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1
Introduction

Conventional statistical physics and thermodynamics are extremely successful in de-
scribing macroscopic systems near equilibrium conditions. A good understanding of the
equilibrium properties also gives insight to the dynamical response of these systems, as, for
instance, the fluctuation-dissipation theorem relates the equilibrium fluctuations to the
response for small perturbations. These linear response functions, transport coefficients,
Onsager relations, etc. form the main subject of the traditional non-equilibrium statistical
mechanics, which, in contrast to its name, describes near-equilibrium physics. In many
electronic devices, studying linear response gives satisfactory results, and the properties
of highly excited states are usually irrelevant. Counterexamples are laser devices, which
are inherently far from equilibrium, nevertheless they are widely used in academy, in the
industry and also in the everyday life.

In the recent decades remarkable attention has focused on studying systems which
are far away from equilibrium [1, 2], and are beyond the validity of traditional non-
equilibrium statistical mechanics and linear response theory. The academic interest in out-
of-equilibrium physics has a long history, it goes back to the birth of quantum mechanics,
by studying how the equilibrium states can be approached from microscopic dynamics
[3]. The renaissance of the topic was initiated by the experimental advances achieved
with ultracold atomic gases, which made possible to prepare and detect non-equilibrium
states with previously unexpected controllability and stability [4, 5]. These experiments
have also triggered huge progress in theoretical physics. A brief introduction to ultracold
atoms is given in section 1.3.

The out-of-equilibrium world is still largely unexplored and is presumably full of sur-
prises and treasures. A comprehensive understanding similar to statistical mechanics of
equilibrium systems is still lacking, but some unifying concepts have been developed,
for example non-equilibrium fluctuation theorems [6–8]. There are several perspectives of
out-of-equilibrium physics. One is to look for non-equilibrium analogies or generalization
of equilibrium notions, such as adiabatic theorem, phase transitions, etc. A second one is
engineering some properties of matter to obtain desired behaviour by bringing them out
of equilibrium. A third direction is to find completely new phenomena, which do not have
any equilibrium counterparts. The main goal of the field is to find universal features of
the dynamics from the analysis of specific systems.

Non-equilibrium systems can be classified based on the way they are pushed away
from equilibrium. These are called non-equilibrium protocols or driving. The most widely
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analyzed protocol is the (sudden) quench, when the system is brought out of equilibrium
by a sudden change in the coupling parameters, e.g. in the magnitude or direction of
some external fields, or in the interaction strength among particles. Another popular
protocol is called ramp, when the parameters describing the Hamiltonian are changed
gradually, usually as a linear function (linear ramps), or as a smooth function to suppress
excitations. Finally, periodic driving and the corresponding Floquet theory constitutes a
separate branch of out-of-equilibrium physics. A cartoon of the protocols are illustrated
on Figure 1.1.

Pe
rt
ur
ba
tio
n

t=0

Quench

Ramp

Periodic

Initial state
preparation

Short-time dynamics Steady states

Time

Figure 1.1: Illustration of the most popular non-equilibrium protocols, which are also studied
in this thesis.

The wide range of timescales involved in the dynamics contributes to the complexity
of non-equilibrium physics. Some important questions in the short time dynamics are how
defects are generated under the driving, and how they relax after the driving is turned
off. Either with or without external driving, we expect that the systems after a long time
evolution reach some steady or stationary states. The description of these states, whether
they are thermal [9] or can be described by a more complicated Gibbs ensemble [10], are
also fundamental questions of out-of-equilibrium physics.

A promising application of non-equilibrium physics is quantum computation. Though
large scale quantum computers have not been realized yet, understanding coherent dy-
namics and state manipulation by various protocols will presumably be crucial for fu-
ture applications in quantum information processing and quantum technology [11]. A
promising branch of quantum computation, applied for example in the controversial first
commercial device which was claimed to be a quantum computer [12], is based on the
quantum adiabatic theorem. The main idea of adiabtic quantum computation is to adia-
batically evolve the ground state of a Hamiltonian which is easy to prepare, to the ground
state of another Hamiltonian which encodes the solution of an optimization problem [13].
However, practical applications require fast computation, which necessarily creates exci-
tations, studied usually in the context of out-of-equilibrium physics. A related goal of the
field is to find optimal driving protocols [14–16], or shortcuts to adiabaticity [17], which
minimize excitations above a target state we intend to prepare, while keeping the protocol
fast.

Non-equilibrium behaviour has been studied in various systems, starting from classical
fluids, biological and eco-systems through to condensed matter. In this thesis, I study
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1.1. Equilibration of quantum systems

simple fermionic and spin models of condensed matter systems to analyze their out-of-
equilibrium behaviour from various aspects. Chapter 1 provides a general introduction
to various topics, which serve as either a motivation or a background to the studies
included in the thesis. In section 1.1 we review the recent theoretical progress achieved in
thermalization of closed quantum systems, which is one of the most important questions
of non-equilibrium physics. Next, in section 1.2, we introduce periodically driven systems
from the point of view of Floquet engineering, which is a method to design Hamiltonians
with tunable parameters. Then we give a short introduction to cold atom experiments in
section 1.3, which are uniquely suitable to study out-of-equilibrium physics. Finally, in
section 1.4 we introduce topological insulators and topological semimetals, which, under
non-equilibrium circumstances, are the main subjects of investigation in the following
chapters. In addition, because of the large variety of questions, protocols and systems
appearing in the thesis, all chapters start with an introduction.

The thesis is organized as follows. In chapter 2, we study the properties of dynami-
cal phase transitions, which are characterized by non-analyticities appearing in the time
evolution following a sudden quench protocol. In particular, we investigate the relation
between the occurrence of dynamical phase transitions and equilibrium quantum phase
transitions for various models [18, 19], such as spin chains, topological insulators and
superconductors. In chapter 3, we present our analysis about Schwinger’s mechanism in
topological semimetals [20], which describes the creation of electron-hole pairs following
a sudden quench in the electric field, or equivalently, under a linear ramp in the vector-
potential. We determine the full statistics of charge carriers generated by the perturbation
and we discuss the time evolution of the electric current as well. In chapter 4, we analyze
the occupation of the Floquet quasienergy bands in a quantum spin Hall insulator irradi-
ated by circularly polarized light, which acts as a periodic perturbation, and we study the
induced photocurrent in the presence of dissipation [21]. Finally, chapter 5 is devoted to
summarizing the content of the thesis.

1.1 Equilibration of quantum systems

One of the key questions in non-equilibrium physics is how quantum systems reach
thermal equilibrium, when they encounter a change in the environment, e.g. when an
external magnetic or electric field is suddenly switched on or off. In classical physics even
closed systems can thermalize under their intrinsic dynamics [22]. In chaotic systems
the trajectories in phase space are exponentially sensitive to small perturbations, a tiny
ambiguity in the initial conditions leads to a totally different time evolution. Moreover,
almost all trajectories explore the entire phase space restricted only by the conservation of
energy, which behaviour is called ergodicity, and long time averages of observables become
independent of the initial conditions. These time averages can be calculated as statistical
(phase-space or microcanonical) averages, which form the basics of statistical mechanics.

The picture is slightly different in quantum systems. The concept of exponentially di-
verging trajectories and the exploration of the phase space cannot be directly translated
to the Hilbert space, because the unitary time evolution does not change the distance
between states: 〈ψ1(t)|ψ2(t)〉 = 〈ψ1(0)|ψ2(0)〉. The Schrödinger equation never transforms
a pure state into a mixed state, which would be necessary for a statistical description, so
equilibration cannot occur in the level of wavefunctions. However, in most of the cases,
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1.1. Equilibration of quantum systems

expectation values of observables tend to approach stationary values after long time evo-
lution. The principle behind this phenomena is dephasing. A simple illustration is a non-
equilibrium initial state with well defined order, which is not supported by the Hamiltonian
governing the time evolution, e.g. a density wave in a translation-invariant environment.
This structure appears as a coherent superposition of the eigenstates from a wide en-
ergy interval, which collapses quickly as the individual eigenstates obtain different phases
under time evolution, and in infinite systems revivals might never occur. Dephasing has
similar effect to averaging: if the time evolution supports stationary expectation values,
then the infinite time limit coincides with the time average:

lim
t→∞
〈O(t)〉 = lim

T→∞

1

T

∫ T

0

〈O(t)〉 dt ≡ 〈O(t)〉 (1.1)

Calculating time averaged expectation values is formally simple in the eigenbasis of the
Hamiltonian. If the initial state is expanded as ψ0 =

∑
n cn |n〉, then

〈O(t)〉 = Tr{ρ(t)O} =
∑

n,m

c∗mcne
−i(En−Em)t 〈m|O|n〉 , (1.2)

and assuming no degeneracies in the spectrum

〈O(t)〉 = Tr{ρDEO} =
∑

n,m

|cn|2 〈n|O|n〉 . (1.3)

The diagonal part of the density matrix ρDE is called diagonal ensemble, because assuming
no degeneracies in the spectrum, it gives the stationary expectation values of observables
from a statistical description. ρDE describes a mixed state, which contains less information
than the pure ρ(t), but it still requires an exponential number of parameters in system
size. It arises as a further question whether the stationary states could be described by a
much simpler Gibbs ensemble, e.g. with only a single parameter, the effective temperature,

lim
t→∞

ρ(t)
?∼ ρGibbs (1.4)

which we would call thermalization. The answer is positive for generic interacting quantum
systems: they act as a heat bath for their own subsystems, and local expectation values
are well captured by a Gibbs ensemble, with temperature set by the energy of the initial
state, that is

lim
t→∞
〈O(t)〉 = Tr{e−βHO} (1.5)

for any local O, where β is the inverse temperature.
This result is motivated by the eigenstate thermalization hypothesis [9, 23, 24] (ETH),

which can be thought of as the quantum counterpart of classical ergodicity. It does not
study trajectories in the Hilbert space, instead, it states that ergodicity is encrypted in
the eigenstates of the Hamiltonian. The eigenstate thermalization hypothesis assumes that
the eigenstates of ergodic Hamiltonians are thermal in the sense that different eigenstates
from a small energy interval look identical from the point of view of local observables,
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1.1. Equilibration of quantum systems

and they provide the same expectation values. In other words, the expectation values in
any eigenstates are approximately equal to the microcanonical average:

〈ψn|O|ψn〉 ≈ Tr{ρMC(En)O} , (1.6)

where ρMC(En) is the microcanonical density matrix at energy En. This hypothesis has not
been proved, but it has been demonstrated numerically to hold for various systems. In the
thermodynamic limit from the equivalence of ensembles, we get equally good description
with a canonical ensemble, with a temperature fixed by the initial energy. The theory
of ETH has many further implications e.g. constraints for off-diagonal matrix elements,
and fluctuations of observables, etc. The observation that ergodicity is hidden in the
eigenstate properties of the Hamiltonian, gives a hint where to look for chaos in quantum
systems. Though tiny difference in initial states remain tiny under time evolution, states
may show large difference if, instead, the perturbation acts on the Hamiltonian. Indeed,
the Loschmidt echo [25],

L(t) = |
〈
ψ0|ei(H+δH)te−iHt|ψ0

〉
|2 (1.7)

measuring the overlap of wavefunctions undergoing two slightly different time evolution,
displays exponential sensitivity of perturbations of the Hamiltonian, and is used to char-
acterize quantum chaos [26, 27]. Although from a different perspective, the Loschmidt
echo, or its variant, the Loschmidt amplitude will be a central object of chapter 2.

There are two branches of counterexamples, which do not satisfy ETH: integrable and
many-body localized (MBL) systems. Integrable systems are characterized by an infinite
number of mutually commuting local integrals of motion, which are conserved under time
evolution, displaying memory of the initial conditions. The canonical Gibbs distribution is
the most random distribution, i.e the one maximizing the entropy, which respects energy
conservation. This latter appears as a Lagrange multiplier in the density matrix: ρGibbs ∼
e−βH . A naive generalization of this method to infinite conserved quantities {Qi}∞i=1 leads
to the generalized Gibbs ensemble [10] (GGE), where ρGGE ∼ e−λiQi and the Lagrange
multipliers λi are determined from the initial expectation values of the charges Qi. GGE
can be further motivated by the generalized eigenstate thermalization hypothesis [28]
(GETH), which states that eigenstates with the same set of conserved quantities are
locally indistinguishable. GGE was proved for free fermion systems, and the validity of
GGE in interacting integrable models was the subject of many recent studies [29–32].

Many-body localization [33] is a localization transition of interacting systems, a gen-
eralization of the Anderson localization. Below a critical disorder strength, these inter-
acting systems are in a thermalizing (ergodic) phase, that is, the whole system acts as
heat bath for the subsystems, and even closed systems can effectively thermalize by their
own dynamics. By increasing the disorder one arrives to the many-body localized phases
exhibiting nonergodic behavior. They fail to thermalize, and the memory of initial con-
ditions persist for infinite times. In contrast to usual quantum phase transitions, MBL is
not a low-energy transition, but it describes changes of the high-energy eigenstates of the
Hamiltonian. Hence sometimes it is referred to as an infinite temperature phase transi-
tion. It is also characterized by robust integrability, as conservation laws emerge from the
disorder, without any need of fine-tuning the parameters. Heat and charge transport are
completely suppressed in MBL systems.
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1.2. Floquet theory

We have briefly summarized the mechanism of equilibration in closed quantum systems
in constant environment. The same questions can be asked when changing environments
as well, for example, in periodically driven systems. In this case we also expect that,
following a transient dynamics, the observables at late times become invariant under time
translations, that are multiples of the driving period. We may refer to this as a steady state
in driven systems. This phenomena was found in free fermionic systems, where the long
time expectation values are described by a Periodic Gibbs Ensemble [34], which, similar
to the GGE, is constructed from an extensive number of conservation laws. In contrast,
several studies have indicated that globally driven interacting systems do not support any
conservation laws, and they thermalize to a structureless, infinite-temperature stationary
state [35–37].

Understanding thermalization of closed systems is not only fundamental from the
theoretical point of view, but it is also the relevant scenario in cold atom experiments,
because cold atom systems are very well isolated from the environment. On the other hand,
perfect isolation is never achievable, especially in condensed matter physics, which then
requires the analysis of open quantum systems. The dynamics of open systems largely
depend on the way they are coupled to the environment, and on the properties of the
environment as well. However, if the coupling between the system and the environment is
small, statistical mechanics is expected to work, leading to undriven systems approaching
the Gibbs distribution with the temperature given by the environment. The question is
much more intricate in driven systems, where an interesting competition arises between
the energy absorbed from the drive and the heat passed to the environment. In chapter 4,
we study the stationary state of a simple periodically driven system, and we find that
equilibration to time-periodic stationary states occur, but the occupation of these states
is generally not thermal.

1.2 Floquet theory

In this section we briefly introduce the Floquet theory of periodically driven systems,
which stands behind numerous cold atom experiments and it also serves as the background
for chapter 4. The Hamiltonian of periodically driven systems is invariant under discrete
time translations that are multiples of the period: H(t+ T ) = H(t). The Floquet theory
exploits this discrete time translational symmetry to classify the time evolution, similarly
to the Bloch theorem, which classifies the eigenstates of the Hamiltionians with discrete
spatial translational symmetry. The solutions of the time-dependent Schrödinger equation
can be written in the following form [38, 39]:

i~∂tΨn(t) = H(t)Ψn(t) (1.8)

Ψn(t) = e−iεntΦn(t) (1.9)

where Φn(t) = Φn(t+T ) is time-periodic, and the phase factor εn is the quasienergy, which
plays similar role to the energy in static systems. Because of the violation of continuous
time-translation symmetry, the quasienergy is defined only modulo ω = 2π

T
. Similarly to

the wavenumbers lying outside the Brillouin-zone, all quasienergy values can be folded
into the [0, ω) interval.

One can also define a Floquet Hamilton operator as the generator of discrete time
translations, whose eigenvalues are the quasi-energies. From the operator point of view, the
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1.2. Floquet theory

Floquet theorem states, that the time evolution operator U(t1, t0) = T exp{−i
∫ t1
t0
H(t)dt}

can be written in the following form [40]:

U(t1, t0) = P (t1)e−iH̃F (t1−t0)P (t0) , (1.10)

where P (t) = P (t+T ) is the time-periodic unitary micro-motion operator, which describes
motion within a single period, and H̃F is the time-independent Floquet Hamiltonian. We
can think of the P operator as a transformation to an abstract moving frame, in which
the Hamiltonian looks static. That is, combining the differential equation evolving U ,
i∂tU(t, t0) = H(t)U(t, t0), with Eq. (1.10), we get

H̃F = P+(t)H(t)P (t)− iP+(t)∂tP (t) . (1.11)

In many applications one is not interested in the complete time evolution, but only in
stroboscopic times t0 + nT . In this case the micro-motion (i.e. the motion within a single
period) can be incorporated in the stroboscopic Floquet Hamiltonian HF ,

U(t0 + nT, t0) = e−iHFnT , (1.12)

where HF = P (t0)H̃FP
+(t0) depends explicitly on t0, but its spectrum and the quasi-

energies do not. That is, the stroboscopic time evolutions with different choices of the
initial time t0, which correspond to different initial phases of the drive, are unitary equiv-
alent.

In general, determining the Floquet Hamiltionian is a very difficult problem, analytical
solutions are only available for some very simple systems. If the driving frequency is so
large that the system cannot follow the external perturbation, the system sees only the
time average of the perturbation. From this consideration, an expansion perturbative in
the inverse frequency can be constructed, HF =

∑
rHF,r, where HF,r is in the order of ωr.

The most widespread expansion was developed by Magnus [41, 42], for which the leading
order terms are expressed as

HF,0 =
1

T

∫ T

0

dtH(t) (1.13)

HF,1 =
1

2iT

∫ T

0

dt2

∫ t2

0

dt2[H(t2), H(t1)]dt . (1.14)

The main perspective of the Floquet theorem is that periodical driving protocols applied
to a static system lead to an effective time-independent Hamiltonian time evolution at
stroboscopic times, and the properties of this Floquet Hamiltonian are easily tunable by
the driving protocol, for illustration see Figure 1.2. This idea is exploited in cold atom
experiments, where periodic driving has been used to generate artificial magnetic fields
[43–45] for nonmagnetic atoms, and to achieve topological phases [46]. Floquet physics
was used for example to realize the topological Haldane model (see sections 1.4 and 2.3.5
for details) not only in cold atoms [46], but in photonic waveguides [47] as well. In the
latter experiment, the role of the time is replaced by the distance in the propagation
direction of the light, and the effect of periodic driving is simulated by the usage of helical
waveguides instead of the usual cylindrical shape. The application of periodic driving is
not limited to the previously mentioned artificial matter, there are numerous proposals to
change the topological properties of condensed matter systems by irradiating them with
electromagnetic fields [48, 49].
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1.3. Cold atom experiments

Static Hamiltonian

Periodic driving

Floquet Hamiltonian

Beff

Veff

Figure 1.2: The main idea of the Floquet engineering is that a high frequency periodic driving
can be used to change the properties of the initial system. For example artificial gauge fields or
new interactions among the particles can be induced this way.

1.3 Cold atom experiments

Although cold atoms are not in the main focus of this thesis, they provide a unique
platform to measure out-of-equilibrium dynamics. Furthermore, as we have discussed in
the previous section, many of these experiments extensively use Floquet physics to achieve
the desired Hamiltonian, which is another connection to the non-equlibrium dynamics.
Throughout the thesis we often refer to cold atom experiments, here we give a rather brief
introduction to the field.

State-of-the-art technology allows experimentalists to study the dynamics of neutral
atoms loaded into optical lattices (Figure 1.3), simulating quantum many-body physics
of condensed matter on highly enlarged time and length-scales. The optical lattices are
based on the conservative dipolar interaction between the electric field and the atoms. The
electric field of non-resonant light polarizes the atoms, which hence feel the electric field
as a potential proportional to the field intensity. The sign of the potential shift depends
on the detuning [50], which is the difference between the frequency of the laser and the
nearest atomic transitions. The atoms are hence either trapped in regions of high or low
intensity. There is another interaction between the electric field and the atoms, that is,
the dissipative absorption and emission of photons, which, however, becomes suppressed
for non-resonant frequencies. This latter effect is applied in laser-cooling settings, but is
avoided in the construction of optical lattices. Optical lattices are formed by producing
standing waves from counter-propagating laser beams, which act as periodic potential for
neutral atoms with the lattice constant being proportional to the wavelength of the laser.
Both the dimensionality and the geometry of the lattice are easily tunable by choosing
a proper number of laser beams and by changing their relative angles and intensities.
The atoms can tunnel between neighboring potential minima, with a rate exponentially
suppressed by the potential barrier between the lattice sites, similarly to the electrons
hopping in a crystal. Because of their convenient properties, alkali atoms are used in the
majority of cold atom experiments. Depending on the number of neutrons in the atoms,
they follow either fermionic (e.g. 6Li, 40K) or bosonic (e.g. 87Rb) statistics. To probe
the same physics as in condensed matter, these systems are cooled down to the order of
nanokelvins.
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1.4. Topological insulators

Figure 1.3: Optical lattices are created by counter-propagating laser beams, which act as a
harmonic potential for the ultracold neutral atoms loaded into the lattice. These atoms can hop
between the potential minima, similarly to the electrons in a metal.

In addition to the capability of these experiments to simulate Hamiltonian dynamics
with highly tunable Hamiltonians, they allow for preparation of various initial states
with high fidelity. The set of easily measurable parameters in cold atom systems are
different from those in condensed matter. For instance, measuring conductivity is one
of the simplest probes in experimental solid state physics, but is it rather difficult to
measure it directly in cold atoms. On the other hand, the momentum distribution of the
particles, which could only be inferred in condensed matter systems e.g. from ARPES
measurements, is easily accessible in cold atoms by time-of-flight techniques, which detect
the free evolution of the particles after the optical lattice is turned off. The limits of
the experimental techniques can be pushed incredibly far, a fascinating example is the
quantum gas microscope, which allows for the detection of even single atoms in optical
lattices [51, 52].

1.4 Topological insulators

Traditionally, solid materials had been classified as being metals or insulators based
on the band theory. Materials with partially filled bands are good conductors, because
there are plenty of charge carriers available to conduct heat or electricity near the Fermi
energy. Band insulators on the other hand are characterized by completely filled bands,
with exponentially suppressed number of charge carriers, which implies the insulating
behaviour. Semiconductors are considered as insulators with a small band gap in this
classification. Topological insulators (TIs) consist of a new, previously unnoticed class in
the band theory [53]. They are insulating in their bulk, but they exhibit robust conducting
states on their surfaces or edges, which lie in the band gap of the bulk system. Although
normal band insulators can also support surface or edge states, they are easily destroyed
by changing the surface geometry or by disorder. In contrast, the surface states of topo-
logical insulators are protected by a global property, the topology of system, which cannot
be altered by local perturbation, as long as the bulk band gap stays open. Similar to mag-
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nets, which cannot be cut into a positive and a negative pole, the surface states cannot
be removed by cutting off the surface layer of a topological insulator, as they reappear
at the new surface. Historically the first example of topologically protected edge states
was found in 1980-82 in the form of the quantum Hall effect (QHE) [54, 55], but the con-
cept of topological insulators was only developed a quarter of century later. Besides the
robustness of the surface states, topological insulators have other remarkable properties,
which initiated the extraordinary attention to this field. First of all, these boundary states
conduct very well, because of the suppression of backscattering. In the quantum Hall ef-
fect, it is a consequence of the chiral character of the edge states: current can only flow
in one direction along the edge, counterpropagating states to scatter in are completely
absent. In 1988, Haldane proposed a model for the quantum Hall Effect with a staggered
magnetic field, but with zero total flux [56], which serves as the simplest example of the
quantum Hall insulators. We introduce the Haldane model in section 2.3.5, where we use
this example for illustrating our results on the dynamics of generic topological insulators.

