraints derived from supersymmetry, imposing additional restrictions on the
bosonic correlators, which can be considered independently. Since the correlators
in question are purely bosonic, the generators of the bosonic subgroups on analytic
superspace reduce to the ordinary generators of su(1,1) and su(2)g, respectively.

Both conformal symmetry and R-symmetry dictate the specific form of the corre-
lators. In particular, expressing the correlator in a manner consistent with these
bosonic symmetries is equivalent to decomposing it into a basis of structures that
exhibit the appropriate transformation properties and weights, along with arbi-
trary invariant functions of the cross-ratios, as outlined in Section [3.1} Specifically,
the conformal x R-symmetry correlators can be written as

N
3215212”2 ({X;}) =>_ (y-structure - x-structure), - f;(u,v), (3.29)
=1

where N represents the maximum number of independent structures, and u and v
are the two independent one-dimensional conformal cross-ratios, defined as

(3.30)

_ T12T34 T23T45 .
- , U= ) iy — €Ti— zg
X13T24 X24T35

We emphasise again that the functions f;(u,v) do not depend on the analogous
R-symmetry cross-ratios due to the analyticity condition imposed by the internal
group SU(2)g being compact. Instead, the full dependence on the y-variables will
be encoded in the R-symmetry prefactor.

In principle, any R-symmetry structure can multiply any conformal structure, thus
N = my,-m;,, where m, denotes the number of independent R-symmetry structures,
and m, the number of independent spacetime structures, that in one-dimension is
m, = 1, as we will demonstrate shortly.
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The objective is to derive relations involving only the arbitrary functions of the
cross-ratios, yielding the superconformal Ward identities (SCWI). To achieve this,
we construct the structures for both the R-symmetry and conformal coordinates
for each correlator involved in Eqn. and the remaining nine constraints in
Appendix B.I] By inserting these expressions into the constraints, we obtain a
system of ten equations that fully exhausts the superconformal symmetry. To solve
those constraints, we perform a comparison of coefficients in all the independent
structures. This procedure reduces the ten equations to a system of equations
that involves only the unknown functions of the cross-ratios. These equations
correspond to the SCWI, and their solution will greatly simplify the full correlator

'233121512’”2)({)(@‘})'

Conformal Structures

The construction of the conformal, or spacetime structures, highlights why psu(1, 1|2)
serves as a particularly simple toy model. Since the spacetime is only one-dimensio-
nal, the conformal structures of all correlators are straightforward invariant scalars.

These scalars can be constructed in the standard way. Invariance under transla-
tions requires the correlator to depend solely on distances, i.e.,

GOO({a:}) = g () Vij=1,....5,

(3.31)
where z;; = z; — x5,

where ¢ is an arbitrary function. (For the moment, we omit the dependence on

the y-coordinates in order to focus fully on the construction of the conformal

structures.)

Further, invariance under conformal transformations dictates the correct powers

in which these distances appear, specifically as 2722, where the scaling dimensions

are given by
2

3’
To finally determine the number of independent conformal structures, we note
that we are in fact considering structures that are independent over the space of
functions of the cross-ratios u and v. Since each structure multiplies an arbitrary
function of u and v, we can factor out powers of u and v. These powers will
transform different structures into each other. In the one-dimensional case, or for
any scalar structure, all structures can be transformed into each other this way,
resulting in only one independent structure for each correlator.

Ay=1, Ag=0g=2, Ap=2. (3.32)
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With these principles in mind, we can now easily construct the conformal struc-
tures for each type of correlator. We have three different types appearing in the
constraints: the superprimary correlator, the correlator involving the stress tensor
T(x), and the correlator involving the currents G(x) and G(z). We change to a
shortened notation of those correlators as:

= (J(z1,y1)J (22, y2) J (23, y3) S (04, ya) S (25, Y5)) (3.33)
J

superprimary : G

stress tensor : G5 = (T(ws, yi)J (xj, ;) I (xr, yr) I (21, Y1) T (T Ym)) (3.34)
a
5

= <G(xi7yi)G(xjayj)J(xk;yk)‘](xlayl)J(xmaym»7 (3.35)

where the subscript 5 refers to the number of inserted operators. All permutations
of insertions in these correlators, as they appear in the ten supersymmetry con-
straints, must be taken into account.

currents : G

For the superprimary correlator in Eq. |3.33| the possible scalar structure can be
of the form

1 1
or , (3.36)

e
L3RI LimTmk Lij XLkl LimLmi

(J(@)J(5)J (k)J (1) (m))

where, in principle, all possible permutations of 4, j, k,I,m € {1,2,3,4,5} can be
considered to produce a valid structure. As mentioned, those various resulting
structures are related by cross ratios such that only one structure has to be cho-
sen.

Similarly, the spacetime structures of the descendant correlators can be (for in-
stance) of the following form

) 1
Lij it Lil Tim L jLim
1

S E—
L3 Ll LimLmk

(T(0)J(5)J (k)J(1)J (m))

(3.37)

(G()G()J (k) I (1) (m)) (3.38)
for different permutations of i, j, k,l,m € {1,2,3,4,5}, depending on where the
stress tensor or the currents are inserted.

Note that once the position of, for instance, the stress tensor is fixed, all permuta-
tions of j, k, I, m yield valid structures, similar to the superprimary case, since the
remaining operators are identical. The same reasoning applies to the correlator
involving G and G.

By choosing one structure from each of these possibilities and multiplying it by
an unknown function of the conformal cross-ratios, we ensure that full conformal
symmetry is imposed.
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R-Symmetry Structures

We must also express the correlator in a manner that is consistent with R-symmetry.
Since there are no arbitrary functions of the R-symmetry cross-ratios multiplying
the R-symmetry structures, we need to find truly linearly independent structures
to form the basis of each correlator.

The number of linearly independent R-symmetry structures can be determined, for
instance, by counting the number of singlets in the tensor product representation
of the correlator. Ignoring spacetime dependence for now and focusing purely on
the internal (R-symmetry) dependence, we have the following:

(J(y1)J (y2) I (y3)J (ya)J (y5)) ~ (2)%° : 6 singlets/structures, (3.39)
(T(y:) I (y;) I (ye) T (y) I (ym)) ~ (0) @ (2)®* : 3 singlets/structures, (3.40)
(G(y:)G(y;) T (ye) T (y1) I (ym)) ~ (1)¥2 @ (2)®% : 4 singlets/structures,  (3.41)

where (7)® represents the n-fold tensor product of the operator corresponding to
the representation with Dynkin label (p = 2j).
This reasoning holds for all possible permutations of the operator insertions.

To construct the explicit R-symmetry structures, recall that su(2) ~ su(1,1).
Indeed, the generators of these two algebras take very similar forms, leading to
the same transformations of the respective spacetime points. Therefore, we can
utilize the same structures as in the conformal case. The only difference lies in the
powers of the y variables, which follow the form % (as opposed to x72"), ensuring
a polynomial dependence, where j represents the half-integer Dynkin labels.
Thus, the possible general R-symmetry structures are

(J(1)J(2)J(3)J(4)J(5)) : yiyk¥im¥Yme  and  YiYsuYrYimYomi» (3.42)
(T@@)J ()T (k)T T(M)) = Yy and  YikYriYimYm;» (3.43)
(GGG I(k)TD)T(M)) = Yij - YaYimYmks  YikYikYims a0 YikYjYrmYim-

(3.44)

All reasonable permutations of ¢, 7, k,I,m from the above generating structures
yield valid structures for representing the corresponding correlator. However, these
structures are not all linearly independent. Therefore, it is essential to restrict the
set of structures to a linearly independent basis to effectively represent the corre-
lator. Our choice for the linear independent structures to represent the respective
correlators can be found in Eqn. [3.45] and Appendix [B.2]
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Bosonic Correlators

Following the principles outlined above for constructing the conformal and R-
symmetry structures, we choose the following expressions for the relevant corre-
lators, writing them in a form consistent with bosonic symmetries. Starting with
the superprimary correlator, we define it as follows:

(J (x1,91) J (x2,y2) J (w3,y3) J (24, y4) J (25, 5))

2
= SYING 1, () 4 L2IYIBID p () )y DIV p ()

2
T12213T23Ty5 T12213L43T25T 45 T12T23L43XL15T 45

Y12Y24Y43Y35Y51 Y31Y32Y41Y25Y45 Y13Y34Y42Y25Ys51
+ f4(U,7U)+ f5(U,’U)+ fﬁ(uvv)-
L12T24L43L35T 51 T31L32L41X25T 45 T13T34L42L25T 51

(3.45)

We have 6 independent R-symmetry structures, multiplying one independent con-
formal structure, resulting in 6 independent bosonic structures. Each of these
bosonic structures is multiplied with an unknown function of the cross ratios,
yielding the 6 functions f;(u,v).
These six structures, particularly the six R-symmetry structures, are linearly inde-
pendent. For the spacetime structures, we have not restricted ourselves to a single
structure for the entire correlator. Instead, we use a slightly different notation
in which the spacetime structure mirrors the form of each respective R-symmetry
structure. This reflects the typical manner in which bosonic correlators are repre-
sented in the literature and can be visualised through Wick contractions.
However, it is important to note again that these six spacetime structures are in-
deed just one independent structure, which we could pull out, introducing factors
of the cross ratios. For example,

1 (1 - 'U) . 1 T34T925 _ -1 ‘ (346)

- 2
T12213T43T25T45 v T12X13L43T25T45 L2345 T12213T23Ty5

The rationale behind choosing the above basis in equation (3.45)) will become ap-
parent in Section [4.2]

The bases chosen for the descendant correlators are provided in Appendix [B.2]
When considering all the correlators that appear in the ten supersymmetry con-
straints, there are 95 unknown functions of the cross ratios arising from the de-
scendant correlators, as detailed in Appendix [B.1]

This can also be quickly computed as

(T(yi)J ;) (i) () S (ym)) 210y -0 = 31 =3 (3.47)
(G )G ()T () T () (ym)) 210y g =4+ 1 = 4, (3.48)

78



3.2. PSU(1,1|2) AS A TOY MODEL

As we get this number of independent structures for each correlator of different
insertions of T'(y) and G(y),G(y), respectively, we obtain in total 5 -3 = 15 plus
54 -4 = 80 independent structures.

Additionally, there are the six unknown functions f;(u,v) corresponding to the

superprimary correlator.

3.2.5. Superconformal Ward identities

These unknown functions get related via the supersymmetry constraints, derived
in Section [3.2.3] hence reducing the number of undefined degrees of freedom. In
particular, we substitute the expressions for the bosonic correlators, which are
compatible with bosonic symmetries, such as equation (3.45)), into the ten su-
persymmetry constraints. We can then organize the constraints according to the
independent structures. Since these structures are independent, the constraints
must hold for each of their coefficients individually, leading to equations that re-
late only the different unknown functions of the involved correlators. In particular,
the unknown functions from the descendant correlators become related to the un-
known functions of the superprimary correlator. This is due to the fact that the
superprimary correlator reappears at order O(pp) in the expansion of the super-
correlator, a result traceable to the correction term in the multiplet field expansion
3.23

Carrying out this procedure for the 5-point correlation function of the multiplet
Ws(X) under psu(1, 1]2), for all ten constraints, we arrive at the following conclu-
sions:

Out of the 95 unknown functions from the superdescendant correlators, 94 can be
expressed in terms of the six superprimary functions f;(u,v). This leaves only one
undetermined descendant function at the order O(pp) in the correlator expansion.
This demonstrates that, as expected, the 5-point half-BPS correlation function in
psu(1, 1/2) is not entirely determined by the superprimary function.

Additionally, the functions f;(u,v) of the superprimary correlator are subject to
relations among themselves. These are first-order differential equations, as the
correlator appears in differential form within the constraints, such as those
in equation . The derivatives with respect to the spacetime coordinates have
been translated throughout the process into derivatives with respect to the cross
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ratios as follows:

0 ou 0 ov 0

The resulting constraints are known as the conditions arising from performing the
Drukker-Plefka twist, plus an additional condition, namely:

6

0=> £ (u,v)
0=>" £ (u,v)

=1

B _ o o 2

(DD D I (s )

R (4 700)

2 —2u—v+1
G - ) (A7 0) + £, 0)
P 02D (00 0) 4 10,0 ) + £ )
(3.51)
with u — JZ125L’34’ v — X23T45 )
T13%24 L2435

The above equations and represent the full set of superconformal Ward
identities for the correlator Ghomys )({XZ}) In particular, the equations above are

stronger than the ones proposed in [11§], which are equivalent only to Equations

.00l

These full set of SCWI will be further analysed in Section E|

3The equations involving the descendent correlators can be provided in a Mathematica note-
book.
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3.3. Half-BPS multiplets on analytic superspace

In this section, we initiate the derivation of the superconformal Ward identities
(SCWI) for the five-point function of stress tensor multiplets in the psu(2,2[4)
superalgebra, i.e.,

Gazazo ({Xi}) = (T (X1)T(Xo) T (X3) T (Xa)T(X5)) - (3.52)

The approach for obtaining these SCWI follows the exact same methodology as
outlined for the psu(1,1|2) case in Section [3.2] Accordingly, we begin by consid-
ering the first set of constraints, which arise from the properties of the half-BPS
multiplet on analytic superspace.

To do so, we recall that half-BPS supermultiplets in psu(2,2|4) can be represented
on analytic superspace through a straightforward expansion in the fermionic co-
ordinates p**, p* as [81):

0,(X) =exp (paaQaa + ﬁaana) Oy(z,y)

. - (3.53)
=0, (x,y) + p™ L) + uE) +

Here, O, denotes the superprimary of the full superconformal multiplet O,.
Given the fermionic nature of the expansion parameters, this series is naturally
truncated at O(p*p?).

This expansion is fully determined by the differential constraint:

p+1
((‘D(a/‘f“) 0,(X) =0, w. graded symmetrisation (3.54)
In this section, we introduce this constraint as the covariantised version of the
condition that isolates the [0, p, 0]-representation of the su(4)r symmetry. We will
provide the full definition and discuss the consequences of graded symmetrisation,
and demonstrate how this constraint yields the most precise formulation of the
field expansion for the stress tensor multiplet in analytic superspace.

It is important to note that, although the discussion is centered on the example
of the psu(2,2|4) superalgebra and its analytic superspace, the same principles
apply to various superconformal groups, as previously illustrated in the context of
psu(1,1[2).
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3.3.1. Origin of the Constraint

To understand the origin of the constraint in Eq. it is important to note that
the full supermultiplet can be expanded not only in the fermionic coordinates, but
also through a Taylor expansion in the bosonic coordinates. While an expansion
in the Minkowski coordinates x®* is as well possible, it does not yield significant
insights. However, expanding in the internal coordinates y® reveals the necessity
for additional constraints on the multiplet.

Focusing momentarily on the superprimary, this expansion is given by

- 0
Os (z,y) =0Oap (,0) + y** ( O (z, y>>

ayad -
v=0 (3.55)
—y* - —— Oy -
+5y"y (81/““ AR (z,y) +
y=0
The ... denote all possible higher-order terms, which, in principle, could extend

indefinitely.

However, it is well-known that the 20’-operator, corresponding to the su(4) repre-
sentation [0, 2, 0], is only 20-dimensional. Consequently, some form of truncation
must occur. These truncation conditions can be derived through representation
theory.

To relate group-theoretical representations to the physical coordinates y®*, we be-
gin by considering the subgroup

H = SU(2) x SU(2) x U(1) C SU(4). (3.56)

The branching of the SU(4) representation [0, 2, 0] into irreducible representations
of H is given by [119]

[07 2, 0] - (17 1)+2 S5 (27 2>+1 D ((37 3)0 @ (17 1)0) D (27 2)—1 D (17 1)—27 (357)

where (dy, dy), represents the dimensionality of the irreducible representations un-
der the two SU(2) factors, and ¢ denotes the U(1) charge.

This can be interpreted in terms of the coordinates by associating the first SU(2)
dimension label with the undotted index a, while the second label specifies the
dotted SU(2) index a. The U(1) charge c is related to the power of y as

c=(p—yd,) = (2-yd,). (3.58)
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Thus, we obtain the following identifications:

irrep. (171)+2 (272)-1—1 (373)0 (171)0 (2v2)—1 (171)—2

aa

coord. || y° =1 y ylaaybh) | yaagbbe, o — dety | dety -y | (dety)?

dim. 1 4 9 1 4 1
(3.59)

The branching ratios in Eqn. determine the allowed powers of the internal co-
ordinates. In particular, they indicate that the fully symmetrised contribution at
order 33, corresponding to the representation (4,4), must be absent. (The repre-
sentation (1, 1) at this order is absent as a full anti-symmetrisation of three indices,
with only two possible values for each index, is impossible.) At order y*, only fully
contracted y-indices remain, while all other contributions and higher-order terms
are truncated. These conditions yield the 20-dimensional representation.

These constraints, given by the branching ratios, can be translated into a differ-
ential constraint acting directly on the internal coordinates. This constraint leads
precisely to the aforementioned truncation. It is expressed as:

P 3
(5 ) O

which implies full symmetrisation over both the dotted and undotted indices.

=0, (3.60)

(abc),(abé)

This constraint for the expansion of SU(4) representations can be generalized
to describe the expansion of full half-BPS superconformal multiplets on analytic
superspace as

o p+1
<€9XAA> 0,(X) =0, w. graded symmetrisation (3.61)

where the differential operator is understood with graded symmetrisation,

X AA
as super(conformal) algebras are Zy-graded algebras. The details of this graded
symmetrisation will be clarified through the example of the stress tensor multiplet

constraint.
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Specifically, for the stress tensor multiplet 7, which has charge p = 2, the con-
straint becomes:

3
<8X6AA> T(X)=0, w. graded sym. (3.62)

with the convention that each factor (i.e., the one denoted by undotted indices and
the one denoted by dotted indices, respectively) in the three-fold tensor product
in Eqn. transforms in the graded symmetric representation of SU(2|2), as
represented by the diagram:

(a)i/j ~ (A, A7), (3.63)

In this context, selecting the graded symmetric representation corresponds to
symmetrising the indices (a,a) (as in the SU(4) constraint [3.60)), while anti-
symmetrising the (o, &) indices. This convention is preferred because it leads
to unitary representations. In contrast, adopting the anti-symmetric representa-
tion would produce non-unitary representationsﬁ

This choice of symmetrisation can be explicitly implemented by introducing the

auxiliary vector
¢t = (”) : (3.64)

where 7 is fermionic (leading to an anti-symmetrisation of the coordinates x%)
and w® is bosonic (leading to a symmetrisation of the coordinates y%%). Working
with the contracted differential

40

0~ &t (3.65)

the correct signs respecting the grading are automatically produced.

The conventions for the grading and a sketch of the proof for the condition pre-
sented in Eqn[3.62] are provided in Appendix [A.3]

There, it also is demonstrated again that the constraint in fact holds also on the
two-point function of half-BPS multiplets.

4For further details on super Young tableaux in representations of supergroups, see for example
[120].
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3.3.2. Obtaining the explicit coordinate constraints.

Analytic superspace is defined with the superindex A = («a|a), where a and a
are SU(2) indices (cf. Eqn. [2.71)). The decomposition of the corresponding full
differential under SU(2|2) — SU(2) ® SU(2) is given by

zznz%(mjj,-)@(mj,m)@@,@. (3.66)

Due to the chosen graded symmetrisation, the representations in this decomposi-
tion are associated as (a,«). Note that the representation

(-

is not realizable, as a full anti-symmetrisation of three SU(2) indices is not possible.

The above decomposition can also be expressed in terms of the respective dimen-
sions as

11— (4,1) & (3,2) & (2,1) . (3.67)

Here, the 1 indicates that the singlet is obtained from anti-symmetrisation.

By combining the dotted and undotted legs, i.e., considering
14, 1A,

the full differential ( a)?A —)? decomposes as

(4,1)@(3,2)®(2,1)©((41)0(3,2)®(2,1)). (3.68)

From a practical perspective, this means that the constraint in decomposes
into multiple equations involving different coordinates (z,y, p, p), where the pos-
sible combinations are specified in [3.68]

To express the above decomposition of explicitly in terms of the coordinates
(x,y, p, p), recall how these dimensions are achieved in terms of SU(2) indices:

4 =sym. t.p. of 3 indices: (abc), (af7)

3 =sym. t.p. of 2 indices: (ab), (af3)

2 =open index a, « . (3.69)
1 =fully anti-symmetrised t.p.: {ab}, {af}

1 =trivial rep.
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Thus, the combinations of the form (a,«) x (a, &) listed in Eqn. correspond
to the following equations:

(4,1) % (4,1) : ajaaajbb ajcc.T(X) o™ (3.70)
(3,2) x (4,1) : 85‘1‘165“857‘57-()() o =0 (3.71)
(4,1) % (3,2) : ajaéajbb agc,.yT(X) " (3.72)
(2,1) % (4,1) : Gmayaaaagﬁéajvéﬂx) . 0 (3.73)
(4,1) x (2,1) : Bﬁ@yaaaa;/éang(X) o (3.74)

(3,2) x (3,2) : (a 0 0 5,0 0 a)T(X) =0 (3.75)

Oxad 8ybb aycc' aybb aﬁcd apac'

(be), (bé)

g o0 0 o 0 0
2,1 2) 1 42— ———— | T(X)| = .76
@xE.2) (Gt v 2t T =0 (376)

iy a a a a 8 a
. af T —
(3, 2) X (2, ].) . € ( - 7[)5- P + 2 I’YB ybc' —ad> (X) 0 (377)

o o0 0 N o o0 0
Oxé 88 yeé Hrad 8505 apﬁc'

(2,1) x (2,1) : *PedP ( ) T(X)=0. (3.78)

The coefficients in the last four equations containing multiple terms can be deter-
mined using the auxiliary vectors introduced in [3.64]

To summarise, the constraint in[3.62]is equivalent to all the above equations, which
must be obeyed by the stress-tensor multiplet at each order in the fermionic ex-
pansion.

For the remainder of this chapter, we will use the notation of dimensions to label
internal representations while denoting spin representations with highest weights
for better distinction.
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3.3.3. Application of Constraints on the Stress-Tensor
Multiplets

The stress-tensor multiplet must satisfy the constraint

((wfmf T(X) =0, (3.79)

which is equivalent to enforcing the conditions delineated in equations [3.70H3.78]

To determine the fully constrained form of the stress-tensor multiplet, we begin
by considering the most general ansatz for the supermultiplet, expanded in terms
of the fermionic coordinates:

T(X) :(920’ (Ia y) + Padq’aa(x> y) + ﬁad\i]ad(aj7 y) + padﬁadAad;ad (557 y)
+ 0 (2, y) + p2 0™ Fo i, 9) + 070" 07 Bl b (€, 9)

+ paapﬁbﬁadBad,,Bb;aéc(x? y) + paapﬁbﬁadﬁbﬁcad,ﬁb;ad,bﬁ('x? y) +... )
(3.80)

where the fields at each order in p and p are understood to encompass the entire
field content.

The dots indicate higher-order terms in the expansion. For the purposes of this
analysis, we will restrict our consideration to terms up to the order of (pp)?; how-
ever, the constraints similarly dictate the higher-order fields.

The conditions expressed in equations [3.70 must be satisfied at every order
of the fermionic expansion, thereby defining the field content at each level.

In this section, we will develop the most insightful equations in detail. In particu-
lar, we will develop the precise expansion up to O(pp). The full results, encompass-
ing the solutions of all possible constraints at all various orders in the expansion,
will be presented without proof. However, the solutions to the remaining equa-
tions can be straightforwardly derived using the same methodology applied to the
constraints presented here.

We have already previously established that the condition given in equation |3.70
specifies the field at the bosonic order in the expansion as the 20’-operator
associated with the [0, 2, 0]-representation.

Applying the same constraint at other orders in the p, p expansion yields analogous
internal expansions for the remaining fields. Consequently, no field within the
fermionic expansion can possess a dimension greater than that of the superprimary.
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However, the field content at higher orders in p,p is further restricted by the
additional constraints specified in equations[3.7143.78] which results in even smaller
expansions in the internal coordinates.

Field content at level 1.

To elucidate this, we begin by applying the second constraint, Eqn. [3.71] at order
p (the lowest non-trivial fermionic order, also referred to as level 1), specifically:

o 0 0
8yaa aybb ap'yc'

) (T(X)|O(p)) =0 with (ab), (abé). (3.81)

This leads to the condition:

0 9y,
ayaa aybb

(z,y) = 0 with (ab), (abé), (3.82)

To fully understand the implications of this constraint, we expand p¥ (z,y) in
terms of the internal coordinates as follows:

. . A,
P i (2, y) =p**Waq (2,0) + p*ty” (ayba‘l’ad (z, 0))
y=0 (3.83)

+ ...,
y=0

— aa cc 7.7.‘1104& ,O
5"y <aybbaycc (,0)

where contributions at non-trivial orders in y can be separated into symmetrised
and anti-symmetrised terms with respect to the dotted and undotten indices.

The constraint expressed in equation does not impose restrictions on the
orders O(1) and O(y). Thus, we obtain the complete contributions from these
orders as follows:

™yt~ (1,2),, (3.84)
aa, bb

Ty
(ab)

aa, bb aa, bb

{ab}
where the SU(2) x SU(2) x U(1) representations are labeled as (dy, ds)., with d;

corresponding to y* and dy to y*. The U(1)-charge ¢ for the complete supercon-
formal case is given by

1 _
e=2(p10, = 500, 900). (356
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In contrast, the order y? in the internal expansion is affected non-trivially. The
bosonic coordinates y*y™ can be symmetrically decomposed as follows:

(2,2) ®(2,2) = (2®52,2®52) B (2®42,2042)=(3,3) @ (1,1).

In terms of the coordinates, and multiplied and (anti-)symmetrised further with
p®¢, this decomposition results in:

. +padybbycé .
(abé), (be) {ab}
~(1,2)2((3,3)8(1,1) = (3,4 & (3,2)e(1,2).  (339)

aa, bb, cé aa, bb, cé

Py Y =p™ Yy + p*dety (3.87)

We observe that the differential constraint given by equation [3.82] necessitates the
absence of the first, fully symmetrized term. Therefore, we are left with:

aa, bb, cé aa, bb, cé

ptyye — piyPy + p**dety (3.89)

{ab}
~(3,2)_, ®(1,2)_;. (3.90)

At order 12, only the maximally anti-symmetrized term survives the constraint,
given by . ' .
paaybbyccydd N 6dl_)pozaybb det Y~ (2’ 1)73 ’ (391)

while all other terms vanish. Further, all higher-order terms vanish identically.

Thus, the field W, (2, y), which appears at order p in the fermionic expansion of
the stress-tensor multiplet, consists of the following terms:

Voo (z,y) = (2,1) ;@(3,2) ,®(1,2) ;9(2,3),®(2,1), ®(1,2);. (3.92)

These contributions on the right-hand side correspond precisely to the branching
ratio of [0,1,1] under SU(4) — SU(2) x SU(2) x U(1) [119]. Hence, we can
identify:

Vaa () ~ 20 ~ [0,1,1]1 ). (3.93)

The spin representation can be directly inferred from the Minkowski indices present
in each contribution. Each term is proportional to p®¢, giving one open undotted
index «, corresponding to the two-dimensional or j; = 1 representation, while

2
there are no open dotted indices ¢, resulting in j, = 0.
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In a similar manner, the constraint given by equation [3.72] specifies the field

\Ijad (':Cv y) as

\Ijao'z (Iay) — (27 1)3 @ (37 2)1 @ (17 2)1 @ (27 3)—1 @ (27 1)—1 @ (17 2)—3 (3 94)
N20 ~ [1, 1,0](07%)

Applying these two constraints, [3.71] and [3.72] at higher orders in the fermionic
expansions yields similar results. Thus, all higher fields can have at most this
expansion.

Field Content at Level 2 : First.

The field content at order p? and p? are further constrained by Eqgs. and [3.74]
respectively. Considering p? and Eqn. [3.73, note that, since the coordinate p is
fermionic, the term p? can be decomposed into two distinct contributions:

_'_} aa  Bb
(ab){aB} 2
1 « d. a' o
5 (2 + )
~ (17 3) S (1al)7

aa p 1 aa ;
PP =0p pﬁb:(Qp p”

(aﬁ%{fzﬂ)
(3.95)

which correspond to the spin representations (ji,72) = (0,0) (first term) and
(71,J2) = (1,0) (second term), respectively.

Expanding F; 5 as a Taylor series up to order y (for the moment), we can express

the product padpm’Fadﬁb(:E, y) as follows:

aa b 1 a ab 1 (oY ab, cé a
P pﬁbFad,ﬁb(xuy) ~ 56 B(pZ) bFad,BB(xao) + 56 B(p2> by (aycéFad,Bb<x7y)>

y=0

L 1 al afl, cc
3 P00+ 37

0
aycé Fad,ﬁl}<w7 Z/))

N(173)2 S (2a4)0@ (272)0 .
+ (1,1)2 @ (2, 2),.
(3.96)

where at order y, in the first line, we can either symmetrize over all dotted indices
(abc), or antisymmetrize the y-index with the p? indices {ab}, yielding two distinct
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contributions: (2,4), and (2, 2),, respectively.

The constraint given by Eq. applied at order O(pp), gives

o o0 0 .
al - - od e )
83/@@ apﬁb ap'Yé (p p 5d,ee($7 y)

=0 (3.97)
(abé)

This equation eliminates exactly the contribution (2,4)q from the expansion dis-
cussed earlier.

Proceeding similarly for the terms at order y? in the Taylor expansion, and em-
ploying the results derived from the previous constraints, we obtain the final con-
tributions:

Faa,,b’i);ad(x> y) ~ (17 3>2 D (27 2)0 ® (37 1)*2 for (a7 d) = (07 0)

3.98
®(1,1)2:d(2,2)0@(1,1) o for (o, @) = (1,0). (3.98)
From this, we can identify the representations as follows [119]:
F..s(z,y) ~10©6
aa,ﬂb( y) (399)
~ 10,0, 2]0,0) ® [0, 1, 0] 1,0)-
Similarly, applying the constraint from Eq. at order p? yields:
Foops(2,y) ~1056
aa,bﬂ( y) (3100)

~[2,0,0]0,0) ®[0,1,0]0,1)-

Field content at level 2: Second.

