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Abstract

SETH HOPPER: THE GRAVITATIONAL FIELD PRODUCED BY EXTREME-MASS-RATIO
ORBITS ON SCHWARZSCHILD SPACETIME.
(UNDER THE DIRECTION OF CHARLES R. EVANS.)

A stellar-mass compact object orbiting a supermassive black hole will radiate energy and
angular momentum in the form of gravitational waves, causing it to spiral inward. Such an
extreme-mass-ratio inspiral (EMRI) is an important potential source for a direct gravity
wave detection. It will require sufficiently accurate source modeling for such detections to
be made and analyzed. In this thesis I present original research that has furthered the
collective goal of accurate numerical EMRI simulations.

I begin by giving an overview of the extensive work that has been done in this field,
with an eye toward significant headway that has been made in the last decade. I then lay
the groundwork for my own work by reviewing the mathematical foundations for gravity
waves and black hole perturbation theory. Before attacking the subject of gravity waves
on a curved background, I examine the model problem of the scalar field that is induced
by an orbiting charge. This problem, while idealized, introduces many of the mathematical
and numerical techniques which are necessary to solve the perturbed Einstein equations.
At this point, with the foundation laid, I present new work on eccentric orbits of point
masses about a Schwarzschild black hole. I show how the method of extended homogeneous
solutions is generalized to find the radiative part of the first-order metric perturbation in
Regge-Wheeler (RW) gauge using frequency domain techniques. Additionally, for the first
time we computed the local point-singular nature of the metric perturbation in RW gauge.
Due mostly to such gauge artifacts, RW gauge is not ideal of performing a local self-force
calculation. Thus, I then present work on transforming the metric perturbation to Lorenz
gauge. This will allow for the direct calculation of the self-force. 1 end this thesis by

summarizing the potential and necessary areas of EMRI research in the near future.
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Chapter 1

Introduction

1.1 The two-body problem in general relativity

The two-body problem stands as one of the classic unsolved problems of general relativity.
The challenge is to take two gravitationally interacting objects with arbitrary initial posi-
tions and velocities (and potentially spins) and solve for their positions and the gravitational
field at all future times. Given the complexity of the nonlinear, coupled Einstein equations,
it is impossible to solve such a problem, in general, through analytical approaches. Re-
searchers have therefore turned to numerical methods to provide solutions. Early work
involved post-Newtonian theory—work that goes back to Einstein at the dawn of general
relativity and Einstein, Infeld, and Hoffmann [4]. The first numerical relativity simulation
of a two-body system was made by Hahn and Lindquist, who attempted to collide two
non-rotating black holes head on [5] in 1964. Their code only ran for a brief time, and was
not able to model the merger of the two holes. Still, it was the first step in what has be-
come an active and mature field. In recent years, interest in such simulations has increased

dramatically with the prospect of detecting gravitational waves.

1.1.1 Observational interest

Even beyond the inherent theoretical motivation for solving the two-body problem, there
exists a strong observational need to study this system. The detection of gravitational

radiation appears close at hand. Though other types of detectors (most notably resonant



bars) have been designed and built, interferometers have reached the most promising levels
of sensitivity. Gravity waves (GWs) produce slight time-dependent changes in the distances
between objects. Interferometers can detect these changes by measuring the time it takes
for photons to travel down to a mirror and back. Due to the extremely weak nature of
GWs, these detectors must be unprecedentedly sensitive. Detected GWs are anticipated to
cause fractional distance shifts of no more than one part in 10%! [6].

Detections will most likely be made by the Laser Interferometer Gravity-Wave Obser-
vatory LIGO [7]. LIGO is currently offline, as it is being upgraded with new components.
When the upgrade is complete it will enter its third stage, dubbed Advanced LIGO. Re-
searchers are hoping the first gravity waves will be detected shortly after Advanced LIGO
goes online in 2014. If detected at LIGO’s two sites, and at the VIRGO [8] and GEO600
[9] detectors, a source of GW will be identified, localized and analyzed. These detections
will not happen, however, without sufficiently accurate theoretical models of GW sources.

Even the strongest astrophysical sources will produce GW signals that are buried deeply
in the noise of a detector’s data stream. Therefore, accurate theoretical models of a large
number of waveforms will be necessary in order to correlate with detector output. Processes
such as matched filtering can be used to extract a signal that has been masked by the various
noise sources in a detector (e.g., seismic, thermal, and shot noise) [10].

In addition to their use in GW detection, accurate waveforms are also needed for source
parameter estimation. Black hole binaries produce complicated wave forms with as many
as fifteen parameters. For the case where the black holes have comparable mass, the field
of numerical relativity (NR) has been quite successful at modeling late-time waveforms. As
the mass-ratio becomes smaller NR calculations become progressively more challenging. At
this point, mass-ratios of 1:100 appear to be the outside limit of what is possible [11], and

even then the accuracy leaves much to be desired.

1.1.2 Extreme-mass-ratio inspirals

The GWs that LIGO detects will likely come from the merger of comparable mass compact

objects (black holes or neutron stars). This is because LIGO has a frequency band of ~ 10



Hz —1 kHz, a range ideal for detection of binaries with comparable mass (~ 1 — 10Mg)
companions. Another likely astrophysical source of GWs are extreme-mass-ratio inspirals
(EMRIs) where solar-mass objects (~ 1 — 10M¢) orbit supermassive black holes (SMBHs,
~ 10° — 10"Myg). These sources are thought to exist in the centers of all major galaxies.
For instance, the SMBH at the center of the Milky Way, Sagittarius A*, has a mass of
~ 4.3 x 10% Mg. M31 (the Andromeda Galaxy) has a SMBH of ~ 10® Mg at its center.
Small (¢ < 100 M) compact objects orbiting such SMBH will radiate GWs at lower
frequencies outside the LIGO passband.

In order to detect them, the European Space Agency (ESA) is planning a space based
interferometer detector. Until recently, this was to be a joint NASA-ESA mission named
the Laser Interferometer Space Antenna (LISA) [12]. NASA funding issues led to their
backing out [13]. At this point, ESA is reworking the mission to fit within a tighter budget.
It is not yet clear how the revised mission will change in specifications (or even name) from
the original joint plan. For the purposes of this discussion I will continue to call the mission
LISA and use the old specifications.

LISA will have a passband of ~ 10~% — 1072 Hz, several orders of magnitude below
LIGO. An EMRI is expected to stay in LISA’s passband for up to one million orbits as it
spirals toward the SMBH and eventually plunges. The final stages of the inspiral will be
marked by an increase in frequency and amplitude until the small body plunges toward the
event horizon and a last burst of radiation is released. This increase in frequency and in
amplitude of the signal is called a chirp. The SMBH will then ring down exponentially as
it settles back to its usual stationary state.

As with ground based detectors, LISA’s detections will have to be pulled out of the noise
of its data stream. Therefore, tables of simulated waveforms will be needed for matched
filtering and parameter estimation. Given the types of different orbits that can exist and
the number of parameters, this is a formidable task. Astrophysical SMBHs are thought to
be Kerr black holes, probably spinning at near maximal rates. In general, bound orbits in
the Kerr spacetime will be eccentric and out of the plane of the black hole’s rotation. The

orbital plane, as well as the line of apses will precess. Additionally unknown will be the



distance to the source and its orientation relative to the detector. Finally, the small body
itself may be spinning, which can give rise to spin-orbit effects.

The previously mentioned method of general relativity simulations, numerical relativity
(NR), is not suited to the challenge of the EMRI problem. First there is a prohibitive
computational cost of such an approach. NR codes run on thousands of nodes, often for
months in order to compute 10’s of orbits. They work well for comparable mass systems
because of the similar length scales involved in the problem. The EMRI problem has two
distinct length scales: the background curvature associated with the SMBH, and the radius
of the small body. The ratio of these two scales will be on the order of the mass-ratio,
which can be as small as 10~7. Even if one could resolve the different length scales, NR
codes could not run with accuracy for the ~ 10 orbits (as encountered with EMRIs) before

plunge. It is for these reasons that researchers have turned to perturbative approaches.

1.2 Black hole perturbation theory

In black hole perturbation theory one takes a known solution to the Einstein equations
(typically that of a Schwarzschild or Kerr black hole) as a lowest order solution to the
gravitational field. Then, at lowest order in the equations of motion the small body, or
particle, moves on a geodesic of the background spacetime. This particle pulls up a first-
order perturbation to the gravitational field. Far away in the wave zone, it is evident
that this perturbation carries energy and angular momentum away from the system in the
form of gravitational waves. The energy loss comes at the expense of the particle’s orbit.
Locally, the inspiral that results can be viewed as the result of a “self-force.” In order to
compute the self-force at the location of the particle, one must remove the singular part of
the particle’s field that does not contribute to radiation reaction. This procedure is called
“regularization.” One then seeks to find the way the orbit changes by solving the first-order
corrected equations of motion. This updated trajectory sources changes in the second-order
field, which in turn sources second-order corrections to the particle’s trajectory, and so on.

In theory, following this process through an infinite number of orders produces the true



motion of the particle and gives the complete gravitational field. I go into the details of

first-order perturbation theory in detail in Chapter 2.

History

Black hole perturbation theory has a history going back to Regge and Wheeler [14] in
1957. They considered first-order perturbations to the Schwarzschild metric. In so doing,
they divided the metric perturbation into its even and odd-parity components and derived
their eponymous equation for the odd-parity perturbations. Their work was extended to
include a radial wave equation for the even-parity perturbations by Zerilli [15] in 1970.
Moncrief [16] re-derived both the Regge-Wheeler and Zerilli equations from a variational
principle without choosing a specific gauge. He also introduced gauge-invariant functions
of the metric perturbation amplitudes. Working with Cunningham and Price [17, 18], he
also introduced a more useful variable than Regge and Wheeler’s original odd-parity master
function. Theirs is essentially the time integral of the Regge-Wheeler function and allows
for easier reconstruction of the odd-parity metric perturbation.

Important work was also done in 1975 in the field of quasi-normal modes by Chan-
drasekhar and Detweiler [19]. These modes describe how black holes ring down when they
are perturbed without a source. The least rapidly decaying such modes are of particular
interest for the time just after a particle plunges into a black hole.

Work on perturbations of the Kerr background was pioneered by Teukolsky [20] when
he presented the equation which now shares his name. The Teukolsky equation describes
the dynamics of the Weyl scalars (e.g., 14, 1), which are tetrad projections of the Weyl
curvature tensor. There is a long history of results of computing solutions to the Teukolsky
equation for a small mass in order about a Kerr black hole. More difficult is determining
the metric from the computed curvature perturbations (see Chrzanowski [21], Cohen and
Kegeles [22, 23] (CCK), Stewart [24] and Wald [25]). The so-called CCK formalism is
powerful, yet only works for homogeneous solutions to the Teukolsky equation. Recent
work by Keidl, Wiseman, and Friedman [26] and others [27, 28] appears to have broken

through this barrier. They use the Detweiler-Whiting scheme (discussed below) to remove



the singular contribution to the Weyl scalars and then apply the CCK formalism to the

homogeneous solution which remains.

1.3 Flat space self-force

Before diving into self-force calculations in general relativity we start by discussing some
simpler systems, which nonetheless contain many features in common with gravitational

self-force. I draw from many sources here, most notably Detweiler [29].

1.3.1 Newtonian self-force

Consider a simple two-body system described by Newtonian gravity. Let the first body have
amass M and second body (or particle) of mass p, which we initially take to be vanishingly
small. At this lowest-order approximation the particle will travel in an ellipse with the
center of the large body at one focus, obeying Kepler’s laws. Let us consider the special
case of circular motion at radius r, where Kepler’s third law says the angular frequency of
the motion is

M
0% = . (1.3.1)

r3

If we allow the particle to have a mass, then Kepler’s third law is [30]

- M
R T Iy T (1.3.2)

When p — 0, the small body travels in a circle of radius r, but when we allow it to have
a mass, the two bodies orbit the common barycenter with a separation r(1 + u/M). Now,

expanding in the small mass-ratio parameter p/M, we find

M 1 ?
2 _
2= [1 —245+0 (M?)] . (1.3.3)

The first term is just the p — 0 limit. The second term is a first-order correction, a
Newtonian example of a self-force. Note, of course that this is a non-radiative correction.

It is a conservative shift in the fundamental frequency in the system.



1.3.2 Radiation reaction in electromagnetism

Consider an accelerating, non-relativistic charge in flat space. It will radiate energy via

electromagnetic waves with a power calculable from Larmour’s formula (in Gaussian units)

[31]
2¢2
P=""242 1.3.4
This can be used to derive the Abraham-Lorentz force
2¢% .

from which one can compute the acceleration due to radiated energy loss. With careful
allowance for spurious solutions, this formula is useful for computing a particle’s change in
motion due to its own radiation reaction. However, it falls short in providing an explanation
for why the particle radiates. Indeed, it is at odds with the Lorentz force law which states
that acceleration is caused by an external electromagnetic field.

Consider, for concreteness, a non-relativistic electron in circular motion about a much
more massive positive charge, which we take to be immovable. To an observer far away in
the wave zone, the electron will clearly pull up a 1/r radiation field which has a Poynting
flux that describes the energy lost by the system. On the other hand, an observer much
closer to the electron will measure the local electromagnetic field to be changing, but will
not be able to identify within it any hallmarks of radiation. Therefore, this second observer
will see the electron spiraling into the center, as predicted by Eq. (1.3.5), but will not be
able to describe this phenomenon as radiation reaction. Nor will he be able to explain the
inspiral as a result of some external field that sources the Lorentz force law.

Upon generalizing the Abraham-Lorentz force, Dirac [32] rectified this problem of ob-
server dependent descriptions of this system. Dirac generalized the system to include rel-
ativistic charges. He used a conservation of energy-momentum argument to show that the
local, symmetric Coulomb field F§” = 3 (Fl + F" ) exerts no force on the charge. Here

re adv

S stands for singular or symmetric. The singular field F é“’ satisfies the inhomogeneous



Maxwell equations: qu“”y = 4mj*. However, because of the relation between the retarded
and advanced Green functions Giet(2,2') = Gaqyv(@', ), the field FL” is invariant under
time-reversal. Therefore, it cannot be responsible for the radiation reaction. The remain-
der, which is responsible for the radiation reaction is

1
g oy 5 (FW _ M ) ’ (1.3.6)

ret ret adv

where R stands for regular or remainder. The regular field is nonsingular everywhere and
a is homogeneous solution to the Maxwell equations. Furthermore, it produces the correct
acceleration when used with the Lorentz force law. Since Dirac’s initial work, others have

confirmed his results through different means. For a good summary see [33].

1.4 Curved space self-force

In curved space the problem of self-force becomes much more complicated. This is primarily
due to the fact that the retarded Green function no longer only has support on the past
light cone. Since radiation (both electromagnetic and gravitational) can scatter off of a
curved background (and even off itself in the case of gravity), the Green function also has

support in the entire causally connected region inside the past light cone.

1.4.1 Electromagnetic self-force

Consider a particle with charge ¢ in free fall in curved space. Here we are only concerned
with the electromagnetic (and not gravitational) radiation that is released as the charge
accelerates. In their work on electromagnetic radiation reaction, Dewitt and Brehme [34]
separated the Green function into a direct part, which only has support on the light cone,
and a tail part, which has support inside the light cone. They follow Dirac’s conservation
approach and find that only the tail field contributes to radiation reaction. Their final result

is that the four-force on the charge due to radiation reaction is

i = qg"” (VVAE;””“ - VQAZ'“‘”) u®. (1.4.1)



This force is directly analogous to the Abraham-Lorentz force. It has great utility in that one
can compute the particle’s acceleration from it, but it is not consistent with the generalized
Lorentz force law F* = ma* = ¢F* u,. That is, the force in Eq. (1.4.1) does not result
from an external electromagnetic field. Indeed, an observer close to the particle would notice
its changing field, but being so close, would not be able to identify radiation. Therefore,
this near-observer would see no explanation for the particle’s motion as it deviates from
a background geodesic. Furthermore, the field Affﬂ is not a solution to the curved space
electromagnetic field equations.

Detweiler and Whiting [35] circumvented these conceptual obstacles by introducing a
different decomposition of the potential. They looked at the Green functions as follows. We
know the retarded Green function has support on and inside the past light cone while the
advanced Green function has support on and inside the future light cone. Define the singular
(S) Green function to have support in the spacelike area between the retarded and advanced
Green functions. Then, the regular (R) field will be the remainder Aﬁ = At — AS - Twill
not go into the details here, but the singular field is constructed specifically to remove the
Coulomb part of the particle’s field, which produces no force. The field Flﬁ,, constructed

from A°

5> 1s a solution to the inhomogeneous curved space Maxwell equations. The reg-

ular remainder Flﬁ, constructed from A/If, is a homogeneous solution to those equations.
Furthermore, F/ﬁ, appears to a local observer to be responsible for the entire self-force as

computed from the Lorentz force law.

1.4.2 Gravitational self-force

Here I consider the self-force on a small object moving in a curved spacetime. I sketch out
some of the most important results in this field. For a more thorough treatment see [36],

from which I draw heavily.

Historical perspective

A major milestone for the EMRI problem came in 1997 when Mino, Sasaki, and Tanaka [37]

and subsequently Quinn and Wald [38] derived the equations of motion of a particle moving



on a curved background. The so-called MiSaTaQuWa equations are first-order equations of
motion which (at least in theory) can be solved to give the deviation of a particle’s motion
off the background geodesic.

Mino et al. gave two derivations of the equations. The first was from a point particle
formulation. Point particles are useful, but their physical validity is questionable in certain
circumstances. For instance, a point particle pulls up a divergent 1/r local field which,
close enough to the particle, violates the fundamental assumption of perturbation theory
(that the particle’s field be small compared to the background). Their second derivation
considered the more physical scenario of a small black hole moving on a curved background.
They used matched asymptotic expansions to show that the equations of motion of the two
systems were the same. This is an important discovery, as it justifies all the work that has
been done where the small black hole is modeled as a point particle, at least up to a certain
order in perturbation theory. Although a black hole is not a point particle, we are able to
treat it as such when p/M < 1.

Detweiler and Whiting [35] provided a powerful reinterpretation of the self-force problem.
In the Detweiler-Whiting scheme, the particle’s retarded field is separated into regular R
and singular S parts. The former is a smooth field and a homogeneous solution to the
field equations. The latter is a solution to the inhomogeneous field equations, but gives no
contribution to the self-force. Therefore, the self-force can be found by substituting in the

regular field in for the retarded field in the equations of motion.

Mathematical formalism

Let a particle with mass g move in a spacetime dominated by a much larger body of mass M.
For the large body alone, take a known solution to the Einstein equations, with the metric
guv to be given. Black hole perturbation theory is an expansion around g,, with a small
expansion parameter taken to be p/M. In our work we expand around the Schwarzschild
metric in Schwarzschild coordinates, but in principle it could be any solution. At lowest
order the particle will move on a geodesic 7y of g,,.,, found by solving the geodesic equation

u®V4u? = 0 on the background. This geodesic of the background goes into computing the
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stress-energy tensor, which serves as a source to the first-order field equations. We define
the difference between the true metric g, and the background metric g,,, to be the metric
perturbation p,,,. To first-order, we find its solution by solving the field equations in Lorenz

gauge (see Chapter 2),
Opy + 2R%,% Pap = —161T,, (VB = 0). (1.4.2)

Here, O = V,V“ and we use an overbar to indicate a trace-reverse. T},, is the stress-energy

tensor of a point particle. The retarded solution is

Mﬁ@z%/Gﬁw@@wﬁm (1.4.3)
Yo

Here G} { ,5(%, 2) is the retarded Green function associated with Eq. (1.4.2) The parameter
z represents the four spacetime coordinates being integrated over along the past geodesic.

The solution to these equations contains all the information about the first-order gravi-
tational field. At this point, the first-order field leads to a natural correction to the zeroth-

order motion of the particle. By demanding the motion be geodesic in the perturbed

spacetime g,,, we obtain the correction to the equations of motion

at = —% (g" +u'u”) (2p)0.5 — Do) uu®. (1.4.4)

This much appears straightforward enough, but a problem arises due to the local field of

the particle. The gravitational field of a point particle diverges like 1/r along the particle’s

worldline, and therefore the force as calculated from the retarded metric perturbation is
divergent.

Yet, there clearly is a self-force. To the distant observer, the retarded metric perturba-

tion is plainly evident as radiation which falls off with the inverse of distance. This is seen

in the form of the gravitational waveform, which is a gauge-invariant observable. But, close

to the particle, while the local gravitational field is changing, the particle is inspiralling,

11



and yet there is no evidence for radiation. This paradox is once again resolved by the sep-

ret

.1, into singular (pf;l,) and regular (pffl,) parts. The former is a solution to the

aration of p
inhomogeneous equation 1.4.2, but provides no contribution to the self-force. The latter is
a smooth, homogeneous solution to Eq. (1.4.2), and fully responsible for the self-force. The

covariant derivative of pffl, is

Ppiia = —4p1 (%Ru)ﬂav + waua) uPul + piai, (1.4.5)
where
pffﬁiy = /: Va <Gret v [2(7), 2(7)] = %QuuGrefﬁwyl [Z(T),Z(T/)]> ' dr (1.4.6)
When we substitute in pff, for pjt we obtain
at = —% (g" + uHu") <2pt;21ﬁ - p‘&aﬁlll,) uuP, (1.4.7)

which are the MiSaTaQuWa equations. They are first-order equations of motion which
give the particle’s acceleration off its background geodesic due to its own acceleration. An
important feature of these equations is that they are not generally covariant, but rather
are derived specifically in Lorenz gauge. Indeed the self-force is not a gauge-invariant; its
change under a gauge transformation was computed by Barack and Ori [39]. One could even
choose a gauge where it vanishes at first-order [40]. This all serves to emphasize a crucial
point: in the end, we must calculate physically observable gauge-invariant quantities. Later

in this section we discuss this further.

The Detweiler-Whiting axiom and the conservative/dissipative split

The regular/singular split of the retarded field is very convenient, but not altogether obvious.
Detweiler and Whiting made their derivations from an axiomatic standpoint. Their axiom
is: The singular field does not contribute at all to the self-force. The self-force is entirely

due to the reqular field. Their axiom is based on the symmetric nature of the singular field.
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This is analogous to the time-reversal symmetry of Dirac’s Coulomb field 3 (Flo + FX ),
which is clearly not responsible for radiation. However, the gravitational case is more subtle
because the gravitational self-force is responsible for more than just radiation reaction. The
gravitational self-force separates into two distinct pieces: conservative and dissipative.

The conservative piece is a consequence of the time-symmetric portion of the gravita-
tional field. It creates discrete shifts in the physical observables of the system. For example
(see Sec. 1.3.1), by adding a finite mass to the particle, one will naturally measure the
system to be that much more massive. Furthermore, the two objects will orbit around their
common barycenter. Even beyond these Newtonian corrections, there will be changes to
the shape of the particle’s orbit, with contributions at every multipole order. The symmet-
ric, singular part is non-radiative and does not contribute to the dissipative piece of the
self-force. The conservative part of the self-force is

1

FﬁOHS — 2

t d S
(B + Fav) - FY. (1.4.8)

The dissipative piece of the self-force is the part responsible for radiation reaction, and
therefore only receives contributions from all modes £ > 2. As mentioned, the singular part
of the perturbed metric is strictly conservative. Therefore, we can write the dissipative part

of the self-force as
|
F3155 =5 (F;et — F;jd") ) (1.4.9)

Note that adding these two pieces together gives the regular field,
R _ diss __ poret S
Fr=F"+F"™=F%—F). (1.4.10)

Mode-sum-regularization

The separation of the gravitational field into regular and singular parts is quite useful in
numerical calculations. It provides two general paths forward toward computing the self-
force.

The first and more common approach is called mode-sum reqularization. In order to see

13



the general idea behind mode-sum regularization, consider a scalar field ¢ which is pulled
up by a particle with charge ¢ orbiting a Schwarzschild black hole. (There is an exact
parallel to the gravitational case, just with more tedious equations) The scalar field will

satisfy the equation

Oy (z) = q 6* (z,2,(7)) . (1.4.11)

Here O = V*V,, x, represents all four spacetime variables, and the particle travels on a
geodesic x;, parametrized by its proper time 7. The field can be decomposed in spherical
harmonics, as shown in Chapter 3, which yields a radial wave equation for each ¢, m mode.
By imposing outgoing wave boundary conditions at spatial infinity, downgoing conditions
at the event horizon, and the correct internal jump conditions at the particle’s location, one
finds the retarded field at each mode, 1 (z).

The idea, pioneered by Barack and Ori [41], is to then subtract off the singular part of
the self-force mode-by-mode. This subtraction is possible because, although the full field is
divergent, it is finite at each order. For a given ¢, taking the divergence of ¢} and summing

over m yields

Vo™ =Y Vajs. (1.4.12)
m
Given this, we compute the self-force ¢-by-¢ from

Ca
(+1/2

Fl= Vit — Ay (0 +1/2) — By — SR (1.4.13)

The full self-force F, is then a convergent sum over the Fé. The coefficients A, Ba, . ..
are called the regularization coefficients. They are independent of ¢ (though they depend
in general on the physical parameters of the problem) and are computed analytically.
Mode-sum regularization has been used successfully by numerous groups to compute
self-forces due to scalar, electromagnetic, and gravitational fields from particles moving on

Schwarzschild and Kerr backgrounds, in radial, circular, and eccentric orbits.
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Effective sources

As an alternative to mode-sum regularization, there is the effective-source approach. This
was developed independently by Vega and Detweiler [42] and Barack and Golbourn [43].

Here, one computes pﬁy analytically, and then, the field is regularized by subtracting pﬁy

ret

from py)

and forming pﬁy, which is formally smooth along the worldline (though in practice
will have a discontinuity at some order of differentiability). Having formed pffl,, one can then
solve the first-order field equations, typically in the time-domain. Having already removed
the singular part, the self-force is trivial to compute at any stage in the integration. This
is a nice conceptual idea, though it does have several practical challenges. Foremost among
these is the analytic computation of pﬁl,. The divergent, singular field can only be found
approximately, and even this is a tedious and lengthy task. An additional challenge arises
because far from the particle one wishes to have the retarded field, which contains relevant
information such as the gravitational waveform. Therefore, one typically uses a “window
function” which transitions from the locally used regular field to the retarded field used

further away. Choosing an appropriate window function is a subtle task. For more details

see [44].

The gauge problem

As T have emphasized, the self-force is not a gauge-invariant quantity. The MiSaTaQuWa
equations are formulated in Lorenz gauge, and the regularization procedure is also Lorenz
gauge dependent. However, it is not always convenient to solve the field equation in Lorenz
gauge. As discussed in Chapter 2, significant simplification can be achieved on Schwarzschild
by choosing Regge-Wheeler gauge. And, until about seven years ago [45] nearly all work on
Schwarzschild was done in Regge-Wheeler gauge. The challenges entailed in transforming
from Regge-Wheeler to Lorenz gauge are covered in depth in Chapter 5.

One method of avoiding the gauge problem is to compute gauge-invariant quantities.
Physically measurable values such as the waveform are gauge-invariant. The mass and angu-
lar momentum of an orbiting body are gauge-invariants. Of particular interest is a quantity

introduced by Detweiler [46], commonly referred to as the Detweiler redshift invariant. It
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was introduced for circular orbits on Schwarzschild and has since been generalized to ec-
centric orbits [47]. For a small body in orbit about a Schwarzschild black hole the local
observer will measure one value for the period of radial motion (local total proper time).
A distant observer will measure a different value for the period of the orbit. The ratio of
these two periods is Detweiler’s gauge-invariant quantity. Having such a quantity is useful
because one can compute the way it changes under a self-force correction in any gauge.
This is not only computationally convenient, but also good for checking results by taking

different routes to the same solution.

1.5 Original work: eccentric orbits on Schwarzschild

The previous sections of this introduction should give an overview of the current state of
research into the EMRI problem. Here I will give an overview of the contributions that I
have made to the field. My research has centered on eccentric orbits on a Schwarzschild
background. I will present some background on that specific problem and then summarize

the new pieces I have added. For more detail, see Chapters 4 and 5.

1.5.1 Background

Generic eccentric orbits on Schwarzschild were first studied numerically by Tanaka, Shibata,
Sasaki, Tagoshi, and Nakamura [48] and subsequently by Cutler, Kennefick, and Poisson
[49]. They used frequency domain (FD) methods to compute energy and angular momentum
fluxes from particles in a variety of orbits. FD codes have the benefit of converging very
quickly for mildly eccentric orbits, but as eccentricities grow they get less and less efficient.
Spurred largely by the work of Martel [50] and Haas [51], time domain (TD) codes have
gained great popularity in recent years. Additionally, until recently (see below) it was
impossible to accurately represent the gravitational field of a point particle in eccentric orbit
through FD calculations. This is due to the Gibbs phenomenon, which crops up because
of the singular nature of the source. A standard Fourier synthesis of the gravitational field

will lead to slow (algebraic as opposed to exponential) convergence, if it converges at all.
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Therefore, TD codes seemed necessary for local self-force calculations.

An additional change has taken place in recent years. Traditionally, most work on
Schwarzschild has been done in Regge-Wheeler (RW) gauge. RW gauge is attractive mainly
because it reduces the number of equations that must be solved for each mode from ten to
two. (This equation counting is a bit of a simplification, but the point is that RW gauge
makes it efficient to solve the Einstein equations.) The problem with RW gauge, as discussed
above, is that it is not ideal for self-force calculations. The MiSaTaQuWa equations, and
the mode-sum regularization scheme, are both formulated in Lorenz gauge.

There are two ways around the gauge problem. One is to solve the Einstein equations
directly in Lorenz gauge, as proposed by Barack and Lousto [45]. This adds its own compli-
cations, but does have the benefit that it gives the gravitational field in the desired gauge.
The other option is to solve the Einstein equations in RW gauge, as done usually, but then
transform the solution into Lorenz gauge, by solving the gauge transformation equations.

We have chosen the second option. We work in the FD and in RW gauge. Then, we

perform the gauge transformation to find the metric in Lorenz gauge.

1.5.2 Contributions of this thesis project

As mentioned, a major problem with FD work on eccentric orbits was the Gibbs phe-
nomenon. In 2008, Barack, Ori and Sago [1] showed how to circumvent the Gibbs phe-
nomenon with the method of extended homogeneous solutions (EHS). They demonstrated
the method using the monopole term in a scalar field model problem. The standard Fourier
synthesis provides algebraic convergence for this field, and its derivative does not converge
at all. The EHS method allows exponential convergence of both the field and its derivative,
including right up to the particle’s location.

In our 2010 paper [52], we showed how to extend the EHS method to all radiative
gravitational modes. Working in RW gauge, the source term has not only a delta function,
but also a derivative of a delta function term. We found that the EHS method was applicable
even with this more singular source term. From this we were able to reconstruct the metric

perturbation in RW gauge at all locations, including the very location of the particle.
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In finding the metric perturbation, we also examined the singular nature of RW gauge
in depth for the first time. We found the spherical harmonic amplitudes of the metric
perturbation to be discontinuous (C~!) in all cases and in some cases to contain time-
dependent delta function contributions. We were able to compute the time dependent
magnitudes of these jumps and the time dependent coefficients of the delta functions for
the first time.

Our work in the FD is noteworthy for two practical reasons. First, our results are far
more accurate (relative errors of ~10712) than those of standard TD codes (relative errors
of ~1077). Given the subtraction that takes place during the regularization procedure, one
wishes to have as much accuracy as possible when computing the retarded field. Secondly,
our code is very fast, especially for low eccentricities. Simulations which could take days
on TD codes run in hours or minutes. Further, even relatively high eccentricities (e ~ .9)
appear to give competitive runtimes to TD codes, especially when the benefit of the FD
accuracy is taken into account. Lastly, all this is based on single processor calculations.
Yet, our FD-based computations are easily ported to run on parallel computers.

Following this, we have begun work moving from RW to Lorenz gauge. Formally, the
gauge transformation is clear. The infinitesimal coordinate transformation is presented in
standard relativity texts (e.g. [53]), and is only a few lines. However, the specifics are
far more subtle. Moving from RW to Lorenz gauge involves solving a set of coupled wave
equations for each harmonic mode. This is further complicated by the singular nature of the
source (which in this case is the divergence of the trace-reversed metric perturbation). The
problem was examined in some detail by Sago, Nakano, and Sasaki [54]. We have decided
to use their decomposition as a starting point and perform the transformation numerically
for the first time. Though we have not completed the entire task, there are a few details
worth noting here.

First, a FD solution to the gauge transformation equations is not a straightforward
application of the EHS method. We have had to develop new techniques to treat the types
of differential equations we encounter in this gauge transformation. The first technique is

called the method of partial annihilators and the second is the method of extended particular
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solutions. Both are covered in depth in Chapter 5. We have completed the odd-parity part
of the gauge transformation, and have seen that as expected the C~! behavior in the
amplitudes is transformed to C° behavior at r = ry(t) in Lorenz gauge. Also, the RW
metric is non-asymptotically flat. In Lorenz gauge, we find that proper asymptotic flatness
is recovered.

The completion of the gauge transformation will leave us in an ideal situation for com-
puting the self-force. We will have a highly accurate computation of the retarded metric
perturbation in Lorenz gauge at all locations, including the location of the particle. This last
part is key, as it is there where we must take the divergence and perform the regularization.

There are several paths forward from this point, as discussed in Chapter 6.

1.6 Thesis organization

This thesis is organized into five additional chapters. In Chapter 2, I provide an overview
of first-order black hole perturbation theory. I start with linearizing the Einstein equations
around a Minkowski background and then generalize to a curved background. Finally, I
present the M? x S? decomposition of Martel and Poisson [55], lay out the techniques
of tensor spherical harmonics, and give the field equations for the metric perturbation
amplitudes in both Regge-Wheeler and Lorenz gauge.