Another type of TIs is the quantum spin Hall insulator (QSH insulator, proposed by
Kane and Mele in 2005 [57]), which exhibits similar behavior to the QHE without breaking
the time reversal symmetry. In this case the intrinsic spin-orbit coupling substitutes the
role of the magnetic field, and for simplicity we can imagine this effect as two spin-
dependent copies of the QHE, with spin up fermions moving clockwise and spin down
fermions moving counterclockwise around the edges, illustrated on the middle panel of
Figure 1.4. As scattering on non-magnetic impurities does not change the direction of the
spin, backscattering vanishes in this case as well 1. In chapter 4 we study the edge current
arising in QSHIs when they are subject to an additional periodic driving.

Though complete back-scattering is suppressed also in the surface states of 3D topo-
logical insulators, they are not perfectly conducting because in 2D scattering can not only
occur in 180◦, but in arbitrary directions. Further interest in the surface states of TIs is
that similarly to the electrons in graphene, they are described by the relativistic Dirac
equation. In contrast to graphene’s 4 Dirac cones (corresponding to valley and spin de-
grees of freedom), there is only a single Dirac cone at the surface of 3D TIs. In arbitrary
2D systems the Dirac cones have to appear in pairs, and the boundary of the topological
insulators is exotic in the sense that it cannot appear as an effective theory for a purely
2D system, which is not a boundary of a higher dimensional system. The three types
of topological insulators mentioned so far, and the dispersion relation of their boundary
states are illustrated on Figure 1.4. TIs also exist in 1D, which support non-dispersing
mid-gap states localized at the two ends of the system.

Experiments followed soon the theoretical advance of the field, the first experimental
realization of the QSH insulator was in 2007 in HgTe-CdTe heterostructures [58]. As a
function of the thickness of the HgTe layer, a topological phase transition occurs from a
normal insulator to a TI phase, which was identified by transport measurements. When
the thickness of the middle layer is smaller than a critical value, a regular insulating be-
haviour is observed, while a HgTe layer exceeding the critical thickness shows a quantized
conductivity due to the perfectly conducting edge states. The cartoon of the system and
the experimental signatures of the topological edge states are depicted on Figure 1.5.

1In contrast to the simplified picture we provided here, the absence of backscattering does not require
the conservation of the z component of the spin, only the presence of time reversal symmetry, which is
broken e.g. by a magnetic impurity.
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1.4. Topological insulators

Figure 1.4: Topological insulators are characterized by linearly dispersing robust edge and
surface states, whose energy lie in the bulk band gap.

The first 3D topological insulator material Bi1−xSbx was found in 2008, which has been
followed by many other examples.

Figure 1.5: Experimental realization of the QSH insulator in HgTe-CdTe heterostructures.
The system undergoes a topological phase transition from a normal phase (top) to a TI phase
(bottom) as the thickness of the HgTe layer is varied. The huge resistance in the normal phase
corresponds to an insulating behaviour, while the TI phase exhibits a resistance plateau at
R = h

2e2
due to the perfectly conducting topological edge states. The panels were adopted from

the ArXiv version of Ref. [59].

In the level of the BCS theory, superconductors are similar to band insulators in the
sense that the excitation spectrum is gapped. The concept of topologically protected
edge/surface modes living in the bulk band gap can be generalized to superconductors as
well, giving rise to even more exotic modes at the boundary. For instance, they can host
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Majorana particles, which are the antiparticles of their own, and their existence had been
experimentally demonstrated in highly engineered materials [60, 61].

1.4.1 Topological numbers

An interesting feature of topological insulators is that they are beyond the traditional
Ginzburg-Landau description as they exhibit quantum phases without local order param-
eter. Instead, topologically trivial (normal), and topological insulators are distinguished
by topological numbers, which can take values from different sets (Z or Z2) depending on
the spatial dimension and on the global symmetries of the systems. The bulk-boundary
correspondence connects the topological numbers calculated from the bulk with the ap-
pearance of surface and edge states. For example in QHE effect, the topological index is
the Chern number, the integral of the Berry curvature, which can take any integer values.
The Chern number also gives the number of conducting edge states in a finite system.
The topological phases are characterized by the dimension and the symmetry class of
the systems, and a periodic table of topological insulators and superconductors has been
developed [53]. The relevant symmetries are the time reversal symmetry (Θ), the particle-
hole symmetry (Ξ), and their product, the chiral symmetry (Π = ΞΘ). These three define
the 10 symmetry classes (A, AIII, AI, BDI, D, DIII, AII, CII, C, CI), which are closely
related to the Altland-Zirnbauer classification of random matrices.

In section 2.3 we will reveal an interesting impact of the topology on the dynamics
of TIs and superconductors following a sudden quench protocol. In particular, we study
the A, AIII, BDI and D classes, for which the symmetries and the topological indices are
given in Table 1.1. In two-band models the topological invariants for these classes are the
winding number or the Z2 invariant in 1D, and the Chern number in 2D, illustrated in
Figure 1.6. The relevant topological indices are defined in section 2.3, in Eqs. (2.36,2.37).
We will see that quenches connecting phases with different topological numbers are qual-
itatively different from quenches within the same phase.

Figure 1.6: The winding number ν is a topological number, which counts the number of times
a closed curve winds around the origin in the 2D plane. In in simple cases the Chern number Q is
its 3D analog, that is, it counts how many times a closed directed surface encompasses the origin.
Without going into the details, these curves and surfaces characterize the many-body ground
state wavefunctions of insulators, and they are smooth functions of the parameters appearing in
the Hamiltonian.
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Symmetry Dimension
Class Θ Ξ Π 1 2

A 0 0 0 0 Z
AIII 0 0 1 Z 0
BDI 1 1 1 Z 0
D 0 1 0 Z2 Z

Table 1.1: The periodic table of topological insulators and superconductors, restricted to the
cases studied in this thesis. Zeros in the ”Symmetry” column denote the absense of the symmetry,
and ±1 specifies the value of Θ2 and Ξ2. In this restriced table there are no examples with
negative sign of Θ2 and Ξ2, but generally there are. In the ”Dimension” column zeros denote
the absense of topological insulator phase and Z, Z2 characterize the TI phases.

1.4.2 Topological semimetals

Soon after the discovery of topological insulators, it had been noticed that topology
can play significant role in gapless sytems as well. As we have discussed, the edge or
surface states of topological insulators obey the 1D or 2D Dirac equation. The main
interest in the topological Weyl and Dirac semimetals is that they host quasiparticles,
which obey the 3D Dirac equation. The Dirac nodes appear as band crossings around
some points in the Brillouin zone in these materials. Usually crossings of energy levels are
not robust in quantum mechanics, a generic perturbation lifts the degeneracy, unless there
is a symmetry protecting it. In contrast, ”accidental” band touchings - degenerate points
in the spectrum not protected by any symmetries - in 3D materials turn out to be much
less accidental, they can be protected by the topology of the band structure. Materials
with this property are called Weyl semimetals, because the low-energy physics of these
materials mimic the Weyl fermions well known from high energy physics. At the crossing of
two non-degenerate bands the dispersion relation can be linearized yielding to a Dirac-like
effective Hamiltonian Hk = ε+v(k−k∗) ·σ, where, for simplicity, we considered isotropic
dispersion relation around the Weyl point k∗. The sign of the velocity v characterizes
the helicity of the quasiparticles. In contrast to graphene, here all the 3 Pauli matrices
(σx, σy, σz) = σ appear in the Hamiltonian, and any perturbation proportional to the
Pauli matrices can only shift the position of the Weyl node, but it cannot make the Weyl
point disappear. Weyl nodes hence can only disappear when they meet with another one of
opposite helicity. We can think of these nodes as topological defects in the band structure.
More precisely, the nodes of different helicity act like sources and sinks of the Berry
curvature of the effective two-level system, defined as B(k) = i∇k × 〈uk|∇k|uk〉 = 1

2
k
k3 ,

where |uk〉 denotes the ground state of the effective Hamiltonian defined above. The
topological charge associated with the Weyl node is the surface integral of the Berry
curvature around a surface containing the node, which happens to be the helicity of
the Weyl node. A key ingredient in the previous description was the crossings of non-
degenerate bands, and to achieve this, Weyl semimetals break either inversion or time
reversal symmetry.

In contrast to the two-component Weyl fermions in Weyl semimetals, Dirac semimetals
are characterized by four-component linearly dispersing low-energy excitations. This can
be realized either by having two Weyl nodes with opposite helicity at the same crystal
momentum, or by considering a crossing of two doubly degenerate bands [62]. However,
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in contrast to the robustness of Weyl nodes, the occurrence of Dirac nodes require either
fine-tuning or additional symmetries protecting against mass terms, which otherwise could
open a gap at the band crossing.

Condensed matter systems, e.g. graphene, 3D topological insulators and Weyl semimet-
als, provide unique opportunity to examine fascinating QED effects, like Klein tunneling,
Zitterbewegung, chiral anomaly or Schwinger pair production, most of which are barely
accessible to experiment otherwise. In addition to this “fundamental” appeal, these phe-
nomena play a crucial role in transport properties of these systems. In chapter 3 we study
the Schwinger pair production and its effect on the conductivity of Weyl semimetals after
a sudden switching on of an external electric field.
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2
Dynamical phase transitions

Phase transitions are amongst the most fascinating phenomena in physics. They de-
scribe sharp changes in the properties of the system as a function of temperature or
pressure or some other macroscopic parameter. Examples include transitions from water
to ice, from metal (or even insulator) to superconductor, from paramagnet to ferromag-
net, and many more. In equilibrium, phase transitions are reasonably well understood.
Mathematically they are described by singularities in the free energy of the system devel-
oping as one crosses this transition. In non-equilibrium systems, which became recently a
forefront of research, the situation is much less clear.

Dynamical phase transitions may refer to several different scenarios in the literature.
One example is when systems are driven across a (most often second order) phase transi-
tion, e.g. by continuously changing the temperature or magnetic field. As opposed to the
classical theory of phase transitions, which assumes an infinitely slow process, allowing
the system to stay always in equilibrium, the dynamical case may show some interest-
ing additional phenomena, for example the formation of magnetic domains in a magnet,
vortices in a superconductor, etc. The corresponding theory describing the scaling of de-
fect generation is called the Kibble-Zurek mechanism, which will be briefly explained in
chapter 3. The phase transition might not appear exactly at the equilibrium transition
point, but can be slightly shifted dynamically, giving rise to hysteresis. This can be seen
e.g. in supercooled liquids, and a similar phenomenon was recently measured in a system
with light-matter interaction (Dicke model) [63], which was also called dynamical phase
transition.

Many-body localization, the localization transition of interacting systems briefly in-
troduced in section 1.1, is also considered as a type of dynamical phase transitions [64],
because the transition from a thermalizing (ergodic) phase to the nonergodic MBL phase
describes a change in the dynamics of the systems.

Another out-of-equilibrium phenomenon, dubbed dynamical (phase) transition, is char-
acterized by the singular behavior of long time averages of certain observables as a function
of a control parameter, following a quantum quench. The first examples were found in the
Hubbard model [65], and were followed by others e.g. in the Bose-Hubbard model, the
Jaynes-Cummings model, the transverse-field Ising model [66] and the φ4 theory [67].

Recently, in 2013, Markus Heyl et al [68] showed that one can define dynamical phase
transitions (DPTs), where the singularity develops as a function of time after a system

21



2.1. Theoretical background

is suddenly kicked from the equilibrium by e.g. an external pulse. This work triggered
active research to investigate the properties of dynamical phase transitions [18, 19, 69–92]
and experiments as well [93]. In the following we only study DPTs as it was defined in
Ref. [68], but we note that recently dynamical transitions in the long time averages of
observables and DPTs as singularities in time evolution have been found to be related in
some particular models [89], with counterexamples as well [84].

2.1 Theoretical background

2.1.1 The setup and the Loschmidt amplitude

The most robust way to drive a system far from equilibrium is to perform a sudden
quench, that is, to change some characteristics of the system or its environment suddenly.
As in any other fields of physics, studying the simplest models provide important build-
ing blocks to understand the more complicated scenarios, especially for out-of-equilibrium
problems, which are inherently more complex than their equilibrium counterparts. Fur-
thermore, these simple systems are of experimental relevance, since they are realized in
photonic waveguides [47, 94] and in cold atoms [5, 46]. In this spirit, DPTs have only been
studied in closed systems, that is, any dynamical coupling between the environment and
the system are neglected. We assume that initially the system rests in equilibrium, more
precisely in the ground state of the corresponding initial Hamiltonian. The generalization
of the notion of DPTs for finite temperature initial states is nontrivial and has hardly
been studied in the literature [81]. Right after the quench, the system is evolved under
the new Hamiltonian describing the changed environment. Usually the initial state is not
an eigenstate of the new Hamiltonian, and we face a nontrivial time evolution. For the
mathematical description we assume that the Hamiltonians are described by a finite set
of time-dependent parameters {λi(t)}, which are suddenly changed at t = 0, such that
λi(t < 0) = λ0

i , λi(t > 0) = λ1
i , and H({λ0

i }) = H0, H({λ1
i }) = H1. These parameters also

define the phase diagram of the system, and, as it will be shown later, there is a strong
relation between the equilibrium phase diagram and the observed dynamics of the sys-
tem. The quench protocol can conveniently be characterized by the dynamical partition
function with no reference to any particular observables, defined as

Z(z) = 〈ψ| e−Hz |ψ〉 . (2.1)

For positive real values of z, this gives the partition function of a field theory with bound-
aries |ψ〉 separated by z [95]. For our purposes, we use z = it with t real, which then
gives the Loschmidt amplitude (LA), that is, the overlap of the time evolved state with
the initial state is

G(t) = Z(it) = 〈ψ| e−iHt |ψ〉 . (2.2)

It is also called return amplitude, because |G(t)|2 gives the probability of the time evolved
state returning to the initial condition. Analyzing the LA proved to be useful in studying
quantum chaos [26], decoherence [27] and quantum criticality [96–98], and is a key concept
in DPTs. For a large system G(t) scales exponentially with the system size [99], and in
the thermodynamic limit, even states that are parametrically close to each other, are
orthogonal. This is a manifestation of Anderson’s orthogonality catastrophe [100], and the
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LA itself does not give any information about the time evolution. However, the logarithm
of the LA divided by the system size,

f(t) = − lim
N→∞

1

N
lnG(t) . (2.3)

gives an intensive quantity, which, based on the similarity to the definition of the free
energy in canonical ensembles, is dubbed dynamical free energy. Figure 2.1 shows two
qualitatively different behavior of the dynamical free energy of quenches in the transverse
field Ising model, which is a 1D quantum spin chain in a homogeneous magnetic field
perpendicular to direction of the nearest neighbor spin interaction (its Hamiltonian is
H =

∑
j Jσ

x
j σ

x
j+1 + hσzj , where σx,y,zj are the Pauli matrices). In one case the dynamical

free energy is a smooth function of time, while in the other kinks appear. The non-analytic
behavior of the dynamical free energy was identified as dynamical phase transition in
Ref. [68]. As a recap, the analogy between thermal phase transitions and dynamical phase
transitions are based on the mathematical similarity of the Loschmidt amplitude and the
thermal partition functions. This idea was further elaborated in the original paper of Heyl,
where they studied the complex zeros of the (dynamical) partition function, called the
Fisher zeros, which give more insight to the nature of (dynamical) phase transitions. This
idea and Fisher zeros in general are discussed in sections 2.1.3-2.1.4 in more details.

An experimentally relevant property of the Loschmidt amplitude is that it gives the
characteristic function of work done on the system under the quench protocol [25]. The
work is not a quantum observable, but rather characterizes thermodynamic processes.
Consequently the definition of work requires two energy measurements, one at the be-
ginning and one at the end of the process [8]. In the simple case of the sudden quench
experiment described above, the probability density function of the work is conveniently
written as P (W ) =

∑
n δ(W −E1

n −E0
0)| 〈ψ1

n|ψ0
0〉 |2, where ψ

0/1
m are the eigenstates of the

pre/post-quench Hamiltonians, and E
0/1
m are the corresponding eigenvalues. The charac-

teristic function is simply
∫

dtP (W )eitW = e−itE
0
0G(−t). We note that this definition of

the work is the inclusive work, which also accounts for the coupling to the external driving
(in contrast to the exclusive work, which focuses only on the system). Another interpre-
tation of the Loschmidt echo |G(t)|2, is that it gives the probability of performing zero
work in a double quench experiment, when we quench back to the initial Hamiltonian at
time t. This is direct consequence of G(t) being the return amplitude. In principle, the
LA could be directly measured by coupling the system of interest to an auxiliary qubit
[25, 101], and the measurement of the distribution function of work has been reported
recently in a closed quantum system [102].

We note that the notion of DPTs can be generalized to ramp protocols as well. Then the
return amplitude can be defined either for the initial state [85], that isG(t) = 〈ψ0|U(t)|ψ0〉,
where ψ0 is the initial state and U(t) is the time evolution operator, or for the state
achieved at the end of the ramp protocol [78, 82, 90, 103]: G(t) =

〈
ψ(τ)|e−iHf t|ψ(τ)

〉
,

where τ is the length of the ramp, and Hf = H(λ(τ)) is the Hamiltonian at the end of the
ramp. Non-analyticities in G(t) were found using both definitions for certain protocols.
Quench and ramp protocols provide a natural way to prepare non-equilibrium states, but
in principle the LA and the dynamical free energy can be calculated for any pair of initial
states and Hamiltonians, with the possibility of finding DPTs. However, it turns out that
the occurrence of DPTs are related to equilibrium phase transitions, which motivates the
analysis of quench and ramp protocols first, leaving the generic case for future studies.
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Figure 2.1: Two qualitatively different behavior of the dynamical free energy in the transverse
field Ising model: for certain types of quenches the dynamical free energy is an analytical function,
for others cusp-like singularities appear, which are identified as dynamical phase transitions. (The
curves are generated from Eq. (2.19)).

2.1.2 Relation to the stationary state following the quench

The LA and the dynamical free energy describe the stationary state after the quench
[104], which might seem to be surprising, as they gradually emerge from the time evolution
of the initial wave function. The state at any time is completely characterized by the
density matrix, whose diagonal elements in the eigenbasis of the post-quench Hamiltonian
describe the stationary expectation values, as was discussed in section 1.1. As e−iH1t

is diagonal in the eigenbasis of H1, its expectation value is completely determined by
the diagonal ensemble. The dynamical free energy f(t) = −1/Nd log(Tr ρDEe

−iH1t) in
this sense is a characteristic of the diagonal ensemble, that is, of the stationary state,
and it provides hope that the presence or absence of DPTs have implication long-time
expectation values of operators. The diagonal ensemble contains a lot of information about
the initial state, also about non-local correlations, which are not necessary to reproduce
the expectation values of local observables. However, the Loschmidt amplitude being a
highly nonlocal quantity (as the time evolution operator contains arbitrarily high powers
of the Hamiltonian), in general, it cannot be determined by a Gibbs, or a Generalized
Gibbs ensemble.

2.1.3 Fisher zeros in thermal phase transitions

M.E. Fisher, borrowing idea from the celebrated Lee-Yang circle theorem, proposed a
method to analyze the zeros of the partition function in the complex temperature plane
[105]. The analysis of the complex partition function provides a good understanding of
the non-analytic behaviour of the free energy, a unique characteristic of phase transitions.
As we shall see shortly, the key elements are the zeros of the partition function. For a
large variety of finite systems, the partition function is an entire function, that is, analytic
over the whole complex plane, since it is given by sums of exponential functions e−βEn .
According to the Weierstass factorization theorem, entire functions can be expressed by
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their complex zeros as

Z(β) = Tr{e−βH} =
∑

n

e−βEn = e−Fanal(β)
∏

j

(β − βj) , (2.4)

where βj are the complex zeros of the partition function, called Fisher zeros, and Fanal

in the exponent is an entire function, which gives an analytical contribution to the free
energy density, after taking the logarithm from Z(β):

f(β) =
1

Ndβ

[
Fanal(β)−

∑

j

log(β − βj)
]
. (2.5)

This implies that all possible non-analyticities in the thermodynamic limit are encoded in
the Fisher zeros. In a finite system phase transitions cannot occur, and the Fisher zeros are
isolated and do not lie on the real axis. However, in the thermodynamic limit they coalesce
into lines (or in general case areas [106]) that can cross the real axis. These crossings are
responsible for the breakdown of the analytic continuation of the free energy density as a
function of temperature: knowing the free energy above the transition temperature does
not give any informations about the free energy below. Figure 2.2 illustrates the above
scenario for the Fisher zeros in a hypothetical model, based on Fisher’s original cartoon
[105].

ℑ z

ℜ z

Finite system

ℑ z

ℜ z

Infinite system

Figure 2.2: Distribution of Fisher zeros in a finite and in an infinite static system. In a finite
system, zeros never lie on the real temperature axis (Re z > 0), but in the thermodynamic limit
they can coalesce to lines, which may cross the real axis giving rise to phase transitions. The
plots are based on Fisher’s cartoon from Ref. [105].

The Fisher zeros not only provide a new angle to understand the origin of phase
transitions, but can also be used to determine the critical behaviour of the systems. The
order of the transition is determined by the density of the zeros at the crossings: it is finite
at first order transitions, and vanishes as r1−α for continuous phase transitions, where r
is the distance from the crossing point, and α is the critical exponent of the specific heat
[107]. The correlation length exponent ν for example can be extracted from the finite size
scaling of the zero nearest to the real axis [108].
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As a side-remark we mention that although the mere definition of the complex tem-
perature partition function might seem to be only an abstract mathematical tool, in
principle it is measurable, as it gives the characteristic function of energy contained in the
system. A single line derivation follows from the definition of the energy density function:
P (E) = 1

Z(β)

∑
n e
−βEnδ(E − En), and

∫
dEe−itEP (E) = Z(β+it)

Z(β)
.

2.1.4 Fisher zeros in dynamical phase transitions

Similarly to the canonical partition function, the dynamical partition function of
Eq. (2.1) is an entire function, and it can be expressed by the complex zeros containing all
possible singularities of the dynamical free energy. Following the literature we express the
dynamical free energy with the zeros of the dynamical partition function Z(z) = G(−iz),

Z(z) = e−Fanal(−iz)
∏

j

(1− z

zn
) (2.6)

f(t) = lim
N→∞

1

Nd

[
Fanal(t)−

∑

n

ln

(
1− it

zn

)]
(2.7)

The Fisher zeros corresponding to the quenches of Figure 2.1 are shown on Figure 2.3.
In the transverse field Ising model the isolated zeros of finite systems form lines in the
thermodynamic limit. If one of these lines crosses the real time axis, then a singularity
appears in the dynamical free energy. The properties of this singularity are determined
by the position and density of the Fisher zeros near the real time axis. The singular part
of (2.6) can be expressed by the integral:

Re{fs(t)} = −
∫

z∈C
ρ(z) ln

∣∣∣∣1−
it

z

∣∣∣∣ dz2 = −1

2

∫

z∈C
ρ(z) ln

(
1− t2

|z|2
)

dz2 , (2.8)

where ρ is the density of zeros in the complex plane. If a line of Fisher zeros crosses the
imaginary axis as in Figure 2.3(b), the corresponding jump in the first derivative of the
dynamical free energy can be expressed from Eq. (2.8) following a straightforward, but
tedious calculation,

lim
ε→0+

Re{f ′(t0 + ε)− f ′(t0 − ε)} = −2πρ1d cosϕ (2.9)

where ρ1d is the linear density of Fisher zeros at the crossing point, and ϕ is the angle of
incidence of the Fisher line to the imaginary axis, with ϕ = π/2 being parallel to the real
axis. As we will see in section 2.3, in 2D systems areas filled densely with Fisher zeros
might cross the imaginary axis. If we consider a strip with homogeneous ρ2d density of
the Fisher zeros near the crossing, following an even more tedious calculation, we found
that the jump appears in the second derivative of the dynamical free energy as [19]:

lim
ε→0+

Re{f ′′(t0 + ε)− f ′′(t0 − ε)} = −2πρ2d cos2 ϕ (2.10)

One can get this result easier by applying a mapping to a 2D electrostatic problem, where
the Fisher zeros play the role of the charges. For this purpose, following the lines of
Ref. [109] we define φ(z) = Re{fs(−iz)}, and notice that the Green function of the 2D
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Laplacian is the logarithm: ∆ ln |x + iy| = 2πδ(x)δ(y), where ∆ = ∂2
x + ∂2

y . Taking the
Laplacian of Eq. (2.8) yields

∆φ(z) = −2πρ2d(z) (2.11)

Schmitt et al applied this method to reproduce our result Eq. (2.10) [77].
We note, that in contrast to the equilibrium case, where Fisher zeros never lie on the

real temperature axis in finite systems, in the dynamical case isolated Fisher zeros can lie
on the time axis. An extreme example is the quench from the Néel state to the XX chain,
in which case all the Fisher zeros lie on the time axis [71].
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Figure 2.3: Two qualitatively different behavior of the Fisher zeros in the transverse field Ising
model for the same quenches as in Figure 2.1. In the thermodynamic limit the zeros form a set of
lines zn(k) indexed by integer numbers n and parametrized by k. (a) the Fisher lines turn back
without crossing the time axis (Imz axis), (b) they cross the time axis, giving rise to DPTs.
(The curves are generated from Eq. (2.21).)

