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We propose a modification of standard QCD description of the colour triplet of quarks by introducing
a 12-component colour generalization of Dirac spinor, with built-in Z3 grading playing an important
algebraic role in quark confinement. In “colour Dirac equations” the SU(3) colour symmetry is entangled
with the Z3-graded generalization of Lorentz symmetry, containing three 6-parameter sectors related

by Z3 maps. The generalized Lorentz covariance requires simultaneous presence of 12 colour Dirac
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multiplets, which lead to the description of all internal symmetries of quarks: besides SU(3) x SU(2) x
U(1), the flavour symmetries and three quark families.
© 2019 Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is well known that colour symmetries play a double role -
they describe SU(3) gauge symmetry group in QCD and are linked
with quark confinement, which is obtained usually as dynamical
consequence of strong forces between quarks growing linearly with
their spatial separation (see e.g. [1], [2]).

In the present paper we would like to propose an alternative
algebraic approach to the confining aspect of colour symmetries.
For that purpose we replace the usual tensor product of Lorentz
and colour SU(3) group actions by the entanglement of space-time
and colour symmetries generated by the Z3 symmetry which plays
also an important role in the appearance of fractional electric and
baryonic charges of quarks.

We shall show that such an entanglement appears naturally
when we generalize the derivation of the 4-component Dirac equa-
tion as given by particular Z, x Z, symmetric coupling of a pair
of 2-component Pauli spinors ([3]), to the Z3 x Z; x Z symme-
try which unifies in a specific manner (see (13)) the system of
six linear equations for six Pauli spinors. In such a way we obtain
a new description of quarks endowed with colour as irreducible
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12-component analogs of Dirac spinors, with internal (colour) and
space-time degrees of freedom entangled in a non-trivial manner.

By studying the solutions of free colour Dirac equation one
arrives at possible algebraic explanation of quark confinement
phenomenon: all exponential solutions of this system, which are
wave-like, depend on complex wave vectors with imaginary parts
damping the free propagation of coloured quarks; however, certain
cubic products of such solutions result in the cancellation of imag-
inary parts and produce propagating waves corresponding to the
freely moving composite particle states (see e.g. [4], [5], [6]).

The plan of our paper is as follows:

In Section 2 we present how to obtain the 12-component
colour Dirac equation which describes the dynamics of quark
and anti-quark endowed with colour and spin by introducing
12-component colour Dirac field equations displaying the Z3 x
Zy X Zp symmetry.

In Section 3 we consider the extension of relativistic symme-
try by incorporating in 18-parameter generalized Lorentz symme-
try the standard 6-parameter Lorentz subgroup and the additional
pair of complex-conjugated 6-parameter Lorentz-like sectors. Such
Z3-generalization £ of the Lorentz algebra can be decomposed into
the following Z3-graded sum of three sectors:

L=10gLDgL®, [Lac)’ L(m)] e Lk+m) 1)

where k,m=0,1,2 and (k+m) is mod 3, L© describes the stan-
dard Lorentz sector, while adding LV and L® = (L(”)T (f denotes
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Hermitian conjugate) extends it to a Z3-graded generalized Lorentz
algebra.

To obtain the representation of generalized Lorentz algebra £
one should introduce the set of twelve 12 x 12 generalized Dirac
matrices 'y = ([, I'X) (F =1,2,..12). In order to show it we
introduce 12x12 matrix S describing the spinor representation of
the generalized Lorentz algebra £, which contains a 6-parameter
subgroup S© c S representing the standard Lorentz group.