The second class of constraints, Eqns. [3.7513.78| involves multiple terms and, as
outlined below, thus incorporates various contributions from the fermionic expan-
sion.

We begin by examining Eq. at bosonic order, which is given by:

o 90 0 o o0 0
(8 +2 )T(X)

__ R : =0 with (be), (b¢). (3.101
oo aybb aycc 8ybb 3/30‘1 apac wi (C)’< C) ( )

p=p=0
This constraint links the superprimary field Oqy (2, y) with the fields at order pp
in Eq. |3.80] as follows:

0 g 0
aybb

5735 9y Oay (2, y) + 2A0¢.ca(, y)) =0 with (bc), (b¢). (3.102)
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To fully grasp the implications of this equation, we begin by expanding A(z,y),
representing the field content at order pp in the internal coordinates, as follows:

= aa —adc ad =ad, bb 6
ppA(I, y) =p p Aad,ao’z (.’I?, O) + PP ybb (M')Aa(z,ad(xv y))
Y

v=0" (3.103)

S g 0
aa —ac, bb_ cé
+ pp* Y™y ( — Avaaa(, y)) + ...
Oyt Qyce

y=0

Taking into account all possible symmetrisations and antisymmetrisations, this
results in the following contributions of SU(2) x SU(2) x U(1) contributions:

O :(2,2),,
O(y") :(3,3)0® (3,1)0 @ (1,3)0 @ (1, 1), (3.104)
O(y) : (4,4) 2 ®(2,4) 2@ (4,2) 2 ©(2,2) .

The constraint expressed in Eq. [3.102 singles out the contribution (3,3)g from
Apiaa and indicates that this contribution is, in fact, given by the derivative of
the superprimary field, as follows:

1 0 0

3.3 g~ —————+——
( ) )0 2 Oroc ayaa

Osg (2, ). (3.105)
At order y?, only the (2,2)_5 term survives, while all other contributions are elim-
inated by the previously studied constraints.

Thus, at order pp in the multiplet expansion, we obtain the following contribu-
tions:

padﬁadAad,ad(xv y) ~ (27 2)2 S (37 1)0 S (17 3)0 ) (]—7 1)0 S (27 2)72

19 9 (3.106)
" 3 e gy O (®:9):

The first line corresponds to the branching ratios of the SU(4) g current Jo.06(2, y),
transforming in the representation [1,0, 1] 11y [119]. Therefore, we can identify

1 —ace aa —ad 10 9
PP Aiac (T, y) ~ pp (jad,ad(xay) - QWWOQO’($7?J)> . (3.107)
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This relation is essential for the derivation of the SCWI.

In a similar manner, the higher-order terms in the multiplet field expansion can
be identified. Since our analysis is restricted to the pp order, we will conclude here
and, without proof, only state the results for the remaining levels below (cf. Eqn.

BI13)

Conservation Equations

The final constraint, given by Eqn. [3.78 determines the spacetime dependence of
specific fields within the multiplet expansion. In particular, it yields the conserva-
tion equations for the currents.

The constraint is expressed as follows:

i (00 0 9 0 0
[ Hxad axﬂﬁ 8ycé O 8ﬁcﬂ 8p5c

) T(X) =0. (3.108)

To illustrate its consequences, we consider the lowest non-trivial order in p and p.
The constraint can then be rewritten as

V5 o o0 0 o o0 0
— WPt : e 2 X
0 €€ (8370404 61‘65 aycc + 8330401 8505 8pﬁc> T( )

p=p=0

s 0 8 0 d
_ (B 9 0y 9 a4,
© e <6xad OwBB Oyee Oz (,) + 2525 Ags (2, )

Y o 9 0 0 1 9 0
_ af_ap , 19 9 / N
=e*e (8z°‘d PYY: ayCC'OQO (z,y) + anad ( " Oy (z,y) + jﬂc,cﬂ(x7y)>)

— 9B 4B

O ‘75(3§CB (.’E, y)

We have thus recovered the conservation equation for the SU(4) current:

0 = *Pedh 5 Tt (1) (3.109)

Similarly, at orders O(p) and O(p), one obtains:

a [1:070}(1,%)

0 = e’ G Osinass (12Y); (3.110)
o a0 00
0=€ePe 200 s (:1)- (3.111)
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[1,0,0]

Here, O . 4. (alof) (x,y) and Oaa 46 aal) (x,y) represent the fields corresponding to
the spinor currents. (For clarity, the fields are designated by the representation to

which they correspond).

Finally, from O(pp), we obtain:

i 0 A000]
_ apf af ¥ 0,0[(1,1)
Ve Dz O s Y): (3.112)
where (’)LQOB(; Sal)b B(;c) =T, siacps(T) Tepresents the stress tensor.

Stress Tensor Multiplet Field Expansion

Summarising all results and applying them on the initial expansion Eqn. m (up
to order O((pp)?), the most general, yet constrained expression of the stress tensor
multiplet on analytic superspace is given by

1 pius O O 1 c sy 0 0 0 0
— T aa sac aa ~ac b =b3 i _ ,
T(X) (1 2P P gpad oyaa * T Oy QxPP 8ybb> O (2,9)
. 1 g5 O O
aa _~  Bb=bB .
+p (1 AT aybb> Vai (2,9)
: 1 4 0 0\ =
—ad . pBb —b,B
+p (1 AT aybb> Vs (2, y)

+paapad jad,ad (I’, y)

e ) oo

(pQ) falﬁ?,]“ D (x,y)
(p2) f;;;]w D (z,y)

a af aa [0’0’1](l7)
e (7)) 90,4 52 (w,y)

ad,bB;aa

ac,bB
e ()" 0 <

1 . .
+16“beab(p2)a5(,52)0‘6(9200.1?1;222) (@) +...

1 1
2 2
1 a o\ ab 200](0 0) 1
5 ( ) T

)

(3.113)
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where ... refer to higher order terms. The presented fields obey further

020’ (ZL’, y) = 0[0’270](070) (l’, y)

[0,1,1]

_ (3:0)
\I[a[l (Q’I, ?J) - Oaa (ZE, y) )
_ [1,1,0], 1
\I[ad (2’)7 y) - Oad (O,%) (ZE, y)
[1,0,1]

jaz'z,ad (I’, y) - Oad,ao’z( : (I, y) ’

Nl
[N

0= %jad,ad (‘Ta y) |(ab),(di))

(1,0,0] ; 1
) @b
0= 57O i sbas (©:Y) (@) (a0

[0,0,1] 1
_ 0 (3,1)
0= ayee Oad,bB;an Z, y) ’(ac),(ae)
;. (1,0,1] 1 1
0 (3.3)
0 = GBQEBQW adai 2°2 (x’y)
.. [0,0,1], 1
= 2 (22D 3.114
0= el 2 i (2, 9) ( )

[1,0,0]

“2 (2,y)

0= 2.0
aa,Bbac

oxYY

o 0,0,0]
Yo Aée 0 [0, L)
0=e"e 0z~ aa,Bbiad,bp (IL', y)

In the following sections and chapters, we will use the expression [3.113[up to order

O(pp).

Similarly, multiplet field expansions of other multiplets can be obtained. The
result for the fundamental multiplet, O;(X), can be found in Appendix |A.3.2|
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3.4. (Bosonic) Structures in Higher Point
Correlators

In the previous section [3.3] we derived the full supermultiplet expansion of the
stress tensor multiplet on analytic superspace. Thus, we can now finally proceed
to examine the five-point correlation function given by

G222 ({Xi}) = (T(X0)T (Xo) T (X5)T(X4)T(X5)) - (3.115)

The remainder of this chapter is dedicated to investigating the constraints imposed
on this correlation function by the requirement of invariance under the supercon-
formal group psu(2,2[4).

To effectively analyze these constraints, we utilize the multiplet field expansion of
the stress tensor multiplet, as outlined in [3.113] to derive a fermionic expansion
for the supercorrelator [3.115| itself as:

Gs({Xi}) = (T(X0)T (X2)T(X3)T (X4)T (X5))
= (Og (901, Y1) O (22, y2) Oy (73,y3) O20r (24, Y1) O20r (5,Y5))
0

- *Zﬂaa faa ok gyai (Oo (z1,91) - Oz (25, 95))

5 5
oa aa 3.116
+ Zp jaa ,ad (xzayz H Oq (xkvyk‘)> ( )

k=1,k+i
5 5 - 5
= o5 (Waa (@, i) Vaa (z55y;) [ Oo0 (@hs yi))
i=1 j=1,j#i k=1,k#i#j
+ higher orders.

Note that there are no terms linear in p or p as the corresponding correlators are
forbidden by symmetries.

For the same reasons as outlined in the toy model case psu(1, 1]2), we can consider
the constraints arising from the bosonic subgroups separately from those associ-
ated with the fermionic generators.

In this section, we will begin by examining the invariance under the bosonic sub-
groups. In particular, we will construct the bases of R-symmetry and conformal
spacetime structures for the correlators appearing in the expression [3.116] Specif-
ically, we will consider the following three correlators (and all the relevant permu-
tations):

G502°' = (Oz(x1,y1)O2(x2, y2) O (23, y3) Oa (x4, Y1) O2(x5, y5)) (3.117)
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(Jaa (w1, y1)Oa(22, y2) Oa(3, y3) Oa(74, y4) Oa (75, y5)) (3.118)

Gy
V= (Wa (w1, 51) Va2, y2) Oa (3, y3) Oa (4, 1) Oa (25, y5)) (3.119)

G5

We will begin by constructing the conformal spacetime structures. By focusing
solely on the spacetime dependence of the correlators, this problem becomes equiv-
alent to the discussion of spacetime structures in ordinary conformal field theories
(CFTs).

Afterwards, we will construct the R-symmetry structures. By leveraging the sim-
ilarities between SU(2,2) and SU(4), we can utilize the same form of structures
as those established in the conformal case.

Finally, we will present the complete expressions of the relevant correlators, that
respect the bosonic symmetries.

3.4.1. Spacetime Structures

Recall that a conformal correlator can be expressed as a linear combination of a
basis of spacetime structures, each carrying the correct transformation behavior of
the correlator, and unknown functions of the invariants of the theory, i.e., functions
of the conformal cross ratios. Schematically, this can be represented as

m

(O(z1) - O(x,)) = Y _(structures); - fi({u}), (3.120)
i=1
where O(x,,) is a general operator inserted at position x,, and {u} refers to the
cross ratios. i labels the structures from 1 to the number of maximal independent
structures m. The spacetime structures {si, ..., s;} are said to be independent, if
there is no choice of functions of cross ratios fi({u}),..., fi({u}) such that

Z é:13ifz‘({u}) = 0.
When all inserted operators are scalars, we have m = 1 and the single spacetime
structure is a simple scalar prefactor. For all other cases, we have m # 1.

For five-point functions in a four-dimensional conformal theory, we will see below
that there are five cross ratios. Following the conventions of [121], we define these
cross ratios as

2 9 2 .2
T19T5y _ L14T23 7
W= S AR wr= g =1-a)l-2),
s = T3, — 2 Uy = L3573 =(1—2)(1-7) (3.121)
r3,2% ’ 13473 7
2 2 2
us = % =w(zn—Z2)(z2—2)+ (1 -2 —2)(1 -2 —2)
L4T13L35
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Constructing the tensorial structures for non-scalar correlators presents a non-
trivial challenge.

These tensor structures must exhibit the correct transformation behavior of the
respective correlator under the conformal algebra in four dimensions, su(2,2). As
can be inferred from the generators outlined in Appendix this algebra, when
acting on bosonic correlators only, operates solely on the upper left cell of analytic
superspace, which corresponds to 4d complex Minkowski spacetime expressed in
spinorial form as x** = (z#0,)**. Thus, we can restrict our attention to Minkowski
spacetime, rendering the problem equivalent to the ordinary CFT discussion re-
garding spinning conformal correlators.

Understanding the space of these conformal structures is crucial for comprehend-
ing correlation functions, as it is essential for any use of bootstrap techniques and
considerations of conformal blocks, among others. Consequently, this topic has
garnered significant interest throughout the years; see, for instance, [122127] for
just a few references.

Despite the explicit construction of many tensor structures for various types of
spinning correlators, a complete characterisation of such structures remains miss-
ing [126].

Our approach follows the most straightforward method of first constructing the
basic building blocks of the structures. For instance, we will identify the correct
tensorial components that transform under so0(4), and the conformal prefactor that
specifies the transformations under dilatations. These building blocks will then be
combined in all possible ways, considering all inequivalent permutations. From
this extensive set of tensor structures, we will select a basis of independent struc-
tures to characterise the respective correlator.

This choice is arbitrary, as long as the selected structures are independent, as the
superconformal Ward identities do not uniquely determine the tensor structures
(they remain invariant when multiplied by functions of the cross ratios). The
choices made below aim for simplicity.

The first step in this procedure, however, is to count how many structures a basis
should consist of.

3.4.1.1. Counting Spacetime Structures

Determining the dimension of the space of tensorial spacetime structures for a
given correlator is a non-trivial task due to the structures obeying non-trivial al-
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gebraic relations. In fact, as of now, there is no complete classification of tensorial
structures available. [126]

However, a group-theory-based approach toward such a classification of tensor
structures in general dimensions was introduced in [126] and will be outlined and
utilized below.

Consider an arbitrary n-point function in a d-dimensional conformal field theory:
(07 (1) 052 (3) - - - O (2)) (3.122)

where p; specifies the representation of the operator O; inserted at x; under the
rotation group SO(d). For now, we will consider only the rotational part, as it is
the non-trivial component of the conformal tensor structures.

The idea is to gauge-fix the conformal symmetry to eliminate the symmetry re-
lations between the structures. A natural starting point is the standard CFT
configuration where we translate ;7 — 0, scale 9 — e (with e being a unit vec-
tor), and use special conformal transformations to send x3 — oo, resulting in

(001 (0)0,,(€)Ops(00) - - Op, (wn)) -

The resulting configuration must be invariant under the stabilizer group SO(d—1),
which represents the remaining rotations around the line through 0, e, and oo.
This SO(d — 1) can be further utilized to fix additional points. In particular, the
i-th point can be fixed to an (i — 2)-dimensional subspace by employing SO(d —
i + 3). For example, this procedure fixes the fourth point in an n > 4-point
correlation function to the well-known two-dimensional plane characterized by the
two variables z and z [36].

This process can be iteratively applied until all symmetry has been utilized or,
equivalently, for all points i < m = min(n,d + 2). The ultimate stabilizer group
for the final configuration is SO(d 4+ 2 — m), and the conformally invariant tensor
structures are given by

>SO(d+2—m) (3123

SO(d)
<ReSSO(d+2m) Ry pi
where Res$, denotes the restriction of a representation of G' to a representation of
the subgroup H C G, p; are the SO(d) representations of the operator at x;, and
(p)"" denotes a H-singlet in p;.

This procedure can be made more specific by applying it to correlators, specifically
the relevant 5-point correlators, [3.118 and [3.119] in a four-dimensional conformal
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theory. (Note that the superprimary correlator transforms trivially under rota-
tions.)

For this part, we will focus only on the spacetime aspect, characterized by the
spacetime indices « and ¢, and will temporarily omit the internal dependence.

As for any 5-point function, we start with the standard conformal transformations
sending 1 — 0, x5 — 1, and 23 — oo. In 4 dimensions, the remaining symmetry
group of this configuration is SO(3). We can use these three-dimensional rotations
around the line further to bring x, into a two-dimensional plane, leaving SO(2),
the rotations around the plane. This can be used finally to fix x5 to a three-
dimensional plane, leaving no further symmetry.

Consequently, any 5-point function in a 4-dimensional conformal field theory is
described by 5 independent coordinates, which are equivalent to the 5 conformal
cross ratios.

The number of independent tensor structures for the 5-point functions |3.118| and
is, however, as described above, given by the number of singlets under the
remaining group SO(d + 2 —m) = SO(1) = {Id}:

SO(1)
SOM4) o n
(Ressogg q pi> . (3.124)

Since SO(1) does not impose any non-trivial constraints, the number of tensor
structures for five-point functions in four dimensions is simply given by the dimen-
sions of the representations in the tensor product:

I dim (p;) - (3.125)
i=1
For the correlators involving the SU(4)g-current J,s (3.118) and the spinors
U,, ¥, (3.119), this amounts to:
(72222) : dim (4) - dim (1)* =4, (3.126)
(BW222) : dim (2)* - dim (1)° = 4, (3.127)

which means that both correlators can be described, with respect to the rotational
group SO(4), by 4 independent tensorial spacetime structures.

As for any scalar correlator, there is just one independent scalar structure for the
superprimary correlator.

3.4.1.2. Constructing Spacetime Structures

Having determined the dimension of the space of tensorial spacetime structures,
i.e., the explicit number of tensor structures required to describe the correlators
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(3.118]) and (3.119)), the goal of this section is to construct them explicitly.

The structures are defined by reflecting the transformation behaviour of the corre-
lator under the conformal algebra in 4 dimensions, su(2,2). This algebra consists of
translations Py, rotations Ly 2, Lg B , dilatations D, and special conformal trans-
formations K,. The group transformations on complex Minkowski spacetime in
matrix form follow from chapter

i B () = (9) sy (9515 Vg € GL(2). (3.128)
As outlined earlier, the explicit spacetime structures representing the conformal
part of the correlator are constructed by first forming basic building blocks with
the correct transformation behaviour under different parts of the conformal group.
We then consider all possibilities of multiplying these building blocks together,

and finally, we select a concrete basis. We will work separately for each correlator
B.117, B.118 and B.119]

<020' (wl)ozo' (332)020' (ws) Oz (7134)020' (335)>

The structure for the superprimary correlator is the simplest to consider. Since
the superprimary Qg is a scalar under the rotational group SO(4), the 5-point
function must also be a scalar, i.e., there is no tensorial part. Thus, there is just one
independent scalar structure, which is constructed from the standard constraints
of translational and rotational invariance on scalars, requiring that the 5-point
function depends only on absolute values of distances between points. This is
commonly ensured by considering squares of distances:

(Oa0 (21) Oa0y (12) Oy (3) Oy (1.4) Oay (w5)) = f (23) Vi j =1,...,5, (3.129)
with z;; = x; — x5,
and {L‘?j = det xf‘]a

Finally, the structure must reflect the correct conformal weight of the operators in

the 5-point function by being proportional to x; 28i " Since Ao, = 2, the structure
must be proportional to z; * for each i =1,...,5.

The spacetime structure for the superprimary correlator can be obtained from
the equivalent of the 22 Wick contractions of the 5-point function in free theory,
depicted in Figure [3.1] The vertices 1 to 5 represent the insertion points of the
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superprimary operators, while an edge connecting two vertices represents a prop-

agator of the form —-. A thick line corresponds to a double contraction of the
1

T.

O e oA
kel ol s ol ot
oty ﬁ' SRR
S il o]

Figure 3.1.: 22 structures in the superprimary correlator (22222). The correla-
tor decomposes into 10 intrinsic 5pt structures of the pentagon-type
(first two lines) and 12 products of 3pt structures (triangles) times 2pt
structures (double-lines) (third and fourth line). The blue nodes each
mark an insertion point of the superprimary, Oy, while each edges
illustrates a contraction, i.e. a propagator between the two involved
points. A thick line represents a double contraction corresponding to
a squared propagator.

The explicit spacetime structures corresponding to the various Wick contractions
are given by:

1

5~ for the pentagon type, (3.130)
327 x]kmklxll

1
TR T T

for the triangle plus double-line. (3.131)

Considering the possible permutations of 7, j, k, 1 = 2,3,4,5in(3.130land 7, 7, k, [, m =
1,2,3,4,5 in [3.131] we obtain the above Wick contractions.

These 22 possible spacetime structures illustrate that, over the space of functions
of the cross ratios, there is just one independent structure. This is because all
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22 structures can be transformed into each other by multiplying with powers of
conformal cross ratios. For instance,
1 B r3,7E 1 Us 1

= = — 3 132)
4,2 .9 2 2 .2 2,2 .9 .92 9 2.9 .2 .92 9 ° ( .
T1oT34 L4553 T1oT53 L1253 L34 L y5L51 U1 T12X53L34L 45T

Thus, there is only one independent structure over the space of functions of the
cross ratios. This result is consistent with formula|3.124], which holds for any scalar

n-point function, as:
dim (1)° = 1. (3.133)

Therefore, any of the 22 spacetime structures can be chosen to express the super-
primary correlator. For instance, we can write:

LA, (3139

2.2 .92 .9
T1oX23L34Ty5L51

(Oa(21)O2(22)Oz(23) Og(24) Oa2(5)) =

where fi({u}) is a single function of the five conformal cross ratios {u}.

The chosen expression of the conformal primary correlator for this thesis is given
at the end of this section, in Eqn. [3.214] after also the R-symmetry structures
have been considered.

In the field expansion of the correlator [3.116} it becomes evident that the superpri-
mary correlator at order O(pp) does not appear in its original covariant form but
rather in a differential form. Consequently, when studying the constraints from
supersymmetry, we do not possess the covariant correlator directly. Instead, we
are dealing with its differential form, which introduces additional tensorial struc-
tures.

For example, using the conventions presented in [A.1] differentiating the structure
above with respect to 2%, we obtain

0 1
e (g ) -
0 1 1 0
(e ) P+ g, (i) 1

1 ( 5. du, O

—(r1y — 215)aafi({u}) + 2_:1 fl({u})) :

TT2.2 .2 .2 2 e
T19X23L34L 45T — 077 Ou,

These type of identities will be used when studying the full superconformal con-
straints on the correlation function.
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(Jaa (1) O2(x2) O2(23) O2(24) O2(5))

The correlator (Juea(1)O2(x2)Oa(x3)O2(24)O2(x5)) involves spinning operators,
necessitating the construction of more involved tensorial structures.

As with other correlators, translational invariance dictates that these structures
must depend solely on distances between the points. While the scalar operators
Oy remain invariant under the action of the rotation group SO(4), the current
operator J,q4, for instance positioned at x$®, transforms non-trivially under this
symmetry. Consequently, the corresponding tensor structures must also transform
appropriately with respect to .

A natural approach to ensure this transformation behaviour is to contract the
distance matrices a:f;a such that the transformations act exclusively at the point ;.
This can be achieved, for example, through the well-established 3-point structures
(see, for instance, [128]), which take the following form:

Vi = (25t wyayy!) = (@5)as(@)” (@57 gas (3.136)

edgxﬂﬁega
—.

(3.137)

where (2740 = "

These 3-point structures can be extended straightforwardly to form intrinsic 5-
point structures, such as:

Viijki = (xl_z-l Tij T3 Ty xl_ll)da . (3.138)

The term intrinsic here refers to the fact that the structures in Eq. [3.13§ represent
the most natural description for a 5-point function, as they explicitly involve all five
points. These structures can thus not be used to represent lower-point functions.
In contrast, the structures given in Eq. can be used to describe both 3-point
and 5-point (and higher-point) functions.

Proof that the rotation group only transforms point 1: Use to see
Viij Vi =(91)a ’l(fﬁﬂl)pu(gi_l)ﬂ B(gi)ﬁ u(iUij)W(gj_l)fz 6(9]')6 /j(xj_ll)/ip(gl_l)p o
=(91)a ”(xfil)ﬂu(ll?ij)Mp(xﬁl)pp(gfl)p a

The g € SO(4) indeed only act in the first point. (Similarly for Vi k). O

Both the 3-point structures and the 5-point structures can be employed to describe
the 5-point correlator. A useful perspective for illustrating this is that a 5-point
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function, as given by Eq. [3.118] can be decomposed similarly to the well-known
5-point functions of the superprimaries Oy . Specifically, it can be expressed as
a pentagon as well as triangle-plus-double-line configuration, as depicted in Fig-
ure[3.2] In this figure, vertices connected by red lines are involved in tensorial con-
tractions, and the points (a1, as, as, a4) correspond to any permutation of 2,3, 4, 5.

a3

ay Q2 G4 , az as

Figure 3.2.: Inequivalent structures in the correlator (72222). The correlator de-
composes into intrinsic 5-point structures of the pentagon type (right
figure) and products of 3-point structures (triangles involving the cur-
rent) multiplied by 2-point structures (double lines involving only su-
perprimaries) (left figure). Note that 2-point functions of the type
(J2) vanish due to the orthogonality of the correlator.
The red node denotes the insertion of the current 7.4, in this case at
x1, while the blue nodes represent the superprimary Qs , inserted at
a1y... 04 = 2,3,4,5.
Moreover, vertices connected by red lines are contracted within a ten-
sorial structure.

After imposing all the constraints of the Poincaré group within SU(2,2) —namely,
translations and rotations— the resulting structures must also be made confor-
mally covariant. This is achieved by multiplying the structures with conformal
prefactors that ensure the correct scaling weight at each point, i.e., z; 2.

The conformal weights of the inserted operators are

No,, =2 & Ay=3 (3.139)

It is important to note that the tensorial components, as given by Eq. and
Eq. , are already proportional to #72 and remain of order O(1) at any other
point, regardless of the permutation of indices i, j, k, [.

Thus, to ensure the correct conformal weight, the conformal prefactor should be
proportional to x;* at each point i = 1,2,3,4,5. Any conformal prefactor that
satisfies this requirement is valid; however, without loss of generality, the following

prefactor is chosen:
1

. (3.140)
x%ﬂ%ﬂ?mx%?)
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As in the case of scalar correlators, any other conformal prefactor can be obtained
by multiplying the expression with powers of the conformal cross-ratios.

By combining the tensorial parts with the conformal prefactors, the correlator in
Eq.[3.118| can be expressed in terms of spacetime structures of the following form:

1 1
Vi & 155 Viin- (3.141)

215734735735 1o 73, 735235

Considering all possible permutations of the points i,j = 2,3,4,5, there are 12
distinct candidates for the short type structures V;;;, and 24 candidates for the
long type structures Vi ;5. However, these structures are not all independent over
the space of functions of {u}, but they are related.

Focusing first on the tensorial part (since the relation between the conformal pref-
actors has already been established through cross ratios), we observe that the
3-point structures obey simple linear relations. This can be seen by considering;:

— -1 -1 _ (1 -1
Vi = ('7311' Lij X1 )c'va = (fu (zir — zj1) 25 )da

_ (—xj_ll — 171_1'1) - ((Iil)aa - <I1_jl)da) :

[e%e"

(3.142)

As a result, all twelve forms of V;;; can be reduced to only three independent
structures, as demonstrated by the identities:

Viga = —Vigg + Vi, (3.143)
Vigs = —Vias + Vi o5, (3.144)
Vias = —Vioa + Vi os. (3.145)

Thus, from the four independent spacetime structures required to form a basis for
the correlator in Eq. [3.118] three can be chosen from the short or simple 3-point
function type.

This leaves one structure that must be of the intrinsic 5-point function, or the
long type. Any of the 24 candidates for this type can be selected, as all other
candidates can be expressed as linear combinations of the chosen one and the
three short structures. For example, we can write:

Vigaos = —Vigs +u- Vigsss + v Vigs, (3.146)
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where a 4-point identity has been used (see below), and u and v represent the two
4-point cross ratios, which in this specific case are given by:
11573

U= and v = 5 5 -
L1324 L1324

2 .9
L1423

(3.147)

Proof of the identity in Eq.[3.146

(775 T34%55 25751 aa = (073 U342 (T24 + T45) 751 )éa
= —($f31$34$§11)aa + ($f31$34$221$45$§11)aa
ﬁB(

-1 —1 -1 —1 —1
= — (@13 T34%51 )aa + (¥13 34243 )ap(45)"" (251 ) o

4pt id.

= — (213234751 aa + (—(213) + u - (25 w3257 ) + v - (274))as(2a5)7P(

Ts1 )5a
—1 —1 —1 1 —1 1 1
= — (13 234%5 )i — (T13 T45T57 Jaa + U - (T13 T23T34 T45T51 )aa
1 —1
+ 0 (214 P45 57 )éa
_ —1 1y —1 -1 1y —1 1y
= — (213 (T34 + T45)T51 Jaa + U (T13 ¥23T34 Ta5T51 Jaa + U - (T4 T45T57 )éa
—1 -1 -1 —1 -1 -1 —1
= —(T13 235751 )aa T U - (T12 T23T34 T45T57 Jaa TV (T14 T45T57 )aa-
The identity for four points used within this proof is given by

1 1 St 1 1 whal; 1

—_ — 1. — —_ (A —

('rij TikTyy Jaa = (—(Tig) + ) ;2 (zy LI )+ 22 xgj (T ))aar- (3.148)
ij vk 17k

In the same way, all other long 5-point structures can similarly be expressed in
terms of ‘/1,2345.

Without loss of generality, but with arguments for simplicity preferring the short
structures, the correlator in Eq. [3.118| will be expressed using the four tensor
structures as follows:

(Jaa(21)Oa(12) Oa(23) O2(74) Oa(5)) =

— 1 -1 -1 1 1
_93‘11233%4%215@3 ( ($12 T3 )aa gl({u}) (:v12 T4 )aa 92({u})

— (215 — 218 )aa 9s({u}) + (235 To5 73 245757 i 9a({u}) )
(3.149)

where the g;({u}) are arbitrary, invariant functions of the cross ratios.

In a similar manner, the correlators involving different permutations of the current
Jaa (), where i = 2, 3,4, 5, are constructed by applying the appropriate transfor-
mation at the respective insertion points.
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The prefactors are chosen to be identical for each correlator in order to facilitate

the establishment of relations between the various correlators as efficiently as pos-
sible.

The explicit forms of these corresponding expressions, including the notation that
will be used in further steps of the analysis, are provided in Appendix [C.1]

(W4 (1) Wo(22) Oz (23) O2(24) Oz (25))

The structures for the five-point correlators involving the spinor fields U, and U,
can be constructed using analogous arguments to those applied in the previous
section.

