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Abstract. We study chiral trace relations in N = 2 supersymmetric theories. Applying
localization formulae for chiral observables, we derive closed chiral trace relations relating the
vacuum expectation values of chiral ring elements. In this setting, we discuss how the Ω-
background breaks the polynomial nature of such relations. These results are interpreted in
the light of AGT duality, thus making contact with the integrable structure of conformal field
theories on Riemann surfaces.

1. Introduction
Instanton calculus in gauge theories with extended supersymmetry is a useful tool to investigate
non-perturbative effects. As is well-known [1], the exact solution of the Wilsonian effective theory
of SU(2) N = 2 model without matter hypermultiplet (given in term of an holomorphic function
called the prepotential) is fully encoded in an hyperelliptic curve capturing both perturbative
and non-perturbative contributions. The low-energy effective theory is given implicitely in terms
of contour integrals of the Seiberg-Witten differential along non-contractible cycles encircling
the cuts of this curve. This result was then extended to generic mass content and gauge groups
[2]. SW solution shed also light on the relation between N = 2 supersymmetric theories and
integrable systems, with the Seiberg-Witten curve playing the role of the spectral curve of its
integrable counterpart [3, 4, 5, 6].

Despite this suggestive picture and the presence of several undirect checks of SW solution,
a direct test of non-perturbative contributions was difficult since instanton moduli space is not
compact and requires a systematical regularization. Investigations in this sense (see for instance
[7]) culminated in the work by Nekrasov introducing the so-called Ω-deformation [8], see also
[9]. It consists in a 2-parametric Poincaré-breaking regularization which allows to use explicit
localization formulae to compute the partition function order by order in the instanton number.
The regularized partition function plays a central role in the AGT duality [10] relating N = 2
supersymmetric theories and Liouville CFT on 2d Riemann surfaces.1 In more quantitative
terms, AGT relation links the instanton partition function of the deformed gauge theory with
the conformal blocks of correlation functions with a suitable operator insertion in the CFT.

Recently, the interest in supersymmetric gauge theories has been extended to specific
observables in the chiral ring [17], i.e. trace operators Trϕn involving powers of the scalar field

1 The original AGT duality is formulated only for N = 2 superconformal SU(2) quivers, see also [11]. Similar
correspondence also holds for asymptotically free theories [12]. Finally, there exist AGT relations for bigger
quivers, see for example [13, 14, 15, 16].

http://creativecommons.org/licenses/by/3.0
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in the vector multiplet. Chiral observables play an important role in integrable properties of
supersymmetric gauge theories [18, 19] and in the physics of surface operators [20, 21, 22, 23, 24].
For further details on the topic of the present paper, we refer to our original work [25].

As it is well-known, vacuum expectation values of chiral trace operators tn = 〈Trϕn〉 are not
independent at the classical level [17]. This is a consequence of gauge group matrix properties,
so it is possible to find simple relations involving them. In the quantum theory, such relations
get modified non-perturbatively with contributions involving the instanton counting parameter
q. The next natural question is how such identities are further modified when the Ω-background
is switched on. The aim of this paper is to discuss chiral trace relations in the pure N = 2
deformed supersymmetric theory for various gauge groups.

2. Chiral trace relations in undeformed Seiberg-Witten theories
Chiral trace relations are easily found in undeformed theories with resolvent techniques. In pure
SU(N) gauge theories, the resolvent reads [17]

〈
Tr

1

z − ϕ

〉
=

P ′(z)√
P 2(z)− 4Λ2N

. (1)

Here, P (z) = zN −∑N
l=2

ul
l z

N−l with the ul parametrizing the (N − 1)-dimensional quantum
moduli space, while Λ is the dynamically generated scale related to the instanton counting
parameter as q ∼ Λ2N . Chiral trace relations are obtained expanding (1) at large z. For the
SU(2) gauge group, the moduli space is parametrized by the quantity t2 ≡ u. From (1), we get
the trace relations

t4 = 4q +
u2

2
, t6 = 6qu+

u3

4
, t8 = 12q2 + 6qu2 +

u4

8
, . . . (2)

while odd traces identically vanish. Increasing the rank of the gauge group, chiral trace relations
are less trivial, since more independent quantities appear, but their structure is totally similar.
For the SU(3) gauge group, they are t2 = u2 and t3 = u3. Then:

t4 =
t22
2
, t5 =

5t2t3
6

, t6 = −6q + t32
4
+

t23
3
,

t7 =
7

12
t22t3, t8 = −8qt2 + t42

8
+

4

9
t2t

2
3, . . .