We shall study the transformations of colour Dirac matri-
ces Ft‘F) under the 18-parameter spinor transformation ¥ = SV,
where W is a 12-component colour Dirac spinor, and includes
its standard Lorentz subgroup ¥ = S©Ww., We obtain that the
covariance under spinor Lorentz transformations S(O)T‘QLF[‘S‘“J)]‘1
requires the introduction of Lorentz doublets of colour-Dirac ma-
trices, while the closure of the map SFé‘F)S*] leads to the ap-

pearance of 12 different Lorentz doublets of matrices Ft‘F). One
can further argue that the lowest-dimensional spinor space on
which act the generalized Lorentz transformations in a closed and
faithful way describes six different types of coloured quarks. The
standard Lorentz covariance and the presence of Lorentz dou-
blets of colour Dirac fields leads to an additional Zj-factor in
front of Z3 ® Z, ® Z,, which may be responsible for the appear-
ance of weak isospin doublets of quarks. In this way extending
Z3 to Zy x Z3 permits to introduce the Standard Model’s inter-
nal symmetries SU(3) x SU(2) x U(1), which by gauging generate
the octet of gluons, three vector mesons BZ and the electromag-
netic field A,. Finally, the generalized Lorentz covariance implies
the six-fold enlargement of the representation space of standard
Lorentz symmetries and allows to accomodate quark flavour dou-
blets and the triplet of quark families.

In Section 4 we display the complete basis of solutions of the
generalized “colour” Dirac equation, all of which are represented
by exponential with non-vanishing damping factors. Further, we il-
lustrate the confinement by showing that certain ternary products
of such damped solutions can propagate freely, and can asymptot-
ically represent the composite free baryon state.

The colour Dirac spinor components satisfy sixth order homo-
geneous field equation, which in the four-momentum space fac-
torizes into three mass shells: one with real mass and two with
conjugate complex masses, related respectively with the Z3-graded
sectors L@, LM and L@ of £. We point out that such a triplet
of masses can coincide with the mass spectrum of a particular
Z3-covariant perturbative Lee-Wick QFT [8].

We conclude that recent results in the description of renormal-
izability and unitarity of the Lee-Wick perturbative QFT [9] justify
the conjecture that our model of coloured quarks may be also
renormalizable and unitary.

2. From Dirac to coloured Dirac equation

The Dirac equation for the electron (or any spin % particle with
non-zero mass m) ([7]) can be written in a compact way as fol-
lows:

Y pu v =mey with ¥ =y, yo)' (2)

where p, = —ihd,, ¥+ are two complex 2-component Pauli
spinors, and as Dirac matrices y* one can choose

Y0 =038 1y, y¥=(ioy) @ o, (3)

where og = 1,, and o (k=1,2,3) are Pauli matrices. The Dirac
matrices realize the 4-dimensional Clifford algebra

yryY +ytyH =29 14, 9"’ =diag+, -, -, ). (4)

Under the Lorentz transformation
xH X = AH xY (5)

the spinor field v = ¥4 (A=1,2,3,4) in (2) transforms as fol-
lows:

W () = g (AP, X = Sy () | (6)

In order to ensure the standard Lorentz covariance, the condi-
tion relating the vectorial and spinorial realizations of the Lorentz
group 0(3,1) >~ SL(2,C) is:

SyWs =AM V. 7)
The spinorial representation S is given by the formula

i
S=exp <_Z“’/waw> : (8)
where gHV = |

= 3[y*,y"], and the corresponding infinitesimal vec-
torial representation is given by the formula

A, =88, + 0", where oy, = s @, = —wuy, (9)

with three independent Lorentz boosts (wor = —wyg) and three in-
dependent spatial rotations (w;j = —wj;)).

The generalized Dirac equation incorporating colour degrees of
freedom in a Z3-symmetric way was proposed in [4], [5], [6] after
introducing three pairs of independent Pauli spinors

(et _ (oL _(x
(er_((pi)? (p_<(pz>7 X+_<Xi)7
x! " vl " yl (10)
=) T w2 ) T 2 )

with Pauli sigma-matrices acting on them in a natural way. These
three Pauli spinors ¢4, x4+ and v are conventionally named
“red”, “blue” and “green”, while their antiparticle counterparts ¢_,
X— and _ are called, respectively, “cyan”, “yellow” and “magen-
ta”.