2.1.5 Simple example: a direct mapping to statistical physics

The formal similarity of the Loshmidt amplitude to the canonical partition function
at imaginary temperatures becomes an exact mapping in the quench in the transverse
Ising model from infinite transverse magnetic field to zero: h0 =∞→ h1 = 0. The initial
state is fully polarized in the x direction |ψ0〉 = |→→ · · · →〉, and the finial Hamiltonian
is H1 = J

∑
σzi σ

z
i+1. The initial state in the basis of |↑〉 and |↓〉 spins contains as many

orthogonal states as the dimension of the Hilbert space,

|ψ0〉 =
1

2N/2
(|↑↑↑ . . . ↑〉+ |↓↑↑ . . . ↑〉+ |↑↓↑ . . . ↑〉+ . . . |↓↓ . . . ↓〉) , (2.12)

and because of the finial Hamiltonian does not contain any spin flip terms, the LA is
expressed as a trace:

G(t) = 〈ψ0| e−iH1t |ψ0〉 =
1

2N
Tr e−iH1t = cosN(Jt) + (−i)N sinN(Jt) , (2.13)
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2.2. Quantum XY spin chain in magnetic field

where the final result is easily obtained by the standard transfer matrix solution of the
1D Ising model [110]. In the thermodynamic limit either cosN(Jt) or sinN(Jt) completely
dominates the sum and

Re{f(t)} = − lim
N→∞

1

N
ln |G(t)| = min{− ln | cos(Jt)|,− ln | sin(Jt)|} , (2.14)

that is, the dynamical free energy switches cyclically between− ln | cos(Jt)| and− ln | sin(Jt)|,
giving rise to cusps at t = 1

J
π/4 + nπ, n ∈ Z. This mapping between the canonical parti-

tion function of the 1D Ising model and the Loschmidt amplitude was used to demonstrate
scaling and universality at DPTs in Ref. [76]. We note that to express the LA as a trace it
was not essential to have all spins pointing to the same direction, but it is necessary that
all spins are perpendicular to z axis in the initial state. These states do not appear as a
ground states of any simple Hamiltonians, but they give large freedom in the preparation
of initial states for example in a cold atomic setting.

2.1.6 Relation between dynamical phase transitions and equi-
librium phase transitions

It was found in the transverse field Ising chain that the DPTs and equilibrium phase
transitions (EPTs) are ultimately related: The time evolution of G(t) becomes non-
analytic whenever the magnetic field is quenched through the (equilibrium) critical value.
We have seen a particular example of this in the previous section, but it was generally
shown in Ref. [68]. However, it was not clear whether this relation to equilibrium phases is
a general feature of DPTs, or just an artefact of the integrable Ising model. Later similar
observations were made for non-integrable models [69] and for complex magnetic fields
[70].

We showed that this connection is not rigorous [18]. To this aim we investigated the
anisotropic XY chain (section 2.2) in transverse magnetic field and demonstrated that,
in general, DPTs can occur in quenches within the same phase, i.e. without crossing
any equilibrium phase boundaries. A numerical evidence for this phenomenon was also
reported in Refs. [71, 104]. In addition, we also presented a counter-example where the
quench crosses an equilibrium critical point, but the LA remains analytic. This latter
example is not generic as it involves a critical initial or final Hamiltonian. By studying
more general models, which contain e.g. the quantum XY spin chain as a special case,
we found an interesting relationship between the topological properties of the models and
the occurrence of DPTs: DPTs are guaranteed to appear if the topology of the ground
states differ in the initial and in the final states [19]. We proved this relation for 2-band
topological insulators and superconductors in 1 and 2 dimensions, which is introduced in
section 2.3. From a slightly different perspective, this result was generalized to systems
with arbitrary number of bands by Huang and Balatsky [88].

2.2 Quantum XY spin chain in magnetic field

A simple generalization of the transverse field Ising model is the XY chain (Figure 2.4),
which is still exactly solvable, but it has a much richer phase diagram. The XY Hamilto-
nian with periodic boundary conditions reads as
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2.2. Quantum XY spin chain in magnetic field

Figure 2.4: The quantum XY spin chain is a 1D lattice of localized spin 1/2 particles in external
magnetic field h, with anisotropic nearest neighbor interaction characterized by Jx = 1+γ

2 and

Jy = 1−γ
2 , see Eq. (2.15).

H(γ, h) =
N∑

j=1

1 + γ

2
σxj σ

x
j+1 +

1− γ
2

σyjσ
y
j+1 − hσzj , (2.15)

where γ and h are the anisotropy parameter and the homogeneous external magnetic
field, respectively. The γ = ±1 lines correspond to the transverse Ising model in the x/y
direction. The excitation spectrum becomes gapless for h = ±1 at arbitrary γ, and for
γ = 0 at −1 ≤ h ≤ 1. These critical lines form an ”H” letter-like shape, and separate the
different phases of the model. Phase I (III) in Figure 2.5 is characterized by spontaneous
symmetry breaking with magnetization in the x (y) direction as an order parameter, while
phases II and II’ describe a disordered phase with polarization in the z direction.

-2 -1 0 1 2
-2

-1

0

1

2

h

γ

I IIII'

III

(a)

(b)

(c)
(d)

(e)

(f)

Figure 2.5: The phase diagram of the XY model in magnetic field. The phases (I,II,II’,III) are
marked on the plot with some examples of qualitatively different quenches. These gapless phases
are separated by critical lines that form an ”H” letter-like shape.

This model can be mapped to free fermions with the use of Jordan-Wigner transfor-
mation (introduced in Appendix A.1) as

H(γ, h) =
N−1∑

j=1

[c+
j cj+1 + γc+

j c
+
j+1 − h(c+

j cj −
1

2
)] + h.c.

− [h(c+
NcN −

1

2
) + µ(c+

Nc1 + γc+
Nc1)] + h.c. , (2.16)

where cj are fermionic operators and µ = eiπNf , Nf =
∑N

i=1 c
+
i ci. Details of this trans-

formation as well as the solution of the XY chain can be found in many textbooks, for
example in Ref. [111]. This Hamiltonian conserves the parity of the particle number and
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2.2. Quantum XY spin chain in magnetic field

acts differently on the even and odd subspaces (sometimes referred to as Neveu-Schwarz
or Ramond sectors [112]). The Hamiltonian in the two subspaces are formally the same
if we impose antiperiodic boundary condition for the even and periodic boundary condi-
tion for the odd subspace. In wavenumber space these boundary conditions translate to
different quantization of the wave numbers, k = 2π

N
(n+ 1

2
) in the even and k = 2π

N
n in the

odd subspace. In the fermionic language the ground state is unique in a given subspace,
but when |h| < 1 the ground states with even and odd parity become degenerate in the
thermodynamic limit. These parity eigenstates are the symmetric or antisymmetric com-
binations of the fully polarized states, they do not possess magnetization in the coupling
direction. We start our investigation with the parity eigenstates and we discuss polarized
ground states later.

2.2.1 Dynamical free energy

Our goal is to calculate the dynamical free energy for quenches (γ0, h0) → (γ1, h1).
A simple way to calculate the LA is to express the initial state with the quasiparticles
diagonalizing the final Hamiltonian, and then the time evolution becomes trivial. As it
had been mentioned before, the XY Hamiltonian in the fermionic representation acts
differently on the even and odd quasiparticle sectors. In the odd sector one needs to
separate wave numbers k = 0 and k = π, because for these −k is identical to k. In
the even sector this complication does not appear. Following a quench the initial state
can be expressed in terms of the fermions fk that diagonalize the new Hamiltonian:
H1 =

∑
k εk(f

+
k fk − 1/2) for both sectors, εk = ε1k = 2

√
(cos(k)− h1)2 + (γ1 sin(k))2. In

the even subspace

|GSe〉 =
∏

0<k<π

[cos Θk − sin Θkf
+
k f

+
−k] |0〉ef , (2.17)

where the product contains all the wave numbers and |0〉ef denotes the vacuum of the fk
quasiparticles of the even subspace. The angle Θk = θ1

k − θ0
k is the difference between the

Bogoliubov angles diagonalizing the pre- and post-quench Hamiltonians. The Bogoliubov
angles are determined from ei2θ

α
k = 2(cos(k)− hα− iγα sin(k))/εαk , α = 0, 1, and the wave

numbers are quantized with respect to the parity of the initial state. In the odd sector
the vacuum of the fk quasiparticles lies in the odd subspace if |h| < 1 and in the even
subspace if |h| > 1.

|GSo〉 = (f+
0 )s0(f+

π )sπ
∏

0<k<π

[cos(Θk)− sin Θkf
+
k f

+
−k] |0〉of (2.18)

where (s0, sπ) = (0, 0) for quenches inside any phases, (s0, sπ) = (1, 0) for quenches from I
and III to phase II, (s0, sπ) = (0, 1) for quenches from I and III to II’, and (s0, sπ) = (1, 1)
for quenches connecting II with II’. With the knowledge of the initial states the Loschmidt
amplitude can be calculated easily in both of the even and odd parity sectors:

Gs(t) = eiϕs(t)
∏

0<k<π

[cos(εkt) + i cos(2Θk) sin(εkt)] , (2.19)

The phase factor satisfies ϕe(t) = 0 and ϕo(t) = t(±ε0 ± επ)/2, where the signs depend
on the position of the initial and final Hamiltonian on the phase diagram, with the same
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2.2. Quantum XY spin chain in magnetic field

labeling as in Eq. (2.18) they read:

ϕo(t) = t/2[(−1)s0+1ε0 + (−1)sπ+1επ] (2.20)

We focus on the real part of the dynamical free energy, which is the same in thermo-
dynamic limit for both sectors, but the phase becomes important if one is interested in
the dynamical free energy starting from the fully polarized initial states.

2.2.2 Fisher zeros

As it had been mentioned before, the non-analytical behaviour of the dynamical free
energy is encoded in the zeros of the partition function Z(z) = G(−iz). The simple
product form of Eq. (2.19) allows us to determine the Fisher zeros analytically. In the
thermodynamic limit they form lines indexed by an integer number n as

zn(k) =
iπ

εk
(n+

1

2
)− 1

εk
arth [cos(2Θk)] . (2.21)

Specially in the XY model the Fisher zeros from Z(z) = 0 determine not only the singular
part, but the dynamical free energy completely, that is,

∞∏

n=−∞

(
1− it

zn(k)

)
= cos(εkt) + i cos(2Θk) sin(εkt) , (2.22)

and the entire function in Eq. (2.8) is simply given by iϕe/o(t). To see this we use
the infinite product representation of the sine function (Ref. [113], page 75.) sin(x) =

x
∏∞

n=1

(
1− x2

π2n2

)
to prove that

∏∞
n=−∞

(
1− 2x

π(2n+1)+2a

)
= cos(x) + sin(x) tan(a), to

which we can readily substitute zn(k) to get Eq. 2.22.
Eq. (2.21) agrees formally with Ref. [68], but in our case, the Bogoliubov angles depend

on more variables, hence are more general function of k. This increased freedom leads to
interesting behaviour of the Fisher lines. The main quantity that determines the dynam-
ical free energy is cos(2Θk), which can be expressed analytically with the parameters of
the initial and final Hamiltonian. Furthermore, cos(2Θk) = 1−2nk, where nk is the expec-
tation value of the quasiparticle occupation number in the post-quench Hamiltonian and
is conserved under the time evolution. A Fisher line crosses the imaginary axis whenever
nk = 1/2, which can be interpreted as modes with infinite effective temperature. These
crossings are responsible for the non-analytic time evolution of the dynamical free energy.

Due to the parity of the cosine function it is evident that if a Fisher line crosses
the imaginary axis for a quench (h0, γ0) → (h1, γ1) it implies a crossing in the reversed
protocol (h1, γ1)→ (h0, γ0) as well. We call this as the symmetric property of DPT. This
seems to be plausible in quenches crossing critical points, but it is less trivial for quenches
within the same phase.

The Fisher lines, and hence the LA show different behaviour for quenching between
different regions in the phase diagram. The exact values of the initial and final parameters
h0, γ0, h1, and γ1 in given phases do not modify qualitatively the behaviour of the LA
as a sign of some kind of universality. We consider 4 types of quenches, 3 of them can be
realized with quenching one parameter only, while in third example one needs to quench
both the magnetic field and the anisotropy parameter.
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Figure 2.6: The flow of Fisher lines zn(k) (n = (−3, . . . , 2)) for various types of quenches
discussed in the text, and shown in Figure 2.5.
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Figure 2.7: Dynamical free energy for the quenches in Figures 2.5 and 2.6. DPTs are seen in
(b), (c), (e) and (f).

2.2.3 Examples

DPT without EPT: Quenches not crossing critical points. We start our discussion with
quenches inside phase II, where h0,1 > 1 and we assume that γ0 > 0 without loss of gen-
erality. In this setup no critical lines are crossed by the parameters of the Hamiltonian
during the quench, but DPTs can occur (Figure 2.7(b)). Generally one can show that
the k → 0, π tails of the Fisher lines lie in the left half plane: limk→0 Re{zn(k)} = −∞
and limk→π Re{zn(k)} = −∞. For small quenches the whole lines lie in the left half plane
(Figure 2.6(a)), hence the time evolution of the dynamical free energy is analytical. How-
ever, the turning point of the Fisher lines can move to the right half plane (Figure 2.6(b)).
In this case each Fisher line crosses the time axis twice at wave numbers k∗1 and k∗2. The
non-analytical times are given by t∗i = π

εk∗
i

(n + 1
2
), i = 1, 2. This occurs if the anisotropy
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2.2. Quantum XY spin chain in magnetic field

parameter is quenched to a sufficiently negative value at fixed magnetic field. No matter
how γ is quenched, an equilibrium critical point is never approached, but DPT shows up.

More generally for each point (h0, γ0) in phase II , the domain D(h0, γ0) ⊂ II of
(h1, γ1), where DPT occurs is given by

D(h0, γ0) = {(h1, γ1)|2γ0γ1 < 1− h0h1 −
√

(h0 − 1)(h1 − 1)} (2.23)

within phase II. The boundary of these regions is a second order curve (a cone-section).
A few examples for these domains are shown on Figure 2.8.
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Figure 2.8: DPTs can occur in quenches within the same phase. The domains D(h0, γ0) of
the final parameters where DPTs appear are shown for six different initial conditions (h0, γ0).
Except from the region h1 < −1 the domains are determined from Eq. (2.23). Note that when
quenching from II to h1 < −1, non-analyticities only show up in the top-left corner of the phase
diagram and remain absent otherwise, in spite of crossing several critical lines.

Similar phenomenon can be observed in quenches inside phase I. The Fisher lines
start and end in the left half of the complex plane, but some parts of the lines can move
to the right half plane. Given (h0, γ0) in phase I the domain of final parameters where
the non-analyticities occur is given by Eq. (2.23) within phase I. For example starting
from the Ising model (γ0 = 1, h0 = 0) one needs to quench the magnetic field and the
anisotropy parameter as well to see the non-analytic behaviour (see Figure 2.8 top-left
corner). However, considering smaller anisotropy the DPT can appear by quenching solely
the magnetic field (Figure 2.8 bottom-left corner) when γ0 <

√
1 + |h0|/

√
2 is satisfied

for the initial Hamiltonian.
DPT together with EPT: Quench between phases I and II. In this setup the quenched

parameters cross at least one critical point, and the time evolution of the dynamical
free energy is always non-analytical. The asymptotic behaviour of the Bogoliubov angles
guarantee that the Fisher lines cross the imaginary axis, that is, limk→0 Re{zn(k)} = ∞
and limk→π Re{zn(k)} = −∞ (Figure 2.6(c)). Because of the symmetries of the XY model
quenches between phase II and III behave in the same way.
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2.2. Quantum XY spin chain in magnetic field

EPT without DPT: Quench from phase II to the critical XX line (γ = 0, |h| < 1). In
quenches II → I, III DPTs showed up everywhere except for quenches from phase II to
the boundary of I and III. Though the asymptotic behaviour of the Bogoliubov angles
are similar to the I → II case, there is an interesting difference as well: there are no
Fisher zeros in the vicinity of the imaginary axis. The function cos(2Θk) is not continuous
at k̃ = arccos(h1γ0−h0γ1

γ0−γ1
), therefore limε→0+ cos(2Θk̃∓ε) ≶ 0. Hence the Fisher lines split

into two sections that do not cross the imaginary axis (Figure 2.6(d)).
By considering the XX line as the γ1 → 0 limit, then as we approach the XX line

the slope of cos(2Θk) diverges at k̃, hence the density of Fisher zeros vanishes near the
imaginary axis. As opposed to previous examples, when the initial and final Hamiltonians
lied in the gapped phase, quenching to the XX line is a special case because the final
parameters are on a critical line. Nevertheless, it is still surprising that for quenches
II → I, III DPTs occur everywhere except for the boundary of these regions.

However, non-analytical behaviour in the dynamical free energy can be observed in
quenches to the critical lines as well. One example is a quench from I or III to the XX
line: (γ0 6= 0, |h0| < 1) → (γ1 = 0, |h1| < 1) with h1 6= h0. In this case, one would think
naively the Fisher lines would cross the imaginary axis twice similarly to quenches I → I
and I → III, but one of the crossings does not manifest itself (Figure 2.6(e)) in a similar
manner as it was discussed in the previous paragraph. The other example, which we only
mention here, is a quench crossing a critical line 1: starting from III to the h = 1 critical
boundary of I.

Quench from phase I to III. In this case the anisotropy parameter is quenched from
positive to negative values in low magnetic field (−1 < h0,1 < 1). The system goes through
an anisotropy transition at γ = 0. At γ > 0 the ground state polarization is in the x, while
at γ < 0 it is in the y direction. For these quenches limk→0,π Re{zn(k)} = −∞ meaning
that the Fisher lines start and end at the left half plane. However, there is wavenumber
0 < k̃ < π defined by cos(k̃) = h1γ0−h0γ1

γ0−γ1
, for which cos(2Θk̃) = −1. This means that

while k goes through the interval (0, π) the Fisher lines come from Re{z} = −∞, reach
Re{z} =∞ at k̃ and finally go back to Re{z} = −∞ again (Figure 2.6(f)). Hence all the
Fisher lines cross the imaginary axis twice giving rise to two emergent timescales in the
dynamical free energy (Figure 2.9(a)). This is qualitative difference between the quenches
I to II and I to III.

2.2.4 Longitudinal magnetization

For EPTs, the non-analyticity of the free energy is also imprinted in the non-analytic
behaviour of other physical quantities, e.g. the order parameter or its susceptibility. A sim-
ilar phenomenon is expected to occur for the DPTs as well [68]. For the XY model, the
equilibrium order parameter is the magnetization in the XY plane. Therefore, we deter-
mined its absolute for the non-equilibrium situation by numerical evaluation of Pfaffians
[114]. Whenever the Fisher line crosses the imaginary axis once, only a single emergent
non-equilibrium timescale appears from the dynamical free energy, which matches exactly
that of the magnetization. However, for quenches I → I and I → III each Fisher line
crosses the imaginary axis twice which implies two non-equilibrium timescales. Only these

1By this we mean that any curves connecting the initial and final parameters cross at least one critical
lines.
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two timescales and their higher harmonics (in Figure 2.9(d)) appear in the dynamics of
magnetization, though generally we were not able to express analytically the zeros of
the magnetization by the non-analytic timescales. The red curves in Figure 2.9 demon-
strate that the two timescales with exponential decay can reproduce the dynamics of the
longitudinal magnetization, with the following ansatz:

|m(t)| ≈ C| cos(εk∗1 (t− t0)) cos(εk∗2 (t− t0))|e−λt (2.24)

|m(t)| ≈ C| cos((εk∗1 + εk∗2 )(t− t0)) + c cos((εk∗1 − εk∗2 )(t− t0))|e−λt (2.25)

However, in the I → III quench protocol when γ0 and γ1 are not too close to the
γ = 0 critical line, the magnetization takes zero values in the vicinity of the Fisher times
(Figure 2.9(a,b)). The connection between the dynamics of the order parameter and the
Loschmidt amplitude was elaborated by Markus Heyl in Ref. [75].
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Figure 2.9: The dynamical free energy is non-analytical at Fisher times ti,n = t∗i (n + 1/2)
i = 1, 2 (solid and dashed lines respectively). The time unit was chosen to be t∗1. The lon-
gitudinal magnetization also shows two timescales, in case (b) the zeros of the magnetization
approximately lie at the Fisher times, in (d) the relation between them is more involved. Quench
parameters for (a) and (b) are (h0 = 0, γ0 = 1) → (h1 = 0.6, γ0 = −1) and for (c) and (d) are
(h0 = 0, γ0 = 0.1)→ (h1 = 0.6, γ0 = 0.1). The red curves consist of the two dynamical timescales
of the form given in Eqs. (2.24,2.25).

2.2.5 Stationary states

As we have discussed in section 2.1.2, DPTs characterize the stationary state follow-
ing the quench. For simplicity let us consider only the even subspace. From Eq. (2.17)
the initial and the time evolved density matrix can be easily constructed in the basis
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diagonalizing the post-quench Hamiltonian:

ρ(t) =
∏

0<k<π

{
nkn−k − cos2 Θk(nk + n−k) + cos2 Θk (2.26)

−eiεkt cos Θk sin Θkf−kfk − e−iεkt cos Θk sin Θkf
+
k f

+
−k
}
.

The density matrix is the tensor product of the reduced density matrices of (−k, k)
subspace. In the basis |nkn−k〉, that is |00〉, |01〉,|10〉 and |11〉 the density matrix is

ρ(t) =
∏

0<k<π

⊗




cos2 Θk 0 0 −eiεkt cos Θk sin Θk

0 0 0 0
0 0 0 0

−e−iεkt cos Θk sin Θk 0 0 sin2 Θk


 (2.27)

The stationary behavior of observables (if it exists) is determined by the time average of

the density matrix ρ̄ = limT→∞
1
T

∫ T
0
ρ(t)dt, which is the diagonal ensemble for nondegen-

erate Hamiltonians. For example when h1 = 0, εk = επ−k and the process f+
π−kf

+
k−πfkf−k

is non vanishing in the stationary state. As the time evolution is diagonal in the quasipar-
ticles fk, the non-diagonal elements of ρ̄ does not influence the Loschmidt amplitude, but
for the stationary expectation value of a general physical quantity one should take into
account these terms. The diagonal density matrix depends only the fermion occupation
numbers nk and it can be expressed explicitly as

ρDE =
∏

0<k<π

(nkn−k + cos2(Θk)(1− nk − n−k)) (2.28)

=
∏

0<k<π

cos2(Θk)δnk,0δn−k,0 + sin2(Θk)δnk,1δn−k,1 (2.29)

From the latter form it is straightforward to reproduce Eq. (2.19). The correlation be-
tween wave numbers k and −k come from the BCS superconductor-like initial state. The
Loschmidt amplitude - up to a trivial phase factor - is the characteristic function of work
done on the system [8], hence it depends on all moments of the energy. As it is a non-local
quantity the generalized Gibbs ensemble ρGGE ∼ e

∑
λknk , where λk fixes the expectation

value of nk, would not give the proper result for the LA, because it does not describe well
the correlations between nk and n−k. With the diagonal ensemble in Eq. (2.28), we took
into account the correlations among the modes hence it can be applied to calculate any
moment of the energy.