Chapter 3 contains work on a scalar field model problem. The scalar field is an excellent
testing ground for work before jumping into gravity. Here I present the multipole decom-
position of a scalar field produced by a charged particle moving in flat space and show how
this is equivalent to an exact solution to that problem. Finally, I move to curved space and
derive the field equations that must be solved for a scalar charge in eccentric orbit about a
Schwarzschild black hole.

Chapter 4 is taken from our first paper, Ref. [52]. It shows how we solved for the
radiative parts of a first-order metric perturbation due to a small mass in eccentric orbit
about a Schwarzschild black hole. In so doing we computed the metric perturbation to high

accuracy all the way up to the location of the particle and presented the exact local singular
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nature of the metric in Regge-Wheeler gauge.

Chapter 5 is a thorough discussion of subsequent results that will appear in a second
paper. It goes into the details of performing the first-order gauge transformation to take the
metric perturbation from Regge-Wheeler to Lorenz gauge. We give results there showing the
completed odd-parity transformation, as well as a significant component of the even-parity
part of the transformation.

Chapter 6 is a conclusion. I summarize the work presented in this thesis and give

potential future directions for research on the EMRI problem.
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Chapter 2

Mathematical preliminaries: gravitational
waves and black hole perturbation theory

The nonlinearity of general relativity makes finding exact solutions to the Einstein equa-
tions formidable and often impossible. Therefore, perturbative approaches are important
for finding approximate solutions of all but the simplest physical systems. One approach
is post-Newtonian (PN) theory, wherein one expands the Einstein equations in powers of
v/c. PN has been very successful in checking the predictions of general relativity through
solar system [56] and binary pulsar experiments [57]. However, it fails in the strong field,
fast motion regime, which is where other perturbative methods must be employed. As an
alternative, one can consider a system wherein the mass-ratio u/M of a two-body system
is very small. An expansion of the Einstein equations in this parameter yields equations
which are valid even as the small body is deep in the gravitational field of a black hole, and
traveling at speeds v < c.

Along with Chapter 3, this chapter sets the stage for my original research in Chapters 4
and 5. I start by reviewing how perturbing a flat metric leads to gravitational wave equations
in the context of linearized gravity. Using this as a model, I expand the Einstein equations on
a curved background and find wave equations for the first-order metric perturbation. This
expansion sets the theoretical foundation for finding the gravitational radiation emitted by
a small body in motion around a black hole. At this point I specialize to a Schwarzschild
spacetime, and use a decomposition introduced by Martel and Poisson [55] to separate

the metric into two submanifolds. This allows for a convenient way to decompose the



first-order Einstein equations in spherical harmonics. Further, I examine how those field
equations change under a gauge transformation. I end by giving the field equations for the
metric perturbation amplitudes in both Regge-Wheeler and Lorenz gauge, both of which

will be useful in subsequent chapters.

2.1 Linearized gravity

The presentation here follows closely that of [58, 53]. In the linearized theory of gravity, we

define our metric as

Buv = Nuv +pum ’puu| < ‘77;11/‘7 (211)

and assume that space is asymptotically flat. All our work will be to first-order in p,, .
Using the Minkowski metric and its inverse to raise and lower indices, we define the inverse
of the metric perturbation as p*” = n“an”ﬁpag. A natural assumption is that the inverse
metric will vary from flat space by only a small amount, g’ = n#* + kM |k*| < [nH”].

Then, we demand that g,,g*” = d,”, and find
5,LLV = g,uagow = (nua + p,ua) (™ + k%) = 5uy + kuy + p,uy- (2.1.2)

(Note that the p ok is dropped for being second-order.) So, evidently k., = —p,., and
the inverse metric is gh¥ = ¥ — pH¥.

In a coordinate basis, the connection coefficients are, to first-order

1
Mgy = 577“5 (Psv,3 + Psp~y — Ppy.6) - (2.1.3)

We form the linearized Riemann tensor in the standard way. After dropping terms quadratic

in the connection coefficients, this is

1
Rauﬁu = 5 (pau,uﬂ + PuB,va — Puv,ap — paﬁ,m/) . (214)

Now we move on and consider gauge transformations of the form z# — a/# = zM +

EM|EH] ~ |pw| < 1. Note that =Z* is on the same order as the metric perturbation, so
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we will drop any second-order terms. In order to transform geometric objects we need the

Jacobian matrix,
ox'*  Oxt =H _
D~ B + B o, + =1, (2.1.5)

The inverse transformation is also needed. We use the same logic that got us the inverse

metric perturbation. Demanding

ozH oz’

B Y
e = O (2.1.6)

and assuming the inverse transformation has a similar form to Eq. (2.1.5) we get

Ozt Oz’
Y9zl v

o" = (0¥ + f1) (8% +E%). (2.1.7)

This defines f,,, which is on the same order as =# ,. Expanding out the product, we find

f*, = —E#,, and so the inverse gauge transformation is
Oxt
—gH =M
o 5t —EH . (2.1.8)

From this we can compute the transformation law for the metric (to first-order):

g;uz = n:u/ +p;u/ = (5ap, - Ea7u) <5ﬁy - Eﬁ,y) (naﬁ +pa5) (219)
= N + Ppv — Eu,u - Eu,u (2110)
Do = D — 25 (- (2.1.11)

Note that this works because the Minkowski metric is gauge-invariant (1., = 7]:“,). The

Riemann tensor changes under a gauge transformation as
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Once again, we discard terms of higher than linear-order, so

Rl = Ry = (07007 u0°527  + 670,07, 20 5

/
aufr

6700507, 20 + 07,0700 5Z o )Rpss (21113)

= Rapupy — (R%ﬁUEJ,V + Rawvaé,ﬁ + RapﬁVEpw + ngyE”’,a) (2.1.14)

Up to now, we have considered a general, first-order gauge transformation for any form of the
Riemann tensor. Now, looking at Eq. (2.1.4) we see that this specific form of the Riemann
tensor has no zeroth-order terms (because we are using flat space as our background).
Each term in it is linear in derivatives of the metric perturbation. Therefore, the terms
in Eq. (2.1.14) that involve products of R,,3, and ¥, are all second-order. Hence, to
first-order the Riemann tensor (and therefore, each of its contractions) is gauge-invariant:
R =R

/
apfr apBy:

The Ricci tensor (which, as a contraction of the Riemann tensor, is also a gauge-

invariant) is

1
Ruw = gPRaupy = 3 (Pav® + P o — Prva®™ = P ) - (2.1.15)
The Ricci scalar is
1
R = 5 (UW - pwj) (pow,ua + pM a,ya - puu,aa - paa,wj) = poau,a'u - p# p,,aa' (2116)

Defining p = p,“, we now form the Einstein tensor

1
G,uy = R,ul/ - §g,uuR (2117)

1 1
5 (poa/,,ua + pau,ua - p,uu,aa - p,w/) - 5 (77;11/ +p,u1/) (paﬂ,aﬂ - p,aa) . (2'1'18)

Then, the linearized field equations are (from G, = 871),,)

pal/,,ua +pa,u,l/a - p,uu,aa —Puv — Nuv (paﬁ,aﬁ - p,aa) = 1677T,uy- (2-1-19)
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This simplifies if we express the metric perturbation in its trace-reversed form

1

Duv = Puv — 577,wp = P=—D=D (2.1.20)

We use the overbar to represent a trace reversal in any tensor. Therefore G,, = R,, and

Puv = Puv- Plugging in p, = puu — %nm,ﬁ we have

_ | _ L _
pau,ua - §nal/p7ua +po¢u,l/a - inaup,ua - puu,aa

1 _ _ 1 _
+§77,u1/p7aa +p,w, — Nuv (paﬁ’aﬁ - inaﬁZ{ op + p’aa> = 167TT#1, (2121)

Povp” + Papr” — Puva” — nm,paﬂ,aﬂ =167T),. (2.1.22)

From here it is standard [53] to choose the Lorenz gauge condition p** , = 0. Three of the
four terms on the left side vanish and we get the linearized Einstein equations in Lorenz
gauge,

OB, = —167T},. (2.1.23)

It is instructive to show that one can always find a gauge that satisfies the Lorenz gauge
condition. First, the trace of the metric perturbation transform as p’”u =p', - B, -
Eu = p =p— 22" ,. From this we can compute the transformation of the trace-reverse

of the metric perturbation,

B 1 _ 1 — _ — —
Doy = Py — in,wp’ = Puv = 2E ) — 30 (P = 2E%0) = Py = 25 ) + 1w E%a (2.1.24)

Now, suppose that 0¥p,, # 0. Perform a gauge transformation as described by Eq. (2.1.24),

and take the divergence of both sides:
P =0 (P — 2Z(0) + M= a) - (2.1.25)

Demand that the left side equal zero, so that the Lorenz gauge is satisfied in our new
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coordinates

0=7u," —Eus” = Evp” + nwEa,*. (2.1.26)

The last two terms cancel because partial derivatives commute and we are left with an
inhomogeneous wave equation,

0S5, = b, (2.1.27)

We can reduce the full linear field equations (2.1.22) to the form of Eq. (2.1.23) by finding
any 4-vector Z# that satisfies Eq. (2.1.27). While this puts restrictions on the form of
=, there is still residual gauge freedom because Eq. (2.1.27) is inhomogeneous. Given a
solution to an inhomogeneous differential equation, we can add any homogeneous solution
to it and get another inhomogeneous solution. To see this, assume the Lorenz gauge is

already satisfied. Then consider another linear-order gauge transformation

Prw = By = By = 25y + M= o (2.1.28)

Again, take the divergence of both sides and demand the left side vanish:

/I vV =V = Vv = Vv -/ av
p,u,l/’ - 0 - puy’ - ‘_'u,l/ - ‘_'l/,[l, + 77}‘”/'_‘047 . (2129)

Again the last two terms cancel. Now, recall that we’ve already demanded that the Lorenz

gauge be satisfied, so the first term on the right side vanishes also. Therefore, we are

left with the following source-free wave equation that expresses the residual gauge freedom
= _—

0=, =0.

Relation of the Lorenz gauge to the Bianchi identities

There are 10 algebraically independent Einstein field equations. Conservation of energy-

momentum is expressed by the Bianchi identities,

VYGuy = 87V" T}, = 0. (2.1.30)
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This is a set of four equations that limits the degrees of freedom inherent in the theory
down from 10 to 6. Consider now the linearized field equations in the Lorenz gauge (2.1.23).
Taking the divergence of both sides gives (note that in linearized gravity we take derivatives

with respect to the flat spacetime: V, — 0,)
81":‘1%11 =0 (p;w,y) =0= —167TTM,/7V =0. (2131)

This equation is satisfied identically. The left side is an expression of the gauge condition,
while the right is conservation of energy-momentum. Therefore, using the freedom of a
linear-order gauge transformation to remove four of the degrees of freedom from the full
equations of linear gravity is equivalent to removing the same four degrees of freedom by

imposing the Bianchi identities.

2.2 Perturbed Einstein equations in curved space

This section also draws heavily upon [53]. As an extension of the previous section, we now
consider small changes from a curved background. Consider a known, background solution

to the Einstein equations g,,. A first-order perturbation to that metric, p,, yields

guv = Guv + Puv |p,ul/| < |g,uu‘~ (2.2.1)

We denote covariant derivatives with respect to the background metric g, with V,, or ,.
At first-order we raise and lower indices with the background metric. For the inverse metric
we find

5"y = (6" + k") (gaw + Paw) = 6", + KMy + ", + O(p?), (2.2.2)

and so as in flat space k*, = —p#,, implying gi*¥ = g"¥ — p"”.
Now, consider the transformation law for the connection coefficients,

ozt dx¥ ox'™ Ozt dz¥  O*x'®

o, = 28 %0 9% po .
PV 9xB 9z 0z M 948 Oz HxhdzY

(2.2.3)
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The first term is the standard tensor transformation law, but the second term breaks the
tensor relation. However, notice that this term only depends on the coordinates (it is not
traced over any geometrical objects). So, if we take the difference between two covariant
derivatives, these terms cancel out and we find

ozt Oz¥ 0x'™ oz* Oz¥ 0x'™

O T) = 2 OV O go (2.4
0x'B dx" Ox° (T w) 0x'B dx" Ox° 5n ( )

! /
Slaﬂv =gy =", =
where we use a sans-serif [“g, to represent the connection coefficient of the perturbed
spacetime Therefore, S“g, obeys the tensor transformation law and is indeed a tensor.

We now compute S%g, by using the standard connection coefficient expression to get

1
Sy = gga“ (9py,8 + 98ury — 967 + Puv.s + Py — PBy.u)

1
B anu (Gpv,8 + 9Buy — 96y) - (2:2.5)

Now, if we are in a locally Lorentz frame the background metric g, = 7, and its derivative
vanishes. Also, in that frame since connection terms (though not their derivatives) vanish
partial derivatives can be written as covariant derivatives ( , =|,). Therefore we have in the

locally Lorentz frame (we indicate an equality in a locally Lorentz frame with the symbol

=)
* 1
5%y = 8™ (pw\ﬁ + PBuly _pﬁvlu) : (2.2.6)

\)

At this point, recognize that this is a tensor equation (note the importance of proving the

tensor nature of S*g,), and thus it must be true in all frames, so

1
Sy = iga“ (Pry1s + Pty — Porlu) - (2.2.7)

Using the standard Riemann tensor formula, we write down the difference between the
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perturbed Riemann tensor (R*g.s) and the background Riemann tensor,

R%896 = R%ys = 031" g5 — 0T gy + 35T 11y = T, T s

- [871““55 - 8§Faﬂ7 + I‘“ggl““w — F’uﬂ,yl—‘awg} . (2.2.8)

Again consider a locally Lorentz frame where the background connection terms vanish.

There, grouping terms we have
R%596 — R gys = Oy (M5 = T%g5) — 05 (T gy = T%3y) + sl %y = T3y %5 (2:2.9)

Because the background connections vanish, in this Lorentz frame we have S%g, = “3,.

Also, as before ,, =|,, and so
R34y — R%gys = V4S%85 — V5S%gy + S¥555% 1y — S 5,5 5. (2.2.10)
Again, we notice that this is a tensor equation, and so it must be true in all frames,
R%gy6 — R%gy6 = S5y — S%gy15 + 5365 iy — S¥ 575 s (2.2.11)
Contracting over the first and third indices gives the difference in the Ricci tensors
Rgs — Rgs = S%gs1a — S als + S* 365 pa — S* gaS% s (2.2.12)

Direct calculations from Egs. (2.2.7) and (2.2.12) give

1 1
Rgs — Rps = Va §ga# (puﬁlﬁ +Ppuls — pﬁélu)] - Vs [anu (puozlﬁ + Ppula — pﬁa\u)

1
+ Zguuga/\ (pl/5|ﬁ + Pgujs — pﬁ5|y) (p)\am +pu)\\oz - pua|)\)

|
— €8 (Pcals + Pacia = Psalc) (Poslu + Puols = Pusla) - (2:2:13)

Keeping terms up to linear-order (noting that they will be multiplying other factors of pas)
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in p,p, we plug in for g®? and get (neglecting terms of order p3)

1

Ros = Rgs = Va [2 (9™ = p*") (Pusis + Ppuls — Pﬁam)]

1
- Vs [2 (9% = ™) (Puals + Ppula pﬁalu)]

1
+ 16" =) (gcM - p‘”) (Pusis + Pavis — Ppsly) (Paale + Purja — Pualn)

1
- 7 (gNC - pﬂg) <gaa _paa) (p<a|ﬁ +pﬁg|a - pﬁa|() (p0'6|u +pua\6 _pu(ﬂa) . (2214)

B

The first-order contribution is (defining O = |,* and p = p*,)

Ry = (—Dpwj — Pl P s + 2, W) = 81T}, (2.2.15)

| =

As in flat space, it is convenient to introduce the trace-reverse of the metric perturbation

Py = P — $9uwp. Then Eq. (2.2.15) are written
OB + 9P jop = 2aufs) + 2Rapoud™ = 2Ra(uy)* = —16n T, (2.2.16)

where the Riemann and Ricci tensor terms result from commuting covariant derivatives.
This seems to have only complicated matters, but if we impose the Lorenz gauge condition,
ﬁW‘” = 0, we see a vast simplification. The second and third terms vanish due to the gauge
condition. In addition, the last term also vanishes because R, = 0. Thus, the first-order

Einstein equations, in Lorenz gauge are

Dﬁ;w + 2Ra,uﬁl/paﬂ = _1677Tp,1/~ (2.2.17)
2.3 The M? x 8? decomposition in a spherically symmetric

spacetime

Now we specialize to a spherically symmetric background. In this section we introduce
formalism from [55] for doing a harmonic decomposition of scalar, vectors, and tensors in

such a spacetime. We specialize to Schwarzschild spacetime with Schwarzschild coordinates
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and decompose its metric g,, on two submanifolds, yielding g,; and gap = 72Qap. Here

a,b,...€{0,1} and A, B,... € {#,¢}. The 2® coordinates span the “(t,7) plane” while

are the standard two-sphere polar and azimuthal coordinates. In matrix form we have

goo go1 0 0 goo gor O 0
| 910 911 0 0 go g O 0
g“y = fry
0 0 T2999 T2QQ¢ 0 0 7”2 0
0 0 720 12 0 0 0 r?sin’f

(2.3.1)

Specifically, we are interested in an expression of the Schwarzschild metric that is covariant

under two-dimensional transformations: % — z'®. The line element can be written as

ds? = gap dz®dz’ + r’Qup dz?da®.
In Schwarzschild coordinates, the submanifold M? has a metric and inverse

— 0 -1 0
gabi f ) gabi /f ’ fEl_%
0 1/f 0 f "

The unit two-sphere has a metric and inverse

1 0 QAB = 1 0

QABi )
0 sin®6 0 1/sin?@

Note that in general (off the unit two-sphere) we use the metric g4p = r2Qap.

2.3.1 The Submanifold M?

The connection coefficients on M? are computed in the standard way

1
I = §9ad (Gedp + gdb,e — Gve,d) -
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In Schwarzschild coordinates, the submanifold M? has a metric and inverse given by
Eq. (2.3.3). From these expressions, we see that the only derivatives of the metric that

survive are

2M _ _ 1 2M 2M
8’/‘gtt = _arf = _TT7 87"97’7‘ = 87‘ (f 1) - _f 287‘f = _FTT - _m.
(2.3.6)
Then, the non-vanishing connection coefficients are
1 1r—2M —-2M 1M
., = 59” (grr,r + Grra — gTT,r) = ) r (r — 2M)2 = _?ﬁ7 (237)
1 1r—2M2M M
PTtt = igrr (gtr,t + Grep — gtt,r) = 5 , T‘T = fﬁ’ (238)
1 1 —r —2M 1M
rt tr 29 (9rtt + getr — Girt) or— oM 12 72 ( )

With the connection coefficients calculated, we can compute the form of the wave op-
erator on this submanifold. Use h(z%) to represent a scalar test function on which the box

operator will act. Then, we have

1 M
~O7h+ fO2h + 2= 0,h. (2.3.10)

Oh = ¢V, Vih = ¢*V,0ph = — 7 =

Introducing the tortoise coordinate, defined through the differential equation dr/dr, = f,
we change this expression to

drs
dr

M dr, 7&

1 2 2 2
Oh=—= ) ) 2— —20, - . 2.3.11
h fath+f8 [ 6*h}+ 3 dra*h f( O+ 02 ) h (2.3.11)

Additionally, we will need the Levi-Civta tensor on M?, which is

Eab = g = (2.3.12)
-1 0 1 0

32



in Schwarzschild coordinates. Also, we define

9 0 |
Ta = 8{1; = and = —Eabrb = , (2313)

which serve as a basis for vectors on M?2.

2.3.2 The Submanifold S?

We define a compatible covariant derivative from Dagpc = r?DaQdpc = 0. Note the 72
which connects the definitions of Q245 and gap pulls through the covariant derivative, as r
is constant on any given two-sphere. In order to use the covariant derivative we will need

connection coefficients, found in the standard way

1
IMpe = ﬁQADﬂ (Qep,B+QpBc —QBO,D) - (2.3.14)

Clearly, the only partial derivative of the metric that will not vanish is {244 ¢ = 2sin 6 cos 6.

With this in mind, we find that the only non-vanishing coefficients are

1%, = %Q"G (0.6 + Qg6 — Qppp) = — sinf cos (2.3.15)
[0 = T = 0% Qo+ Qngp — Qpgo) = o0 (2.3.16)
The Riemann tensor is computed in the normal way, through
RApcp = 0cTpp — 9pT 50 + TP ppT pe — TE gl . (2.3.17)
We contract over the first and third indices to find the Ricci tensor
Rpp = RYgap = 04T 5p — 0pTpa + TEppT A pa — TP paT 4 pp. (2.3.18)
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Finally, the Ricci scalar is found by contracting over the two remaining indices,
1
R=g¢®PRpp = T—QQBD (0aTpp — OpT A pa +TE ppT A pa —TFpaT 5p) . (23.19)
Now, we plug in the non-vanishing connection coefficients to find

2
R=. (2.3.20)

Recall, finally that the Riemann tensor on a maximally symmetric two-dimensional space

is written as [59]

R
Rapcp = Bl (94c9BD — 9ADYBC) , (2.3.21)

which means for our case that
1 2
Rapcp = 3 (9ac9BD — 9apgBC) =1 (Qaclep — QapBC) , (2.3.22)
and the Ricci tensor is
QAC 2(QacBp — QapQpe) = Qpp. (2.3.23)

1
Rpp = ﬁQACRABCD =

Now, consider spherical harmonics, starting with the scalar case. They are eigenfunc-

tions, satisfying the equation

ﬁag (sin - 3y) + (€4 1)| Yo (6, 6) = 0. (2.3.24)
Acting on a test scalar function f we have
QP DADpf = (0405 — T 450c) f (2.3.25)
= 02f —T%0c f + 12 7 ¢f 9F o0 f (2.3.26)
= (Sirlleag (sinf - Og) + Maﬁ) f. (2.3.27)
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So, we can write Eq. (2.3.24) in the compact form
[QABDADp + £ (0 +1)] Yo (0, 6) = 0. (2.3.28)

The solution to this equation with standard normalization [31] is

Yom = \/ I (m) P;"(cosf)e (2.3.29)

where P;" are the associated Legendre functions. These are an orthonormal set of functions,

/ Vi (0, 6) Virmt (0, )AQ = Sy (2.3.30)

Here d2 = sin @ df d¢ and the overbar represents complex conjugation.

We can use the covariant derivative D 4 to take derivatives of this scalar function to define
vector and tensor spherical harmonics. There are even- and odd-parity vector spherical
harmonics. We define the even ones as the covariant derivative of the scalar harmonics:

B9 Yim
Yim(0,6) = DayY™(9,0)= | " . (2.3.31)

aqﬁ }/Zm

In order to create the odd-parity vectorial harmonics we need to define the Levi-Civita

tensor on the two-sphere:

0 sin 6
eAB = : (2.3.32)
—sinf 0
Using this, the odd-parity harmonics are
X" (0,9) = —ea”DpY™™ (0,¢) = —QPeac Y™ (0,6). (2.3.33)

35



Switching to matrices we can calculate the components:

o ) 0 sin 6 1 0 oY,
XA (0,0) = — (2.3.34)
—sinf 0 0 1/sin’6 0Ym
. —0p Y0/ sin (2.3.35)
sin 6 9y Yy,

The tensor spherical harmonics also are either even- and odd-parity. There are two

even-parity ones,

Y, 0

YonQap = | (2.3.36)
0 sin?6Yy,,
and the more complicated
1

Y4B = |DaDp + 55 (L +1)QaB| Yo (2.3.37)

1
= 0408Ytm — T A0 Yim + 55 (L +1)QaYem- (2.3.38)

We’ve already calculated the connection coefficients, so evaluating this is straightforward,

leaving us with the components

o (98 + “52) Vi (890 — cot 8 D) Yim
090y — cot 0 0y) Yo (0% + sinf cos b 89+Msin20 Yo
¢ ¢ ¢ 2
The odd-parity tensor harmonics are
1
X = -3 [€A°Dp +e5°Da] DeYorm (2.3.40)
LY 6 6 o
= -3 [sA DpDg+24®DpDy +e®DaDy + e5°DaDy)| Yo (2.3.41)
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In matrix form we have

02 .
P <_ﬁ896¢> + sciffze@%) Yim -3 (Shfg + cos Dy —sinb 83) Yim
Xup = 52
_% <shf’6 + cosf Oy — sinf 83) Yo (sin® 9,09 — cos O Oy) Yom

(2.3.42)
Now we look at some identities involving these spherical harmonics. We have already

seen in Eq. (2.3.30) that the scalar spherical harmonics are orthonormal. Now consider

— gt 1 _
/ YAYE™dO = = / OB D AYyn DY dQ (2.3.43)
1

sin?

1 _ _
-5 / <89ng8mfm/+ eammad,y@m,) sinf do do.  (2.3.44)

We integrate by parts (note that surface terms vanish by periodicity as we integrate of the

full 47 steradians) and find

s 1 1 ;

1 _
— ma;nmye,m, sinf df dp  (2.3.45)
1
The odd-parity equivalent is
/ X X4 dO = / YL eABYE™ dQ. (2.3.47)

This 2D contraction of the Levi-Civita tensor gives the negative of the Kronecker delta, and

therefore

— ol — ol ! — 0!/ 1
/ X2 XM dO = / BoYCYE™ A0 = / YAYE™dQ = S0+ D)0 O (2:3.48)
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Now, when we contract the even and odd-parity vector harmonics we get
/ YA XG0 = — / DAY ™eAB DY ™ 40, (2.3.49)
By parts integration we have
/ YA XG0 = / eABD DY MY ™ a0 =0 = / YA X4 dQ, (2.3.50)

because of the derivatives commute while the Levi-Civita tensor is antisymmetric. Consider
nowQA48 D ADBY(me = QABD4DpDcY ™. The two closest covariant derivatives commute,

but we have to use the rule
[DA,DB] VC = RCDABVD = [DA,DB] VC = RCDABVD (2.3.51)
to commute the outer two, and therefore

QB DADRY ™ = Q4B DD DY ™ (2.3.52)

= QY (DeDaDp + Rp” 4o Dp) Y. (2.3.53)
Using the differential equation for the scalar harmonics, we get

1
QB DADRYE™ = —0(0 + 1) YE™ + QABﬁQDE (QpAQEc — UpcQpA) Y™ (2.3.54)

- [1 i 1)} vim, (2.3.55)
Additionally, we have
QABD LD XEr = —ecPOABDLDRYE™ = [1 — 0+ 1)} x4, (2.3.56)
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Taking the divergence Yzﬁw and X qu gives

0l +1)
,r.2

1
DY = 5P DADpYim = ~ Yom (2.3.57)

1 1
DXy, = _ﬁQABDAgBCDCnm = _rngCDADCnm =0. (2.3.58)

Now we consider contractions of the tensor harmonics. First of all, because they are
each trace free, we have

QAByfm — QABxm — 0. (2.3.59)

This is clear from inspecting the matrix forms of these harmonics above. Note that this

implies that both Yﬁ%‘ and X f{% are orthogonal to Q4pYs,,. Now, we consider
[ varvigtae

(41 0 +1 o
= /gACgBD [DCDD—i— (;)QDC] Yim [DADB+ (;)QAB] YimdQ  (2.3.60)

. 714 I:—QACQBDDADCDDYémDBYé/m/ - %ﬁ’ (0 +1)0(C+1) Yeme””'] d? (2.3.61)

So, in order to evaluate this we need the harmonic operator (QAB DsDp) acting on Y¢,

which we calculated above. Using it and the completeness of the scalar harmonics gives

/ YABY {40

1 BD 0'm/ L 2

- r4/ —QPP[1 = 6(£+1)| Dp Yy DY ™ | d2 - S (4 1) Saprbms (2:3.62)
1

= ﬁ(z - 1)6 (Z + 1) (ﬁ + 2)635’5mm’- (2363)

A similar, though slightly longer calculation for the odd-parity case gives

1

o =1L+ 1)L+ 2)0p0 Oy - (2.3.64)

[ xapxiyan -
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For the divergence of the tensor harmonics we first consider the even-parity case,

1 1
DByim — T—QQBCDC DADpY"™ + FL+1) QABY“”] , (2.3.65)
1 1
— 0% (DADCDBY”" + RBDCADDY””) 55l (E+1) DAy, (23.66)
1 1
=2 [1 =5+ 1)} Yim. (2.3.67)

For the odd-parity harmonics we have

11
DPXR = §TjQBDDD [DBX,%m + DAXf;m} ; (2.3.68)

1

1
=92 [1 — A+ 1)} X4+ ﬁQBD (DADDXgm + RBCDAXgn) . (2.3.69)

The divergence of X ém vanishes, so we are left with

1 1
DEX = 53 [1 — (0 + 1)} X4m + 27293[’7«2 (QBpQca — QpaQcp) X§,,,  (2.3.70)
1 1 Im
5 |:1 _ 55 0 1)] x4m, (2.3.71)

Recurrence relation

Here we present a recurrence relation for the harmonics, which is useful when doing numer-

ical calculations. First, we separate them into functions of 8 and ¢ alone

Yom (0, 6) = AT (z)e™?, x = cosf (2.3.72)
with
2+ 1(£—m)!
AP (z) = \/ 41 M P (x). (2.3.73)

Next, consider the recursion relation for the associated Legendre functions

(€ —m) P(z) = (20 — D)z Py () — (0 +m — 1) P (z). (2.3.74)

40



We’ll use this to develop a recursion relation for our functions A7, and then extend that
to the spherical harmonics. Now, using Eq. (2.3.73) to express the associated Legendre

functions in terms of A}", we have

PP (e) = \/ T (AT (@) (2375
Pty () = \/2£4i . EIZ J_r Z — BiA’,Z"l(x) (2.3.76)
Py(a) = \/ g AT (). (23.77)

Plugging into Eq. (2.3.74) we get

apta) =g [CLDCED gy ) [AEA ) ), 2

Then, multiplying through by e and recalling that z = cosf we have our recursion

relation

B (20 +1)(2¢ — 1) 2 +1(0+m—1)( —m—1)
ng—cosﬁ\/(g_i_m)(g_m)Yg_Lm—\/%_3 Ty —m)  am (2379)

This is a bit strange as recursion relations go. One might expect for a given ¢, to start with
Yy and then calculate Yy, then Yo, up to Yy, but this is not what we have found. Rather,
for a given value of m, we can calculate the next value of .

In order to use the recursion relation, we need a way to get started. This is provided

by the identity

P(z) = (—1)™(2m — ) (1 — 22)™"?. (2.3.80)
Absorbing the coefficient from Eq. (2.3.72) this becomes
mroN m [2m+1(m—m)! " N
A" (z) = (—1) \/ I (mm) 2m - (1 —a%)"". (2.3.81)

This is a perfectly valid expression, but if we manipulate it, we can put it in a form that will
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be much easier to use numerically. Expanding out the factorials and multiplying through

by exp(ima) .

Y, = f \/ 2m+1 ZZ:;) <i) <;’) (sin )™ ¢im? (2.3.82)

This is a useful form of this equation because each of the terms under the radical is on the

order of one.
To calculate the derivatives of the spherical harmonics we need another recursion rela-

tion. The ¢ derivatives are easy. From Eq. (2.3.72) we see

= imYpm. (2.3.83)

For the 0 derivatives, we return to Eq. (2.3.79), giving

Vi 20+ 1)(20— 1) B
06 \/(£+ m)(€ —m) (cos® O (Yy—1,m) —sind Yg_lm)

- \/2£+ Llkm=Dl=m=1)," "y (2381

20-3  ({+m)(l—m)

If we want to use these recursion relations, we need somewhere to start. Returning to look

at Eq. (2.3.82), we see that

6mm7 2m+1 2m—1 5 3 . m imé
50 \ﬁ\/ 2m—2>. (4) <2> (m-sin™ 0 - cos @) e™?. (2.3.85)

The benefit of this expression is that, although the total numerator and the total denomina-

tor under the radical can be very large numbers, if we group the terms wisely, the quotient
can be computed with no numerical trouble.
Now, let’s consider second derivatives. The ¢ derivatives are simpler again. First, we

have
Yo
0¢? -

—m? Y. (2.3.86)
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Also, we have, for both of the mixed partials

R N () 1
9600 90096 | o0 (2:3.87)

The plot gets more interesting with the second € derivative of Yp,,,. Returning to Eq. (2.3.84),

we directly differentiate to get

2y, 20+ 1)(20 -1
0 Yim = \/( (+1Ee-1) (cosf 95 (Yo—1,m) — 2sin0 0pYyp_1 m — cos Yo—1,m)

62 (€ +m)(l —m)

- \/2£+ Letm=Dl=m =Dy (23.88)

23  ((+m)({l—m)

This section has provided a practical way of computing spherical harmonics for arbi-
trarily high ¢, m values. The recurrence relation is useful because the standard textbook
expressions (e.g. [31]) are not practical numerically, as the factorial terms grow inconve-

niently large.