The cyclic group Zs is represented on the complex plane by
multiplicative group of three complex numbers, generated by pow-
ers of j :e%, namely:

j=e%, 2=eF, PB=1, 1+j+j2=0. (11)

The Z; x Z; symmetry of the Dirac equation can be made ex-
plicit if we multiply (2) by y° and get a system of two equations
entangling two Pauli spinors:

Evyy=mc®yy +copy_,
Ey_=-mc®y_+copy, .

The system (12) displays two discrete Z, symmetries: the space
reflection simultaneously changing directions of spin and momen-
tum, 0 — —0o, p — —p, and the particle-antiparticle symmetry
which is realized in (12) by the transformation m — —m, ¥ —
Vo Yo > Y

In what follows, we extend the Z, x Z; symmetry by Z3 group,
so that the system will mix not only the two spin % states and
particles with anti-particles, but the three colours as well. The
standard Dirac equation (12) is extended in the following way in

terms of six entangled Pauli spinors:

(12)
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Egy=mc®p,+co-px,
E(p,:—mczgof—i-ca‘p)g
Exi=jmexy+co-py,
Ex-=—jmc®x_+co-pyy
Eyy=jmyy+co -py,
Ew_z—jzmczlp_+ca-p.go+

The particle-antiparticle Z,-symmetry appears as m — —m and
simultaneously (¢4, X+, ¥+) = (¢—, X—, ¥—) and vice versa; the
Z3-colour symmetry is realized by multiplication of mass m by j
each time the colour changes, i.e. more explicitly, Z3 symmetry is
realized as follows:

m— jm, @i+ — X+ —> ¥+ —> @4, (14)
m— jm, @r— YiL—> X+—> Qt. (15)

The energy operator is diagonal; the mass operator is diago-
nal as well, but its elements are described by the powers of the
sixth root of unity g =e%: ¢ =1, g=—j2, ¢*=j, ¢* = —1,
q* = j2, ¢> = —j. Choosing a particular basis in the space of

“coloured spinors” (10), such that T =[¢4, o_, x4, x—, ¥+, ¥_],
we rewrite (13) in compact form as a 12-component equation:

E13®1,®1; ‘I’Z[Q3®O’1®C0-p+m623®03®12]\11.

(16)
100 010

where B=|0 j O Q3={0 0 1]). (17)
0 0 j2 100

Note that B2 = B, with Bf the Hermitian conjugate of B, B3 =
13, Q32 = Q; and Q33 = 13. Eq. (16) can be presented in a way
recalling much better the structure of the original Dirac equation
(2) if we multiply the equation (16) from the left by B’ ® 03 ® 1.
We get

[E B'®03® 1, — Q2 ® (i02) @ co ~p] W=mc?1,¥.  (18)

Here BT = diag[1, j2, j], so that BB = BTB =13 and Q, = BQs.
The full set of matrices Q4 and Qg, A, B =1,2,3, together with
two diagonal traceless matrices B and BT generated by B and Q3
form a special basis of the SU(3) algebra [10]. They can be ob-
tained by iteration, using the following multiplication table:

BQa=j?QaB=Qas1, B'Qa=jQaB"=Qa_1,
Q'B=j2BQ} =] ;. QB =BTQ} =0},
QaQa-1=jQ) ;. Q) Q) =72Qas1. (19)
Q4Qh,, =B" QaQ}_, =B

QlQa-1=jB" Q}Qar1=4B.

and of course Q4 QI‘ = QI\ Q4 = 13, where the indices A, A+ 1,
A — 1 are always taken modulo 3, so that e.g. 3 + 1 |modulo 3=
4 |modulo 3= 1, etc.,, and the cube of each of the eight matrices in
(19) is the unit 3 x 3 matrix.

Let us introduce the four 12 x 12 matrices I'°, I given by the
following formula (20).