2.2.6 Polarized initial states

Until now we considered quenches starting from even or odd parity eigenstates. It is
an important question whether the non-analytic behaviour is present in quenches starting
from polarized states or not. For quenches through the critical point in the transverse
field Ising model it has been shown that DPTs can be observed, but the non-analyticities
are not at the Fisher times of the parity subspaces [68, 69]. We found similar behaviour
in the XY model. The polarized states are superpositions of the even and odd ground
states: |GSpol,±〉 = 1√

2
(|GSe〉 ± |GSo〉). The Hamiltonian conserves the parity, hence the
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2.3. Dynamical phase transition and topology

LA of the polarized state is simply the average of overlap calculated in the even and odd
ground states:

Gpol(t) = eiφe(t)|Ge(t)|+ eiφo(t)|Go(t)| (2.30)

where we decomposed the complex overlap to the absolute value and a phase factor. We
note that φe/o 6= ϕe/o from Eq. (2.20), because there is a complex contribution from each
k in the product Ge/o(t) = eiϕe/o

∏
k |Gk(t)|eiφk(t). In Ref. [80] a dynamical topological

order parameter, which changes its value at every DPT point, was introduced from (the
geometrical part of) φk(t).

The overlap Gpol(t) can be evaluated numerically, and we found that the dynamical
phase transitions occur in the polarized case as well. We observed that the phase difference
φe(t) − φo(t) is a piecewise constant function in the thermodynamic limit. At t = 0 the
phase difference is zero, and it is changed by π at the Fisher points (see Figure 2.10). This
means that depending on the time |Gpol(t)| = ||Ge(t)| ± |Go(t)||. Though real parts of
the dynamical free energies fe and fo are equal in the thermodynamic limit, this does not
imply that |Gpol(t)| would be identically zero at certain intervals, because of the division by
the system size in the definition of the dynamical free energy. The non-analytic behaviour
of the dynamical free energy for polarized initial state is encoded in the small difference
between |Ge| and |Go|.
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Figure 2.10: (a) dynamical free energy from parity eigenstates and polarized initial states. (b)
the phase difference of the Loschmidt overlaps in the even and the odd sectors.

2.3 Dynamical phase transition and topology

The main message of the previous section was that dynamical phase transitions can
occur in quenches inside a given phase. As a side-result we observed qualitatively different
behaviour of the Fisher lines for quenches connecting different phases. In quenches con-
necting phase I with phase III the Fisher zeros span the real axis twice: they start from
±∞, reach ∓∞, than they bend back and finally reach ±∞ again (Figure 2.6(f)). As a
consequence, two non-equilibrium timescales emerge. In quenches connecting phases I or
III with phase II, the Fisher lines sweep through the real axis only once (Figure 2.6(c)).
In quenches inside any phase, the Fisher lines start from ±∞, and they bend back to ±∞
without spanning the whole real axis, or we might translate it as spanning the real axis
zero times (Figure 2.6(a,b)).

The fermionic representation of the XY chain in a given parity sector is equivalent to
the Kitaev wire [115], which is one of the simplest examples of topological superconductors.
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2.3. Dynamical phase transition and topology

It is a tight-binding chain of spinless fermions with a BCS pairing term describing p-wave
superconductivity. The Hamiltonian reads

H =
N∑

j=1

(c+
j cj+1 + c+

j+1cj) + ∆(c+
j c

+
j+1 + cj+1cj)− µ(c+

j cj −
1

2
) , (2.31)

which is indeed the same as Eq. (A.5), following the idenfication of the anisotropy pa-
rameter γ of the XY chain with the superconducting gap ∆ and twice the magnetic field
2h with the chemical potential µ of the Kitaev wire. This model hosts exotic topological
edge modes, Majorana fermions, which are their own antiparticles. In addition to the
fundamental interest in particles showing exotic statistics, Majorana fermions could be
used as building blocks of (topological) quantum computers [116]. These perspectives also
motivated experimental groups to realize the Kitaev wire [60, 61].

In the topological superconductor language, the phases I,II and III of the XY chain
are characterized by topological winding numbers 1, 0 and -1 respectively. We can now
observe, that the difference between the winding numbers of the initial and final phases
is equal to the number of times the Fisher lines sweep through the real axis in the corre-
sponding quench. It might seem to be a sole coincidence, especially considering that the
winding numbers classify the ground-state topology of the system, and quench protocols
create highly excited states. In contrast, we show in this section that the above relation
holds for a wide variety of systems, and can also be generalized to higher dimensions.

It turned out that the key element in DPTs is not the superconducting correla-
tions in the transverse Ising or XY chain, but rather the topology of the underlying
fermionic model. For this reason, we consider 2-band translational invariant insulators
and Bogoliubov-de Gennes superconductors in 1 and 2 dimensions, and we treat them
together in a generalized notation. Such systems are widely studied in the literature,
and some of them had already been realized experimentally, either in cold atomic or in
condensed matter systems [46, 60, 61, 117]. The Hamiltonian for these systems can be
parametrized by a vector dk,

H =
∑

k

c+
khkck (2.32)

hk = dk · σ , (2.33)

where c+
k = (c+

k,A, c
+
k,B) for insulators and c+

k = (c+
k , c−k) for superconductors. In the

insulating case the internal degrees of freedom A,B refer to pseudo-spin components, e.g.
to different sublattices. A sudden quench protocol can be described by the change in the
vector fields characterizing the Hamiltonian: dk(t) = d0

k for t < 0 and dk(t) = d1
k for

t > 0. The Loschmidt amplitude following this quench can be expressed in a compact
form independently of the spatial dimensions:

G(t) =
∏

k

[
cos(ε1kt) + i d̂0

k · d̂1
k sin(ε1kt)

]
, (2.34)

but the product is taken for all wavenumbers in the Brillouin zone for normal insulators
and for half of the Brillouin zone for superconductors (e.g. as we had in Eq. (2.19)).
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2.3. Dynamical phase transition and topology

Here, d̂ik denotes the unit vector in the direction of dik and εik = |dik| for insulators and
εik = 2|dik| for superconductors. The Fisher zeros, i.e. the solutions of Z(z) = 0 are

zn(k) =
iπ

ε1k
(n+

1

2
)− 1

ε1k
arth

[
d̂0
k · d̂1

k

]
, (2.35)

which follow from the product form of the Loschmidt amplitude. The Fisher zeros fill
domains of the complex plane, which are indexed by an integer number n and are
parametrized with k. In 1D these domains form lines, while in 2D they fill areas. The
necessary condition to observe DPTs is having Fisher zeros approaching the imaginary
axis, which occurs when d0

k · d1
k = 0, i.e. when the vector dk in the final Hamiltonian is

perpendicular to the initial one for some k. This geometrical condition connects DPTs
with the topology of the initial and the final systems. In the following we will consider
the 1 and 2 dimensional cases separately.

2.3.1 One dimensional case

Topological insulators in 1D are characterized by chiral (AIII symmetry class) or
chiral and particle-hole symmetry (BDI) [118], which constrain dk to lie in a 2D plane.
The corresponding topological number is the winding number: the number of times dk
winds around the origin when k sweeps through the Brillouin zone. If, for example dk lies
in the xy plane,

ν =
1

2π

∫
dk (d̂xk∂kd̂

y
k − d̂yk∂kd̂xk). (2.36)

If the winding number of two vector fields d0
k and d1

k defined on the Brillouin

zone (S1) differ by ∆ν ∈ N, the image of the scalar product field d̂0
k · d̂1

k covers
the interval [−1, 1] at least 2∆ν times.

This means that the Fisher zeros in equation (2.35) sweep through the real axis 2∆ν times
while k goes through the Brillouin zone. Consequently there are at least 2∆ν points in k
space where the vectors are perpendicular (for illustration see Figure 2.11(a)), implying
DPTs. Let us suppose that the (ground state) winding number of the initial (final) Hamil-
tonian is ν0 (ν1), then the angle of rotation φik for dik is a smooth function differing by
2πνi at k = −π and π for i = 0, 1. The angle of rotation ∆φk between d0

k and d1
k changes

2π∆ν, hence d̂0
k · d̂1

k = cos(∆φk) covers the interval [−1, 1] at least 2∆ν times. If the
model has further symmetries that connect wavenumbers k and −k (e.g. inversion or time
reversal symmetry (TRS)), the Fisher lines can be doubly degenerate and there will be
only ∆ν non-equilibrium timescales, as it happens for example in the Su-Schrieffer-Heeger
(SSH) model (see later).

Our argument applies also for 1D topological superconductors (e.g. the Kitaev wire
and its generalization for higher winding numbers [119]) with a little modification. Now
the product is taken only for positive momenta in the Loschmidt amplitude in Eq. (2.34).
The Bogoliubov Hamiltonian is particle-hole symmetric (PHS) by construction, implying
that the x and y components of dk are odd and the z component is even function of the
wavenumber: dx−k = −dxk, dy−k = −dy−k and dz−k = dzk. For the degenerate momenta k =
0, π, the vector describing the Hamiltonian points to the z direction: d0/π = (0, 0, dz0/π).
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2.3. Dynamical phase transition and topology

If the system is time reversal invariant as well (BDI symmetry class) dxk ≡ 0 and the
topological number is the winding number similarly to the previous case. Because of PHS
the winding of the angle of dk is already determined in the k ∈ (0, π) domain. That is,
if the winding number is ν, the angle changes πν while k goes through the positive half
of the Brillouin zone. Therefore for a quench from ν0 to ν1 DPTs will appear with ∆ν
topologically protected timescales (Figure 2.11(b)). This result applies for the quantum
XY chain of the previous section, and also for the transverse field Ising model studied
in [68], as both of them can be mapped to Hamiltonians in the form of (2.32). The
topological protection of DPTs for quenches connecting different phases was also revealed
for the transverse field Ising chain [70, 120].

If TRS is broken (D symmetry class, [118]) dk is not confined to a 2D plane. The
Z2 invariant is 0 (topologically trivial) if d̂0 = d̂π(= (0, 0,±1)) and it is 1 (nontrivial) if
d̂0 = −d̂π. If the quench connects phases with different topology, e.g. ν0 = 1 and ν1 = 0,
there must be a wavenumber k∗ for which d0

k∗ · d1
k∗ = 0 (illustrated on Figure 2.11(c)),

because d̂0
0 · d̂1

0 = −d̂0
π · d̂1

π = ±1, hence d̂0
k · d̂1

k covers the interval [−1, 1].

So far we have demonstrated that the change in topology under a sudden quench is
an eligible condition for DPTs to occur. Note that d0 and d1 can become perpendicular
accidentally even if the topological numbers do not differ in the initial and final Hamil-
tonians, as we have seen in the quantum XY chain. This parallels to the appearance of
topologically non-protected edge or surface states in certain systems, whose existence is
not connected to topology but is accidental [53, 121, 122].

d0
k

d1
k

(a) d0
k

d1
k

(b) d0
k

d1
k

(c)

Figure 2.11: Illustration for the existence of perpendicular vectors if the quench connects
domains with different topological numbers. (a) Topological insulators in AIII symmetry class.
As k goes through the Brillouin zone dk draws a closed loop. For any parametrization of these
loops there will be at least 2∆ν wavenumbers for which d0 ⊥ d1 if the winding number of the
two vector fields differ by ∆ν. (b) Superconductors in BDI symmetry class. In the k ∈ [0, π]
domain (solid line) there will be at least ∆ν perpendicular d vectors in a quench characterized
by ∆ν. (c) Superconductors in D symmetry class. The vectors d̂ are no longer confined to a
plane, but the occurrence of perpendicular vectors is still ensured when the topology of d̂1 an
d̂0 are different.
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2.3.2 Two dimensions

The topological number is the Chern number Q for 2-band topological insulators,
which is calculated from the vector dk defining the Hamiltonian [123],

Q =
1

4π

∫

BZ

dkxdky d̂k · (∂kxd̂k × ∂ky d̂k) (2.37)

counting how many times the surface defined by d̂k covers the unit sphere. We show
that if the quench connects phases with Chern numbers differing in their moduli, DPTs
will necessarily occur. However, DPTs in 2D are qualitatively different from those in 1D,
because of the Fisher zeros form areas instead of lines.

If the Chern numbers of two vector fields d0
k and d1

k defined on the Brillouin
zone (T 2) differ in the modulus |Q1| 6= |Q0|, the image of the scalar product
field d̂0 · d̂1 is [−1, 1].

We prove our statement in four steps:
(a) If d̂0

k · d̂1
k > −1 ⇒ Q1 = Q0, because there is a continuous mapping fk(γ) between d̂0

k

and d̂1
k such that |fk(γ)| > 0.

fk(γ) = (1− γ)d̂0
k + γd̂1

k, γ ∈ [0, 1]

|fk(γ)|2 = 1 + 2γ(1− γ)(−1 + d̂0
k · d̂1

k)> 0

The inequality in the second line came from the fact that γ(1 − γ) < 1/4 for γ ∈ [0, 1].
In other words if the vector fields d̂0

k and d̂1
k are nowhere antiparallel, then one can

continuously deform one into the other. Under this deformation the Chern number does
not change [124].
(b) If Q1 6= Q0 ⇒ d̂0

k · d̂1
k = −1 for some k. This comes from reversing (a) and can be

proved indirecly.
(c) If Q1 6= −Q0 ⇒ d̂0

k · d̂1
k = 1 for some (other) k. We trace back this statement to (b)

by defining the vector field d̂′1k ≡ −d̂1
k, which satisfy Q′1 6= Q0. Hence d̂0

k · d̂′1k = −1 for

some k implying (c). Supported by the continuity of d̂ik when the topology is well-defined,
combining (b) and (c) finishes the proof.

This argument cannot be generalized to the Q1 = −Q0 case, a trivial counterexample
is given by the quench d1

k = −d0
k, where the initial and final Chern numbers are the

opposite, but d0 · d1 ≡ −1.
The statement ensures that Fisher zeros connect −∞ to∞ if the modulus of the Chern

number changes under the quench. Nevertheless, one might find Fisher lines connecting
−∞ to ∞ also when the modulus of the Chern numbers are the same. A 2D system can
be thought of as a collection of 1D chains. If these 1D systems can be characterized by
winding numbers, it is enough to find a pair of these 1D systems with differing winding
numbers to see DPTs. On the other hand, Fisher zeros can also expand through the
imaginary axis accidentally similarly to the 1D case.

In the superconducting case the product in Eq. (2.34) is taken for the half Brillouin
zone. However, because of PHS one gets exactly the same contribution from the other
half of Brillouin zone, so one can express G(t)2 as a product over the whole BZ. From
this the existence of DPTs follows for quenches connecting superconducting phases with
different moduli of the Chern numbers.
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2.3. Dynamical phase transition and topology

2.3.3 Relation to entanglement dynamics

Our results on the mappings d0
k ·d1

k are important not only in the context of DPTs, but
for the entanglement properties as well. Entanglement is a measure of non-local correlation
in quantum states without reference to any observables [125]. The most common measure
of the entanglement is the entanglement entropy, which is usually defined as the von
Neumann or the Rényi entropy of the reduced density matrix for a particular bipartition
of the system. Entanglement is a key notion in quantum information theory [11], and it is
also used to characterize topologically ordered states [126] (which should not be confused
with topological insulators), like quantum spin liquids or fractional quantum Hall states.
The scaling of the entanglement entropy with system size also distinguishes between the
eigenstates of many-body localized and ergodic phases, and the spreading of entanglement
in a quench dynamics is also different in the two cases [33].

Another measure of the entanglement is the entanglement spectrum, that is, the spec-
trum of the reduced density matrix calculated for a physically relevant bipartition [127].
The time dependence of the entanglement spectrum has been studied in topological sys-
tems following a sudden quench in Refs. [128, 129]. Interestingly, the evolution of the
entanglement spectrum shows a qualitative difference for quenches where d0

k ⊥ d1
k for

some k, which is the very same condition that appeared in the context of DPTs. Further
connections between DPTs and the entanglement spectrum is a subject of future research.

Now we illustrate the general results on some particular examples.

2.3.4 Example: Generalized SSH model

The SSH model is a 1D tight-binding chain that was originally introduced to model
polyacetylene [130]. It is probably the simplest topological insulator, belonging to the BDI
symmetry class [118]. The model is described by dk = (t0 +t−1 cos(k), t−1 sin(k), 0), where
t0 and t−1 are the staggered hopping amplitudes. The ground state is topologically trivial
(ν = 0) when t0 > t−1 and is non-trivial if t0 < t−1. The model can be extended to produce
higher winding numbers by introducing longer ranged hopping terms that preserve chiral
symmetry. The Hamiltonian in this case is characterized by the vector

dk =
∞∑

m=0

dm,k =
∞∑

m=0

(t′m cos(mk), t′′m sin(mk), 0) , (2.38)

where t′0 = t0, t′′0 = 0, t′m = tm+ t−m, t′′m = t−m− tm, and tm is the real hopping amplitude
between sublattices A in unit cell i and B in unit cell i+m, see Figure 2.12 for illustration.
We note that in this labeling of the hopping amplitudes tm and t−m−1 are independent
and are responsible for the staggered nature of the system. Higher winding numbers can
be produced by the proper choice of the hopping amplitudes, for example the winding
number is |ν| = n ≥ 1 if t′n and t′′n dominate the other hopping terms. An eligible condition
for this is

∑m 6=n
m=0 max{|t′m|, |t′′m|} < min{|t′n|, |t′′n|}.

Proof. Let’s consider first the limit when all other terms except from t′n and t′′n are
zero, then the winding number is clearly ν = n. Now, by slowly turning on the other
coefficients, the winding number cannot change as long as the gap does not close. As the
excitation energy is given by the length of vector dk, the system is gapless if ||dk|| > 0
for all k. The vector dk is a sum of vectors dm,k pointing in different directions depending
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Figure 2.12: Generalized SSH model with long-range hopping terms. Chiral, or sublattice
symmetry requires a bipartite structure, such that sites on sublattice A are only connected with
sites on sublattice B.

on k, as written in Eq. (2.38). The nth vector is the longest by assumption, and its norm
is bounded from below as ||dn,k|| ≥ min{t′n, t′′n}. The upper bound for the norm of the
other terms is ||dm,k|| ≤ max{t′m, t′′m}. If the longest vector is longer than the sum of
the length of all other terms, then the sum of the vectors is guaranteed to have finite
length, independently from their direction. More precisely, if

∑m 6=n
m=0 max{|t′m|, |t′′m|} <

min{|t′n|, |t′′n|}, then ||dk|| = ||
∑

dm,k|| ≥ 0 follows e.g. by applying the reverse triangular
inequality.
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Figure 2.13: Fisher lines zn(k) (for n = 0..3) and DPTs in the generalized SSH model in
a quench ν0 = 1 → ν1 = −2. (a) The lines of Fisher zeros are doubly degenerate due to
the (k,−k) symmetry, they sweep through the real axis |∆ν| = 3 times. (b) Dynamical phase
transitions appear where the Fisher zeros cross the imaginary axis. The grid lines show the
DPTs corresponding to the first four Fisher lines.

Besides the chiral symmetry this model has TRS as well. Therefore in a quench char-
acterized by ∆ν, the 2∆ν topologically protected (−∞,∞) sections of the Fisher lines
are pairwise degenerate (consider e.g. that |d1

k| = |d1
−k| and d0

k ·d1
k = d0

−k ·d1
−k), implying

only ∆ν non-equilibrium timescales. The flow of the Fisher lines and the dynamical free
energy are shown on Figure 2.13 for a quench from a phase with ν0 = 1 to ν1 = −2.
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2.3.5 Example: The Haldane model

The Haldane model is a next-nearest neighbor hopping model on a honeycomb lattice
with artificial magnetic field [56], which can produce topologically nontrivial states. The
model is illustrated on Figure 2.14, which has been realized experimentally in cold atoms
[46] and in photonic waveguides [47]. The Hamiltonian is characterized by the vector

dk = (Re{g1(k)}, Im{g1(k)},m− gasym
2 (k, φ)) , (2.39)

where g1(k) = γ1

∑
j e
−ikδj and vectors δj point to the three nearest neighbors. The

mass term mσz describes a homogeneous staggered lattice potential. The −gasym
2 (k, φ)σz

term comes from a second neighbor hopping considering the staggered magnetic field
characterizing the Haldane model. This latter term is necessary to produce nontrivial
topology in the model. The Chern number depends on the phase φ characterizing the
magnetic field, on the next nearest hopping amplitude γ2, and on the mass term. The
Chern number is Q = 0 if |m| > |3

√
3γ2 sinφ|, and Q = ±1 if |m| < |3

√
3γ2 sinφ| with the

sign depending on φ and γ2. The phase diagram of the model with the Chern numbers
are show on Figure 2.14.
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Figure 2.14: Illustration of the Haldane model and its phase diagram. A staggered magnetic
field with zero net flux through a unit cell breaks the time reversal symmetry, and the next-
nearest neighbor hopping terms (γ2) acquire a phase φ = e/h2π(2Φa + Φb), while the nearest
neighbor hopping terms (γ1) are unaffected. The two inequivalent sublattices are characterized
by on-site energies ±m. The arrow on the phase diagram corresponds to the quench from Q0 = 0
to Q1 = −1 studied on Figure 2.15.

We have already proved that if the Chern number of the initial and final Hamiltonian
differs, the Fisher zeros connect −∞ with∞. However, in contrast to the one dimensional
case, in two dimensions the Fisher zeros fill areas rather than forming lines. Similar be-
haviour occurs for quenches in spin-glass systems [131, 132]. In our case the appearance
of Fisher area is not unexpected, since each Fisher domain corresponding to a given n
in Eq. (2.35) is parametrized by two variables kx and ky. As we have discussed in sec-
tion 2.1.4, in contrast to Fisher lines, if a Fisher area crosses the imaginary axis, the
dynamical free energy looks smooth and its first derivative shows cusps at the bound-
aries of the Fisher area (Figure 2.15(b)). The size of the jump of the second derivative
is proportional to the density of zeros normalized by the system size (ρ) and with the
cosine square of the impact angle (ϕ) of the boundary line, see Eq. (2.10). If the density
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of the Fisher zeros diverges as |y − y0|−α at the boundary of the Fisher area, the slopes
of the cusps in Re{f ′(t)} inside the Fisher area diverge similarly. In the Haldane model
this latter behavior occurs as shown in Figure 2.15.
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Figure 2.15: Quench in the Haldane model from Q0 = 0 to Q1 = 1. (a) Fisher zeros corre-
sponding to n = 0 in Eq. (2.35). The normalized density of the Fisher zeros ρ(Re{z}, Im{z})
is shown as the darkness of the area. Inset: the density diverges on the imaginary axis at the
boundary of the Fisher area. (b) Cusplike singularities in the first derivative of the dynamical
free energy. The shaded areas emphasize the regions where the Fisher zeros cross the time axis.

These features are not specific to the Haldane model, but show up in a wide range
of models, e.g. in the ”half”-BHZ model [133], which is described by the vector dk =
(A sin kx,A sin ky,∆ + cos kx + cos ky), or in the lattice version of the chiral topological
p+ ip superconductor with similar dk [134].