(3)

Finally, for the SU(4) gauge group, the independent quantities are t2 = u2, t3 = u3 and

t4 = u4 +
u2
2
2 . The other relations read

t5 =
5t2t3
6

, t6 = −t32
8
+

t23
3
+

3t2t4
4

,

t7 =
7t22t3
24

+
7t3t4
12

, t8 = 8q − t42
16

+
4t2t

2
3

9
+

t22t4
4

+
t24
4
,

. . .

(4)

In pure Seiberg-Witten theories, chiral trace relations are clearly coherent with the natural
gradation [ϕ] = 1 (which also implies that [tn] = n) and [q] = 2N . The latter condition means
that quantum contributions to trace relations start at the order n = 2N .
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3. Chiral trace relations in Ω-deformed theories
Chiral trace relations obviously change when Ω-background is switched on. One of the most
important reasons is that the original Poincaré symmetry is here downsized by the presence of the
gravitational background. This has remarkable effects on chiral operators, since factorizations
of the form 〈TrϕnTrϕm〉 → 〈Trϕn〉〈Trϕm〉 no longer holds [26]. As a consequence, chiral trace
relations are much more intricated in deformed theories. Moreover, resolvent techniques are not
available in this setup, so localization formulae [27, 28] have to be adopted. Applying them,
we get the vacuum expectation values of chiral trace operators in power series in the instanton
counting parameter, with coefficients being functions of the scalar field vacuum expectation
values a1, . . . , aN , the deformation parameters ε1,2 and eventually the masses of matter fields.
The problem is therefore to express higher trace in terms of the independent ones in closed
form. This is of very simple solution in the undeformed limit, since it only requires the inversion
ti(a1, . . . , aN ) in favor of ai(t1, . . . , tN ) with i = 1, . . . , N . For instance, computing 〈Trϕ2〉 in
the SU(2) gauge theory and then sending the deformation parameters to zero, we easily get

u = 2a2 +
q

a2
+

5q2

16a6
+

9q3

32a10
+

1469q4

4096a14
+

4471q5

8192a18
+O(q6), (5)

Inverting this equality, we express the scalar field vev in power series of the moduli u in the
form

a =

√
u

2
− q√

2
(√

u
)3 − 15q2

4
√
2
(√

u
)7 − 105q3

4
√
2
(√

u
)11 − 15015q4

64
√
2
(√

u
)15 − 153153q5

64
√
2
(√

u
)19 +O

(
u−10

)
.

(6)
Repeating the computation for higher order traces, we find

t4 = 2a4 + 6q +
9q2

8a4
+

7q3

8a8
+

2145q4

2048a12
+

1575q5

1024a16
+O(q6),

t6 = 2a6 + 15a2q +
135q2

16a2
+

125q3

32a6
+

16335q4

4096a10
+

44343q5

8192a14
+O(q6),

. . .

(7)

It is not hard to verify that, inserting the expansion (6) into higher order traces, we recover the
relations (10). This method can be in principle used also in the general Ω-background. In this
case, we get the more intricated quantity

t2 = 2a2 +
q

a2
+

5q2

16a6
+

9q3

32a10
+

1469q4

4096a14
+ . . .

+ ε1ε2

(
− q2

8a8
− q3

2a12
− 1647q4

1024a16
+ . . .

)

+ (ε1 + ε2)
2

(
q

4a4
+

21q2

32a8
+

55q3

32a12
+

18445q4

4096a16
+ . . .

