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We propose a modification of standard QCD description of the colour triplet of quarks by introducing 
a 12-component colour generalization of Dirac spinor, with built-in Z3 grading playing an important 
algebraic role in quark confinement. In “colour Dirac equations” the SU (3) colour symmetry is entangled 
with the Z3-graded generalization of Lorentz symmetry, containing three 6-parameter sectors related 
by Z3 maps. The generalized Lorentz covariance requires simultaneous presence of 12 colour Dirac 
multiplets, which lead to the description of all internal symmetries of quarks: besides SU (3) × SU (2) ×
U (1), the flavour symmetries and three quark families.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

It is well known that colour symmetries play a double role -
they describe SU (3) gauge symmetry group in QCD and are linked 
with quark confinement, which is obtained usually as dynamical 
consequence of strong forces between quarks growing linearly with 
their spatial separation (see e.g. [1], [2]).

In the present paper we would like to propose an alternative 
algebraic approach to the confining aspect of colour symmetries. 
For that purpose we replace the usual tensor product of Lorentz 
and colour SU (3) group actions by the entanglement of space-time 
and colour symmetries generated by the Z3 symmetry which plays 
also an important role in the appearance of fractional electric and 
baryonic charges of quarks.

We shall show that such an entanglement appears naturally 
when we generalize the derivation of the 4-component Dirac equa-
tion as given by particular Z2 × Z2 symmetric coupling of a pair 
of 2-component Pauli spinors ([3]), to the Z3 × Z2 × Z2 symme-
try which unifies in a specific manner (see (13)) the system of 
six linear equations for six Pauli spinors. In such a way we obtain 
a new description of quarks endowed with colour as irreducible 
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12-component analogs of Dirac spinors, with internal (colour) and 
space-time degrees of freedom entangled in a non-trivial manner.

By studying the solutions of free colour Dirac equation one 
arrives at possible algebraic explanation of quark confinement 
phenomenon: all exponential solutions of this system, which are 
wave-like, depend on complex wave vectors with imaginary parts 
damping the free propagation of coloured quarks; however, certain 
cubic products of such solutions result in the cancellation of imag-
inary parts and produce propagating waves corresponding to the 
freely moving composite particle states (see e.g. [4], [5], [6]).

The plan of our paper is as follows:
In Section 2 we present how to obtain the 12-component 

colour Dirac equation which describes the dynamics of quark 
and anti-quark endowed with colour and spin by introducing 
12-component colour Dirac field equations displaying the Z3 ×
Z2 × Z2 symmetry.

In Section 3 we consider the extension of relativistic symme-
try by incorporating in 18-parameter generalized Lorentz symme-
try the standard 6-parameter Lorentz subgroup and the additional 
pair of complex-conjugated 6-parameter Lorentz-like sectors. Such 
Z3-generalization L of the Lorentz algebra can be decomposed into 
the following Z3-graded sum of three sectors:

L = L(0) ⊕ L(1) ⊕ L(2),
[

L(k), L(m)
]

∈ L(k+m), (1)

where k, m = 0, 1, 2 and (k + m) is mod 3, L(0) describes the stan-

dard Lorentz sector, while adding L(1) and L(2) = (
L(1)

)†
(† denotes 
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Hermitian conjugate) extends it to a Z3-graded generalized Lorentz 
algebra.

To obtain the representation of generalized Lorentz algebra L
one should introduce the set of twelve 12 × 12 generalized Dirac 
matrices �μ

F = (
�0

F , �k
F

)
(F = 1, 2, ..12). In order to show it we 

introduce 12×12 matrix S describing the spinor representation of 
the generalized Lorentz algebra L, which contains a 6-parameter 
subgroup S(0) ⊂ S representing the standard Lorentz group.