2.4 First-order field equations

2.4.1 Harmonic decomposition

Martel and Poisson [55] give covariant and gauge-invariant field equations. Following their

lead, we decompose the metric perturbation p,, as

pay (21) = Y gy Y,

lm
pap (2") = ; ey X g, (2.4.1)
,m
pap (@) = Y [ (K"™QapY™ + GYAR ) + hym X4
£m

We refer to the coefficients of the spherical harmonics (hg’g", gbm ptm Ktm G hgm) as the

metric perturbation amplitudes (or just amplitudes for short). They are functions of only

t and r. Inserting Eq. (2.4.1) into the first-order Einstein equations (2.2.17), yields field
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equations for the amplitudes. Martel and Poisson give the details of how the equations are

derived. We follow their lead and start by writing the field equations for gauge-invariant

quantities in Schwarzschild coordinates. We show how this is equivalent to writing the field

equations in Regge-Wheeler gauge. We then write them in a gauge-undefined way and

eventually Lorenz gauge. Through the rest of this section we suppress £ and m indices for

brevity.

Even-parity sector

In the even-parity sector there are four gauge-invariant fields, formed from linear combina-

tions of the metric perturbation amplitudes and their first derivatives [55]

~ 2M
htt = htt — 2(9tjt + Tfjr + T28252G — Mf@TG
r—3M

7 2M
hir = hyp — gt — 8tjr + th + 7“28t8rG + oG
7 2M 2r —3M
hpr = hpp — 20rJr — ——5Jr + TZGEG + riarG
fr? f

K=rk-25 frra6+ 04100
T

Written in terms of those gauge-invariant fields, the seven field equations are

kY Tag (OEDIENG g
r2f 3 r2f
~ 1-
o, K + f at %athrr - A + S hy = Q"
_ - M _
_RK + W&,K + fﬁthtr - ia hus
2
R P P Vo
r3 r2 r2
. - - 2M
8thrr - 8’/‘htr + ?atK - 7 Qt
- . M- M
Ok + Oy — fOK — rﬂf o wh” _ o,
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(2.4.2)

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)

(2.4.7)



- - - 1 . - -
—02hyy + 2010, hiy — 02 hyy — ?831( + fOPK

+W@m - 3fM O, et — waﬁw + M@f( (2.4.8)
()\+1)r —2A+2)Mr+2M?. (A4 1)r? —2)\Mr—2M2 )
7"4f2 htt - 7"4 7‘7‘ - Q
1- -
e = fher = Q% (24.9)
which have source terms
1 2
QU(t,r) = 8n / TY*dQ,  Q%t,r) = O / TBY} dQ,
(l+1) (2.4.10)
-2)! o
Q" (t,r) = 8mr? /TABQABY* s, Q*(t,r) = 327t Eﬁ " 2§' /TABYXB ds.

Odd-parity sector

In the odd-parity sector there are two gauge-invariant fields, formed from linear combina-

tions of the metric perturbation amplitudes and their first derivatives [55]

L Ohy B_h—l%ﬁ-@ (2.4.11)

he = e = 550 5 or

Written in terms of those gauge-invariant fields, the three field equations are

200+ 1)r —4M -

- - 2 .
2
~ 000y + Ohy — ~ by — 57 hy = (2.4.12)
2\
8 h, — 0u0phy + 8tht + fhr =P", (2.4.13)
2M~
—?atht + f@rh,« + TThT == P7 (2414)

which have source terms

16772 B 4 (£=2)! AB
Pt = T X5 dQ) P(t =1 TAE X% 5 dS). 2.4.1
( 7T) g(f—l— 1)/ B ’ ( 7T) 6mr (E 2)|/ AB ( 5)
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2.4.2 Regge-Wheeler gauge

Regge-Wheeler is an algebraic gauge in which four of the ten components of the metric
perturbation are set to zero. This leads to a dramatic simplification of the field equations,

but introduces some gauge artifacts which must be dealt with carefully (see Chapter 5).

Even-parity sector

We use our gauge freedom to set G = j' = j” = 0. Examining the gauge invariant quantities,

we find

Bt = hae,  hay = har, hop = hyr, K =K. (2.4.16)

Therefore, the fields in RW gauge are the gauge-invariant fields themselves, and the field
equations in RW gauge are simply those given above with all the tildes removed. Inciden-
tally, note that if one has the metric perturbation in another gauge, it is trivial to obtain
it in RW: simply form the gauge-invariant fields; those are the fields in RW gauge. This is
a powerful and straightforward way of checking if two first-order answers to the Einstein
equations, computed in different gauges, are indeed the same solutions.

At this point, it is common to reduce the even-parity field equations to one master
equation. After solving the master equation, the metric perturbation can be reconstructed.

Details of this can be found in Chapter 4.

Odd-parity sector

We use our gauge freedom to set he. Examining the gauge invariant quantities, we find

hy = hy, h, = h,. (2.4.17)

Therefore, the fields in RW gauge are the gauge-invariant fields themselves, and the field
equations in RW gauge are simply those given above with all the tildes removed. Again, if
one has the metric perturbation in another gauge, it is trivial to obtain it in RW: simply

form the gauge-invariant fields; those are the fields in RW gauge.
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At this point, it is also common to reduce the odd-parity field equations to one master
equation. After solving the master equation, the metric perturbation can be reconstructed.

Details of this can also be found in Chapter 4.

2.4.3 Lorenz gauge

We now form the Lorenz gauge field equations in a number of steps. We start by deriving
the four Lorenz gauge conditions for each mode. Three of these are in the even-parity
sector and one is odd. Then, we insert the gauge-invariant equations above into the gauge-
invariant fields. This gives a set of “gauge-undefined” equations. Finally, we impose the
Lorenz gauge condition and obtain the field equations in Lorenz gauge.

The Lorenz gauge condition is p”|,, = 0, which we expand as
Py =", 4 T aap™ + T p" = 0. (2.4.18)
Now, after the divergence is taken we are left with a vector. The part on the M? sector is

Z5a1/‘l/ _ pab,b + paB,B + 4Fabc]§bc + 4FaBCpBC + 4Pab0ﬁbo + 4FchﬁBc

+ 4Fbcbﬁac + 4FbBbﬁaB + 4FAbAﬁab + 4I\ABA13(IB —0. (2419)

When we write the connection coeflficients with a pre-superscript 4, it indicates that this is
a connection coefficient of the full 4D spacetime. These are related to the connection terms

on M? and 82 by [recall the definition of 7% in Eq. (2.3.13)]

4 ApA A 4 4
e =T'%., I'*Bc =T'"ge, I'g.="Tp =0,

4 ApA ApA 1 oA ApA
FaBC:_rmdaQBCa I'g.="T cB:;Tcd B ' = 0.

Then, Eq. (2.4.19) becomes

1
ﬁwhj — ﬁab,b +paB’B + Fabcpbc _ TTQQBCﬁBC + Fbcbpac + ;Tb(SAAﬁab + FABAﬁaBa (2421)

2
— Vbﬁab + DBﬁaB o TTGQBCﬁBC + 7prab —0. (2422)
T
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Lowering indices we have

3 ) 3 1 ) 9,
9acP™ |y = 9acVeD™ + acg” D" c = Gac 19" 9" gpchpp + gac D%, (24.23)

1 1 2
= Vg + 52 Dipec — re5 2" ppp + Z1'pa, = 0. (2.4.24)
The part of the vector on the two-sphere is

ﬁAV _ ﬁAbe +ﬁAB,B + 4I\Abcpbc + 4FABCﬁBC + 4FAbCpr + 4FABC]5BC

v

4 4FbcbﬁAC + 4FbBprB + 4FBbeAb + 4FCBCﬁAB —-0. (2425)

Substituting for the full, 4D connections we have

1
_A _Ab _AB A__ B _bA
P ="+ 077 g+ Bep C+;7“bp

1 2
+ ;rcﬁAC + Il aptc + ;rbﬁAb +T%cp%B,  (2.4.26)

4
= Vop"’ + Dpp? + —rpp™? = 0. (2.4.27)

Again, we lower indices, giving

4
9400™), = *QacVep™ + DPpep + —rpoy, (2.4.28)
4
=V (’I’QQAcﬁAb> -V (7“2) QAcﬁAb + DBﬁCB + ;?”bﬁCb, (2.4.29)
2
= V’Dey + DPpop + ;Tbﬁcb =0. (2.4.30)

The metric perturbation expands as given in Eq. (2.4.1), so its trace-reverse is
= _ 1 ab AB{(,2 QO G
Duv = Puv I |9 haY + g 7 (KQapY + GYap) + haXap)| . (2.4.31)

2

Both Y2 p and X 4p are trace-free, and therefore

1
P = Ppus = 59 (9" hap + 2K ) Y. (2.4.32)
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The trace-reverse for the different sectors is

Pab = <hab - %gab (hc+2K )) Y, (2.4.33)
PaB = Ja¥B + haXB, (2.4.34)
Pap =17 (KQABY + GYAB) + heXap — %QAB (h¢.+2K)Y, (2.4.35)

=7’ <_;thQABY + GYAB) + ho X ap. (2.4.36)

Inserting these in Eq. (2.4.24) yields
ab 1 d 1 BC -
9"V [he = 590 (W4 +2K) | Y + 0P Dp (je¥e + heXe)
1
— chQDE |:7‘2 (—thdQDEY + GYDE> + hQXDE:|

2 1
+ ;Tb |:hcb - §gcb <hdd + 2K>:| Y =0. (2437)

The tensor harmonics Yap and X 4p are trace-free, so (using the completeness of the scalar

harmonics and simplifying)
ab 1 d .jc 2 b 2
g Va hcb — §gcb (h d+ 2K> — ﬁg(f + 1) + ;7" hcb — ;T‘CK =0. (2438)
The part of the vector on the two-sphere is
Av 4 by A | by A
P = Vb+;7"b (] Yo+ X )
1
+ Dp [ﬂ <—2hCCQABY + GYAB> + thAB] =0. (2.4.39)
Using identities derived in Sec. 2.3.2 to rewrite the divergences of the tensor harmonics,

4 1 A
P = (Vb + m) (j”YA - hbXA) - <th - AG) YA~ ShoXA =0, (2.4.40)
T 2 r

Now, we use the orthogonality of the vector harmonics. First, multiplying by the even-

parity vector harmonic kills off the odd-parity terms and leaves behind an equation in only
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t and r,

1 4 1 1 1 1 1
b - b - 2|+ 3¢ - = i
Vy (] r2> + T s +7r [ 2r2h e+ 2 (1 2£(€—|— 1)) G] 3 0. (2.4.41)
Now, simplifying and defining A = (¢ + 2)(¢ — 1)/2,
2\, 1.
Vot oy ) ¥ = She = MG =0 (2.4.42)

For the odd parity we return to Eq. (2.4.40). The orthogonality condition for the X 4 will
create a r~2 term that modifies the 473, /r. In the end, the scalar equation we are left with

is
2 A
<Vb + 7"b> hb — thg =0. (2.4.43)
r r

Even-parity field equations

First, for the gauge conditions on the M? sector

1
g% (3ahcb —T%pheq — Tdachdb) — iachdd

'C 2 (&
— 0K — 00+ 1) + Zrhy — 2K = 0. (2.4.44)
T T T

Plugging in for the connection terms, we get two equations,

1 2 L0+1) .
—ﬁﬁthtt — g@thw -+ f@rhtr — @K + 7’72 (7“ — M) hrt — ( 7“2 )]t = 0, (2445)
1 f 1 (41 . 2 2
—fath,»t + E(?rhmn + ﬁarhtt - 8TK — 7"2 Ir + ﬁ (T - M) hrr - ;K =0. (2446)

The even-parity gauge condition on the two-sphere reduces to

1 2 1
_?atjt + fafrj'r + 7172 (7“ - M) jr + 7htt fhrr - )\G - 0 (2447)

2f 2
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Plugging in the gauge-invariant fields, we obtain a set of gauge-undefined Einstein equa-

tions,
3r—5M f A+1), . A+ 1) (M —7) .
—PK - ————08,K + ~0,hyy — 2 Orjir + 2 ;
S " iz E (2.4.48)
AA+1) (A+2)r+2M Ao o
T2f G+ 7’3 h’I‘T—i_WK_Q?
/\ A+1
00 K + f 3t fathrr + 8t Ir :_ OrJit
2.4.49
_/\+1h _2M(A + ) _ o, ( )
r2 tr T4f
- M 2
opk + U ey 2oy, Loy
A+1, . A+ 1Dr+2M 2
_9 3 gt + ( 3;) het — %hw (2.4.50)
Af fAN+1) f(r— )O+1) "
e RN ~ -Q
1 A . 0. 2. . 2M 4AM '
athrr - arhtr + }atK + ?atG - atar]T + 87".725 - ;8t]r - Whtr + W]t = Q ) (2451)
9. .2,
—Othyy + Orhyy — fORLK + Of §r — 010y jr + *at]t
2.4.52)
r—M (
“AfO.G - — f htt+(r2)fhw— fgyr Q"
1 —3M 2r — M
— OFhyy + 2010, by — 2Ty — ?aEK + fOIK — T’TT(M# + (Trzf)athw
- M 2 A+1 A+1 A+ 1)M
L S TR L IPPCLL PYRIE LS
A+ D2 — 200+ 2)Mr + 2M? )\+1r2—2>\Mr—2M2
QU - 201 A b = Q) (24.59)

htt

hyr = QF. (2.4.
y —f Q. (2.4.54)

2
D 92G — 202G — 2(r — M)9,G —

2. . 4AM .
7 70t + 2f0rjr + — 5 +

f

We can then impose the Lorenz gauge condition by incorporating Eqs. (2.4.45 - 2.4.47)

equations into these field equations (2.4.48 - 2.4.54). There are many ways to do this.
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Indeed, one could simply solve these seven field equations in parallel with the gauge equa-
tions. However, we find it more efficient to plug those conditions in and manipulate the
field equations to put them into a simpler form. In the end, we leave the equations on the
M? sector untouched, and rewrite the other four equations. Those four Lorenz gauge field

equations are

1 2M
Nz at ji+ 07 + 2f2 52 Othu + 8t rr — Orhyy + ?&:K + fat]r
oM 4M .
— gl + =@ (2.4.55)
2 2 1 2
OFir — F0 i T—fon Mgy 20— Db+ 50eh+ Loy, — L

""T‘ o7 b 2 Lt anyhy, — 2 or —30r) ]r+>\ Ma—q. (2456)
r? o 2 £ 92 4f . i
78tG—r f@TG—Q(r—M)8TG+2>\G—7]T:Q , (2.4.57)

1 M)(r—M
= ORI+ FORI = OFhy + 2000 by, = G + fa P Cllak Ti(r .
M — A+1 AN +1 Alr — M
+2M = 20 b+ 4 = ) (30— 2r)j, + 2 (T Jo X - k=@ (2.4.58)

Odd-parity field equation

The one odd-parity gauge condition reduces to

1 2M
— 0t + fOphe + “5he + = Chy = Sy = 0. (2.4.59)

f
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The gauge-undefined field equations are

2 1 2 )r —4M 1
—0yOrhy + OFhy — =O4hy — — Othy — A+ ;T <ht — athg) = P! (2.4.60)
T T rif
O%h, — 0;0,hy + %&ght + 2?f A f

78% — faZhQ — }atht + 0 (fhy) + (fh2> — %am =P (2.4.62)

8 ho + ——ho = P", (2.4.61)

Imposing the Lorenz gauge condition in Eq. (2.4.59), we get the Lorenz gauge field equations

—8t2ht+8f*ht—f Mo, ht+f M o+ f@@—ﬂ““&f M = 2Pt (2.4.63)
—02h, + O Iy + Tfé?rhT - % 2 — 6M(r — M)} h,

M, fﬁtht 2 P (2.4.60)

—02hy + 02 hy — fW: Yy + 4f—2 < a ho + h2> — _2/P. (2.4.65)

2.5 Chapter summary

In this chapter I have introduced much of the theoretical foundation for the original work
that follows in Chapters 4 and 5. Starting from the full Einstein equations, I have shown
how the first-order field equations are derived. Then, I used the spherical symmetry of
the Schwarzschild spacetime to decompose the field equations into equations for spherical
harmonic amplitudes. I have given these equations in both Regge-Wheeler gauge and Lorenz
gauge (in addition to a gauge-undefined form). These field equations will be important in

the chapters to come.
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Chapter 3

A scalar field model problem

In our attempt to understand gravitational waves, it is instructive to study first a simpler
problem: the dynamics of a scalar field. The purpose of this model problem is to is to
introduce many of the concepts that will be important in Chapters 4 and 5. I start by
examining the scalar field sourced by a charged particle in circular motion in flat space.
The charge will radiate scalar waves which can be analyzed in multipolar form. After
performing the multipole expansion, I show how this model problem can be solved exactly,
by introducing a spherical harmonic decomposition of the field. Getting the solution for
each harmonic mode requires appropriate inner and outer boundary conditions, which I
explain how to choose. I expand the exact solutions and show that in the slow motion, far
field limit, they agree with the multipole expansion.

I then extend this to circular orbits around a Schwarzschild black hole. I show how the
source term is chosen in curved space, and then show how the field and source decompose
into harmonics. This leads to an introduction of the Regge-Wheeler equation for the first
time. At this point I show how the inner boundary condition must be changed to a horizon
boundary condition to account for radiation that falls into the black hole. For the outer
boundary condition I introduce the asymptotic expansion which must be used to achieve
accurate numerical results. Finally, I extend my analysis to include eccentric orbits on
Schwarzschild. Moving to the frequency domain, this allows me to introduce extended
sources and the method of homogeneous solutions, both of which will be important in later

chapters.



3.1 The multipole expansion

Here we will consider a model problem, just to show how the multipolar field manifests
itself, without being encumbered by the mathematics of curved space. For a thorough
presentation of the multipole expansion of the gravitational field in relativity see [10].

A moving charged particle will pull up a scalar field around it that is found by solving

the wave equation with a source,
OV (2#) = (=07 + V?) ¥ () = —4mp (1) . (3.1.1)

For the moment, we will leave the orbit (which is determined by p) undefined, and solve

Eq. (3.1.1) in general. The Green function for this equation [31] on flat space is

5t~ [t— |z —2'])

G(t,az,t',m') = o]

(3.1.2)

The delta function demands retarded time causality. Integrating the Green function over

the source provides a solution to Eq. (3.1.1):

U () = /d%'/dt’G (t,:v,t’,a:') p (t',w') (3.1.3)
- /d3x’/dt’5(t/ il Ul et | A (3.1.4)

_ ! l4

Even for a known function p, we cannot perform integral in Eq. (3.1.5) in general. But,

we can perform a far field expansion of 1/|x — | and |z — 2’| and find ¥ in terms of

its multipoles. We start with the definition (we will be switching back and forth between

component z; and vector & notation)
flxia)) = |z —a'| = [(2i — o)) (i — 2})] 2. (3.1.6)

Note that f(x;, ) is a function of both z; and z,. We are performing our expansion around
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x, = 0, which is

of 1 0%f .
oz, 7 2! 0 O, 7k
1 0%

B
We define
_ I _ 7ot _ T I x;
=TT, r = .’L'i.%'i n;, = ? n;, = F (318)
The coefficients we will need are
of Tj *f rjx) | Ojk
fu0)=r g0 == g @0 ===5+ =5,
5. ! (3.1.9)
87‘}0 (.f 0) _ _3xj$kxm + xjékm + xk:(sjm + SUm(;jk
ox'.0xlox, rd r3 :
3o kT
Putting these different expressions together, we get the expansion
1 2 (n-a') 2 r'4
|l — ! — RPSUAT ) N2 02 T
e —a'|=r-n-=x o [(n x')” —r } 5,2 [(n z')” —r ]—i—(’) 3 (3.1.10)
We also need the expansion of the inverse,
1 ~1/2
gtasal) = gy = [ al) (i —a)] 1)
which is
dg 1 0%
1o
Y (24,0) - &l + . (3.1.12)

3! 8x;- dx. 0z,
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This will require

1 dg x; 0?%g x;xE 0
. 0) == —7 (x: 0) = 2L —— 79 (r:;.0) =32 _ Ik
g (':E’H ) 74’ ax; (:I"’L’ ) 743, 61"/76.%'2: (:L"L? ) T5 ?”3 bl (3 1 13)
03g TiTERTy Ti0p + 0451 + To0ik o
— 7 (2:.0) =152 J J J
8@;8%28.%2 (3, 0) r7 +3 rd ’

which allows us to write down the expansion

!
! typa 1 [3(71-3:')2—7“'2}—1-

| — a’| o r2 23
14

("Q'TZ") [5 (n-a')? - 3rf2} L0 (;) . (3.1.14)

The last expansion we will need is p itself. For the sake of simplicity, let us temporarily

abbreviate t — | — x’| as y. Then, the Taylor expansion around a point y, in the first slot

of p will be

N _ ’ ap AN _ 7@ AW — 2
P (y,w ) =p (yo’:lj ) —+ 7ay (yo,x ) (y yo) + 21 8y2 (yo,ili ) (y y0>
193 3
+ 31047 (yovxl) (Y —wo) - (3.1.15)

We can change the variable with which we differentiate from y to ¢t by

Op _ dtop _ Op (3.1.16)

oy dyot ot
So, using dots to denote differentiation with respect to time, we have

(yor ') - (y — ¥o)”

1.
+57 (yor ') - (y —yo)® + -+ (3.1.17)

1
P (y’m,) =p (yo,iﬁ/) —|—,0 (yoam,) : (y - yo) + 5:0
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Now, plugging in for y and letting yo, =t — r gives

p(t—‘x—w",w'):p(t—r,w')—l-p'(t—r,x')-[r—}:c—x'u

tope—na) [r-le o[+ 5B (t—ra) [r—|o -]+ 3118)

Using Eq. (3.1.10) to expand the |z — &’| terms,

p(t—|z—a'|,a') = p(t—ra)
R s e (R R )
et ot o)
+é.ﬁ (t=ra’)- [n'w’+0 (f)]gjto(r“‘) (3.1.19)

We have kept terms with at most three powers of 7/, indicating that we will be performing
the expansion through octupole (¢ = 3) order.

Now we can consider the expansion of the full Green function for the wave equation
using Eqn. (3.1.14) and (3.1.19). Here, for brevity I will suppress the arguments for p on

the right side of the equation, which are understood to be (t — r, z’).

p(t—|x—2a|, 2
|z — |

r 22

ool g o s G e

—l—1 n-ac'—l—i [(n-w’)z—r’ﬂ 2+1'P" [n-ac']3
2" 2 6

1 n-x 1 2 (n-a') 2
« [T—i_rz"‘_w{?’(n'w/) _T,/z}_i_ r [5 (n:c’) —37"/2” 4+ -+ (3.1.20)

The multipole expansion is in powers of n. After performing some factorization, we define
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terms based on the power of n, which in component notation are

r  6r
. p P 2 P /
h= [r+7"2+10 T ]”ij
1[p 35 3p R (3.1.21)
119 . 2
T3 = 6 [7“ + 67% + 151"% + 15751] [x;x;xg -5 (x;-(skl + @051 + k) | nynEne,

so up to octupole order the expansion is

plt—le—a'|.a)
o~

These terms will all go into the integral in Eq. (3.1.5). To that end, we define the various

multipole moment tensors (which are in powers of :c;), up through octupole order.

Name Symbol Value
Monopole M(t—1) = [dBdpt—ra)
Moment of Inertia It—r) = [dBp(t—rz)r?
Dipole Zi(t—r) = [ddpt—ra) )
Octupole Trace Oj(t—r) = [dP2p(t —ra")r]
Traceless Quadrupole || Zj (t —7) = [d32/p(t —r,z’) (mé:p% - §5Jk>
Traceless Octupole || Oy (t—7) = [d32'p(t —r,2’) (acg;r;fx’e - = (ac Ok + 3,05 + SUZ(S]]C))

With these definitions, we can write the expression for the field concisely as

1 5 9 9 6; 0 V(I I Ik
py — = J Ui o J J J ,
v (") 7A(//H 6)+(T + 5 1o +10r2>"3+2< T35 3y )n]nk

1 o Z Y;
+3 (ﬁm +6- 5 150 ¢ 15j4kl> njngne+ O (nf) . (3.1.23)
r r
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3.1.1 Circular motion
We are interested in a point mass with charge ¢ traveling in a circular orbit of radius r,.
Recall that there is no gravity in this system, but special relativity does apply. For this
case, the charge density p is

q T
plt,w) = — 5 g0 (= 72)0 (9— 5) 5 (6 —Qt). (3.1.24)

This charge density describes circular motion in the equatorial plane with an angular fre-
quency ) at a radius r.. Furthermore, v is the Lorentz factor and ¢ is the charge carried
by the particle.

In this section we will compute the moment tensors and their derivatives for the specific

case of this charge density.

Moment tensors

With the specific source in Eq. (3.1.24) we can perform these integrals to get an expression

for the field. Starting with the monopole term we have the unsurprising result

r’2sin 6’ 2

Mt —7) = q/d%ld (r’—ro)é(e’— f) 5 (¢ —Q(t—r)) = %. (3.1.25)

The moment of inertia is also an expected constant:

o N

f(t—r)—q/dgm,(5(r’—ro)(5(0’—W)(S(qb’—Q(t—r))r’z—qr .

3.1.26
~v ) r2sin¢ 2 v ( )

For the dipole term, we have

o asy A / /
R e I GRS IR TR
q;"nj 0=r/2,6=Q(t—7)]. (3.1.27)
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The directional vector has components

sin (7/2) cos [Q (t — )] cos [Q(t — )]
nj[1/2,Qt —7)] = | sin(x/2)sin[Qt—7r)] | = | sin[Qt—7r)] |, (3.1.28)
cos (1/2) 0

S0, in cartesian coordinates the dipole vector is

cos [Q(t — )]
i (t—r)= q;o sin[Q(t—7) |- (3.1.29)
0

Next comes the trace of the octupole tensor, which will be exactly like the dipole vector,

except with an extra factor of r2:

cos [Q(t — )]
. ars
Ot —r) = ~ sin[Q(t—r)] |- (3.1.30)
0
The traceless quadrupole tensor is
Tk (t =)
q dsx/ T 7"/2
=2 / ang 9,5 (r'—ro) 6 (9/ _ 5) 5 (¢ —Q(t—r)) (a:;x; -3 Sk |, (3.1.31)

which has cartesian coordinates

Tk (t =)

cos[Q(t—r)]-sin[Q(t—7r) O

= | cos [Q(t—7)]-sin][Q(t—r)] sin? [Q(t—r)] — 3 0 |. (3.1.32)
0 0 —

Lol
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Derivatives of moment tensors

In order to write down the field we need time derivatives of these moment tensors. For a
circular orbit, the moment of inertia is a constant, so those derivatives vanish. The first

time derivative of the dipole term is

—sin [Q (t — )]
Py (t—r) = qf;"Q cos[Q(t—r)] |- (3.1.33)
0

The first and second time derivatives of the traceless quadrupole tensor are

) [ sin[2Q (t —r)] cos[2Q(t—7r)] O ]
T (t—r) = q;‘)fl cos2Q(t— )] sin[2Q(t—r)] 0 (3.1.34)
i 0 0 0 |
i cos2Q(t —r)]  sin[2Q(t—7r)] 0 ]
.. ) qr2 02
Tk (t—1) = =2 °7 sin[2Q (t—1)] —cos[2Q(t—1)] 0 (3.1.35)
i 0 0 0 |

The Dipole Terms

Now we can compute the products between these tensors and the directional vectors.

cos [Q(t — )] sin 6 cos ¢
qro qro .
@jnj = 7 sin [Q (t — r)] . sin @ sjn(b = 7 sin # cos [(;5 -0 (t — T)] (3136)
0 cos 6
Likewise,
> qTo . .
Din; = TQ sinfsin[¢p — Q(t —r)] (3.1.37)
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The Quadrupole Terms

cos?[Q(t—r)] — % cos[Q(t—r)]-sin[Q(t—7r) O
2
TO
Tignjng = qT cos [Q(t — )] - sin [ (¢ — )] sin? [Q (£ — )] — L 0
0 0 —1
sin 6 cos ¢ sin 6 cos ¢
sinfsing | - | sinfsing (3.1.38)
cos 0 cos 6
qrs
Fipning = - ° [3sin®@cos[2 (¢ — Q(t —7))] — 3cos® 0 + 1] (3.1.39)
Y
Similarly,
. qu
Fjning = —>Qsin? Osin [2 (¢ — Q (t — 1)) (3.1.40)
Y
and
: 2qr2 12
Figning = —TQ sin“fcos[2(¢p—Q(t—1))] (3.1.41)

Putting these terms together, we get, through quadrupole order, in the slow motion limit,

the asymptotic field of a particle in circular orbit,

U (zt) = Ly %Qsinﬁsin[qﬁ—Q(t—r)] +%sin9008 [0 —Q(t—1r)]

aroar
2 2
aTs 2 . 2 3qro .2 :
_ ?Q sin“fcos[2(p—Q(t—7))] + 27r2981n Osin2(¢p—Q(t—r))]
2 2
+ 347 sin?fcos[2(¢p —Q(t—1))] — S [3cos®0 —1]. (3.1.42)

4ryr3 4ryr3
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3.2 Exact solution to scalar charge motion in flat space

We now look to solve the wave equation (3.1.1) exactly. Expressing the Laplacian in spher-

ical coordinates, we have (suppressing the argument z*)

1 1
—500 (sin0 9p¥) + ———— 3V = —A7p. (3.2.1)

r2 sin r2sin“ 6

—7V + rigar (r?0, %) +

Now we decompose W in spherical harmonics as

[e.9]

l
U(t,r,0,8) = Y Upn (,7) Yim (6, 0). (3.2.2)

{=0 m=—¢

Plugging this in, the left side of Eq. (3.2.1) gives

1
00 = 5 37| =2 + 0, (120,) = £(L+1) | Wam (8,7) Yo (6,6). (3.2.3)
lm
where we have used the fact that the spherical harmonics are eigenfunctions of the angular
operator with eigenvalues —¢ (¢ + 1). Meanwhile, a point particle with charge ¢ moving

along a circular orbit worldline ’#(7) will produce a charge density

q

P= ~yr? sin 6

§(r—1)8 (¢ — Q) o (9— g) (3.2.4)

where + is the Lorentz factor. Now, recall that the spherical harmonics are complete in the

sense that

00 l

S0 3 Vi) Yin(6,6) = 6(6— ¢)3(cosb—cost) = 56— $)6(0—#), (3:25)
=0 m=—¢
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so p can be written as (we drop the subscript s on the coordinate time parameter from here

on)

— T s5(r— ) si .
P = sin 50(r —ro)sin ;ﬂ; Vi (/2,08 Yo (6, 6), (3.2.6)
q —imS)
= ~,30(r = o) ; e N (7/2,0) Yo (6, 6). (3.2.7)

In the last line we used the fact that
Yim(0,6) = ™Y, (0,0) = Y7 (0,¢) =e MY (0,0) = e Y,,,(0,0).  (3.2.8)

We define w,, = mf) and write

%2 > [ — 1207 + 0, (r*0,) — L (L + 1) ] o (£,7) Yo (6, 6)

lm

_ 7477%5(74 — 1) Y e Y (1/2,0) Y (6, ). (3.2.9)

lm

Using the spherical harmonics’ orthonormality,

4dmq
—e

[— 202 + 0, (r20,) — £ (L + 1) ] Wi (1,7) = == —iwnty, (1/2,0)8(r —ro). (3.2.10)

The time dependence on the right side of this equation implies that we can separate the ¢

and r pieces of Wy, as

Upm (t,7) = € Ry, (1), (3.2.11)
and therefore, in the frequency domain

_ W] Ry (1) = _i:gnm(w/Q,O) d(r—ro). (3.2.12)

r2

d* Ry, 2 dRy,,
dr? (T)_‘_; dr (r) + [

2
Wm,

Note that for this circular case there is only one frequency mode, whereas in an elliptic
orbit case, for example, there would be a countably infinite set of harmonics.

This is now an ordinary differential equation which we are capable of solving analytically
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mode-by-mode. Away from r = r,, the right side of the equation vanishes. Therefore, we
look for homogeneous solutions to Eq. (3.2.12). We will enforce a causal boundary condition
at r — oo and a regular boundary condition at » — 0. Finally, we apply the appropriate
jump condition at r = r, as demanded by the singular source.

The homogeneous solutions to Eq. (3.2.12) are the spherical Bessel functions
R}, (r) = Chie (wint) + CFyng (wint) - (3.2.13)

Asr — 0, ny — —o00, so Cgm = 0 for the inner solution. As r — oo, we expect to see an
outward traveling wave. The correct linear combination of the two Bessel functions is the
first Hankel function

h(x) = jo(x) +ine(), (3.2.14)
which, to leading order at large x is

T

hi(z) ~ (3.2.15)
x
for all £. So, Ry, and its derivative are

A mJe(WmT 7 < 7o,
Rom(r)=4{ " eleom) (3.2.16)
Bgmh% (W) 1> 710,

djy
dRy,, Apmge(wWmr) 1 < 1o,
dé (r) = jhl( ) (3.2.17)
" Bom gt (wmr) 1> 710,

We integrate the differential equation to get the discontinuity in the slope

[ Eh0 22 (252 m o

e r dr

_ /+ [i:ngm(ﬂ/Q, 0)6(r — ro)] dr, (3.2.18)

o—€
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which gives an expression for the jump in the derivative of Ry,

dRym, rote 4mq
dr (T) = - 7102 }/f’m(ﬂ-/Qv 0) (3219)

We use this expression along with Egs. (3.2.16) and (3.2.17) to solve for the normalization

constants Ay, and By,,, which we find to be

4miwmq

Apn = Yo (7/2,0)hj (wins), (3.2.20)

_Amiwng

Bim Yo (/2,0 (wmro).- (3.2.21)

Note that we used the fact that the Wronskian is

1

ng [-75 (wmro) 7h% (wmro)] = _W‘ (3222)

Now, plugging in for wy,, = mf), where Q is the angular velocity and v = (1 — 62)71/2,

where 3 is the coordinate velocity (note that ¢ = 1 here), we get

A = 41imQq Yo (7/2,0)7/1 — 62 h}(mQr,), (3.2.23)
By, = A7imQq Yo (7/2,0)7/1 — 52 jo(mQrs). (3.2.24)

We can rewrite the angular velocity in terms of the velocity 3. Note that this system does
not require that we obey Kepler’s third law, but we still have to obey special relativity.