Our work triggered the experiments of Flaschner et al [93] to study the DPTs a
Haldane-like model. They used ultracold atoms to realize the quench protocol. Their
initial Hamiltonian is a static band insulator, but the topologically nontrivial Hamiltonian
is generated by Floquet engineering. That is, they apply a high-frequency driving (shaking
of the lattice), and the dynamics in stroboscopic times is governed by an effective static
Hamiltonian, which exhibits bands with nonzero Chern numbers. This setup allows only
stroboscopic measurements, and the singularities in the dynamical free energy cannot be
resolved. However, they are able to measure Fisher zeros approaching the time axis. Their
experimental apparatus allows them to realize time resolved state tomography, which is a
momentum selective method to follow the evolution of the states on the Bloch sphere, for
experimental data see Figure 2.16(c). If the north pole of the Bloch sphere is chosen to
be the ground state of H0

k for each k (Figure 2.16(b)), then a Fisher zero approaching the
time axis is seen as there is a k for which the time evolved Bloch vector points to the south
pole. This follows from the factorized form of the Loschmidt amplitude, which becomes
zero if the time evolved state is orthogonal to the initial one for one momentum. In the
2D models with Fisher areas, there are time domains of finite length, where Fisher zeros
approach the time axis, and there are states at the south pole, which is measurable. States
appearing at the south pole translate into vortices in the azimuthal angle profile ϕk(t) on
the Bloch sphere (Figure 2.16(d-g)). The measurement of these vortices is experimentally
more robust, and their number is identified as a dynamical order parameter in Ref. [93].
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2.3. Dynamical phase transition and topology

Figure 2.16: Experimental observation of DPTs. (a,b) The initial state is characterized by
atoms localized on B sites, which corresponds to the north pole on the Bloch sphere for all
k. After the quench each state rotates around a momentum-dependent vector defined by the
post-quench Hamiltonian Hf (k). (c) The dynamics on the Bloch sphere can be experimentally
monitored by the state tomography technique. (d,e) Dynamical vortices appear in the azimuthal
angle profile ϕk when the south pole is reached for any k, which also corresponds to Fisher zeros
approaching the time axis. (f) The number of dynamical vortices as a function of time. (g) Path
drown by the dynamical vortices. Panels (a-g) are adopted from Ref. [93].

2.3.6 Effect of disorder

Topology is a global property of systems, and is uniquely robust to local perturbations.
For instance, topologically protected edge states, and edge currents cannot be destroyed
by weak local perturbations. This topological protection underlies for example the ex-
ceptionally precise quantization of the conductivity of Quantum Hall edge states, that
allowed it to serve as a basis of resistance standards in the past 15 years [135]. Although
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2.3. Dynamical phase transition and topology

we have shown that quenches connecting topologically distinct phases display DPTs, the
proof assumed translational invariance, and it is not clear if disorder could wash away
the cusps in the dynamical free energy. One could imagine a qualitative difference in the
disordered case, because e.g. in 1D all eigenstates become localized by arbitrarily small
disorder. In contrast, numerical simulations show that the dynamical free energy is not
sensitive to disorder: the precise location of the cusps shift a little, but there is no signal
of getting washed away by disorder, for illustration see Figure 2.17.

For simplicity let us focus on insulators, where the initial state is the entirely filled
lower band, that is, in models with chiral symmetry, such as the SSH model, all states
with negative energy are filled at zero temperature. This state on a chain of 2N lattice
sites can be written as a Slater determinant, and the Loschmidt amplitude is expressed
as

G(t) = det [V +
0 e
−itH1V0]1:N,1:N (2.40)

where the first and last N columns of V0 are the negative and positive energy eigenvectors
of H0, respectively, and the subscript 1 : N, 1 : N refers to the upper-left corner of the
2N×2N matrix. In the translational invariant case this matrix is block-diagonal, and the
determinant decomposes to a product of the determinants of the k-blocks, which allowed
for the analytical expression for the Fisher zeros. In the disordered case finding the Fisher
zeros is very difficult, even numerically.

The classifying global symmetries of the model (see section 1.4.1) have to be respected
by the disorder, otherwise we substantially change the system and it leaves its original
topological insulator phase. Particularly in the SSH model, on-site disorder is prohibited
by the chiral symmetry, and we introduce disorder only in the nearest neighbor hopping
terms t0 and t−1. The Hamiltonian becomes

HSSH =
2N−1∑

n=1

tn,n+1c
+
n cn+1 + h.c. (2.41)

with random hopping elements t2n−1,2n = t0 + ξ0(n) and t2n,2n+1 = t−1 + ξ−1(n), where
ξ0,−1(n) are independent identically distributed random variables, with uniform distribu-
tion on (−w,w). The dynamical free energy is then evaluated from Eq. (2.40) in a quench
(t00, t

0
−1, w

0)→ (t10, t
1
−1, w

1). Figure 2.17 shows that topologically protected DPTs are not
washed away by the bond-disorder, and there are no qualitative differences between the
translational invariant (w = 0) and disordered (w > 0) cases.
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Figure 2.17: Comparison of the dynamical free energy with and without disorder in the SSH
model on 800 lattice sites. (a) Parameters in the initial state are set to t00 = 1, t0−1 = 1.6, and
t10 = 1, t1−1 = 0.4 in the final state, with uniform independent identically distributed bond-

disorder ξ0,1
0,−1 ∈ (−w,w) for both types of bonds in both the initial and final Hamiltonians,

w = 0.3. (b) initial parameters: t00 = 1, t0−1 = 0.7, final parameters: t00 = 1, t01 = 0.4, with the
same disorder distribution as in (a).

2.4 Summary and outlook

Since the discovery of DPTs, much effort has been made to understand the details of
this phenomenon. The first most important question was how generic DPTs are. Its ro-
bustness was verified by finding non-analytical dynamical free energy in a large variety of
systems, which covers almost the entire spectrum of theoretical condensed matter physics:
non-interacting and interacting spin and fermionic systems in 1 and 2 dimensions. Our
contribution was to generalize DPTs to other models than just spin chains, and we were
the first to show DPTs in higher than 1 dimensions. The occurrence of these transitions
are related to the equilibrium phases of model with rigorous proofs for sufficient condi-
tions for the occurrence of the non-analyticities. We found analytical counterexample to
the conjecture that DPTs appear if and only if equilibrium phase boundary is crossed
by the quench, and we also proved that in translation-invariant 2-band insulators and
superconductors DPTs are guaranteed by topology if the quench connects topologically
distinct phases. The dynamical free energy, or the Loschmidt amplitude are closely re-
lated to the work distribution of the quench protocol, which in principle is a measurable
quantity, but an experimental demonstration of DPTs by measuring work distribution
would be very challenging, as the relevant information is stored in the exponentially small
tail of the distribution. Although DPTs have been found experimentally by state tomog-
raphy in cold atomic systems, it is probably the most important perspective of research
to find consequences of DPTs in other observables. It has been demonstrated that DPTs
influence the dynamics of the order parameter starting from symmetry breaking initial
conditions [75], and there is a proposal for generalized expectation values [74], which are
non-analytic functions of time, however they also do not correspond to experimentally
accessible observables. There might also be an interesting relation between the dynamics
of quantum entanglement and DPTs [19], and we have preliminary results indicating that
when DPTs appear, the single particle entanglement spectrum becomes gapless in the
long-time limit, while if they are absent, it stays gapped, at least for 1D 2-band models.
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3
Schwinger pair creation in Weyl semimetals

In this chapter we continue the analysis of time evolution following sudden quench
protocols, but we change the focus from the Loschmidt amplitude to the creation of
particle-hole pairs following an abrupt switching on of an external electric field. However,
as a connection to the previous chapter, in section 3.5 we show that the vacuum persistence
probability, a quantity closely related to the Loschmidt echo, provides a good measure for
the pair creation rate.

As we briefly introduced in section 1.4.2, Weyl semimetals (WSMs) are 3D materials,
which similarly to the 2D Dirac electrons in graphene, are characterized by linearly dis-
persing low energy excitations around some points in the Brillouin zone [136–139]. These
Weyl points are intersections of nondegenerate bands, and are stable against perturbations
according to their topological nature. In contrast to chapter 2, topology does not play a
fundamental role in the time evolution other than being responsible for the existence of
Weyl nodes.

Similar to clean graphene, when the Fermi energy in WSMs is near the Weyl point,
there are no charge carriers available for transport at zero temperature, since the density
of states vanishes as ∼ ε2 close to the Weyl point. However, in an applied electric field,
particle-hole pairs created by the Schwinger mechanism [140] contribute to transport.

The non-equilibrium state that evolves after turning on an electric field can be char-
acterized by the statistics of the excitations, and by the induced current. As pair creation
is described by the Landau-Zener (LZ) formula in the strong electric field regime, it is
intrinsically related to the Kibble-Zurek (KZ) mechanism [141–143], which describes the
universal scaling of defect generation in driven systems near a critical point, further dis-
cussed in section 3.1.1. Alas, KZ scaling gives only the mean number of excitations, and
thus does not fully characterize the non-equilibrium state.

Such a characterization, however, is possible through all the higher moments or cu-
mulants, as these contain all information about non-local correlations of arbitrary order
and entanglement. This is practically equivalent to determining the full distribution func-
tion of the quantity of interest. Therefore, the full distribution function of the number
of electron-hole pairs is also of importance, yielding additional information about the
physics of Schwinger pair production. Condensed matter physics and cold atomic systems
thus provide a unique way to experimentally detect such quantities [144, 145], beyond the
current capabilities of high energy physics. These ideas also relate to the discipline of full
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3.1. Electric field switch-on in a Weyl semimetal

counting statistics [146, 147], where outstanding experiments measure whole distribution
functions [148, 149], and cumulants up to the 15th order e.g. in Ref. [150].

Our results on the time evolution of the current and statistics of electron-hole pairs
are summarized in Table 3.1. The time domain is split into three distinct regions with
different behaviour, which we call classical (ultrashort), Kubo (short), and Landau-Zener
regime (long perturbations).

Time domain Classical Kubo Landau-Zener

t� ~
vFΛ

~
vFΛ
� t�

√
~

vF eE

√
~

vF eE
� t

# pairs (n) ∼ E2t2Λ ∼ E2t ∼ E2t
Statistics Poissonian Poissonian Gaussian-like

Current (j) ∼ EtΛ2 ∼ E/t ∼ E2t

Table 3.1: The electric field and time dependence of the total number of excitations or pairs
created (n) and its statistics, together with the electric current (j) is shown. Λ is the momentum
cutoff, E is the electric field.

The time evolution of the current also allows us to conjecture qualitatively the be-
haviour of the steady state current-voltage characteristics. For small voltages, the dynam-
ical calculation combined with a generalized Drude theory reproduces the results of Kubo
formula calculations, i.e. the current is proportional to the electric field. However, Ohm’s
law breaks down for larger voltages and the current-electric field dependence becomes
non-linear. This critical electric field as well as the non-linear current-voltage relation are
important for possible transport experiments in WSMs.

3.1 Electric field switch-on in a Weyl semimetal

We perform a sudden global quench in the electric field, that is, we switch on a
homogeneous electric field E at time t = 0. Instead of following the lines of the previous
chapter to study the post-quench time evolution, here it is more convenient to map the
quench in the electric field to a ramp protocol in the vector potential, because the latter
treatment preserves translational invariance. We consider noninteracting Weyl fermions
near a single Weyl point. The time dependent vector potential describing the quench in
the electric field is simply given by A(t) = (eEtΘ(t), 0, 0). The time evolution of a given
mode p = (px, py, pz) is then governed by the Hamiltonian

H = vF (p− eA(t)) · σ , (3.1)

where σ denotes the vector of Pauli matrices and vF is the Fermi velocity. The spectrum
consists of two bands as ±vF

√
p2
x + p2

⊥, with p⊥ =
√
p2
y + p2

z the perpendicular momen-
tum. Initially (t < 0), the system is assumed to be in the T = 0 vacuum state, with
all modes with negative single particle energy filled and positive energy modes empty.
This effective Weyl theory is valid at low energies compared to a high energy cutoff vFΛ
introduced for integrals over momentum space whenever necessary.
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3.1. Electric field switch-on in a Weyl semimetal

3.1.1 Landau-Zener problem and the Kibble-Zurek mechanism

At t = 0, the electric field is switched on, and the time dependent Schrödinger equation
defines the famous Landau-Zener problem, illustrated on Figure 3.1. Each momentum p

ti t0-t
*

t0 t0+t
* tf

t

ϵ p
(t
)

EGap

Adiabatic

Quench

Kibble-Zurek Adiabatic

Figure 3.1: Illustration of the Landau Zener problem and the Kibble-Zurek mechanism. When
a two level system initially prepared in the ground state is driven across an avoided crossing,
the driving induces transition to the excited state with a probability depending on the minimal
separation of the energy levels and on the speed of the driving. When the gap is large compared
to the rate of change of the Hamiltonian, εp(t)� ~ε̇p(t)/εp(t), the dynamics is near adiabatic.
In the opposite limit the system cannot follow the external perturbation, which is approximated
by a sudden quench in the KZ mechanism. The excitations created in the middle region freeze
out and evolve adiabatically after leaving the avoided crossing behind.

acts as a two-level system, which is driven through an avoided crossing. If the driving
were adiabatic, no transitions would occur to the upper band, but any finite electric field
generates excitations. Landau and Zener studied the transition probability of two-level
systems following a linear ramp across an avoided crossing. They found a simple analytical
expression for the transition probability with a sweep starting at ti = −∞ and ending at
tf =∞:

Pex = exp

(
−π E2

Gap

4~vdriv

)
= exp

(
−πvFp

2
⊥

~eE

)
(3.2)

where EGap = 2vFp⊥ is the minimum value of the gap at the avoided crossing, and
vdriv = vF eE is the velocity of the sweep. For quick sweeps the excitation probability
is well approximated by the Kibble-Zurek mechanism, which was originally developed
to describe defect generation in classical phase transitions [151, 152], but later it was
extended to quantum phase transitions [142], and to the Landau-Zener transition as a
minimal model [143, 153]. The basic idea of the KZ mechanism is that as long as the
gap is large, excitations are suppressed, and the time evolved state remains close to the
adiabatically evolved state. However, the reaction time of systems near a quantum phase
transition diverges due to the vanishing gap, which phenomenon is known as the critical
slowing down. Consequently, the systems cannot follow the perturbation: the adiabatic
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3.1. Electric field switch-on in a Weyl semimetal

regime breaks down and defects are generated. This picture still holds when there is a
small band gap EGap, but the driving is quick. After sweeping through the transition point,
or the avoided crossing, the gap increases, which brings the system back to the adiabatic
regime, where no new defects are generated, but those that are already present freeze into
the adiabatically evolving state. The middle region, where the system cannot follow the
change of the Hamiltonian, is approximated by a quench in the KZ mechanism. The only
remaining question is at which time instant t∗ the crossover from adiabatic to diabatic
dynamics occurs. This is heuristically estimated from the timescales characterizing the
Hamiltonian. The reaction timescale τ = ~

εp(t)
of the system is given by the inverse of the

instantaneous gap

εp(t) = vF

√
(px − eA(t))2 + p2

⊥ , (3.3)

while the timescale characterizing the swiftness of the quench is given by τQ = εp(t)

ε̇p(t)
. The

crossover time is estimated as τ(t∗) = τQ(t∗), and for convenience we measure t∗ from

the time reaching the avoided crossing. This constraint sets t∗ = tE =
√

~/vF eE in the
strong electric field regime, where tE is the timescale related to the electric field. The
associated correlation length, which also gives the scaling of the separation of defects is
ξ∗ = vF τ(t∗) ≈ vF t

∗ =
√

~vF/eE. The power of the KZ scaling is that the crossover time
and the correlation length are universal functions of the velocity. For generic quantum
phase transitions they are given by t∗ ∼ v

−zν/(zν+1)
driv and ξ∗ ∼ v

−ν/(zν+1)
driv , where the ex-

ponents ν, z characterize the quantum critical point [1], and vdriv characterizes the speed
of the ramp protocol. The ν = z = 1 exponents of the transverse field Ising model re-
produce the estimates for the LZ dynamics [154]. From these general considerations, the
density of the particle-hole excitations can be readily estimated. For any fixed px, the
resulting 2(+1)D system exhibits nex,2D ∼ (ξ∗)−2 ∼ eE/~vF excitations, and because of
only momenta with 0 < px < eEt are driven across an avoided crossing, the total den-

sity of excitations scale as nex ∼ (eE)2t
~2vF

, agreeing with the outcome of a more elaborate
calculation, Eq. (3.26).

The Landau-Zener solution is a valid approximation only if the dynamics describes a
complete crossing, that is, if ti and tf fall into the adiabatic regime. In the 3D system
we are considering, this constraint also depends on the value of px, which we have taken
into account in the KZ estimate for the particle-hole density. Shortly after switching on
the electric field, the number of complete crossings is negligible, while at later times they
become responsible for the main contribution to the excitations. In the following we will
consider the complete time evolution starting from short to long times. Although the
Landau-Zener problem can be solved analytically using parabolic cylinder functions [155–
157] for any finite values of ti and tf , the general formula is very complicated, and it hides
the interesting physics behind the problem. Instead, we proceed with applying various
approximations to the excitation number: we use a perturbative solution at short times
and the Landau-Zener formula at large times. These provide transparent results for the
emerging current and the statistics of excitations in the vicinity of a Weyl node, which
we also compare with numerical calculations.
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3.1. Electric field switch-on in a Weyl semimetal

3.1.2 Landau-Zener dynamics and the induced current

It is convenient to work in the adiabatic basis, which is the time-dependent basis di-
agonalizing the instantaneous Hamiltonian. This, following the derivation in Refs. [158,
159], is achieved by a two-step unitary transformation U = UsUd. First, we apply a
static rotation Us around the x axis such that the new y′ axis points in the direction
of p⊥ = (0, py, pz). Then we diagonalize the Hamiltonian with the dynamical Ud =
exp(−iδ(t)σz/2)(σx+σz), where tan δ(t) = p⊥

px−eEt . The time dependent Schrödinger equa-
tion in the adiabatic basis reads as

i~∂tΦp(t) = H ′Φp(t) (3.4)

H ′ = σzεp(t)− σx
~v2

F eEp⊥
2ε2p(t)

, (3.5)

with the initial condition Φp(0) = (0, 1)T corresponding to the fully occupied lower band.
The wavefunction in the original basis is given by UΦp. The instantaneous eigenenergies
form two bands as ±εp(t) with εp(t) defined in Eq. (3.3). The pair creation is generated by
the offdiagonal term ∼ σx. By denoting the solution of Eq. (3.4) by Φp(t) = (ap(t), bp(t)),
the mode excitation probability np(t) = |ap|2, which gives the number of electrons
created in the upper band due to the electric field and also the holes in the lower
band. The current operator in the original basis is jx = −evFσx, which transforms into
jx = −evF (σz cos δ+σy sin δ) in the adiabatic basis. This formula distinguishes between the
conduction (intraband, ∼ σz) and the polarization (interband, ∼ σy) parts of the current.
The current contribution 〈jx〉p(t) = jc

p(t)+jp
p(t) from a given mode p is determined by the

mode excitation probability np(t), with the observation that Re{iab∗} = − ε2p
vF pyeE

∂tnp(t)

[158, 159],

jc
p(t) = −evF

[
vF (px − eEt)

εp(t)
(2np(t)− 1)

]
, (3.6)

jp
p(t) = evF

2εp(t)

vF eE
∂tnp(t) . (3.7)

The total contribution of a Weyl node is obtained after momentum integration. In Eq. (3.6),
the np independent background is discarded, as an empty or fully occupied band does
not carry current [158, 160]. In our non-interacting model, the total current, excitation
numbers and higher cumulants are additive, i.e. given by the sum over the Weyl nodes.

The vanishing gap is a signature of the “criticality” of the WSM phase. As such, it
exhibits scaling properties, which allow us to deduce important properties of the system
without explicitly solving the Schrödinger equation. The excitation probability of the
modes satisfies a scaling relation (in units of ~, vF , e = 1),

nEp (t) = nb
2E
bp (b−1t) , (3.8)

which follows from the time dependent Schrödinger equation, and holds for any choice of
the dimensionless scaling parameter b. The invariants of the scaling transformation yield
the natural dimensionless combinations which determine the physics e.g. p

eEt
,
√

vF
~eEp, t̃ =√

vF eE
~ t, etc. The dimensionless time t̃ = t

tE
uniquely classifies the excitation probability
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3.1. Electric field switch-on in a Weyl semimetal

as a function of p. Time reversal considerations also give constraint on the excitation
probabilities [157]

np(t) = neEt−p(t) , (3.9)

which means that the excitation probability is symmetric with respect to px = 1
2
eEt, which

is also apparent in the numerical solutions in Figs. 3.2 and 3.3. Accordingly, in Eq. (3.11),
and everywhere where spherical coordinates are used, the momentum is measured from
(eEt/2, 0, 0). That is, p =

√
(px − eEt/2)2 + p2

⊥. At time t momenta p and eEt − p are
related by the fact that they share the same ratio of level crossing in the Landau-Zener
transition. For example in the particular case of px = 0 and px = eEt there is only a
half-crossing [156], that is, the particles are not driven through the gap minimum, but the
drive either starts or finishes there, respectively. To be more precise, the symmetry (3.9)
originates in the following symmetry of the Hamilton operator: HeEt′−p(t) = −Hp(t′− t),
and H ′eEt′−p(t) = H ′p(t′− t) in the adiabatic basis. The time evolution operator in the adi-

abatic basis is Up(t, 0) = T e− i
~
∫ t
0 H
′
p(s)ds, and applying the above symmetry transformation

yields

UeEt−p(t, 0) = Ae− i
~
∫ t
0 H
′
p(s)ds = KU+

p (t, 0)K , (3.10)

where (A)T is the (anti) time-ordering operator, and K is complex conjugation. From
this Eq. (3.9) follows.

The excitation probability as a function of p is qualitatively different in the t̃� 1 and
t̃� 1 cases (Figs. 3.2,3.3).

−5 0 5

−5

0

5

px/eEt

p
⊥
/
eE

t

t̃ = 0.1

−5 0 5

px/eEt

t̃ = 1.0

−5 0 5

px/eEt

t̃ = 10

10
-9

10
-7

10
-5

10
-3

10
-1

Figure 3.2: Excitation probabilities in momentum space for short (left), intermediate (middle)
and long (right) perturbations. While at short times (t̃ � 1) there are many excitations with
large momenta, with increasing time the excitations are more and more confined to momenta
p ≤ eEt. Note the logarithmic scale on the colorbar.

A perturbative solution valid for t̃� 1 is [158]

np =
(eE~p⊥)2

4v2
Fp

6
sin2

(
vFpt

~

)
. (3.11)

This gives a good approximation for the excitation number for p � eEt. At short times
high energy states may become excited, which is reflected in the power law decay of
excitations as a function of momentum (∼ p−2 for p� ~/vF t).
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If the perturbation is long, the probability of exciting a given mode is well approxi-
mated by the LZ solution [161],

np = Θ(px)Θ(eEt− px) exp

(
−πvFp

2
⊥

~eE

)
. (3.12)

This describes a “dynamical steady state”, which is characterized by a longitudinally

growing cylinder of excited states of length eEt and radius ∼
√

~eE
πvF

. In contrast to the

short time limit, the excitation probability decays exponentially for large momentum.
This exponential decay can be explained as a tunneling effect within the WKB approach
[162].

Along with the analytical calculations, for comparison, we determine numerically np

and ∂tnp by applying an explicit Runge-Kutta method [163] to solve the time dependent
Schrödinger equation. In Figure 3.3 we compare the approximations used for np with the
numerically obtained values.
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Figure 3.3: Comparison of the numerical and approximate excitation probabilities for short
(left) and long perturbations (right). The excitation map has a “dipolar” character for short
times, and the approximate formula (3.11) is nearly indistinguishable from the numerical solution
for p � eEt. The excitation map is cylindrical for long times. An (asymptotically irrelevant)
increased number of excitations at px = 0 and px = eEt is not captured in the approximation
(3.12).