We shall study the transformations of colour Dirac matri-
ces �μ

(F ) under the 18-parameter spinor transformation �′ = S�, 
where � is a 12-component colour Dirac spinor, and includes 
its standard Lorentz subgroup �′ = S(0)�. We obtain that the 
covariance under spinor Lorentz transformations S(0)�

μ
(F [S(0)]−1

requires the introduction of Lorentz doublets of colour-Dirac ma-
trices, while the closure of the map S�

μ
(F )S−1 leads to the ap-

pearance of 12 different Lorentz doublets of matrices �
μ
(F ) . One 

can further argue that the lowest-dimensional spinor space on 
which act the generalized Lorentz transformations in a closed and 
faithful way describes six different types of coloured quarks. The 
standard Lorentz covariance and the presence of Lorentz dou-
blets of colour Dirac fields leads to an additional Z2-factor in 
front of Z3 ⊗ Z2 ⊗ Z2, which may be responsible for the appear-
ance of weak isospin doublets of quarks. In this way extending 
Z3 to Z2 × Z3 permits to introduce the Standard Model’s inter-
nal symmetries SU (3) × SU (2) × U (1), which by gauging generate 
the octet of gluons, three vector mesons Ba

μ and the electromag-
netic field Aμ . Finally, the generalized Lorentz covariance implies 
the six-fold enlargement of the representation space of standard 
Lorentz symmetries and allows to accomodate quark flavour dou-
blets and the triplet of quark families.

In Section 4 we display the complete basis of solutions of the 
generalized “colour” Dirac equation, all of which are represented 
by exponential with non-vanishing damping factors. Further, we il-
lustrate the confinement by showing that certain ternary products 
of such damped solutions can propagate freely, and can asymptot-
ically represent the composite free baryon state.

The colour Dirac spinor components satisfy sixth order homo-
geneous field equation, which in the four-momentum space fac-
torizes into three mass shells: one with real mass and two with 
conjugate complex masses, related respectively with the Z3-graded 
sectors L(0) , L(1) and L(2) of L. We point out that such a triplet 
of masses can coincide with the mass spectrum of a particular 
Z3-covariant perturbative Lee-Wick QFT [8].

We conclude that recent results in the description of renormal-
izability and unitarity of the Lee-Wick perturbative QFT [9] justify 
the conjecture that our model of coloured quarks may be also 
renormalizable and unitary.

2. From Dirac to coloured Dirac equation

The Dirac equation for the electron (or any spin 1
2 particle with 

non-zero mass m) ([7]) can be written in a compact way as fol-
lows:

γ μ pμ ψ = mc ψ with ψ = (ψ+,ψ−)T , (2)

where pμ = −ih̄∂μ , ψ± are two complex 2-component Pauli 
spinors, and as Dirac matrices γ μ one can choose

γ 0 = σ3 ⊗ 12, γ k = (iσ2) ⊗ σ k, (3)

where σ0 = 12, and σ k (k = 1, 2, 3) are Pauli matrices. The Dirac 
matrices realize the 4-dimensional Clifford algebra

γ μγ ν + γ νγ μ = 2 ημν 14, ημν = diag(+,−,−,−). (4)
Under the Lorentz transformation

xμ → xμ′ = 

μ′
ν xν (5)

the spinor field ψ = ψ A (A = 1, 2, 3, 4) in (2) transforms as fol-
lows:

ψ ′(xρ ′
) = ψ ′(
ρ ′

μxμ) = Sψ(xμ) . (6)

In order to ensure the standard Lorentz covariance, the condi-
tion relating the vectorial and spinorial realizations of the Lorentz 
group O (3, 1) 	 S L(2, C) is:

Sγ μ′
S−1 = 


μ′
νγ

ν . (7)

The spinorial representation S is given by the formula

S = exp

(
− i

4
ωμνσ

μν

)
, (8)

where σμν = i
2 [γ μ, γ ν ], and the corresponding infinitesimal vec-

torial representation is given by the formula



μ
ν = δ

μ
ν + ω

μ
ν, where ωμν = ημλ ωλ

ν = −ωνμ, (9)

with three independent Lorentz boosts (ω0k = −ωk0) and three in-
dependent spatial rotations (ωi j = −ω ji )).