Setting Q = /r, we get

Ap = T, (/2,005 T— 57 b (), (3.2.25)
Bfm = 47T;manYL(7T/27 0)5 1- 62 ]Z(mlB)7 (3226)
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which finally yields

. 1 o
Ry (r) = 4ﬂ;mqYém(w/2, 0)3v/1 — 32 helmp) - Je(mpr/re) v < 7o (3.2.27)
° Je(mp) - h} (mpBr/rs) r>ro.
If we define
Gom = 47T§ng(7r/2,0)\/1 ey (3.2.28)

then this becomes

1 s
Ry (1) = imBaem helmp) - Je(mbrire) v <t (3.2.29)

Je(mp) - h} (mpBr/re) r>ro.

Now, we can write down an expression for the full scalar field. Recalling that our decom-

position was

U (t,7,0,0) =Y e ™ Ry (r) Yo (0, ), (3.2.30)
m
we have
, iy - j . o)
U(t,r,0,¢) =Y imBame " Yo (6, ¢) emf) ge(mprfre) v (3.2.31)

Lm Je(mp3) - h% (mpBr/rs) r>ro.

3.2.1 Multipole terms

We can expand the Bessel and Hankel functions to compare the solution in Eq. (3.2.31) to

that obtained with the multipole expansion in the previous section.

The monopole term
Consider first [ = 0, m = 0. The Bessel and Hankel functions are

sinx e ginx CoS T
jo(x) = , hi(z) = —i— = —i . 3.2.32
jola) = 25, hhfe) = S = 2T (3:2:32)
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Evaluated in the limit as m — 0 we have

sin(mQr,) [sin(mQr)  cos(mQr)

. . 1 I I —

nlmlglo m Jo(m&Qre)hy (M) = 7111310 e o i~ | (3.2.33)

)
= —— .2.34
Qr (3:2:34)

Then, the full field, evaluated at £ = 0,m = 0 is
AmrgQ) —1 q
v ) = Y 2,0) Ygo(O C— = 2.

oo (z#) =i 00 (m/2,0) Yo0(0, ¢) ar (3.2.35)

in agreement with the monopole term in Eq. (3.1.42).

The dipole terms

To calculate the dipole terms, we will need the ¢ = 1 versions of the Bessel and Hankel

functions. They are

ji(z) = Si;lf - Cojx, hl(z) = —e: [1 + ;] (3.2.36)

With these, we write down the £ = 1, m = 1 part of the field
Uyy = i iy (29 0) Yy (6, 6) - 1 (Qro) - L (), (3.2.37)
- _iﬁsin peilo—(t—r)] Si(ng(gg) - Cosg(zro)} [1 + g;,] . (3.2.38)

The harmonic amplitudes of the field obey the same relations as the spherical harmonics:
Uy —m = ¥y, for all £ and m. Therefore, ¥; 1 = ¥7,. The £ = 1,m = 0 mode will not

contribute because Yig (7/2,0) = 0. So, the sum of the two £ = 1 modes is

Uy_q = \1117_1 + Wy =Wy + \Iﬁfl = 2% [\1111] s (3.2.39)
_3q . sin (Qro)  cos (Qro) || . B B cos[p— Q(t—r)]
=, sin 6 (QTQ)2 ar sin[p—Q(t—r)] + o . (3.2.40)
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The first term in the square brackets is a function of Qr, = (3, the speed of the particle. We

can compute the Taylor expansion of this term in the slow motion limit,

Si#_@:l_f_l+g+(’)(x3)=§+O($3)v

» xr x 6 x 2

Plugging this in, we get

Ty (") = L ing [Q;] [sin 6 —Q(t—r)] + = ¢ —Qgi (t— r)]} 7

yr
g8 cos[p— Q(t —r)]
B Qr ] ’

. sin 0 {sin 0 —Qt—r)]+

which agrees with the dipole terms in Eq. (3.1.42) in the slow motion limit.

The quadrupole terms

The quadrupole terms will only include Wag, Wog, and Wa _o. The Yoo term is

AmgQ) o, ,
\1122 (:L'M) = Zqu 2 QtYQQ (7T/2,0) YQQ(Q, (b) -2 jQ(QQTO) . h% (297’) s

15¢Q -
= ziiq sin? 02~ ) (2Qr,) - h3 (29r) .
Y

The needed special functions are

SO

(o] TO

y [1 LB 3}
20r  (20r)*]
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(3.2.43)

(3.2.44)

(3.2.45)

(3.2.46)

(3.2.47)



Again, we expand the first term in the square brackets in the slow motion limit:

3 sinx cos T 3 3 322 2? 1 1 22
= -1 33— = 144 35—+ 4 2.4
<x2 ) P e R 6 120 6 3(:52 2+24>+O(x)’(3 2
.%'2 4
=1 O (z%). (3.2.49)

Plugging this in we have, in the slow motion limit

_15q o sigeagr) [ (29r0)? 33
Woo (2H) = Sr sin” fe ( Tr 1+ 20 2] (3.2.50)
- _q;zj:g sin? 9[cos 2(6—Q(t — 1))
31 3
+ ¢sin [2 (¢ -0 (t - T))]:| |:1 + ﬁ - (297“)2:| , (3251)

while the real part of this is

2
R ([Woo (/)] = —;({;’QQ sin? @ cos [2 (¢ — Q (t — 1))
3 2 3 2
ngéﬁsin? Osin[2 (¢ —Q(t —7))] + éjig sin® @ cos[2(¢ — Q2 (¢ —7))]. (3.2.52)

Now, consider the W5y mode,

4mqgfd
Wy (z#) =1 it

Yao (7/2,0) Yaq (8, @) |mja (mQro) - h? (mQr) : (3.2.53)

m=0

In order to evaluate this, we must expand the special functions. We have already seen that

the leading order term in jo(x) is #2/15. The Hankel function expands as follows,

) € 3 3
iT 3 1 ) 3 i
— —_— = - — — . .2.
x[ 2 30 )] 35, TO@ (3.2.55)
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Now we can use these expansions to find the m = 0 term.

2 . . 9

. . 9 L (mQr,) 3i g
77llurﬂno myjo (mSrs) - hy (M) = 77lllglom 15 <— (mQT)?’) +---= TR (3.2.56)

This goes into Eq. (3.2.53) to give
AmgQ ir?
Woq (.’L‘“) =9 q Y50 (7‘(/2, 0) Yoo (0, ¢) <— 5Q7"3> s (3257)
2
__ 9% 2

= 03 (3cos*f —1). (3.2.58)

Finally, we can put together all of the modes to give the quadrupole contribution to the

field. Noting that Wy, = ‘112’_1 =0, we have Uy_y = 2R [\1122] + Wyq, and so

Vg (2#) = ——qrg O?sin?fcos[2(p—Q(t—7))] + §q’rg Qsin?0sin[2 (¢ — Q(t —7))]
= yr 2 yr?
3qri . 5 qr? )
+ ypo: sin“fcos[2(¢p —Q(t —1))] — yoo: [3cos®6 —1]. (3.2.59)

Once again, this agrees with the multipole expansion within the slow motion limit.

In this section we have introduced the spherical harmonic decomposition of the scalar
field. This led to radial mode equations for each ¢ and m. We found exact solutions to
these mode functions, and then we imposed causal interior (jump) conditions and exterior
boundary conditions. We will see in the next section that many of these features extend

directly to the curved space wave equation.

3.3 Scalar fields in curved space
We turn now to the wave equation in curved space

Ow (z#) = —4mp, (3.3.1)

with 0 = V,V# and VU as the retarded field. Let’s consider a particle in circular orbit with

radius r, and angular frequency 2, around a Schwarzschild black hole, with 6 constant at
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/2. We begin by forming the appropriate charge density to source this wave equation.

3.3.1 Current conservation and source term

Let’s start with a four-current J#. Charge conservation demands

1
V" = 0u " + 5 (99500 + 9950 = 9" 9uars) T* (3.32)

1
= 9, J" + §gﬂﬁgﬁ,t,yjy = 0. (3.3.3)
In order to proceed further we must rewrite the term g+® 9u,v- We can write this as

9"’ 900 = 9"°0vg9p, = Tr (g7 0,g) , (3.3.4)

1

where g is the matrix representation of the metric and g~ is its inverse. In this form we

Tr(In A)

can use the matrix identity! det A = e . Varying both sides gives

ddet A
det A °

sdet A =™ A) §Tr(In A) = det A Tr (A7154), = Tr(A7'64) = (3.3.5)

Hence, if we let g = det g we can rewrite the right hand side of Eq. (3.3.4) so we have

g5 = Tr (g710,9) = 2479 — 9, (ln (—g)), (3.3.6)

where the minus sign has been introduced since the determinant of the metric is negative.

Plugging this back into Eq. (3.3.3) gives

1

1
V,J*¥=0,J¢ + =0, (n(—g)) J*
1 1 2 M( ( g)) \/—79

o (V=g J*) =0. (3.3.7)

'For a matrix A, the exponential is defined by the power series and the In is the inverse of that exponential.
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Integrating over all spacetime we have?

/ d*z/—gV ,J" = / d*z\/—g O (V=g J") = / d*z 8, (V=g J")

1
V=
Separating into space and time components yields

/dt d*z 0y (V=g J°) = —/dt d*z 0; (V=g J").

We then use the generalized Stokes’ theorem, which allows us to write

1

/ d’zy/=gJ°

= —/dt\/—g do; J".

t
to

=0. (3.3.8)

(3.3.9)

(3.3.10)

This statement says that whatever charge is inside our volume at tg will also be there at ¢;

unless it has passed through a surface o, as is displayed in Fig. (3.1). If we now integrate

e //—\to .
‘\—//

Figure 3.1: With the inclusion of time to our diagram, we must compress y

and z into one

dimension. Hence, each sheet of time represents a three dimensional snapshot.

over all space, there will be no flux through the surface o, since it will be at infinity. Now,

2Note that d*z = dz®dz'dz?de®. Multiplying this by \/—g gives the appropriate four dimensional volume

element.
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the four-current is defined as J* = pu* for some four-velocity u#, so Eq. (3.3.10) becomes

t1

/dgas\/—gpuo =0. (3.3.11)

to

Clearly this integral does not change value between any two times tg and ¢;. At any given

point ¢, we expect it to give us the total charge in space

q= /dgm\/—gpuo. (3.3.12)

From this we can work backward to construct p, such that it will give us the correct charge.
If all we have is a point charge (as we’ll be considering), we will need a three dimensional
delta function multiplied by the value ¢ itself to localize the charge. We also need factors
of 1/y/—g and 1/u° in order to cancel those factors in Eq. (3.3.12). Putting these together

gives?

B q53 (I‘Z _ x/i)

T

In order to localize our charge in time we can introduce a temporal delta function as

(3.3.13)

well. Then we have to integrate over all time. Letting the integration variable be tg, the

Schwarzschild time coordinate, we have

_ & (a' —2") 6 (t —ts)
p= q/ T=gu0 dts. (3.3.14)

The time portion of the four-velocity is dts/dr, which allows us to change our variable of

integration.

B 5t (zt — 2'M) .
p—q/ﬁ dr. (3.3.15)

We leave this equation with the comment that it is specifically constructed to give the

charge ¢ of a point particle when it is plugged into an integral over all space.

®*Note that here ° (z° —2"") = 6 (¢ —2"") 6 (#* — 2’*) § (2® — 2*) with no Jacobian factor. The same
is true in Cartesian or Minkowski spatial coordinates.
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Plugging this source term into the wave equation in spherical coordinates gives

I — =
r2sinf \ dr

00 = —4r— 4 (dtS)_l 5(r—r)3(o— )5 (0 -1). (3.3.16)

The 1/(r2sinf) term comes from 1/y/—g and (dt,/dr)™" = u°. Now, if we use a dot to
express differentiation with respect to proper time, then (dts/dr) " is 1/f,. We can calculate

this value by using the variational method for geodesics.

Variational methods

The quantity K is defined by

0 lightlike geodesic,
2K = g’ = ¢ -1 timelike geodesic, (3.3.17)
+1 spacelike geodesic,

and satisfies the Euler-Lagrange equations

% _ % [g;ﬂ _ (3.3.18)
On Schwarzschild Eq. (3.3.17) becomes, for our timelike, massive particle
2K = — < — 21”) 2 + (1 - 2;{”) - 2 41262 + 12 sin? 0¢? = —1. (3.3.19)
In our case of a circular orbit, § = 7/2 and 7 = 6 = 0, so we have
K= —% (1 — 25}4) i2 4 %r%ﬂ = —%. (3.3.20)
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Plugging this into Eq. (3.3.18) gives

OK_i_aK—_i 1_% t.l =0
ots dr |dis| dr r S

0K d [0K]  d [,
aqu_aga_‘ch[“ﬂ“
0K  d [0K]

or dr | Or |

so for constants A and B,

. A . B . M.
ts = oM ¢ = OR T2¢2 = Ttg

For our purposes we only need the last of these expressions. Plugging it into Eq.

gives

1 2M N . 1M. 1
B e I Ml B
2( r>5+2rs 2’

which we can solve for ¢

Returning to Eq. (3.3.16) and, plugging in for (dts/dT)*1 gives

q 3M x
Oy = — s (r— _ _ Ty,
U= —dr o 1= s ()6 (0 Qts)(i(e 2)

Harmonic decomposition of source

Now, using the completeness of the spherical harmonics, we find

q 3M —imQt gy *
—4dmp = —47rr—2 1-— 75(7“ —7) Ze sy (1/2,0) - Yo (0, 6).

lm

If we define

. 30
U = 47rrinm(7r/2,0) 1-==, wn=m,
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(3.3.22)

(3.3.23)

(3.3.24)

(3.3.20)

(3.3.25)

(3.3.26)

(3.3.27)

(3.3.28)

(3.3.29)



then

o(r — 7o iw
—drp == (r) Qom € Y (0, ). (3.3.30)

[}
Lm

3.3.2 The wave equation

Having expanded the right side of the wave equation, we now turn to the left. Looking at

Eq. (3.3.7) we see that if we plug in V#W¥ for J#, then
1
00 =V, VA0 = =9, (/=g V") 3.3.31

But, for a scalar, by definition V,¥ = 9, ¥, so lowering the index p with the metric, we

have

1

3M
—= (V=9 9"0,¥) = —4m— sqin0 JI= =m0 =) 8 (60— QL) (9 - g) . (3.3.32)

Expanding the wave operator,

1

1 . 1
*m@i + 50, [(* = 2Mr) ,] + 0 (sin6 - ) + 32} o

1
sin r2sin2 6 (]
_ q C3M B T
=i Sing\/ié (r—r0) 6 (¢ —s) 6 (9 2) . (3.3.33)

Harmonic decomposition of the retarded field

Let us now decompose the retarded field into spherical harmonics as we did with the source:
U(te,r,0,0) =Y Wi (r)e Yy (6, ). (3.3.34)
lm

So, using the wave operator on this expansion yields

w?n 1 2 0(l+1) ot
ez i 0 (=20 0) - HE R i e (3539
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We can combine this with the source term from the right side to get

2 |
S [ + 0 (0 -2 ) - Lo ety 0.0

lm

o(r — 7o iw
= T g et vy 0.0 (3:3.36)
,m °

The orthonormality of the spherical harmonics allows us to write

w2, O ((r?=2Mr)0,) ((0+1) o
[1 oMy T 2 — 7| Yem(r) = =200 o), (3.3.37)
or
PV | 2(r = M) dVp, I U+ ]
a2 r(r—2M) dr " |(r—2Mm)? r(r—2M)] "
dim

= —mé('r — T‘O). (3338)

It is common practice to switch independent variables, from the Schwarzschild radius r to

the tortoise coordinate ry, defined by the differential equation

d oM
U e

ar " (3.3.39)
Then, making the definitions
Vi(r) = f (W“) " “f) o= ) =), (3340
Eq. (3.3.38) reduces to the Regge-Wheeler equation
2
gz Vem (1) + {Wi = Ve(r) } Yo (1) = —Qem fO(r — o). (3.3.41)

This equation does not admit analytic solutions for general ¢, m modes, and therefore must
solve it numerically. We begin by setting boundary conditions at the event horizon and

spatial infinity. At the horizon, when r, becomes large and negative, the potential falls off
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exponentially and we can choose a traveling wave going down into the black hole, e ~#mns

At large r, the potential falls off only algebraically and we must use an asymptotic expansion

to set an accurate boundary condition.

3.3.3 Asymptotic expansion as r,r, — o0

Now we turn to the subject of the asymptotic expansion. Though many of the details here
can be found in standard differential equations texts (e.g. [60]), we give the details here
for completeness. In later chapters, though we will perform asymptotic expansions more
tersely, the logic will follow that presented here.

Consider a general potential

+ 55 (-7 (3.3.42)

r2

C(+1) 2M
o s (0 )
where j determines the potential for scalar (j = 0), vector (j = 1), and tensor (j = 2)
waves. Now, as r and r, tend toward infinity, the potential goes to zero, and we will have

plane wave solutions

VY ~ mT (14 — 00). (3.3.43)

As r and r, get big, but finite, let’s assume that the solutions to Eq. (3.3.41) are of the
form

Yom = € T () (3.3.44)

where Jy,, goes to 1 as r, becomes infinite. Plugging this into Eq. (3.3.41) gives

42 . )
2 (e Tpm, (winy 7)) + (W2, = Vi (1)) €7 Ty, = 0, (3.3.45)
d? i d

Changing the derivatives to be with respect to r and plugging in the potential,

d? 2M d (0+1) 2M 9
——Jom + | S + 2iwm | —Jom — | ———2 + = (1 — m = 0. .3.47
foade +<r2+zw>dre ( 5+ ( M)Je 0 (3.3.47)
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At this point we find it helpful to define the dimensionless variables z = w,,r and 0 = Mw,,,
SO
2M 20 d dz d d

This changes the differential equation to

& 20 .\ d 0(0+1) 20 2

Now, let’s assume an asymptotic series solution of Jy,, of the form

o0
a
Jom =Y Z—Z (3.3.50)
n=0
Plugging this in Eq. (3.3.49) yields
> a
n
Zn(n+ 1) n—2 o
n=1
o [e.9]
=0. (3.3.51)
Now, let’s redefine our values of n so that all our terms scale as z~", which yields
= a a a
> (n+2)(n+3)= nee ZJZ (n+1) (n +2) —*! 202 nil
n=—1 n=0
> a = a = a
. +3 +2 . +1
—2 Y (n+3) Zn —L(+1) ) Zn —20 (1-4°) ) Zn =0. (3.3.52)
n=—2 n=—2 n=-—1

In order to make this one summation, all the sums have to start at the same value of n, so

we now pull out the leading terms to even things out, giving

(—2iay — £ (L + 1) ag) 2* + (2a1 — diag — £ (£ + 1) a1 — 20 (1 — j%) ao) =

+3 [(n+2)<n+3)an+2—2a(n+1)(n+2)an+1—20(n+1)an+1
n=0

—2i(n+3) anss — (L + 1) anyo — 20 (1 — j7) anﬂ} zi" =0. (3.3.53)
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Since this expression vanishes order-by-order, each coefficient must equal zero. The 22 term
gives us
il (L+1)

a] = TGO. (3.3.54)

Note that we can pick the value of ag, which corresponds to the freedom to scale homoge-
neous solutions. The coefficient of the z term in Eq. (3.3.53) gives us the formula for as in

terms of a1 and ay,

((C(t+1)—2)ar +20 (1 —j5%) ao) . (3.3.55)

| s

ag =
We can plug in Eq. (3.3.54) for a; to get this all in terms of ay,

a5 = (Z;’ (1-7%) - %e C+1)(0+2) (- 1)) ao (3.3.56)

The same logic works for every power of z in the summation in Eq. (3.3.53). In fact, we

can solve for a recursion relation for the n'* component as follows:
iy = —20[ (1-7%) +n(n- 2)]%_2 - [e (C+1)—n(n— 1)}%_1. (3.3.57)

Note that if we define a,, = 0 for all n < 0, we can acquire the agp and a; identities given

above.

3.3.4 Scalar field jump condition

We integrate the equation of motion to calculate the jump condition,

/T‘”'E AWy,  2(r— M) dVy, w2, r? e+l T dr
. dr? r(r—2M) dr (r—2M)* 7r(r—2M) o

To+e€ Qom
= — /TO_6 |:7"O_2]\4'6(T - To):| d?". (3358)

o—€
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We integrate by parts, and since the field itself is continuous across the location of the

particle, we see that

To+€
qtm

/W d [d¥em] ¥
ro—e dr | dr -~ dr

Let the value of the field and its derivative be

To—E€

Agmlllglm r<r.,

U (r) =
B Vo, 1270,
and
dvit
d¥em Apm dﬁm r <To,
(r) =
dr dwge

By, ar r>To.

o —2M

(3.3.59)

(3.3.60)

(3.3.61)

Then, from the continuity in the field and discontinuity of its derivative at the particle, we

have the pair of equations

Bim U (10) — Apn Ui (1) = 0,

AU AUl q
By, — (r) — A () = . dtm
ey (o) Ty (ro) ro —2M
We solve for Ay, and By, giving
_ Qm ‘I’?fn(’l"o)
Aem = = i vy, o0
Wi (ro) =g (ro) — =322 (ro) Wi, (70)
_Qem \Ilgm(ro

dwee dvit

If we write this in terms of vy, = r¥y,, we get

Yomy (o
ém( ) Bim = —qum

Apm = — Yim (o)
Im qtm me ; ng ’
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"o Wi (ro) =g (o) — g (r0) U3y, (7o)

(3.3.62)

(3.3.63)

(3.3.64)

(3.3.65)

(3.3.66)



where we have defined the Wronskian as

n g, Ay,

g dr,

Then, the field is

Qo | Vo (10) Yl (1) 7 <7,

Yem(r) = — W " (3.3.68)
g, (o) ge, (1) > e
Now, we can write out an explicit expression for the whole scalar field,
Yo (6 —iwmts Yo (To wH r) T <To,
U (b r,0,0) = 3 dem Vom0 0 AR (3.3.69)

L Wem r W (r) g, (1) 7 > .

3.4 FEccentric orbits on Schwarzschild

Next, we extend our investigation of scalar fields to include those induced by a particle in

eccentric orbit. As usual, this field is found by solving the wave equation
Ov (a#) = —4mp (") . (3.4.1)

As we have seen, this can be decomposed in spherical harmonics. For the eccentric case we

write the Regge-Wheeler equation

82 82
_@wfm + wwfm - ‘/E(T>wfm = —47Tf7”Pem- (342)

Now we consider the specific form of the source term in our wave equation. We take the

scalar charge density p to be a Dirac delta function

gk — h
—47p () = —47Tq/ 6(\;7_912)(17‘. (3.4.3)

The determinant of the metric g, in Schwarzschild coordinates, is —r%sin?#. We take the

proper time 7 to be the affine parameter of the orbit of our particle. With this in mind we
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change the variable of integration to coordinate time ¢, giving

64 (z# — xp (1)) dr

—47p (x“) — —47rq/ o %dt’ (3.4'4)
= Sl ()] 316 — 6] 310 /2] (3.45)

Here we have defined the time component of the four-velocity u’ = dt,/dr, and restricted
(without loss of generality) the motion of the particle to the equatorial plane. In order to
use Eq. (3.4.2) we need a specific form of pg,,. The spherical harmonic amplitudes of the

source are found from

— A7 pgn (L, 1) = —47T/p(x“)Y£:n(0,¢)dQ. (3.4.6)

Plugging in Eq. (3.4.5) gives

—tmpn(t,r) =~ [ Sl (0] 616 — 6,()] 510 — /2] Vi (0, 0)d0 (3.4
= 25 [ — ry(0)] Yam /2, 0)e 400, (3.4.8)

3.4.1 The frequency domain

We now decompose the partial differential equations (3.4.2) into ordinary differential equa-
tions by moving from the time domain into the frequency domain. In the case of a circular
orbit, this is simple. There is only one time scale that the physical problem depends on,
and therefore all relevant frequencies are multiples of the fundamental: w,, = m - 2w /Ty.
When our particle is in an eccentric orbit, however, the situation is more complicated. Now
there are two fundamental frequencies of the motion, €24 and €2, as the particle oscillates

in ¢ and r. The Fourier transform of the radial function is

1/}Km(ta T) = /dWlew(T)e_thv (349)
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while the source term decomposes as

—47r fpem (L, 1) = /degmw(r)e_M. (3.4.10)

Plugging these into Eq. (3.4.2) we have

—83 {/ dngmw(r)e_i“’t] —i—@f* {/ dngmw('r)e_w]

—Vg(r)/dngmw(r)e_m = /degmw(r)e_w, (3.4.11)

d2 Rfmw
dr?

(r) = (Vo(r) = w?) Romeo(r) = Zime- (3.4.12)

Because the problem we are considering has two fundamental periods, the frequency depen-

dence will be doubly periodic. That is, we will find that

W = Winn = My + 1k, m,n € Z, (3.4.13)
where Q, = 27 /T, and
1 (T (do
Q= — —2 ) dt. 4.14
T, /0 < dt ) 341

Now, in order to calculate the source term in the frequency domain we use the inverse

Fourier transform:
Ar (T

Zémn = frpfm(t; T>eiwmntdt- (3415)
T Jo

We can plug in for the source from Eq. (3.4.8) to get our specific form of Zy,,,

4 T . ‘
Zpmn = —%wm(w/l 0) / %5 [r — rp(t)] e~ Mo eiemntn gy, (3.4.16)
r 0
4 ‘ ‘
= -2 ;lem(ﬂ/ZO){Xf’)eZm¢>p(rp>ewfnnt<’"p). (3.4.17)
T D
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Figure 3.2: In red on the left we plot the azimuthal advance of a particle in eccentric orbit
around a Schwarzschild black hole. Its average advance {24t is plotted in green. Subtracting
off this average advance leaves the right panel. Note that this oscillation about the mean
value of ¢ has a period of T;., corresponding to the radial motion of the particle.

We can decompose ¢p(t) as a part that grows linearly with time, and a part, A¢(t), that
has a periodicity of T,
p(t) = Qpt + Ad(2). (3.4.18)

Now we solve the ODE (3.4.12). We set unit normalized boundary conditions at the horizon

and at infinity,

D— o —lWmnTx D+
Rfmn(r* - _OO) =e ) RZmn

(14 — 400) = emn', (3.4.19)
The method of variation of parameters gives the solution to the inhomogeneous equation,
Ripn(r) =} (MR, (r)+c, (PR, (r), (3.4.20)

where

So(r) = : /T dr’RZm”(T/)Zem”(r/)

Womn ) ! ’

et f(f) / (3.4.21)
By
fmn Wemn Jr f@r’) ’
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and

b dRZ n H+ dRé_mn
= mn _ 4.22
WZmn Rémn d Rémn d’l“* ) (3 )

is the Wronskian. Outside the source libration region, Eq. (3.4.20) reduces to the normalized

homogeneous solutions that are properly connected through the source region,
RS (r)=CF R} (r), ©>rmae, Ry (r)=0C, Ry (r), r<rmn, (3.4.23)

where CZ‘;M are the values of c}tmn(r) evaluated at the ends of the range of the source,

Citon = Chun (rmax) s Cinnns = Cppy (Pnin) (3.4.24)

From here, the standard approach is to return to the time domain with the Fourier synthesis

o (t,7) ZRfmn )eiwmnt (3.4.25)

Because our source has a singularity, the function we are trying to reconstruct will have
a lack of differentiability, and this reconstruction will therefore suffer from the Gibbs phe-

nomenon.

3.4.2 Extended homogeneous solutions

We can regain the exponential convergence we want by turning to the method of extended
homogeneous solutions (EHS) developed by Barack, Ori, and Sago [1]. We start by defining

the frequency domain EHS, which are valid for all r,
R, (1) =Cph B (), 7> 2M. (3.4.26)

Next, we define the time domain EHS, which (given that they are homogeneous solutions

to the differential equation) are again formally valid everywhere,

Ui (t,r) ZREW Je~iwmnt, (3.4.27)
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Now, we claim that the true solution to Eq. (3.4.2) is

WEIS (4 ) = Uy (1) 0[r —rp(t)] + ¥, (t,7)0[ry(t) —1]. (3.4.28)

Im

That this is the actual time domain scalar field is not obvious. In Chapter 4 we will discuss

this method more thoroughly (including more general source terms).

3.5 Chapter summary

In the next chapter we will solve the field equations for the gravitational perturbation due to
a particle in eccentric orbit about a Schwarzschild black hole. This chapter has introduced
several ideas that will be important to that task. After examining scalar fields in flat space,
we derived the Regge-Wheeler equation. This is the equation (with a different potential and
source), that we will have to solve to find the metric perturbation amplitudes in Chapter 4.
We saw how to choose causally appropriate boundary conditions, including performing the
asymptotic expansion on the large r side. Then, considering a particle in eccentric orbit,
we noted that the system exhibits two fundamental frequencies. Thus, upon moving to
the frequency domain, we found that Regge-Wheeler equation must be solved for a doubly-
infinite countable set of modes. Additionally, the source (which was point singular in the
time domain) becomes a function of r, confined to the region rpyin to rmax. This leads to
the Gibbs phenomenon, when a standard Fourier synthesis is used to return to the time
domain. To circumvent this, we introduced the method of extended homogeneous solutions,

which will be an important part of our work on gravitational fields in Chapters 4 and 5.
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Chapter 4

Gravitational perturbations and metric
reconstruction: Method of extended
homogeneous solutions applied to

eccentric orbits on a
Schwarzschild black hole

Chapters 2 and 3 have set the stage for us to solve the perturbed Einstein equations for a
particle in eccentric orbit about a Schwarzschild black hole. In Chapter 2 we saw how the
first-order Einstein equations are derived on a curved background, and then subsequently
how they are decomposed into equations for the spherical harmonic amplitudes when work-
ing in the Schwarzschild spacetime. We also introduced the Regge-Wheeler (RW) gauge,
which we will be using in this chapter. We will see that solving the field equations in RW
gauge reduces to solving a wave equation for one master function for each harmonic mode.
In Chapter 3 we introduced many of the necessary concepts for solving the type of wave
equation we will solve in this chapter. We saw horizon and infinity boundary conditions, ec-
centric orbit bi-periodicity, singular source terms, and the method of extended homogeneous
solutions.

This chapter contains two noteworthy contributions to the field of EMRI research. First,
we have applied the method of extended homogeneous solutions to all radiative gravitational
modes. This allows for the fast and accurate frequency domain calculation of the radiative
gravitational field at the point of the particle for the first time. Our second original result

is the detailed analysis of the local singular nature of the metric perturbation in RW gauge.



We find that the six nonzero perturbation amplitudes are all discontinuous (C~!) and three
of them are additionally singular (~ d(z)) at the location of the particle. We compute the

time dependent magnitudes of these jumps and delta functions analytically.

4.1 Introduction

Considerable research on the two-body problem in general relativity has been fostered over
the past decade by the prospects of detecting gravitational radiation from extreme-mass-
ratio binaries. The general relativistic two-body problem is notoriously difficult, as it in-
volves dynamics of the motion of the bodies and of the gravitational field itself. Gravita-
tional wave emission carries away energy and angular momentum from the orbit, leading to
inspiral and eventual merger. The future joint NASA-ESA LISA mission [61] is expected to
detect between tens and thousands of such extreme-mass-ratio inspirals (EMRIs)-binaries
composed of a compact object (u ~ 1 — 50Mg) in orbit about a supermassive Kerr black
hole (M ~ 10° — 10" M) out to cosmological distances (z ~ 1) [62]. The small mass ra-
tio 1077 < u/M < 1073 of expected astrophysical sources [12] implies a gradual change
in orbital parameters, with > 10° wave periods as the binary evolves through the LISA
passband (10~* — 1072 Hz). Detailed theoretical calculations will aid in both detection of
EMRI gravitational wave signals and in determination of the source’s physical parameters.

Quite apart from the prospects of astrophysical observation, this problem is one of in-
trinsic interest in theoretical physics. Of the various possibilities, the physically simplest
compact binary is one composed of two black holes. Such a system eliminates the com-
plications of stellar microphysics and reduces the problem to a minimum parameter set.
In approaching the problem mathematically, the extreme mass-ratio and gradual orbital
evolution is of benefit theoretically, allowing black hole perturbation theory to be used.
Furthermore, the small mass ratio allows even the black hole structure of the small mass to
be ignored (at lowest order), restoring a point-like (particle) behavior [36] on length scales
that are large compared to p and thereby simplifying the perturbation problem.

The perturbation problem proceeds in stages. At the outset the motion of the particle
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is taken as a geodesic (/M — 0, or zeroth order) on the background spacetime. The first-
order (in pu/M) gravitational field perturbation is then computed, yielding a new metric
guv = Yuv + Puv that corrects the background metric g,,,. The gravitational waves in the
perturbation p,, carry energy and angular momentum to infinity and down the black hole
event horizon, giving rise to a back reaction or local self-force (SF) on the particle that has
both conservative and dissipative terms. Formally, the SF depends on gradients of p,, and
acts locally on the particle to accelerate it off its background geodesic. Once the first-order
correction to the motion is successfully computed, the calculation may proceed to second
order in the field perturbation (see Pound [63] for a recent background discussion and an
alternative formulation).