As in the case above, the tensorial structures that govern the transformation prop-
erties under SO(4) rotations are constructed by contracting matrices of distances
x;; in such a way that the transformations align with the behavior of the five-point
correlator.

With ¥, (z;) and U, (z2), there are now two non-trivial transformation points.
Specifically, the group action on x; affects &, while the action on x5 acts on a.
This constrains the tensorial components under SO(4) to the following two forms:

(%12 )aan (3.150)
(xfil Tij xj’;)da : (3.151)

In this setup, the SO(4) rotations act on z; and x5 at the respective indices a and
@, while leaving the remaining points invariant.
This can be proven in the same way as [3.138]

These tensorial components are of order ;' in x; and x5, and of order O(1) at
the other points. With

5
Ay =Ag = 2’ Ao, =2, (3.152)
a conformal prefactor proportional to z;* for each i = 1,...,5 must be included
to ensure the correct covariance of the correlator. For simplicity and consistency
with the previous correlator involving the SU(4) g-current, see Eq.|3.118| the same

prefactor is employed. Thus, the structures take the following form:
1 1

-1 -1
55 5 ————5 (T3, Tii %5 )aa- (3.153)
4 .2 .2 .2 4222(111JJ20‘0‘

(213 )oa  and
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Considering all possible permutations of the tensorial components, we find that
there is only one short two-point structure but six ( 3x2) possible longer structures,
namely:
(715 234250 ey (214 Ta3T3 )y
(273035252 )aas  (¥15 T5373 s (3.154)
(T14 T45T53 Jaas  (T15 T542 53 )aa-
However, the structures that involve the same points, i.e., two structures within

the same line above, can be easily related to each other, along with (213 )aa, by
the following relation:

x2,x2. x2 a2
(175 o = — 52 (119 aa + 2 (23524755 ) da (3.155)
T2 122

Proof of above relation along example j = 3,1 = 4:

-1 -1
(213 T34%43 )
1 1
=55 (13734%42) 40 = 55 ((T14 — 234)34(T43 — 23) ) dar
L13L24 L13L24
1
:T 22 ((714734743) — (234734743) — (14734723) + (34734723) ) s
13724
2 .2 2 .2
T4, T5,T
= %4 24 (361411'349543) - 734 34 (9534195345043)
L13L24 L1339y
2 2 .2
33149523 L34L23 , 1 -1
T 252 (9514 L3493 )aoc + 2272 (T34 734753 )
13 24 1324
2 2
55141‘34 -1 55349534 55149523 93345523 -1
T3 2 (714 )oa — 3 5 (z 43) — 5 3 ($14 L3493 )aoc"‘ 2272 (T23 )éa
T13Toy T13Toy T13Loy T13T24
2 22, 22
L34 L1423
= (—14 — Ta3 + T23) a0 — 52> (T4 T34253 )éa
Li3Loy T13L24
2 2 .2 2 2 .2
L34 L1423 1 37129534 L1423 1
= (—712)éa — (z14 T34T93 ) = (3512 )i (214 T34%93 )aaD
2272 2222 T 2222 T 22
13724 13%24 13724 13724

Similar relations hold true when considering other permutations of Waa(x) and Wae(x).

Thus, the basis for the four tensorial structures of the correlator in Eq. [3.119]is
straightforwardly selected by choosing one structure from each line in Eq. [3.154]
along with the short two-point structure.

(Wi (1) Vg (22) Oo(23) Oz (24) Os(5)) =
R . (o 23 233 e I ({u}) + (273 W53 733 o ha({u})  (3.156)

T1oT34T 4553
+(215 L5y Tho )aa h3({u}) + (275 )aa h4({u}))
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(W4 (21)O(w2) o (23) Oz (24) Os(5)) =
= ﬁ ((xf41 4o T3 )aa I ({u}) + (275 255 233 )aa h2({u}) (3.157)

T1oT34T45T53

(275 T34 733 ao ha({u}) + (213)an ha({u}))

<\i’d($1)o2($2)02($3)‘1’a($4)02($5)> =
- % <(x1_31 T30 T34 aa I ({u}) + (275 255 234 )aa h2({u}) (3.158)

T1oT34T 4553

(255 755 730 )aa hs({u}) + (21 )aa ha({u}))

(W4 (1) Oo(2) Oa(3) Oa(34) Vo (w5)) =
e (i e D) + @ T e () (3.159)

T1oX34 L4553

(@0 a3 233 )aa ha({u}) + (@15 s ha({u}))

The unknown functions of the cross ratios, which correspond to correlators involv-
ing the spinor currents, are denoted by h({u}).

Similarly, correlators with W, inserted at other points can be constructed using
the same approach. A comprehensive list of all spacetime structures for the rele-
vant correlators including the notation used in the further steps of the analysis is

provided in Appendix [C.]

3.4.1.3. Relations between spacetime structures

When the bosonic correlation functions are inserted into the constraints derived
from supersymmetric invariance, a single such constraint will decompose into sev-
eral constraints —one for each coefficient corresponding to an independent bosonic
structure. (Note that the application of supersymmetric invariance to the full
super-correlator results in objects (the constraints) that are not conformally co-
variant. Instead, these constraints are proportional to the tensorial structures.) In
the case of spacetime structures, linear independence is defined over the space of
functions of the cross ratios, similar to the situation in the psu(1,1]2) case.
Unlike the simpler toy model case, however, the relations between the tensorial
structures in the current setup are significantly more complex and require a more
detailed study.

We will prepare this discussion here while the spacetime structures are still fresh
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in mind and use the results in the further sections, when the full superconformal
constraints are derived.

As in the psu(1, 1|2) case (and elaborated in detail in the coming sections), super-
symmetric invariance relates all correlation functions proportional to a p2® or a
pee. respectively.

Consequently, it becomes necessary to study the relations between the tensorial
structures of all correlators proportional to a p2® (or pi<).

Given the complexity of these relations, we lack a straightforward method for
counting how many independent structures will emerge. Instead, we take ad-
vantage of the fact that these structures are valued in a four-dimensional space.
Thus, in a first step, we express the structures in a four-dimensional basis with
coefficients, which are not necessarily functions of the conformal cross ratios. In-
dependence with respect to the cross ratios will be studied in a subsequent step.

We consider the following bases of four fundamental structures for correlators
proportional to each p; or p;:

[aay
[asy

P11 )aas (733)aas (#14)aas (715 )aas (3.160)
P2, P2 ¢ (231 )aas (T35 )aar (€21 )aas (%25 )aas (3.161)
p3,P3 (Igll)aaa (x521)aa7 (17:’:41)0'@7 (x3_51)ocaa (3.162)
p1,p1 ¢ (25 )aas (T22)aar (233 )aas (235 )aas (3.163)
P5,P5 ° (xgll)dm ($5_21)d0m (:BE:?,l)écav (335_41)64&- (3.164)

The procedure of expressing the various tensor structures in terms of the 4-
dimensional basis will be outlined using the example of correlators proportional to

7

p1%, and hence structures proportional to “(z3;')aa”

The correlators or terms proportional to p; ¢ are:

0

ax%d <020/ (1’1)020/ (.1'2)020/ (.I’g)OQO/ (.1'4)020/ (l’5)> (3 165)
(ja?(ifl)ozof (22) O (23) O/ (24) Oar (5)) (3.166)
<\Dd (.I‘l)\Ila (.ri>020/ (.Tk)OQO/ (%0020/ (.Tm)> (3 167)

for all permutations of W, (x;),7 = 2,3,4,5. Any internal dependence has been
omitted for the duration of this argument.
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These correlators involve the following structures:

(w121)aav <x131)aow (x141)0con ("E151)Ocon

—1 —1 —1
1714 T43T35 )éas C515 T53T39 )aas CC15 T54T 49 )éas

-1 -1
Ty $529524 das (L1 37539034 oy

oy

( Jaas ( Jaas ( )
(5514 L1953 )aas (715 565256231)aa, (275 $54$431)aa,
(%13 T32T2 )ias (27 Jaas (21 )
( Jaas (Z1. 25 Jaas (15 £43735 s

—1
$13 L32L95 )aers

1 1 -1
(715 23734 T45T5) ) éa

(3.168)

(3.169)

(3.170)

All these structures will be expressed in the basis of the first four structures,

0. 163

Note that the short structures of the correlator involving the SU(4)g-current,
[3.166] are already expanded in terms of the short 2-pt structures, Eqn. [3.168] as
written in Eqn. [3.142] Therefore, only the long structure of this correlator-type

has to be considered.

In a preliminary step, the structures of correlators involving We(z;) and W, (z;)
for all i = 2, 3,4, 5 can be reduced to only 4 independent structures (over the space

of functions of cross ratios) by the four-point identities:

(23 225 oo = — (T3 Tuei) Jaa — (23" aa
2.2 2.2
B 3 T5T5; _ Lijlir ,
(%klﬂl?lcjlel)da = 712 ]2 (lelxlkxk] )éa — (xikl)da + 73 B (xijl)doé‘
LikLji TikTji

This can be utilized for the above structures |3.169| by taking i = 1.

yields the following identities:

(5314 754253231)% = —(x1_41x43a:§21)d (%41)
x2,x2 _ 22,
(713 333237241)% = 54 = (3714 5’;433332) - (33131)0204 + ;2 §4< 121)da
]313 24 .T13I'24
(715 355235231)&& = _(9515 55531’521)0'@ - (1’1_51)0204
x2x2 B 2o
($ T32T95 )aa = 951;522 (3715 x53x32) - (37131)004 + x%zéz( 121)éca
(m T52%9y )aa = _(115 $54I221)aa - (951_51)@
2 12 B e
(x T42%95 )aa = ;5 34 (%513”5415421) - ($141)aa + ;2 ;15< 121)o'wz
L1425 T14%25
(5’515 T53T3y )aa = —(xf51x54:c231)m - (xf51)da
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—1 —1 95153734 1 -1 1 113785,
(214 T43%35 Jaa = 5 (15 5443 Jaa — (T11 )aa + =375 (213 )da (3.180)
23,73 L14235
Note that all the coefficients are conformal cross ratios (or combinations thereof)
such that up to this point, no additional complexity has been introduced.

To summarise, within this preliminary step, we have reduced the 27 structures
B.1683.170] to 9 structures of the form

(9‘512 )aas (1313 )aas (95141)aa7 (37;51>da7

(33141934395321)@7 (33151375333321)aa> (331_51335433221)@, (331_51935433231)@, (3'181)

1 -1 -1
(5512 T23T34 T45T571 )éa-

Now, all 5 remaining structures in the second and third lines get expressed in terms
of the short ones in the first line. As the structures are valued in a 4-dimensional
space, only 4 structures can be entirely independent. The remaining structures
will exhibit dependencies. The rest of this section is devoted to studying those
dependencies.

To outline how the remaining five structures are expressed in the chosen basis, we
study the example of
Via = (7] 243733 )a- (3.182)

Expressing this structure V' in terms of the basis
e = {(#13)aas (273 )aas (274 )aas (275 )aa } (3.183)
involves solving an equation of the form
Via =0 (€1)aa +0-(e2)aa + ¢+ (€3)aa + d - (€4)da (3.184)

for the coefficients a, b, ¢, d.

By construction, the coefficients a, b, ¢, d must be polynomial in the Lorentz in-
variants. The space of Lorentz invariants for five points is ten-dimensional. In this
case, we must consider however the eleven invariants

2 2 .2 .2 2 .2 2 2 2 2
T125 L135 L145 L155 L235 L2g45 L255 L34, L35, L5,

_ B P ad, BB . . ) .
T = €uupo 5T Thsls = X5 To5 T35 5545(%/8%5%,8%5 €ap€ap€ro€ss T Eaveaﬁfﬂéew)

(3.185)
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(or any permutation of the last invariant).

This is because the last invariant does not depend polynomially on the ten Lorentz
squares in the first line (only its square does) and hence, in this case, must be con-
sidered as well. To summarize, the coefficients a, b, ¢, d are polynomials in the 11
invariants

To obtain the expressions for the coefficients in terms of these Lorentz invariants,
we make a polynomial ansatz

ansatz =y ccn(z3)" + ... (3.186)

and equate it with the explicit coefficients obtained by solving equation
(that could be only solved in component form). In practice, this resulting equa-
tion is transformed into a system of four equations (one for each component), by
contracting the indices as follows:

(212)*Via = a(212)** (212 )aa + b(212) (213 )aa + (212)** (#11)aa + d(212)*¥ (215 ) aas
(3.187)

(213)*Vaa = a(213)** (273 )aa + b(213)** (213 aa + c(@13)*¥(21] )aa + d(213) (215 ) das
(3.188)

(214)*Via = a(214)** (212 )aa + b(214) (213 )aa + (@12)** (211 aa + d(214)** (275 ) das
(3.189)

(215)*WVaa = a(215)** (273 )aa + b(215)** (213 aa + c(@15)*¥(21] )aa + d(215) (215 ) da-
(3.190)

This system of four equations fixes the four coefficients a, b, ¢, d.

To solve for the coefficients in terms of the Lorentz scalars, we use the following
trace identities:
xi + ‘T%j —

tr (w27} ) = o i (3.191)
J

1

_ 2 2 2 2 2 2 2 2 2
T %2 a2 (xz'lxjk — .y + xay, — vy, — g + 1))
J

1 1

tr (xh- T Tjklyy )
2 2 2 2 2 | .2

—xy(Ty — 2y + Ty) + vy — T + 23)

2 2 2 w_v_p o
—zu(T); — T + 7)) — Ezwpoxlﬂuxkﬂji) )
(3.192)

where the last term must be translated into su(2)-indices. It is written in terms
of 4-vector indices here for simplicity of the expression.
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A similar expression holds for tr (!Eu a:fjlxjkx,;lla:lmx;fl), but is too large to display

here[]

By applying this procedure to each of the five remaining structures, we can express
them all in terms of a basis of the four short structures, with coefficients that are
functions of the eleven Lorentz invariants. The “eleventh” invariant Z appears
linearly only.

Inserting the expressions for the coefficients into the supersymmetry constraint
from p¢® will yield four equations, one for each coefficient corresponding to the
independent basis structures (215 )aa, (213 )aa, (14 )aas (13 )aa-

However, this does not complete the process. These four structures are indepen-
dent when considering functions of Lorentz invariants, but if we consider the space
of cross ratios, further independencies are introduced. This splits up the equations

even further.

To address this, we express five of the Lorentz scalars in terms of the five conformal
cross ratios. For example,

2 .2 2,2 2,2 .2
Tl Tk Tials X
13%24 13%24 13%24
T3y Ta3 T334 (3 193)
x2,x2 x2,x2 '
2 24L35 2 24L35
T3y Ia3

By extracting the coefficients of the remaining (5 + 1) Lorentz invariants within
the four constraints, we obtain the desired equations reflecting the independence
over the space of functions of cross ratios.

In particular, the final system of equations will only involve the five conformal
cross ratios.

This procedure will be used in the further sections when deriving the superconfor-
mal Ward identities.

3.4.2. R-symmetry structures

In addition to the spacetime structures, we must now consider the second bosonic
subgroup of PSU(2,2|4), namely the R-symmetry group SU(4)g, which, within

5 A Mathematica notebook containing the mentioned identity can provided upon request.
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this procedure of deriving the SCWI, acts exclusively on the internal coordinates
y*®. The group SU(4)g transforms the internal coordinates in a way analogous
to the way the conformal group SU(2,2) acts on the spacetime coordinates z,
with the key difference that SU(4) is compact, whereas SU(2,2) is non-compact.
This distinction introduces additional analyticity constraints on the R-symmetry
structures.

In practical terms, this means that arbitrary functions of internal cross ratios,
which could lead to singularities, are not allowed. Instead, the structures must
exhibit only polynomial dependence on the internal coordinates.

This significantly impacts the representation of correlators in terms of independent

structures, as will be discussed in more detail below.

3.4.2.1. Counting R-symmetry structures

Correlation functions that are covariant under SU(4)gr are required to depend
polynomially on the internal coordinates y®. Consequently, it is not possible to
multiply these correlators by arbitrary functions of the R-symmetry cross ratios,
and only truly linearly independent structures must be considered.

In other words, a set of R-symmetry structures {ry,...,r;} is considered indepen-
dent if there exist no {cy,...,¢} € C such that

Z 2:161'7”1' =0.

This restriction simplifies the process of counting the independent structures but
simultaneously leads to a higher number of such structures.

A useful method for determining the number of independent R-symmetry struc-
tures in a given correlator is to count the number of singlets in the relevant tensor
product of R-symmetry representations.

For instance, consider the 5-point function of superprimaries

<(920/ (y1)020/ (y2)020/ (3/3)020/ (3/4)020/ (y5)) ) (3-194)

where, for the moment, we focus exclusively on the internal dependence y;.

In the language of Dynkin labels, the superprimary Osy transforms in the repre-
sentation [0,2,0] under SU(4)g. Thus, from the perspective of R-symmetry, the
5-point function corresponds to the tensor product

[0, 2,0]%5. (3.195)
This tensor product decomposes into irreducible representations as

[0,2,0]%5 = 22[0,0,0] @ 130[1,0, 1] ® 145[0,2,0] & . . ., (3.196)

116



3.4. (BOSONIC) STRUCTURES IN HIGHER POINT CORRELATORS

indicating that there are 22 singlets. Indeed, there are 22 linearly independent
R-symmetry structures, which can be represented in terms of Wick contractions

(see Figure [3.1).

Applying the same reasoning to different correlators, the number of singlets in the
relevant tensor product provides the number of independent R-symmetry struc-
tures for correlators involving currents and spinors. Specifically, we find:

(Jaa(y1)O2(y2) O2(y3) O2(y4) O2(ys)) - (3.197)
1,0,1] @ [0,2,0]% = 21[0,0,0] ® 142[1,0,1] © 130[0,2,0] & ...
(Wa(y1) Wa(y2) O2(y3) O2(y1) Oa(ys)) -
[1,1,0] @ [0,1,1] © [0,2, 0]% = 28[0,0,0] @ 193[1,0, 1] @ 187[0,2,0] & . . .
(3.198)

Thus, the correlator involving the current [J,, must be expressed in terms of
21 linearly independent R-symmetry structures, while the correlators involving
the spinor fields ¥, and U, must be represented by 28 linearly independent R-
symmetry structures.

3.4.2.2. Constructing R-symmetry structures

(02(yl)(’?z(yz)(’?z(y3)(92(y4)(92 (y5)>

A systematic method for deriving the 22 R-symmetry structures associated with
the superprimary 5-point function is to employ the Wick contractions, as illus-
trated in Figure 3.1]

Interpreting Figure in the context of R-symmetry amounts to assigning each
edge a propagator in the internal variables, represented as yfj = det y;;, where ¢
and j denote the vertices that the edge connects. A thick edge corresponds to a
double contraction, which, in this context, is expressed as yfj.

All 22 structures are linearly independent, leading to the conclusion that the in-
ternal part of the superprimary correlator can be expressed by those structures

(Oa' (Y1) Oa0r (y2) Oz (y3) Oar (ys) Oar (y5)) =
= {3 ai s VisU3 sV, Ui YasYE, UisYBsUiatn: VasU i YR

y§4yfgy§5y§1, yésyfsyiyip y§4y%2y§5y§1, y§5yfay§4yip 9359%29339317 3199
2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 (3.199)
Y12Y23Y34Ya5Y51> Y12Y23Y35Y54Y415 Y12Y24Y15Y53Y315 Y12Y24Y43Y35Y51 >

2 9 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 g9 o
Y12Y25Y53Y34Y41> Y12Y25Y54Y43Y315 Y13Y35Y52Y24Y415 Y13Y32Y24Y45Y515

2,02, 92 2 2 2 92 9 92 2 2 92 92 92 2 92 2 2 92 92
Y13Y32Y25Y54Ya1> Y13Y34Y42Y25Y51, Y1aY42Y23Y35Y515 y15y52y23y34y41}'
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The full bosonic correlator, with R-symmetry and spacetime structures combined,
is provided at the end of this section.

<.’7aa(y1)02 (92)02(93)02 (y4)(’)2 (’!/5))

The correlator (Jua(y1)O2(y2)O2(y3)O2(ys)O2(ys)) involves the current Juq(y),
which transforms non-trivially under the SU(4)g symmetry group.

Consequently, the correlator is represented by tensorial structures with transfor-
mations acting specifically on the internal coordinates y%%.

Since both the conformal group SU(2,2) and the R-symmetry group SU(4)g act
in a similar manner, the construction of the tensorial structures follows the same
reasoning as in the spinning conformal case. Thus, we identify the candidate
structures as follows:

(Wi Yigy Daar (Wi Vi Yni¥in aa- (3.200)

However, to ensure analyticity and avoid potential singularities, especially in the
limits ¢« — 1 or j — 1, polynomial dependence must be guaranteed. This is
achieved by multiplying the structures with appropriate prefactors.

Thus, the R-symmetry tensorial components can be expressed as:

Rii; = v (Vi Yisyin aa (3.201)
Riiju = Y1y (Ui YisYin Yabin aa- (3.202)

As in the case of spacetime structures, we also require an invariant prefactor that
carries the correct R-symmetry weight of the correlator at each point.

The SU(4)p-symmetry weight p is reflected in the internal coordinates as ~ y*?,
where

Po,, =2, pg=1 (3.203)

Since full linear independence must be taken into account, the first step involves
constructing all such prefactors that multiply each tensorial component. The gen-
eral structures can be expressed as follows:

Y Y5k
Ui s Vi Vi s Daa - S YYD Vi W Yy Jaa - S vEYAYE (3.204)
YAl YayaV

Considering all permutations of indices i, j, k,l € {2,3,4,5}, there are a total of
72 = (3 - 4!) candidate structures of the first type and 36 = (3 - 12) of the second
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type. However, only 21 of these structures are linearly independent.

From the short, three-point-like structures represented in Eqn [3.204, there are 18
linearly independent structures, which can be taken as follows:

vyt (v — i) vk
912914 (?/12 - _1) -y§5 0 o
_ L g2 Y23Ys5

y12915 ?412 Yis Y34

( 1) 9 y§4y§5 (3.205)
913% (3113 Y14 ) * Y5 y§5y§4
YisYis (y13 ?/151) “Yag
y14yl5 (?/14 Y15 )m ygs

Here, we have directly rewritten those short structures in terms of the two-point
structures, by the same identity as used in the spacetime case.

For simplicity, akin to the spacetime case, all 18 structures will be considered as
part of the basis representing the full correlator. Consequently, three additional
structures must be of the long type.

To maintain simplicity, we select only one tensorial part with each of the three
different scalar factors, resulting in three independent structures. Without loss of
generality, the remaining three structures are chosen to be of the form:

2,2 2 (-1 —1 ~1 yggy%
Y12Y34Y51 (912 Y23Y34 Ya5Y51 )(za : y%4y32,5 (3.206)
Y25Y34

Summarising, the correlator involving the current J,;(y1) can be written in terms
of the structures

(T (y1)O20/ (y2) O20r (y3) O20 (ya) O20 (y5))

{9%29%43/%49515 (yﬁl Y24 ?Jzﬁl) L YiaUTaY3sY3s Vi (?Jm You Ya ) )
y%zy%5y§5y§4 (912 Ya5 Ys1 ) ) ?/%29%59%43/?%4 Y35 (yu Ya5 Ys1 )

y%gy%4y§5y32,4 (yfg Y34 Ya ) ) ?J%3y%4y%5y92,5 y§4 (y13 Y34 Ya1 ) (3.207)

YisyisY24Y3s (?413 Y35 Ys1 ) s Y13Y15Y34Y34 Yo5 (3/13 Y35 Ys1 )

y%zy%?,y%:ayis (ny Y23 Y31 )da ) y%Qy%3y34y§5 925 (yﬁ Y3 Y31 )da )

2 2 2 9 9o ( _1 -1 2 2 2 9 9o ( _1 -1
Y12Y14Y23Y35 Y45 (y12 Y24 Ysq )aa’ Y13Y15Y24Y23 Y45 (y13 Y35 Ys1 )aa’
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2 2 4 92 ( 1 -1 2 2 9 9 9o ( ] -1
Y14Y15Y23Y45 (y14 Ya5 Ys1 )aa’ Y14Y15Y23Y24 Y35 (y14 Ya5 Ys1 ) )

aa

2 2 9 9 9o ([ 1 -1 2 2 92 9 o ( 1 -1
Y13Y14Y25Y23 Y45 (3113 Y34 Y1 >aa’ Y12Y13Y25Y34 Yu5 (912 Y23 Y31 )aa’

2.2 .92 92 9 ( _1 -1 2.2 92 9 9 ( _1 -1
Y12Y15Y23Y34 Y45 (ylz Y25 Ys1 )aa’ Y14Y15Y23Y34 Y25 (?414 Ya5 Ys1 )aa’

2 2 92 9 92 ( _1 -1 -1 2 2 92 9 92 ( _1 -1 -1
Y12Y23Y34Y45 Y15 (3/12 Y23 Ysa Ya5 Ys1 )da y - Y12Y24Y34Y35 Y51 (y12 Y23 Ysa Y45 Ys1 )(m )
2 2 4 2 -1 -1 -1
Y12Y25Y34Y15 (912 Y23 Y34 Ya5 Ys1 >aa} .
The correlators where J,,(x;) is inserted at a different point can be constructed in the

very same Wayﬁ

<‘T’a(y1)‘1’a(y2)oz (y3)O2(y4) O2(ys))

In the same manner as described above, the tensorial part of the R-symmetry struc-
tures for the correlator (W, (y1)Wa(y2)Oa(y3)Oa(ys)Os(ys)) can be constructed by
copying the spacetime part, utilizing the analogous transformation group actions
of SU(4)r and SU(2,2).

To ensure polynomial dependence, we multiply by the respective prefactors, re-
sulting in tensor structures of the following form:

Yo (Y Jaas UiV, (Uni Yig¥y2 Daa- (3.208)

Furthermore, an internal prefactor of the correct weight must be included. Recall
that those R-symmetry weights are

3

Thus, the following structures are possible:

y%QyiQky]zk

2,2 .9

Y1kY21Yi;

y%Zy%yjzkyl?z 5 9 o

2 ¢, -1 2,2 ,2 2 2.2/ -1 -1 Y1kY2:Yjk
Y12(Y12 Jaa * Y12 Yik Yk - Y192 (Wi Yij¥ja Jaa - 0 o o (3.210)

2.2,92 9 Y1kY2;Yik

Y1:Y2iY51Y5k 9 9 o

Y1 Y21 Yik

y%iy%ky?k

where all permutations of indices 7, j, k in {3,4,5} must be considered.
It is evident that the above structures with all permutations are not all linearly

6 A notebook including all those correlators can be requested from the author.
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3.4. (BOSONIC) STRUCTURES IN HIGHER POINT CORRELATORS

dependent. In fact, all candidates reduce to 28 linearly independent structures, as
desired.

Without loss of generality, we choose the correlator to be represented by the fol-
lowing R-symmetry structures:

<‘I’aa(y1)‘11aa(y2)020'(93)020'@4)@20'(3/5)) :

{tikaints (5 v )., viwtsuiionts (o s i),
_ _ 4 —_ _
Yr3Y14Ya3Ya5Y15 <y141 Yus 9521) s YisY14Y2sY3 (%41 Yas y521) aa’
Yy 1aYaaYasYss (111_41 Yus 95_21) s Y12V TaYa5Y34Y3 <y1_41 Yas ?/5_21>
_1)

YLaYisY5sYas Y3 (91_41 Ya3 Y2

aa

. . Y

aa aa
2,2 4 2 ( —1 -1

aa J14Y15Y23Y45 (914 Ya3 Y2 )

L)
aa

YiYsYsunnyis (Vid Vs v ) Uiayiaysayss (vi2)

N Y
aa

YT2Y11Y55Y35Y31 (yl_zl)da s YoY1aYa3Y3sYis (91_21>

. ’
aa

4 _ _ _ _
Y13Y21Y35Y1s <3Jl31 Y3s ?/521> an’ YTsY1sYa1Ya5Y3a (%31 Yss y521) (3.211)

L)
aa

Yy TaYaaYasYss (yl_?>1 Yss y5_21)da Y3V TaYasYaa <y1_31 Yss ?J5—21)

. Y
aa

Yyl YasYasYis (y1_31 Y35 ?/5_21)[.1& s YiaYisYasY34Yis (91—31 Y35 y5_21>

. )
aa

Utsy3u03sYis (Ui vaa vz ), o VLB aBsyts (Vs e v

. Y
aa

Yt3YisYa1Yas Y31 (91_31 Y34 y4_21)c.m  Y13YisY2Y3s (?/1_31 Y3a y4_21)

. Y
aa

YrsY15Ya3Yaa Y15 (yﬁl Ysa yzle)da , YioY13Y2aY35Yis (yﬁl Ysa ?/Zzl>

YaYi3YasYis <y1_21>da s YioY13Ya5Y3aYis (91_21) aa’
vhadihonts (v, - it (i), } -

aa

Similarly, all correlators with various different insertion points of ¥, and ¥, are
constructed [7]

3.4.3. Full bosonic correlators

To obtain the complete expressions for the bosonic correlators, it is necessary to
combine the constructed R-symmetry and conformal structures. In principle, each

"Again, a full list of those correlators can be provided.
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3.4. (BOSONIC) STRUCTURES IN HIGHER POINT CORRELATORS

R-symmetry structure multiplies any spacetime structure, which can be expressed
schematically as:

=z

Gn({zi,yi}) = (y-structure - x-structure), - f;({u}), (3.212)

i=1

where {u} denotes the five cross ratios defined earlier in Eqn. [3.121] [121]:

2 .2 2 .2
T19T34 _ T14T33 _
up = 22 22, = 2121, U= el =(1—2)(1— %),
2 .2 2 .2
To3Lys - To5T3y _
uz = = 2%, U= —5—5 =1—2)(1-7) (3.213)
x%ﬂ?ﬁ ’ x%ﬂ%s 7
x2. 2,12 B - - -
us =3B (s —a) (e — B+ (1— 21 —2) (1 — 21 — 2).
T24X13T35

For the case of the 5-point function of superprimaries Oy (x,y), the correlator
takes the form:

(Os0r (21, 11) O2pr (22, Y2) Oapr (23, Y3) Oor (24, ya) O (25, Y5)) =
4 .2 .2 .2
Y12Y34Y15Y 3/ y y y y y y y
= Yialsbislis p (g ny g VisUalissy g gy YiaYasUsslse g

37‘11235:234%21517%3 931337249545%2 33149323%5%2

915923.@34942 ({ }) ?/23914945951 ({ }) ?/24913935951 ({ })
515[115‘”23%4%2 23%4515455551 24517135E35$51
925913934941 ({ }) y34y12y25y51 ({ }) 3/35912924941 ({ })
I35$%3$34I41 x34x12x25x51 x35x12x24x41
y45y12y23y31 y12y23y34y45y51 912923935954941
e U
$35$121’23 31 ({ }) $12I23I34I45 51 ({ }) 12332313:%,595545541 ({ })
y12y24y45y53y31 ({ }) ?J12?Jz4y43ys5y51 ({ }) 912?/25953934941 ({u})
33121’24554533533731 :1712:1;24x43x35x51 13123725135317343741
3/123/259549433/31 y13y353/523/243/41 y139323/24y45y51

16({u}) + 17( ) + 18({u})
flf%ﬂ%ﬁ%ﬂiﬂ%l { } x13x35:£52x24x41 { } 951333323724%5%1 { }
2.2,.92 .92 2
Y13Y32Y25Y54Y11 y13y34y4gy25y51 3/141/42?!23?/35951

1({u}) + s0({u}) + 21 ({u})
37%33%2953593%4%211 x%3x§4$§2x§5x§1 $14$4212$%355§537§1

?J15?J52?J23?J34y41 p 2({u})
$15$52$23$34$41

(3.214)

where f;({u}) are functions of the conformal cross ratios {u}.
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3.4. (BOSONIC) STRUCTURES IN HIGHER POINT CORRELATORS

We adopted a convention similar to that used in the psu(1,1|2) case, where the
conformal structures are chosen to mirror the R-symmetry structures. This choice
reflects the origin of those structures in Wick contractions and aligns with con-
ventions commonly found in the literature. Each function f;({u}) is an arbitrary,
conformally invariant function of the five cross ratios {u}.