The generalized Dirac equation incorporating colour degrees of 
freedom in a Z3-symmetric way was proposed in [4], [5], [6] after 
introducing three pairs of independent Pauli spinors

ϕ+ =
(

ϕ1+
ϕ2+

)
, ϕ− =

(
ϕ1−
ϕ2−

)
, χ+ =

(
χ1+
χ2+

)
,

χ− =
(

χ1−
χ2−

)
, ψ+ =

(
ψ1+
ψ2+

)
, ψ− =

(
ψ1−
ψ2−

)
, (10)

with Pauli sigma-matrices acting on them in a natural way. These 
three Pauli spinors ϕ+ , χ+ and ψ+ are conventionally named 
“red”, “blue” and “green”, while their antiparticle counterparts ϕ− , 
χ− and ψ− are called, respectively, “cyan”, “yellow” and “magen-
ta”.

The cyclic group Z3 is represented on the complex plane by 
multiplicative group of three complex numbers, generated by pow-

ers of j = e
2π i

3 , namely:

j = e
2π i

3 , j2 = e
4π i

3 , j3 = 1, 1 + j + j2 = 0. (11)

The Z2 × Z2 symmetry of the Dirac equation can be made ex-
plicit if we multiply (2) by γ 0 and get a system of two equations 
entangling two Pauli spinors:

E ψ+ = mc2 ψ+ + cσp ψ−,

E ψ− = −mc2 ψ− + cσp ψ+ .
(12)

The system (12) displays two discrete Z2 symmetries: the space 
reflection simultaneously changing directions of spin and momen-
tum, σ → −σ , p → −p, and the particle-antiparticle symmetry 
which is realized in (12) by the transformation m → −m, ψ+ →
ψ− , ψ− → ψ+ .

In what follows, we extend the Z2 × Z2 symmetry by Z3 group, 
so that the system will mix not only the two spin 1

2 states and 
particles with anti-particles, but the three colours as well. The 
standard Dirac equation (12) is extended in the following way in 
terms of six entangled Pauli spinors:
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E ϕ+ = mc2 ϕ+ + c σ · pχ−,

E ϕ− = −mc2 ϕ− + c σ · pχ+
E χ+ = j mc2 χ+ + c σ · pψ−,

E χ− = − j mc2 χ− + c σ · pψ+
E ψ+ = j2 mc2 ψ+ + c σ · pϕ−,

E ψ− = − j2 mc2 ψ− + c σ · p .ϕ+

(13)

The particle-antiparticle Z2-symmetry appears as m → −m and 
simultaneously (ϕ+, χ+, ψ+) → (ϕ−, χ−, ψ−) and vice versa; the 
Z3-colour symmetry is realized by multiplication of mass m by j
each time the colour changes, i.e. more explicitly, Z3 symmetry is 
realized as follows:

m → jm, ϕ± → χ± → ψ± → ϕ±, (14)

m → jm, ϕ± → ψ± → χ± → ϕ±. (15)

The energy operator is diagonal; the mass operator is diago-
nal as well, but its elements are described by the powers of the 
sixth root of unity q = e

2π i
6 : q6 = 1, q = − j2, q2 = j, q3 = −1, 

q4 = j2, q5 = − j. Choosing a particular basis in the space of 
“coloured spinors” (10), such that �T = [ϕ+, ϕ−, χ+, χ−, ψ+, ψ−], 
we rewrite (13) in compact form as a 12-component equation:

E 13 ⊗ 12 ⊗ 12 � =
[

Q 3 ⊗ σ1 ⊗ c σ · p + mc2 B ⊗ σ3 ⊗ 12

]
�.