3.2 Evolution of the current

We are now in a position to discuss the time evolution of the current. The high energy
cutoff, vFΛ defines an ultrashort timescale tΛ = ~

vFΛ
, which satisfies tΛ � tE for both
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condensed matter [137] and cold atomic [145] realizations of WSMs, similarly to the 2D
case [144]. The scaling property (3.8) implies a scaling for the integrated current as

j
c/p
E,Λ(t) = b−3j

c/p

b2E,bΛ(b−1t) . (3.13)

The particular choice of b = tE allows us to reveal the electric field and time dependence of
the physical quantities. The current is expressed as j

c/p
E,Λ(t) = E3/2j

c/p
1,tΛ/tE

(t/tE). The scal-

ing functions j
c/p
1,y (x) are determined from Eqs. (3.6,3.7) after evaluating the momentum

integrals with the particular form of np(t),

jc
E,Λ(t) ∼ E3/2





−
(
t
tE

)3
ln t tΛ

t2E
t� tΛ

−
(
t
tE

)3
ln t

tE
tΛ � t� tE

t
tE

tE � t

(3.14)

jp
E,Λ(t) ∼ E3/2





t tE
t2Λ

t� tΛ

(1 + non-univ.) tE
t

tΛ � t� tE

const tE � t

(3.15)

The term ”non-univ.” in the second line of Eq. (3.15) denotes the non-universal contribu-
tion from the high energy regularization, which dies out with increasing time, as discussed
further in Eq. (3.17).

For t � tE the current is dominated by the polarization part. Because of the large
weight of high energy states available to excite at ultrashort times t < tΛ, the current is
determined by the cutoff. The ultrashort time contribution of a Weyl point to the current
is linear in time,

j(t) =
1

6π2

evF
~3

eEtΛ2 . (3.16)

This behavior has also been observed for 2D Dirac fermions [158], and can be explained

using a classical picture of particles with effective mass m−1
i,j = ∂2εp

∂pi∂pj
accelerating in an

external field satisfying Newton’s equation. In 2D, the current saturates at t ∼ tΛ, and
remains constant until t ∼ tE. In 3D the behavior is sharply different as the current starts
to decay as t−1 after reaching a maximal value at t ∼ tΛ. The precise form of the decay
depends on the microscopic details (i.e. on the cutoff), but the exponent is a universal
characteristic of Weyl physics. Imposing a sharp cutoff results in an oscillating current
j ∼ t−1(1 + cos(t/tΛ)), also obtained within linear response [164]. A smooth (exponential
or Gaussian) cutoff of the form exp(−

√
2p/Λ) or exp(−p2/Λ2) does not generate the

oscillating part, and gives

j(t) =
1

6π2

e2E

~vF t
F (t/tΛ) , (3.17)

where F (y) = y2

2y2+1
when the exponential and F (y) =

∫∞
0

dx e−x
2/y2

sin 2x when the

Gaussian cutoff is used, both of which show the same limiting behaviour F (y) ∼ y2 for
y � 1 and F (y) = 1/2 for y � 1. The qualitative difference between the 2D and 3D cases
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3.2. Evolution of the current

is a consequence of their respective phase space sizes. The polarization current is a sum
of contributions with oscillating signs j ∼

∫
dp sin(2pt)pd−3, which, by simple scaling,

results in a time independent contribution in 2D, but decays as t−1 in 3D.
The conduction part overtakes the polarization term at t ∼ tE, beyond which the

current increases linearly with time and nonlinearly with electric field as

j(t) =
1

4π3

e3E2

~2
t . (3.18)

This is simply the number of charge carriers per unit volume in the steady-state cylinder
multiplied by evF . It is beyond linear response, as it depends quadratically on the external
field [159]. Our analytical predictions for the current are illustrated on Figure 3.4, together
with the numerical results.

10
−2

10
−1

10
0

j
(
evF
Vc

)

numerical

analytical

ln(tΛ) ln(tE)
ln(t)

∼
E
t

∼
E
/t

∼
E

2 t

Figure 3.4: Time evolution of the total current after switching on an electric field. The analytical
curve is the sum of polarization current (3.17), dominant for t � tE , and conduction current
(3.18), dominant for t� tE . The evolution of the number of pairs, κ1, is shown in Figure 3.5.

Bloch oscillations appear on a timescale tBloch ∼ ~
eEa

, where a is the lattice constant,
and our description holds for t � tBloch. The timescale related to the cutoff is non-
universal, and both tE and tBloch depend on the applied field. These three scales are in
fact not independent, which can be seen in the following way. The momentum cutoff is
proportional to the largest momentum in the system Λ = 1

c
~
a
, which relates the timescales

as tΛtBloch = c t2E, where c > 1 is a system dependent constant describing the ratio of the
linear size of the Brillouin zone and the validity range of Weyl physics. This also implies
that in the experimentally relevant tΛ � tE case, tE � tBloch is also satisfied, and all
three regions appear before Bloch oscillations set in. Λ is also limited by the separation of
the closest Weyl points in the Brillouin-zone. If two Weyl points lie close to each other, it
limits the domain of applicability of our method through the parameter c. If c � 1, the
Weyl physics describes only a small fraction of the Brillouin zone, and the contribution of
the remaining parts can be large in the ultrashort perturbation limit. For intermediate and
long perturbations, the cutoff does not play an important role, and the Weyl contribution
dominates the total current and the excitation number. The results of a single Landau-
Zener transition break down when the excitations are driven through another Weyl point.
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3.3. Steady state picture from Drude theory

The timescale when it happens is given by Λ
eE

= 1
c
tBloch for an electric field pointing in

the direction along which the two closest Weyl nodes are aligned, and it varies with the
angle. To describe the behaviour at t � tBloch, one needs to go beyond the continuum
description of Eq. (3.1) and consider the full lattice model, as was done for graphene in
Ref. [165].

It is interesting to note that the maximal current is jmax ∼ e2vFEΛ/~3, which the
system reaches upon leaving the classical region during the time evolution. Even in the
nonlinear region in Eq. (3.18), the maximal current falls to the same order of magnitude,
which is in sharp contrast to 2D Dirac semimetals, where the non-linear current strongly
exceeds the current from the classical region.

As the external field induces current, it also injects energy into the system. The con-
duction and the polarization current decompose the total pumped energy into reversible
(“work”) and irreversible (“heat”), as follows. An infinitesimal change in the energy can
be written as dE =

∑
i(dεini + εidni), where i = (p,±) runs over all momenta of

the two bands. The first term corresponds to the reversible work done on the system,
dW =

∑
p ∂tεp(2np − 1)dt = V Ejc(t)dt, while the second corresponds to the heat ex-

change, dQ = 2
∑

p εp∂tnpdt = V Ejc(t)dt, where we have expressed everything by the
properties of the lower band. Correspondingly the work done on the system and the heat
are

W = V E

∫ t

0

ds jc(s) (3.19)

Q = V E

∫ t

0

ds jp(s) . (3.20)

It is easy to check that the sum of the heat and work yields the total energy of the time
evolved state ∆E = W + Q =

∑
p 2εpnp, i.e. simply the sum of the energy absorbed by

the excited modes.

3.3 Steady state picture from Drude theory

The Drude picture provides a heuristic way to relate our results to optical conductivity
studies of a WSM in the presence of impurities. In general, this is expected to work
[160] for (contributions to) quantities independent of the relaxation time, as e.g. the high
frequency conductivity or the universal minimal conductivity of graphene [166]. In this
spirit, the dynamics described above holds until a characteristic time determined by an
effective scattering rate 1/τ , and the zero frequency limit of the AC conductivity can be
estimated by substituting time as t → τ . This results in the counterintuitive conclusion
that in the tΛ < τ < tE region, the conductivity is proportional to the scattering rate,
σ(ω → 0) ≈ e2

12π2~vF τ
, which agrees with the results of Ref. [167] based on Kubo formula

calculations. Although this simple Drude picture works well for graphene [158], it fails
to describe the transport properties of WSMs because in 3D, the density of states at
the Weyl point vanishes even in the presence of small amounts of disorder [168], and
concomitantly the quasiparticle lifetime diverges [137, 138]. The Drude picture can be
rescued if we apply it to jp, substituting the time variable with the momentum dependent
lifetime, and then evaluating the integral. The scattering rate in the Boltzmann or Born

58



3.4. Statistics of pair creation

approximation is 1/τp = 2πγg(εp) [137, 138], where g(ε) = ε2

2π2~2v3
F

is the density of

states, and γ characterizes the scattering strength. In the large scattering limit γ � ~v2
F

Λ
,

integrating Eq. (3.7) with np(τp) from (3.11) reproduces the results of Refs. [137, 138],
that is

σ ∼ e2v2
F

~γ
, (3.21)

with a different prefactor and an additional logarithmic correction ∼ e2v2
F

~γ ln(
~v2
F

γΛ
). The

above treatment is valid for small electric fields eE � γ2Λ4

~3v3
F

, when the dominant contribu-

tion to the current comes from the momenta satisfying τp � tE. In the case of additional
Weyl nodes in the Brillouin zone, internode scattering can occur on a timescale τinter.
This also limits our real time study to t < τinter, above which internode processes should
be taken into account. This is clearly beyond the scope of the present work.

If the scattering strength is small, such that there is enough time for the modes to go
through the LZ transition, then the steady state occupation profile will be qualitatively
similar to the LZ solution. As the quasiparticle lifetime is finite everywhere except in the
close vicinity of the Weyl point, the cylinder of densely excited states will not extend to
infinity, but will be characterized by a finite length eEτeff(E). The precise form of τeff

depends on the detailed nature of the scattering process. If there is a constant scattering
rate 1/τ , then τeff = τ , but generally it will depend on the electric field. The Drude picture
estimates the stationary current in the non-linear regime as

jstac =
1

4π3

e3E2

~2
τeff(E), (3.22)

and Ohm’s law breaks down. The explicit E dependence, however, depends strongly on the
precise form of τeff(E). In case the relaxation time becomes independent of the electric
field in the non-linear region, a crossover from the j ∼ E linear region to a j ∼ E2

non-linear region is expected.

3.4 Statistics of pair creation

The expectation value and time evolution of the current is largely influenced by the
number of pairs created, as follows from Eqs. (3.6, 3.7). This we now investigate in more
detail. Although the expectation value of a quantity reveals much about underlying phys-
ical processes, fluctuations contain essential information as well and are important to pro-
vide a comprehensive description of the system [8]. Therefore, beyond simple expectation
values, we study the fluctuations of the pairs created by their full distribution function.
This provides a complementary measure to characterize the out-of-equilibrium state. As
opposed to calculating the probability distribution function of pairs created directly, it is
more convenient to work with the cumulant generating function (CGF) in unit volume,

which is the logarithm of the characteristic function φ(ϕ) = 1
V

ln
〈

exp(iϕN̂)
〉

. Here, N̂

denotes the excitation number operator, V is the volume, and the expectation value is
taken with the time evolved initial state. The CGF is expressed as sum over momentum
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3.4. Statistics of pair creation

space,

φ(ϕ) =
1

V

∑

p

ln [1 + (exp(iϕ)− 1)np] (3.23)

The probability density function is the inverse Fourier transform of the characteristic
function, that is, p(n) = 1

2π

∫
dϕ exp(V φ(ϕ) − inϕ). For short perturbation, i.e. t � tE

the excitations add up from an extended region in momentum space with small excitation
probability. The contribution from p . 2eEt, where np ∼ 1, is negligible because of the
small volume of the domain ∼ t3, and a Taylor expansion of the logarithm in Eq. (3.23)
gives a good approximation, φ(ϕ) = (exp(iϕ) − 1) 1

V

∑
np. That is, the total number of

excitations per unit volume is Poissonian as p(n) = λn exp(−λ)/n! with

λ =
1

12π2

(eE)2t

~2vF
S2(t/tΛ) , (3.24)

where S2(y) =
∫ y

0
dx sin2 x/x2 ≈ y for y � 1, while it saturates to π/2 for y � 1. All

cumulants of the Poisson distribution are equal to the single parameter λ. The first cumu-
lant is the expectation value, that is, for t� tΛ the excitations are created quadratically
in time, while for tΛ � t � tE, the creation rate is constant. This behavior is clearly
seen in Figure 3.5, where we compare the numerically determined cumulants with the
approximate solutions.
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Figure 3.5: Time evolution of the cumulants (κ1−4) of electron-hole pairs per unit volume (log-
log plot, numerical results). The cumulants coincide for t� tE , which is a clear signature of the
Poissonian distribution. The grey dashed lines show the t � tΛ and t � tΛ asymptotics of the
analytical formula Eq. (3.24). For long times, the cumulants branch and follow the approximate
formulae derived from Eq. (3.25) (colored dashed lines) within a time independent constant
coming from the difference between the exact np and the LZ approximation (Figure 3.3).

For tE � t the excited states are confined to a cylinder in momentum space, and
substituting Eq. (3.12) into (3.23) yields

φ(ϕ) = −αLi2(1− exp(iϕ)) (3.25)

α =
1

8π3

(eE)2t

~2vF
(3.26)

60



3.5. Probability of no current and the vacuum persistence probability

where Li2(x) =
∑∞

m=1 x
m/m2 is the dilogarithm function [169], in agreement with Ref. [170].

As time evolves the higher cumulants start to deviate from the first one, and the distribu-
tion is no longer Poissonian (see Figure 3.5). The cumulants are determined from the series
expansion of the CGF, the first few being κ1 = α, κ2 = α/2, κ3 = α/6, κ4 = 0. Except for
the variance all even cumulants vanish. There is a time independent contribution from the
px ≈ 0 and px ≈ eEt regions in np (see Figure 3.3), which is not captured in Eq. (3.12),
and which gets overwhelmed by the time dependent terms. Apart from this, the cumu-
lants listed above approximate very well the numerical results (Figure 3.5). The peak of
the distribution function is well captured in the central limit theorem (CLT) approxi-
mation, which states that the excitation number is Gaussian with mean α and variance
σ2 = α/2: p(n) = 1√

2πα
exp[−(n− α)2/α]. This approximation neglects the cumulants

higher than the second. The asymptotic decay of the distribution can be determined from
the Gärtner-Ellis theorem [171], which in this case is essentially a saddle point approxi-
mation of the inverse Fourier transform of the characteristic function. The probability of
exciting a large number of pairs decays slower than estimated from the CLT, but still in
a Gaussian manner p(n) ∼ exp(−n2/2α) (note the factor 2 difference in the denominator
of the exponential with respect to the Gaussian distribution).

3.5 Probability of no current and the vacuum persis-

tence probability

In spite of the applied electric field, there is a finite probability of no pair creation
and no induced current, also known as the vacuum persistence probability. The vacuum
persistence probability characterizes the time evolution similarly to the Loschmidt echo:
it measures the overlap of the non-equilibrium time evolved wave function U(t, 0) |0〉 with
a reference wave function, which in this case is the adiabatically evolved state. Analyzing
the decay of this probability provides an alternative way to determine the pair-creation
rate, which was used e.g. by Schwinger in his seminal paper [140]. The vacuum persistence
probability is P0(t) = |

〈
0̃
∣∣U(t, 0) |0〉 |2, where U(t, 0) is the time evolution operator in the

external field, |0〉 and
∣∣0̃
〉

are the (Schrödinger) vacua at time 0 and t respectively. With
the knowledge of np it is expressed as

P0 = exp

(
−
∑

p

ln(1− np)

)
≡ exp (−V wt) , (3.27)

where

w =
1

t
×





λ for t� tE,
απ2

6
for t� tE

(3.28)

is the rate of vacuum decay per unit volume and time, increasing as E2 and being inde-
pendent of time for t � tΛ and increasing linearly with time for t � tΛ. Alternatively,
the pair-creation rate can also be defined as the total number of pairs created divided by
the time it took, i.e. as κ1/t. Nevertheless, these two definitions agree in the short time
limit and only differ by a constant prefactor in the long perturbation limit (Figure 3.6).
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Figure 3.6: Particle creation rate as a function of time estimated from the vacuum persistence
probability and from the total number of excitations (log-log plot). The dashed lines show the
results of Eqs. (3.24,3.26) and Eq. (3.28).

3.6 Finite temperature

So far we have assumed the initial state to be the ground state without any excitations,
which describes the zero temperature response of WSMs. An arbitrary initial distribution
function can be handled similarly, as long the modes with different momenta are indepen-
dent, which is the case e.g. at finite temperature. Let f(p) be the probability distribution
function of having an excitation with momentum p in the initial state. The post-quench
occupation number is expressed as a weighted sum of the excitation probability of an
unexcited and an excited mode as [157]

nfp = [1− f(p− eEt)]np + f(p− eEt) [1− np] ,

where f(p) = 1/(exp(βεp) + 1), β = 1/kBT . The initial number of excited states due
to thermal fluctuations is nT ∼ 1/(β~vF )3, which is small near T = 0, and does not
modify qualitatively the results. This argument applies for systems with thermal initial
density matrices, which are detached from the environment during time evolution. This
assumption needs a thermalization time much longer than the observation time, which
is usually not satisfied in condensed matter, but could be achieved with cold atoms.
Similarly a small deviation in the Fermi energy from the Weyl point gives only a subleading
correction.

Our results can be readily applied also for inversion symmetric Dirac semimetals (re-
ferred to as structure I in Ref. [62]). The low energy excitations of these systems are
described by a 4× 4 Dirac equation, which is decoupled to two degenerate Weyl fermions
with opposite chirality. As the electric field does not couple these Weyl fermions, the two
copies behave independently, which can be incorporated in a factor of 2 in the current and
in the cumulants. On the other hand, in inversion symmetry-breaking Dirac semimetals
(called structure II in Ref. [62]), the electric field couples the two copies of the (nonde-
generate) Weyl fermions. If the inversion symmetry breaking is small, the results do not
change qualitatively, but generally the description of the tunneling due to the electric field
becomes more involved.
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3.7 Conclusion

In this chapter we have studied the nonlinear response of WSMs after switching on
an external electric field before Bloch oscillations set in. The ultrashort time dynamics
is non-universal and the current depends on the details of the band structure at high
energies. The current and the number of created electron-hole pairs grow linearly and
quadratically with time, respectively. The universal properties of Weyl nodes are mani-
fested in the intermediate and long time responses. In particular, at intermediate times,
the current decays as 1/t due to the interplay of the number of created pairs and the
available phase space. Particles are created at a constant rate, generating a Poissonian
distribution for the statistics of the electron-hole pairs. At long times, the particle cre-
ation rate takes on a constant value again, but the current starts to increase again in
time because of the increasingly large number of pairs moving in the same direction. The
distribution function of excitations crosses over from a Poissonian profile to a Gaussian
distribution, which follows from the central limit theorem, applicable in the long time
limit due to the large number of pairs created. The real time evolution of the current
is translated to the conductivity of disordered WSMs within a generalized Drude pic-
ture, reproducing the results of previous calculations with different methods. This is a
remarkable example of a problem from high energy physics which naturally corresponds
to one in condensed matter physics with a separate set of observables, and which allows
an exquisitely detailed analysis, thus holding the promise of a detailed experimental study
in a tabletop experiment.
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4
Floquet topological phases coupled to environments

As discussed in section 1.2 of the introduction, a prospering application of Floquet
physics is engineering topologically nontrivial band structures by exposing normal in-
sulators to periodic driving. Although the resulting Floquet spectrum often possesses a
topology different from that of their static parents, the actual occupation of the vari-
ous Floquet bands is, however, essential to evaluate physical observables. For example,
a topologically non-trivial but only partially filled band cannot profit from topological
protection.

In this last chapter of the thesis we study equilibration properties of periodically
driven systems attached to environments. Equilibration in periodically systems is an in-
tricate question from multiple points of view. First, as we have mentioned in section 1.1,
generic interacting quantum systems are conjectured to approach an infinite temperature
state in the presence of global periodic driving, which is a consequence of absorbing en-
ergy continuously from the external perturbation. However, when we couple them to an
infinitely large environment, heat can flow away from the system to the bath, which can
lead to a qualitatively different steady state. Second, in non-driven systems, according
to the laws of statistical mechanics, a weak coupling to a bath in thermal equilibrium
leads to thermal occupation of the eigenstates, which means that the occupation prob-
ability is a function of solely the energy of the states. Floquet systems with dissipation
are also expected to reach steady states, which can be a periodic function of time due to
the periodicity of the Hamiltonian. It is an interesting question whether there is a simple
analogue of the energy in the non-driven case, which determines the occupation of these
steady states.

The most convenient framework to study steady states in periodically driven systems is
through the Floquet theory, which we have briefly introduced in section 1.2. The Floquet
solution Eq. (1.9) of the time-dependent Schrödinger equation (1.8),

Ψn(t+ T ) = e−iεnTΨn(t) ,

describes a time periodic state in the sense that it obtains only a phase factor after a
driving period, and expectation values of observables in this state are periodic. Based
on the analogy between the energy in non-driven systems and the quasienergy εn, the
latter could be a candidate to determine the filling of the steady states in a thermal
environment. However, due to the breaking of continuous time translation symmetry,
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the quasienergies are well-defined only modulo ω = 2π
T

(we set ~ = 1 throughout this
chapter), hence there is no unambiguous ordering of the Floquet quasienergies. This is
illustrated on Figure 4.1 for a hypothetical translational invariant 1D system, where the
quasienergies form two nonequivalent bands, which can be arbitrarily shifted by multiples
of ω. These replicas of the Floquet bands (also called shadow bands) are experimentally
detectable by time- and angle-resolved photoemission spectroscopy [172]. Unless there is

p

ϵ F

ω

p

ϵ F

p

ϵ F
Figure 4.1: Illustration of nonequivalent Floquet bands (solid lines), and their replicas (dashed
lines) shifted by multiples of the driving frequency in a translational invariant system. The choice
of the reference Floquet bands is arbitrary (left, middle and right panels), and there is no notion
of lower-lying quasienergy bands, which are filled at low temperatures in contrast to non-driven
systems.

a natural ordering of the Floquet bands, Floquet states cannot be filled according to a
simple decaying function of the quasienergies. An example where such an ordering can be
constructed is the case of high frequency driving, when the ordering of quasienergy levels
is defined by the Hamiltonian obtained from the high frequency expansion [173]. Another
example where the Floquet states are filled with respect to their quasienergy is presented
in section 4.3.1.

A phenomenological way of determining filled Floquet states [174–176] relies on the
average energy [39], defined as

Ēn =
1

T

T∫

0

dt 〈Ψn(t)|H(t)|Ψn(t)〉 (4.1)

which is always single valued as opposed to the ladder of quasienergies. Within the average
energy concept, the states with lower average energy are filled first in a low temperature
environment. This scenario is illustrated on Figure 4.2. Although this scenario might
sound intuitive, in contrast to the non-driven case, there is no underlying microscopic
theory which would validate this picture.

The rigorous way to determine the filling of Floquet bands is through coupling the
system to an environment. This setup defines the field of driven-dissipative systems, which
has also been studied in the literature [11, 173, 177–185]. Most of the recent studies
were related to driven graphene, showing that dissipation effects generally inhibit the
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4.1. Quantum spin Hall edge states irradiated by circularly polarized light
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Figure 4.2: (a) Within the average energy concept the nonequivalent Floquet bands (red and
blue thick dashed lines, partially covered by solid lines) are filled with respect to their aver-
age energy, illustrated as thick solid lines. The Floquet shadow bands are also shown as pale
replicas. (b) The time averaged energy as a function of momentum, with the red (blue) curve
corresponding to the red (blue) quasienergy band. The curves correspond to Eqs. (4.5,4.7) with
n = ±, ω = 3.1Ω.

naive generalization of the static results on topological band structures to the Floquet
case, due to the non-thermal occupation of these bands. Moreover, the occupation is not
even universal in sense that it depends not only on the temperature, but also on other
properties of the bath, as well as on the way the system is coupled to the bath. So far
we assumed that the Floquet basis, which is although a natural choice to study steady
states, is also characterized by a well defined occupation. We find this behavior in the
infinitesimal system-bath coupling limit in section 4.3.1. However, it is also possible that
the steady states filled in an environment are not the Floquet states, which we find at
finite system-bath coupling near resonances (section 4.3.2).