Similarly, the descendant correlators are constructed by multiplying each R-symmetry
structure with each conformal structure, along with the associated unknown func-
tions of the cross ratios. We do not present the full form of the correlators herdf]
but we provide some remarks regarding the notation and key details.

The descendant correlators involving the SU(4)g current are proportional to a set
of functions denoted by
gik({u}),

where the index ¢ corresponds to the insertion point of the SU(4)g current, and
the indices k and [ refer to the R-symmetry and spacetime structures, respectively,
that this function is multiplying. Specifically, the function g; j;({u}) multiplies the
k-th R-symmetry structure and the [-th spacetime structure. Consequently, the
total number of unknown functions g¢; 5 ({u}) in this context is given by

#(inequiv. insertions of Jha.a) - k-1 =5-21-4 = 420.

Moreover, the descendant correlators involving the spinor fields U, (z) and W o4 (z)
are proportional to functions denoted as

hijwa({u}),

where i denotes the insertion point of U, (x;) and j refers to the insertion point of
U,a(z;). As before, the index k labels the R-symmetry structure and [ labels the
conformal structure associated with each function. Therefore, the total number of
unknown functions h;; g ({u}), with i # j, is given by

#(inequiv. ins. of Woy) - #(inequiv. ins. of o) - k-1 =5-4-28 -4 = 2240.
In summary, we can express all correlators appearing in the fermionic expansion

of the five-point function of stress tensor multiplets (up to O(pp)) in a form that
is consistent with the bosonic symmetries. This expansion introduces

22 + 2660

8 A Mathematica notebook containing all those correlators can be provided.
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3.4. (BOSONIC) STRUCTURES IN HIGHER POINT CORRELATORS

unknown functions of the cross ratios; 22 of the superprimary correlator and 2660 of
the various descendent correlators. The total number of unknowns is subsequently
reduced by imposing supersymmetric invariance constraints, which will be the
objective of the next sections.
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3.5. SCWI FOR THE FOUR-POINT CORRELATOR

3.5. SCWI for the Four-Point Correlator

In the remaining two sections of this chapter, we will derive the superconformal
Ward identities (SCWI) by integrating the three key steps discussed and developed
previously:

1. Exact multiplet expressions in analytic superspace,
2. Constraints from bosonic subgroups, and
3. Constraints from supersymmetry.

Before finalising the analysis of the five-point function, however, we shall revisit
and rederive the SCWI for the four-point function of stress-tensor multiplets:

Ga2oo({Xi}) = (T (X1) T (X2) T (X3) T (X)) - (3.215)

This rederivation is beneficial for several reasons. First, the four-point function
involves a considerably smaller number of tensor structures and, consequently,
fewer unknown functions of the cross ratios. This reduction simplifies the pre-
sentation and facilitates a clear understanding of the method in the context of
four-dimensional theories. In contrast, the five-point case introduces significantly
more complexity, making it challenging to present all technical details comprehen-
sively.

Thus, this derivation also serves to illustrate the power of the superconformal Ward
identities in a clear and rigorous manner.

Moreover, the four-point case allows us to verify the consistency of our approach
by reproducing well-established results from the literature, which were discussed

in Section 2.4]

The method for deriving the SCWI remains the same as in the five-point case.
Moreover, the fundamental building blocks constructed in the previous sections
are identical or, at the very least, closely related.

Since we are focusing on the four-point function of stress-tensor multiplets, we
can employ the multiplet field expansion developed in Section [3.3] specifically the
expression given by equation [3.113]

Substituting this field expansion into the four-point function yields an expansion of
the correlator analogous in structure to that of the five-point function, as presented
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3.5. SCWI FOR THE FOUR-POINT CORRELATOR

in equation [3.116, The four-point expansion is as follows:

Goooo({Xi}) = (T (X)) T (Xo) T (X3) T (Xy))
= (Oav (71, 91) O20 (72, Y2) O20 (73, Y3) O2r (T4, Ys))

1d g 0
<O2o' ($1 yl) Oay ($2, yz) Oay ($3, y3) Oqy (x4, y4)>

- ad —ad

9 Pi Pi aaaaaa

=1

+ZP?QP;M jaaaa xzyyz H 020’ xk;yk))
k=1,k#i

- ZZP?%}M aa 33“ yz)\paa(x]’a yj)OZO’ ($k>yk) Oy (3357 ?Jz)>

i=1 j#i

+ higher-order terms,

(3.216)

where i # j # k # 1 € {1,2,3,4}. As in the five-point case, correlators of order
p or p are ruled out by symmetry, and higher-order terms are suppressed, as we
perform our analysis for the moment only up to order pp.

The bosonic structures for each of the correlators are constructed in an identical
manner as in Section [3.4] In fact, we can directly use the previously derived struc-
tures, provided they involve no more than four points. The numbers of independent
structures (str.) for each correlator, based on similar arguments as developed in
section [3.4] are

R-sym. str. Conf. str. Total nr. of bosonic str.

(O20/ (1) D20/ (2) Ogqr (3) Oar (4)) 6 1 6
<j£i)020/ () O (k) Oa0 (1)) 3 2 6
<\I’(i)‘l’(j)020’(k)020'(l)> 6 2 12

(3.217)

where each independent bosonic structure introduces an unknown function of the
two conformal cross-ratios:

2 .2 2 .2
= $;2I34 — 25 v= ZL‘;4IL’§3 _ (1 B Z)(l . 5)_ (3.218)
L1324 T3y

We will not rederive the possible structures here, but proceed by stating and using
the final correlator expressions below.

Let us pause for a moment to emphasize the significance of accounting for the full
superconformal invariance of the full supercorrelator. The most commonly used
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3.5. SCWI FOR THE FOUR-POINT CORRELATOR

approaches for the four-point function, summarised in Section [2.4], exploit the fact
that one can rotate into a frame where all fermionic coordinates are set to zero.
In other words, by fully utilizing supersymmetry, the full supercorrelator reduces
to:

<(920' (371> y1)020' (952> y2>020’ (933> y3)020’(9347 y4)> . (3-219)

Employing bosonic invariance, the correlator above corresponds to six independent
structures, each introducing an unknown function, as stated in Eqn. [3.217 Using
an analogue of Wick contractions, the four-point correlator takes the form:

<O20' ($1, y1) Oqy (9627 yz) O ($3; y3) Osp (5’347 Z/4)>
4 .4
s ) BB g ) 4 Vi g

xm 34 1’13 24 T14T23 <3'220)
YioYisYsaYs Yoy aY3a Y5 YisYaYaa Vs
12Y13Y24Y34 12Y14Y23Y34 13Y14Y23Y24
+ S5 fa(u,v) + 5555 f5(u,v) + 555 fe(u, v)
551233'131'241'34 T19X74L33L34 T13L74L33L24

where f;(u,v) are the unknown functions. From the perspective of the symmetry
group, all constraints have been exhausted, and thus the complete supercorrelator
should be parametrised by six functions.

However, it is known that the four-point function is ultimately parametrised by a
single function of the cross-ratios, as established in equation in Section [2.4]
This reduction can be achieved, for instance, by imposing analyticity conditions
on the supersymmetric extension of the invariants, as discussed in [35]. In our
approach, this reduction will be obtained through additional constraints on the
superprimary correlator, coming from supersymmetry invariance imposed on the
higher-order terms in the expansion. (Similar to the final equations presented
for the case of the psu(1,1]|2) algebra in Eqn. [3.50)3.51)). This demonstrates the
crucial importance of considering the full superconformal invariance of the full su-
percorrelator.

To implement this invariance, we begin by enforcing supersymmetry. As be-
fore, this requires imposing invariance under the non-trivial fermionic charges,
parametrised as (see Appendix |A.2)):

Qaa<--->=§;afqa<--->=07 Qua (-..) = > 57 —(...)=0. (3.221)

Once these equations hold, invariance under the remaining fermionic charges fol-
lows from the superalgebra.
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To start, we apply the first constraint, namely invariance under @).q4, to the corre-
lator expansion in equation [3.216] This yields the following expression:

4 1 ., 0 0

0 :Z 2/)7, 6xa°‘ 8 aa (Oa (21, Y1) O20r (22, y2) Oar (23, Y3) O (X4, Ys))
i=1

+0¢  Taceas (i, Ys) H Oa (x,,yy)>

J=Lj#i

Z 025 (W (4, Yi) Vo (xk,yk)Oz(y(:cz,yz)Ozo/(xm,ym)>}-
=1 kti

(3.222)

Since this equation must hold for any p¢%, we can isolate four distinct equations

corresponding to terms proportional to each p¢%. For example, for i = 1, we

obtain:

1.0 0

2 a ad a ad
<jaa ai (21, Y1) Oa0 (22, Y2) Oay (23, Y3) O20r (T4, Ya)) (3.223)

0=-— <020' (5‘?17 y1) Oy <x27 yz) Oqy (3537 Z/3> O <$47 y4)>

+ Z ac(1, Y1) Yaa (25, ¥5)O20 (2k, Yr) O20r (21, 1)) -
We will proceed with our analysis along the example of this constraint [3.223]

In the next step, the expressions for the correlators, consistent with bosonic sym-
metries, will be inserted into this constraint. In practice, we first consider the
internal dependence, writing the correlators consisting of conformal x R-symmetry
primaries schematically as:

my

GO0 ({z; y;}) = > (R-symmetry structure i)q, - Ci({z}), (3.224)

i=1

where m,, is the number of independent R-symmetry structures, and C;({z}) rep-
resents the spacetime dependence, including the tensorial structures as well as the
unknown functions of the conformal cross-ratios.
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We select the following basis to express the correlators:

0 0
9 10, Oy Oy Oy

Dy Do (Oa0 (21, y1) Ot (12, 2) O20r (w3, y3) Oa0r (T4, Y4))

= 2y15 Yss (U1 )aaFL({2}) + 2015 ¥3s (i3 )aaFo({2}) + 2u14 33 (vid )aaF3({2})
+ Yo Yis Yor Y31 Wiz + Yis aaFa({x}) + Uia s s 34 Wiz + Yid DaaF5({x})

+ Yis Yia Yas Yos (V13 + yia aaFs({2})

(3.225)

<\.7ad (1171, 3/1) Oqy (9527 y2) Oqp (iU3a 3/3) Oa (9% ?/4)>
= - 9%2 ?/%3 934 ?/9%4 (y1_21 - yl_:al)daGl({x}) - y%2 9%4 ygg y§4 (y1_21 - yﬂl)daG2({x})

— YTs Y Yas Yas (U3 — vid )aaGs({z})
(3.226)

(‘I’aa (21, 91) Yaa (72, y2) O (73, y3) O20r (T4, Y4))
=(y1d Y43 Y32 Jaa Yi1 Y33 (yﬁ YasH({2}) + vty s Ho({2}) + s yi]ﬂ,({x}))

+ (Ui aa Yo V3 (U B Ha({}) + vis v Hs ({x}) + vis v Ho({x}))
(3.227)

(‘I’aa (Ih yl) Oqy (11727 yz) Vo ($3, 93) Oqy ($4; y4)>
= (15 Y21 Ysg Jia U2 V3a (U2 U3 K0 ({2}) + w3 Ko ({2}) + 01y 35 K ({2}) )

+ (Y13 )aa Yts Yau (yia aaFKa({2}) + yia v Ks ({2 }) + v y§4K6({1'})>
(3.228)

(Was (21,91) Oor (22, Y2) O (23, Y3) Yai (T4, Y4))
= (13 Y2 Yar Jaa Ui V34 (U5 v3Lr({2}) + vy vds Lo({2}) + v viu La({}))
+ (Ui aa Ui U3 (V34 U3 La({a}) + s viu Ls({2}) + v 3, Le({x}))
(3.229)

Note that for simplicity, the derivative with respect to #{* has been absorbed into
the F-functions. It will be reintroduced in subsequent calculations.

Expressing the correlators in this manner allows to straightforwardly solve the
equation in terms of the spacetime functions, as for the R-symmetry struc-
tures, only trivial linear dependencies needs to be considered.

Substituting the expressions into constraint [3.223] we derive the following twelve

129



3.5. SCWI FOR THE FOUR-POINT CORRELATOR

relations between the spacetime-dependent components:

Hy({z}) = = 2Gi({2}) + Hs({x}) — Ke({z}) + La({z})

Hy({z}) = 2Gs({z}) — Hi({e}) — Ks({z}) — La({2}) + Le({x})
K>({o}) = = 2Gs({«}) + Hi({z}) + Ks({2}) — Le({«})

K3({z}) = = 2Go({2}) — Ha({z}) + He({z}) — Ki({z}) — Ls({z})
Ly({z}) = 2G> ({z}) — He({x}) + Ki({«}) + Ls({x})

Ly({z}) = 2Gi({z}) — Hs({z}) — Ka({z}) + Ke({z}) — Li({z})

Fy

B({r}) = 2G3({z}) — Hi({z}) + Ka({z}) = Ks({}) = Li({z}) + Le({z})
Fs({e}) = = 2Go({z}) — Hi({z}) + He({z}) — Ka({z}) + La({z}) = Ls({z})
Fy({z}) = = 2(Gi({z}) — Hs({}) — La({z}))

Fs({z}) = 2 (Go({2}) + Ki({o}) + Ls({2}))

({z}) =

({z})

({z})

({z}) =

({z}) = (
({z}) = 2G1({z}) + Ha({z}) — Hs({x}) — Ka({z}) + Ke({2}) — Li({z})
({z}) = K5(
({z}) =

({z}) =

({z}) =

Fe({z}) =

—2(Gs({z}) — Hi({=}) — Ks({2}))
(3.230)

Next, we will re-express the functions of {} in terms of their explicit spacetime
structures, multiplied by the unknown coefficient functions, which depend on the
spacetime cross-ratios. The equations above will then provide relations between
these cross-ratio-dependent functions.

Recall that the functions F;({z}) had the differential absorbed as

Fi({z}) = aaa Fy({z}), (3.231)

where Fj({z}) consists of the covariant spacetime structure and an unknown func-
tion. Thus, we have in this four-point case

Rlle)) = 5o Fil(a) = 5o (e o)

I12$34
_ =2 g 1 ou 0 - ov 0 -
= m(%z)aa fi(u,v) + P <8x?aa fi(u,v) + 923 9 — f1(u, v))
U _ _ ov B B
with 856?(1 = u(2y — T3 )das (97‘{‘0‘ =v(2) — 213 )aas
(3.232)

and similarly for the other five spacetime structures present in the superprimary

correlator [3.2201
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We further have to consider the spacetime dependence of the correlator involving
the SU(4)-current Jug qa(1), inserted at 1. Its spacetime dependence is encoded
in the functions G;({z}), where i labels the R-symmetry structure with which this
function is associated. The possible conformal structures can be reduced to only
two independent forms, which we express as

1
Gi({z}) = ————5—5 (25 — 213 aali u,v) + (25 — x14 aali2 (U, V)¢ .
(e} =~z {00 = Tiaagin (0,0) + (3 = a2)aagia (u0)
(3.233)

The functions g; ;(u,v) depend only on the conformal cross ratios, with j indexing
the corresponding conformal structure.

The correlator involving W,q(x1) and W.4(z;) has six possible tensor structures,
which can similarly be reduced to only two independent spacetime structures.
We express the spacetime parts of the three different correlators as follows:

(‘I’aa ($1, yl) Vo (Iz, y2) Oqy (9037 y3) Oqy ($4, ?/4)) :

1 1
H({z}) =——5——— v 43 Ty aahi1(u,v) + —/— Ty aalig(u, v
({ }) x%2 1%3 :L‘§4 554211( 14 32) s ( ) xgﬁ :L‘%4( 12) 5 ( )
(3.234)
<\i]ad¢ (531, yl) Oqr (952> yz) Vo (5153, y3) Oqy ($4, ?/4)> :
1 1
K;({z}) Z—(x_l T4 I_l)aak’i,l(% v) + 7@_1)@1@‘,2(“7 v)
x%z x%3 5534 ﬁu 2 43 lel?; $§14 '
(3.235)

(‘I’aa (£U1, yl) Oq (3327 yQ) Oqy (153, y3) Vo (154, y4)) :

1 -1 -1 1 .
5555 (T13 32 Tog Jaalin (U, V) + —— (14 )aaliz(u, v
$%2$%3x§4$?11( 13 32 Ty )aalin( )+$1114$%3( aaliz(u,v)
(3.236)

Li({r}) =

The intrinsic four-point structures involved in the last three correlators are not
independent over the space of functions of u,v. Instead, they are related as fol-
lows:

($1_31 L32 x2_41) = — (213 )aa + 0(27] L4373 )aa + (273 )das (3.237)

Qo

- _ 1, - v, _ _ v, _
(%21 24 x431)o'¢a == a(xlsl)c’va + a(xml 43 33 ) + E(xml)c‘m' (3.238)

By inserting the expressions for F;({z}), G;({z}), H;({z}), K;({z}), and L;({z})
into the equations given in [3.230] we can extract an equation for each coefficient
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of the independent structures, given by (213 )aa, (13 )aas (714 )aas (P14 743735 ) da-

This choice of four independent structures is not unique. However, they can be
proven to be entirely independent. This way, we derive equations between the
unknown functions of the cross ratios only. In particular, we obtain algebraic
relations that enable us to express all possible descendant functions, g;;(u,v),
hi j(u,v), k;;(u,v) and [; ;(u,v) in terms of the superprimary functions. Those
equations reflect the fact that for four-point functions, indeed the descendent cor-
relators are fully determined by the superprimary correlator.

The algebraic relations for the descendent functions from correlators proportional
to pLs are given in Appendix D]

Furthermore, we obtain equations that solely involve the unknown functions of
the superprimary correlator. These equations are first-order partial differential
equations expressed as follows:

A, 0)u+ f5 (w,v)u — 5 (u,0)ou — £ (w,v)ou + £ (w,0)v

fZEU)(l% U) == ’ 7; ’
(u) 2 (v) 2 _ g (v) _ @
fiv)(u 'U) _ f2 ('LL,U)U + f2 (u,v)u fl (U,U)U—l- fl (U,U) fl (U,U)U
Y U Y
0, 0) = — B0 = vyt £ vjou £ 57w vjou = £, 0)0?
) UV Y
PO YO i (%0 [ Ul VU A U S X0 L S OO
’ u u v ’
£ .0 = — 20+ (00 = £ v+ £, v) = £ o)u
) v )
fév) (U, ’U) - f?EU) (’LL, ’U)’LL B fQ(u) (U, U)UU B f2(v) <u7 ’U)’UU + fZU) (U’v ’U)U + f?Ev) (’LL, ’U)'U
) v Y

(3.239)

u 9 v 9
where fl-( )(u, v) = a—fi(u,v) and fl-( )(u, v) = a—fi(u,v).
u v
These equations will further constrain the expression of the superprimary corre-

lators, as outlined above. The study and analysis of these equations will be the
subject of Section [4.3]

The same analysis has been performed for the other nine constraints obtained
from supersymmetric invariance. Note, however, that for the four point functions

of stress tensor multiplets, the consideration of one such equation (as performed
here) is sufficient to derive the above equations [3.239|
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3.6. SCWI for the Five-Point Correlator

The purpose of this section is to derive the superconformal Ward identities for the
five-point correlation function of stress tensor multiplets in N' = 4 SYM, thereby
obtaining the maximally constrained form of this correlator in adherence to super-
conformal symmetry.

The approach used to derive these identities parallels the method applied to the
four-point function, and indeed, this procedure can be extended to any n-point
function. To emphasize the general applicability of this approach, we will derive
the five-point Ward identities in Section [3.6.1] reperforming and underscoring the
key steps and highlighting their similarity to those previously employed in deriving
the four-point function identities in Section [3.5]

3.6.1. Deriving the SCWI
1. Expanding the Five-Point Correlator

The first step utilizes the solutions to the differential constraint satisfied by half-
BPS multiplets in analytic superspace,

a p+1
<8XAA> 0, =0 w. graded symmetrisation. (3.240)

This constraint was developed and solved for the stress tensor multiplet in Section
[3.3 resulting in a fermionic expansion for this multiplet in analytic superspace.
This expansion, given in Equation [3.113] up until order O(pp) can be written as:

1 pioan O 0
T(X) = (1 - §PMP WW) Qo (,y)
+ Wi (2, 9) + 0" Vs (2, ) (3.241)
+ paaﬁaajad,ao'c (CL’, y)
+ ...
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This expansion can then be inserted into the five-point function, yielding:

(T (X1) T (Xo) T (X3) T (X4) T (X5))
= <O20/ (513'17 Y1) Oao (22, y2) O (73, y3) Oz (24, Ys) Oavr (5, Y5))
g 0

+ 3 Zﬂaa faa “0‘8 ai (O (z1,y1) ...O20 (x5, Y5))

+Zl)?a/)3a jaaaa x'uyz H 020’ xkuyk»

k=1,k#i

5 5 B
Z o o8 (Wag (i, 41) Vag (%', yj) O2 (71, Yi) O20 (21, 1) O20 (Tm, Ym))
=1 j=1,57#1i

+ ...
(3.242)

where i # j #k #1#m € {1,2,3,4,5}.

Similarly to the four-point case, correlators of order O(p) or O(p) are prohibited
by symmetry. Additionally, the above expression is truncated at the fermionic
order O(pp) to provide a starting point for our analysis.

This expansion allows us to analyse the first level of descendent correlators. In
principle, one would have to study all fermionic expansion orders to achieve the
full set of superconformal Ward identities, and indeed, this analysis is structurally
identical at higher orders.

However, higher orders present increased technical challenges, so our focus will
remain on the constraints derived from order O(pp). Moreover, it may not be nec-
essary to consider higher orders to obtain the full constraints on the superprimary
correlator [

Note that, in the same way, the field expansion of the stress tensor multiplet could
be inserted into any n-point function, yielding a n-point correlator expansion of

the same kind as Eqn. |3.242]

2. Supersymmetry Constraints

Supersymmetry invariance requires that the correlator remains unchanged under
the action of the fermionic component of the symmetry group. The relevant su-
persymmetry charges, acting on analytic superspace, are defined as (see Section

9As we will show in Section this order was sufficient to obtain the full superconformal Ward
identities for the superprimary correlator of four stress tensors.
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A7)

0 = 0
Qaa = 9o Qaa = ap (3.243)
so that this invariance condition translates into the following requirements:
5
0
0=3 5,m (TEDT (X T (X) T (X) T (X)) (3.244)
i=1 OPi
5
0
0= g5 (TX)T (X2) T (Xa) T(X) T (X)) (3.245)

1

A

Again, those are the very same requirements as in the four-point case or in any
n-point case, with the remaining fermionic charges acting trivially .

Expanding the fermionic components of the correlator as in Equation [3.242] the
first equation, for example, becomes

0=y

i=1

> (1 ., 0 0
(=57 5055 g (O (1) O (2) O (3) O (4) O 5)

+pga <jad,ad L, yz) H Oy (k»
k#i (3.246)

+ Z,O 7@& (25, Y5)Vaa(Ti, yi) Oar (k) Oa (1) Oar (m))) )
J#i

where the short-hand notation Osy (24, y;) = Oay (i) has been introduced.

Since this equation must hold for all values of p;, we derive five distinct constraints
from Equation (3.246[). For instance, by isolating terms proportional to p;, we
obtain:

1 0 0
58 o 8y <O20' (xl y1) Oqy (152; 3/2) Oq ($3, y3) Oqy ($4; y4) Oqr ($5, y5)>

<\.7ad aa (513'1, 3/1) Oqy (332, y2) O (1'3, ys) Oqy (CC4, y4) O (56'5, y5)>

0=—

+ Z ac (71, Y1) Yaa (T3, i) O (21, Yr) O2or (21, Y1) O20r (T, Yim))
(3.247)

In a similar fashion, we obtain five further constraints by differentiating with re-
spect to p. Together, these ten equations fully encapsulate the implications of
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invariance under the fermionic sector of the psu(2,2|4) algebra, up to order (pp).

This procedure, as illustrated here, is structurally analogous to the four-point func-
tion case, demonstrating that supersymmetry imposes similar constraints on also
higher-point functions in a systematic manner.

3. Bosonic Symmetries

In addition to supersymmetry, we also apply the constraints of bosonic symme-
tries.

We have established all the necessary bosonic structures and derived the expres-
sions for the correlators appearing in Equation (and the remaining nine
equations) in Section [3.4]

As with the four-point case, we start by rephrasing the bosonic correlators in the

form
My

> (R-symmetry structure); - C;({z}) (3.248)
i=1
where all spacetime dependencies are implicit. This representation allows us to ex-
ploit the (straightforward implementable) linear independence of the R-symmetry
structures, resulting in a set of algebraic equations solely for C;({x}).

We denote by F;({z}),i = 1,...,22 the spacetime structures and unknown func-
tions multiplying the i-th R-symmetry structure of the superprimary five-point
function. The functions G;x({z}) multiply the k-th R-symmetry structure of the
correlator involving the SU(4) g-current at X;, while H; ;,({z}) corresponds to the
k-th R-symmetry structure for the correlator with W,4(z,y) at X; and Uaq4(z,y)
at X;.

Using the expressions given in Equations [3.199] [3.207, and [3.211| (along with their

permutations as detailed in Section [3.4), and inserting those for example into
Equation [3.247, we can solve this equation for the spacetime parts, arriving at
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algebraic equations of the form

Hyz5({z}) = ;(98 Fy({z}) — Gis({z}) — Hizz1({2}) — Higas({z}) + Hizpa({2}),
Hyzi0({z}) = ! a(‘)aa Fir({r}) = Gis({z}) — Higa({z}) — Higo({z}) + Hi215({7}),
1 0

Hy508({z}) = —5371)@178({13}) + Giz({r}) + Hizs({7}),
(3.249)

From Equation [3.247] we derive 64 equations constraining the spacetime compo-
nents. Analogously, each additional equation for p¢* and p¢® provides 64 further
constraints, resulting in a total of 640 equations governing the spacetime compo-
nents [

The following step entails substituting the explicit spacetime structures and un-
known functions of the cross ratios as established in Section [3.4l Specifically, for
the descendent correlators, we find from the expressions and [3.156

1
G 55 (—(@5 — 713 )aa — (273 — 714 aa
Le({z}) = ~ rhalarls ( (12 — 213 )aa Grea({u}) — (212 — 214 )aa g162({u})
—(21 — 215 )aa graa({u}) + (01 93 131 245751 )aa gl,k,4({u})) ’
(3.250)

1 _ -
Hior({2}) =555 ((95141 43033 Jaa Mg ({u}) + (275 25323 )aa b 22({u})
L12034 L4553
H(s 54012 )aa M zns({u}) + (212 )aa h1,2,k,4({u})) ;
(3.251)

with analogous expressions for other permutations of H; j;({z}), that can be de-
duced from the spacetime expressions given in Appendix [C.1]

Since our main focus in the further analysis will be the equations for the unknown
functions parametrising the superprimary five-point functions, we restate explicitly
all its 22 functions. These functions can be deduced from expression |3.214| as
follows:

Rl = oy h{), Bl{e}) =~y fol{)

512I34l’45 53 31‘241'45 52

10T hese 640 equations can be provided in a Mathematica notebook upon request.
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R{e}) = 2 h(luh). Fa{e)) = o )
F({}) = e (D). Fol{e)) = o o)
Fllah) = oo (). Ae]) = o ()
F{a}) =z (), Fiol{n}) = Wﬁo({u})
Ful{r)) = o (). Faeh) = e fal (1))
Ful{e}) = e (), Fulleh) = o fu{u),
Fl{e}) = o o)), Fiolleh) = e ul{u),
Fin({z}) = $13$I4x124x25x35f17({u}) Fis({z}) = %3%5;3%@4;18({@)
Fal{r)) = s fo(d). Fulde}) = g fol (1)
Pal{e}) = g n((u). Falleh) = g fnl{u))

The functions F;({z}) enter the equations in|3.249|through derivatives with respect
to spacetime coordinates. In particular, we have as developed in section

F({z}) =

() gy 3 Dl

OéOZ
T19T34TY5T53 x12x34x45x53 a—1 dzf aua

(3.252)
fil{u}),

and similarly for the remaining functions.
The derivatives with respect to other points, entering the additional nine con-
straints from supersymmetry, can be constructed analogously.