(16)

where B =
⎛
⎝1 0 0

0 j 0
0 0 j2

⎞
⎠ Q 3 =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ . (17)

Note that B2 = B†, with B† the Hermitian conjugate of B , B3 =
13, Q 2

3 = Q †
3 and Q 3

3 = 13. Eq. (16) can be presented in a way 
recalling much better the structure of the original Dirac equation 
(2) if we multiply the equation (16) from the left by B† ⊗ σ3 ⊗ 12. 
We get[

E B† ⊗ σ3 ⊗ 12 − Q 2 ⊗ (iσ2) ⊗ cσ · p
]
� = mc2 112�. (18)

Here B† = diag[1, j2, j], so that B B† = B† B = 13 and Q 2 = B Q 3. 
The full set of matrices Q A and Q †

B , A, B = 1, 2, 3, together with 
two diagonal traceless matrices B and B† generated by B and Q 3

form a special basis of the SU (3) algebra [10]. They can be ob-
tained by iteration, using the following multiplication table:

B Q A = j2 Q A B = Q A+1, B† Q A = j Q A B† = Q A−1,

Q † B = j2 B Q †
A = Q †

A−1, Q †
A B† = B† Q †

A = Q †
A+1,

Q A Q A−1 = j Q †
A+1, Q †

A−1 Q †
A = j2 Q A+1,

Q A Q †
A+1 = B†, Q A Q †

A−1 = B,

Q †
A Q A−1 = jB†, Q †

A Q A+1 = j2 B,

(19)

and of course Q A Q †
A = Q †

A Q A = 13, where the indices A, A + 1, 
A − 1 are always taken modulo 3, so that e.g. 3 + 1 |modulo 3=
4 |modulo 3= 1, etc., and the cube of each of the eight matrices in 
(19) is the unit 3 × 3 matrix.

Let us introduce the four 12 × 12 matrices �0, �i given by the 
following formula (20).

�0 = B† ⊗ σ3 ⊗ 12, �k = Q 2 ⊗ (iσ2) ⊗ σ k , (20)

Now the system (18) can be written in the 12-dimensional Dirac-
like form:
�μ pμ � = mc �, with p0 = E/c . (21)

It can be calculated [5] that the “colour Dirac operator” on the 
left-hand side of Eq. (21) has the following important algebraic 
properties:(
�μ pμ

)6 = (p6
0− | p |6) 112, det(�μ pμ) = (p6

0− | p |6)2,

p6
0− | p |6= (p2

0− | p |2)(p2
0 − j | p |2)(p2

0 − j2 | p |2). (22)

3. Implementing standard and generalized Lorentz covariance

It should be stressed that the 12 × 12 matrices �μ appearing in 
the coloured Dirac equation (21) do not span 4-dimensional Clif-
ford algebra. In fact, the Z3 ⊗ Z2 structure of �μ-matrices implies 
that only their sixth powers are proportional to the unit matrix 
112 (see also (22)). Thus, in order to obtain the realization of D = 4
Lorentz algebra generators one can not use just two standard com-
mutators

J i = i

2
εi jk

[
� j,�k

]
, Kl = 1

2
[�l,�0] . (23)

However, the generators 
(

J (0)
i , K (0)

l

)
satisfying the standard

Lorentz algebra relations (see also (28) for r = 0, s = 0) can be 
defined by triple commutators:[

J i,
[

J j, Jk
]] = (

δi jδkl − δikδ jl
)

J (0)

l ,[
Ki,

[
K j, Kk

]] = (
δi jδkl − δikδ jl

)
K (0)

l .
(24)

Indeed, substituting in (24) the explicit form of �μ given in (20), 
we get

J i = − i

2
Q †

2 ⊗ 12 ⊗ σi, Kl = −1

2
Q 1 ⊗ σ1 ⊗ σl,

J (0)
i = − i

2
13 ⊗ 12 ⊗ σi, K (0)

l = −1

2
13 ⊗ σ1 ⊗ σl.