" =Q, ® (ioy) ® ok, (20)

Now the system (18) can be written in the 12-dimensional Dirac-
like form:

r=p"®o;®1,,

' p, ¥=mcW, with po=E/c. (21)

It can be calculated [5] that the “colour Dirac operator” on the
left-hand side of Eq. (21) has the following important algebraic
properties:

6
(T pu)” = (o= 1P1° 112, det(™ p,) = (pg—1pI°)?,
po—1p1°=mo— 1P 5 —ilp 05— i*1p ). (22)
3. Implementing standard and generalized Lorentz covariance

It should be stressed that the 12 x 12 matrices I'* appearing in
the coloured Dirac equation (21) do not span 4-dimensional Clif-
ford algebra. In fact, the Z3 ® Z, structure of I'*-matrices implies
that only their sixth powers are proportional to the unit matrix
11, (see also (22)). Thus, in order to obtain the realization of D =4
Lorentz algebra generators one can not use just two standard com-
mutators

i ; 1
Ji=5 €[], Ki=3 ML) (23)

However, the generators ( ]l.(o), Kl(o)) satisfying the standard

Lorentz algebra relations (see also (28) for r = 0,s = 0) can be
defined by triple commutators:

[Ji.[J5: Jk]] = (8ij8a — dixd 1) J,(O), (24)
[Ki, [K;, Kie]] = (816 — Suedjn) K° .

Indeed, substituting in (24) the explicit form of I'* given in (20),
we get

i 1
Ji=——Q;®]l2®6i, K=--Q1®01®0,

i 1
]i(o) = 5 13 ®1; ® o, Kl(o) = ) 13 ® 01 ® 7.

In order to close the generalized Lorentz algebra (1) where
0 _ (10 O 1 _ D @ 2) _ 1@ @
LO = (y;  Kj ), LY = (J; K, L® = (y; ,K;”), one should
supplement (24) by two missing triple commutators:

[Ji.[J5: Ki]] = (88 — did 1) K,(z),

) (26)
[Ki. [Kj. Jk]] = (881 — 8iedjn) J; .
where using the representation (25) we get
i 1
J"==3 oL KP=—2Qe0nean (27)

The full set of Z3-graded relations defining the algebra (1) (r,s,
r+ s are modulo 3):

+ +
[]fr),],(f)] =€l [];r),K,is)]:Gisz,(r 9,

™ () (r+s) (28)
r S r+S

[K,- , Ky ] =—€inl; -

We see that from commutators [Ki(l), K"~ J@ and [JO, JD] ~
J@ one gets the remaining generators of £:

i 1
j;z)z—i Q;[®12®05, Kr(nl)=—§ Q3 ®01 Q@ 0m. (29)

The formulae (25), (27) and (29) describe the realization of £
which follows from the choice (20) of matrices I'*.

Before considering standard and generalized Lorentz covariance
we shall introduce the following notation:
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Moy =400y ®0", A=0,1,.,8 «=2,3; £=0,1,2,3.

(30)

Let the 3 x 3 “colour matrices” I4 appearing as the first factor in

(30) be defined as follows: Iy = 13, I, = Qy, ;43 = Q;r, I7 = B,

Is =BT, Then the original I"-matrices given by (20) are encoded as

I‘?S 3= =B'® o3 ®1, and l‘(2 = = Q3 ® (io3) ® o' The eight ma-

trices with A =1, 2, ...8 with the multiplication rules given in (19)

span the ternary basis, generated by the cyclic Z3-automorphism
of the SU(3) algebra ([10], Sect. 8).