Recalling the computation in Section [3.4.3] we categorise the unknown functions
as follows:

e 22 superprimary functions.
These functions appear in the equations as derivatives with respect to the
cross ratios. Since there are five cross ratios, we have 5-22 = 110 such
o (ua)
derivatives f;"* ({u}).
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e 2660 descendant functions.
These arise from the following sources:

— J-correlators: 5 - 21 -4 = 420 channels,
— W, U-correlators: 5-4 - 28 -4 = 2240 channels.

 In total, there are thus 2682 unknown functions (plus 110 derivatives)
entering the equations from supersymmetry.

This initial number of unknowns reduces upon substituting the above expressions
into the equations.

Let us compare this unreduced count with the number of unknown functions ex-
pected in the standard conformal frame. Exploiting the 32 supersymmetry charges,
we can set 32 fermionic degrees of freedom to zero, effectively reducing to the cor-
relator

(T(X)T(X2)T(Xs)T(X4) T (X5))

3.253
— <(920'($1, y1)020'(I27 y2)020' (I37 Z/3>020' ($4; y4)T(X5)) . ( )

Expanding this correlator in the remaining fermionic coordinates, we find

(020/ (961, y1)020/ (332, y2)(920/ (I3, y3)020' ($47 y4)T(X5)>
= (Ozof (9017yl)ozof(l’z,y2)020'(9€3,?/3)(920/(«%’4,?/4)020/(1f5,y5)>

+ p?aﬁgd (020/(901, y1)020/(9€2, y2)020f(9037 y3)020/($4, y4)jaa,aa($5, y5)>
+...

(3.254)
Applying the remaining bosonic symmetries, we arrive at
22 + 21 -4 =106 unknown functions (3.255)

parametrising the supercorrelator up to order O(pp). Here, the 22 functions stem
from the superprimary correlator, and the term 21 - 4 reflects the independent
R-symmetry structures times the independent conformal structures for the cor-
relator including Jua.4q. Note that we do not account for additional possible
insertion points of the SU(4)g-current, as the remaining four points are fixed to
be the superprimary operator Oy . Thus, the conformal frame estimate suggests
a total of 106 unknown functions parametrising the supercorrelator. However,
as we observed in the four-point case (where we reduced from six unknowns in
this conformal frame to only a single unknown function of the cross ratios), this
number can reduce further: higher-order terms in the fermionic expansion (and
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hence the supersymmetry constraints) can decrease the number of functions needed
to parametrise both the descendant correlators and the superprimary functions.
Hence, the 106 unknowns derived in the conformal frame serve primarily as an
upper bound.

To derive the relations reducing the number of unknown functions, we substitute
the expressions for Fj({z}), Gix({z}), H1;x({x}) into the equations [3.249] By
comparing coefficients of each independent spacetime tensor structure over the
space of functions of conformal cross ratios, ensuring independence as outlined in
Section [3.4] we obtain equations purely in terms of the unknown functions of the
cross ratios.

From Equation this method yields 511 independent equations involving the
unknown functions parametrising correlators proportional to p$* in the expansion
0. 247

Similarly, each constraint from supersymmetry generates 511 equations, leading to
10 - 511 = 5110 equations governing the 2682 unknown functions of the five-point
function of stress tensor multiplets up to order O(pp).

This system is not overconstrained, as not all 5110 equations are independent.

From these 5110 equations, we conclude:

o Of the 2660 descendant functions, 2654 are determined algebraically in terms
of the superprimary functions. Thus, at order O(pp), there remain 6 unde-
termined descendant functions of the cross ratios. These functions,
indicating the existence of nilpotent invariants, must be incorporated when
analysing the five-point correlator of stress tensor multiplets. As seen in the
psu(1, 1]2) case as well, encoding the supercorrelator solely in terms of the
superprimary function is not feasible anymore when five or more operators
are inserted.

« Additionally, we obtain 35 partial differential equations for the unknown
functions f;({u}) of the superprimary correlator. Due to their complexity,
these equations are not fully displayed here[t]

o However, these equations include the conditions of Drukker-Plefka and chiral
algebra twist, as we will demonstrate shortly. In fact, they include more
constraints and are thus stronger than Drukker-Plefka twist and chiral
algebra twist alone.

The cross-check of the equations against known expressions from the literature, the

1A Mathematica notebook containing these equations can be provided upon request.
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demonstration of the last point and the analysis of these 35 equations in general
will be the subject of section [4.4] in the following chapter.

Note that, as opposed to the four-point case, all ten constraints from supersym-
metry had to be taken into account to arrive at the above conclusions.
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4. Analysing the Constraints

4.1. Introduction

In this chapter, we analyse the derived equations governing superprimary correla-
tors within each case under consideration.

In Section we begin by examining the equations obtained in Section for
the five-point function of Wh-multiplets within the chiral algebra of psu(2,2[4),
i.e. psu(1,1]2). These equations are significantly simplified compared to the four-
dimensional case, involving fewer cross ratios and unknown functions, which makes
them more tractable for initial analysis. The structural insights gained here may
guide us in approaching the more complex four-dimensional case. Furthermore,
the results from this chiral algebra analysis can serve as direct inputs for poten-
tial solutions to the four-dimensional five-point equations, given the close relation
facilitated by the chiral algebra map.

In Section [£.3] we address the equations derived for the four-point functions of
stress-tensor multiplets in psu(2,2|4). Here, we cross-check our derived equations
against well-established results from the literature. Further, we verify that the
four-point SCWI are indeed obtained from both the Drukker-Plefka twist and
chiral algebra twist.

Finally, in Section [4.4] we explore the equations formulated for the five-point func-
tions of Oyy-operators. Due to the complexity of these equations, this analysis is
ongoing. However, within this thesis, we provide strong evidence supporting the
correctness of our derived equations by validating them against known results in
both the weak coupling regime and the strong coupling regime, obtained from the
SUGRA side. Moreover, we show that the five-point equations impose constraints
beyond those of the Drukker-Plefka and chiral algebra twist conditions. While
these conditions are embedded within the derived equations, they do not encom-
pass the full set of SCWI for higher-point functions.

We conclude this analysis by presenting a partial simplification of the 35 equations,
allowing to take first steps towards a potential parametrisation solving the SCWI.
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4.2. Analysis of the psu(1,1|2) SCWI

In this section, we undertake a detailed analysis of the superconformal Ward iden-
tities derived in Section for the five-point correlator

S P ({X0}) = Ma(X)Wa(Xo)Wa(Xs)Wa(Xa)Wa(X5)),  (41)

which is invariant under psu(1,1|2) transformations.

Recall that the five-point function of the superprimary operator J(z,y), associated
with the 3-dimensional representation of su(2), can be expressed as

(J (w1,91) J (22,92) J (23,93) J (24, 94) J (5,95))

2
Y12Y13Y23Y 45 Y12Y13Y43Y25Y45 Y12Y23Y43Y15Y45
= 2 f1<U,U)+ fQ(U,U)‘i‘ fg(u,’U)
L12X13L23T 45 L12X13L43T 25T 45 L12X23L43T15L 45
Y12Y24Y43Y35Ys51 Y31Y32Y41Y25Y45 Y13Y34Y42Y25Ys51
+ fa(u,v) + fs(u,v) + fo(u,v),
T12T24T43L35T51 T31T32L41T25T 45 X13734T42T25T51
(4.2)
where the two cross-ratios are defined as:
L12X34 X23T45
u= , U= . (4.3)
T13%24 L2435

Referring to the superconformal Ward identities obtained in section (3.2, we ob-
served that in expanding the five-point correlation function Ghysss ™ ({X;}) in
terms of the fermionic coordinates of analytic superspace, all but one of the un-
known functions characterising the descendant correlators are algebraically deter-
mined by the superprimary functions.

Thus, we can schematically express the full correlator 9533(212’1‘2)({Xi}) as

6
53121(212’1‘2)({)(1'}) - Z P} ({xu Yis Pis ﬁz}v u, v, au? av) fj({uv U}>

=1 (4.4)

2
_ Y13Y23Y45
+p1p2———— H({u,v}),
T39234T 45753 ({wv})
where the F; encompass all relevant bosonic structures and correlator expansions
developed in Section Additionally, it includes also the relations between de-
scendant functions and superprimary functions as dictated by the Ward identities.
The function H({u,v}) is the only independent function arising from all descen-

dant correlators at order O(pp). Notably, the specific structure that multiplies

144



4.2. ANALYSIS OF THE P&SU(1,1|2) SCWI

H({u,v}) is not unique and could have been selected differently.

Additionally, three independent relations involving only the six superprimary cor-
relator functions f;(u,v) emerge, specified by two Drukker-Plefka twist-type con-
ditions and one additional constraint, as stated in Eqs. [3.51]

For convenience and to facilitate comparison with and utility for the results de-
rived for the full psu(2,2|4) case, we reformulate the correlator and these three
equations in terms of the variables (21, z5) as

L12X34 X23T45
u = =z, U= = 29. (4.5)

T13T24 X24735

Accordingly, the primary equations of interest are

6 6
0=>" fi(LO)(Zlu ), 0=>) fi(o’l)(zh 22), (4.6)
i—1 =1
-1 —2)—2 2
o= Dzalz —2) — 22 + )fl(LO)(Zla 2)

(22 - 1)23

21 — 1)?
+ (122) (fél’o)(zl, 2) + fél’o)(zl, Z2)>

2
21— Dz 4+ 20 —1
BB (4 )+ 1) (@.7)
22 =22 — 29+ 1
— ( . ) (f:«go’l)(zl,@) +f4(0’1)(217z2)>
2122
-1
n (21 + 22 )

2172

( 1(0’1)(217 29) + f2(071)(21, 22>) + féo’l)(zh 22)-

The focus of this section is an in-depth examination of these three equations for
the superprimary correlator, which we will refer to, with slight abuse of notation,
as the SCWI, even though the complete superconformal Ward identities contain
the constraints imposed on the descendant correlators as well.

In Section [4.2.1] we will demonstrate how the superconformal Ward identities can
be systematically employed to constrain the superconformal blocks encoding the
OPE content of the five-point function. Specifically, we analyse the case where a
double-OPE is taken in the channels (12) and (45), reducing the system to three-
point functions.

Finally, Section is devoted to outlining the approach for solving the above
equations by identifying a parametrisation of the correlator that explicitly satisfies
the superconformal Ward identities.
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4.2.1. Conformal blocks and solving the constraints

In this section, we examine the superconformal blocks in the decomposition of the
five-point superprimary correlator

G XY = (@1, 1) (@2, y2) I (3, y3) T (24, Y1) T (@5, 5)) (4.8)

and determine how they are constrained by the superconformal Ward identities,
as given in Egs. 4.6 and .7, Here, the notation G'**({X;}) denotes that J(z,y)
corresponds to a highest weight state of weight 1. This notation of weight 1 is
chosen to align with the conventions used in the literature, that are used below,
as well as to distinguish from the full five-point supercorrelator. The letter G is
used to distinguish the correlator from the conformal blocks, which commonly get
denoted by the letter G (see below).

The concepts of the superconformal block decomposition have been introduced in
2.5l However, note that here we consider only the decomposition of the superpri-
mary correlator, rather than the full supercorrelator.

By taking the OPE in the points (12) and (45), we can expand the five-point
superprimary correlator in terms of superconformal blocks as follows:

G XY = Llrays) 2 D0 AT AT B (2, vi). (4.9)
(h1,l1) (he,l2)

Here, the sums run over all superconformal primaries in the OPE of J ®pOs;(El’1‘2) J.
These exchanged superprimaries are labelled by the conformal weight h; and R-
symmetry weight ;. The coefficients A correspond to the (properly normalised)
three-point functions of 7,7, and the respective intermediate superconformal
primary with dimension h; and spin [;; £ denotes the leg factor, a prefactor that
carries the correct transformation behaviour in both spacetime coordinates x and
internal coordinates y. This prefactor can be factored out such that the remain-
ing expression depends solely on the conformal and internal cross ratios {z;,y;},

defined as

L12T34 X23T45
, 2o = , (4.10)
X13T24 L2435
_ Y12Ys4 _ Ya3Yas

- P Yo = .
Y13Y24 Y24Y35

21 =

(4.11)

Y1

Explicit expressions for conformal higher-point functions in one dimension are
provided in [113]. Following these conventions, we define the conformal leg factor
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as
h1 h5 hz h3 h4

Ehl,hg,h3,h4,h5({x'})_< L23 ) < L34 ) ( T13 ) ( T24 > < T35 )
i) = .

X12713 X35T45 T12723 T23T34 T34 45
(4.12)

For the correlator G111 ({X}) this simplifies to
T

El’l’l’l’l(zl, To, T3, Ty, T5) = S (4.13)

2 2 -
X19X23%34% 5

Similarly, we express the R-symmetry leg factor, using that the R-symmetry weight
is 7 = h, but realised via inverse power in the coordinates:

2 2
‘Cil,il,il,il’il(ylu Y2, Y3, Y4, 1/5) = ymyijyiﬂ% . <414)
24

Each superblock gn;(z;,y;) can be (schematically) decomposed into a conformal
part and an R-symmetry part as follows:

gh;l(zia}’i) = Gh(z)Ri(yi), (4.15)

where G(z;) comprises a sum of the contributions from all descendants of the
exchanged superprimary, organized according to the various R-symmetry repre-
sentations of psu(1,1[2).

In particular, the spacetime conformal blocks for five-point correlators with a
double-OPE in the comb channel in one dimension have been determined in |113]
to be

h1+h1—hg,h1+h2—h3,h2+h5—h4.zZ
2h1,2h2 y #1<2|
(4.16)

hi,h2,hs,ha,hs _ Jhi_hs
Gh,'hs (21,22) = 2" 29” Fi [

where F is a multivariable hypergeometric function, also called the comb function,
defined by

FK |fha bla az. ] _ i (al)nl (bl)ﬂ1+n2 (a’2)n2 xrll1 x;m (417)

Xr1, T
ce U T (e (e2)ny, mal gl

with (a), = I'(a +n)/T'(a) denoting the Pochhammer symbol.
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The R-symmetry blocks can be computed as eigenfunctions of the two-point quadratic
Casimir as

(Ca(1,2) = Li(lh + 1)] Ri(y1,y2) =0,
0,

[Co(4,5) = L (Il + 1)] Ry(y1,¥2) = (4.18)

where Cs(i, j) is the two-point quadratic Casimir of su(2)g, acting on the points

(i,7) as

Coiyj) = (19 + 1@)2,

D

| (4.19)
where lg) = v;0y, + i, v 1= 0y,

1 = 420, + 2piyi.

To explicitly construct the full superblock expansion 1’ we start by examin-
ing the OPE structure. The OPE content of .J ®2§‘{;E J determines the su-
permultiplets exchanged in the OPE of two J(z;,y;) operators, and thereby the
supermultiplets contributing to the sum in Eq. . We have

J PR g sl w2 A AR (4.20)
which can be derived from the OPE of two Oyy-operators of psu(2,2|4) (see, for
example, [104]) by applying the chiral algebra twist on the representations, as spec-
ified in [93]. Here, W denotes the operator obtained from [0, 4, 0] in psu(2,2|4) via
the chiral algebra twist, and .A;‘ represents long multiplets with conformal weight
h and R-symmetry weight [, obtained from semi-short multiplets in psu(2,2|4).

Since we consider a double OPE in (J(1).J(2)) and (J(4)J(5)), additional selection
rules apply. The valid combinations of multiplets in the OPE that can be
exchanged are determined by solving the simultaneous Casimir equations
and identifying the permissible eigenvalues. For the correlator (4.8), we find the
following allowed combinations of su(2)g representations:

R107 Rll) R127 R217 R227 R()h (421)

where the first index indicates the R-symmetry weight [; of the exchanged opera-
tor in the first OPE, and the second index denotes the weight l5 of the operator
in the second OPE.

The corresponding R-symmetry blocks can be obtained from the Casimir equations
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to be of the form (with a leg factor as given in [4.14))

1
Ruol(y1,va) = —
10(Y1 Y2) Vi
24y o+
Rll(YlaYQ) - SThTR
Y1ye
6 + 3y1(—2 + y2) — 6y2 + y3
Ria(y1,y2) = ( 2) :
, Sz (4.22)
6 +yi + 3y1(—2 +y2) — 6y
Roi(y1,y2) = — 5
NAR )
_ yi(—2+y2) + y1(6 — Bys +y3) — 2(2 — 3y2 + y3)
Roa(y1,y2) = — 3v2v2
Y1¥a
1
301(}’1,)72) = -
Y2

The above blocks can be easily seen to be linear combinations of the base blocks

{1 11 T-y 1-w —1+Y1+Y2}
vi'y2 viye Yive & yiy3 ' yiv3 '

(4.23)

In terms of the superblocks[4.15] this means that for each combination of exchanged
supermultiplet in the correlator [£.8] we can make the following ansatz

Oh1,ha;le,lo (Zm Yi>
:G(ll’,or?z(zz‘)RLo(yl, ya) + Gﬁlll’,lrzz(zi)RLl(ylv ya) + Gfmll’,zh)g(zz‘)Rl,z(yh y2) (4.24)
+ Gl(i’,lh)z(zz‘)Rzl(yh ya) + GI(121’,2h)2(2i)R2,2(yl7 ya) + Gt(wol’,ll‘l)g(zi)RO,1<yl7 ya)

where Gf,lllﬁé) sums the spacetime blocks of all the possible combinations of the re-
spective exchanged supermultiplets that yield the R-symmetry representation [y, [5.

To clarify this decomposition, consider as an example the exchange of the long
supermultiplet A"_; in both of the channels, (12) and (45). The relevant operators
of consideration in this multiplet are

on,
v N\
N\ N4
Oj, Of] (4.25)
N4 N\
N Ve
ohts
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Note that operators not proportional to products of pp, i.e., not being central in
the above multiplet, cannot contribute to the blocks as these contributions would
violate the U(1) bonus symmetry (acting as p — Ap and p — A71p). Thus, these
representations have not been listed in the above supermultiplet.

The above ansatz becomes

gﬁhlo Ehlo(z].) 22;¥1,¥2) = 1Ghy41hp41(21, 22) - R11(y1,y2)
j=0""j=
+ {Cth1+1,h2 (21, 22) + c3Gh +1,ho41(21, 22) + €4Ghy 41 hp12(21, 22)} o(y1,v2

)
+ {C5Gh1,h2+1(217 29) + 6Ghy+1,n41(21, 22) + ¢7Ghy 12,041 (21, 2'2)} o(y1,y2)
(4.26)

with R-symmetry blocks given in , and spacetime blocks in . In this
ansatz, the coefficients ¢; are undetermined coefficients.

There are seven undetermined coefficients ¢y, ..., ¢7 in this ansatz for the superblock.
However, each superconformal block, and hence the ansatz above, satisfies the su-
perconformal Ward identities. These include Drukker-Plefka twist-type conditions,
along with the additional constraint equation derived in our analysis, as in Equa-
tion [3.51] By imposing these identities, we can place further constraints on each
superconformal block, fixing the unknown coefficients.

Applying these constraints, the final superblock for the exchange of two long mul-
tiplets A7_, becomes

h h 21, 29, =
gﬁjiovcjio( 1, 2aYI’y2)

2(hy +1),2(hy + 1)
(hy +1)(hy +hy +1) 2,22 h1+1,h1+h2+2,h2+2z B
@m+¢xm2+a vi 0| 2Ahi+1),2(hy+2) M7
4h, hy +1,h; + hy, hy (4.27)
TS F2 y 215 22
(h1 + hs) vy 2(h; +1),2h,
(hy + 1)(hy + hy + 1) 2329 h1+2,h1+h2+2,h2+12 B
(2hy+1)(2h +3) vy 7| 2(hi+2),2(hy + 1) b

4h, [hl,h1+h2,h2+1 D
2 215 22

1 -2
clz?le (22 ZQ(Y1+Y2 >F2 [hl—i‘1,hl+hz+17hz+17 1’22]

(hl + h2) Yo 2hy,2(hy + 1)

with all relations obtained from the SCWI imposed. As can be seen, the entire
superconformal block is determined up to a single constant c;.
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In a similar manner, all the other possible combinations of exchanged supermulti-
plets can be analysed, leading to analogous resultsﬂ

In particular, the superconformal blocks of exchanged short multiplets are fixed
up to a constant by imposing the conditions from Drukker-Plefka twist alone.

4.2.2. Parametrization for the Blocks

Each superblock, as represented in satisfies the superconformal Ward iden-
tities by construction. However, the manner in which these blocks are presented
may not immediately convey this property.

The objective of this section is to derive a parametrisation for the superblocks
Ohy hoily 15 (Zis Vi), or equivalently of the correlator

glllll({XiD — <J(x1,y1)J(x2’y2)J(I‘3,y3>J($4,y4)J($57y5)> ’

that manifestly solves the superconformal Ward identities.

To achieve this, we start from the ansatz proposed in equation for the super-
primary correlator,

(J(x1,91) J (22,92) J (23, y3) J (T4,94) J (25, 95))

?J12y13923y45 Y12Y13Y43Y25Y45 Y12Y23Y43Y15Y45
fl( ) f2(uvv)+ f3(u7v)
3U12$13$23$45 L12X13L43T25L 45 X12X23L43T15L 45
Y12Y24Y43Y35Ys1 Y31Y32Y41Y25Y45 Y13Y34Y42Y25Ys51
+ fa(u,v) + f5(u,v) + fo(u,v).
T12X24X43T35T 51 X31X32L41T25T 45 X13X34L42T25T 51

(4.28)

This can also be interpreted as

—~

J(x1,y1) J (22, 92) J (23, y3) J (T4,y4) J (25, Y5))

) )
¢(1)0(2)) (#(4)0(5)) (6 (1) #(2) J (3) ¢ (4) ¢ (5)

{ (

{

{

—~

)

( 1) J(2)J(3)e(4) o (5)  (4.29)
¢(1)6(2)) (¢ (1) ¢(2) J (3) J (4) J (5))
J(1)J(2)J(3)J(4) ] (),

where ¢(x;,y;) = ¢(i) represents the field obtained by applying the chiral algebra
twist on the [0, 1, 0](0,0) representation of psu(2,2|4).

(
one extra structure of) (p(4)p(5)) (J (1)

+ -

J
¢
J

( )
(one extra structure of)
+ (one extra structure of)

(
(

LA Mathematica notebook with the fully constrained superconformal blocks is available upon
request.
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To verify this formulation, we will outline the bosonic structures required to ex-
press the aforementioned correlators; which are products of 2pt functions and 5pt
functions of reduced complexity. These are:

(0(1)0(2)) (¢(4)0(5)) (2(1)¢(2)J (3)¢(4)4(5))

_ Y12 Y45 Y13Y23Y45 Fi(u,v) + Y12 Y45 Y13Y43Y25 Folu, v) + Y12 Y45 Y23Y43Y15 Falu, )
T12 Ty5 T13T23T 45 T12 T45 T13L43T25 T12 Ty5 T23L43T15
(4.30)
(9(4)9(5)) (J(1)J(2)J(3)p(4)(5))
_ Ya5 Y12Y13Y23Y45 Filu,v) + Ya5 Y12Y13Y43Y25 Falu,v) + Ya5 Y12Y23Y43Y15 Falu, )
T45 T12713T23T 45 T45 T12X13T43T25 T45 T12X23T43T15
Ya5 Y31Y32Y41Y25
+ o= fy (u, v)
Ly5 T31X32X41T25
(4.31)
(p(1)p(2)) (P(1)6(2)J(3).J(4)J(5))
_ Y2 Y13Y23Y1s Filu,v) + Y12 Y13Ya3Y25Y45 Falu,v) + Y12 Y23Y43Y15Y45 Falu, )

2
T12 1312345 X112 T13T43T25T 45 X112 T23T43L15T 45
Y12 Y24Y43Y35Ys1
+ f4(u7 U)

X112 T24T43X35T 51

(4.32)

Indeed, they are the same structures as the ones used in the expression 4.28

The superconformal Ward identities (SCWI) for each of these correlators, which
we refer to as subcorrelators, can be derived by performing a similar analysis for
each individual 5-point component. Alternatively, we may deactivate all non-
relevant functions in equations and [4.7], yielding the equations for each specific
subcorrelator. This approach yields the SCWI outlined as follows.

For each subcorrelator, we obtain two conditions of the Drukker-Plefka twist type,
encompassing all relevant channels.

This then can be used to eliminate one of the unknown functions as

n

fi(z1,22) = = > fi(z1, 22) + constant, (4.33)
i=1,ij

with the sum running over all the remaining unknown functions present in the
respective correlator.
Additionally, in each case, there is one extra condition. Substituting already the
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solution obtained from the Drukker-Plefka twist condition, these are given by

(0(1)0(2)) (¢(4)8(5)) (6(1)¢(2)J (3)6(4)9(5)) -

0,1 0,1
0= f{" (21, 22) + £ (21, 22) (4.34)
21— 1 z
! 1(1’0)(21722) + = 2(1’0)(21722)
zZ9 — 1

(0(4)9(5)) (J(1)J(2)J(3)p(4)¢(5)) :

1—22 — Z% + 22 ,(0,1)

_ r(0,1) (0,1)
0= fl (Zl, ZQ) + f2 <Z17 22) + -1 + 21+ 2 3 (217 22) (435)
(=1+2z1)z1 1,0 (=14 21)2f (1,0)
+— 1 N2, 29) — (21, 2
(—1+22)22f1 (21, 22) (=14 2) (=142 4+ 29)"° (1, 22)

(0(1)0(2)) (¢(1)9(2)J(3)J (4)J (5))

—24+221+ 2
0= 1(0’1)(21, 29) + fz(m)(Zl, z) + — =

(21, 20)
22

-1 2 —1+2 -1
( +ZQ) +21( + Z2)f2(170)(21,22)—|— +21+22

(1,0)
(—1 + 22)22 29 f3 (21’ 22)

(4.36)

+

Thus, rather than solving the SCWI directly for the 5-point correlator |4.28| involv-
ing the fields J(z,y), we will proceed incrementally, beginning with solutions for
the simpler correlator (¢¢J o).

In this correlator, given by

(0(1)0(2)J(3)0(4)0(5)) , (4.37)

r——,.

when performing the OPEs ¢(1)¢(2) and ¢(4)¢(5), the only possible R-symmetry
representations that can be exchanged are

<l17l2) = {(1a0)7(071)7(1a1)} : (438)
The corresponding R-symmetry blocks can be determined to be of the form
1 1 1
{, L } (439)
Y1 Y2 Ya2Yye2

Consequently, the ansatz for the correlator (¢p¢pJp¢) (which we consider with an
appropriate leg factor already being separated) must be a linear combination of
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these three R-symmetry structures, and, by analyticity, no additional factors of
the y-cross ratios are permitted.

Regarding the spacetime dependence, we initiated from three unknown functions
of the cross-ratios, as indicated in ansatz and eliminated one function via the
Drukker-Plefka twist type as outlined above. Thus, the ansart has to incorporate
two unknown functions of the cross ratios.

The twist itself imposes the condition

<¢¢J¢¢> |Y1—>Z17Y2—>Z2 = const. (440)

To satisty this condition explicitly within the parametrisation of the correlator, we
assign the two remaining unknown functions to be proportional to (z; —y;) and
(29 — y2), respectively.

Thus, a preliminary ansatz for this correlator would be

1
Yiya

~

((21 = y1)Au(z1, 22) + (22 — y2) Aa(21, 22)) - (4.41)

It is important to note that the analyticity conditions on the y-variables remain ap-
plicable. Expanding the above expression, we recover only the allowed R-symmetry
blocks specified in [£.39]

For further convenience, we adopt a slightly modified ansatz:

(6dTd) ~ 2 (21 — y1) A1 (21, 22) + (20 — y2) As(21, 22)) . (4.42)

Y1ye

By matching this ansatz with the initial form given in 4.28, we can express
fi(z1, 22), fa(z1,22), and f3(21, 22) in terms of Aj(z1,22) and As(z1,22). Substi-
tuting these expressions into the original SCWI of the Drukker-Plefka condition
for this correlator, along with Equation [4.34] we verify that the Drukker-Plefka
twist condition is manifestly satisfied, while the additional condition reduces td?

822141 (Zl, ZQ) == 821 AQ(Zl, ZQ). (443)
The most general solutions to this equation take the form

Aq(21, 22) = g2(21) + 0., H (21, 22) + const.

4.44
Ao(z1,29) = g1(29) + 0., H (21, 29) + const. (4.44)

2This form is achieved thanks to the additional factor z;zs. If we had proceeded with the
preliminary ansatz, we would have obtained equivalent, but slightly modified equations.
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where H(zi, z3) is a function of two variables, and go(z1) and g¢1(z2) are functions
of a single variable.

Substituting these solutions into the correlator ansatz we obtain

(0P DP) |bare = A2 z129(21 — y1)g92(21) + 2120(22 — y2) g1 (22)
y1y2 y1¥2
2172

iy ((21 —y)HY (21, 20) + (22 — o) HOV (2, 2’2))
1y2

_Aar za(21 — y1)g2(21) + 21(22 — y2)91(22)
Y1¥y2 Y1y
2129
(21 =y HO (21, 20) + (22 = y2) HOV (21, 2))

yiye
where the two constants have been combined into a single term, . In the transi-
tion from the first to the second line, the factor z; is absorbed into g(z1) and 2z
into g1 (z2), respectively.
The subscript bare denotes that we are considering the correlator with the external
leg factor removed.