(25)

In order to close the generalized Lorentz algebra (1) where 
L(0) = ( J (0)

i , K (0)
j ), L(1) = ( J (1)

i , K (1)
j ), L(2) = ( J (2)

i , K (2)
j ), one should 

supplement (24) by two missing triple commutators:[
J i,

[
J j, Kk

]] = (
δi jδkl − δikδ jl

)
K (2)

l ,[
Ki,

[
K j, Jk

]] = (
δi jδkl − δikδ jl

)
J (1)

l ,
(26)

where using the representation (25) we get

J (1)

l = − i

2
Q 3 ⊗ 12 ⊗ σl, K (2)

i = −1

2
Q †

3 ⊗ σ1 ⊗ σi . (27)

The full set of Z3-graded relations defining the algebra (1) (r, s,
r + s are modulo 3):[

J (r)
i , J (s)

k

]
= εikl J (r+s)

l ,
[

J (r)
i , K (s)

k

]
= εikl K

(r+s)
l ,[

K (r)
i , K (s)

k

]
= −εikl J (r+s)

l .
(28)

We see that from commutators [K (1)
i , K (1)

m ] 	 J (2) and [ J (1), J (1)] 	
J (2) one gets the remaining generators of L:

J (2)
i = − i

2
Q †

3 ⊗ 12 ⊗ σi, K (1)
m = −1

2
Q 3 ⊗ σ1 ⊗ σm. (29)

The formulae (25), (27) and (29) describe the realization of L
which follows from the choice (20) of matrices �μ .

Before considering standard and generalized Lorentz covariance 
we shall introduce the following notation:
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�
μ
(A;α)

= I A ⊗ σα ⊗ σμ, A = 0,1, ..,8; α = 2,3; μ = 0,1,2,3 .

(30)

Let the 3 × 3 “colour matrices” I A appearing as the first factor in 
(30) be defined as follows: I0 = 13, Ir = Q r , Ir+3 = Q †

r , I7 = B , 
I8 = B†. Then the original �-matrices given by (20) are encoded as 
�0

(8,3) = B† ⊗ σ3 ⊗ 12 and �i
(2;2)

= Q 2 ⊗ (iσ2) ⊗ σ i . The eight ma-
trices with A = 1, 2, ...8 with the multiplication rules given in (19)
span the ternary basis, generated by the cyclic Z3-automorphism 
of the SU (3) algebra ([10], Sect. 8).

In order to get the closed formula for the action S(0)�μ[S(0)]−1

of classical spinorial Lorentz symmetries generated by L(0) , we 
should introduce the pairs of �μ-matrices �μ = (�i

(A;2)
, �0

(B;3)
)

and �̃μ = (�i
(B;2)

, �0
(A;3)

), A 
= B . For any choice of �μ ’s in (30)
we get:[

J (0)
i ,�

j
(A;α)

]
= εi jk�

k
(A;α),

[
J (0)

i ,�0
(A;α)

]
= 0, (31)

and the boosts K (0)
i act covariantly on doublets 

(
�μ, �̃μ

)
as fol-

lows:[
K (0)

i ,�
j
(A;2)

]
= δ

j
i �0

(A;3),
[

K (0)
i ,�0

(B;3)

]
= �i

(B;2),[
K (0)

i ,�
j
(B;2)

]
= δ

j
i �0

(B;3),
[

K (0)
i ,�0

(A;3)

]
= �i

(A;2), (32)

(with A 
= B), i.e. the standard Lorentz covariance requires the dou-
blet of coloured Dirac spinors; In particular, the �μ matrices (20)
should be supplemented by:

�̃0 = �0
(2;3) = Q 2 ⊗ (σ3)⊗12, �̃i = �k

(8;2) = B† ⊗ iσ2 ⊗σ k. (33)

One can conjecture that the pairs of �-matrices generated by the 
standard Lorentz covariance requirement can be used for the intro-
duction of weak isospin doublets of the SU (2) × U (1) electroweak 
symmetry. In such a way one can conclude that the internal sym-
metries SU (3) × SU (2) × U (1) of Standard Model follow from the 
imposition of standard Lorentz covariance on colour Dirac multi-
plets.