Yet having idealized the small body as a point particle, the metric perturbation and
SF are found to diverge at the location of the particle, and the formal perturbation to the
equation of motion is meaningless without careful regularization. This problem is similar to
the classic SF problem of an accelerating, radiating charge in electromagnetic theory in flat
spacetime [32]. Two pivotal papers, by Mino, Sasaki, and Tanaka [37] and Quinn and Wald
[38], showed how the metric perturbation may be separated into a divergent, direct part

dir

iy and a finite tail term ptal

v » with the latter providing the regularized field that makes the

SF finite. As an alternative, Detweiler and Whiting [35] proposed decomposing the metric

perturbation into regular pﬁy and singular pil, parts. Under this interpretation, pﬁy is a

tail

solution to the vacuum field equations, but gives rise to the same SF as p.

Since then, SF calculations have been made in certain special cases [64, 65, 46, 66, 2].
See the review by Barack [62]. Ultimately, the theory aims to provide self-consistent SF
calculations of arbitrary orbits about Kerr black holes. In this chapter, we concern ourselves
with a more modest goal: demonstrating a complete computation of the radiative gravita-
tional perturbations produced by a mass in eccentric orbit on a Schwarzschild black hole
and reconstruction of the corresponding parts of the perturbed metric in Regge-Wheeler
gauge. While we leave for another occasion computation of both the nonradiative pertur-
bations and the SF, the accurate reconstruction of the radiative parts of the metric, at all

locations up to and including the point mass, should serve as a starting point for a further
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gauge transformation or alternative regularization technique.

We note in passing that most work to date computing EMRI evolution has not made
use of local SF calculation. Sufficiently adiabatic changes in an orbit on Schwarzschild
spacetime allow a balance calculation approach [49], where orbital energy and angular mo-
mentum are “evolved” (acausally) to match corresponding gravitational wave fluxes through
bounding surfaces at large radius and near the horizon. Much effort is ongoing to extend
the reach of adiabatic calculations [67, 68, 69]. Unfortunately, the approach only approx-
imates dissipative SF terms and cannot account for conservative SF effects. In any event,
the more self-consistent SF approach should serve to confirm the validity of these or other
approximations.

Perturbation theory for Schwarzschild black holes has a traditional formalism pioneered
by Regge and Wheeler [14], Zerilli [15], and Vishveshwara [70] that uses spherical harmon-
ics and the Regge-Wheeler gauge to simplify algebraically the form of the metric pertur-
bation. At each spherical harmonic order there are just two master functions, W5 (t,r)
and Wg%d(t, 1), one for each parity or gravitational degree of freedom, which satisfy linear
inhomogeneous wave equations in ¢ and r. The formalism was improved by Moncrief [16]
and colleagues [17, 18], making use instead of gauge-invariant master functions that satisfy
similar wave equations. Recently Martel and Poisson [55] have placed the theory in both a
gauge-invariant and covariant form.

For perturbations of Kerr black holes, Teukolsky [20] developed a formalism based on
Newman-Penrose curvature scalars and spin-weighted spheroidal harmonics. In the fre-
quency domain the radial part is a single (complex) master equation [71], which can, of
course, be applied to a Schwarzschild hole as well [49, 72].

An alternative to the Regge-Wheeler-Zerilli (RWZ) approach has recently been advanced
by Barack and Lousto [45]. They propose directly evolving the ten spherical harmonic am-
plitudes that describe the metric perturbation in Lorenz (or harmonic) gauge. In this direct
metric perturbation approach, the equations separate into even- and odd-parity sectors, yet
still involve systems of seven and three coupled equations, respectively. Barack and Sago

[65, 2] have used the formalism to compute the time evolution of metric perturbations
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generated by circular and eccentric orbits on Schwarzschild, along with the resulting SF
components.

The RWZ and direct metric perturbation approaches each have advantages and disad-
vantages. The direct metric perturbation formalism yields directly what one wants as an
input to a SF calculation, namely the metric itself in Lorenz gauge. In a time domain
calculation, as so far employed, it has the disadvantage of requiring simultaneous solution
of a large set of coupled partial differential equations (PDE’s). Anticipating the subtrac-
tion involved in the SF regularization, Barack, Lousto, and Sago have built a fourth-order
convergent finite difference code to compute the modes to sufficient accuracy. In contrast,
the RWZ approach has the advantage that only a single uncoupled wave equation need be
solved for each mode and parity. Unfortunately, an added step is required to reconstruct the
metric from the mode solutions. Moreover, the reconstruction involves terms that are sin-
gular at the particle location and the simplest reconstruction yields the metric perturbation
in Regge-Wheeler gauge [50, 73]. Finally, the RWZ approach provides only the radiative
(¢ > 2) parts of the perturbation and the nonradiative modes (¢ = 0,1) must be derived by
separate means.

In this chapter we opt for using the gauge-invariant RWZ approach detailed by Martel
and Poisson [55], and adopt the Zerilli-Moncrief WZM = Wweéven and Cunningham-Price-
Moncrief \IJEEM = \I"l?gld master functions for even and odd-parity, respectively. Our use
of this relatively standard method is augmented, though, by a new technique that enables
accurate reconstruction of the corresponding parts of the metric in Regge-Wheeler gauge.
We leave for a later occasion our own consideration of the monopole and dipole terms (which
are essential to a SF calculation) and instead direct attention to discussion by Detweiler
and Poisson [30] and recent successful numerical implementation by Barack and Sago [2].

The master functions can be obtained directly by numerical evolution (solution of
PDE’s) in the time domain (TD) (see e.g., [74, 64, 50, 51, 65, 75, 66, 2]) or by numerical in-
tegration of ordinary differential equations (ODE’s) for the Fourier modes in the frequency
domain (FD) (see e.g., [49, 76, 77, 1]). Each method has strengths and weaknesses. TD

calculations require solving just one equation for each £,m mode and time dependence of
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the subsequently reconstructed metric and SF is of direct interest. Disadvantages of TD
calculations include (1) modeling the discontinuous source movement through the finite
difference grid [45, 2]; (2) numerical stability of PDE evolution; (3) difficulty devising nu-
merical schemes of adequately small truncation error; and (4) challenges in posing outgoing
wave boundary conditions at finite radius. In contrast, in FD calculations (1) the numerical
errors tend to be much smaller (i.e., by solving ODE’s); (2) outgoing wave boundary con-
ditions are handled mode-by-mode and extrapolated to infinity and to the black hole event
horizon; and (3) the discontinuous source presents few difficulties in computing (at least)
the Fourier mode functions Ry, (r). However, FD methods require, for eccentric orbits,
computing and summing over numerous harmonics n of the radial libration frequency 2,
for each ¢, m and transformation to the TD is nontrivial given the singular source terms.

Barack, Ori, and Sago (BOS) [1] highlighted the latter difficulty. They used the model
problem of a scalar field ®(t,, 0, ¢) generated by a scalar point charge in eccentric orbit on
Schwarzschild. The spherical harmonic modes ¢g,, (t,7) = r®g, (t, ) satisfy a wave equation
with a singular source, S{ (¢, 1) = Cyp (t,7) 8[r — 7(t)]. Here Cypn(t,7) is some smooth
function and r = r,(t) describes the radial libration of the particle’s worldline between
two turning points. In the FD, ODE’s are solved for the Fourier-harmonic modes Ry, (7).
These mode functions are, at each point r, Fourier series coefficients. The resulting Fourier
series converges for the piecewise continuous (C°) ¢y, (¢,7) but the singular nature of the
source S makes ¢y, (t,r) converge slowly in the region traversed by the point charge. The
radial derivative Op¢y, is however discontinuous at r = 7,(t) and its Fourier series only
converges, in the usual sense [78], almost everywhere. The attempt to assemble the radial
derivative from the Fourier series is plagued by the Gibbs phenomenon; the series converges
to the mean value at the discontinuity and the series “overshoots” and fails to converge
properly in the limit as both n — oo and r — 7,(¢)*.

BOS circumvented the difficulty with a new method of extended homogeneous solutions.
In brief, they use FD analysis to find Fourier-harmonic mode solutions to the homogeneous

equation, valid outside and on either side of the source libration region. The associated
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Fourier series converge exponentially fast to homogeneous solutions of the TD wave equa-
tion. They then analytically extend both homogeneous TD solutions into the source libra-
tion region up to the instantaneous position of the point charge. Summed to adequately
high order, the two homogeneous solutions match in value at r,(t), as expected. With the
field represented in this way, the left and right derivatives can be accurately determined.
BOS argued that the method should work for other problems with similar wave equations,
including the Teukolsky equation.

We show in this chapter that the method can indeed be extended to the case of gravi-
tational perturbations computed in the RWZ formalism, and apply the method to a large
set of Fourier-harmonic modes stemming from a mass in eccentric orbit on Schwarzschild.
(Note that Barack and Sago [2] previously implemented this method in the gravitational
case but only for the ¢ = 0,1 modes in Lorenz gauge.) An important distinction arises:
in the gravitational case the source distribution in the Regge-Wheeler gauge contains both

delta function and derivative-of-delta function terms,

Sem(t, 1) = Gom(t,7) 8[r — 1 ()] + Fo (8, 7) 8 [r — 1(2)], (4.1.1)

with Gy, (t,7) and Fy,, (¢, ) being smooth functions. As a consequence the master functions
have a jump discontinuity at r = 7,(¢) (referred to sometimes as a C~! function). The

resulting extension of the homogeneous solutions, \I/jm and ¥, . written as

o (t,r) = UF (t,7) 0l — ()] + U, (t,7) O[rp(t) — 7], (4.1.2)

where [r —rp(t)] is the Heaviside function, is a type of weak solution to the inhomogeneous
master equation. Thus in the gravitational case in RWZ gauge the difficulty with local
convergence occurs with the master function itself. We show that the use of distributions,
or generalized functions [79], makes possible separate analytic calculation of the expected
jumps in value and slope of ¥y,,. We further demonstrate that the metric perturbation
can be accurately numerically computed, including the time dependent magnitudes of delta

function terms that appear in some of the metric amplitudes in Regge-Wheeler gauge.
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This chapter is organized as follows. In Sec. 4.2 we briefly outline the general mathe-
matical problem of using FD techniques to solve for perturbations in the RWZ formalism.
We also review the standard parameterization of eccentric orbits. Sec. 4.3 concerns the
method of extended homogeneous solutions. We first review BOS’s solution for the scalar
field case. We show then our treatment of more general source terms and extension of the
method to gravitational perturbations. Sec. 4.4 provides numerical results on the computed
Fourier-harmonic mode functions, including convergence tests and calculation of radiated
gravitational wave energy and angular momentum. In particular, the energy and angular
momentum fluxes are shown to agree with past published values. More importantly, the
method is shown to provide a solution to the field and its derivatives that is convergent
exponentially fast everywhere. Then in Sec. 4.5, we show that the equations which allow
the metric to be obtained from the master functions, along with an understanding of the
form of the weak solutions for Wy *" and \Il‘l?gld, can be used to determine both the smooth
and distributional parts of the metric. App. 4.A discusses fully evaluated forms of distribu-
tional source terms. App. 4.B gives the details of such source terms for our case of eccentric
orbits on Schwarzschild. In App. 4.C we concisely summarize the metric perturbation for-
malism in the Regge-Wheeler gauge. We show the construction of gauge-invariant master
functions of each parity, and provide the spherical harmonic decomposition of the Einstein
equations and Bianchi identities. App. 4.D concludes this chapter with a brief discussion of
asymptotic expansions used to set boundary conditions on the mode functions at large r.

Throughout this chapter we use the sign conventions and notation of Misner, Thorne,
and Wheeler [53] and use units in which ¢ = G = 1. We use Schwarzschild coordinates

xt = (t,r,0,p) except as otherwise indicated.

4.2 Background on the standard RWZ approach to gravita-
tional perturbations in the frequency domain

In this section we briefly summarize both the standard notation for parameterizing bound

orbits on Schwarzschild and the usual approach to computing gravitational perturbations
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using the Regge-Wheeler-Zerilli (RWZ) formalism in the frequency domain (FD). The de-
scription of the geodesic motion on the background, in terms of various curve functions, is
used throughout the rest of the chapter. The standard FD analysis provides the notation
for describing the Fourier-harmonic modes, and their normalization, and sets the stage for
discussion in Sec. 4.3 of how gravitational perturbations can be returned successfully to
the time domain (TD). Here, and throughout this chapter, we use a subscript p to indicate

evaluation along the worldline of the particle.

4.2.1 Bound orbits on a Schwarzschild black hole

Consider bound timelike geodesic motion around a Schwarzschild black hole (i.e., p —
0). We may for the nonce use proper time 7 to parameterize the geodesic, (1) =
[tp(T), 7p(T), 0,(T), pp(7T)], With the associated four-velocity u# = dxf, /dr. On Schwarzschild
we take 6,(7) = m/2 without loss of generality. The geodesic equations yield immediate first
integrals and allow the trajectory to be described by the conserved energy £ and angular
momentum £ per unit mass. Alternatively, we can choose the (dimensionless) semi-latus
rectum p and the eccentricity e as orbital parameters (c.f., [49, 2]). A third choice would

be use of the periapsis and apapsis, rmin and rmax. We will find all of these useful in what

follows. The latter two parameter pairs are related to each other by

27 maxTmin Tmax — Tmin
b= ¢ = Imax = Tmin (4.2.1)
Tmax + "min

M(rmax + Tmin) ’

or inversely

pM pM
max — 9 min — . 422
fma 1—e " 1+e ( )
The specific energy and angular momentum are related to p and e by [49]
p(p —3 —¢?) ’ p—3—er -
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The geodesic equations provide the following differential equations for the orbital motion

and for the time dependence of the four-velocity,

dty ¢ £ dep © L drp ? 2 2 2
ar I’ dr " r2’ dr (W) =&~ Uy, ( )
where
oM 2
f(ry=1- — U(r,£%) = f (1 + f2> . (4.2.5)

For purposes of numerical integration there is another curve parameter, originally de-
vised by Darwin [80], that proves useful. Here one introduces a phase angle x that is related
to the radial position on the orbit by the Keplerian-appearing form

pM

=\ 4.2.
1+ ecosy (4.2.6)

Tp (X)

Of course, in the relativistic case x differs from the true anomaly . The orbit goes through
one radial libration for each change Ax = 27. The use of x eliminates singularities in the
differential equations at the turning points [49]. Note that at x = 0, r, = rmin and at
X =T, 'p = 'max. (Also note that in this section we are content with making a slight abuse
of notation in jumping from r,(7) to r,(x), before ultimately settling on 7,(¢).) In terms of

x the equations are

dxy (p—2—2ecosy)(1+ecosx)? [p—6—2ecosy ’ o
de, » 1/2
= 4.2.
dx |:p626COS)(:| ’ (4.2.8)
and
dry __Mp” pos-c | (4.2.9)
dy (1+ecosy)? |p—6—2ecosy ' o

We use Eq. (4.2.7) to derive the fundamental frequency and period of radial motion,
21 2 dt,
Q. =— T, = — ) dx. (4.2.10)
0

v dx
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It is also of importance to have the average rate at which the azimuthal angle advances,
found by averaging the angular frequency dy,/dt over a radial libration via

1 [T dp
O, = — P dt. 4.2.11
o=z [ (%) (12.11)

While 7). represents the lapse of coordinate time in a radial libration, the time T, = 27/,
has no particular physical significance [81]. Finally, because wave equation source functions
contain terms like 0[r — rp(¢)] and ¢'[r — rp(¢)], we have need of derivatives of r,(t),

Ip 112 _2Mf, [y £2 5ML?

.9 2 .
rp(t) =fy— EUP’ Pp(t) = 2 T g, 3M — E + 2 , (4.2.12)
P p P

where we let a dot signify differentiation with respect to coordinate time.

4.2.2 The Regge-Wheeler-Zerilli formalism in the frequency domain

As discussed in the Introduction, we use the RWZ approach to gravitational perturbations
and use specifically the even-parity Zerilli-Moncrief function ¥§'°" [16] and the odd-parity
Cunningham-Price-Moncrief function W94 [18]. See Martel and Poisson [55] for recent
discussion and references therein. Both of these functions satisfy wave equations of the

form
0? 0?
5+ gz~ Vi) | W) = St (4.2.13)
where r, = r 4+ 2M In(r/2M — 1) is the usual tortoise coordinate. The potential used in
Eq. (4.2.13) is either the Zerilli or Regge-Wheeler potential depending on whether the parity
is even or odd, respectively.

The source terms also depend upon parity but further depend on which specific mas-
ter functions are chosen. Martel and Poisson gave the covariant form of S7'™* and S?T?Ld
(see App. 4.C for these in Schwarzschild coordinates) that are associated with the Zerilli-
Moncrief and Cunningham-Price-Moncrief functions. Martel [50] derived the detailed form

of Spye for a point mass in eccentric orbit. Sopuerta and Laguna [75] derived the detailed

form of 5944 for eccentric orbits (see also Field et al. [82]). We give in App. 4.B detailed
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expressions for these sources in a form that is useful for both mode integrations and metric
reconstruction.

In each case the source term has the following general form

Sem(t,r) = Gom(t) 8[r — ()] + Epmn (t) 8'[r — (1)), (4.2.14)

where Gy, (t) and Fp,(t) are smooth (differentiable) functions. Note that the source, as
written here, differs from notation originally used by Martel [50] (who retained smooth
functions of r and ¢, as in Eq. (4.1.1)). Our expression uses the delta function, and parts
integration, to yield a fully evaluated form along the worldline of the particle (see App. 4.A),
making Gy, (t) and Fj,,(t) unique functions of time only.

Eq. (4.2.13) can be solved directly in the TD—an approach that has received much
attention lately. In this chapter we are interested instead in extending the reach of FD
analysis, and the balance of this section provides a brief review of the standard FD solution.
We note in passing that a hybrid approach is possible—using FD analysis for low ¢ and m
modes while using TD calculation for high order modes [83].

On Schwarzschild, eccentric orbits are typically not closed and therefore the motion is
not simply periodic as seen by an asymptotic static observer. The radial libration is periodic
(but not typically sinusoidal) with fundamental frequency ,. The smooth functions G, (t)
and Fgm(t), which depend upon the particle’s radial and angular motion, have terms that
are periodic with fundamental frequency €2, but also involve a term that is proportional to
exp[—imepp(t)]. This latter term comes from restricting the spherical harmonics Y,; (0, ¢)
with 0[¢ — ¢p(t)]. The function ¢,(t) advances with an average rate €, but is modulated
(in an eccentric orbit) by a function A¢(t) that is periodic with fundamental frequency
Q,. Hence, the source Sy, (t,r), and therefore the field Wy, (¢,7), can be represented by
a Fourier series with fundamental frequency (2., but multiplied by a phase factor that
advances linearly with rate €,. These fields would appear simply periodic to an observer
whose frame rotates at rate €2, [49]. To a static observer, a given mode ¢ and m will have

a spectrum of harmonics offset by mf2,; taken together the full field will have a two-fold
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countably infinite frequency spectrum,
W = Wmn = My + 1k, m,n € 7. (4.2.15)
Accordingly, the wave equation (4.2.13) Fourier transforms into a set of ODE’s,

d? 9
|:dT'Z - VE(T) + wmn:| Rfmn(r) = Zémn("”)y (4.2.16)

where Rypn(r) and Zpgy,, (r) are Fourier harmonic amplitudes

1 (T ‘ 1 (T ,
Ry (1) = T /0 dt W, (t,r) e“mnt, Zomn(r) = T/o dt S (t,7)e“mnt. (4.2.17)

The series representations of Wy, (t,7) and Sp,(t,r) are

‘Ifgm t 7“ Z Rgmn Mm"t, ng t, T Z ngn M"mt, (4.2.18)

n=—oo n=—oo

and are subject to the usual provisos of Fourier theory regarding for what r Eqs. (4.2.18)
converge to the original functions.

In order to find the solution to Eq. (4.2.16), we start by solving the homogeneous version
of that equation, obtaining two independent solutions. Using the terminology of Galt’sov
[84] (see also [85] for a clear presentation of basis modes), the R, (r) solution is computed

by setting a unit normalized “in” wave boundary condition of
Ry (1 — —00) = e~ omnT=, (4.2.19)

near the horizon. Similarly, the R, (r) solution arises from setting a unit normalized “up
boundary condition of

R, (r — +o0) = emn’, (4.2.20)

at large r,. Formally, these homogeneous solutions are both valid in the entire range 2M <

r < oo. The standard method of integrating the Green function and source (the method of
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variation of parameters) gives the solution to the inhomogeneous equation (4.2.16),

Ron(r) = ¢ (MRE (1) + ¢, (MR, (1), (4.2.21)
where
cf (r)= ! /r dr’Rzm”(T,)Zemn(r,)
B A (1222
=g [ R ) Zomn () -
CZ T = T s
mn Wémn , f(ﬂ)
and
- dR) .. dR,
—— mn. _ mn | 4.2.2
Wé Rﬂmn d?"* Rfmn d?“* ( 3)

is the Wronskian. Outside the source libration region, Eq. (4.2.21) reduces to the normalized
homogeneous solutions that are properly connected through the source region,

Rzrmn(r) =Cf

fmn Rzrmn (r) y T > Tmax

(4.2.24)

Rf_mn(r) = Cﬁ_mnRZ_mn<T)7 r< Tmin,

where CF

mn ar€ the values of c;tmn('r) evaluated at the ends of the range of the source,

Cz_mn = cz_mn (rmax) ) Cf_mn = cf_mn (Tmin) . (4225)

4.3 The method of extended homogeneous solutions in the
gravitational case

4.3.1 Brief review of Barack, Ori, and Sago’s method of extended homo-
geneous solutions

As a model problem, Barack, Ori, and Sago (BOS) considered the scalar field ® produced
by a scalar point charge in an eccentric orbit on a Schwarzschild background. The spherical
harmonic amplitudes ¢z, (t,7) = 1@, (t,7) of the scalar field satisfy RWZ-like equations

fully analogous to Eq. (4.2.13) but with source functions that only depend upon a Dirac
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delta function,

sgealar — ¢y (8, 7) Sl — (1)) (4.3.1)

Im

Here Cyp,(t,7r) is a smooth function that is derived from the particle’s point-like charge
density p.

With a delta function source the amplitudes ¢, (t,7) are left piecewise continuous (C?)
at the instantaneous particle location 7,(t) but lose all differentiability there. BOS ar-
gued that this behavior, while surmountable in TD calculations, would cause difficulties for
Fourier synthesis in FD calculations. As they convincingly demonstrated with their first
two figures, while ¢y, (t,7) converges exponentially fast outside the radial libration region,
the Gibbs phenomenon is responsible for a very slow convergence of ¢z, (t,7) between ryiy
and Tmax. Furthermore, the radial derivative 0, ¢¢y, is discontinuous at r,(t) and suffers the
full effects of the Gibbs phenomenon—the Fourier series converges to the mean value at the
discontinuity and partial sums (—N < n < N) overshoot in the limit as both N — oo and
r — 1,(t)T. This behavior is a serious obstacle to straightforward use of FD calculations in
SF regularization.

As a solution to this problem, BOS developed the method of extended homogeneous
solutions (EHS). Their method involves using the Fourier-harmonic modes of the homoge-
neous equation in the FD to synthesize homogeneous solutions ¢, (t,r) and gbzrm(t,r) to
the TD wave equation. The Fourier convergence of these homogeneous solutions is expo-
nentially rapid. While these solutions exist in the entire radial domain (2M < r < 00),
ordinarily ¢, (t,7) and ¢, (t,r) would be viewed as meaningful in their respective source-
free regions, 7 < rmin and r > rpax. The heart of the BOS method lies in extending both
of these solutions into the region of radial libration up to the instantaneous position of the
particle.

BOS demonstrated the method numerically using the monopole term of ®. A key
condition for success of the method is that, as N — oo in the partial sums, one finds

lim ¢, (t,r)= lim ¢, (t,r), (4.3.2)

r—=1p(t) r—=7p(t)
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as expected analytically. This was observed numerically and the method as a whole con-
verges rapidly since the FD solution of the inhomogeneous equation is never summed. BOS
went on to argue that the method could be extended to any ¢ and m for scalar, electromag-

netic, or gravitational fields.

4.3.2 Application to gravitational perturbations

In this section we detail our application of the method to the gravitational case in RWZ
gauge. It is worth first observing the magnitude of the problem to be circumvented. Given
the gravitational source (4.2.14), and the solution to Eq. (4.2.16) afforded by Eq. (4.2.21),
the standard approach would represent the inhomogeneous solution to the master equation

(4.2.13) by

+N
Ui (t,r) ~ Ui r) = 3 Ropn(r)e ™, N = oo, (4.3.3)
n=—N

std

where we use the ~ to indicate that the equality between the actual solution Wy, and ¥3"

holds almost everywhere for N — oo.

Looking ahead somewhat, we use our numerical code to obtain a particular spherical
harmonic amplitude, Woo(t,r) (¢ = 2, m = 2), and its radial derivative, 0,Was(t,7). We
can also use the code to assemble the standard partial Fourier sums (see FIGs. 4.1 and
4.2). We find that the Gibbs problem with the standard approach is significantly worse in
the gravitational case (in Regge- Wheeler gauge) than it is for the scalar field. In the present
case the field itself has a discontinuity and the radial derivative is both discontinuous as
r — 7,(t) and also has a delta function singularity at r,(t). The left panels of FIGs. 4.1
and 4.2 are familiar; the partial sums have difficulty representing the jump discontinuity
and overshoot the exact solution (solid curve). In the right panels, the singularity at ry(t)
wreaks havoc on the ability of the Fourier synthesis to represent the exact solution.

On a bright note, outside the range of the source, the standard solution converges
exponentially fast. Nevertheless, in the source region between r,i, and . the convergence
will be algebraic in general and disastrous at the location of the particle. A discontinuous

(or worse, singular) function cannot be accurately represented by a finite sum of smooth
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Figure 4.1: The standard FD approach to reconstructing the TD master function and its
7 derivative. The left panel shows U5kt and the right shows 9,U$§! at t = 51.78M for a
particle orbiting with p = 7.50478 and e = 0.188917. This figure is analogous to FIG. 1
of BOS [1]. Partial sums are computed with Eq. (4.3.3) and shown for different N. For
contrast we plot the converged solution from the new method with a solid curve (see FIG.
4.3). The arrow in the right panel gives a notional representation of the delta function
singularity present in 9,Woo; the amplitude of this singular term is related to the jump in
Wy seen in the left panel.
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Figure 4.2: An alternate view of the behavior presented in FIG. 4.1. A change in the scale
in the left panel emphasizes the Gibbs overshoots in Wos. On the right, a zoom-out of the
vertical scale more clearly indicates the attempt of the Fourier synthesis to capture the
delta function at ry(t).

functions.

We now generalize the EHS method to the gravitational case. We start by recognizing
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that RE  from Eq. (4.2.24) are valid solutions to the homogeneous version of Eq. (4.2.16
mn

throughout the entire domain outside the black hole,
RE (ry=CE RE (r) > 2M (4.3.4)
{mn e emn\T )5 r ) o
Next, we use these to define the time-domain extended homogeneous solutions,

E (t,7) ZRM e~tmnt > 2M, (4.3.5)

which result from inserting R;tmn into Eq. (4.2.18). The central claim is then that for any

t and r the actual solution to the inhomogeneous wave equation (4.2.13) is given by
Uy (t, ) = UEHS (¢, 1) = U ()0 [r —rp(t)] + T, (t,7)0[rp(t) —1r]. (4.3.6)

The argument made by BOS can be extended to the gravitational case and goes as follows:

e We denote the desired true solution of the inhomogeneous wave equation as Wy,,.
Outside the domain of the source (1 < rmin, "max < 7) Yo = \IJStd \I/EHS because

there Rypny = Rzkmn.

e It is assumed that Uy, (t,7) is analytic in the entirety of the two regions 2M < r <

rp(t) and 7,(t) < r (excluding only a neighborhood of 7,(t)).

e Because the homogeneous solutions \Ilztm are expected to be analytic everywhere,
\I'?nljs(t, r) will be analytic in the two regions discussed above (excluding only a neigh-

borhood of 7,(t)). (See the extended discussion BOS have about this.)

e Because Wy, and \I’KETES are identical outside the region of libration, and they are both
analytic everywhere up to the location of the source, they must be equal over that

entire domain.

Here we provide an additional justification for the assumed form of the solution given

in Eq. (4.3.6). The source term of the wave equation is a distribution, or generalized
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Figure 4.3: The EHS approach to reconstructing the TD master function and its radial
derivative. As in FIG. 4.1, we give W55 and 9, WEHS at ¢ = 51.78 M for a particle orbiting
with p = 7.50478 and e = 0.188917. Partial sums of WEHS are computed from Eq. (4.3.5),
with a range of —N < n < N. The full U5 and its r derivative result from N = 10,
which gives agreement in the jumps in WFEIS and 9,WENS to a relative error of 10710, On
the right, the presence of a delta function singularity is notionally depicted with an arrow.
The time dependent amplitude of this singularity is separately computable from the jump
in \PQQ.

function [79]. Accordingly, any solution of Eq. (4.2.13) will be a weak solution—a generalized
function itself-with loss of (classic) differentiability at the singular point (). To determine
the suitability of Eq. (4.3.6) as a solution of Eq. (4.2.13), we generalize the concept of
differentiation to encompass distributions. Thus, for example, df(z)/dz = §(z). We can
then take Eq. (4.3.6) as an ansatz, substitute in Eq. (4.2.13), and determine what conditions
are required that it be a (weak) solution. For clarity, in the rest of this section we suppress
the ¢ and m indices.

Rather than use the RWZ equation as it stands, we introduce a coordinate transfor-
mation to fix the position of the singularity. Defining z = r — r,(t),t = ¢, the derivatives

transform as 0,, = f(r)0, and 0y = 0f — 7,0, and the wave equation (4.2.13) becomes

L(V) = —02T + (f* —72) 92V + 27,0;0. ¥

+ (i + (f0-1) )00 = VO = Go(2) + F(2). (43.7)
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Now we assume that U has the form given in Eq. (4.3.6) and substitute it into Eq. (4.3.7).
The functions UF and ¥~ are differentiable and satisfy the homogeneous equation, L(¥%) =
0. A term of the form L(¥*)6(z) + L(¥~)0(—z) appears in (4.3.7) and drops out. Other

singular terms remain, created by derivatives of the Heaviside function, and we are left with

(2 = 72) (10:91, 0(2) + [91, (=) ) + 2605 (9], 0(2))

+(@+u@ﬁ)WMa@:éa@+ﬁw@.@3&

where

[W]p(t) = T (t,7p(t) — U™ (t,7p(t))

[0-]p(t) = 09T (¢, (1)) — O U™ (£, 7p(t))

(4.3.9)

are the jumps in ¥ and 9,V at z = 0. Naively, we might expect that we can simply
equate the coefficients of § on the two sides of Eq. 4.3.8, while doing the same with the
0’ coefficients. However, the ¢’ term on the left hand side must first be fully evaluated
(as a function of time) at the location of the particle. To do this, we use the identities in

Egs. (4.A.1) and (4.A.5), which leaves

(5 = 75) [0-9158(2) + (fy = 73) [¥]p0'(2) = 2 (fy0:p) [¥1, 6(2)

44@%@%&&@+Gwﬂh@m)wh&d=éﬂd+ﬁﬂd,M&m)

where f, = f(r,(t)). Note that there is no comparable expansion on the right side from
the F¢'(2) term because F' is already fully evaluated at = 7,(t), by design. From here,
we read off the jumps in U and its r derivative at 7,(¢) from the coefficients of §’ and 9,

respectively. Returning to Schwarzschild coordinates and using Eqgs. (4.2.12) to remove ),
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and 7"}2, terms, we find

2 ~
[V1,(0) = 7o F(0),
p'c“?p ~ 1 L2 5ML?\ = d (4.3.11)
[0, 7], (t) = 7207 [G(t) + 7 <3M et ) Ft) - zfpdt([[\p]]p)] .

From the standpoint of the original coordinates, the partial time derivative J; becomes the
convective, or total, time derivative along the particle worldline.

These jump conditions amount to internal boundary conditions that are necessary con-
ditions on a solution to the inhomogeneous wave equation in the TD. They were discussed
by Sopuerta and Laguna [75] and also later, with corrections, by Field et al. [82]. In our
FD-based calculations, they provide a powerful check on our transformation of the solutions
back to the TD. Given the indirect way in which the Fourier transform of the source Sy,
determines the Fourier coefficients of the extended homogeneous solutions, considerable cre-
dence is lent to the method in seeing the partial sums of \I/Enlfs converge toward satisfying
these jump conditions. Secondarily, the jump conditions provide useful stopping criteria in
the numerical method (see Sec. 4.4.3).

While not a focus of this chapter, we consider briefly TD simulations. There, to find
a unique solution the internal boundary conditions must be augmented with initial data
on a Cauchy surface and, potentially, outer boundary conditions. Care must be exercised
to switch on the source smoothly in the (near) future of the initial value surface [82] (also
Lau, private communication). Additionally, imposed initial data will not typically match
long term periodic behavior induced by the source, and transients will sweep through the
system for several dynamical times. In contrast, in the FD approach, the proper outgoing
and downgoing behavior at the outer boundaries is built in from the outset and only the

steady state, periodic behavior is obtained.