(4.45)

We can apply this result to analyse in a next step the more complex correlator of
the type (JJJoo).
As before, the R-symmetry blocks can be expressed as linear combinations of the

four fundamental blocks:

1 1 1 1-—
{7 ) 9 ( 2 YQ) } . (446)

Y1 Y2 Ya2¥ye Yiy2

The additional fourth block reflects that the OPE between J(1)J(2) allows also

for an exchange of operators of weight [; = 2 (which are not present in the OPE

of $(1)6(2)).

In a manner similar to previous cases, we construct an ansatz using these four R-

symmetry blocks, ensuring it satisfies both the conditions imposed by the Drukker-

Plefka twist and the additional constraint in Eq. in the most manifest way.

After imposing the Drukker-Plefka twist, we proceed here with three unknown
functions of the cross ratios. Since this correlator can be viewed as an extension of
the previously examined correlator (¢¢J o), we leverage the previously developed
parametrisation and formulate an ansatz schematically as

(ppJ o) + (one additional term ~ (1;7}[2)6’(21, 22)> :
Yiya
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By exploiting the freedom to include additional factors of the conformal cross
ratios, we construct the ansatz

(JIT6G) ~—2 (21 — y1) A (21, 2) + (22 — ¥2) Aa(21, 22))

Y1ye
2122 (1=ys 1—=29\21—W1 (4.47)
-+ - Ag(Zl, 22).
Y1ye Y1 21 21
The final term includes a component
1-— 1-—
i 2122 ( Y2 Z2> (4.48)
Yiyea Y1 21

which directly resembles the fourth R-symmetry block, with the conformal cross
ratios chosen in the simplest way to manifest the Drukker-Plefka twist. The addi-

tional factor
21— Y1

21

(4.49)

has been introduced to simplify the resulting third superconformal Ward identity
equation. With this parametrisation, this equation takes again the simpler form

(922141 (Zl, 22) = 821 AQ(Zl, 22). (450)

Note that the extra factor in Eq. [£.49|still yields a linear combination of the four
R-symmetry base blocks.

Following the same reasoning, we can establish a parametrization for the correlator

(ppJ I T)
as
212
(JJJ¢¢> Ny1y2 ((21 - Y1>A1<z1; 22) + (2’2 - Yz)A2(2’1, Z2))
1Yo

2120 (1—=y1 1—=21\ 22 —y2 (4.51)

+ - A4(Zl, Z2>
yiyo Y2 ) )

which also satisfies the superconformal Ward identity 0,, A1 (21, 22) = 0., Aa(z1, 22).

These subcorrelators enable us to construct an ansatz for the complete correlator
(JJJJJ).
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Referring to the observation made in Eq. 4.29] we can formulate an ansatz as
follows:

21%
(JJJJJT) Ny1y2 ((z1 = y1)A1(21, 22) + (22 — y2) A2 (21, 22))
1Y2
1-— 1— —
L A% < v2 22> AT )
Y1y2 Y1 21 Z1 (4.52)
1— 1— —
+ 2172 < yi Zl) 22 Y2A4(21722)
y1¥y2 Y2 Z2 22

+ one additional term.

This additional term must be proportional to the sixth R-symmetry block, which
represents an exchange of operators with [y = 2,1, = 2 - a term that appears only
in the double-OPE of (JJ) and not in the sub-correlator configurations. Referring
to Eq. this final R-symmetry block is given by

—1+y1+y2
T. (4-53)
Yiya

To ensure a manifest solution to the Drukker-Plefka twist condition, we construct
the final ansatz as follows:

(JJJJJT) N;;z ((z1 = y1)A1(21, 22) + (22 — y2) A2 (21, 22))
+ ;’1;2 <1 ;YQ B 1 ; Zz) <1 Z_Y1A3(21722)
1y2 1 1 1
2122 (1 —y1 I—2z1\ 22—y (4'54)
+ < - ) A4(2’1, 22)
Yiye Y2 2 Z2
—1+4+y; +y2

— 21 — 29)As(21, 22).
Fian o wla -2l 2)

This ansatz does not explicitly satisfy the superconformal Ward identities, yet,
like the previous subcorrelators, it fulfills the additional condition

(‘LQAl (Zl, 22) = 8Z1A2(zl, 22). (455)

This condition, however, can be solved as in Eq. 4.44l Substituting the solution
into Eq. yields a parametrisation of the correlator (JJJJJ) that explicitly
satisfies the superconformal Ward identities.
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The resulting parametrisation is given by

(JTTJTJT) |pare _Aaz L z2(21 — y1)g2(21) + 21(22 — y2)91(22)

Y1y2 NAR D)
2%
+ = ((21 - Yl)H( ’ )(Zla 22) + (22 — Y2)H(O’ )(21, 22))
NARD)
212 1— 1— 2\ 21 —
+ = ( 2 2) L (2, 22) (4.56)
NARD Y1 Z1 21
1-— 1— _
+ — ( L Zl) & Y2A4(21,22)
Yiyeo Y2 ) )
—1+y1+y2
+——5— W - 21 — 29) A5 (21, 22).
y%y%zlzg (1 — y2) (= 2) A5 (21, 22)

The five-point function of the field J(x,y) -obtained from the stress-tensor su-
perprimary via the chiral algebra twist- is thus parametrised by four unknown
functions of the two conformal cross ratios, of which one appears in differential
form, along with two additional single-variable functions.
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4.3. Analyse SCWI of Four-Point Function

In this section, we analyse the equations derived for the four-point functions of the
stress-tensor multiplet.

We focus specifically on the six equations obtained for the superprimary correlator

in Eq. |3.220, given by
<020' ($1, yl) Oay ($27 y2) Oqy ($37 y3) Oq ($4; y4)>

4 .4 4 .4 4 4
Y12Y34 Yi3Y24 Y14Y23
= 1 filu,v) + 57 fo(u, v) + 7= f3(u, v) (4.57)

T12T34 L1324 L1423 :
2.2 ,2 2 2.2 ,2 2 2.2 ,2 2
Y12Y13Y24Y34 Y12Y14Y23Y34 Y13Y14Y23Y24
2 g o g Ja(wv) + S5 fi(uv) + 55 felu, ).
T1oX13X94 X3y T1oX14X53T3y T13X14X53T9y

The six equations that constrain the six unknown functions of the correlator above
are given by

fl(u)<u> v)u + f2(u)(u7 U)u B f2(u) <u7 U)Uu B fZ(U)(uv U)Uu + fl(v) (ua U)U

f1 (u,v) = — - :
O, 0) = - B0+ £ 0 = £ (vt 57 () = £ (e

£ .0 = F3 w0 = £ o)+ fé“)?z,vv)vu + 3" s v)ou = 17w, 0
1 0) = ff”)(u,"c;)(u -1 A : i w0y £ (Z’ v)u,

10,0 = — 20+ £, 0)0? f)(u v+ £3(u,v) = 3w, v)u.

£ () = A3 o= £ (s v)ou = £ (o + 137w, 0)o + £ w, v)o

(4.58)

and we will refer to these equations, with a slight abuse of notation, as the four-
point superconformal Ward identities (SCWI).

We begin this section by verifying the correctness of the derived equations.

4.3.1. Check the Equations.

As an initial check of equation [4.58] we utilise established results for the four-point
correlation function from the literature to verify whether the corresponding coef-
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ficients satisfy the constraints derived in our analysis.

The four-point correlator is well known to take the (schematic) form [79]
<TTTT> = Gfree + Ganom - Gfree + R({(L'“ yz}) : H<U, U), (459)

where

4 .4 4 .4 4 .4
G — Y12 Yss Y13 Y24 Y14 Ya3
free — 4 1 4 4 !
Tio T34  T13To4 14 L23

2,2 .92 2 2,2 .92 2 2,2 .2 2

4 (%2 Y13 Y24 Y34 + Y12 Y14 Y23 Y34 + 9139149233/24>
2 2 .2 .2 .2 2 .2 .2 .2 2 .2 .92 .2
N2 —1 \ 2o 2373, T34  TipT14 T3 T34 T3 T4 T3 Ty

(4.60)
+

4 4 4 .4 4 .4 2
v v
Ganom = yiQ y?f UH(U'7 'U) + yzl,LS y%;l - H (U,U) + y4114 yi?) o H(U,, U)
Lo T34 Ti3Log U Ti4Toz U
2 .2 .92 2 2 .92 2 2
Y12 Y13 Y24 Y34 U Y12 Y14 Y23 Y3g U
+ G5 —(w—u—1)H (u,v) + =55 — (1 —u—v) H(u,v)
T1g T3 Loq L34 U T1g T4 T3 X34 U
2 2 .92 2
v
X Y13 Y14 Y23 Y2u “u—1-v) H(u,)

2 2 .2 2
T13 T14 L3 Tog U

(4.61)
2 .2 2 .2
. Tk 5,0
with u = “1278 -, _ Tiath (4.62)
T13TL24 T13L2g

Leaving the correlator unsupersymmetrised corresponds to verifying the relations
for the superprimary correlator (Ogy Oy O20:Oa) i.e. we focus on the consistency
of the relations governing the derivatives of the functions f;(u,v), as given by the

equation [4.58

By comparing the expression 4.61) with our used ansatz for the four-point correlator
in equation 4.57, we obtain the following identifications

v
fi(u,v) =1+ v Hs (u,v), fz(u,’u):1+aH2(u,v),
:>f1(“)(u, v) = vHé“)(u, v), fl(v) (u,v) = Hy(u,v) + vHQ(v)(u, v),

u v UV _(u » 1 V(v
137w 0) = = o, 0) 4+ Hy(w0), - f37 (u,0) = = Ho(u, o)+ HY (),

It is straightforward to verify that these functions indeed satisfy the relations given
in equation .58
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4.3.2. Solving the Equations

To demonstrate the utility of these equations and their ability to reproduce the
result stated in equation [2.93]in Section [2.4, we proceed by solving the system of
equations given in [4.58

To solve these partial differential equations (PDEs) for the six functions f;(u,v)

involved in the four-point superprimary correlator, it is convenient to first express

them in terms of the variables z and Z, as introduced in [36]. Then, two equations
can be shown to be equivalent to:

6 6

=0, Yz =0 (4.63)

i=1 =1

which are equivalent to the constraints derived from performing the Drukker-Plefka
twist. These two equations can be solved as follows:

fo(z,2) = = fi(z, Z) + const. (4.64)

i=1

Substituting this expression into the remaining four equations, we obtain:

f1(170)(z7 2)

z
f1(071)(27 2)

+ 2102, 2) + f19(2,2) = 0,

+ 2 (2,2) + [1OV(2,2) = 0,

z
z AN > (4.65)
(z — 1)f12_<1,o)(z,z) N zfg(;’?(lz,z) L9 s 0,
(z — 1)]1(0,1)(,2, ?) zfg(jl_)(lz, ?) O 2) = 0.
This system of equations can be fully solved to give:
o Ni(z2)  alz) —alz)
f2<27 Z) - P + P ,
fol2.2) = (=~ Dz 1) (fl(;z) el Z_z(z>> |
fie, ) = 2B =Zald) 2+ 2A(E2) (4:66)
’ z—Z 2Z ’
f5(2,2) = <1 i 2) fi(z.5) 4 EoDEe) =G - Do)
z  Z . _ 3
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where ¢1(2), ¢1(2), c2(2), and ¢(Z) are single-variable functions.

Indeed, the six functions f;(z, z) initially parametrising the superprimary corre-
lator have been successfully reduced to a single function of the two conformal
cross-ratios, fi(z,z) plus several single-variable functions.

Substituting the above solutions into the original ansatz and factoring out an
appropriate leg factor reproduces an expression of the same kind as the form de-
veloped in Section (see Eq. . Thus, the equations above indeed reconstruct
the four-point superconformal Ward identities.

An alternative approach to deriving this result is to observe that the six equations
in and are equivalent to the constraints imposed by the Drukker-Plefka
twist and the chiral algebra twist introduced in Section [2.4] Applying these twists
to the correlator ansatz in yields equations equivalent to those derived above.

In other words, we have rederived that the Drukker-Plefka twist and the chiral al-
gebra twist fully capture the superconformal symmetry constraints for four-point
functions.

The next question to consider is whether this statement extends to five-point
functions as well.
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4.4. Analyse SCWI of Five-Point Function

Following the approaches taken in previous sections, we now analyse the SCWI
obtained for the five-point correlator of stress-tensor multiplets in psu(2,2[4). As
before, we focus primarily on the partial differential equations that constrain the
superprimary correlator:

G22222 <020/ (Xl)OQOI (XQ)OQO’ (X?))OQO’ (X4)(920’ (X5)> (467)

This correlator is parametrized by 22 unknown functions of the cross ratios, as

defined in [3.214

<O20' ($1, yl) Oay (IE27 y2) Oqy (953, 93) Oqy (51347 y4) Oay (905, y5)> =

_ 912934945?/53 ({ }) 913924.%5?452 ({ }) 914923935952 ({ })

4
$12$34$45I53 $13$24$45$52 14%355351‘52

X ?/15923934942 ({ }) y23y14y45y51 ({ }) y24y13y3sy51 ({ })

1.2
$15I2395349542 3$14I45 51 4x13x35 51

1 yj5y13y34y41 ({ }) y34y12y25y51 ({ }) ?J35y1zy24y41 ({u})

x25x13x34a:41 x34x12x25 51 35$12I24 41
y45y12y233/31 912%33/343/453151 y12y23y35y54y41
+ e 5 Su{ul) + n({u}) + 12({u})
Ty5T12L33T31 371237233734374555'51 x12x23x35x54x41
2.2,.92 .92 2
Y12Y24Y45Y53Y31 3/12?J24y433/353/51 3/12?4253/53%4941
5.2 .2 9 13({u}) + 1a({u}) + fis({u})
T1oXoyTy5X53L31 $12$24$435535x51 57512%533533734%1
2.2,.92 .92 2
Y12Y25Y54Y43Y31 y1sy35yszy24y41 9133/32?/24?/45?/51
2 2 92 92 9 16({u}) + 2 9 9 9 17({u}) ({u})
x12x25x54x43x31 1713373517525”245541 x13$32$24$45x51
?/13932925954941 y13y34y42y25y51 y14y429233435951
5 fro({u}) + s0({u}) + far({u})
517135”325525%4%1 $13$34$42$25$51 55145542%3%5%1
3/15952923934941
2 .2 f22({u})
$15I52952395349541
(4.68)
where the conformal cross ratios are defined as in [121].
2 .2 2 .2
L1oT3y - L1423 .
Uy = = 2121 Uy = = (]_ — Zl)(l — 21)
113734 ’ 13734 ’
2 .2 2 .2
Lo3T 45 - Lo5T3y -
Us = — 2929 Ug = = (]_ - ZQ)(l — Zl> (469)
5,735 ’ 5,735 ’
2.2 .2
Ty L5l _ _ _ _
Us = % =w(zy —Z1)(20 — Z2) + (1 — 21 — 22)(1 — 21 — Zo).
T34T13T35
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As mentioned earlier, the 35 partial differential equations involving these 22 un-
known functions are too complex to display here.

The complexity of these 35 equations arises not only from the involvement of 110
unknown functions, each of the form fi(uj)({u}) forj=1,....,5andi=1,...,22,
but each of those function also has intricate prefactors built from the five indepen-
dent cross ratios, adding further complexity.

Schematically, the equations are of the form

0=">c(u1,us, us, ug, us) 3au~fi (uy, ug, ug, Uy, Us) (4.70)
ij J
where ¢ (uy, us, ug, ug, us) is a rational coefficient of the five cross ratios. The sum
could run over ¢ = 1,...,22 and j = 1,...,5. In general, not all of these 110
combinations are involved in one equation.
The 35 equations can be translated into equations involving instead the five vari-
ables (21, Z1, 22, 22, w), thus being of the form

9 .
i (21,21, 2, 29, W) (4.71)

0=> c(z1,21,2,%,w) e
J

1,7
where z; € {21, 21, 22, Z2, w}.
At this point in the analysis, this does however neither simplify nor complicate
drastically the situation. Therefore, both sets of variables are used, depending on
the respective situation and goal. The statements presented in this thesis are true
for both sets of variables, unless marked otherwise.

The complexity of the equations can be partially addressed by taking a numerical
approach -that is, by assigning independent numerical values to each of the con-
formal cross ratios. This reduces the complexity of the prefactors considerably.

With this simplification, certain analyses become feasible. Similar to the four-point
case, we begin by providing evidence that the derived equations are correct.

4.4.1. Check the Five-Point Equations.

To cross-check the accuracy of the 35 derived equations, we will compare them
against two established expressions from the literature. First, we will examine a
one-loop expression for n = 5 half-BPS correlators presented in [105] to confirm
that this solution satisfies our equations. Second, we will use a strong-coupling
expression derived from supergravity in [104] and verify its consistency with our
equations. This two-fold comparison serves as a thorough validation of the cor-
rectness of our derived system across different physical regimes.
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4.4.1.1. Check at Weak Coupling

In 2009, a closed-form expression for the one-loop correction to the correlation
function of five half-BPS operators with dimension two in the planar limit of
N =4 SYM was presented in [105].

This expression, adapted to our notation, is given by [105]

(TT)TB)T )T (5)) 1-100p
= — 32 (Digs4 [13,24]5] + Disas [12,34]5] + Dyas [14, 23]5

[ [ ] [ ]

(D1ass [13,25]4] + Dusas [12,53]4] + Dias [15, 2314]

— 32 (D12sa [15, 24]3] + Dasoa [12,45[3] + Diaas [14,25(3]
(Disa [ [ ] [ ]

[ [ ] [54,23[1]

)
g (4.72)
)

Dissq [13,54]2] + Digsy [15,34]2] + Dysas [14, 53[2

]
— 32 (Dsasa [53, 24[1] + Dsaoa [52,34[1] + Dsaus [54,23[1]) ,

where the notation [ij, kl/m] encodes the five-point bosonic structures in terms of
two-point tree-level contractions:

[ig, kllm] = [im] [jm] [kI] (4.73)
U = Uj 1 y”

= ez 7 @y

ZJ 1]

(4.74)

where the u; are the null vectors previously introduced as an alternative approach
to address internal symmetry considerations (see Section . In the final expres-
sion, these are adapted to our conventions of analytic superspace.
The term D,y refers to a planar four-point interaction, given by

Dyt = g ®(s,1) (K] 1)+ s — L= 1) () K]+ ¢ = 1 =) [i] 1), (479

where \ is the coupling constant, and

GV VA VIR
O(s,t) = AIm <L2 Vi ln\/gln\/%)

(4.76)
1l—s—t—4A 1
ip = A - 4 t - 1 - - t 2
c Z\/1—s—zs+4z,4 4\/8 (1=s=1)
with cross ratios defined by
T3 T x? x?
5= —ulh oy TdTk (4.77)
Lok, x]l Lk m]l
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Using this expression, we can extract the coefficient functions that correspond to
our unknown functions f; by matching the terms in Eq. to each of our 22
structures in [3.214] Then, we rewrite those expressions in terms of our chosen set
of cross ratios, as defined in [3.121] yielding f;({u}) at one-loop order.

Inserting the resulting expressions into our 35 equations for the superprimary, and
studying those numerically, this calculation shows that our equations are indeed
satisfied, with an error margin in the range

(107 = 1071\, (4.78)

To summarise, the one-loop expression for the five-point correlator of stress tensor
multiplets presented in [105] indeed satisfies our 35 equations.

4.4.1.2. Check at Strong Coupling

A similar consistency check can be performed using an expression for the five-point
correlator of stress tensor multiplets at strong coupling, derived from the dual the-
ory of type IIB supergravity on AdSs x S°. This expression was obtained in 2019
by [104].

Unlike the weak coupling result, but similar in complexity to our derived super-
conformal Ward identities, this expression is too lengthy to display in full here.
However, the authors generously provided the full expression in a Mathematica
file such that this check could be performed f

Following a procedure similar to the weak coupling check, we rewrite the provided
expression in terms of our defined set of cross ratios, extract the corresponding 22
unknown functions f;({u}), and substitute these into our 35 equations. We find
numerically that the equations are indeed satisfied, with numerical accuracy up to
an error of]

1075, (4.79)

Having confirmed the accuracy of our equations, we will now outline the initial
steps taken in order to control the superconformal Ward identities (SCWI) and
to aim towards a parametrisation analogous to the discussion presented for the
psu(1, 1]2) case.

3 A special thank you to Vasco Gongalves is here in order.
4Mathematica notebooks including both, the weak coupling and the strong coupling check, can
be provided.
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4.4.2. Content of the Five-Point SCWI.
Drukker-Plefka twist and chiral algebra twist.

Utilizing numerical simplifications further, we can cross-verify our 35 equations
against two established subclasses of constraints identified in the literature: the
Drukker-Plefka twist condition and the chiral algebra twist conditions.

We begin with the Drukker-Plefka twist condition. By aligning all five internal
cross ratios with their corresponding conformal cross ratios, the resulting twisted
correlator, which simplifies to a sum of the 22 unknown functions, must be a
constant. This can be formally expressed as:

22 8f 22 af
DP twist: Za “(uy,...,us) =0 or Zaz(zl,...,w)zo, (4.80)
i=1 Yla i=1 Y%a
where z, € (z1,...,w). This constraint holds for each of the five cross ratios,

thereby yielding five equations concerning the five-point functions.

Indeed, we demonstrate that five of our 35 equations are equivalent to the condi-
tions imposed by the Drukker-Plefka twist. By taking linear combinations of our 35
numerical equations, we obtain exactly five equations of the Drukker-Plefka twist
type, in addition to 30 independent, slightly modified equations. Consequently,
our set of 35 equations encompasses the five independent equations characteristic
of the Drukker-Plefka twist condition.

The chiral algebra twist condition must be addressed differently. It is only appli-
cable when all points are positioned on a plane, which, unlike four-point functions,
cannot be achieved using a standard conformal frame for five-point functions. The
five-point configuration attainable through superconformal transformations is rep-
resented as follows:

0

. i (10 n-wlmn—72) ivw—1yw(sn—2z)
XfA—>]1,X?A_><O 1>_<z' fw = 1y/w(z — %) Zy + w(zg — 22) )
(4.81)

X{‘A — <Zl 3) , X;‘A -0, Xg“A — 00,
1

Thus, inserting the five operators in a planar configuration corresponds to nullify-
ing the fifth cross ratio, denoted by w.

Indeed, when examining the graphical interpretation of these cross ratios, where
each pair (z;, z;) defines a plane and w signifies the angle between these planes [117],
the condition w = 0 precisely aligns the two planes represented by the remaining
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four cross ratios, thus resulting in a single plane.

The chiral algebra twist then acts on this restricted five-point correlator as follows:

22222
0., G2 ({zh, v, =0 (4.82)
where {z;} = {21, Z1; 22, 22} and similarly for the internal cross ratios. Analogous
equations can be derived for twisting with respect to the other cross ratios.
Numerically, we can demonstrate that these equations are included among our
derived equations (when the fifth cross ratio w is set to zero). However, our equa-
tions extend beyond these two subclasses, providing stronger constraints.

Given that the chiral algebra constraint does not yield a general, everywhere-valid
constraint for the five-point function, we cannot substitute some of our equations
with those twists. Thus, the intermediate result for the 35 equations is as follows:

e 5x DP type: 2%, ggi (ug,...,us) =0

o 30 additional equations.

Simplification of the SCWI and state-of-the-art.

However, by carefully analysing the 35 equations numerically and examining their
resulting behaviour in depth, a more concise expression for some of the equations
has been derived. The full set of 35 equations can be shown to be equivalent to:

22 af

5 eqns : Za (ug,...,us) =0foreacha=1,...,5 (4.83)
i=1 YUa
10 eqns : uiG—uiG Va#b=1 5 (4.84)
q : “8ua » — baub a =1,..., .

20 eqns : which have thus far not been simplified.

Here, G, represents a fixed linear combination of the unknown functions f;({u}) :
Gi =>cjfi({u}) for j € {1,...,22}, where the coefficients ¢; are integer values.
This form of the constraints, [4.84] is present for both sets of variables. For the
cross-ratios being defined as {u;}, we then in particular have:

Gs =2fs + f5+ fo + fs + fir + fia + fis + foo + for + fao (4.85)

168



4.4. ANALYSE SCWI OF FIVE-POINT FUNCTION

Gi=fot f3+2fr+ fs+ fis + fi6 + fir + fio + foo + fo2 (4.86)
Gs=fi+ fot+ fs +2f10+ fu + fiz+ fi3 + fi6 + f1zs + fio (4.87)
Gy =2fs+ fs + fr+ fo+ fio+ fis + fir + fio + for + foo (4.88)
G1=2fi+ fs + fo+ fio+ fu1 + fiz + f13 + fua + f15 + fi6 (4.89)

Here, f; should be understood as depending on the cross ratios, f;({u}), and are
the functions associated in the ansatz [4.68 Similarly, G, ({u}) .

These 15 “simplified” equations[4.83]and [4.84] along with the remaining 20 complex
equations, represent the current state of progress.

4.4.3. Studying Subcorrelators

Following a similar approach as discussed for the psu(1, 1|2)-case, these equations
can be examined through subcorrelators. In particular, we observe that the ansatz
for the Oy five-point function also encodes the structures required to describe the
correlator:

(11211) = (01(1)01(2)) (O1(4)O1(5)) (O1(1)O1(2) 020 (3) (O1(4)O1(5))) , (4.90)

where O; denotes the superprimary of the half-BPS multiplet O,—;, transform-
ing in the 6 of su(4)g. We will refer to this correlator in shorthand notation as
(11211), reflecting the charges of the respective operators in the five-point function.

This correlator is represented in terms of six bosonic structures as follows:
(11211)

_ YiWsistss g oy g VsVl gy VVsUSUS. g o

$12517343745$53 $45$12517233731 x12x23x34x45$51
912923935954%1 ({ }) y12y24?/45y53ys1 ({ }) y12y25y54y43y31 ({u})
2 .2 .2 2 2
$12$23$35$54$41 2x24m45x53a731 1251325$54$43$31

(4.91)

For consistency, we retain the same labelling as for the unknown functions in the
Oy five-point function to facilitate comparison with those structures of (22222).
When restricting the derived 35 Ward identities to the above six functions (by
turning off all the other functions), we are left with 20 independent equations
governing the correlator (11211>.E|

Specifically, they are of the form:

®Note that when rederiving the SCWI for (11211) from scratch with the discussed method,
there are in fact 21 independent equations of reduced complexity.
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6
5 eqns :Zg}ta(ul,...,%):0foreacha:1,...,5 (4.92)
i=1 9Ju
10e HS'uiG —uiG Va #b=1 5 (4.93)
q : aaua b — baub a — Ly .

5 (or 6, respectively) other eqns.

For this simplified correlator, the linear combinations GG, reduce to:

{G5:f117 G4:f167 G3:f107 G2:f127 Gl :fl} (494)

By eliminating fi3({u}) using the five Drukker-Plefka twist conditions, all remain-
ing channels are incorporated within the 10 simple equations
A general solution to this system is given by:

Gal{u}) = ua;’%H({u}), (4.95)

indicating that all five remaining functions of the cross ratios are, in fact, parametrised
by derivatives of a single function of the cross ratios.

The investigation of this single function under the remaining five equations is
currently ongoing.
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5. 6pt Function on the Wilson line

In this chapter, we apply the techniques developed in previous chapters to inves-
tigate the supersymmetric line defect in N/ = 4 Super Yang-Mills (SYM) theory.
This study serves as an illustration of the versatility of our methods, demonstrat-
ing how they are applicable not only to arbitrary n-point correlation functions in
N =4 SYM, but can also be directly adapted to other configurations.

The supersymmetric line defect provides an ideal arena due to its retention of
a significant portion of the original superconformal symmetry, specifically from
the original AV = 4 super algebra psu(2,2[4). This preserved symmetry structure
makes the analysis of constraints imposed by symmetry arguments particularly
effective. Moreover, when considering operators inserted on the line defect, the
system is effectively described by a one-dimensional conformal field theory (CFT),
thereby enabling a simplified approach similar to the one observed in the psu(1, 1]2)
scenario.

A commonly studied instance of the one-dimensional supersymmetric line defect is
the Maldacena Wilson line, which is of substantial physical relevance. This line de-
fect preserves many of the desired properties of the original theory: despite a high
amount of supersymmetry, making it appealing for our analysis, it also possesses
for instance a well-defined holographic dual: a two-dimensional string worldsheet
in AdS, which terminates on the Wilson line in the boundary-CFT. Consequently,
it holds significant interest in the context of the AdS/CFT correspondence.

We begin in Section by reviewing the necessary preliminaries specific to this
setup. Subsequently, in Section [3.2] we explicitly derive the superconformal Ward
identities for the four-point function of half-BPS multiplets. This calculation not
only illustrates the method but also serves as a cross-verification against estab-
lished results in the literature. Finally, we extend our analysis to the six-point

function of half-BPS multiplets in Section
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5.1. Preliminaries

In this section, we define the Maldacena-Wilson line in Subsection and exam-
ine it from the perspective of the corresponding symmetry algebra in Subsection
[b.1.2l Many of the underlying concepts, especially regarding the construction of
representations, follow the principles outlined in Section [2.2} therefore, we will pro-
vide a concise summary of key elements rather than reproducing each derivation
in full detail. In Subsection we discuss the analytic superspace framework
used to describe half-BPS operators associated with the line defect.

5.1.1. The Maldacena Wilson Line

Wilson lines, introduced in gauge theories by Kenneth Wilson [49], measure phase
variations of gauge variables parallel transported around closed loops in space-
time. They probe global properties of the gauge group that would not be acces-
sible through correlation functions of local operators. These Wilson lines can be
extended supersymmetrically to construct analogues in supersymmetric gauge the-
ories. The supersymmetric line defect, often referred to as the Maldacena Wilson
line, inserted here as a straight line in N’ =4 SYM, is defined as

4% E]i[tl“ (73 exp z/_o:o dr (i:i‘(T)“AM(ZL’) + |z*(7)| 0 - @(x))) : (5.1)

where 7 is the one-dimensional coordinate parametrising the Wilson line. Here,
A, (z) denotes the gauge field, and ®/(x) represent the six scalar fields of N = 4
SYM.