Our next goal is to study the generalized Lorentz covariance of 
coloured Dirac equations, by generalization of standard invariance 
condition (7) and incorporating the standard �μ-matrices (20) into 
an irreducible representation of L. For this purpose, we should 
study the 18-parameter symmetry transformation �μ → S�μS−1, 
where

S =
2∏

r=0

ei [αk
(r) J (r)k +βm

(r) K (r)
m ]

, (34)

with αk
(0) , βk

(0) real, (αk
(1))

∗ = αk
(2) , (βk

(1))
∗ = βk

(2) , J †(1)

k = J (2)

k and 

K †(1)
m = K (2)

m . It follows that in order to obtain the closure of the 
faithful action of generators ( J (s)

k , K (s)
m ) (s = 0, 1, 2) on matrices 

�μ , one should introduce two sets �μ
(a), �

μ
ȧ = (�

μ
(a))

† (a = 1, 2, ...6)

of coloured 12 × 12 Dirac matrices supplemented by Lorentz dou-
blet partners (�̃

μ
(a), �̃

μ
(ȧ)

). If we choose ( J (1)

k , K (1)
m ) as given by 

Eqs. (27), (29), and assume that �μ
(1) is described by the formula 

(20), by calculating the multicommutators of 
(

J (1)
i , K (1)

l

)
with the 

set �μ
(a) , (a = 1, 2...6), we get the following sextet of �-matrices 

closed under the action of L(1):

�
μ
(1) =

(
�0

(8;3), �i
(2;2)

)
; �

μ
(2) =

(
�0

(2;2), �i
(4;3)

)
;

�
μ
(3) =

(
�0

(4;3), �i
(8;2)

)
; �

μ
(4) =

(
�0

(8;2), �i
(2;3)

)
;

�
μ
(5) =

(
�0

(2;3), �i
(4;2)

)
; �

μ
(6) =

(
�0

(4;2), �i
(8;3)

)
.

(35)
The realization of L(2) sector is obtained by introducing the 
Hermitean-conjugate sextet �μ

(ȧ)
= (�

μ
(a))

†; further one should add 
�̃

μ
(ȧ)

= (�̃
μ
(a))

† due to standard Lorentz covariance. The generalized 
Lorentz transformations of 24 matrices �μ

(F ) = (�
μ
(a),�

μ
(ȧ)

; �̃μ
(a),�̃

μ
(ȧ)

)

will be expressed by the following generalization of the formula 
(7)

S�
μ
(F )

S−1 = 

μ (G)

ν (F )
�ν

(G), μ,ν = 0,1,2,3; F , G = 1,2, ...,24,

(36)

where with the help of the Baker-Campbell-Hausdorff type formula 
([11]) the matrix 
μ (G)

ν (F ) can be calculated explicitly if the multi-

commutators of �μ
(F ) with the generators of L are known up to 

the sixth order.
In order to describe in compact way the action of generalized 

Lorentz algebra on coloured Dirac matrices, we can introduce the 
144 × 144 “master” �μ matrices built up in a suitable manner as 
a 12 × 12 matrix with its entries being the 12 × 12 coloured �μ

(a)

defined in (35), their Hermitean conjugates �μ
(ȧ)

and their Lorentz 
doublet partners. In such a way one can obtain the “master” colour 
Dirac equation for 144-component master spinor field describing 
six known relativistic quarks in three flavour doublets (u, d), (c, s), 
(t, b). In such a scheme the sextet (35) defining six colour multi-
plets introduces an additional Z2 × Z3 grading with the discrete 
degrees of freedom, related with flavour doublets (Z2 grading) and 
the three quark families, called also “generations” (Z3 grading). At 
the present stage we assume that this second Z3 grading, related 
with quarks’ families, contrary to the colour Z3 grading, does not 
imply any entanglement of symmetries.