)

+ (ε1ε2)
2

(
11q2

256a10
+

351q3

512a14
+

171201q4

32768a18
+ . . .

)
+ . . .

(8)

We can now try to invert this equation and express again a as a function of 〈Trϕ2〉 = u. If we
replace this expansion in higher order traces, say for example t4, we get the involved expression

t4 =
u2

2
+

(
8u− 4

(
ε21 + 3ε1ε2 + ε22

))
2u− (ε1 + ε2)2

q

+
8ε1ε2

(
36u2 + 9ε41 + 50ε31ε2 + 86ε21ε

2
2 + 50ε1ε

3
2 + 9ε42 − 4u

(
9ε21 + 13ε1ε2 + 9ε22

))
(−2u+ (ε1 + ε2)2)

3
(
4u2 +

(
2ε21 + 5ε1ε2 + 2ε22

)2 − 2u
(
5ε21 + 8ε1ε2 + 5ε22

)) q2 +O(q3).

(9)
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Clearly, this method would not give closed trace relations. Moreover, even in the pure case
similar expressions do not truncate at any order in the instanton number, as opposite to the
undeformed case in which quantum corrections are polynomial in q.

These problems could discourage in proceeding further, but we can ascribe it a posteriori
to the unnecessary requirement that chiral trace relations will depend polynomially on u in
a general Ω-background. In fact, relaxing this assumption and allowing for the presence of
derivatives of u with respect to the instanton counting parameter, we are able to derive closed
trace relations! Although it can appear somewhat unexpected, this new feature has a nice AGT
justification, see Section 4. The procedure we used to generate closed relation is simple. For
each tn, we express it as combinations of independent traces and their derivatives, then we fix
the coefficients in order to get agreement with localization formulae. Denoting u′ = q∂qu , we
get for the SU(2) pure case

t3 = 0,

t4 =
1

2
u2 − ε1ε2u

′ + 4q,

t5 = 10 (ε1 + ε2) q,

t6 =
1

4
u3 − 3

2
ε1ε2uu

′ + ε21ε
2
2u
′′ + 6qu+ 6q

(
3ε21 + 4ε1ε2 + 3ε22

)
,

t7 = (ε1 + ε2)
(
21qu+ 7q

(
4ε21 + 3ε1ε2 + 4ε22

))
,

t8 =
1

8
u4 + 6qu2 + 12q2 − ε31ε

3
2u
′′′ + 2ε21ε

2
2uu

′′ +
3

2
ε21ε

2
2u
′2 − 12ε1ε2qu

′

− 3

2
ε1ε2u

2u′ + (52ε21 + 72ε1ε2 + 52ε22)qu+ 8q(5ε41 + 11ε31ε2 + 15ε21ε
2
2 + 11ε1ε

3
2 + 5ε42),

. . .

(10)

For the SU(3) gauge group, the modification coming from Ω-background reads

t4 =
1

2
t22 − ε1ε2t

′
2,

t5 =
5

6
t2t3 − 5

3
ε1ε2t

′
3,

t6 = −6q + t3,3
3

+
1

4
t32 −

3

2
ε1ε2t2t

′
2 + ε21ε

2
2t
′′
2,

t7 =
7t22t3
12

− 21q(ε1 + ε2)− 7

6
ε1ε2t3t

′
2 −

7

3
ε1ε2t2t

′
3 +

7

3
ε21ε

2
2t
′′
3,

. . .

(11)

while for the SU(4) gauge group, we find

t5 =
5t2t3
6

− 5

3
ε1ε2t

′
3,

t6 =
3t2,4
4
− t32

8
+

t3,3
3

+
3

4
ε1ε2t2t

′
2 −

1

2
ε21ε

2
2t
′′
2,

t7 =
7t22t3
24

+
7t3,4
12

− 7

12
ε1ε2t3t

′
2 −

7

6
ε1ε2t2t

′′
3 +

7

6
ε21ε

2
2t
′′
3,

. . .