The parameter 67 is an SO(6)g-vector satisfying the null-condition 676; = 0, in-
troduced similarly to the polarization vectors u! to incorporate internal symmetry
considerations. N indicates the rank of the gauge group SU(N), and the entire
expression is path-ordered.

With this explicit expression for the Maldacena Wilson line defined, we follow a
similar spirit as with respect to the Lagrangian description in N' = 4 SYM to
just abandon it alltogether and focusing exclusively on the underlying symmetry
algebra.

5.1.2. Symmetry Group and Representations

The superconformal algebra of N' = 4 SYM, psu(2,2|4), consists of the four-
dimensional conformal algebra su(2,2), the internal symmetry algebra s0(6)g =
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su(4)g, and 32 fermionic generators.
The introduction of a %—BPS supersymmetric line defect in AV = 4 SYM results in
the breaking of this symmetry as

psu(2,2]4) — osp(47[4). (5.2)

The algebra osp(4*|4) contains the preserved bosonic subalgebra sl(2) @ su(2) @
sp(4), where sl(2) = s0(2,1) corresponds to the one-dimensional conformal sym-
metry on the line, generated by translations P, dilations D, and special conformal
transformations K. The algebra su(2) captures the three-dimensional rotational
symmetry around the line, generated by L® 3. Meanwhile, the R-symmetry al-
gebra su(4)g is broken to sp(4)r = s0(5)g. This reduction can be understood
in field-theoretic terms, as only one out of the six scalar field couples to the su-
persymmetric Wilson line, leaving five fields uncoupled resulting in the residual
internal symmetry so(5)g [129].

In addition, there are 16 preserved fermionic generators -eight supertranslations
and eight superconformal transformations- which together form the algebra osp(4*|4).

Following the approach outlined in Section [2.2] we construct the possible represen-
tations under this symmetry group. Focusing on operators inserted on the defect,
we label the multiplets by its respective highest weight states denoted as

[a, 0] (5.3)

with [a,b] : Dynkin labels of s0(5)g,
s : transverse spin, associated with su(2),

A : scaling dimension.

In this context, we use half-integer spin notation, i.e., s € %N. Additionally, we
adopt the convention where [0, 1] labels the 5-dimensional representation of so(5),
while [1,0] denotes the 4-dimensional representation.

Analogous to the full psu(2, 2|4) case, we can apply BPS conditions to obtain short-
ened multiplets. In this work, we focus on half-BPS multiplets, the shortest type,
which annihilate under all eight superconformal charges and four supercharges.
Following the conventions of [130], we denote the half-BPS multiplets as

B = [0, k]?, where A = k. (5.4)

We refer to this as a half-BPS multiplet of charge k. Due to unitarity constraints,
A =k, and these multiplets are protected against quantum corrections.
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Specifically, we examine the half-BPS multiplet with the lowest charge, k£ = 1.
The full supermultiplet is constructed as

_3
A=3

1
§=3

By : [0,1]55 = [1,0] — [0,0]252. (5.5)

This multiplet holds physical significance as it includes the displacement operator
D ~ [0,0]252, which characterises the response to shifts in the defect’s position.
Accordingly, this supermultiplet is also referred to as the displacement multiplet.

5.1.3. Analytic Superspace

Much like psu(2,2|4), the reduced algebra osp(4*|4) also admits an analytic super-
space that provides an efficient framework for describing half-BPS multiplets on
the line defect. This analytic superspace is derived by isolating the coordinates
relevant to the defect and bulk from the original psu(2, 2|4)-superspace.

To review, the psu(2, 2|4)-superspace is given by [2.71}
XAA — ('T ) pa%l)
Pyt ) (5.6)
with A =(ala), A = (&la), a,&d=1,2;a,a=1,2.

ad

The analytic superspace for the reduced algebra osp(4*|4) can then be constructed
by categorising these coordinates according to defect and bulk components. This
procedure, detailed in [130] for general defects, leads to a superspace for the su-
persymmetric line defect that has been explicitly stated in [131]:

ab eaﬁ
xAB - [T¢ ) : 5.7
( eba y(aﬁ) ( )

where 7 denotes the spacetime coordinate, following conventional notation in the
literature, and the fermionic coordinates are denoted by 6 to distinguish them from
the original psu(2, 2|4)-fermionic coordinates. Notably, the fermionic coordinates
in the upper-right cell are the same as those in the lower-left cell, giving in total
four fermionic coordinates that parametrise the four non-trivial fermionic charges
relevant to half-BPS multiplets on the Wilson line.

The group OSP(4*|4) acts projectively on this analytic superspace as follows |132]:

A B

g -1 o
X% (A+BX)(CX+D)" Vg= (c b

) c OSP(4*|4),  (5.8)

177
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where this transformation can be derived similarly to the treatment in Section [2.3]

The analytic superspace framework is particularly effective for half-BPS multiplets,
allowing these multiplets to be represented by a single, unconstrained superfield, in
the same manner as for half-BPS multiplets in psu(2,2|4) covered in the previous
chapter. Since the multiplet is generated by the successive action of the non-trivial
fermionic charges, a general half-BPS multiplet with charge k can be expanded in
terms of the corresponding fermionic coordinates as

Bi(X) = ¢ (1,y) + 0" Vo (T, y) + 0“0 Agas(T,y) + . .. (5.9)

The explicit field expansion of the multiplet is then determined by the differential
constraint:

k+1
(({)XaAB> Bi(X) =0 w. graded symmetrisation, (5.10)

which is formulated analogously to the approach in Chapter [3] This differential
constraint can in fact be applied to any half-BPS multiplet in a superconformal
field theory that supports an analytic superspace, as the derivation presented in
section [3.3|is based on general considerations.

In particular, for the displacement multiplet, we impose the following differential
constraint:

5 \2
<8XAB> Bi(X)=0 w. graded symmetrisation. (5.11)

Taking into account the inherited graded symmetrisation properties, the most
relevant constraints are of the form:

o 9
. Bi(X) =0, (5.12)
0y 0Y° |y
o 9
_ By(X) =0, (5.13)
00° 0y | a5
1,0 9 0 9 -
(26 90 99 or ayaa> Bi(X) =0. (5.14)

Solving these constraints, as shown in Sections and [3.3] yields the complete
field expansion of the displacement multiplet in analytic superspace, also derived
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in [132]:

o 0 0? 0
o aq b,B —pd =
Bl(X)—( 9 ey 5o +49 8T2dt<ay(aﬁ>)¢(r,y)

o 0 (5.15)
or a ) a( ,y)

+ Eageaagbﬂp(ab) (T, y) + ...

+ 9% ( Sebﬂemebc

Here, the field ¢(7,y) represents the [0, 1]45! multiplet component (see constraint
_3

5.12), W, (7,y) corresponds to the field of [1,0]?_12 (see constraint [5.13)), and
-2

D(ap) (T, y) expresses the displacement operator [0, 0]252

To initiate our analysis, we restrict to terms up to O(6?), resulting in the reduced
field expansion:

Bi(X)

0
- < gaaebBE“ba 9y/(@P) > & (T,y) + 0°“Wop (7, 9) + €asd™ 0" Dy (1, y) + ...
_ 2\ap 9 0 ax acnbf
=\1- 5(9 ) an(aﬁ) ¢ (77 y) + 0V, (Tv y) + 6050 0 D(“b)<T’ y) o
(5.16)

where we have introduced the shorthand notation (6%)° = €,,696.

Observe that the superprimary field reappears at higher fermionic orders in the
expansion, echoing the behaviour seen in the construction of superconformal Ward
identities (SCWI) in Chapter [3] This recurrence establishes critical constraints in
the SCWI.

5.1.4. Kinematics

With the expression for half-BPS multiplets on analytic superspace established,
we can now proceed to examine their correlation functions.

Starting with the two- and three-point functions, superconformal symmetry en-
tirely determines their forms, given by [132]

(Bi(X1)Bi( X)) = 611 dY,, (5.17)
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~k1tko—k3  ki1tkz—ko  katk3—kj

<Bk1(X1)Bk‘2(X2>Bk3(X3>>:>\123d12 : d13 ° d23 : ) (518)

where Aio3 is the relevant three-point coefficient.
Here, the term d;; denotes the superpropagator, defined in the standard way as

det <y§;‘ﬁ) + Tigl(%)(aﬁ))

2

dij = sdet (X}7) = (5.19)

The superdeterminant is defined according to the conventions given in [A.1] with
the adjustment of identical off-diagonal elements, and with the spacetime coordi-
nate restricted to one dimension.

The four-point correlator of half-BPS multiplets presents the lowest-point function
with non-trivial dynamics, as it is not fully constrained by superconformal sym-
metry anymore. The superconformal Ward identities impose essential constraints
on this four-point function, as derived in [130], which we will review here.

The four-point function’s dependence compared to the psu(2,2|4)-case is reduced
to a single conformal cross ratio, underscoring the notable simplifications relative
to the psu(2,2|4) case. This single cross ratio is defined as

T12734

X = (5.20)

T13T24

Additionally, the two R-symmetry cross ratios can be defined in line with the
standard four-point cross ratios:

2.2 2.2
Y12Y34 Y14Y23

C1C2 = > (1 - Cl)(l - <2) = ’ (521)
9%3954 9%3954

where y7; = det y;;.

Then, superconformal symmetry restricts the four-point correlation function to
the form

Gk ko ks kay = (Bry (X1) By (X2) Bry (X3) Bi, (X4))

(5.22)
=IC ey oo o o} A Ller ez ek} (G €15 C2))4

where the expression is proportional to a single function, A, iy ks ke) (X C1, C2), 0f
the conformal and internal cross ratio. Here, Ky, r, ksk,) denotes an appropriate
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bosonic prefactor.
The superconformal Ward identities can be written in the form [130]

— 0. (5.23)

1
<8<1A + 28XA>
C2=x

1
— 0, <8§2A + 26XA>

C1=x

Briefly, these identities follow from a construction similar to the superconfor-
mal Ward identities (SCWI) for the four-point function of half-BPS multiplets
in psu(2,2[4). We apply supersymmetry transformations to turn off all fermionic
coordinates, allowing us to construct the bosonic invariants. By supersymmetrising
these bosonic invariants, we obtain the full superconformal invariants, bypassing
the need to consider nilpotent invariants. Ensuring analyticity in the internal co-
ordinates then yields the equations above.

In the next section, we will apply our strategy to rederive these results for the
displacement multiplet. With the multiplet field expansion specified in Equation
[5.16], we proceed directly to the correlation function analysis. As the steps follow
closely the previously discussed cases, we will focus on key intermediate results
only.
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5.2. SCWI of the Four-Point Function

Consider the four-point function of displacement multiplets:

gllll = <Bl(Xl)Bl(XZ)Bl(X3)Bl<X4)> . (524)

By inserting the multiplet field expansion from [5.16, we expand the correlator in
terms of fermionic coordinates as follows:

(B1(X1)B1(X2) By (X3)B1(X4))

=(o(71, y1)P(72, Y2)P(73, Y3) P(74, Ys))

3O G G WO ) (5

=1
+Z Z ewgw Voo (Ti, 4i) Vo (75, Y;) A(Tk, y£) O (71, Y1)

=1 j=i+1

+ ... (higher orders).

Note that up to this order in €, there is no correlator involving the displacement
operator, as a four-point function of three superprimaries and one displacement
operator is forbidden by symmetry constraints associated with transverse spin.

Imposing supersymmetry invariance of this correlator in analytic superspace amounts
to the equation

M,,;

89” (B1(X1)B1(X2)B1(X3)B1(X4)) - (5.26)

In this setup, we only have a single equation, as only one type of fermionic coor-
dinate appears.

Examining this constraint at the first non-trivial order, O(6?), we derive the fol-
lowing condition from supersymmetry:

1 w 0 0
0 == X el (G(1)6(20(3)0()
#3308 (U ) Vo )o0)000) (5:27)
- Z:l Z On® (Waa(n)We, (1) (k)o(1))

182



5.2. SCWI OF THE FOUR-POINT FUNCTION

where we introduced the shortened notation ¢(i) = ¢(7;,y;) for the fields.

Since this equation must hold for all 82%, we obtain four distinct constraints:

0o 0

0= o (D()02)6(3)0(4)

- <‘Ijaa(1>\1jc’y(2)¢(3>¢(4)
— (Vaa(1)9(2) ¥y (3)(4)
— (Vaa(1)9(2)0(3)¥ey (4))

—~
~—

(
) (5.28)
)
)

and similarly for n = 2,3, 4.

These constraints exhaust the entire fermionic sector of the algebra osp(4*|4).
Consequently, we can now turn our attention to the bosonic symmetries. To
ensure covariance under the bosonic subgroup SO(2,1) x SO(3) x SO(5)g, each
correlator in the expansion is expressed in terms of a set of independent structures
that encode the correct transformation properties and conformal weight, multiplied
by an unknown function of the conformal cross ratio:

L12T34
= ., where z;; = x; — ;. (5.29)
L13%24

Starting with the R-symmetry subgroup, the number of independent structures
per correlator can be determined by counting the singlets in the respective tensor
products. Specifically, we find:

(p(1)p(2)p(3)p(4)) : 5% D 3 singlets/structures, (5.30)
(W)U (5)o(k)p(l)) : 492 @ 5% D 2 singlets/structures. (5.31)

For the superprimary correlator, the structures can be constructed in association
with the Wick contractions in the free field theory. We express the correlator as

(6(1)p(2)(3)0(4)) = yiys FL({T}) + visyas 2 ({7}) + yiawas Fs({7}),  (5.32)

where all spacetime dependence is contained in the functions F;({7}) for now.
For the descendent correlators, we can form either a short or 2-point structure by
contracting the two tensorial operators or a full intrinsic /-point tensor structure
that involves all four points. Incorporating both possibilities, and using k, = 1
and ky = %, we express the descendent correlators, following the construction
principles in as

(Voo (D)W (7)0(k) A1) = yrys (Wi )asGisa ({T}) + viayie Wi vt )asGij2 ({T1),
(5.33)
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5.2. SCWI OF THE FOUR-POINT FUNCTION

where linear independence of the structures is ensured. The function Gyj,,({7})
multiplies the k-th R-symmetry structure of the correlator with ¥, inserted at
(73, ) and (7, ;).

We ensure analyticity in the y-variables by specifying all y-dependence explicitly
within the structures, avoiding arbitrary functions of internal cross ratios.

The spacetime-dependent functions F;(7) and G;(7) are also expressible in terms
of structures with the correct transformation properties and weights under the
remaining SO(2,1) x SO(3), and are multiplied by functions of the spacetime
cross ratio alone. In the one-dimensional spacetime, there is only one independent
structure over the space of functions of the cross ratio per correlator. Given Ay =1
and Ay = %, we set

A{rh) = 55100, BUmY) =55 A0, BUTH = 55 f(x), (5:39)

12 T34 7'13 24 714 23

Giym({7}) = Zfégmnxx> (5.35)

where €., ensures invariance under SO(3).

Recall, that the full spacetime dependence was absorbed into the functions F;({7}),
Gi({7}), therefore in particular the spatial derivative of the superprimary correla-
tor. We thus had defined

Fi({r}) = eab E({r}), (5.36)

with F;({r}) given as above.

Next, we insert these bosonic expressions into the supersymmetry constraints, pro-
ceeding in two steps. First, we substitute the internal dependence, yielding equa-
tions involving only the spacetime components. Then, we introduce the spacetime
structures, resulting in equations for the unknown functions alone, exactly as out-
lined in previous chapters. The results can be summarized as follows:

o All descendent functions g;;.m(x) are determined by the superprimary func-
tions, as expected.

» Additionally, we obtain the following two relations for the superprimary func-

tions fi(x):
—1+x

:imm+ﬁux<3 100 + £00- (5.37)
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These can be shown to be equivalent to the Ward identities:

1
(28X + 8§1> A (x, G, G2)

—0, (5.38)
&1—xa1

= 0. (5.39)

&1—x2

1
(28X + 8§2> A (x, G, G2)
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5.3. SCWI for the Six-Point Function

In this section we derive, in a similar manner as before, the superconformal Ward
identities for the six-point function of displacement multiplets:

gllllll = <BI(X1)BI(XZ)BI(X3>BI<X4)81(X5>BI(X6)> : (540)

For the six-point function, it is no longer feasible to use a frame where all fermionic
coordinates are turned off, which makes previous techniques for obtaining the su-
perconformal Ward identities, like the one outlined four the four-point function,
particularly challenging.

However, we note that in [129], the Ward identities for general n-point functions
of half-BPS multiplets on the supersymmetric line defect have been conjectured
to take the form

n—3 1
> (2% + o0, — (1 — ak)ask> Abren| =0, (5.41)
Rt sim (1~ (1)

tij—(ai—a;)(Xi—x;)
for any arbitrary oy € R.
In the specific case of the n = 6 point function, the cross ratios x;, 14, s, ;; refer to

the conformal and internal cross ratios. Following the conventions of [129], they
can be defined as

T12756 T13756 T147T56
X1 = ) X2 = ) X3 = ) (542)
T15726 T15736 T15T46
2 .2 2 .9 2 .92
_ Y12Ys6 _ Y13Yse _ Y14Yse
= 2 92 ro = 9 92 rs = 9 92
Y15Y26 Y15Y36 Y15Y16
2 .2 2 .2 2.2
_ YiglYos _ YislYss ~ YieYss (5 43)
S1= "5 5 S2= %5 5, S37= 5 5, :
Yi5Y26 Yi5Y36 Yi5Yae
2.9 .2 2.9 2 2.9 .2
" _ Y16Y23Y56 _ Y16Y24Y56 _ Y16Y34Ys6
12 =795 2 2 13— "9 92 2 23— 92 2 9"
Y15Y26Y36 Yi5Y26Ya6 Y15Y36Ya6
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The conjectured Ward identities in Eq. were extended in [118] to the form

0=

1
lim (2@(1* + i Op,, — (1 — 0x)0s., + Z(ai* — aj)atm,) Ak, ke
J

Oci*—>1

Ti—>0G X4
si—>(1—ai)(1—xi)
tij—(ai—a;)(Xi—X;)

(5.44)

The goal of this section is to derive the superconformal Ward identities using the
method developed throughout this thesis. This approach provides a systematic
and reliable way to obtain the SCWI and can thus serve as a cross-check for the
proposed Ward identities.

Inserting the multiplet field expansion in ((5.16)) into the six-point function
G = (B1(X1)B1(X2) By (X3)B1(X4)B1(X5)B1(Xs)) , (5.45)
and enforcing supersymmetry invariance with

6
0
0=> WGllllll (5.46)

=1

leads to six constraints analogous to those derived previously. Each constraint
takes the form:

0=ty i (OISBIOE)(0)
— (Waa )W (2)0(3)5(4)0(5)0(6)
~ (Waa DO (3)5()0(5)0(6) (5.47)
— (Waa DO(2)0(3) ¥ ()6(5)0(6)
~ (Taa (AT, (5)0(6))
~ (Taa (DO DIG) U (6))

and similarly for n = 2, 3,4, 5, 6, using arguments analogous to those in Section[5.2]

Turning our attention to the bosonic symmetries, with respect to R-symmetry, we
determine the number of independent structures per correlator as follows:

(p(1)p(2)d(3)d(4)p(5)p(6)) - 5% D 15 singlets/structures, (5.48)
(U)W (5)p(k)p(l)p(m)p(n)) : 4% @ 5% D 10 singlets/structures.  (5.49)
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As we have a one-dimensional CFT, we find one independent scalar structure per
correlator, constructed as before.

We can again express the superprimary correlator in terms of Wick contractions:

(6(1)9(2)0(3)¢(4)¢(5)6(6))

y12y56934f1({ 1)+ ?J12935y4ﬁf2({ )+ M s({}) + y13y24y56f4({xz})

$12$56$34 5E12 35 46 I12$36 45 37139524 56
913925946 913926945 914923956 914925936

+5 55 fs({xi}) + S5 5 fe({xi}) + 555 fi({xi}) + 555 fs({xi})
x%5$25$46 371395269545 $14 23 56 $14x259536

?J14?J26y35 y15y23y46 915924936
+=5 55 Jo =257 f10 === (i
$%4$26535 ({ }) $15$231’46 ({ }) $151’249536 ({ })

915926934 y16y23y45 916924935
f 7f Xi 7]0 Xi
371537263734 2({ }) 37163723%5 3({ }) 3716%45535 ({ })

2/1619253/34
+5—5 5 fis({xi})
551633255334

(5.50)

Following the same arguments as before, the descendent correlators can be repre-
sented via R-symmetry tensorial structures of the type

(Waa (1) Wos(7) @ (R)o(1)d(m)d(n)) -

B . (5.51)
YoV Wis )ass Yoy Wik ity ass Y siYomn Uik YrmYrmnYni¥i; )as

For each correlator containing ¥,, at ¢ and j, by considering all permutations of
k,l, m,n over the remaining four points and then restricting to linearly independent
structures, we obtain a complete expression.

The independent spacetime structure takes the generic form

(W (1) Wa () S(R) S (D) (m) () - — (5.52)

T; Tkl

Permutations of k, [, m,n within the four points distinct from ¢, 7 yield valid struc-
tures for expressing this correlator, of which one can be chosen. We denote the as-
sociated functions of the cross ratios by ¢;;x({x:}), where ¢, j indicate the ¥,,(x,y)
position, while k£ =1,...,10 labels the R-symmetry structures.

Inserting the respective correlators into the six supersymmetry constraints and
following the solution steps from previous sections yields the following results.
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We observe that the descendent correlators are entirely fixed in terms of the super-
primary functions; all degrees of freedom are thus captured in the superprimary

correlator.

Furthermore, we obtain a system of 26 equations corresponding to the 15 unknown
functions f;({x;}) associated with the superprimary correlator. These 26 equa-
tions can be separated into 15+11 equations, of which the first 15 are equivalent

to:

Oy fi({x}) =

Oy fo({x}) =

Oy [1({x})

Oy fe({x}) =

Oy fs({x}) =

x1(x2 — x3)
maxlﬁ({x}) — X10y, fr2({x})

+ wﬁxlfg({ P+ Mg)@fll({x})

X?’a Sa(xd) +

(=1 +x2)x3 (X1 —x3)
X1(x2 — x3) x1(x2 — X3)
+ (Xl _ X2)< 1 +x ) X1f13({X}) (Xl . XS)(_l + X2)8Xif14({X})
(5.53)
C2 g, ) + 2= ) + 2o, fu i
_ o xale—1)
i — X38x¢f14({X}) (s — Dix1 — Xz)aXifw({X})
(5.54)
. (X:s - Xl) X2(X3 - X1) X2(Xl - Xz)
- Y1 — 8X1f5({X}) + (Xl — Xz)aXif7({X}) + (X2 — 1)X3 8Xzf9({x})
X2(X3 ) x2(X1 — X3)
+ *Xl PO (D) + A0 ()
x2(x3 — x1)
+ 1— X28Xif14({X}) + (Xl _ 1)(X2 — X3)8Xifl5<{x})
(5.55)

(1 —x3) (X2 — x2x3) xa(xs — 1)
- O, fs({x}) + Waxiflo({X}) + W%ﬁz({x})
2 x2(x3 — 1)
+ o= X23xif13({X}) " o= Dl — Xs)aXif15({X})
(5.56)
2, b + X g+ DX g
(Xl — 1)xs X3
(X2 _ 1)<X1 _ Xg)aXifM({X}) + — Y3 axz‘flf)({x})
(5.57)

where each equation holds separately for each ¢ = 1,2, 3.
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These 15 equations can be reformulated in the following compact form:

1
(2% + ;0 — (1 — ;) 0, + Z(Oéz‘ - aj)atij) Ay - =0,
J si—(1—a;)(1—x4)
tij—(ai—az)(xi—x;)
(5.58)

where, as before, each ¢ = 1,2, 3 produces a distinct equation valid for any arbi-
trary oy, o5 € R.

These reformulated equations encompass the superconformal Ward identities pro-
posed in previous works [129] and [118] (refer to Egs. and [5.44). However,
the set of equations derived here provides a stronger set of constraints.
Furthermore, there are other eleven equations which are subject to further analy-

sis[]

IThese eleven equations are too lengthy to be displayed here. However, a Mathematica notebook
including those equations can be provided upon request.
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6. Conclusions and Outlook

In this thesis, we developed a method to derive the superconformal Ward iden-
tities (SCWI) for higher-point correlation functions of half-BPS multiplets. This
method works independently of the number of insertion points and can be applied
to half-BPS correlators in any theory admitting an analytic superspace. Our main
example, which demonstrates this method, is N' = 4 Super Yang-Mills (SYM)
theory, where we derived the superconformal Ward identities for the five-point
function of stress tensor multiplets.

After introducing the main concepts necessary to understand this procedure in
Chapter [2, we proceeded to derive the superconformal Ward identities in Chapter
[Bl To build complexity step by step, and to facilitate the application of the method
to various setups, we began by deriving the Ward identities for five-point functions
in the chiral algebra of psu(2, 2|4), given by psu(1,1]2) (see Section [3.2). This one-
dimensional setup is significantly simplified compared to the four-dimensional case,
yet remains relevant due to its connection to the full four-dimensional case via the
chiral algebra map. We then derived the SCWI for the four-point function of stress
tensor multiplets in psu(2, 2|4), which provides a simplification relative to the five-
point case due to a reduced number of parameters and unknowns. Additionally,
these results can be used as a verification against the well-established expressions
in the literature, affirming the validity of our approach. Finally, we derived the
SCWI for the five-point functions in psu(2,2|4), with particular focus on the stress
tensor multiplets.

The various SCWI are derived using the same general method. We begin by ex-
amining a differential constraint that the half-BPS multiplets on the respective
analytic superspace obey (see Section for details). This constraint yields a
fermionic expansion for the respective multiplet that can be utilized inside the
correlator. We then impose superconformal invariance on this expanded corre-
lator, which becomes a straightforward task in analytic superspace. Technical
challenges arise from the bosonic structures, which reflect the transformation be-
haviour of the correlator under the bosonic parts of the superconformal algebra.
These structures have been discussed in Section [3.4] Following this strategy, we
derive the SCWI for four-point and five-point functions as shown in Sections 3.5

and [3.0], respectively.
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In Chapter , we analyse the derived SCWI. For simpler cases such as psu(1,1|2)
and the four-point function, the equations can be solved straightforwardly, yielding
a parametrization of the correlator that manifestly satisfies the respective identi-
ties. The five-point function SCWI, however, are more challenging to analyse.
Nevertheless, we provide evidence of the correctness of our derived equations and
present the first steps taken towards a simplified representation.

In Chapter 5| we further demonstrate the utility of our method by applying it to
a different setup: the supersymmetric Wilson line defect in AV = 4 SYM. Here,
we derived the SCWI for the six-point function of displacement multiplets on the
Wilson line.

Outlook

Progress on the SCWI for the five-point function of stress tensor multiplets in
N = 4 SYM continues along three main directions. First, we aim to simplify
the remaining complex equations similarly to the 15 “nice” equations presented in
Section potentially allowing a comprehensive exploration of solutions. Some
of these solutions can already be examined for related correlators. The correlator
(11211), where p = 1 or p = 2 refers to the charge of the superprimary of the
inserted half-BPS multiplet, may be viewed as part of the full stress-tensor corre-
lator. It is a candidate for which the equations simplify significantly and whose
structure may provide insights into the stress-tensor correlator. Another candi-
date is the next-to-extremal correlator (22622), currently under investigation. Its
superprimary, parametrised by six unknown functions, satisfies 21 equations, with
15 of the “nice” form and the remaining six taking a more straightforward form.
The third direction involves a direct application of the SCWI to superconformal
blocks, as illustrated in the psu(1,1|2) case. The superconformal blocks satisfy the
SCWI regardless of their complexity, offering a direct application of the derived
identities. This work is ongoing.

Further studies are also ongoing for the setup of the supersymmetric line defect in
N = 4 SYM. Work continues on solving the derived identities for the superprimary
correlator. Additionally, higher-order terms in the fermionic expansion are under
investigation to better understand the behavior of the descendant correlators.
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Part IV.

Appendices
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A. Analytic Superspace

A.1. Conventions

In the following section, we will list all the definitions and conventions related to
the supermatrix representing analytic superspace,

A (zg A p“f”)
Py (A1)

with A = (o, a), A =(¢,a) and o, =1,2; a,a =1,2.

fe%e's

These conventions are the same used in |79).

This matrix is a (4]4)-supermatrix and thus, the supertrace and superdeterminant
of this matrix are given by

str(XA4) = tr(2°%) — tr(y®®) (A.2)
. det (z0¢ — poay L pes det (20
sdet(XA4) — (o = pil ™) lete™) (A.3)
det (yaa) det (yaa _ ﬁaay(;apaa>

The indices are raised and lowered with the anti-symmetric su(2)-tensors €*#, o

as

xao’z — eaﬁ ﬁo’z7 yad — Gabfﬂgbﬁbd, (A4)

where €'? = €5 = 1.

Thus, we obtain the following identies for the scalar products and inverses

2?2 = 2%%%4, = det 299, y? =y "ysq = det y™ (A.5)
-1 o Taa -1 _ Yaa
(7 )aa = 2 (Y™ aa = ? (A.6)
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A.2. SUPERCONFORMAL GENERATORS

Derivatives of the scalar product amount to

0, 0 5
- = Taas —_— = Yaa- A. 7
paa® ~Taer gl =Y (A.7)

With the above definitions, we introduce the following short-hand notation for the
super propagators

"2 2 ~ad aa —ad( ,— aa
d L 05 LY g B 0 Jee™ g

ij — sdet <X1]> :L’%j x?j’ pod yaa . paa(yfl)dapaa'

A.2. Superconformal generators

The form of the superconformal generators acting on analytic superspace can be

inferred from the infinitesimal transformation
X=VX=B+A-X+X-D+X.-C-X, (A.9)

A B
C D € SL(4/4;C).