4. Solutions, ternary products and confinement

Let us consider the solutions of the coloured Dirac equation 
(21) in the exponential form ekμxμ

. The characteristic equation of 
the 12 × 12 operator (22) yields the dispersion relation in the 
4-momentum space of Fourier transforms:

k6
0− | k |6= M6. (37)

The general solution is therefore ek0x0−k·r , provided the above re-
lation (37) is satisfied, what for the choice of real k0 means that it 
is given by

ck0 = c 6
√

| k |6 +M6 = �(k). (38)

Any sixth-order root of real number provides six different values, 
two real ones, (±�, k), k real), and four other ones obtained by 
multiplying ±�(k) by j and j2, yielding full set of six solutions 
with ck0 given by ±�, ± j�, ± j2�. Further, if we have one solu-
tion with given k0 and k satisfying (38), we get other solutions of 
the same form, with k replaced by jk or j2k (the change k → −k
does not introduce independent solutions, because a three-vector 
k covers the entire sphere S2; k0 → −k0 does matter as it distin-
guishes positive and negative energy states).

Combining all these possibilities we arrive at 18 different expo-
nentials, 9 with positive k0 and 9 with negative k0. They can be 
organized in the following two sets of solutions

�+
(r,s)(t, r) = e jr�t+ jsk·r, �−

(r,s)(t, r) = e− jr�t+ jsk·r, (39)

where s, r = 0, 1, 2 and � is given by (38).
The colour Dirac equation (21) as a system of 12 differential 

equations of first order should display only 12 independent solu-
tions, six with positive and six with negative frequencies. We can 
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choose the six off-diagonal entries in (39), with r 
= s, which can 
be displayed in the following matrix:⎛
⎜⎝ 0 e� t+ jk·r e� t+ j2k·r

e j� t+k·r 0 e j� t+ j2k·r

e j2� t+k·r e j2� t+k·r 0

⎞
⎟⎠ , (40)

and similarly for the negative energy values (� → −�); one can 
check that the determinant of the matrix (40) displaying the six 
independent solutions is equal to 1.

All these twelve functions, describing propagation of coloured 
quarks, do not represent free waves due to the presence of damp-
ing factors. However, observing that there are only two ways of 
obtaining imaginary units as linear combinations of the Z3 roots 
1, j, j2, namely

1√
3
(1 + 2 j) = i,

1√
3
(1 + 2 j2) = −i (41)

one can produce propagating free wave-like solutions by forming 
two independent cubic products with positive �, and two ones 
with negative �. Following (40), (41) we choose the first pair of 
solutions as

�+
(B)(t, r) = �+

(2,0)�
+
(0,1)�

+
(2,1) = e−i

√
3(�t+kr), (42)

�̄+
(B)(t, r) = �+

(1,0)�
+
(0,2)�

+
(1,2) = ei

√
3(�t+kr), (43)

and two ones with negative �. With two additional solutions ob-
tained by replacing � by −� we get just the right number of four 
plane wave solutions needed to describe a massive spin 1

2 parti-
cle - a composite three-quark free baryon wave function. Similarly, 
due to the relation ( j − j2)/

√
3 = i, the quark-antiquark pairs of 

solutions with positive and negative frequencies will provide the 
particle and anti-particle spin-0 meson plane waves.

The 4-vector [�
c , k] in baryonic wave functions (42), (43) does 

not satisfy the usual quadratic dispersion relation ω2 = c2k2 + m2, 
where m is the baryonic mass, but the relation (37), i.e. �6 =
c6| k |6 + M6. One can argue however that because for | k |� M
we have

�2 = 3
√

c6(k2)3 + M6 = c2k2 3

√
1 + M6

| k |6 	 c2k2 + m2(k), (44)
where

m2(k) = 1

3
M2

[
M4

c4k4
+O

(
M2

c2k2

)5]
, (45)

the baryonic wave functions (42), (43) satisfy the d’Alembert equa-
tion with source term which quickly converges on the solutions 
(42), (43) to zero in the high energy limit k → ∞.

An important future task is to construct a QCD framework with 
colour Dirac spinors. The presented ideas are preliminary; in prin-
ciple it should be possible to introduce the generalized Dirac action 
incorporating the “master” colour Dirac matrices which could de-
scribe all phenomenologically known quarks.
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