In order to get the closed formula for the action SO TH[S@]-1

of classical spinorial Lorentz symmetries generated by L©, we

should introduce the pairs of I'-matrices T* = (I‘(A 2 ?B 3))

and T* (I‘(B 2 (A 3)), A # B. For any choice of I'*’s in (30)
we get:

0 0
[1() Il a)]ZGUkFIEA;a)’ [1() I'a. a>] 0, (31)

and the boosts Ki(o) act covariantly on doublets (F“, f”) as fol-
lows:

© pi j © 0 T_pi
(KO | =6 Ty, [KO. T | =Tl

©0) J J 0 _ i
(KT, | =8 Ty, KT | =Tl (32)

(with A # B), i.e. the standard Lorentz covariance requires the dou-
blet of coloured Dirac spinors; In particular, the T'* matrices (20)
should be supplemented by:

0=Td.3 =Q®03)®1y, ['=Tk, =B'®inedc". (33)
One can conjecture that the pairs of I'-matrices generated by the
standard Lorentz covariance requirement can be used for the intro-
duction of weak isospin doublets of the SU(2) x U(1) electroweak
symmetry. In such a way one can conclude that the internal sym-
metries SU(3) x SU(2) x U(1) of Standard Model follow from the
imposition of standard Lorentz covariance on colour Dirac multi-
plets.

Our next goal is to study the generalized Lorentz covariance of
coloured Dirac equations, by generalization of standard invariance
condition (7) and incorporating the standard I'*-matrices (20) into
an irreducible representation of L. For this purpose, we should
study the 18-parameter symmetry transformation I'* — ST#S~1,
where

) ()
8 1_[ e (r)]k +ﬁ(r)Km ] (34)

: k —_ ok k _ T(D (2)
with oo, BG) real ()" = afy), (B)" =By Ji = I

(D)
K
faithful action of generators ( j,(f), K (S)) (s=0,1,2) on matrices
I'*, one should introduce two sets F(a), Nt = (I‘(a))T (a=1,2,..6)
of coloured 12 x 12 Dirac matrices supplemented by Lorentz dou-
blet partners (Féfl),l“ﬁl)) If we choose (](]) K,S})) as given by
Egs. (27), (29), and assume that I‘é‘]) is described by the formula
(20), by calculating the multicommutators of ( ]i(]), Kf”) with the
set T#

(a)’
closed under the action of L(D:

Mmoo 0 i . noo_ 0 i .
Pay= (F(8;3>’ F<2;2>)’ Py = <F<2;2)’ F(4;3))’
12 0 i . "o 0 i .
Pe = (F(4;3>’ FI(&Z))’ Fa= <F<8;2)’ Fl<2;3))’ (35)

1% 0 i . no_ 0 i
Is = (F(z;zw Fl<4;2>)’ Te = <F<4:,2)’ F'<8;3))~

K(z) It follows that in order to obtain the closure of the

(a=1,2...6), we get the following sextet of I'-matrices

The realization of L® sector is obtained by introducing the
Hermitean-conjugate sextet I‘ @ = (F(a)) further one should add

Ff;) (F( ))Jr due to standard Lorentz covariance. The generalized
Lorentz transformations of 24 matrices I'fy,) = (Ffz),l"éfl), Féz),r‘é))
will be expressed by the following generalization of the formula

(7)

— AR © v

T
STpS™ v 0 Ly

(F) m,v=0,1,2,3; F,G=1,2,...,24,

(36)

where with the help of the Baker-Campbell-Hausdorff type formula
([11]) the matrix A“v((F)) can be calculated explicitly if the multi-
commutators of Ff‘F) with the generators of £ are known up to
the sixth order.

In order to describe in compact way the action of generalized
Lorentz algebra on coloured Dirac matrices, we can introduce the
144 x 144 “master” T'* matrices built up in a suitable manner as
a 12 x 12 matrix with its entries being the 12 x 12 coloured Fff])
defined in (35), their Hermitean conjugates l“(a) and their Lorentz
doublet partners. In such a way one can obtain the “master” colour
Dirac equation for 144-component master spinor field describing
six known relativistic quarks in three flavour doublets (u, d), (c, s),
(t,b). In such a scheme the sextet (35) defining six colour multi-
plets introduces an additional Z, x Z3 grading with the discrete
degrees of freedom, related with flavour doublets (Z, grading) and
the three quark families, called also “generations” (Z3 grading). At
the present stage we assume that this second Z3 grading, related
with quarks’ families, contrary to the colour Z3 grading, does not
imply any entanglement of symmetries.