4.3.3 Computing normalization coefficients in the gravitational case

Finally, we provide some details on how the singular source is integrated to provide the

matching normalization coefficients C/ ~and C,  that are used in Eq. (4.3.4). BOS
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detail the calculation of normalization coefficients for the scalar monopole in their App. C.
The gravitational case follows the same general idea, but involves some technical differences

and challenges. We start by combining Eqs. (4.2.25) and (4.2.22), giving

1 [rme  RE (1) Zymn (1)
+ Imn mn
= d . 4.3.12
Cfmn II,@T)’LTL /?“min r f(?”) ( 3 )

The FD source term Zy,,, () comes from plugging Eq. (4.2.14) into Eq. (4.2.17), yielding

T N - .
ngn(’r‘) = Ti A dt (sz(t) 5[’/“ — Tp(t)] + Fgm(t) 5’[7" — Tp(t)]>6lwmnt. (4'3‘13)

r

The equivalent integral BOS present for the scalar monopole is their Eq. (C2), which they
evaluate immediately by changing the integration variable from t to r,. Here, with a
derivative-of-the-delta function present (in RWZ gauge), the immediate evaluation of this
integral produces terms that are singular at the turning points (7, = 0). These terms are
no problem analytically, but they are troublesome when performing the final numerical
integration. We therefore find it is advantageous to delay this integration. Plugging our
expression for Zg,,, in above, we have

f(r)

" 1 Tmax
cf =~
tmn WﬂmnTr /T

min

T _ ~ .
/0 dt (Ggm(t) S[r — rp ()] + Fum(t) '[r — rp(t)])eant] . (4.3.14)

In order to avoid the singularity at the turning points, we switch the order of integration.
The integration of the delta function itself is then straightforward. The derivative of § term
requires an integration by parts. Because of the compact support of the source term, we

can extend the range of integration and no surface terms appear. We are left with

1

fpﬁfmn(rp)éem(t)

oM . 1 dRT 8 .
+ <2R3F (rp) — W) Fgm(t)] emnt dt - (4.3.15)

1 T
= /
tmn menTr 0
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where we use a p subscript to indicate evaluation of a quantity at r = r,(¢). Our final
integral is analogous to Eq. (C7) in BOS.
Here is a summary of key details of the application of the method in the gravitational

case:

e The EHS method, applied to the gravitational case, gives exponentially converging
solutions to Eq. (4.2.13) everywhere, including the location of the particle. (See
FIG. 4.4.)

e Working in Regge-Wheeler gauge, the gravitational TD source term contains a delta
function and a derivative-of-the-delta function, which cause Wy, to exhibit a jump
and 0,Wy,, to exhibit both a jump and a delta function singularity at the particle’s
location. (See FIG. 4.3.) In the scalar case, the field is piecewise continuous at the

particle, with a jump in the r derivative. (See FIG. 3 in BOS.)

e Eq. (4.3.15) is valid for all radiative multipoles (¢ > 2). The ¢ = 0, 1, modes must be

handled separately.

e Martel’s [50] Gy, (t,7) and Fy,(t,7) from Eq. (4.1.1) are not in fully evaluated form.
As discussed in App. 4.A, for a given multipole, unique functions of time Fgm(t) =
Fpp (t,7p(1)) and G (t) = G (t,7()) — 0y Frn (,7(t)) emerge after fully applying
the delta function constraint. We use the tilde to distinguish fully evaluated coeffi-

cients.

e In practice, we take advantage of the fact that some of the functions in the integrand
of Eq. (4.3.15) are even over the period of radial libration, while others are odd. Then,
rather than integrating over ¢ from 0 — 7)., we can limit the range of integration to
0 — T,/2. Further, we change variables to y, as shown in Sec. 4.2.1 and integrate

from 0 — 7.

odd

e For Wy’ we use the Zerilli-Moncrief master function, and for W)J¢ we use the

Cunningham-Price-Moncrief master function. This formulation works for any master
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function that obeys a Regge-Wheeler-like equation and has a source term that can be

written in the form of Eq. (4.2.14).

4.4 Numerical method and results from mode integrations

4.4.1 Algorithmic roadmap

Here, we explain the specific steps our code takes to solve the inhomogeneous wave equation
(4.2.13). There are several stages to the process, and at each step we compute at least one
more order of magnitude accuracy than is needed at the subsequent step. The code is
written in C, and we use the Numerical Recipes adaptive step size fourth order Runge-

Kutta integrator [86].
1. Specify an orbit through a choice of the semi-latus rectum p and eccentricity e.

2. Numerically integrate Egs. (4.2.10) and (4.2.11) to get the fundamental frequencies

of the system, €2, and 1, and hence wy,, = m€, + nfl,.

3. Choose a specific £ and m. If £+ m is even (odd), use even (odd) parity potential and

source terms. Choose starting n. (See Sec. 4.4.3.)

4. Solve the homogeneous version of Eq. (4.2.16) to get unit normalized radial mode

. S+ . .
functions, R;, ., in the source-free region:

e Use the asymptotic expansion (see App. 4.D) to set an “up” plane wave boundary

condition at r, — +00, as in Eq. (4.2.20). Numerically integrate up to the region

+

I (We let r*min/ M8 he the r, value corresponding

of the source at r** to get R
to Tmin/max‘)
e Use a convergent Taylor expansion to set an “in” plane wave boundary condition

(Eq. (4.2.19)) at modestly negative r.. Numerically integrate up to the region

of the source at ;"™ to get R, .

5. Solve the homogeneous version of Eq. (4.2.16) to continue the unit normalized radial

mode functions, Rjtmn, into the source region, while also computing the normalization

113



. +
coefficients C I

e Simultaneously integrate Eqgs. (4.2.16) and (4.3.15) from y = 0 — 7 (equivalently
t=0—1T,/2 and r = Tpin — Tmax)- This gives Rz_mn in the region of the source

and C;"

Imn*
e Simultaneously integrate Eqs. (4.2.16) and (4.3.15) from xy = —7 — 0 (equiva-

lently t = —7,/2 — 0 and r = Tmax — Tmin). Lhis gives R in the region of

mn

the source and Cémn.

As discussed in Sec. 4.3.3, the integrand in Eq. (4.3.15) contains parts which are even
and parts which are odd over the radial period. By keeping the correct terms, we can

get away with efficiently integrating over only half the period.

6. Use the coefficients to normalize the homogeneous solutions outside and inside the

range of the source, as in Eq. (4.3.4).
7. Assess whether there is convergence of the partial sum over n. (Again, see Sec. 4.4.3.)

e If yes, we are finished with this ¢, m mode.

e If no, return to Step 4 with the next n.

4.4.2 Energy and angular momentum fluxes at r, = oo

To evaluate the energy and angular momentum fluxes at r, = 0o we use the Isaacson
stress-energy tensor. The energy and angular momentum fluxes, for each ¢, m mode, can

be written as [87]

1 (e+2)

1 .y im (£+2)!
fm 641 (0 — 2)!

’ tm = 64m (0 — 2)!

. 2
(¢ 7)

B (En)WE (). (440)

Here, an asterisk signifies complex conjugation. (We use W5'*" when £+m is even and \Ilz’gld
when ¢ + m is odd. In general there would be contributions from both Wi**" and \Il;’%d for

each mode, but our choice of 6, = m/2 leads to one of these functions vanishing for each ¢
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and m combination.) In terms of FD amplitudes the expressions become

- 1 (+2)
tm = Gax 2)!

(¢ —

. m (0 +2)! _

L:t i + % —i(wmn wmn/)t.
m — 6471’ (g 2)! ;n;w RémnRZmn

—t(Wmn—w t
2 :Wmnwmn’RgmnRgmn (mn =) )

(4.4.2)

As is well known, the fluxes must be suitably averaged over time or space to obtain mean-
ingful, invariant results. We average these quantities in time over one radial oscillation,

which yields

: 1 (+2)! 2
<E2tm> - 6471' ( - )| Z Ymn @mnRemn ’

. 4 m + | n AL (443)
<L€m> - 64 (E — 2)! ~ Wmn CfmnRémn

Here, we have also introduced Rétmn CfmnREtmn. As discussed in App. 4.D, we can

write the radial function as RE (r) = Jgfm

o ( ) :l:’innT*7 where Jlfnn(r) — 1 as ry — *oo.

Therefore, if we set Jgfnn =1, we can evaluate the fluxes at r, = +00, leaving

-2)!

" (4.4.4)
S m (L +2)!
<L2tm > ~ G4m0 — 231 Zn:w”m [Cimnal

4.4.3 Code validation

To compute the total energy and angular momentum fluxes, we must sum Eqs. (4.4.4) over
£ and m. The resulting expressions are formally over the ranges 2 < £ < oo, —¢ < m < ¢,
—o0 < n < 0o. When computing Fand L numerically, we put limits on each of these sums.
To begin with, the low £ modes matter more than the high ones. But, the more eccentric
an orbit, the more ¢£’s must be computed to achieve the same precision in our final values.
For the orbits we considered in Table 4.1, in order to achieve a relative precision of 10~'2
in our final flux values, the highest ¢ necessary was ¢ = 29. (See Sec. 4.4.4.) In Table 4.2

we truncate the £ modes at £ = 20, as done by Fujita et al. [3].
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Because of the symmetry of the spherical harmonics, the fluxes from any given —m
mode are equal to those from the corresponding +m mode. Therefore, we fold the negative
m modes over onto the positive ones, and simply multiply each positive m mode by two.

Additionally, as ¢ gets larger, it is no longer necessary to compute all m values. As can be

oo/H

o contributions come from the

seen in Table 4.3, for a given ¢, the largest E;;L/ " and L
m = ¢ mode. We start at m = ¢ and decrement m until the fluxes are no longer significant.
For low ¢ values we still wind up computing all 0 < m < /¢, but as ¢ increases, we need
progressively fewer m modes.

Determining the necessary n’s is a bit more involved. For a given ¢ and m, there is a
range, Nmin t0 Nmax, over which we sum in order to achieve our desired precision. Looking
at Table 4.3, it is evident that when m = 0, the range of n is essentially centered on 0. For
these modes, we start with n = 0, and compute fluxes for all positive modes. When we have
seen no change to any of the flux values (at a pre-specified level of precision) for several
consecutive modes, we stop and repeat the process for the negative n’s. As m increases,
this range of n’s shifts more and more into the positive. For any ¢, the m = ¢ mode has far
more positive n modes than negative. Eventually, ¢ becomes so large that nyi, > 0 for the
m = £ mode. For modes where we suspect that ny;, > 0, we find it advantageous to start
with a rough sweep of a large range of possible n values. We calculate Ezofjm (the energy
flux at r = +oo from one n mode) to low precision for a small number of n, spaced out over
this range. The n for which we find the largest Egmn will be near the center of the nuyin
t0 Nmax range. We then perform our high precision mode integrations for all significant n
values above and below this n.

If we are interested in a local calculation (as one would perform for a SF evaluation), we
have a different method for determining which n’s are significant. We still use the energy
fluxes to find the approximate center of the significant n range, but for the “breaking

condition” we compute n’s until the jumps in Wy, and 9, VY, converge properly, as follows:

e Use Eq. (4.3.5) to compute a partial mode sum approximation of both \Ilztm (t,rp) and

Br@fm(t, rp) for a large number of times t; throughout the orbit.
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e Numerically evaluate the jumps in those partial sums

[90], = i (t70) = U (t7p)

H@T\Ilé\,fn]]p = GT\I!?m (t,rp) — OV, (t,rp),

(4.4.5)

for those times ty.

e Compute the analytical values of [[\I/fm]]p and H@T\I/fm]]p derived in Sec. 4.3.2 for those

times ty.

o If [[\I!é\ffn b= [[‘I’eAm]]p and [[GT\I/?;” b= [[&‘Iffm » at all times ¢, to a chosen precision,

we have computed enough n modes.

e Otherwise more n modes are needed. As in the flux computation case above, we
perform the mode calculations for the n values above our starting n, and once that
partial sum has converged to our desired precision, we solve for the n’s below our

starting n until the jump values agree.

4.4.4 Results

One of our most important results is the exponential convergence of \IJEETES and its r deriva-
tive at the location of the particle. FIG. 4.3 shows a partial sum of these two quantities
converging after only a few modes. Compare this to FIGs. 4.1 and 4.2, which shows the
standard FD approach. In particular, note in those figures the failure of the standard ap-
proach to accurately represent 0,W¥y,,, even after a large number of modes. This function
is particularly badly behaved in the standard approach as smooth functions attempt to
capture a delta function.

Also of note is FIG. 4.4, which shows that the convergence from the method of extended
homogeneous solutions is indeed exponential, all the way up to the location of the particle.
Fast and accurate computation of Wy, and 0, at r,(t) will eventually be critical for
reliable local SF calculations.

In order to check our code’s accuracy, we computed energy and angular momentum

fluxes for circular and eccentric orbits. Our circular orbit fluxes agree, mode-by-mode, with
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Figure 4.4: A plot of the convergence of the master function using the two methods. For
a particle orbiting with p = 7.50478 and e = 0.188917 at t = 51.78 M we compute the
master function Woo(nmax) by summing over modes ranging from —npmax < 17 < Ny for
Nmax = 15. We plot the log of the difference between Was(nmax) and the partial sum Wos(N),
for different N < npax. For the standard approach (left), we see exponential convergence
in the homogeneous region, but only algebraic convergence in the region of the source. The
method of extended homogeneous solutions (right) yields exponentially converging results at
all points outside and inside the region of the source. The method of extended homogeneous

solutions gives exponential convergence for 0, \IJEES as well.

published results (e.g. Cutler et al. [88]) to high precision. For eccentric orbits, we are
only aware that total energy and angular momentum fluxes have been published. Our FD
results agree with the fluxes at r — oo of Fujita et al., published in [2] to at least 107°.
These are included in Table 4.1. Fujita et al. have also published horizon energy fluxes [3],
which we agree with, to at least 10~ for a range of eccentricities. These are given in Table
4.2.

For those wishing to reproduce our results, in Table 4.3 we give mode-by-mode fluxes
up to £ = 5 at r = oo and down the black hole at r = 2M for a particle in orbit with
p = 8.75455 and e = 0.764124. Included are the ranges of n modes summed over to achieve
these results.

As expected, our code is more efficient for low eccentricities. The first orbit in Table
4.1 (p = 7.50478, e = 0.188917), runs in under a half hour on a single processor machine,
giving the total flux for all 2 < ¢ < 23 (although note the limits on m and n mentioned in

the previous subsection) to a fractional error of 107'2. As e increases, though, run times
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increase greatly. The second orbit in that table (p = 8.75455, e = 0.764124) takes six hours
to achieve the same accuracy for all necessary 2 < ¢ < 29. And, whene =0.9for 2 < /¢ <20
in the last row of Table 4.2, we had to raise our fractional error to 10719 in order to get a
run time of eighteen hours.

Clearly, as e gets close to 1, FD methods will lose out to TD codes, which handle high
eccentricities with more ease. Still for 0 < e < 0.9, our run times are not unreasonable

when considering the high accuracy we achieve.

4.5 Reconstruction of the metric perturbation amplitudes

The full benefit of having complete and highly converged solutions for the master functions
lies in using them to reconstruct the metric. Ultimately, one wants to use the information,
along with an appropriate regularization scheme, to compute the self force. A developed
approach to doing this is the mode-sum regularization method [89], which makes use of
Lorenz gauge. Here we use the information encoded in the master functions to compute
accurately the spherical harmonic amplitudes of the metric perturbation in Regge-Wheeler
gauge. The ability to determine the metric at all locations, including at the particle lo-
cation, should serve as a useful starting point for computing the SF, either via a gauge
transformation or an alternative regularization technique.

We summarize the metric perturbation (MP) formalism in App. 4.C, where the defi-
nitions of the master functions, ¥7’*" and \Ilggld, are given in terms of spherical harmonic
amplitudes of the metric and their radial derivatives. We reserve for this section giving the
equations, (4.5.5) and (4.5.15), for reconstructing the metric amplitudes in Regge-Wheeler
gauge from the master functions. These equations involve first derivatives, and in some
cases second derivatives, of the master functions. They also involve spherical harmonic
projections of the stress-energy tensor. Based on the form (4.1.2) anticipated in a master
function, both of the abovementioned facts contribute to an expectation that the MP am-
plitudes might have point-singular behavior at r,,(t) in the form of both § and ¢’ terms.

We show that all potential ¢’ terms cancel out. However, in general a MP amplitude might
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have a functional form

M(t,r) = MY (t,7)0(2) + M~ (t,7)0(—2) + M3 (t)5(2),  z=7—ry(t), (4.5.1)

where M+ (M ™) represents a smooth function in the region r > r,, (r < 7,,), and M? is a
smooth function of ¢ alone, giving the magnitude of the singularity. We examine M? for
all six non-zero MP amplitudes in the Regge-Wheeler gauge, and find three such terms to
be nonvanishing. Throughout the rest of this section we again suppress spherical harmonic
labels £ and m.

As mentioned the metric reconstruction equations, of each parity, require spherical har-
monic projections of the stress-energy tensor. For a particle of mass y, traveling on a

geodesic of the background spacetime, with four-velocity u, it is

dr
T (%) = ut (T)u? (1) 6 [z — (7)) . 4.5.2
(%) Ner (T)u”(7) 0% [x = 2p(7)] (4.5.2)
In Schwarzschild coordinates the determinant of the metric is g = —r*sin? 0. After changing

the variable of integration to coordinate time ¢, we have

pur(ur(t)

T (2%) = W) ()2 S[r —rp(t)] 6[p — pp(t)] 6[0 — m/2]. (4.5.3)

Spherical harmonic projections of T#” appear as source terms in the decomposed Einstein
equations (App. 4.C) and these are in turn combined to produce the source terms for
the master equations (App. 4.B). In the subsections that follow, we evaluate the time

dependence of all of the stress-energy tensor projections. We use the definitions

A(F) = A+ % a= U2l 2)2(6 -1

. (4.5.4)
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4.5.1 Even parity

The even parity MP amplitudes are expressed in terms of Ween and the source terms by

(see [50])

K(t,7) = fO,Veyen + AU —iQ“

, ') = T ¥ even even ()\+ 1)A )
hrr(t)r) = % |:)\+1\I’even - K:| + iarK,
f I (4.5.5)

htr(t7 T) = Tatar‘lleven +rB a15‘:[Jeven - )\:_ 1 |:Qtr + C&fatQtt:| )

htt(t7 T) = f2hrr + fQﬁa
where

1 3M 2M 1 3M 3M?

These equations result from the definition (4.C.6) of Weyen and its substitution into the
even-parity field equations (4.C.3). The even-parity projections of the stress-energy tensor
that appear in the equations above are defined by Eqs. (4.C.4). By enforcing the delta
function constraints, they can be written in fully evaluated form (see App. 4.B), with each

having a time dependent magnitude multiplying the radial delta function

QU(t,r) = q®(®)olr —rp(t)],  Q(tr) = q*(t) Olr —rp(1)],

Q)= ) olr —rp()],  QHtr) = ¢H (1) 8[r — rp(8)],

(4.5.7)

where we use a lowercase ¢ as the base symbol of the corresponding magnitude. With

Eq. (4.2.4) giving the four-velocity u”, the stress-energy tensor and Egs. (4.C.4) can be
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used to find

& f u”
tt _ * T — p 2 712 * tr — *
q(t) = SWM—Tgpr , q"(t) 87W5r% (5 Up) Y™, q"(t) SW/L—T%Y ,
16 L 167 L f
tt — * T(H) = ~JIP Ty
¢ ) W+ 1 =7+ et te (4.5.8)
L2 f (-2 L% f
b _ Py % i o Py %
= 8nu— 2y — 32 = by
() =8mug e (1) =32mu =5 g r2ee

Here, Y, Y,,, and Y,,, are shorthand for the even-parity scalar, vector, and tensor spherical
harmonics, respectively, evaluated along the worldline at 6 = 7/2 and ¢ = ¢, ().

Now consider the reconstruction of the MP amplitude K, given in Eq. (4.5.5). Using
the expected functional form of ¥ given in Eq. (4.1.2), K obviously does fit the general
form (4.5.1) claimed above. In fact, we find

2 42
ot it

+ _ + + Sy
K=(t,r) = fO, ¥~ 4+ AU~ K (t)—fp[[\ll]]p_()\+1)Ap

=0, (4.5.9)

where the vanishing of K follows from use of Eq. (4.3.11) for [v],, and ¢"* from Eq. (4.5.8).
Therefore, we see that the even-parity metric function K in Regge-Wheeler gauge is (only)
a C~! function at the location of the particle.

Using the same approach to evaluate h,, in Eq. (4.5.5) we have

BE (£ r) = sz [A g Ki] + ?&Ki,
T
(4.5.10)
hfr(t) = @[[K]]p = 1p[0, V], + TI}AP [¥],.
p p

Here, we have extended in a natural way the use of the [ ], notation to let [K], represent
the jump in K at z = 0. We find that the Regge-Wheeler metric function h,, is not
only discontinuous across r,(t) but also has a point-singular term, which is an artifact of
Regge-Wheeler gauge.

The hy, function is more subtle than the previous two. Looking at Eq. (4.5.5), we need
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the following terms involving W,

rBoyV =rBo: VT 0(z) + 1BV 0(—z) — 1, Bprip[¥], 6(2),

100V = 100,V 0(2) + rd:0, ¥~ 0(—2) (4.5.11)

+ [Tpcclit (H\Ijﬂp) + 15[ Py — rprpl0r Ty | 0(2) — rpip[ W], & (2).

On the right side of these equations we have evaluated all the § and ¢’ coefficients at 2 = 0
with Eqgs. (4.A.1) and (4.A.5) (fully evaluated form). The singular terms that arise in these

expressions can be grouped with the similarly singular contributions from the source terms,

r? o

tr __ p tr
A1 Tl k)
rf 1 dgtt  3MrZ+12Mr, — 4A\Mr, — 18M?*
Groa S oo, [t 5, i 0(2)
ol
- ()\_51];[\ qutt 5/(2)‘
p
(4.5.12)

Upon carefully checking the time dependence of ¢'* and the jump in ¥, we find that the
" terms cancel out. There are multiple ¢ terms, but after using the expressions for [¥],,
[0,¥], in (4.3.11) and the relevant ¢’s in (4.5.8), most of the terms cancel and we are left

with

hE(t, ) = 1010, 9% + rBOUE,  hi(t) = &2 fr(’}z ¢ (4.5.13)
p=p

Finally, the hy term is simple. We insert Eq. (4.5.10) into the field equation for hy and

get
hig(t,r) = f2his,  h(t) = foh7 + fod. (4.5.14)
So, we see that in Regge-Wheeler gauge K is C~! with no singularity along the worldline of

the particle, but the three even-parity MP amplitudes in the “¢, r sector” have point-singular
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artifacts given by Egs. (4.5.10), (4.5.13), (4.5.14).

4.5.2 0Odd parity

Once ¥,4q has been computed, the odd-parity MP amplitudes can be reconstructed via

f rf r r?
ht(t,’l“) = 587« (T'\Ijodd) — XP 5 hr(t,’l”) = ﬁ@tqlodd —|— wp 5 (4515)

(see [73]). These equations follow from the definition (4.C.14) and its substitution into the
odd-parity field equations (4.C.11). Similar to before, we define the lowercase p’s to be the
time-dependent magnitudes of the radial delta function after fully evaluating the odd-parity

projections of the stress-energy tensor
Po(t,r) = p() [ —rp(®)],  Pt7) = p(t) 3lr — (1)) (4.5.16)

Also as before, we use the time dependence of the four-velocity and the stress-energy tensor

to determine these magnitudes for eccentric motion on Schwarzschild,

16mp L,

Pt = LX) =

=~ 167TM éfp T *
(+1)r2 %

b, (C—21L2,
(+1)Er2 7

((+2) € r27 9%
(4.5.17)

p(t) = 167p

Here, X, and X, are shorthand for the odd-parity vector and tensor spherical harmonics
evaluated along the worldline at § = /2 and ¢ = @,(t).

Now, as in the even-parity case we can analyze the local structure of the MP amplitudes.
We again assume W to have the form Eq. (4.1.2). Plugging the relevant expressions into
Eq. (4.5.15) for the odd-parity MP amplitude reconstruction, we find that all the point-

singular parts cancel out exactly, leaving

ntn) = Lo re®) . K0 =0

(4.5.18)

hE(t,r) = %at\yi, KS(t) = 0.

So, we see that the odd-parity MP functions in Regge-Wheeler gauge are smooth as they
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approach 7,(t) with only a finite jump at that point.
FIG. 4.5 summarizes these findings graphically, for both even and odd parity, using

several specific spherical harmonic modes.
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Figure 4.5: The EHS approach to reconstructing the TD MP amplitudes. We consider a
particle orbiting with p = 7.50478 and e = 0.188917 at ¢t = 80.62M. The left plot shows the
odd-parity MP amplitudes h?! and h?!. The right shows the even-parity h?2, h22, h?2, and

T

K?2. Note that the amplitudes h??, h?2, and h?? are singular along the particle’s worldline,

rro
as indicated by arrows in the plot on the right. The magnitude of these singularities are

given in Egs. (4.5.10), (4.5.13), (4.5.14). The remaining three MP amplitudes approach the
particle location smoothly, and have only a finite jump at that point.

4.6 Conclusion

We have achieved two main results in this chapter. First, we have shown successful ap-
plication of the method of extended homogeneous solutions to gravitational perturbations
from a small mass in eccentric orbit about a massive Schwarzschild black hole. In doing so,
we accurately computed the master functions in the Regge-Wheeler-Zerilli formalism in the
frequency domain and transformed these fields back to the time domain. With this method
we achieved exponential convergence of the master functions and their derivatives for all r
including the instantaneous particle location r = r,(t).

Our second important result is the reconstruction of the metric perturbation ampli-

tudes in Regge-Wheeler gauge for arbitrary radiative modes. In addition to computing
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the smooth parts of these amplitudes, we have derived the time dependent magnitudes of
point-singular terms that reside at 7,(t) in some components of the metric. This full and
accurate knowledge of the spherical harmonic amplitudes of the metric at, and near, 7,(t)
lays the groundwork for one or more subsequent approaches to local computation of the

self-force.

4.A The fully evaluated form of distributional source terms

In the RWZ formalism for perturbations generated by an orbiting point mass, the master
equations have distributional sources with both delta function and derivative-of-delta func-
tion terms. Reduced by spherical harmonic decomposition, these distributions have support
only along a one-dimensional timelike worldline r = 7,(¢) within a two dimensional domain.

The delta function’s behavior is still elementary,
a(t,r)d[r —rp(t)] = a(t,rp(t)) d[r —rp(t)] = a(t) o[r — rp(t)], (4.A.1)

where «(t,7) is assumed to be a smooth function and we use the notation &(¢) to indicate
the one-dimensional function that results from restricting (or fully evaluating) «(t,r) with
the delta function. At any stage in a calculation a delta function can be used to fully

evaluate all smooth functions that multiply it. Under an integral the result is obvious

/oz(t7 r)o[r —rp(t)] dr = a(t), (4.A.2)

with the resulting function of time being unique. Occasionally, there is need to differentiate
such a function. The total derivative is related to derivatives of the original function by
da

— = |Ow(t, ) + 1p0ra(t, )

- (4.A.3)

r=rp(t)’

where on the right hand side we differentiate first and evaluate second.

Of more interest is the behavior of ¢ [79]. Differentiating Eq. (4.A.1) with respect to r,
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we obtain

a(t,r)8'[r —rp(t)] + Oralt,r) 8[r — rp(t)] = a(t) &' [r — 7p(2)]. (4.A.4)

Rearranging terms and using the rule of fully evaluating whenever possible, we find

alt,r) &' [r — rp(t)] = a(t) &8'[r — rp(t)] — B(t) 8[r — rp(t)], (4.A.5)
where
B(t) = dralt,rp(t)) = [ara(t, r)} e (4.A.6)
which is the analogous fully evaluated form. Upon integration,
/a(t,r) 8'r — ()] dr = —B(t) = —dra(t, 7p(t)). (4.A.7)

Since the first term on the right of Eq. (4.A.5) disappears upon integration, why retain
it? The answer is that we may multiply Eq. (4.A.5) by another smooth (test) function,
~(t,r). We can then proceed to thew fully evaluated form by reducing the smooth function
~(t,r) a(t,r) on the left or use the same reduction on the first term on the right. In either

case the result is

Yt ) alt,r) 0'[r = rp(t)] = A(t) &(t) o' [r — rp(t)] — &(t) Ory(t,p(t)) O[r — 7p(2)]

— 30 Bralt,ry(1)) 8l — (1)), (4A8)

From this it is evident that we can partially evaluate a coefficient of ¢’ in a number of
different ways.

Martel [50] introduced the notation found in Eq. (4.1.1) for gravitational master function
source terms, with two-dimensional functions Gy, (t,7) and Fp,(t,r) multiplying 6 and &',
respectively. In examining the Zerilli-Moncrief master function, he left these coefficients
partially evaluated. Sopuerta and Laguna [75] started with the same notation for Gy, (t,7)
and Fy,(t,r) in the case of the Cunningham-Price-Moncrief master function, and fully

evaluated these coefficients at r = r,(t). A difficulty with the Gy, (¢,7) and Fp,(t,r)
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notation is that there is no unique form of these functions if partially evaluated. Any solution
of the RWZ wave equation will require a full evaluation of the source. The procedure should
not matter but we prefer the clarity afforded by using the identities found in Eqs. (4.A.1)

and (4.A.5) to write Eq. (4.1.1) in fully evaluated form from the outset
Stm(t.7) = Gam(t) 617 — 15(0)] + Fom () ' — (1), (4.A.9)
where

Gom(t) = |Gom(t,r) — 0 Fom (. 7) : Fgm(t)E[Fgm(t,r)] . (4.A.10)

r=rp(t) r=rp(t)

4.B Source terms for eccentric motion on Schwarzschild

Here we give the unambiguous expressions for Gy, and Fj,, for the even-parity Zerilli-
Moncrief and odd-parity Cunningham-Price-Moncrief master functions fully evaluated at
r = rp(t). We introduce new notation for constituent parts of égm and Fgm based upon the
projections of the stress-energy tensor defined in App. 4.C and the fully evaluated time-
dependent magnitudes of d[r — 7, (t)] given by Egs. (4.5.8) and (4.5.17). Note that we use G
and F to denote additional time-dependent factors that multiply the various stress-energy

magnitudes. The indices on these G and F factors are not tensor indices.

4.B.1 Even parity

In the even-parity case, we examine the terms first published by Martel [50], but now fully

evaluate them at r = r,(t). We find,

Com(t) = G ait + G a, + GE oy + G iy + G
(4.B.1)
Fo(t) = F"qpr, + Fit it

128



where

rr P 1 2
g,/ (t) = O‘HW;[(A+1)(ATP+6M)TP+3M ]7
2
Gi'(t) = — ()\+Jip) [/\(/\+1)r12,+6)\Mrp+15M2}
f f2 f (4.B.2)
r
gZ(t)ETp, gz(t)z(/\filp)Ap’ ge():_i
2 2 £3

with the ¢’s given in Eq. (4.5.8).

4.B.2 0Odd parity

In the odd-parity case, the fully evaluated source magnitudes are equivalent to those first
published by Sopuerta and Laguna [75] and later with more detail by Field, Hesthaven, and
Lau [82]. We find,

A 1T d m n T T
Gfm(t) - gfl Do T g ]C)li + gz pfma Ffm@) = ff Do T :Fg pzﬂw (4'B'3)
where
T — D Tog — 1D teoy . JIp FT(4) = TpTp tig) — T’szg
G="2, grm="r, G=-2 F@=-"r FAn="" @B

and the p’s are given by Eq. (4.5.17).

4.C Metric perturbation formalism in the Regge-Wheeler
gauge

Here we briefly summarize the definitions of metric perturbation (MP) amplitudes (on a
common tensor spherical harmonic basis) for both even and odd parities. The field equa-
tions and Bianchi identities are given in terms of the MP amplitudes and spherical harmonic
projected source terms. The specific gauge-invariant master functions we use in our simu-

lations are expressed in terms of the MP amplitudes and their associated master equations,
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potentials, and source terms are summarized. In what follows, lowercase Latin indices will
run over (¢, r), while uppercase Latin indices will run over (6, ¢). This section draws heavily
from Martel and Poisson [55]. The material here serves as a basis for discussing in Sec. 4.5

how the MP can be numerically reconstructed from the master functions.

4.C.1 Even parity

Of the ten MP amplitudes, seven are in the even-parity sector. Using the decomposition of

Martel and Poisson [55], they are
Pay (21) = D S hah Y™,
lm
pa (@) =Y j"YE™, (4.C.1)
lm

pap (@) =2 (K™ Qupy™™ + YAy,

lm

The tensor Q4p is the metric on the unit two-sphere,
ds? = Qupdr?dz® = d6? + sin® 0 dp?. (4.C.2)

The even-parity scalar (Y*™), vector (Y{™), and tensor (Y{% and Q45Y*“™) spherical har-
monics are defined in [55]. Note that Yf;’g is the trace-free tensor spherical harmonic, which
differs from what Regge and Wheeler used in their original work [14]. For the remainder of
this section, we drop ¢ and m indices for the sake of brevity.