(12)

We checked these expressions up to ∼ q8 instanton order.
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To conclude this section, we would like to do some comments. First, gravitational corrections
also hold in the so-called Nekrasov-Shatashvili limit ε2 → 0, but in this case the differential
structure of chiral ring is lost. Moreover, in this case odd traces no longer vanish (unless in the
limit ε1 = −ε2). Finally, a relevant feature of the gravitational background is the appearence of
new universal terms (i.e. −ε1ε2u′ for n = 4, −3

2ε1ε2uu
′ and ε21ε

2
2u
′′ for n = 6 etc.). All these

features have a clear AGT explanation.

4. AGT interpretation
AGT duality is a correspondence relating deformed N = 2 supersymmetric theories and
conformal field theories on 2d Riemann surfaces. The topology of this surface is uniquely
determined by the flavor and gauge groups of the 4d field theory. Quantitatively, the duality
states the equivalence between the instanton partition function of the gauge theory and the
conformal block of the correlation function with a suitable choice of the external operator
insertions. In doing this, matter field masses and the vacuum expectation value of the scalar field
are respectively mapped to the conformal dimensions of the external and intermediate operators
in the conformal block, while the deformation parameters determine the central charge.

AGT duality provides an interesting point of view about the chiral ring structure. As is well-
known [29], two-dimensional CFTs present a suggestive integrable structure which is proved
by the existence of an infinite tower of local integrals of motion. The basic observation in
understanding the duality at this level is the strong evidence that the chiral ring of the gauge
theory retains the structure of integrals of motion, so chiral trace relations should emerge in a
very natural way in this setup. This is clear in particular from the results of [30, 31] for the
SU(2) N = 2 theory with Nf = 4 fundamentals hypermultiplets. As stated by AGT duality,
this theory is related to a Liouville CFT on the 4-punctured sphere, with the instanton partition
function being identified with the 4-point conformal block. A convenient way [32] to link the
two AGT sides consists in considering the symmetry algebra to a Vir⊕Heis, with commutation
relations

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0,

[am, an] =
m

2
δm+n,0, [Lm, an] = 0.

(13)

The first local integrals of motion are in this case

I2 = L0 − c

24
+ 2

∞∑
k=1

a−kak,

I3 =
∑

k∈Z/{0}
a−kLk + 2iQ

∞∑
k=1

ka−kak +
1

3

∑
i+j+k=0

aiajak,

I4 = 2

∞∑
k=1

L−kLk + L2
0 −

c+ 2

12
L0 + . . . ,

. . .

(14)

where Q parametrizes the central charge as c = 1 + 6Q2.2 The authors of [30, 31] found a
simple relation between the vacuum expectation values of chiral trace operators and the CFT
correlation function with charge insertions:

G
Nf=4
k (αi|z) = 〈Vα1(∞)Vα2(1)IkVα3(q)Vα4(0)〉, (15)

2 Note that Q = b+ b−1 where b is related to the deformation parameter as b =
√

ε2
ε1
.
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where Vα are primary fields in this extended algebra with conformal dimension Δα = α(Q−α).
Guided by these results, in [25] we searched for similar relations in the SU(2) N = 2∗ and pure
gauge theories. In the former case, AGT correspondence states that the dual quantity in the
CFT side is the 1-point conformal block on the torus

Zinst =
[
q−

1
24 η(q)

]2Δm−1
TrΔ

(OΔmq
L0−Δ)

, (16)

where the trace is taken on the descendants of the Virasoro primary in the intermediate channel
and Δm is the conformal dimension of the external operator. Starting from Matone’s relation
[27, 33] and with simple calculations, it is easy to prove that3

u = (4m2 − ε21 − ε22)
E2 − 1

24
− ε1ε2

12
− 2ε1ε2

TrΔ

(
OΔm(L0 − c

24)q
L0− c

24

)

TrΔ

(
OΔmq

L0− c
24

) , (17)

where the last term is nothing but the insertion of the Virasoro part of the integral of motion
I2 in the instanton partition function. This feature is very similar to the Nf = 4 case, so we
defined the CFT quantities

GN=2∗
k = TrΔ

(
OΔmI

Vir
k qL0− c

24

)
, (18)

where IVir
k is the Virasoro part of integrals (14). We argued that they are related to the chiral

trace vacuum expectation values.