4. Solutions, ternary products and confinement

Let us consider the solutions of the coloured Dirac equation
(21) in the exponential form e#*". The characteristic equation of
the 12 x 12 operator (22) yields the dispersion relation in the
4-momentum space of Fourier transforms:

kS— |k 6= M". (37)

The general solution is therefore e"o"ofk'r, provided the above re-
lation (37) is satisfied, what for the choice of real ky means that it
is given by

cko =cy) | k |6 +M6 = Q(k). (38)

Any sixth-order root of real number provides six different values,
two real ones, (£, k), k real), and four other ones obtained by
multiplying £Q(k) by j and j2, yielding full set of six solutions
with ckg given by £, +j, £j2Q. Further, if we have one solu-
tion with given ko and k satisfying (38), we get other solutions of
the same form, with k replaced by jk or j2k (the change k — —k
does not introduce independent solutions, because a three-vector
k covers the entire sphere S2; kg — —ko does matter as it distin-
guishes positive and negative energy states).

Combining all these possibilities we arrive at 18 different expo-
nentials, 9 with positive kg and 9 with negative ko. They can be
organized in the following two sets of solutions

s _ o .
(r s)(t r)= e] art l(r \y(r,s)(t’ r=e yer kr, (39)

where s,r=0,1,2 and Q is given by (38).

The colour Dirac equation (21) as a system of 12 differential
equations of first order should display only 12 independent solu-
tions, six with positive and six with negative frequencies. We can
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choose the six off-diagonal entries in (39), with r # s, which can
be displayed in the following matrix:

0 eQt+jkr eQH—jzkr
. . 5
e]QtJrk-r 0 e]Qt+] kr , (40)
ejzsz t+kr ejZQ t+kr 0

and similarly for the negative energy values (2 — —); one can
check that the determinant of the matrix (40) displaying the six
independent solutions is equal to 1.

All these twelve functions, describing propagation of coloured
quarks, do not represent free waves due to the presence of damp-
ing factors. However, observing that there are only two ways of
obtaining imaginary units as linear combinations of the Z3 roots
1, j, j2, namely

1 1
NE) NE]
one can produce propagating free wave-like solutions by forming
two independent cubic products with positive 2, and two ones

with negative Q. Following (40), (41) we choose the first pair of
solutions as

A +2j) =i, A+2j5=—i (41)

+ —wt gt gt e—iv3(Qrtkr
W (60 =Wh o W wh =e ( ), (42)
I+ Wt + +  _ iv3(Qt+kr)
W (6,0 =W W, W, = ( , (43)

and two ones with negative 2. With two additional solutions ob-
tained by replacing by —Q we get just the right number of four
plane wave solutions needed to describe a massive spin % parti-
cle - a composite three-quark free baryon wave function. Similarly,
due to the relation (j — j2)/+/3 =1, the quark-antiquark pairs of
solutions with positive and negative frequencies will provide the
particle and anti-particle spin-0 meson plane waves.

The 4-vector [%, k] in baryonic wave functions (42), (43) does
not satisfy the usual quadratic dispersion relation w? = c2k? + m?,
where m is the baryonic mass, but the relation (37), i.e. Q8 =
¢Sk |® + MS. One can argue however that because for |k [>> M
we have

Q% = Vcb(k?)3 + M6 =’k

2K+ m?(k), (44)

where

M4 M2 \°
—+o( ) , (45)

2 1.2
(k) = 3 M c4K4 c2k?
the baryonic wave functions (42), (43) satisfy the d’Alembert equa-
tion with source term which quickly converges on the solutions
(42), (43) to zero in the high energy limit k — oo.

An important future task is to construct a QCD framework with
colour Dirac spinors. The presented ideas are preliminary; in prin-
ciple it should be possible to introduce the generalized Dirac action
incorporating the “master” colour Dirac matrices which could de-
scribe all phenomenologically known quarks.
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