In Schwarzschild coordinates, the amplitudes defined here are related to Regge and
Wheeler’s original quantities. In the “t,r sector,” hy = fHy, hy = Hy, and h,, = Ha/f.
For the off-diagonal elements, j; = hg and j, = hy. Finally, on the two-sphere Gyere = Grw,

while Kyere = Krw — (£ 4+ 1)G /2. We use the Regge-Wheeler gauge, where j, = G = 0.
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In this gauge and in Schwarzschild coordinates, the even-parity field equations are

M A+2 2M A
—83K—QGK+ farhrr‘i‘%hm«—i‘ LK =Q,
r2f 73 r2f
A+1
0,0, K + f re3M g e fathrr A =
- M
o2k + " gk o, Loun
r +2M 2
4_%]% _ ]%h )‘fK Q,
r r
8th7"r - arhtr =+ }.8tK 21\? Qt
—0Other + Orhyy — fOLK — —5—hu + 5 hrr = Q"
ref r
2
— 2Ry + 2010 hiy — OPhyy — fa2K + fOPK + (r— 7 )8thtr
r—3M (r—M)f 2(r— M)
7W8Thtt - T&nh,ﬂr + T&Jf
A+ 1)r? —2(A+2)Mr + 2M> A+ 1)r? = 2AMr — 2M? b
+ 55 hy — 1 hyr = Q7
rif r
1
?htt - fhrr = Qﬁ7
which rely upon the following source terms
1 2
Q™(t,r) = 87 / Y 0, Qo r) = 0 / T9BY} dQ,
0(0+1) (4.C.4)
—2)! e
Qb(t, r) = 8712 / TABQ Y *dQ, Qu(t, r) = 327t Eﬁ n 2;' /TABYXB dsd.
The conservation (Bianchi) identities are
A+1
8tQtt+8Qtr+2( f )Qtr_ + Qt_o
M —5M A+
8tQtr +87«er tht . f Q 3 QT iQ = ()7 (405)

2
20+ 00+ 20 +Q - HQ =0,
T T

We use the gauge-invariant Zerilli-Moncrief master function (see [16, 18], modifying the
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approach of [15]), which is

. 2r 1, .9
lI’even(tﬂ") = m |:K + n (f hyr — TfarK) , (4.0.6)

in Schwarzschild coordinates. It satisfies the wave equation

82 82
[_8# Tz V} Weven = Seven, (4.C.7)

with source term

Seven(t, 7“) = m |:7“2f (f28ert _ 8TQT‘7”) + ’I”(A N f)er + ’l“fQQb

_I ()\(/\ — 1)+ (4A — 9) Mr + 15M2>Q“] + %Q” - %

g
o Q) (4.C.8)

and standard Zerilli potential

Veven(r) = U PY A1+ M +18M2 a2 (4.C.9)
r r2 r

r2A2
4.C.2 0Odd parity

The remaining three MP amplitudes belong to the odd-parity sector,
Pab (z") =0,  pap (&) =D hXE",  pap(at) = hy" X (4.C.10)
{m 4m

The vector (X&") and tensor (X4%%) spherical harmonics are those defined in [55]. Note
that the tensor spherical harmonics differ from those used by Regge and Wheeler by a minus
sign. For the remainder of this section, we again drop £ and m indices.

These MP amplitudes are related to Regge and Wheeler’s quantities through h; = hg,

h, = hy, and hgere = —hQRW. We use Regge-Wheeler gauge, in which hs = 0. In this gauge
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and in Schwarzschild coordinates, the odd-parity field equations are
200+ 1)r —4M

r3f
2 2\
O%h, — 0,0,hy + ~Orhy + r—thr =P,

hy = Pt,

2
—0y0phy + 0%hy — ~Ouhy —

1 2M
_*atht + farhr + 7h7‘ = P7
7 2

with source terms given by

16712
Ll+1)

Pt r) = @1 2)!

The conservation (Bianchi) identity is

o, P!+ 0,P" + gP’“ — %P =0.
r r2

— I
/T“BngQ, P(t,r)5167rr4(g 2)'/TABngBdQ.

(4.C.11)

(4.C.12)

(4.C.13)

In the odd-parity sector, we use the gauge-invariant Cunningham-Price-Moncrief master

function [17], which in Schwarzschild coordinates is
T 2
\Ilodd(t,'r’) = X |:8rht — athr — 'r'ht:| .

It satisfies the wave equation

0?2 0?2
RYD) a9 Vo \Ilo = So 3
[ 2 + o2 dd] dd dd
with source term
_rfl r ¢ 2M
Sodd(t,’f') = 7)\ |:f8tP + f&»P + ’)"27P y

and standard Regge-Wheeler potential

Vodd(r) = r% [£(£+ 1) — (Si\q .
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4.D Asymptotic expansions for Jost functions at r, — oo

We examine here the asymptotic expansions that we use to set boundary conditions far

from the black hole. The unit normalized solution to Eq. (4.2.16) is factored into the form
Rj (1) = T (r)emn™, (4.D.1)

where J, is the “Jost function” [71], which goes to 1 as r, — 4oco. (We can similarly
define the horizon side Jost function through R;mn = J[mne_i‘“mnr*, which goes to 1 as
r. — —00.) Plugging this into the source free version of Eq. (4.2.16) and changing to r

derivatives, we have

d2Jt

2M . dJ,, Vi

From here we assume an asymptotic series solution of qurnn of the form

SOEDY P—y ajr)j (4.D.3)
j=0 \Wmn

Note that contrary to a Taylor expansion which converges for fixed r with increasing 7,
this series converges for fixed j with increasing . When a specific potential is chosen, the
method of Frobenius can be used to find the coefficients a;. Plugging in the even-parity

potential from Eq. (4.C.9) a recurrence relation for the a; is

2iA2jaj:A[A(j—l)j—ma(j—n—2A(A+1)} a;j_1
+2U[A(3—A)(j—2)(j—1)— (A2 +9i0) (j — 2) — 37| aj_s

+30° [ (3—4X)(j—3)(j—2) —4r(j —3) — GA} aj_3—180° (j — 3)% aj_4 (4.D.4)
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where 0 = Mw,y,,. For the odd-parity expansion, we plug in the potential in Eq. (4.C.17).

The resulting recurrence relation is
% a; = —20[(]’ +1)( - 3)] aj_g — [e C+1)—5G-1)] a1 (4.D.5)

In order to use these recurrence relations, the first few terms ag, a1,... are needed. The

recurrence relations actually provides them if one assumes that a; = 0 for all negative j.
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Chapter 5

Eccentric EMRI orbits on a Schwarzschild
black hole: Transformation of the
Regge-Wheeler gauge solutions to Lorenz

gauge using new frequency domain based
methods

In Chapter 4 we considered a point mass in an eccentric orbit about a Schwarzschild
black hole. The particle pulls up a first-order gravitational field which can be found by
solving the perturbed Einstein equations. We showed how we solved those equations in
Regge-Wheeler (RW) gauge using the Regge-Wheeler-Zerilli (RWZ) formalism. Working in
the frequency domain (FD), we obtained high accuracy solutions to the field equations and
transformed the fields back to the time domain (TD). Our FD code is very efficient, largely
thanks to the exponentially convergent method of extended homogeneous solutions (EHS),
which we applied to radiative gravitational modes for the first time. We reconstructed
the metric perturbation at all locations, including the location of the particle itself. We
presented, for the first time, a detailed analysis of the singular nature of the metric in RW
gauge, showing that the perturbation amplitudes are discontinuous (C~!) in all cases and
sometimes singular (~d(2)).

Having solved for the metric perturbation, we would like to correct the particle’s motion.
Though there are alternatives (see below), the most common technique is to calculate the
self-force in Lorenz gauge. Hence, we now present work in progress on how to transform

the metric perturbation from RW to Lorenz gauge.



5.1 Introduction

Attempts to evolve EMRI orbits have been made for many years. The primary method
for performing these evolutions has been to use adiabatic approximations (e.g. [90]). The
adiabatic approximation entails computing the energy and angular momentum fluxes of the
gravitational radiation over a sufficiently long time scale, and then using those values to
evolve the orbital parameters. The adiabatic approximation is based on the assumption of
two fundamental timescales. The first is the orbital timescale T', or how long it takes the
particle to orbit the black hole. The second is the radiation reaction timescale 7, the time it
takes the orbital separation to make a fractional change of order unity. If the mass-ratio of
the particle to the SMBH is p/M, then ratio of the the radiation reaction timescale to the
orbital period will be its inverse, 7/T ~ M /u. The adiabatic approximation fails when we
no longer have 7 > T'. Whenever the particle is deep in the gravitational well of the SMBH
it will radiate more strongly. This can happen when it is in a highly eccentric zoom-whirl
orbit. It will also occur toward the end of any orbit. In the late stages of orbit evolution, the
particle will spiral quickly toward the event horizon and the assumption of two, disparate
timescales will be broken.

Another problem with the traditional adiabatic approximation is that it cannot incor-
porate the conservative effects of the self-force. As shown by Pound, Poisson and Nickel
[91], neglecting the conservative piece of the self-force can lead to significant measurable
differences in the particle’s evolution.

Due largely to the inherent limitations of the adiabatic approximation, much research
on EMRIs has focused on performing self-consistent orbit evolutions. In order to perform
such a calculation, one needs to solve first for the metric at first-order, which we showed
in Chapter 4 can be done to high accuracy in RW gauge. In principle one then has an
entire knowledge of the first-order gravitational field. Evolution of the orbit comes down to
examining how this perturbation affects zeroth-order motion. This becomes quite subtle in
practice, largely because the divergent field must be regularized and some gauges are more

convenient than others. Although it may be possible to evolve an orbit self-consistently in
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RW gauge, the vast majority of work on self-consistent orbit evolution has been done in
Lorenz gauge.

Lorenz gauge is appealing for several reasons. The field equations simplify greatly when
the gauge condition p”|, = 0 is imposed. For those wishing to solve the field equations
through time domain (TD) methods (e.g. [45]), Lorenz gauge has the benefit that one can
put all ten field equations in hyperbolic form. From the point of view of computing the
self-force, the Lorenz gauge metric perturbation amplitudes are much better behaved that
those of RW gauge. Locally, the amplitudes are C°, as opposed to C~1, or singular, in RW
gauge. Asymptotically, the metric in Lorenz gauge is flat, as opposed to non-asymptotically
flat in RW gauge. We will discuss this more in detail below. Finally, the metric perturbation
in Lorenz gauge is locally isotropic, which is why the mode-sum regularization scheme [41]
and the MiSaTaQuWa equations of motion (1.4.7) were formulated there.

Given these benefits of Lorenz gauge, and that we possess the metric perturbation in RW
gauge, we have begun the process of transforming between the two. We follow largely the
work of Sago, Nakano, and Sasaki (SNS) [54], who presented one possible method for doing
this exact gauge transformation. Below we show how the gauge transformation equations
decouple and explain the benefit of the SNS decomposition.

Our work thus far has led to some noteworthy developments. Primary among these are
two new solution techniques we have used to solve the types of equations encountered in
this gauge transformation. The transformation equations decouple in harmonics into a set
of wave equations at every mode. These equations have source terms with local singular
parts at the particle’s location. These source terms are precisely of the form we handled in
Chapter 4, and present no trouble. But, in addition to these point singular sources, there are
extended sources which are nonzero everywhere, and discontinuous at the particle’s location.
To find solutions to differential equations with source terms of this type, we developed the
method of partial annihilators and the method of extended particular solutions. Each of
these methods is discussed at length in what follows.

At this point we have completed numerical solutions for the odd-parity transformation

and the scalar part of the even-parity transformation. Work in the near future will entail
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computation of the remaining vector part of the even-parity gauge transformation. With
these results in hand, we will be able to compute the self-force and compare with other

similar work [47].

5.2 Benefits and drawbacks of Regge-Wheeler gauge

We previously considered bound geodesic motion on a Schwarzschild background. As de-
scribed in Sec. 4.2.1, an eccentric orbit can be specified by a pair of parameters. Where
useful we use either the energy £ and angular momentum £ per unit mass, the dimensionless
semi-latus rectum p and eccentricity e, or the periapsis rmin and apapsis rmax.

Using the RWZ formalism (see Sec. 4.2.2), we solved the first-order field equations.
This formalism has the benefit of reducing the perturbed Einstein equations to one wave
equation for each £, m mode. When ¢ + m is even we solve for the Zerilli-Moncrief master
function (W47 ), and when ¢+m is odd we solve for the Cunningham-Price-Moncrief master
function (¥%). We used a FD approach to find the Fourier harmonic modes (the Fourier
transforms of W57 and ¥7) and transformed back to the TD using the method of extended
homogeneous solutions (EHS). This produced a weak solution form of the master functions,
o (t, 1) = UF (t,7)0[r — 1p(t)] + ¥, (t,7)0 [rp(t) — r]. From there we reconstructed the
metric perturbation amplitudes in RW gauge, as described in Sec. 4.5.

The troubling local nature of the RW gauge metric perturbation amplitudes was cov-
ered in detail in Sec. 4.5. Even beyond these discontinuities and singularities, RW gauge
exhibits undesirable features asymptotically as well. For example, consider the odd-parity
amplitudes h{™ and hZ™ (note that the remaining odd-parity amplitude h5™ is set to zero
in RW gauge). By looking at the expressions in Eq. (4.5.15) we can see how the amplitudes

behave at large 7. Given that W% ~ F(t —r,) (where F(t —r,) is any constant amplitude

outgoing wave), we see that

M~ F(t—1y), RO~ F(t —1y). (5.2.1)

Figs. 5.1 and 5.2 demonstrate both of these problems graphically for the £ = 2,m =1
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Figure 5.1: The Regge-Wheeler gauge metric perturbation amplitude h?!. As the particle
orbits between periapsis and apapsis, we examine the real and imaginary parts of this
amplitude at a moment in time. In the left panel, note the (very slight) discontinuity at
the location of the particle. In the right panel, note the lack of asymptotic flatness.

mode. The left panels of those figures show a discontinuous field at the particle’s location,
r = rp(t), while the right panels show a lack of asymptotic flatness.

These problems with RW gauge can be circumvented by transforming to Lorenz gauge.
Because the Lorenz gauge condition is differential (as opposed to the algebraic RW con-

dition), we must solve a set of differential equations to perform the transformation. We

examine this transformation in detail in the remainder of this chapter.

5.3 Transformation from RW to Lorenz gauge

The gauge transformation from Regge-Wheeler (RW) to Lorenz (L) involves a coordinate
change of the form

Thw — 2 = 2hyw + 2, (5.3.1)

where the gauge generator =* is of the same order of magnitude as the metric perturbation

Puv, that is |Z,] ~ |pu| < 1. Given Eq. (5.3.1), the metric perturbation transforms as

RW L RW — —_
Puv 7 Puv = DPuv — =plv — Evw (532)
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Figure 5.2: The Regge-Wheeler gauge metric perturbation amplitude h2!. As the particle
orbits between periapsis and apapsis, we examine the real and imaginary parts of this
amplitude at a moment in time. In the left panel, note the discontinuity at the location of
the particle. In the right panel, note the lack of asymptotic flatness.

where we are using a stroke |, or 4VM to indicate covariant differentiation with respect
to the background metric. Now, we plug Eq. (5.3.2) into the Lorenz gauge condition (as
introduced in Chapter 2), p*” |» = 0, which gives

— — _ 1
4|:|‘:'U = :',U«|VV — p/“/‘l/ — p”’/'l/ o 59(1,8])&5'# (533)

On the spherically symmetric Schwarzschild background, we make use of the M? x S?
decomposition of Martel and Poisson [55]. We perform a harmonic decomposition of the

gauge vector in these two sectors as

e =Y M Vim,  Ea= 3 [elm VAT +elnxyr). (5.3.4)
{m

lm

There are four scalar amplitudes here which depend only on ¢ and r; they are &, &, even,
and odd-

Recall that lower case latin indices a, b, . .. are on the sector M? = {¢,r}, and upper case
latin indices A, B, ... are on the two sphere, or sector S? = {6, ¢}. The line element can be

written in terms of the two metrics of these sub-manifolds, ds? = ggpdz®dz? + gapdzidz?.
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The covariant derivative on M? is V, and on S? is D4. They are defined by demanding
that Vagpe = 0 and Dagpc = 0. For more details on the M? x S§? decomposition, see

Chapter 2.

5.3.1 Gauge transformations on the M? sector

First we consider the gauge transformation equation on the M? sector. The four dimensional

wave operator can be written in terms of V, and D4 as

o 9 I S S
‘0=, = 08, + ¢®“DeDpE, — ;ragABDB:A + ;rbvb:a - r—Qrarb:b. (5.3.5)

Here ‘0 = 4VH4V“ and O = V,V? We plug in the expanded forms of =, and Z4 from
Eq. (5.3.4) and this simplifies to

2(A+1)
7«2

2f A+1

_ 2
4D~:4a = 0¢&,Y — &Y + ;Tbvbfay — ﬁra&Y + 47“ar73£evenYVa (5.3.6)

where A\ = (£ + 2)(¢ — 1)/2. Note that in this equation we have suppressed ¢, m indices on
the spherical harmonics Y, and on the scalar amplitudes. Also, there is an implied sum
over these indices, as shown explicitly in Eq. (5.3.4). Now, this is set equal to ﬁau|“, which,

as we saw in Eq. (2.4.24) is

_ ) ) - 9
Pap™ = VBay + 9% Dppac — ra—9" Ppp + ~r"Puy (5.3.7)

Plugging in for the metric from Eq. (2.4.1)

1 o
ﬁaulu — [gbcvc (hab = 5Yab (hdd + 2K)> - 1—26(6 +1)

1 2 1
+rg—hlg 4+ =r? <hab — 5 9ab <hdd + 2K>> ]Y- (5.3.8)
r r
In RW gauge we set j, = 0, so after simplifying we find

1 2
Par” = [gbcvc (hab ~ 39ab (nta+ 2K>> + =1 (hap — gabK)} Y. (5.3.9)
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Furthermore, we know from the field equations in RW gauge (4.C.3) that h%; = —Q!, so
equating Egs. (5.3.9) and (5.3.6) and using the completeness of the scalar harmonics, we
get

2(A+1 2 2 A+1
Dga - (7”2)5(1 + ;Tb (abga - FCabgc) - Tgra&“ + 47‘ar73£even

2 2 1
= gV gy — 0. K + ;rbhab — oK + 5aaQﬁ. (5.3.10)

Note that the implied summation has vanished with the use of the orthogonality of the
spherical harmonics. Therefore, there is one of these equations for each ¢ and m. After
some lengthy algebra (in which we must expand the M? box operator), this reduces to two
coupled partial differential equations involving the gauge generator amplitudes &, &, and

Eoven- They are

1 2 2(A+1 2M
- 2o+ s+ 2Loe - 207 e 4 B,
1 2 1
— —?8thtt + fOrhi = 0K + — (r = M) hur + 5a,fcgﬁ, (5.3.11)
and
1 2 2 2 M 2(0+1 A+1
- ?815257“ + fazgr + ;arfr - 7{57’ + Fﬁatgt - ( 7“2 )gr + 4 7’3 feven
1 1M 2r— M 2 1
_ _ - o _ = - f
= f@thrt + f@rhw O K + f2 2 hy + 2 Ryrr TK + 26TQ . (5312)

5.3.2 Gauge transformations on the S? sector

On the S? sector we can write the four dimensional box operator as

- _ — 1_ 2 4
‘024 = 024 + ¢P“DeDpEg — =4t ;rb:b,A (5.3.13)
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Plugging in our expressions for =4 and Z, from Eq. (5.3.4), we find

4DEA = <_']1¢-8t2 + 87' (far)> gevenYA + <_]1(.8t2 + 6r (far)) foddXA
2 (A + 1) 2 (A +1) 2

- gevenTYA - fodd XA + 757«YA (5314)

2
As we saw in Eq. (2.4.40) (recall the suppressed ¢, m indices which we sum over)

4 1 A
P = (vb + rrb) (3774 + RX) = g haY A = AGYA = Sho XA (5.3.15)

This simplifies dramatically in RW gauge since hy = j, = G = 0. Then, after lowering the

A index (which creates a counter term) we equate this with *0Z 4 from Eq. (5.3.14), giving

1 1 2
<_faz‘,2 + ar (f&")) gevenYA + <_f8t2 + 87" (far)> €oddXA - ﬁ ()\ + 1) fevenYA
2 2f b 2 r 1 ab
) AN+1)&aqaXa + 7§TYA =V’ X4 + ;h X4q— §g hapYa. (5.3.16)

Note that from the field equations (4.C.3) we have g?h,, = —QF, and V,h® = P. Now, we
multiply through by Y4 (with implied indices ¢'m’) and integrate over the two-sphere. The
orthogonality picks out the even-parity terms and we are left with the even-parity equation

2f

(<308 4090 ) o~ 5 Ot Don + L = 10 (5:317)

f

Likewise, we use the orthogonality of the odd-parity harmonics X 4, which leaves us with

the odd-parity equation

<_}8t2 + 0, (f&«)) Sodd — 7722 (A+1)&oaa = P + %hr- (5.3.18)

Note that the odd-parity equation (5.3.18) decouples entirely, but the even-parity equation
(5.3.17) is coupled with Egs. (5.3.11) and (5.3.12). Finally, note that Egs. (5.3.18) and

(5.3.17) have implied indices ¢ and m.
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5.3.3 The Sago, Nakano, Sasaki decomposition

Rather than using the decomposition derived in the previous subsections, Sago, Nakano,
and Sasaki (SNS) [54] take a different approach which leads to a full separation of the
even-parity equations. They start by splitting the gauge vector into even- and odd-parity
parts

EH = B+ B (5.3.19)

There is a single harmonic amplitude §£?d that represents Eg 4q> as can be seen in Eq. (5.3.4).
Our odd-parity equation (5.3.18) is entirely equivalent to that of SNS.

The difference lies in the treatment of the even-parity part, Zhyen. As before, three
spherical harmonic amplitudes represent the four components of Zhyen. SNS use a four
dimensional generalization of the Helmholtz decomposition (the Hodge decomposition [92])

and choose to express these three degrees of freedom through a scalar Zqyeq(s) (Which con-

I

even( (which contains the other
v)

tains one degree of freedom) and a divergence-free vector =
two). The even-parity gauge vector is then

=K
—even

=H
=

even(v)

+ 4VuEeven(s)~ (5320)

Taking Eq. (5.3.3) and inserting this expression gives

10 (2 oy 7 Berents)) = Vo (5:3.21)

—even(v)

Taking the divergence, the divergence-free vector part vanishes, so
10 ("OZeven(s)) = V' Vit (5.3.22)

Note that we are able to move the covariant derivatives past one another because they are
traced out and R, = 0 on the background spacetime. Now, we make the implicit definition
Of Jeven(s) through

4 ==
I:":even(s) = Jeven(s)- (5323)
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Then Eq. (5.3.22) reduces to
4DJeven(s) = 4vu4vupg\l//en' (5.3.24)

This latter equation is a second-order inhomogeneous wave equation, which can be solved
to find the source Jeyen(s) for Eq. (5.3.23). Then, solving Eq. (5.3.23) yields the even-parity
scalar part Zeyen(s)- Returning to Eq. (5.3.21), and using Eq. (5.3.23), we see that we can
write

0= ) TV Jeven(s) = ' Vilhven: (5.3.25)

—even(

We combine the two source terms to define

JM

even(v

)= VP = AV Teven(s) - (5.3.26)

Then, we have a wave equation for the divergence-free vector piece of the even-parity gauge
generator,

dq=p T
Ij“even(’u) - Jeven(v)'

(5.3.27)

This summarizes the SNS decomposition in terms of tensor components. We next turn to
examining two new solution techniques for equations of the type we encounter here. We
will then return to the specifics of solving the equations of the SNS formalism in Secs. 5.5

and 5.6, where these equations are further decomposed into spherical harmonics.

5.4 Solution techniques for extended sources

Here we present two new FD methods for solving the types of PDEs we are presented with

during the gauge transformation.
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5.4.1 Partial annihilators and higher order EHS: general considerations

Consider a PDE of the form

ngmw[m(t??a) Sext( ) (541)

where Wy, is an a™ order partial differential operator in ¢ and r, which is acting on a
scalar field g,,. The source Sext(t, r) is non-compact, and therefore not amenable to the
EHS method. The annihilator method is a standard technique [60] for solving differential
equations, wherein we search for a differential operator for which S is a homogeneous
solution. Then, we could act on both sides of Eq. (5.4.1) and produce a homogeneous
differential equation, albeit of a higher order. Given the singular nature of the source in
our problem, it is unlikely that we will be able to find such an operator. However, it turns
out in practice with such sources to be possible to find an operator that nearly annihilates
Seit, e.g.

WE, SE(t, 1) = St (8, mp(1)). (5.4.2)

Here W) is an b'! order partial differential operator in ¢ and r, and Ssmg(t, rp(t)) only has
support at the location of the particle. We refer to this as a partial annihilator. Therefore,

acting with W¢ on Eq. (5.4.1) we have
WemWinWem(t, 1) = S (t,p(t)). (5.4.3)

We now have an equation with a point-singular source, which we can solve using the EHS
method, but at the price of having raised it from order a to order a + b.

Moving into the FD, we Fourier transform Eq. (5.4.3) to get

‘CZmn[’?mnd;ﬁmn( ) ngfg( ) (544)

The effect of the partial annihilator in the FD, £} is to make a non-compact source

mn>

Zlmn

sing (r), confined between ryi, and rpax. Through the end

Z(r) into a compact source
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of this subsection we will suppress the mode indices. Recall that the tilde over a symbol
indicates a quantity which has been Fourier transformed into the FD.

The ODE (5.4.4) in r will have a + b linearly independent homogeneous solutions. (We
have in mind systems where a and b are even integers.) We can specify them by demanding
that half of them are purely down-going at the event horizon and the other half are purely
out-going at spatial infinity. We denote the former by zﬂj_ and the latter by 7,5;, where j
runs from 1 to (a + b)/2. Now, the causally appropriate particular solution to Eq. (5.4.4)

will be a linear combination of the homogeneous solutions,

Yp(r) =y (r)y (r) + - 'C(_a+b)/2(7“)¢(a+b)/2(7“)

+cf (M (r) + - c&+b)/2(r)¢;+b)/2(r). (5.4.5)

We get the various normalization functions cjc(r) by the general method of variation of

parameters [60]. This entails solving the equations

det WE(r
d—rj*(r) = ZSing(r)I/I;((r)) (5.4.6)

where W (r) is the Wronskian and Wji(r) is the “modified Wronskian,” which is the Wron-
skian with the column corresponding to the @bji homogeneous solution replaced by the
column vector (0,0,...,1). Having solved Eq. (5.4.6) for the normalization functions, we
can return to the TD via the standard Fourier synthesis (recall that we have suppressed
¢, m,n indices on qﬁp)

Gp(t,r) =D hp(r)eomnt, (5.4.7)

This will yield a causally appropriate solution to Eq. (5.4.1).
In our system though, the source Sging Will have some degree of lack of differentiability,
and the sum above will converge in the TD only algebraically (if at all) at the location of

the particle, due to the Gibbs phenomenon. Therefore, we seek to use the EHS method to
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find exponentially-convergent solutions. To that end, we define

- = v+
C; = ¢ (Tmin), C = ¢f (Tmax), (5.4.8)

which are referred to as the normalization coefficients and are the result of integrating

Eq. (5.4.6) through the entire source region. Then, we define the EHS in the FD to be

B (a+b)/2 )
vE(r) = Z C’ji@/}]j-c(r), (5.4.9)
J
and the EHS in the TD are defined as
E ) =D dE(r)e . (5.4.10)

Then, as before with the original EHS method [1], the weak solution representation
VRS = gt () O[r — 1y ()] + 47 (t,7) O [rp(t) — 7] (5.4.11)
expresses the solution to Eq. (5.4.1).

5.4.2 Extended particular solutions method

As an alternative to the partial annihilator method we consider solving Eq. (5.4.1) without
promoting it to a higher-order equation. We start by moving Eq. (5.4.1) to the FD, yielding

L8 Dt (r) = ZE0(r). (5.4.12)

ext

With its non-compact source, the EHS method is not immediately applicable to solve
Eq. (5.4.12). As usual, we expect Yemn to consist of both a particular solution and ho-
mogeneous solutions. We inspect the asymptotic nature of Zf@"(r) at infinity and the
event horizon. Between this and our differential operator £j  we should be able to find

the leading order nature of the causal particular solution. On the large r side, we denote this

solution as Q;;O(T), and near the horizon we express it as 1;5 (r). Here we have suppressed
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the £, m,n indices, and will continue to do so for the remainder of this subsection.

We first take 1/?50(7"), (though the opposite choice would work as well) as a boundary con-
dition at infinity to begin our ODE integration of Eq. (5.4.12). We integrate this differential
equation inward, through the region of the source and on to the horizon. At this point, in
addition to having obtained a particular solution, we will have excited all ¢ homogeneous
solutions, which will be evident in the behavior near the horizon. Half of these homogeneous
terms will be causal waves traveling down into the black hole, and the other a/2 will be
acausal waves coming up from the black hole. We eliminate this acausal behavior by solving
the homogeneous version of Eq. (5.4.12) for the a/2 acausal pieces and subtracting them
off. The homogeneous solutions on the infinity side are 1/;; j where j runs from 1 to a/2.
Likewise, there are a/2 homogeneous solutions on the horizon side, which we denote LZ;}: e
We sum up the scaled homogeneous solutions and return to the TD via

o0 (1/2

Yrltr) =D D wp(r)| e (5.4.13)
n=—co |j=1

This is a fairly straightforward process if Eq. (5.4.1) has a source term which is differ-
entiable everywhere. Unfortunately, the system we work with does not have such a source,
and we must be careful. The source Sext will be a linear combination of singular pieces
(6,0', etc.) and the master function ¥ (either Weye, or Woqq) and its derivatives. Since
we are working with linear equations, we can always solve for the singular parts with the
EHS method, and we therefore consider only the extended source pieces which come from
U. When we Fourier transform Eq. (5.4.1) to get Eq. (5.4.12) there is an ambiguity that
arises. Because the TD source of Eq. (5.4.1) contains ¥, the FD source of Eq. (5.4.12) will

contain R, which has two forms,

A~

RM(r) = ¢t (M RY(r)+ ¢ (1R (r), and  RT(r) = CTR*(r). (5.4.14)

The particular solution that we get from using R**Y as the source we call the standard

particular solution and denote as zﬁgo M The superscript /s to distinguish between
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whether the integration starts at infinity or the horizon. On the other hand, when using
using RT as the source we compute the extended particular solution (EPS) which we denote
as ~;t. The superscript * is to distinguish between whether the integration starts at infinity
or the horizon.

Because R** is the Fourier transform of ¥, it must be used when solving for the correct
homogeneous solutions, as described above. Returning 1;;0 M ¢6 the TD produces w;o / H,
which will exhibit the usual Gibbs phenomenon that is always present when the source
is singular. The convergence will be algebraic at best. The way around this rests on
generalizing the EHS method and using the extended particular solutions (EPS).

Having computed the EPS, we have in hand what it takes to form the true solution to

Eq. (5.4.1). We use the Fourier synthesis to take the EPS to the TD,

Y t,r) = i (r)e " mnt, (5.4.15)

By the same continuity arguments that apply to the EHS method, we claim that the causally

appropriate solution to the inhomogeneous equation with non-compact source (5.4.1) is

wit,r) = (g () + w0 (60))0r = @) + (5 (67) + 05 (67) )0 [rp(0) = 7). (5.4.16)

We have verified this claim by demonstrating numerically that this approach is entirely
equivalent to the partial annihilator method. The new higher-order homogeneous solu-
tions introduced by the annihilator are precisely the same as the particular solutions found
here. Note that those homogeneous solutions come in standard and EHS form, just as the

particular solutions here come in standard and EPS form.
5.5 Odd-parity gauge generator

As seen in Eq. (5.3.18), the odd-parity gauge generator satisfies the equation

9

—@ + 877“2 - %(T) godd(t7r) = 2f(T)\I’RW + fpp(t)6 [T - T‘p(t)] . (551)
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In this expression, on the left we have introduced the tortoise coordinate and the spin-1
odd-parity potential V; = 2f(X + 1)/r2. On the right we have noted that fh,/r = Urw
and factored the delta function out of the P term as in Sec. 4.5.2. Now we discuss the

application of the two methods introduced in the previous section to this equation.

5.5.1 Partial annihilator method

Equation (5.5.1) is linear, so we can split off the singular part and define two functions,

ext and {f)iclllf that satisfy two separate equations,

0? 0? g

{_BtQ taa Vl(r)] Eoan (t:7) = fop(D)8 [r = rp(1)], (5.5.2)
0? (9;

[_8152 ta2- Vl(r)} Eoaa(t,r) = 2f(r)Trw. (5.5.3)

The equation for f(s)i(ﬁ; can be solved using the standard EHS approach. We are then left with
finding a partial annihilator for the £2Y equation. Naturally, the Regge-Wheeler variable
satisfies its own wave equation with a point singular source. Therefore, dividing by f and
acting with the Regge-Wheeler operator, we have (where, for the remainder of this section

we will drop the &, tags for notational simplicity)

0% 02 1 [ 0% 02

—@ + 877“3 - ‘/2(7’):| f —@ + 877“% - Vl(r) 5 = 2SRW(tqu(t))u (5'5'4)

where V3 = f (2(A+1)/r? — 6M/r?) is the spin-2 odd-parity RW potential and Sgy is the
fully evaluated source term for the master function Wgy, which can be found (though not
in fully evaluated form) in Martel [50]. Now we have a source which is point-singular. The
trade off is that the differential equation (5.5.4) is now fourth order.

We Fourier transform Eq. (5.5.4) to obtain the FD equation

2

d? 17d B
+ Wi — Vz(r)] 7 Lzr? + w2, — Vi(r)| £(r) = 2Zrw(7), (5.5.5)

dr?