The pure theory is something different from the previous cases. In fact, the duality presented
in [10] only holds for N = 2 superconformal quivers of SU(2). However, asymptotically free
theories such as the pure SU(2) case also admit a similar statement. To this aim, Gaiotto
introduced in [12] a peculiar state lying in the Verma module of the highest weight of conformal

dimension Δ = Q2

4 − a2

ε1ε2
. This state is defined as a formal power series in Λ,

|Λ,Δ〉 =
∞∑
k=0

Λ2kvk, (19)

with each component satisfies the following constraints:

L1vk = vk−1, L2vk = 0. (20)

The starting point of the sequence is the condition v0 = |Δ〉, which is of course the highest weight
state in the Verma module. The AGT statement for the pure SU(2) theory is that the norm of
such a state exactly reproduces the Nekrasov instanton partition function, so Λ4 acquires the
meaning of instanton counting parameter:

Zinst = 〈Λ,Δ|Λ,Δ〉 =
∞∑
k=0

Λ4k||vk||2. (21)

3 Here, E2 is the Eisenstein quasi-modular form

E2(q) = 1− 24

∞∑
n=1

σ1(n)q
n,

with σ1(n) is the sum of divisors on n.
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With the same approach as before, we can built new quantities in the CFT side by inserting the
local integrals of motion in the brackets:

Gpure
k = 〈Λ,Δ|IVir

k |Λ,Δ〉, Gpure = 〈Λ,Δ|Λ,Δ〉. (22)

Again, we claim that these quantities are related to the chiral trace vacuum expectation values in
the gauge theory. However, a systematical check of this conjecture requires a basis choice in the
algebra of integrals of motion and a precise matching between the two sides, which unfortunately
is still missing in general.

4.1. Leading terms and universality
Despite the absence of the dictionary between the chiral ring elements and correlation functions
with the insertion of integrals of motion, it is possible to extract some predictions. The basic
observation is that in all cases chiral trace relations share some common terms:

t4 =
1

2
u2 − ε1ε2u

′ + . . . ,

t6 =
1

4
u3 − 3

2
ε1ε2uu

′ + ε21ε
2
2u
′′ + . . . ,

t8 =
1

8
u4 − 3

2
ε1ε2u

2u′ +
3

2
ε21ε

2
2(u

′)2 + 2ε21ε
2
2uu

′′ − ε31ε
3
2u
′′′ + . . . ,

. . .

(23)

These leading terms are special monomials of u and its derivatives with coefficients depending
only the deformation parameters εi. They are indeed universal, as they not depend on the
particular model. In order to understand their origin, the key point is that even integrals of
motion present powers of the Virasoro generators Ln

0 , which act in CFT correlation function
through the differential operators (q∂q)

n. It is therefore natural to guess that leading terms are
associated to such special terms. In mathematical terms, this is nothing but the requirement
that

G2n ∼
leading

(q∂q)
nG. (24)

We can therefore write

t2n ∼
leading

2
(−ε1ε2q∂q)nG

G
. (25)

From Matone’s relation
u = −2ε1ε2q∂q logZ, (26)

where Z now is the total partition function Z = ZclZ1-loopZinst. The classical part is
Zcl = exp

(−(ε1ε2)−1a2 log q) , while the 1-loop contribution is q-independent. Then (apart for
contributions which are not relevant in this discussion) we can identifyG with the whole partition
function Z, or in other words

G = exp

(
− U

2ε1ε2

)
, (27)

where u = q∂qU . Using this representation and (25), we can easily determine the terms in
(23), even without mentioning which theory we are considering. Indeed, the results reported in
this section depends only on the structure of the local integrals of motion of the conformal field
theory. Eq. (24) holds both for Gk defined through (18) in the N = 2∗ model and through (22)
for the pure theory. Therefore, we conclude the leading terms are universal, in perfect agreement
with the explicit form of chiral trace relations.
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