In the following, we restrict our analysis to a particular system, which had been studied
previously within the average energy concept [186], and we coupled it in various forms
to thermal environments. Interestingly, we found qualitative agreement with the average
energy concept [21].

4.1 Quantum spin Hall edge states irradiated by cir-

cularly polarized light

As we have introduced in section 1.4, topological insulators (TI) represent peculiar
states of matter with robust, topologically protected conducting edge or surface states
[53, 187], and due to the strongly coupled spin and charge degrees of freedom, possible
applications in spintronics or quantum computation have been proposed. In particular,
the two-dimensional TI, i.e. the quantum spin Hall (QSH) state has been predicted and
experimentally observed for a number of systems, including graphene [57], HgTe/CdTe [58,
133] and InAs/GaSb [188] quantum wells, lattice models [189–191] and multicomponent
ultracold fermions in optical lattices [192–194].
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4.1. Quantum spin Hall edge states irradiated by circularly polarized light

Near the Fermi energy, the QSH insulator is characterized by counter-propagating
spin-up and spin-down fermions localized along the edges of a finite sample, whose energy
lie in the bulk band gap, see the middle panel of Figure 1.4 for illustration. Within the
framework of the average energy concept, an interesting proposal was made in Ref. [186]
to induce quantized photocurrent in a quantum spin Hall insulator by irradiating its edges
with circularly polarized light. The electromagnetic field acts as a periodic driving as it
couples the QSH edge states. When the frequency of the driving matches twice the energy
of the Zeeman coupling, a topological phase transition was found to a non-quantized
photocurrent.

Figure 4.3: The cartoon of the system studied in this chapter, consisting of a QSH edge state
with spin filtered conducting channels, interacting with circularly polarized electromagnetic field
and coupled to an environment.

The one-dimensional chiral edge state of a QSH insulator in a circularly polarized
radiation field, shown in Figure 4.3, is described by the non-interacting Hamiltonian H̃S =∑

p ψ
†
p H̃S(p)ψp, with ψ†p = (ψ†p,↑, ψ

†
p,↓) and

H̃S(p) = 1
2pσz − 1

2Ω(σ+e−iωt + h.c.). (4.2)

Here ψ†p,σ creates a QSH edge excitation of momentum p and spin σ, with 1
2p being the

energy of the right moving spin up fermions, and −1
2p being that of the left moving

spin down fermions (Fermi velocity vF is set to 1/2). The term with Ω comes from the
Zeeman coupling between the magnetic component of the ω frequency electromagnetic
field and the electron’s spin, and Ω is identified as the Rabi frequency. The laser frequency
is assumed to be smaller than the bulk gap of the QSH insulator. In Eq. (4.2) we neglected
the effect of the electric field of the laser, whose contribution is small compared to the
Zeeman coupling for small intensity or large frequencies satisfying vF eE0/ω � ~ω, with
E0 being the amplitude of the electric field oscillations. For more details about the orbital
effect see Ref. [186] and its supplementary material.
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4.1. Quantum spin Hall edge states irradiated by circularly polarized light

4.1.1 Chiral edge current in the average energy concept

First, we review the Floquet solution and the induced edge current within the average
energy concept [186]. The time-dependent Schrödinger equation,

i∂tΨp,±(t) = H̃S(p)Ψp,±(t), (4.3)

is solved using the Floquet ansatz Eq. (1.9) for the steady state solution,

Ψp,±(t) = exp[−iε±(p)t]Φ±(p, t). (4.4)

Here, ε±(p) denotes the Floquet quasienergy, and Φ±(p, t) = Φ±(p, t+T ) with T = 2π/ω,

ε±(p) =
ω ± Ω′

2
, (4.5)

Φ±(p, t) =
1√
2Ω′

( √
Ω′ ∓ δω

∓ exp(iωt)
√

Ω′ ± δω

)
, (4.6)

where Ω′ =
√
δω2 + Ω2 is the renormalized Rabi frequency and δω = ω − p denotes the

detuning. The average energy Eq. (4.1) in the Floquet states is calculated as

Ē±(p) =
1

T

T∫

0

dt 〈Ψp,±(t)|H̃S(p)|Ψp,±(t)〉 = ±1

2

[
Ω′ − ωδω

Ω′

]
. (4.7)

At low frequencies ω < 2Ω, one of the quasienergy bands, ε−(p), is characterized by lower
average energy than the other for all momenta. Within the average energy concept it
implies a completely filled ε−(p) and an empty ε+(p) band. The electric current operator
is ĵp = 1

2
eσz (since vF = 1/2), and the photocurrent is evaluated as

j(ω) = jc =
e

2

1

2π

∫ Λ

−Λ

dp 〈Φ−(p, t)|σz|Φ−(p, t)〉 =
e

4π

∫ Λ

−Λ

dp
δω

Ω′
=

1

2π
eω , (4.8)

where a symmetric cutoff Λ→∞ was introduced to evaluate the integral, as in Ref. [186].
This expression has a simple physical interpretation: in every period a single charge is
transmitted through the edges, and we refer to this as quantized edge current jc. In the
adiabatic ω → 0 limit this result corresponds to the Thouless charge pumping [195], which
was also obtained for a QSH insulator in rotating magnetic field in Ref. [196].

When the driving frequency exceeds 2Ω, the average energy Ē+ of the ε+ band becomes
lower than Ē− for p− < p < p+, p± = 1

2
(ω ±

√
ω2 − 4Ω2), where population inversion

occurs. This is shown on Figure 4.2 for ω = 3.1Ω. The electric current then obtains
contribution from both of the quasienergy bands, which breaks down the quantization,

j(ω) = jc −
e

4π

∫ p+

p−

dp 〈Φ−(p, t)|σz|Φ−(p, t)〉 − 〈Φ+(p, t)|σz|Φ+(p, t)〉 (4.9)

=
e

2π
[ω − (

√
ωp+ −

√
ωp−)] . (4.10)

In Ref. [21], we extended the model for a driven QSH system [186] to include various
types of environments. In particular, we studied a QSH insulator coupled to a bosonic
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4.1. Quantum spin Hall edge states irradiated by circularly polarized light

heat bath, and irradiated by a circularly polarized light (see Eq. (4.2)). The cartoon of
the system is sketched in Figure 4.3. We found that the occupation of the bands deviates
from the one found using the average energy assumption [174, 186], which leads to a
weak violation of current quantization in the Floquet topological phase. Our main result
concerning the induced photocurrent along the edge is summarized in Figure 4.4.

Figure 4.4: Comparison of the edge current (in units of eΩ/2π)) when the states are occupied
based on their average energy [186], and when they are coupled to a zero temperature sub-
Ohmic (s < 1), Ohmic (s = 1) and super-Ohmic (s > 1) bath. The curves correspond to the
secular approximation (defined above Eq. (4.19)), which describes the infinitesimal system-bath
coupling. The s = 0 curve is understood as the limiting behavior as s→ 0.

4.1.2 Coupling the system to a heat bath

We assume that the inelastic electron scattering processes are the main source of
dissipation, similar to Ref. [197]. For the sake of simplicity, we consider a model with the
simplest possible form of a bosonic dissipation, where dissipation does not couple states
of different momenta, but drives spin flip transitions. That is, we assume in the following
that excitations of the environment have a very long wavelength compared to that of edge
excitations, and will also neglect the coupling it generates between different momenta.
Under these conditions, we can restrict our considerations to a single momentum mode
p, which we then couple to the environment through

H̃SE = −1
2bxσxX − 1

2byσyY − 1
2bzσzZ . (4.11)

Here X, Y and Z denote Gaussian bosonic fields, coupled to the Pauli matrices, and
bµ (µ ∈ {x, y, z}) denote the corresponding couplings. Their dynamics is encoded in the
environment Hamiltonian, H̃E = H̃E(X, Y, Z), whose explicit form is not needed here as
it only determines the spectral functions of the noise (see section 4.2). We refer to this
coupling scheme as the XYZ coupling. Below we consider also other forms of H̃SE, which
are given by identifying Y with X (the XXZ scheme), and both Y and Z with X (referred
to as XXX coupling).
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4.2. The non-secular Lindblad equation

The actual form of the system bath coupling depends on the physical realization, but
as we will show, in the limit of weak coupling, they give similar results. The environment
is characterized by the bath spectral functions

Jµ=x,y,z(ω) = αω1−s
c ωse−ω/ωc , (4.12)

which determine the correlation functions

γµ(ω) =
eβω

eβω − 1
Jµ(ω) (4.13)

at arbitrary temperature 1/β. The dimensionless quantity α is the spectral strength and
ωc is a high frequency cutoff. The system-bath coupling can be incorporated into α e.g.
by considering bxX as the environment degree of freedom. In the following we keep the
variables bµ to describe the symmetry of the system-bath coupling, and we refer to the
strength of the coupling by α. An Ohmic bath corresponds to s = 1, while s ≶ 1 describes
the sub- and super-Ohmic baths, respectively.

Following the lines of Ref. [198], we apply a generalized Lindblad type formulation
(the Bloch-Redfield equations) to describe how the environment affects the dynamics of
the edge states. In particular we keep non-secular terms, which are not captured in the
Lindblad equation, but are found to affect the dynamics considerably. This requires, in
general, a numerical solution, though near critical points we find that there is a single
dominant non-secular term that allows a rotation into a time independent frame. The
effect of non-secular terms in graphene shined by circularly polarized light was studied
numerically after a quantum quench of the driving field in Ref. [185], our method of
analytical treatment of the dominant resonances generalizes to that case too. Topological
edge current subject to environment has also been studied for non-driven systems [199].

4.2 The non-secular Lindblad equation

In this section, we follow the lines of Refs. [11] and [198] to outline a theoretical frame-
work to describe the time dependent reduced density matrix by a generalized Lindblad-
type equation, up to 2nd order in the coupling with an environment.

As a first step, one switches to the interaction picture with respect to the non-
interacting Hamiltonians, H(t) = H̃S(t)+H̃E, where the time evolution of the interacting
system’s density matrix ρ(t) is governed simply by the Hamiltonian HSE(t) which we
factorize as

HSE(t) =
∑

µ

Aµ(t)⊗Bµ(t). (4.14)

Here the operators Aµ(t) and Bµ(t) act on the system and the environment, and their
time evolution is governed by H̃S(t) and H̃E, respectively. To keep notation simple, we
suppress the index µ in what follows, and restore it only in the final results.

Within second order perturbation theory, the density matrix factorizes as ρ(t) =
ρS(t)⊗ ρE, and from the von Neumann equation one derives the integral equation [200],

ρ̇S(t) ≈
∫ t

0

dsΓ(s)[A(t− s)ρS(t− s)A(t)− A(t)A(t− s)ρS(t− s)] + h.c, (4.15)
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4.2. The non-secular Lindblad equation

with Γ(t) ≡ 〈B(t)B(0)〉E the correlation function of the operator B(t).
To proceed, one usually assumes that Γ(s) is short ranged, and then makes a Markovian

approximation, ρS(t− s)→ ρS(t). The physical picture behind this approximation is that
memory effects within the bath are neglected, which is well-founded if the rate of change of
the density matrix is small compared to the bath correlation time. Similarly, the physical
interpretation of the factorization of density matrix is that the effect of higher order
correlations, where subsequent interactions between the system and the bath depend on
the state of the bath modified by earlier interactions, is neglected [201]. Keeping non-
Markovian terms is discussed in Appendix A.2.

Then, decomposing A(t) into its eigenmodes of frequencies ν−j = −νj (and A†j = A−j)

A(t) =
∑

j=−J,...,J

Aje
−iνjt = A†(t), (4.16)

and taking the long time limit one obtains

ρ̇S =
∑

j,k

Γ̃(νj)e
i(νk−νj)t[AjρSA

†
k − A†kAjρS] + h.c. (4.17)

with the couplings Γ(νj) defined as

Γ̃(ω) =

∫ ∞

0

dsΓ(s)eiωs = 1
2γ(ω) + i ImΓ̃(ω) , (4.18)

where the real and the imaginary parts are connected by the Kramers-Kronig relation,
ImΓ̃(ω) = P

∫
dν
2π

γ(ν)
ω−ν . The generalized Lindblad’s equation (or Bloch-Redfield equation),

Eq. (4.17), is the cornerstone of our analysis, what we examine beyond the secular ap-
proximation.

Usually [11, 202–205] one makes an additional assumption of keeping only secular
terms with νj = νk, which we refer to as the secular approximation, also known as the
”modified rotating wave approximation” [201]. In this limit, terms proportional to ImΓ̃(νj)
just renormalize the subsystem’s Hamiltonian (produce a Lamb shift) and can thus be
dropped [11], and a usual Lindblad equation is recovered,

ρ̇sec
S =

∑

j

γ(νj)
{
Ajρ

sec
S A†j − 1

2A
†
jAjρ

sec
S − 1

2ρ
sec
S A†jAj

}
. (4.19)

To appreciate the role of the non-secular terms assume that an equilibrium solution
ρeq is found for the secular Eq. (4.19), and that deviations from equilibrium decay to it
exponentially, δρ(t) ∼ δρ(0) exp(−Γt). Treating then the non-secular terms of Eq. (4.17)
iteratively, one can immediately see that they generate corrections ∝ 1/(i(νk − νj) + Γ),
clearly demonstrating critical regions with |νk − νj| . Γ. In these regions the non-secular
terms become important, and the secular approximation fails.

Recovering the indices µ in Eq. (4.17), the time evolution of the density matrix is
given by

ρ̇S =
∑

µ,j,k

Γ̃µ(νj)e
i(νk−νj)t[Aµ,jρSA

†
µ,k − A†µ,kAµ,jρS] + h.c., (4.20)
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4.3. Applying the Lindblad equation to the edge state

Frequency Ax,j Ay,j Az,j
ν0 = 0 0 0 − bz

2
cos θσz

ν1 = Ω′ 0 0 bz
2

sin θσ−
ν2 = Ω′ + ω − bx

4
(1 + cos θ)σ− −i by

4
(1 + cos θ)σ− 0

ν3 = Ω′ − ω bx
4

(1− cos θ)σ− −i by
4

(1− cos θ)σ− 0

ν4 = ω bx
4

sin θσz −i by
4

sin θσz 0

Table 4.1: The operators appearing in Eq. (4.16) in the XYZ coupling defined in Eq. (4.11),
σ± = (σx± iσy)/2. In case of XXZ coupling the operators Ax,j are given by the sum of Ax,j and

Ay,j of the XYZ case, and similarly by
∑

µ=x,y,z

Aµ,j in the XXX coupling.

where µ runs over statistically independent noise components, see Table 4.1.
In the secular approximation only the real part of Γ̃(ν) appears in the stationary solu-

tion, correspondingly it behaves well for any values of s (characterizing the low-frequency
behaviour of the bath spectral function), even for the white noise limiting case (s = 0)
of the sub-Ohmic regime. However, if non-secular terms are considered, one cannot ne-
glect the imaginary parts. If s = 0, ImΓ̃(ν) diverges logarithmically for small frequency,
which also implies unphysical stationary states with diverging components of the density
matrix. This divergence originates from the extension of the upper limit of the integral
in the Bloch-Redfield equation to ∞ in Eq. (4.15). Without extending the integral to ∞,
the equation can be used to study the short time dynamics in the s = 0 case, but it
cannot describe the stationary state. When s > 0, the bath correlation function decays
as Γ(t) ∼ t−s at zero temperature, and as the value of s is increased, the approximations
made to obtain the generalized Lindblad equations remain valid for increasingly stronger
system-bath couplings α.

4.3 Applying the Lindblad equation to the edge state

Let us now combine the results of the previous sections to investigate the fate of
the driven spin Hall system coupled to an environment. We start by deriving the time
evolution operator for H̃S(p). We note first that H̃S(p) becomes static in the rotating

frame, i.e. using the transformation Ur = e−
1
2 iωtσz yields the Hamiltonian

H̃S,rot(p) = U †r H̃S(p)Ur − U †r U̇r = 1
2(p− ω)σz − 1

2Ωσx . (4.21)

This is similar to the construction of the Floquet Hamiltonian in Eq. (1.11), with the differ-
ence that Ur does not have the right periodicity (Ur(t+T ) 6= Ur(t)), hence the eigenvalues
of H̃S,rot(p) are not equal to the Floquet quasienergies. Nevertheless, the eigenvectors of
the Hamiltonian in the rotating frame are related to the Floquet states by the identity

H̃S,rot(p)UrΨp,± = ±Ω′UrΨp,± . (4.22)

Next we rotate into the z axis by Up = e
1
2 iθσy where sin θ = −Ω/Ω′, cos θ = −δω/Ω′,

leading to the Hamiltonian H1
S(p) = 1

2Ω′σz. Finally, the time evolution with respect to
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4.3. Applying the Lindblad equation to the edge state

H1
S(p) is e−

1
2 iΩ
′tσz , hence the total evolution operator is

US(t) = e−
1
2 iωtσze−

1
2 iθσye−

1
2 iΩ
′tσze

1
2 iθσy . (4.23)

For convenience, in addition to the usual interaction picture, we apply the static rotation
Up to get simpler equations for the time evolution of the reduced density matrix. This is

also equivalent to going into the interaction picture with the operator ŨS(t) = US(t)e−
1
2 iθσy

instead of US(t), which also brings us to the Floquet basis:

ŨS(t) |↑〉 = ψp,+(t) (4.24)

ŨS(t) |↓〉 = ψm,−(t) (4.25)

where |↑〉, |↓〉 are the eigenvectors of σz. In Appendix A.3 we review how the expectation
values of the spin operators are calculated in this basis.

Now we express H̃SE in this rotated interaction picture as

HSE =
∑

j=±1,0

Az,je
−iνjtZ(t) +

∑

j=±2,±3,±4

Ax,je
−iνjtX(t) + Ay,je

−iνjtY (t) (4.26)

with the operators and the corresponding frequencies indicated in Table 4.1. Having all
operators Aµ,j at hand, we can now proceed and construct the non-secular and secular
Lindblad equations, Eq. (4.17). and Eq. (4.19).

4.3.1 Steady states in the secular Lindblad equation

We can apply the secular approximation in the limit, where all νj are sufficiently dif-
ferent relative to linewidths. Moreover, for infinitesimal system-bath coupling, the secular
approximation becomes exact. This can be seen e.g. by noticing that rescaling time by α
in Eq. (4.20) upscales the frequencies of the non-secular oscillations. It is useful to expand
the density matrix ρS(t) in Pauli matrices as

ρS(t) = 1
2 +

∑

µ

ρµ(t) σµ. (4.27)

In this basis the secular Lindblad equations read

dρx
dt

= −(Γ∗ϕ + 1
2Γ↓ + 1

2Γ↑)ρx ≡ −
1

T2

ρx

dρy
dt

= − 1

T2

ρy

dρz
dt

= −(Γ↓ + Γ↑)(ρz − ρ0
z) ≡ −

1

T1

(ρz − ρ0
z) (4.28)

with the equilibrium values 1
2〈σz〉0 = ρ0

z = 1
2

Γ↑−Γ↓
Γ↑+Γ↓

, ρ0
x = ρ0

y = 0, and the emerging

relaxation rates defined as:

Γ↑/↓ =
b2
z

4
sin2 θγz(∓Ω′) +

∑

µ∈(x,y)

b2
µ

16
[c2
−γµ(∓Ω′ ± ω) + c2

+γµ(∓Ω′ ∓ ω)] (4.29)

Γ∗ϕ =
b2
z

2
cos2 θγz(0) +

∑

µ∈(x,y)

b2
µ

8
sin2 θ[γµ(ω) + γµ(−ω)].
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4.3. Applying the Lindblad equation to the edge state

Equations (4.28) are in the form of standard Bloch equations in the interaction picture
with equilibrium in the z direction. We note that Γ↓,Γ↑ can also be derived by a simpler
Fermi’s golden rule calculation [203, 204], in agreement with our method. The results are
the same for the XXZ and the XXX coupling, excepting that in the former we have to
take γx = γy, and in the latter case γx = γy = γz.

The physical interpretation of the vanishing x and y components of the steady state
density matrix is that the filling of the Floquet quasienergy bands is well defined, and the
Floquet basis is the proper choice to measure occupation. The stationary value ρ0

z gives
the steady state occupation of the Floquet states as n±(p) = 1

2 ± ρ0
z.

At zero temperature a sharp difference shows up between the occupation profiles in
the cases of small frequency (ω < Ω) and large frequency driving, irrespective of the
actual type of the bosonic heat bath. In the former case Γ↑ ≡ 0, hence the steady state is
described by filling the lowest lying states of H1

S(p), that is, Ψp,− in the laboratory frame.
However, if ω > Ω, there is a narrow domain in the momentum space (p∗− < p < p∗+,

p∗± = ω±
√
ω2 − Ω2), where Γ↑ 6= 0, correspondingly the steady state contains excitations

with respect to the rotating frame Hamiltonian, which means partial filling of the Ψp,+

states. Depending on the spectral functions of the baths, inverse population is achieved
in this region, see Figure 4.5.

Figure 4.5: The nonvanishing element of the density matrix in the stationary state at zero
temperature (ω = 1.1Ω, α → 0 limit). The three curves correspond to different bath spectral
functions J(ν). The excitations in the steady state are with stronger weight in the sub-Ohmic
(s = 0) case compared to Ohmic (s = 1) or super-Ohmic environments (s = 2).

We found that a weak coupling to a zero temperature environment yields qualitatively
similar results for the occupation profile of the quasienergy bands to the average energy
concept, but the transition point differs in the two methods (ω = Ω′ and ω = 2Ω′ re-
spectively). Another difference is that the latter predicts total population inversion in a
finite momentum range, but in the more precise treatment the excitations are weaker and
depend on the spectral function of the bath (and also p∗± 6= p±).

In general, the occupation of the Floquet states is non-thermal in the sense that it

cannot be written in the form of ñ+(βε̃) = e−βε̃+

e−βε̃++e−βε̃−
, where ε̃± is some energy determin-

ing the filling of the Floquet states and β is the inverse temperature of the environment.
Nevertheless, depending on the anisotropy of the system-bath coupling bx,y/bz, the aver-
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4.3. Applying the Lindblad equation to the edge state

age energy substituted into ε̃± provides a meaningful approximation for the temperature
dependence as well, as shown in Figure 4.6.

We find an interesting limit if the bath couples only to the z component of the spins,
that is, when bx = by = 0. Then not only the system and the environment, but also the
system-bath coupling becomes time independent in the rotating frame. In these circum-
stances, according to the general rules of statistical mechanics, the steady-state occupation
of the bands is thermal with respect to the Hamiltonian H1

S(p), provided the system-bath
coupling is small. As the quasienergies in Eq. (4.5) are the same as the spectrum of H1

S(p)
except from a constant shift ω/2, the occupation is thermal with respect to the quasiener-
gies as well. A similar scenario was found for the filling of the Floquet states in graphene
with a rotating Kekulé mass in Ref. [182]. It is easy to verify that the secular solution
simplifies to ρ0

z = −1
2 tanh(1

2βΩ′), which is indeed the thermal value. Also, in this limit,
there is no signature of a transition around ω ∼ Ω. Away from the bx = by = 0 point,
the system-bath coupling becomes time dependent, which results in non-thermal band
occupations.

4.3.2 Beyond the secular approximation

The Bloch equations are rewritten as

dρ(t)

dt
= B(t)ρ(t) + b(t), (4.30)

where

B(t) = 2
∑

µ,j,k

Γ̃µ(νj)e
i(νk−νj)t[aµ,j ◦ a∗µ,k − I aµ,j · a∗µ,k] + h.c. (4.31)

b(t) =
∑

µ,j,k

iΓ̃µ(νj)e
i(νk−νj)t[aµ,j × a∗µ,k] + h.c. (4.32)

with Aµ(t) = aµ(t) ·σ and aµ(t) =
∑

j aµ,je
−iνjt, and aµ,j can be identified from Table 4.1.