*

The Fourier transformed source Zgw is no longer in general point singular, but it is compact

(confined to the region ryin — Tmax). There are four linearly independent homogeneous
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solutions to Eq. (5.5.5). Two of these are the solutions to the second order equation, which
behave asymptotically like running waves going out to spatial infinity and down the black
hole,

5;2 ~ e*iw'mn’f‘* (,r, N 2M)’ 52‘2 ~ eiwmnr* (7,. N OO) (556)

Then, there are solutions that are only homogeneous solutions to full the fourth-order
equation,

5}74 ~ F(r)e"mms (s 20), 5;4 ~ eI (1 s 00). (5.5.7)

These four solutions form a fundamental set, spanning the space of homogeneous solutions

of Eq. (5.5.5). The particular solution will be a linear combination of these,

Ep(1) = Cip (M€ (1) + oy (MEL (1) + oy (1)Er, (1) + e, (N E (). (5.5.8)

The four normalization functions cfQ Ih 4(7) come from the method of variation of parameters,

which entails solving the equations

+ +
AdChs /pa Wha/na(r)
= 2Zpw(r)——t—~—,
dr, W(r)

(5.5.9)

as described in Sec. 5.4.1. For the two “+” equations, the integral form of Eq. (5.5.9) is

CZ2/h4(7°) = /T;n [1 /OTT (éRW(t)fs [r" = 1p(t)]

T,
+ Frw (t) [ — rp(1)] )ei“’m"tdt] Wdr’. (5.5.10)
Likewise, for the two “—” equations,
_ rmax [ (T ,
ha/nalr) :/r [Tr/o <GRw(t)5 [r" = 7p(t)]
+ Frw ()8 [r' = rp(t)] )e“m”tdt] W’;_?//éf/()r/) dr'. (5.5.11)

The EHS method requires knowing the values of the four functions c}jfz /h4(7") only at the
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turning points of the particle’s motion 7y, and rpax. Therefore, switching the order of

integration and integrating by parts, we find

1 [ W}fg/m(?ﬂp)
Chayha = Tr/o {GRW(t)

W(rp)
t o (r Wt Tp ,
- FRW(t) _W@W(rp) + %] }e“"’"”tdt. (5.5.12)

At this point we define the EHS in the FD to be

&, (1) = Crolia(r) + Crpa(r), G (r) = CLEL () + ClLEL (), (5.5.13)

and the EHS in the TD are defined are defined by the Fourier sums

&) =) Gr(r)e ot (5.5.14)
n
The extension of these solutions to r = ry(t) then gives the desired solution to Eq. (5.5.3),

oaa(t,r) = &5 (t,m)0 [r —rp(t)] + & (8,7)0 [rp(t) — 7] (5.5.15)

5.5.2 Second order approach, using the method of extended particular
solutions

Now we look for a solution for gﬁtd that does not require a partial annihilator. In the FD

its equation transforms to

d? -
oI Winn = V1(r) | €534 = 2f Rrw . (5.5.16)

Again, for notational simplicity we drop the & tags for the remainder of this section.

Asymptotically the RW function goes like Rﬁw ~ eFwmnT a5 . — +00. The potential
dies away at large positive and negative r,. We make the ansatz that E;j' ~ relmnTs ag

r — 400 We can plug this into Eq. (5.5.16) above and find a constant factor that will tell
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us the scaling between 5;;0 and Rpw at large r,

1

Wimn

2 . .
< d + wg,m> (AT petomnT) = 2¢tmnT = At = (5.5.17)

2
dr?

Therefore, the asymptotic form of égo is (assuming we take a unit amplitude on R;{W)

EIC;O — 4 ,’Aeiwmnr*, r — +00. (5518)
wmn

Similarly, on the horizon side, by analyzing the source we assume a form of éf ~ f(r)e=twmn?s

as r — 2M, which implies

1 TWmn

d? : : -
<d7n2 +w72nn> (A—felLUmnT'*) — 2fe—ZWmnT* = A_ = 2 <4M2 — M > . (5519)

Therefore, the asymptotic form of é’f is (assuming we take a unit amplitude on Rpyy,)

~ 1 w -1 »
H —_ mn —tWmnlx
gl =2 (4 5 - > feTWmnTs L 90 (5.5.20)

The source term Ry is itself the solution to the differential equation

d2
[ + u)2 - V2:| RRw(T) = ZRw(T). (5.5.21)

We find it from the method of variation of parameters, which yields

~

R¥d (r) = ¢t (r)RT(r) + ¢ (r)R™(r), (5.5.22)

where R*(r) are homogeneous solutions to Eq. (5.5.21). It is key in what follows that we

use R34, (r) in the source term to Eq. (5.5.16), as opposed to

Ry (r) = CERE(r), (5.5.23)

which we will use later for a separate purpose.

We solve Eq. (5.5.16) in a series of steps. We start by computing the particular solutions.
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e Set a boundary condition at large, positive r, of [noting Eq. (5.5.17)] é;o = Afrelwmnrs,
Integrate the inhomogeneous equation (5.5.16), through the source libration region
[using Eq. (5.5.22) in the source] to large, negative r,. At this point it will be of the

form [noting Eq. (5.5.19)] égo = A~ feTWwmnTs _ ghelwmnrs _ = e=iwmnTx,

—IWmnTx*

e Set a boundary condition at large, negative r, of f;{{ =A"fe . Integrate the in-
homogeneous equation (5.5.16), through the source libration region [using Eq. (5.5.22)

in the source] to large, positive r.. At this point it will be of the form éﬁ =

A+r6iwmnm _ /\fefiwmnm _ )\“l’eiwmnr*.

In order to find a solution with the correct causal behavior, we must add homogeneous

solutions to these particular solutions.

e Set a boundary condition at large, positive r, of EN;{ ~ Te™mn"  Integrate the ho-
mogeneous version of Eq. (5.5.16) to large, negative r.. At this point it will be of
the form 5;{ ~ Re~iwmnr« 4 giwmn  Note that if we set the boundary condition with

wmnTx and on the horizon side

unit amplitude we have on the large 7, side é,j ~ e
&5 ~ (R/T)e ™mn™ 4 (1)T)e™mn". Here R and T are reflection and transmission

amplitudes, respectively [71].

e Set a boundary condition at large, negative r, of é,; ~ T*e~™wmnT  Integrate the
homogeneous version of Eq. (5.5.16) to large, positive 7,. At this point it will be of
the form 5}: ~ R*elwmn™ 4 e~%wmnTs  Note that if we set the boundary condition with

—IWmnTx*

unit amplitude we have on the horizon side g,: e , and on the large r, side

g]; ~ (R*/T*)eiwnmﬂ"* + (1/T*)6_i‘4}7nn""*.

Now, we wish to cancel out the acausal pieces of the particular solutions. Therefore, we

form £ = 5;0 + /-£+£;[. In the two asymptotic regions this is

é+ ~ C+7aeiw'rrL7L7"* + K/"‘Teiwnwﬂ'* Ty — +OO, (5524)

EF a0 O feWmnTe _ T e WmnTs | ReTiwmnrs Ty — —00. (5.5.25)
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On the horizon side, we form éH = EI{{ + )\_g,;. In the two asymptotic regions this is

5_ A~ O fe WmnTe L \T T WmnTs Ty — —00, (5.5.26)

£~ Chpelwmnrs _ \Telwmnrs 4 p*giwmnts Ty — +00. (5.5.27)

Now, we have two solutions to the differential equation that both satisfy the causal nature
of the problem. Therefore they must be equal, so we set them, with their derivatives, equal

at any point,

N, =& +rTg (5.5.28)

0r &+ X0.,8 = 0,57 + k70,8 (5.5.29)

Solving these equations for k* and A\~ we find

o= [0 - 08 &+ (8 -8 067, (5:5.30)
3= (08 - 0.8 & (8- 67) 087, (5:5.31)

where
Wy, =€, 0.6 — &0, (5.5.32)

The constants k™ and A~ tell us how to scale our homogeneous solutions so we can enforce
causality. The functions é,{f +)\_é}? and é;o—l—/-ﬁé}f (which are entirely equivalent), represent
the standard solution to Eq. (5.5.16). If our TD source were differentiable everywhere, we
would be able to take this solution back to the TD with an exponentially converging Fourier
synthesis. However, given our source’s lack of differentiability, we must use a different
method to obtain exponential convergence in the transition to the TD.

We define the FD EPS of Eq. (5.5.16) to be g;,t They are found by integrating

Eq. (5.5.16) the source term RE%S, given in Eq. (5.5.23). The EPS are made causally
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Figure 5.3: The odd-parity RW — Lorenz gauge generator amplitude §§fd. This differs
from the Lorenz gauge metric amplitude h3! (where the 2! are £, m indices on the amplitude
h2) by a factor of —2. Note that the field h3! grows asymptotically because it is a metric
perturbation amplitude on the two-sphere, where an extra factor of 72 is present in spherical
coordinates. Transforming to an orthonormal frame would produce a field which falls off
like 1/, as radiation.

correct by adding the correctly scaled homogeneous solutions, which define
Er=gr+uTE =4+ g, (5.5.33)
When we return to the TD, we define
E=) fremiomnt, (5.5.34)
n
And we claim the true solution to Eq. (5.5.3) is the weak solution,
E(t,r) =70 [r —rp(t)] + 0 [rp(t) — 1] (5.5.35)

We have used this solution to obtain the exact same solutions as those given by the partial

annihilator method. These results are shown in Figs. 5.3, 5.4, and 5.5.
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Figure 5.4: The Lorenz gauge metric perturbation amplitude h?!. Note (comparing to
Fig. 5.1) the discontinuity at the location of the particle has vanished and the wave is
not asymptotically flat. Note that the amplitude h?! is an off-diagonal element of the
metric perturbation, which introduces an extra factor of r in Schwarzschild coordinates.
Transforming to an orthonormal frame would produce a field which falls off like 1/r, as

radiation.
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Figure 5.5: The Lorenz gauge metric perturbation amplitude h2!. Note (comparing to
Fig. 5.2) the discontinuity at the location of the particle has vanished and the wave is
not asymptotically flat. Note that the amplitude h2! is an off-diagonal element of the
metric perturbation, which introduces an extra factor of r in Schwarzschild coordinates.
Transforming to an orthonormal frame would produce a field which falls off like 1/r, as

radiation.
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5.6 Even-parity gauge generator

5.6.1 Scalar part

The pair of equations (5.3.23) and (5.3.24) each have a curved space wave operator acting

on a scalar. This yields the Regge-Wheeler spin-0 operator, which gives

1 1 1 . 1 -

|:fat2 + ﬁar (7’2f8r) + m&@ (Slne a@) + 7"QS]I1208£:| :‘even(s) = Jeven(s)v (561)
1 1 1 . 1 o

[‘f‘f 520 (0] & g (inf 09) + r%in%ai] Jovon(s) = Vi VoPlion. (5.6.2)

We decompose Egyen(s) and Jeven(s) in scalar spherical harmonics,

- 1 .
‘:‘even(s Z geven(s t r Yvﬁm (97 qb) ) Jeven(s) = Z ;jﬁven(s) (t7 T)nm (‘97 ¢) . (563)

lm

We have already computed one divergence of p*¥. To take the second, we need the divergence
of a vector V#,

4V”Vu = gab%m + gABVB|A, (5.6.4)

where the stroke (]) is the full, four dimensional covariant derivative on the background
manifold. The connection terms it creates sum over all four spacetime indices. In the

Martel and Poisson [55] formalism the expression expands to
1
WY, = gV + 9P <DAVB + rrbegAB> : (5.6.5)

Using this, the second divergence of p*” is (with implied ¢, m and a summation)

f?

4vﬂ4vupwj = |:_ 7DQﬁ - 7athtr +2— a Py — farK

;3htt+<6f - 2f2)hw—< f+2M)K—2;\34Qﬁ—QbYES. (5.6.6)
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Plugging in these expansions, we use the orthonormality of the spherical harmonics to write

10> 0 0 200+1) 2M .
|:_f8752 + E (fa’r) - (7“2 + ’I“3>:| é-even(s) = Jeven(s)» (567)

1[ 102 0 5, 200+ 1)  2M\] .
; |:_fat2 + 5 <fa7’) - <7’2 + 73>:| Jeven(s) = S. (568)

After further simplification, the source term becomes

9% o2 2(0+1) 2M
S = fWQK + Ssingy W() = —w + ﬁ - ‘/0, Vb = f <(T2) + 7“3) y (569)

where we have combined all the singular terms together into Sgng. Then we can combine

the two differential equations into one fourth-order expression,

1
Wo (T,fWOgeven(s)) = fW()K + Ssinga (5610)

Given our definition of K in terms of the master function, we get

WoK (t,r) = a(r)U(t,r) + ﬁ(r)ﬂ'd(:’” + Gr()8(2) + Fr(t)d(2), (5.6.11)
where
alr) = —26%\ (A()\ F 1) AM A+ 1) r2 +3M2 (3A — 1) r + 24M3),
;2 (5.6.12)

B(r) = —225 (r A +1)+ 4M),

and Ggd(z) + Fxd'(2) get absorbed into Sing.

The Sging term can be found by using fourth order EHS. For the remainder of this section
we focus on solving the part of the equation with the extended source. Additionally, for the
remainder of this section we will suppress the eyen,s tags.

At this point we are ready to solve Eq. (5.6.10) using the EPS method. Neglecting the

singular terms and moving to the FD gives

dR d?
- Lo=3 + w2, — Vo. (5.6.13)

Eorlfﬁoé = a(r)R+ B3(r)
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We first need the particular solutions to this equation. The boundary conditions for these
particular solutions are given in App. 5.B.2. On the right side of Eq. (5.6.13) there are two
different forms of R which we consider. The first is the standard solution, which we denote

as

A~

Roni(r) = ¢t (r)RT(r) + ¢~ (1R~ (r), (5.6.14)

and the second is the pair of EHS
RE(r) = C*R*(r). (5.6.15)

Therefore, there will be two different particular solutions we can compute. We denote them
by

0= Ryv, &, < R*. (5.6.16)
To simplify solving the fourth-order equation (5.6.13), we make the following definitions

1 dv
Wnn, dTs

Winn Tf

(5.6.17)

1 d¢ 11[du
u

(% Wmn 7d7“
*

—i—(w?nn—%)g} , W=

Wimn dry ’

In addition to the particular solutions to Eq. (5.6.13), there are the homogeneous solutions
as well. There are two on the horizon side; one is annihilated by the second order operator,
and the other is annihilated by the full fourth-order operator. Respectively, these are 5;2
and 5;4. Similarly, there are two on the infinity side, which we denote as 5;2 and 5;4. Now,
in order to get the causally appropriate solution, we must add homogeneous solutions. On

the two sides we have
E =81+ Nl + Ml € =60+ RfEh + R (5.6.18)

Removing the acausal pieces is equivalent to demanding these two solutions and their three
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derivatives be identical. The four conditions are

ff + Aﬁzéﬁz + )‘54554 = éz?o + "3;25{2 + ”"245;47 (5.6.19)

U od ey e s 1 d /- . .
& (esH 4\ A ):7 (saoo + &t ++), 5.6.20
o dr ( p T Anabne + Anabna o dr \o + Epona T Fpabna ( )

and

Uy Nl + Mgy = U+ K00 + R0 (5.6.21)

Lod g~ - L d N R
oo dr (v + Mg + AaVia) = o dr (U 4 KUy + Kiynny) - (5.6.22)

Note that for the second-order equations U,il = wa = 0, so in matrix form

— + - fe') H
v —v A v —
h4 h4 ha
= 7 P, (5.6.23)
- + + 00 H
Wpy —Wphy Khg Wy~ — Wy
& —& Ay & - &1 & —& Ay
h2 h2 h2 | p D _ hd ha4 h4 (5.6.24)
- + + 00 H - + +
Upy  —Upg Kha Uy — Up Upy —Upy Kha

We use Cramer’s rule to solve Eq. (5.6.23) for A, and Ii;4. Then, the right side of
Eq. (5.6.24) boils down to one column vector, and we solve for the remaining two unknowns
Ao and /@;2.

At this point we have the coefficients to scale the homogeneous solutions properly. Then,
the standard solution to Eq. (5.6.13) is either of the (equivalent) expressions in Eq. (5.6.18).
This solution can be returned to the TD by using the standard Fourier synthesis. However,
as expected, it will exhibit Gibbs behavior. This can be circumvented by using the EPS

method, wherein we form

£ =& + Al + A ET =&+ rhEL + ELEN, (5.6.25)
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which we return to the TD through the Fourier sum,

aven(s) (T Zgi Jetomnt, (5.6.26)
Then, the weak form of the solution to Eq. (5.6.10) (without the singular term) is
geven (s) ( ) geven(s ( ) 0 [T - Tp( )] + ée_ven (s) (t,?") 0 [T'p(t) - ’I”] . (5627)

5.6.2 Divergence-free vector part

We briefly provide here an outline of the remaining task of solving for the divergence-free

part of the even-parity gauge generator. We start by defining the antisymmetric gradient

P ="y — 'V € en(v): (5.6.28)
Then, taking the divergence we have
_ 4y 4
F'LW| Y fgven (v) 7J:Ven(v) (5629)

where we have used the vanishing of R, on the background to commute the covariant

derivatives and applied the divergence-free property of =/

Zeven(v)" The source term Joyen(o)

is given previously in Eq. (5.3.26). Now, we recognize Eq. (5.6.29) as analogous to the
Maxwell equations. The approach of SNS [54] is to apply the Newman-Penrose formalism
to decompose Eq. (5.6.29) to find two separate equations for the tetrad scalars ¢y and
¢9. Then a final second-order wave equation must be solved to find the spherical harmonic
amplitudes of Eg ven(v)’ The equations all decouple, and the price we have to pay is more
equations to solve. We see no outstanding issues with being able to straightforwardly apply

our new methods to solve these remaining equations numerically.
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5.7 Conclusion

At this point, we have finished the gauge transformation for the odd-parity sector and for
the even-parity scalar part. Results for the odd-parity can be seen in Figs. 5.3, 5.4 and
5.5. Note that the gauge transformation removes the jump at the particle’s location and
corrects the asymptotic behavior, leaving it flat. In solving these equations we developed two
new techniques, the method of partial annihilators, and the method of extended particular
solutions, which are entirely equivalent. Results for the even-parity divergent-free vector
part are forthcoming.

Following completion of the gauge transformation, the stage will be set for self-force
calculations. We will be able to compute conservative shifts in gauge-invariant quantities
such as the energy, angular momentum and generalized redshift invariant. Some of these
have already been computed in the time domain. We should be able to add significantly

more accuracy with our frequency domain based approach.

5.A Gauge transformation of metric perturbation amplitudes

Once the gauge vector is found by solving the equations laid out in this chapter, the metric
perturbation is pushed to a new gauge via Eq. (5.3.2). This equation can be decomposed
into spherical harmonics, at which point it reveals how the metric perturbation amplitudes

are pushed under a gauge transformation. The even-parity amplitudes change as (e.g.
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ht = hEW & Ahy)

2M
Ahy = =20 + fﬁfr,
2M
Ahtr = _argt - 81557“ + 72&7
fr
2M
A rr:_2 rSr T T o5 Sry
ey = 20, — 75
Ajt = _atgeven - £t7 (5A1)

. 2
A]r = _arfeven - ér + ;éeven;
2 200 +1
fo 200

AK = ——¢&, 3 gevem
T T
2

AG = *ﬁgeven-
r

The odd-parity amplitudes change as (e.g. ht = hEW + Ahy)

_ 0&ad
Ahe = —=5=
o0&, 2
Ahy = — Codd —&odd; (5.A.2)
or T
Ahg = —2,44.

Note that £, m indices are suppressed in these expressions.

5.B Asymptotic expansions and boundary conditions

In this appendix we present boundary conditions necessary for starting numerical integra-
tions. On the large r side this involves asymptotic expansions. On the horizon side we can
perform a convergent Taylor expansion, but because the potential falls off exponentially, in
practice it is only necessary go to a moderately large and negative r, and find an appropriate

scaling factor.

5.B.1 Boundary conditions for the odd-parity gauge generator amplitude

We need an asymptotic expansion in order to set the appropriate boundary conditions

for €,qq. For the particular solution, we start by writing the asymptotic form of £yqq
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TWmn T

as rJe(r)e Given that we expect Rcpm (note that Rcpm and Rpw are related
asymptotically by a factor of —iwpm,/2) to go like Jr(r)e™mn"  we plug in to Eq. (5.5.16)

and obtain

d? M1 d oM l(l+1
rfesde +2 |1+ iwmnr — — | —J¢ + Dicom + L _ D)
dr? )

r | dr T

} Je = —iwmnJr (5.B.1)

Now, we change to the dimensionless variables, z = wy,,7 and 0 = Mw,,, which changes

the differential equation to

d? d 20 ((0+1
(z—2a)J§+2<iz+1—Z)Jg+<2i+;— Chs )>J5——iJR (5.B.2)

dz? dz z
Now, we assume the following forms of J¢, and Jg,

S
SLm

[e’e] [e’e] aR
Je(r)=>_ . Ja(r) = > Zi] (5.B.3)
j=0 J=0

<

Plugging these in and assuming the equation is satisfied order-by-order gives the inhomo-

geneous recurrence formula

2i(j — 1)as = |(j —2)(j — 1) — £(L + 1)}a§_1 + 20 [1 (- 2)2]a§_2 +iaf.  (5.B.4)

Note that the coefficients af are found in Eq. (4.D.5).
On the horizon side, where the potential falls away exponentially, it is enough to use the

expression in Eq. (5.5.19) and a sufficiently negative r, starting location for integration.

5.B.2 Boundary conditions for the even-parity scalar gauge generator
amplitude

We need boundary conditions for the particular solution as well as the two homogeneous

solutions.
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Second-order homogeneous solutions

For the second-order homogeneous solutions, at large r we assume a form of éeven(s) of

Je(r)emnm . Then we get (in terms of the dimensionless variables defined above)
20\ d?Jg 20 dJe A+1 20
1-—— — +20) —— (2 — =0. .B.
( z> d22+(22+ Z) dz ( 22 +z3)J§ 0 (5:B-5)

Assuming a form of

0o a§
Je(r) =) = (5.B.6)
=0
we find
2ijas = [5(j — 1) — 201 + 1)}%71 —20(j - 1)%a_,. (5.B.7)

On the horizon side, the boundary condition is the typical éeven(s) = e~ wmn™ and an

expansion is not necessary.

Fourth-order homogeneous solutions

For the fourth-order homogeneous solutions, we make the assumptions &even(s) = Jg (r)eiwmnrs

and v = J,(r)e®mn" These satisfy the two equations,

20\ d?Jg 20 dJe A+1 20
1—-— — +20) —— (2 — | Je = 2y, 5.B.8
< z> (1,22+<22Jr Z> dz < 22 +z3> ¢~ ( )

20\ d?J, 20 dJ, A+1 20
1-— — + 22 —2———+—=5)Jy=0 5.B.9
( z> dz? +<22+ Z) dz < 22 +z3> Y ( )

The equation for J, is exactly the same as that for J; Eq. (5.B.5). Therefore, it will have

the same expansion,

a

L) =32, 2je) = [j(j 1) -2\ + 1)]a§_1 —20(j —1)%a%,.  (5.B.10)
j=0
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This serves as a source to the J¢ equation, (5.B.8). Assuming a form of

1 3
a: bj

Je=)Y_ 5+ > e n(2), (5.B.11)

Jj=0 J=0

we find the coupled recurrences

2i(j — 2)b5 — |(j — 2)(j — 3) — 2(A + 1) |bS

42005 —3)%5_, =0, (5.B.12)

and

2i(j — 2)a — |(j — 2)(G — 3) — 200+ D] a_, + 20( — 3)%a_,

— 2ib% — (—2j +5)b5_) — 4o (j — 3)b5_, +a) = 0. (5.B.13)

Note that the In(z) term is necessary as the indicial equation for this asymptotic expansion
has two roots, with the indicial exponents differing by an integer. In these circumstances
[93] a single expansion of the Frobenius type is insufficient.

On the horizon side we do not need to perform an expansion because the potential falls
off exponentially. There, we set

SM3w3,

é.even(s) g mfe*’iw'm,n’f‘*, V= e*i&)mn’f‘*' (5B14)
mn

Particular solutions

For the particular solutions we make the assumptions even(s) = Jg(r)ei“’m”’"*, and v =
Jy(r)e®mn™ and we have the equations
20\ d*Je (20 dJe A+1 20
1-—— — 42— -2 — | Je = 2Jy, 5.B.15
< z>d22+(z2+z> dz ( 22 +z3> §=7 ( )
20\ d*J, (20 dJy A+1 20
1-—— — +2i —(2———+—= | Ly
( Z) dz? +(22+ Z) dz < 22 +z3>J
1 . B dJg
= B ) Jr + ————, (5.B.16
wd f(2) (OH_M ﬁ) B+ wi o dz ( )
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where o and [ are given in Eq. (5.6.12). We assume the following forms for the three

unknowns

al > a;
JR _ ‘ 7]]" Jf + J ln(z), Jy = Z ZT]H (5.B.17)

The recurrence for the coeflicients af is given in Eq. (4.D.4). Plugging in these summations

leads to the coupled recurrences

2i(j — 1)bS — [(J’ —1)(j —2) =2\ + 1)} bs_y +20(j —2)%5_, =0, (5.B.18)

2i(j = 1§ = [ = )G —2) =200+ D]aS_, +20( —2)%aS_,

—2ib5 — (=2j +3)b5_, —4o(j —2) +a¥ =0, (5.B.19)
and

2iN(j + 1)at — ()\j(j 1) — 6ioj — 22\ + 1))a§_1
~ ((3 2N 0j(j— 1) — 200 — 1) — (8\ + 6)a)a§_2 +60%(j — 1)%al_y
+ [ =200+ Daf + (= 200+ 1) + 212X+ DA = 3)o + 20+ 1)(G - 1) )af,
+ (=20 (A1) 0+ 4 (T = 8) 0% + 2(~47? + 3A + 3)o(j — 2) )all

+ (= 6(BA—1)0% + 48i0° + 8AA — 6)0%(j — 3) ) all 4
R
j—

R
} L _ 0. (5.B.20)

+(—4803+8(7)\—9)a3(j—4)) aft s +960%(j = 5)afl 5|

2
mn

Note that a In(z) term is again necessary.
On the horizon side we do not need to perform an expansion because the potential

falls off exponentially. By analyzing the horizon side nature of the source, we see that the
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particular solution has leading order behavior

_ 3(A+1) M? 5 i
feven(s) - (1 — 4M2wmn) (1 — 2lemn)f € ) (5B21)
v — 3 ()\ + 1) fe—iwmnr*. (5B22)

oMW, (1 — AMiw,y,)
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Chapter 6

Conclusions and future directions

In this thesis I have given a brief summary of the current state of EMRI research. With
the increasing prospects of detecting gravity waves, this already active field is growing
quickly. Though in the introduction I have sketched out the work done by others in the
broader problem of general orbits on a Kerr background, for the bulk of this thesis I have
focused on eccentric orbits around a Schwarzschild black hole. Chapter 2 presents a review
of black hole perturbation theory and associated mathematical formalism. Chapter 3 intro-
duces some new ideas, but applied to a scalar field model problem. It is Chapters 4 and 5

that present my original research on gravitational perturbations and metric reconstruction.

6.1 Summary of original contributions

Chapter 4, which is taken from Ref. [52] contains two significant new results. The first
of these is that we applied the method of extended homogeneous solutions to all radiative
gravitational modes. This was an extension of the method originally introduced by Barack,
Ori, and Sago [1], who used it for the monopole term of a field pulled up by a scalar charge
in eccentric orbit in the Schwarzschild spacetime. Working in the frequency domain, in
Regge-Wheeler (RW) gauge, the method of extended homogeneous solutions allows us to
compute an exponentially convergent Fourier synthesis to obtain time domain solutions
to the Regge-Wheeler and Zerilli equations at all locations, including the position of the
particle. Our code allows us to compute energy and angular momentum fluxes to a high

accuracy (fractional errors ~10712). Tts efficiency is such that our results rival time domain



codes for orbital eccentricities approaching e ~ 0.9.

The second noteworthy result from Chapter 4 concerns the reconstruction of the metric
perturbation from the master functions. We present the exact singular nature of the metric
perturbation in RW gauge, finding that the metric perturbation amplitudes at the location of
the particle are discontinuous and, in the case of some components, point-wise singular. The
singular nature of the metric amplitudes apparently was not widely understood before our
work. The time dependence of the singularities, of the discontinuities, and of the derivatives
of the metric amplitudes are now readily computable with our code. The singularities
present in RW gauge may be a challenge to attempts to compute the self-force directly in
this gauge.

In Chapter 5 I address the question of how to transform the metric perturbation in
RW gauge to Lorenz gauge. This is desirable because the first-order corrected equations of
motion are formulated only in Lorenz gauge. Additionally, the standard mode-sum regu-
larization procedure is designed to be used in Lorenz gauge. Lorenz gauge was chosen for
these formulations because it has many nice features. (As in electrodynamics, Lorenz gauge
simplifies the field equations dramatically.) For those wishing to perform time domain cal-
culations, the Lorenz gauge field equations can be put into a fully hyperbolic form [45].
Additionally, regularization (removal of the Coulomb part of the field) is more straightfor-
ward in Lorenz gauge because it is locally isotropic. As opposed to RW gauge, the metric
perturbation amplitudes are C° at the location of the particle and they are asymptotically
flat.

Our approach to transforming the metric perturbation to Lorenz gauge follows work
by Sago, Nakano, and Sasaki [54]. An elegant aspect of their approach to transforming
between the two gauges is that the system of partial differential equations fully separates.
Though their formulation has existed for some time, no one before this work had actually
performed the gauge transformation. In Chapter 5, I give the current state of our work on
implementing their technique. We have developed two new techniques for solving the types
of equations one encounters while doing these transformations. The first is the method of

partial annihilators, which entails an application of the method of extended homogeneous
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solutions to higher-order differential equations. Our second new technique is the method
of extended particular solutions. This is entirely equivalent to the former, but allows one
to solve the types of differential equations one encounters during the gauge transformation
without promoting those differential equations to higher-order. Thus far, we have fully
completed the odd-parity transformation. Our results show that, as expected the Lorenz
gauge amplitudes at CY and asymptotically flat. We have also completed part of the even-
parity transformation, specifically the even-parity scalar piece. We are currently working

on the even-parity divergence-free vector part of the gauge transformation.

6.2 Future directions

Following the completion of the numerical method to make the gauge transformation from
RW to Lorenz, we will be capable of finding the metric to a high degree of accuracy at all
locations, including the very position of the particle. Our code will be able to make such
transformations for nearly arbitrarily eccentric orbits about a Schwarzschild black hole. At
that point there will be several different next steps we can take.

The first step will be to compute the self-force and compare it with the results of
Barack and Sago [2], derived from their time domain code. We should be able to compute
conservative shifts to gauge-invariant quantities. Two such quantities are the energy and
angular momentum of the particle, as functions of the observable orbital frequency. An
additional observable is the eccentric orbit generalization of Detweiler’s redshift invariant
[46, 47]. Once the observable first-order self-force corrections have been computed in Lorenz
gauge, we can examine whether any or all of these effects can be computed directly in RW
gauge. This provides a powerful check on the accuracy of the transformation.

Next, we can compare first-order black hole perturbation theory calculations with post-
Newtonian theory. Our work rests on an expansion in the mass-ratio between the particle
and the SMBH. Post-Newtonian theory relies on an expansion in the small quantity v /e, for
slowly moving bodies. In the region where these two expansions overlap, we can compare

results. Further, following the work of Blanchet, Detweiler, Le Tiec, and Whiting [94] (who
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worked on circular orbits), we should be able to use our results to find previously unknown
post-Newtonian coefficients.

With the computation of the conservative and dissipative pieces of the self-force, one
would like to evolve orbits away from their background geodesic. This is subtle task, and
has not been performed in a self-consistent manner at this time. In principle, with the
self-force in hand, one ought to be able to simply solve the MiSaTaQuWa equations and
compute a geodesic of the perturbed spacetime. In practice, this is not straightforward.

First, Eq. (1.4.7) depends on the “tail” of the metric perturbation. The tail field
is defined in Eq. (1.4.6) as an integration over the entire past history of the particle’s
worldline. It is not clear a priori how far back one must go in order to compute an accurate
deviation from background motion.

Second, the MiSaTaQuWa equations are Lorenz gauge dependent. At first-order their
gauge condition V¥p,, = 0 is self-consistent with the vanishing of the divergence of the
zeroth-order stress energy temsor VYT, = 0. Once the particle leaves the background
geodesic, the zeroth order stress energy tensor will not be divergence free and the Lorenz
gauge condition will not be satisfied. One must therefore find a way to “relax” the Lorenz
gauge condition in a way consistent with the current order of perturbation theory.

Another natural extension of this work is to move to higher orders in perturbation
theory. There is a practical need to go to at least second order in the mass-ratio parameter.
For concreteness, consider a mass-ratio of /M = 1075, If we evolve the particle through
one orbit, the error in the phase of the particle’s motion will be of order 1075. If we wish
to model 106 orbits, which we suspect may be necessary for a LISA detection, the error in
the accumulated phase will be on the order of unity. Therefore, we need to go to at least
second-order in perturbation theory if we wish to have sufficiently accurate waveforms.

Astrophysical EMRI sources are expected to come from small bodies orbiting high spin-
ning Kerr black holes. Therefore, both the long-term orbit evolution and higher-order
perturbation theory discussed here will eventually have to be applied to particles moving
on the Kerr background. There is much progress being made there already (e.g. [95, 26]),

but the prospect of generic orbital evolution on Kerr is even more daunting than it is for
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Schwarzschild. Because of this we feel that Schwarzschild will remain a worthwhile first
testing-ground for some time.

Eventually, though we would like to apply our techniques to the Kerr spacetime. The
traditional approach to working on Kerr (the Teukolsky formalism) is best used in the
frequency domain. Additionally, given our experience with singular source terms, we feel
that we should be able to solve the Teukolsky equation with a high degree of accuracy.
With new features of the spacetime still being discovered [96], it promises to be a fertile

area for research for some time.
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