The explicit form of the generators in the superalgebra can be read off to
be [41}81]:

where A, B, C, D are the usual entries in G =

0
M B :lﬁd 0 Ba & .’lﬁd . ﬁaa i
“ Oz dpa’ p PP op*s
L0 1( e ® e O (A.10)
D =2 : - ad _ 4 pod :
x axaa + 2 (p apaa P apaa>
C aag O . 0 9 9
ac __Ba,af Bé  ab —ba,.af —ba& ab
K =2"% —(%Bﬁ-%—x p Tpﬂb%—p z 7aﬁb5+p P 78yb’5
P = 0
aa ayaa
a 0 ~bcv d na aa 0 ada d
RS =y =+ ", RYy=y" o+ ™
dy ap oy op~
o 1 9 B (A-11)
D/ :yad T paa _ 4+ ﬁad :
ayaa 2 8paa aﬁaa
: s 0 .o 0 . 20 .0
laa __ Ba —af Ba, ab ba ~af ba, ab
K™ =p™p 5278 + 7y 9 +yp o8 +yy Dy
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A.3. CONSTRAINING HALF-BPS MULTIPLETS ON ANALYTIC SUPERSPACE

Qaa :85"““ Qad = 8/?“0‘

., 9 0 5 9 9
Qo' =P e TV g Qe =P s — V" g
Géa :xgapaﬂafﬂg + xﬂdyabajﬂb _ pbdpaBabe — pbdyabajbb
gia :ybapab@jbb + yb%aﬂ'a?w _ ,Oﬁapab&i% — abajﬁﬁ

A.3. Constraining Half-BPS Multiplets on Analytic
Superspace

The algebra psu(2,2[4) is a Zy-graded algebra, characterized by a decomposition
of the form

A=Ay @ A, (A.13)

where the elements of Aq are referred to as even, while those of A; are termed
odd.

In the context of the analytic superspace that represents this superalgebra, we
have x°9, % € Ay, while p®%, g% € A;.

To translate this grading into single su(2) indices o and a, we adopt the conventions
outlined in [79], specifically setting |a| = 1 and |a| = 0. This yields back the
original grading;:

2% = Ja| +[a| = 0+0=0, (A.14)
Yy =la| +la| =1+1=0, (A.15)
07 =lal +]al =0+1=1, (A.16)
Y =la|+]al=1+0=1. (A.17)

To implement the appropriate symmetrisation —specifically, the anti-symmetrisation
of (a, &) and the symmetrisation of (a,a)— as discussed in Section [3.3] we intro-

duce the auxiliary vector
¢4 = (”) (A.18)
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A.3. CONSTRAINING HALF-BPS MULTIPLETS ON ANALYTIC SUPERSPACE

which has the grading 'SA’ = |A|+1. This vector achieves the desired symmetriza-
tion by contracting with the differential operator as follows:

0
A
O~ G

¢4, (A.19)

A.3.1. Proof of the Differential Constraint for Half-BPS
Multiplets

The auxiliary vector can be employed to demonstrate the identity for half-BPS
multiplets. This section provides a sketch of the proof for the specific case of
the stress tensor multiplet in psu(2,2|4), i.e. up to the third order differential
constraint. The corresponding constraints for other half-BPS multiplets can be
derived in the same manner.

We commence the proof of Eqn. by examining the action of the differential
operator on the two-point function of the fundamental multiplet, O;(X), which
is represented by the [0, 1, 0] representation of su(4)g. The two-point function is
given by

1
(01 (X1) 01 (X)) = [sdet X o]’ (A.20)
Using the identity presented in [79], we obtain
g (1) (@)
A A _ AA
<§ 8XAA£ ) (01 (X7) 01 (Xp)) = St X . (A.21)

This result can be generalized to two-point functions of arbitrary charge p as

follows:
1

(0,(X1)0,(Xa) =

(A.22)
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A.3. CONSTRAINING HALF-BPS MULTIPLETS ON ANALYTIC SUPERSPACE

which leads to

g0 e L (R I
HXAA |sdet X |P HXAA |sdetX| |sdetX|  [|sdetX]|

o) o
B |sdet X | |sdet X |P—1
[Al (FAx—1¢A
|sdet X| |sdet X| |sdet X |P—2
Al (FA~—
N M (Exge)

|sdet X |P—1 |sdet X |

- ()M (Eet)
|sdet X |P ’

We can incorporate the recurring factor (—1) 4V into the definition of the differential
operator, yielding

0
Thus, the action of this differential operator on the general two-point functions of
half-BPS multiplets is expressed as

o= (-1l A ¢4, (A.24)

1 - (@Y (A.25)
sdetX [P |sdetX [P’ ‘
or, eliminating the auxiliary vector, as
o 1 —»p0"(x5) (A.26)
OXAA |sdetX|P |sdet X |P ' '

With these results established, we proceed to investigate the second-order differ-
ential constraints. This can be computed as follows:

SR S (A W DY e 1 Y L)
|sdet X |P |sdet X |P |sdet X |P

o (Fiy-1.4 1 1 o (fAy-1¢a
= (#532*) (9 i) * paeep? (7 (€903

ol - 1) (Eixet)
B |sdet X |P ’

(A.27)
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A.3. CONSTRAINING HALF-BPS MULTIPLETS ON ANALYTIC SUPERSPACE

where we have utilized the second identity from [79] to arrive at the final expres-
sion. It is noteworthy that this second-order differential constraint becomes trivial
when p = 1.

Similarly, the third-order differential constraint can be derived as follows:

;1 (£1x30¢")

sdetX[r =D -2) |sdet X |P (A.28)

This third-order differential constraint vanishes not only for p = 1, as obvious from
the second-order constraint, but also for p = 2.

Continuing in this manner, we derive the general result:

1
ot ———— =0 Vp. A.29
|sdet X |P b ( )

This leads to a direct constraint on the multiplets O,(X):

1
—ortl___ — a0 (X,)0.(X. A
0=9 |sdet X1o|? (0p(X1)0p(Xa)) | (A.30)
from which we can conclude that
ap+lop(X> =0 Vp
wo=( e Lot o gz 2 .
Wi o aXAA or - GXAA with graded sym-
(A.31)
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A.3. CONSTRAINING HALF-BPS MULTIPLETS ON ANALYTIC SUPERSPACE

A.3.2. Fundamental multiplet on Analytic Superspace

The fundamental multiplet, O;(X) can be expanded in the fermionic coordinates
of analytic superspace. The full expansion is then determined by

<8X8M>2 01(X) = 0. (A.32)

Solving this constraint yields the following multiplet expansion

O 0 1 usaay & O 8 O
- _ — oa  Bboac =bB . .
zos gyei 4 P PP Grad 555 dyed 3ybi)> l(@8).(a).(a}. (a5} 06 (9]

Ol(X) — (1 _ pa(zpao'z

. 1 s 0 0
aa (1L s ‘ .
te (1 o P axﬁﬁaybb> Vaa (2,9) |(ap), fab}

(L 00\
aa (1 L g , .
e (1 2”7 Oa:ﬁﬁaybi)> Vaa (7,9) | (ap),fan)

.\ 6h
+p*4p° F 60 (ap) {ab)
. . 7b -
+ PP Fr 5 () (6) fat)

with Og(x,y) ~ [0,0,0],0) and O, Og(z,y) =0

0
o) and s Uz, y) =0

\Ilad(xay) ~ [0707 1]( 69:55

1
29

=1

s 0 =
. ~ ap . —
ad (337y) [17 0, 0](0,%) and € R Vi (1:7y) =0

ox

&

w50 (@) (ag), 1aby ~ 10,0,0](10)

wibd (@) ap) fany ~ 10,0,0](0,1)
(A.33)

Note that for the fundamental multiplet, the masslessness equations as well as the
conservation equations are implied by the constraint.
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B. PSU(1,1|2)

We are studying the correlation function

Wa (X7)Wa (X)) Wa(X3)Wa (X)) Wa(X5)) . (B.1)

B.1. Constraints from SUSY-Invariance

Imposing invariance of this correlator, expanded in fermionic coordinates, under
supersymmetric transformations as > a% (...) = 0 leads to the following five con-
straints.

10 0
0=-— 5871'187:1/1 <J($1791)J(I27?/2)J(x37 yS)J($47y4)J($57?/5)>

+ <T($1)J($2a Yy2)J (3,Y3)J (T4, ya) J (5, Y5))
+ Z (21, )G (i, :) I (@r, yo) I (21, 90) I (T, Yim)
Wlth i£k#1#me{23,4,5}

1 0 0
0=-— 5875281/2 <J($1>y1)=](372,?/2)t](373, y3)J(3747y4)J(355>y5)>

+ (S (21, y1) T (x2) J (23, y3)J (T4, Ys) S (25, Y5))
- (G(ZIH,yl)é(l'z,yz)J($37y3)J($4,y4)J(3?5,3/5)> (B.3)

+ Z (w1,91) $2yy2)G(xiuyi)J(xlayl)J(Imaym)>

Wlthz%l%me {3,4,5}
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B.1. CONSTRAINTS FROM SUSY-INVARIANCE

0= = oo (1,30 ) (73,30 1) )
+ (J(@1,91)J (22, y2) T (23) (24, y2) I (25, Y5))
G(z1,y1)J (22, y2) ( 3, Y1) J (24, Y4)J (x5, Y5)
J(x1,91)G (22, 42) 7(x3,y4)J(a:4,y4)J(a?5,y5)
J(w1,y1)J (22, y2)G (23, y3) G (74, Ys) J (25, y5)
(z1,31) (5, ys)

( )
J(x1,y1)J (22, Y2) G (23, y3) J (24, ya) G (x5, Y5

(B.4)

— )
— )
+( )
+( )

Q Qi

)G(
)G (
0=— ;82-88 <J(x1,y1)J(:E2,y2)J(x3,yg)J(fL’47y4)J($5>y5)>

+ (J(@1, 1) (22, y2) I (23, y3) T (24) (25, Y5))
Z x“y% xl?yl)J(imyym)G("E%y4)‘]($57?/5)>

+<J(331,yl)J(ﬂfzaw)J(ﬂ?s,y3)é($4,y4)G(iC5,y5)>
with i # [ #m € {1,2,3}

(B.5)

10 0
0=—-—— (J(x1,y1)J (22, y2) J (23, y3)J (24, ys) J (x5, Y5))
201‘5 8y5

+<J(55'17yl)J(x2aZ/2)J(373,Z/s)J<5U4,Z/4)T<$5)>
- Z xlvyl Ik,yk)J(«Tl,yl)J($m,ym>é($5,y5)>
w1th i#k#1#£me{l,2,3,4}.

The alternating sign in the correlators involving the currents G(x) and G(z) is due
to their fermionic nature.

Similarly, imposing invariance under the charge Q, i.e. 30 8% (...) =0 leads to the
five constraints

0=+ 10 90 (J(z1,y1) (w2, 2) I (23, y3) S (T4, Ys) J (75, Y5))

2 0x1 Oy
- <T(I1)J($2>yz)J(st;y3)J($47y4)J($5>y5)>
+ Z (21, y1)G (@i, yi) T (@, y) T (20, Y1) T (T Y )

w1th7,7ék7él7ém€ {2,3,4,5}
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B.1. CONSTRAINTS FROM SUSY-INVARIANCE

0=+ -—"—— <J(,1'1, yl)J<£L‘2, yg)J(xg,yg)J($4,y4)J(335a y5>>

+ (J (1, 1) T (w2)J (23, y3) S (T4, Ya) S (75, Y5))
- <G(x1 Y1) G (w2, y2)J (23, y3)J (T4, Ya) J (75, Y5)) (B.8)

+Z (21, 71)G (22, y2)é<xi7yi)J<Il’yl)J(xmvym>>
w1th7,7él7ém€{3 4,5}

0= 3 (o, 0) o) s, ) )T o, )
— (J(@1,y1)J (22, 92) T (23)J (24, y1) I (25, Y5))
(551,yl)J(xz,yQ)G($3,y4)J($4,y4) (75,9s5)
J(z1,91) (902,92)G($37y4)<]($4,y4)](375 Ys)
J(x1,91)J (22, y2) G(23, y3) _(x4 ya)J (x5, Y5)
J(x )J( )G (23, y3)J (24, Y1) G (935,y5)

—{ ) (B.9)
— )

+ )

+(J(z1,91) S (22,12)G )

10 0
0= +5%87(J($1,3/1)J(272,y2)J($3,y3)J(I4,ZJ4)J($5,y5)>

- <J(I1 yl)J(l’Q yz)J(I37ys)T(M)J(%,ys))
- Z (25, y3)J (@0, Y1) (T, Y )G (24, y4) J (25, Y5))

+ <J(931 1) (w2, y2)J (23, y3) G (24, y2) G (5, s5))
with i £ 1 #m € {1,2,3)

(B.10)

0=+ Lo 9 (J(@1, 1) (22, y2) J (23, y3)J (24, Y1) J (5, Y5))

2@1’58 UYs
<J<371,yl)‘](x2>y2)J($3,93)J($4,y4)T<375)>
- Z (i, y:) J (e, y) (20, 90) T (T, Y ) G (05, 95))

Wlth@%k;#lséme {1,2,3,4}.

(B.11)
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B.2. BOSONIC CORRELATORS

B.2. Bosonic correlators

This section contains the relevant descendent correlation functions for the analysis
of the SCWI of psu(1,1]|2). In particular, this section lists the choices of bases
used to express those correlators in a way compatible with the bosonic symmetry
groups SU(1,1) and SU(2)x.

For instance, the correlator involving the 1d stress tensor 7'(z) inserted at X; can
be expressed by

(T (1) J (w2, 92) J (23, y3) J (T4, y1) J (75,95))

1 2,2 2,2
= cg1,1(u,v) + *01,2\U,V B.12
T19T13T 14Z15L 23T 45 (1923 Ya5 - 91 1( ) Y24 Y35 - 91 2( ) ( )

a5 Y34+ 91,3(u, U)) :

The function g; j(u, v) denotes the unknown function of the cross ratios multiplying
the j® R-symmetry structures of the correlator involving the stress tensor inserted
at X;.

The correlators involving the stress tensor inserted at other points X5, ..., X5 can
be obtained from the one presented by the respective permutation in the points.

For the correlators involving the currents G(z), G(z), we will exemplary give the
correlators proportional to p'G1(z). The remaining correlators are built following
the same principles.

<G (Il; ?Jl) G (IQ: y2> J (.ﬁvg, y3> J (,’L’47 y4) J (ZU57 y5)>
1
= hia1(u,v) + 2 higa(u,v .
T2T34T 45T 53 (y12 Ysa Yas Yss a1 (U 0) + Y13 s Yis hnza(u, ) (B.13)

Y14 Y24 y§5 hig3(w, v) + Y15 Yos y§4 hy2.4(u, U))

<G_! <l’1a yl) J (I’Qa y?) G (1‘3, yS) J (274, y4) J ('I57 ?/5))
1
= h 2 p
22T T a5 T <y13 Yoa Yas Y52 Puz 1 (w, v) + Y12 Ys2 Yis has2(u, v) (B.14)

+Y14 Y34 y§5 his3(w, v) + Y15 Yss y§4 hys.4(u, U))

(G (z1,01) J (w2, y2) J (23, y3) G (24,94) T (25,95))

1 2
= (Y14 Y23 Y35 Y52 N1a1 (U, V) + Y12 Ya2 Y35 hia2(u, v B.15
33%4352345353353 ( ( ) 857 ( ) ( )

+113 Ya3 y§5 hia3(w, v) + Y15 Yas y§3 hyg4(u, U))
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B.2. BOSONIC CORRELATORS

(G (z1,91) J (22,92) J (23, y3) J (24,92) G (25, Y5))

1

T Pasa(t,0) + sahnsa(u, v B.1
x%5x23x34$43 (y15y23y34y42 15,1( ) Y12 Y52 Y3y 15,2( ) ( 6)

+113 Y53 Yy his,3(w, V) + Y14 Ysa y§3 hys.4(u, U)) .

Here, the function h;; ;(u, v) is the unknown function of the cross ratios multiplying

the k" R-symmetry structure expressing the correlation function involving G/(X;)
and G(XJ)
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C. Bosonic structures

In this chapter, we present the relevant correlators necessary for a comprehensive
analysis of the five-point function, up to the order O(pp):

o222 = (T (X1) T (X2) T (Xs) T (X4) T (X5)) -

In Section [C.1], we provide the expressions for the descendent correlators involving
the SU(4)g-current Jas a6 (), focusing exclusively on the conformal or spacetime
dependence. The basis chosen for these expressions is not unique, but reflects the
particular choices made for the analysis carried out in this thesis.

C.1. Spacetime structures

This section provides a summary of the conformal spacetime structures employed
to express the descendent correlators. We will start with the expressions for cor-
relators involving Ju4..a(%;) in a manner consistent with conformal symmetry.
Without considering R-symmetry, there are four independent structures, each as-
sociated with an unknown function of the five cross ratios {u}. These functions,
which correspond to the J-correlators, are denoted by g; ;x({u}) throughout this
thesis. g;jr({u}) corresponds to the k™ spacetime structure, multiplying the j*
R-symmetry structure of the correlator with Ju4..a(2:), k inserted at x;.

(Jaa(21)O2(22) Oa(23)Oa(24) Oz (25)) =

1 -1_ -1 -1_ -1
:m <_(I12 — 213 )aa 9150 ({u}) — (212 — 214 )aa g152({u})
—(11 = 215 )aa Gria({u}) + (273 T3 73] 245 751 )aa gl,j,4({u}))

(C1)

(Os(1) i (12) Os(3) Oa(24) Oa (1)) =
m <_<I2_11 — T3 )aa 9251 ({u}) — (¥211 — 234 )aa 92,52 ({u})

—(131 — 235 )aa G2ga({u}) + (23] 21375 045 753 )aa 92,j,4({u}))

(C-2)
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C.1. SPACETIME STRUCTURES

(Oa(11)Oa(2) Tai (23) O2(4) Oa(5)) =
1

1,2 .2 .9
T1oT34T 4553

1

(— (250 — 23)a0 9350 ({u}) — (231 — 233 i 9352 ({u})

— (251 — T3 )aa 353({u}) + (23] 25 751! 715 05 i 950 ({u}))

(C.3)

(Oa(21)O2(72) O2(23) Tac (24) Oa2(75)) =
1

PN <—($Z51 — 231 aa 9aga({u}) = (235 — 23 )aa 91 2({u})

—(235 — 213 )aa gaga({u}) + (235 051 01 a3 734 )aa 94,j,4({u}))

(C4)
<O2<x1)02($2)02($3)02(x4)jad($5)> =
W (= (53 — 251)aa 9551 ({u}) = (25 = 253 )i 95.52({u})

—(253 = 51 aa g5, a({u}) + (23] 21235 T34 235 )aa 95,j,4({u}))

(C.5)

We further have the correlators involving the spinor fields Woq (), ¥ o (2). Without
considering R-symmetry, there are as well four independent structures per correla-
tor, each associated with an unknown function of the five cross ratios {u}. These
functions, which correspond to the spinor-correlators, are denoted by h;;p({u})
throughout this thesis, referring to the I spacetime structure multiplying the k"
R-symmetry structure of the correlator with \T/m(xi) inserted at x; and W,(z;)
inserted at x;. We have

(W (1) Wq (22) On(23)Os(4) Os(5)) =
= W (@11 43 733 s ho g1 ({u}) + (033 05375 o P12 j2({u})  (C.6)

(15 T4 753 )am Pz ga({u}) + (#13)aa b ja({u}))
(Wi (21)Os(2) Vo (23) Os(4) Os(5)) =
e (@ 2 0w hrs ({u}) + (0 2 270 hiso({u)) (C.7)

- whadrisads
(215 250233 )aa iz gs({u}) + (233 aa h13,j4({u}))
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C.1. SPACETIME STRUCTURES

(Wi (21)Os(2) Os(53) W (4) Oa(5)) =
1

= oy ((ff?fsl T35 Ty )aa Praji({u}) + (275 59 220 aa haaj2({u}) (C.8)
1

+(275 %5 031 i s ({u}) + (21 )aa Praga({u}))

(U4 (1) Oa(22) Oa(53) Oa(14) Vo (w5)) =
1

= Lt ((%—31 T35 T35 o M 1 ({u}) + (274 T4 255 )aa has jo({u}) (C.9)
12734745753

(14 43 73 )aw has s ({u}) + (15 aa has ja({u}))

(Vo (1) W4 (22)O2(23)Oa(24) O2(5)) =
1 1

= P ((%4 T3 031 o har 1 ({u}) + (255 253 231 )aa har jo({u}) (C.10)

(235 0 731 )i b1 s ({}) + (23] )aa hor ja({u}))

(Os(21)Wa(22) Wa(3) Oa(24) Oz(5)) =
1 _ _ _ _
= iz (@ 2 2iaa hasn () + (@' 251 23 ) hanio () (C.11)

(225 25433 )aa hasgs({u}) + (223 )aa h23,j4({“})>

(Oa(1) W4 (22) Oa(53) Vo (24) Oz (x5)) =
1

= il ((95531 31 214 aa P2agi({u}) + (235 51 274 aa haajo({u}) (C.12)
1 545

(735 Ta 031 i haa s ({u}) + (23 aa hasja({u}))

(On(21) V4 (22) Oa(5) Oa(24) Vo (w5)) =
1

= hatatal, ((%_31 31 073 )aa has j1 ({u}) + (254 241 275 )aa has j2({u}) (C.13)
12434445+53

(234 43 73 ) has g3 ({u}) + (233 )i hzs ja({u}))

(U (1) On(w3) Ve (23)Os(24) Oa(5)) =
1 _ _ _ _
= whad a0t (($341 L4y L1 i han({u}) + (%35 52 T31 )aa hsij2({u}) (C.14)

(235 05425 )aa hargs({u}) + (431 s h31,j4({u}))

213



C.1. SPACETIME STRUCTURES

(Oa (1) W () VUi (23)Os(4) Oa(5)) =
1

= oLt (w32 241 213 ) hszn ({u}) + (255 751 275 )i B2 2 ({u})

(735 T30 033 i b s ({u}) + (33 )aa hsza({u}))

(On(1) Oa(m2) U (w53) Vo (w4) Oz (w5)) =
1

= 5 (53 21 210 ) hsajn ({u}) + (233 251 270 ) ha jo({u})
L2234 Ly5L53

(235 55 730 Vo haags({u}) + (5 )aa haa ja({u}))

(Oa (1) Oa(2) W (w3) Oa(4) Vo (5)) =
1

= 1273 ((33521 91 073 )aa has i ({u}) + (23] 241 275 ) s has j2({u})
L1234 L4553

(@51 T4y 733 Jaa has ja({u}) + (€5 aa hssja({u}))

(Vo (21)Oa(22) Oa(3) Vs (24) O2(5)) =
1

= 12737 ((37231 30 031 o har 1 ({u}) + (035 5 021 ) s har j2({u})
L1234 L4553

+(235 53731 o har g3 ({u}) + (@3 aa har ja({u}))
(Oa (1) W () Oa(5) W (24) Oa(5)) =
1

= 5 (75 731 75 )ae hazjn ({u}) + (03 51 27 ) s haz o ({u})
LioX34X 45T 53

+(755 P55 033 e han s ({u}) + (235 )aa haza({u}))
(Oa(1) Oy (12) Vo (3) We (24) Oa(5)) =
1

= 5 (25 21 23 o st ({u}) + (233 251 273 s s jo({u})
L2234 L5253

(23 T3 T3 ) has s ({u}) + (233 i hus ja({u}))

(O2 (1) Os(w2) Oz (3) Wi (1) Va (w5)) =
1 _ _ _ _
= whad a0t (($421 91 013 )aa has i ({u}) + (035 031 275 ) s has j2({u})

(@3 30 723 )aa has s({u}) + (035 )aa h45,j4({“}))

214

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)



C.1. SPACETIME STRUCTURES

(U (21)Oa(w2) Oa(3) Oa(4) W s (5)) =
1 - - - _
= s (@5 Tpan e haun(u}) + (@51 205 )aa harn{u}) (C.22)

(54 243 730 )ae o s ({u}) + (250 )aa haja({u)

(On(w1) W (12) Oz (3) Oa(w4) Wa(5)) =
1 _ _ _ _
= rhadateal (w53 @51 71 )i hs o ({u}) + (254 24 713 i hs j2({u}) (C.23)

+(751 43753 ) B2 g3 ({u}) + (53 )i hs2 ja({u}))

(Oa (1) Oz (22) W (w53) Oa(4) Vg (5)) =

1 _ _ _ _
=1 .2.2 .92 ((95521 o1 713 )aa Pz 1 ({u}) + (25 241 713 ) aa sz j2({u}) (C.24)

- ahyratsrd
+(25 T4 03 e hss s ({0}) + (053 aa Bss ja({u}))

(Os(1) Os(m2) O (3) U (24) U (w5)) =
1

= Tttt ((9[3521 To1 214 aa Paagi({u}) + (255 231 274 e haaj2({u}) (C.25)

(55 32 730 oo haa s ({u}) + (250 aa haaja({u}))
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D. Four-point functions

In this Appendix, we provide the relations obtained for the functions of cross ratios
parametrising the descendent correlators

<u7ao'z;aa($17 y1)(’)20/ ($2> ?/2)(920’ ($3, y3)020' ($4, y4)>

(Vaa (21, Y1) Vaa ws, ¥i) O2o (Th, Yi) O2or (21, Y1)
for all permutations of 7, j, k = 2, 3,4 and with the notations introduced in

The equations, obtained from the constraint for terms proportional to p{ after
applying supersymmetry, are given by

h,p (u,0) =62 f5") (u, 0) + vufs” (u,v),
B —féu) (u, v)ut + féu) (u, v)u? — fév) (u, v)vu?

hi2(u,v) = 2 ;

f(v)(u v)v3 — f(v)(u v)v? + f(u)(u v)uv?
ha 1(“’7 U) =— = : ! : ! : )

’ U
_ (u) 2 (v)
h272(u7 U) - fl ('U,, v)u fl (u7 'U)’U'LL,
h3,1(u7 U) - f2(v) (U, ’U)U’U2,
hao(u,v) =5 (u, v)u?,
(v) 3 (u) 2

By (0 L (u,v)v° + fy 7 (u, v)uv ’

(u, ) :
(u,v) = = A (w,v)u? + £ (u, v)u — £ (w,0)vu — 2f1 (u,0),
hs 1 (u, v) :fQ(u) (u, v)uvg,
(u,0) =£5" (u, v)ou? + £ (w,0) (w? + vu — u) u = fa(u,v)u,
o1 (u,v) =£5) (u, ) — 5 (w,0)u+ 57 (u, v)ou,

(—ut +2u® —u? + qu)féu) (u,v) + (—vud + vu2)f?fv) (u,v) + v fs(u,v)(u, v)u
2

v

k‘LQ(u, U) e _Ufl(v) (uv U) + fl(v;gua U) - fl(u) (U, ’U)u’
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ko1 (u,v) :féu) (u, v)vu2 + fQ(U) (u, v)qu,
k22(u,v) = Q(U)(u,v),
(u) 2
by (u, ) = — 13 (00
v
(u) (v)
ko, 0) = — fs/(u, v)utfg) (u,v)v)
v
ki (u,0) =5 (u, v)u?v,
o (u,0) = — v fs” (w,0) + f57 (w,0) = f5 (u, 0)u = 2fs(u, v),
(u) 3 (v) 2
ks (u,0) = — f3 /(u,v)u” + f3 (u, v)vu ’
v

féu) (u, v)u? — féu) (u, v)vu + fév) (u,v)vu — fév) (u,v)v? + fév) (u,v)v + v fs(u,v)
kso(u,v) = — )
ke 1(u,v) :fl(v) (u,v)v2 — fl(v) (u,v)v + fl(u) (u, v)uv,

(—u2 — u+ vu) 1 (u, v) + (—vu + v2 = 20 + 1) (u,0) + fa(u, v)u
kﬁ,Q(ua U) = - U2 )
ll,l(ua U) = - f2(U) (U, U) v,
ha(u,0) = — 1 (u,0)0® — 13 (u, )0,

(u) 2 (U) (v)
It (1, 0) = — I3 (u,v)u 3 (:}L,U)U + f3 (u,v)vu7
l2,2(u,v) :féu) (u,v)v,
_¢(v) 2 p(w)
lo 1 (1, 0) = i (u,v)v . 1 (u, v)uv}
(v) 3
1372(/“7 U) :fl(ulgv)v7
(u)
L1 (u, v) :M7
v
la2(u,v) :féu) (u,v)v + fg(,v) (u,v)v — 2f3(u,v),
(v)
l5,1 (ua U) = fl (U7 U)Uy

—fl(”)(u, v)v? + fl(u) (u, v)uv? + fl(v) (u, v)uv? + ufs(u, v)v
l5 2(“7 U) U2 )
lo,(u,0) = — [ (w,0)uv — 13 (u, v)uo,
lo2(u,0) = — f1 (u,0)0® — 18 (w,0)0® — 13 (u,0)0? + 1 (u,0)ue® + 13 (u, v)uv? — fo(u,v)o,
gl 1(“, U) (Uf4 (U, U) + Ufiv) (U, U) + f4(u7 U) + 2uf2(u) (U, U))

)
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2
g12(0,0) = — w15, ) — w® () w,0) — 2 1 (w0)

aa.0) =5 (2200 (o) = 0 ) = uf{w,0) — s 0) = 07w 0))
g2 ) =5 (0w, 0) + fs(w ) + 202 = L 0w 0) + 208 (w.0))
2
g3 (u,v) =3 (—f6<u, o)+ ufg (u,0) + 0fs” (1, 0) + 20w = = = =) 5 (u,0) + 2(0 - ) ff” <u,v>)

g3.2(u,v) :% <f6(u, v) — vfév) (u,v) — 2uf3£u) (u,v) — 2Uf§v) (u, v))

Similar results can be obtained for all the other possible descendent correlators.
This is reproducing the fact that the full four-point supercorrelator of stress tensor
multiplets is determined by the superprimary.
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