The circle symbol denotes the dyadic product, whose matrix elements are defined as
[v ◦w]a,b = vawb, the dot symbol refers to the scalar product defined as v ·w =

∑
a vawa,

and the cross symbol denotes the usual vector product [v × w]a =
∑

b,c εabcvbwc, where
εabc is the Levi-Civita symbol. In the secular approximation only the j = k terms are
kept in Eqs. (4.31-4.32), i.e. only B̃(0) and b̃(0). The frequencies appearing in the above
expansions in the XYZ and XXZ cases are ±(0, Ω′, 2ω, Ω′ ± 2ω) in b(t), and ±(0, Ω′,
2Ω′, 2ω, Ω′±2ω, 2(Ω′±ω)) in B(t). In the XXX case, additional frequencies ±(ω,Ω′±ω)
to b(t) and ±(ω,Ω′ ± ω, 2Ω′ ± ω) to B(t) appear. For the full solution of the problem,
all these terms should be taken into account, which is easy to implement numerically.
Generally, all the above Fourier components appear in the time evolution of the density
matrix, ρx and ρy oscillate around 0, while ρz oscillates around a finite stationary value.
A large ρx,y component of the density matrix indicates that the Floquet basis is not the
appropriate one to study the steady states.

The secular approximation works well if none of the above frequencies are close to
zero. In the case when one of these frequencies nearly vanishes, the stationary values are
tuned away from the secular ones. The possibly dangerous terms that can vanish at certain
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Figure 4.6: Occupation of the Floquet states (solid lines) within the secular approximation in
a finite temperature Ohmic bath as a function of the inverse temperature β, at high frequency
driving ω = 2.5Ω, shown at four different momenta. At p = −Ω and p = 7Ω the filling of
the ε+(p) quasienergy state vanishes at zero temperature. The average energy concept (orange
dashed line) gives qualitatively good results for the temperature dependence of the occupations
at bz ∼ bx,y, especially at high temperature (except for p = 4Ω, where it predicts vanishing
occupation at zero temperature corresponding to the mismatch in p± and p∗± for the critical
region). In the bx,y → 0 limit the occupation becomes thermal with respect to the Floquet
quasienergies (light green dashed line).

momenta, possess frequencies1 ν∗ = Ω′ − ω and ν∗∗ = Ω′ − 2ω. When these frequencies
become small, the deviation from the secular approximation grows, which appears as a
peak in the stationary components of ρ(p), as shown in Figure 4.8.

In the vicinity of these points, analytical solutions are possible within the Domi-
nant Frequency Approximation (DFA). When the frequency of some non-secular terms
approaches zero, it drives the solution away from the secular one. The single smallest fre-
quency appearing among the non-secular terms is the dominant one. Keeping this single
frequency, Eq. (4.20) can be transformed to a time independent equation, that is readily
solved, as detailed in section 4.3.3.

1In principle 2Ω′−ω could be dangerous as well, but it becomes unimportant due to vanishing matrix
elements.
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4.3. Applying the Lindblad equation to the edge state

The full numerical solution of the Eq. (4.30), together with various approximate results
are shown in Figure 4.8, visualizing the momentum dependence of the average value of ρz
and ρ⊥ =

√
ρ2
x + ρ2

y in the Ohmic case. Note that ρz can become smaller than −1/2, or |ρ|
can exceed 1/2, which is a common feature in other non-secular approaches as well [198].
The secular approximation clearly breaks down at certain momenta, and is outperformed
by the DFA there, see Figure 4.8.

Despite the several Fourier coefficients appearing in ρ(t), the spins exhibit periodic os-
cillations in the laboratory frame with frequency ω and higher harmonics. Indeed, switch-
ing back to the Schrödinger picture (ρ̃(t)) after applying the Markovian approximation
on Eq. (4.15) results in a differential equation, which only involves frequencies 0, ω and
its higher harmonics (Ω′ affects only coefficients via the s integration). This is favorable
for numerical calculations but is also disadvantageous for analytical treatment compared
to the interaction picture, which gives a natural ground to investigate the resonances and
provides approximate solutions for the time evolution of the density matrix.

4.3.3 Dominant frequency approximation (DFA)

We observe that the operators Aµ,j in Table 4.1 are either proportional to σ± or to
σz, thus they obtain only a phase factor under a rotation around the z axis. The secular
terms always consist of an operator Aµ,j and its hermitian conjugate, hence they do not

transform under the rotation U = e
1
2 iνtσz . On the other hand, the non-secular terms

acquire a phase factor, which allow us to transform the dominant frequency term to be
time independent, without spoiling the secular terms.

Let νd ∈ {ν∗, ν∗∗} denote the dominant frequency (the method works for the frequen-
cies Ω′, 1

2Ω′−ω as well), and ρ′(t) = R(νdt)ρ(t) is the vector representation of the density
matrix after the rotation, where R(νt) is the 3×3 rotation matrix around the z axis in the
positive direction. Keeping only the time independent terms in the Bloch equation for ρ′(t)
yields ρ̇′(t) = B̃dρ

′(t) + b̃d, where B̃d =
∑

B̃(ν)−RṘ−1 and b̃d =
∑

b̃(ν) with the sum
going through ν ∈ Vd = {0,±νd,±2νd}. The matrix structure of the Fourier components
are shown in Table 4.2, the matrix elements are given explicitly in the Appendix A.4.

B̃(0) b̃(0) B̃(ν) b̃(ν) B̃(2ν) b̃(2ν)


η η2 0
−η2 η 0

0 0 ξ






0
0
ε







0 0 β1

0 0 iβ1

β2 iβ2 0





χ
iχ
0






δ iδ 0
iδ −δ 0
0 0 0






0
0
0




Table 4.2: Matrix structure of the various Fourier components (ν ∈ {Ω′−ω,Ω′−2ω,Ω′, 1
2Ω′−ω})

appearing in Eqs. (4.31-4.32). All the matrix elements are ∼ α, ε = −1
2(Γ↑ − Γ↓), ξ = Γ↑ + Γ↓

and η = 1
2(Γ↑ + Γ↓) + Γ∗φ. The Lamb shift η2 together with the other matrix elements are listed

in Appendix A.4.

At this level of approximation ρ′ achieves a constant stationary value determined by
the matrix elements of the Fourier components. Going back to the interaction picture, we
see a constant ρstac

z and oscillating ρstac
x,y with π

2
phase difference between them (Figure 4.7).

The amplitude of this oscillation is given by ρ⊥ =
√
ρ′2x + ρ′2y . These steady state values
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are expressed as:

ρ′stac
z = − εζ1 − ζ2

ξζ1 − ζ3

ρ′stac
⊥ = 2

∣∣∣∣
ζ4

ξζ1 − ζ3

∣∣∣∣ (4.33)

ζ1 = η2 − 4|δ|2 + (ν − η2)2 (4.34)

ζ2 = 4 Re{χβ∗2(η + i(ν − η2))− 2χβ2δ
∗} (4.35)

ζ3 = 4 Re{β1β
∗
2(η + i(ν − η2))− 2β1β2δ

∗} (4.36)

ζ4 = (χξ − β1ε)(η + i(ν − η2))+ (4.37)

+ 2β2(χ∗β1 − χβ∗1) + 2δ(β∗1ε− χ∗ξ) (4.38)

This expression makes it clear that as the dissipation strength α tends to zero, the solution
approaches the secular one, ρstac

z = − ε
ξ
, ρstac
⊥ = 0. This can be seen by observing that the

only terms of order α are εν2 in the nominator of ρstac
z and ην2 in the denominators; all

the others are at least O(α2). On the other hand, for any finite system-bath coupling
strength, approaching the critical points - where the dominant frequency vanishes - close
enough, the secular approximation breaks down. Now we discuss separately the results of
the DFA for the various couplings.

Figure 4.7: Stationary state dynamics of the density matrix on the Bloch sphere in the inter-
action and Schrödinger pictures. The curves show the path of ρ close to a critical point, where
the non-secular terms are non negligible. In the secular approximation (red dashed curve and
arrow) ρ reaches a constant value in the interaction picture, which corresponds to a circular
motion in the laboratory frame (i.e. in the Schrödinger picture). In the DFA ρ draws a circle
around the secular solution in the interaction picture. This circle also has a fine structure, if we
go beyond the DFA (blue solid curve and arrow).

In the U(1) symmetric XYZ case, that is, when γx = γy and bx = by, all Fourier
coefficients of b(t) and B(t) vanish (see e.g. Eqs. (A.30-A.32) in the Appendix for the Ω′−
2ω component), except for the frequencies 0, ±Ω′ and ±2Ω′. There are no dangerous non-
secular terms, and the full time evolution can be mapped to be exactly time independent
applying the method described above with νd = Ω′. This yields an analytical solution for
the stationary fermion occupations.
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4.3. Applying the Lindblad equation to the edge state

The U(1) breaking XYZ and XXZ case has a single dangerous non-secular term corre-
sponding to the frequency ν∗∗ (because ν∗ does not enter in B(t) and b(t)). This vanishes
if ω > 1

2Ω at the critical momenta p∗∗± = ω ±
√

4ω2 − Ω2, giving rise to peaks in the sta-
tionary values of ρz and ρ⊥. In contrast to the singularity in the secular solution at ω = Ω,
these peaks grow up gradually as ω is increased, and are also present in the ω < 1

2Ω case
(see Figure 4.8(c) for the same phenomenon in XXX case). We note that Eq. (4.33) is in
the most general form, and it simplifies for νd = ν∗∗ as δ ≡ 0 in this case.

In the XXX coupling, in addition to ν∗∗, the frequency ν∗ becomes dangerous as well,
and it vanishes at momenta p∗± for ω > Ω. These are the momenta between which excita-
tions are present in the steady state even in the secular approximation. The contribution
of the dominant frequency terms is that additional peaks grow at p∗± on the top of the
secular solution of ρz and ρ⊥ (Figure 4.8(a)). In principle the frequency ν∗∗∗ = Ω′ − 1

2ω
could be dangerous as well, but the matrix elements vanish at this frequency, χ = β1,2 ≡ 0.
Because of the vanishing matrix elements, it does not change the secular behavior, see
e.g. Eq. (4.33).

An equivalent way to look at the DFA is to take the Fourier transform of Eq. (4.30),
which maps the differential equation to an (infinite) set of coupled linear equations
iρ̃(ωi)ωi =

∑
j B̃(ωi − ωj)ρ̃(ωj) + b̃(ωi). The approximation is to keep only the domi-

nant frequency νd in the expansion of ρ̃, neglecting the higher harmonics as well. The
generalization to keep more (dominant) frequencies is straightforward in this language,
but analytically hardly treatable.
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Figure 4.8: Average stationary values of ρz and ρ⊥ =
√
ρ2
x + ρ2

y for various ω/Ω ratios in the

XXX case (s = 1, α = 0.05). (a) ω > Ω, correspondingly ρz,⊥ deviate from the secular solution
at critical momenta p∗± (Ω′ − ω ≈ 0) and p∗∗± (Ω′ − 2ω ≈ 0). This is attributed to two-photon
transitions, where the Floquet bands touch each other (lower panels). (b) At lower frequency
(Ω > ω > 1

2Ω) only one dangerous non-secular term survives, giving rise to peaks at p∗∗± . (c)
When ω . 1

2Ω the secular approximation still gets corrections because the dangerous frequency
Ω′ − 2ω is small at p ≈ ω. The actual values of ω/Ω are 1.1 in (a), 0.75 in (b) and 0.48 in (c).
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4.4 Photocurrent along the edge

Armed with the knowledge of the density matrix, we now focus on measurable quanti-
ties. Due to the electromagnetic field, a net electric current and magnetization due to the
magnetoelectric effect [53] is induced along the edge. In section 4.1.1 we saw that without
the environment, this current is quantized based on the average energy concept in the adi-
abatic limit, giving way to dissipative charge transport through a topological transition
with increasing frequency ω. The photocurrent along the edge of a spin Hall insulator in
the laboratory frame is determined as j = e

∫
dp
2π

Tr{ρ̃(t)1
2σz}, which is expressed by the

components of ρ in the rotated interaction picture as (see Eq. (A.18) in the Appendix)

j = −e
∫ Λ

−Λ

dp

2π

{δω
Ω′
ρz −

Ω

Ω′
(ρx cos Ω′t− ρy sin Ω′t)

}
, (4.39)

which inherits the 2π/ω periodicity from ρ̃(t). In the secular approximation only the
DC component survives, as ρx,y = 0 and ρz is time independent. In the low frequency
limit (ω < Ω) ρz ≡ −1

2 , yielding jc = eω
2π

similar to Eq. (4.8). When ω > Ω, there are
regions where ρz deviates from −1

2
(shown in Figures 4.5 and 4.8), implying the breakdown

of the quantization. Near the critical point the deviation form the quantized current is
∆j = j−jc ∼ (ω−Ω)s+3/2, with the exponent depending on the low frequency asymptotics
of the bath spectral function.

The current has ∼ α corrections to the secular approximation due to the non-secular
terms, and the quantization of the current ceases to be exact at finite system-bath cou-
plings (Figure 4.9(a,b)). The corrections have dual origin. On the one hand, due to photon
absorption resonances near ω ≈ 1

2Ω′,Ω′, ρz deviates from −1
2 even for ω < Ω. On the other

hand, the x, y components of the density matrix acquire oscillations at frequency Ω′, which
also contribute to the DC current in Eq. (4.39). The resonances produce a sharp break-
down in the current at ω ≈ 1

2Ω due to a dangerous non-secular term present in the XXZ
and XXX cases. This behavior is captured in the DFA. Figure 4.9(b) shows the crossover
at ω ∼ 1

2Ω due to the Ω′ − 2ω ≈ 0 resonance, and also the effect of the Ω′ − ω ≈ 0
resonance on the DC current. The DFA with frequencies Ω′−ω and Ω′− 2ω cannot yield
nonzero Ω′ fluctuations. To describe the effect of the second term in Eq. (4.39), one has
to study the DFA with frequency Ω′ (Figure 4.9(b)). The deviations of the DFA with
different frequencies compared to the secular approximation are approximately additive,
and one can combine them to achieve a good approximation for the total DC current.

At finite system-bath coupling, in addition to the DC component, the stationary cur-
rent is also characterized by nonvanishing AC contributions, showing peaks as a function
of ω (Figure 4.9(c)). The ω frequency Fourier component of the current originates from
the ω, Ω′±ω Fourier terms in ρ(t), which are present only in the XXX coupling. The 2ω
and Ω′ ± 2ω components of ρ(t) are responsible for the 2ω harmonic AC current, which
therefore is present in the XXZ and XXX couplings. The XYZ coupling does not show
any alternating current. We note that the electric field of the laser neglected in Eq. (4.2)
may also contribute to the AC current [186].

In general, finite temperature also breaks down the quantization of the current. How-
ever, in the special case of bx = by = 0, when the occupation is thermal, the current
remains quantized even at finite temperature.
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Figure 4.9: Stationary current induced by a circular driving on a QSH edge coupled to an
Ohmic bath (the vertical units are in jc(ω = Ω) = eΩ

2π , bx = by = bz, Γx = Γy = Γz, α = 0.1).
(a) Deviation from the quantized current jc at finite system-bath coupling, numerical solution.
Various structures appear as a function of the driving frequency in the different coupling schemes,
all of which are captured by the DFA with different frequencies (Ω′ for XY Z; Ω′ and Ω′ − 2ω
for XXZ; Ω′, Ω′ − ω and Ω′ − 2ω for XXX), shown on panel (b). The secular approximation
corresponds to an infinitesimal system-bath coupling, where the quantization is exact until the
driving frequency reaches the Rabi frequency. The 2 photon processes at finite coupling constants
violate the quantization, which become effective at ω ∼ 1

2Ω. This is well captured in the DFA.
(c) The photon-resonances also give rise to an AC current with frequency nω, n ∈ N.

The integrated expectation value of σz determines both the current and the z compo-
nent of the edge magnetization. The magnetization in the xy plane is calculated similarly,
and, as in Ref. [186], it exhibits a circular motion on average with frequency ω (see
Eq. (A.23) in the Appendix):

Mω
⊥ =

∫ Λ

−Λ

dp

2π

1

2
〈σx cos(ωt) + σy sin(ωt)〉 (4.40)

= −
∫

dp

2π

Ω

Ω′
ρz +

δω

Ω′
(ρx cos Ω′t− ρy sin Ω′t) (4.41)
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Similar to the current, only the first term survives in the secular approximation, and in
further analogy to the quantized current we define Mc =

∫
dp
2π

Ω
Ω′

1
2 = Ω

2π
log 2Λ

Ω
, which is

independent of ω and logarithmically divergent in the cutoff parameter Λ. The crossovers
in ρz as a function of ω are also revealed in the transverse magnetization, which can be
highlighted by subtracting the low frequency transverse magnetization Mc as a reference
value (Figure 4.10). In the XXX and XXZ cases the magnetization acquires a finite 3ω
component due to the Ω′ ± 2ω components of ρ, and the Ω′ − ω resonance in the XXX
case gives rise to a finite static magnetization in the xy plane together with the second
harmonic (Figure 4.10(c)).
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Figure 4.10: Frequency dependence and crossovers in the transverse magnetization (in units of
Ω
2π ). In contrast to the current, the transverse magnetization oscillates with frequency ω in the
α → 0 limit, with amplitude Mc for ω < Ω. (a) Deviation from the limiting value Mc at finite
system-bath coupling, numerical solution (α = 0.1) (b) DFA with the two dangerous frequencies
and with Ω′ is capable to reconstruct all the features in the numerical solution. (c) Other Fourier
components of the magnetization.
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4.5 Conclusion

We have investigated the fate of a spin Hall edge state, coupled to a dissipative en-
vironment, in the presence of circularly polarized electromagnetic field. Without the en-
vironment, the Floquet solution of the problem features an electromagnetic field induced
photocurrent, being quantized in the adiabatic regime [195] and crossing over to dissipa-
tive charge transport with increasing frequency [186]. These results were obtained using
the average energy concept for the occupation of the Floquet steady state. In the pres-
ence of dissipation, the filling of the Floquet states is determined by a Lindblad equation,
which we investigated both analytically and numerically. Although in general the occu-
pation of the Floquet states is non-thermal, depending on the microscopic details of the
system-bath coupling, the occupation can be approximately thermal either with respect
to the average energy or to the quasienergy (Figure 4.6). We found at finite system-bath
coupling that non-secular terms, corresponding to 2-photon transitions, lead to a mixing
of the band occupations at resonant momenta. We developed a method, the dominant
frequency approximation (DFA), to describe the steady states near these resonances. In
the special case of a U(1) symmetric system-bath coupling, the DFA provides the exact
solution of the Bloch-Redfield equations.

The photocurrent is only quantized in the strict adiabatic limit in the presence of
finite bath coupling. Nevertheless, deviations from perfect quantization in the adiabatic
regime are tiny, as shown in Figure 4.4, and perfect quantization is recovered in the limit
of vanishing coupling to the environment. With increasing frequency, deviations grow
and the photocurrent becomes dissipative in nature. Our results show that couplings to
environments are essential for treating Floquet systems and that these can be identified
by measuring DC as well as AC observables of the system.
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5
Conclusion and thesis statements

The unifying concepts providing the pillars of this thesis are out-of-equilibrium physics
and non-equilibrium phenomena. Although we have studied many different systems in
various environments throughout the thesis, all of them highlight a different, relevant
aspect of the non-equilibrium world. The similarities in the methods applied and the
questions addressed, as well as the central role of the excitations in the various problems
provide further links among the diverse studies presented in the thesis.

We provided brief conclusions of the results at the end of each part forming a logical
unit, here we summarize the main results of the thesis in the thesis statements below.

Thesis statements

1. I have shown analytically on the example of the 1D quantum XY spin chain in a
transverse magnetic field that dynamical phase transitions can not only show up
when the non-equilibrium quench protocol connects different equilibrium phases,
which was found in Ref. [Heyl et al., 2013] in the transverse Ising model, but also
when the initial and final Hamiltonians characterizing the quench protocol are in
the same phases. Depending on the parameters of the pre-quench Hamiltonian, I
explicitly determined the domain for the post-quench parameters on the equilibrium
phase diagram, where dynamical phase transitions occur.

This result is published in paper [P1].

2. I have studied dynamical phase transitions in generic one-dimensional two-band
topological insulators and topological superconductors whose topological invariants
are either the winding number or the Z2 invariant. I have proved for this class of
models that a sudden quench protocol which connects equilibrium phases charac-
terized by different topological numbers implies the occurrence of dynamical phase
transitions. Furthermore, the number of nonequilibrium timescales, which deter-
mine when the singularities appear in the time evolution, is bounded from below by
the difference between the topological numbers characterizing the initial and final
set of parameters. I have illustrated this finding on the example of a generalized
Su-Schrieffer-Heeger model.

These results are published in paper [P2].
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3. I have studied dynamical phase transitions in two-dimensional two-band topological
insulators and topological superconductors whose topological invariant is the Chern
number. I have proved for this class of models that a sudden quench protocol which
connects equilibrium phases characterized by Chern numbers of different absolute
values implies the occurrence of dynamical phase transitions. I have also found a
qualitative difference between dynamical phase transitions in 1D and 2D. While the
former is characterized by jumps in the first time derivative of the dynamical free
energy, in the latter case the jumps appear only in the second time derivative. I
showed that this is a consequence of Fisher zeros filling areas in 2D rather than
forming lines, which happens in 1D. I have illustrated these findings on the example
of the Haldane honeycomb model.

These results are published in paper [P2].

4. I have investigated Schwinger’s pair creation mechanism and the non-linear response
of Weyl semimetals. I have determined the full time evolution of the characteristic
function of the total number of electron-hole pairs created by the electric field as
well as the induced current. The distribution function of pairs crosses over from a
Poissonian profile characterizing short time dynamics to a Gaussian one describing
long times. The contribution of a Weyl node to the total current shows a peculiar
non-monotonic behaviour: the quick initial increase of the polarization current is
followed by a slow decay, which is taken over by the increasing conduction current
at long times. I have demonstrated that the time evolution of the current can be
translated to the conductivity of a disordered sample within a generalized Drude
theory.

These results are published in paper [P3].

5. I have determined the occupation of the Floquet quasienergy bands and the induced
photocurrent in the presence of dissipation in a quantum spin Hall insulator edge
irradiated by a circularly polarized light. As such, I have generalized the results of
[Dóra et al., 2012], which applied the heuristic average energy concept to determine
the same quantities in the absence of dissipation. I found that their prediction, that
is, a transition occurs as a function of the driving frequency from a quantized to
non-quantized photocurrent, remains true also in the dissipative model attached to
a zero temperature heat bath, but the value of the transition frequency is lower by
a factor of two in the latter treatment. Furhermore, although the occupation profile
of the quasienergy bands are qualitatively similar in the two methods, the strong
dependence on the bath spectral parameter is not captured by the simple average
energy concept. In addition, I have developed an analytical approximate method
to study the effect of photon-absorption resonances appearing at finite system-bath
couplings, which lead to a further mixing of band occupations and to a weak violation
of the quantization of the photocurrent in the low frequency regime.

These results are published in paper [P4].
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[Dóra et al., 2012] B. Dóra, J. Cayssol, F. Simon, and R. Moessner, “Optically engineering
the topological properties of a spin Hall insulator”, Phys. Rev. Lett. 108, 056602 (2012).

89



90



6
Acknowledgements

Throughout the years of my PhD studies I have received support from many people to
whom I would like to express my gratitude. First of all, I would like to thank my supervi-
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studies. I also thank Gergő Fülöp for sharing the LATEX template of his thesis with me.

Last but not the least, I would like to express my sincere gratitude to my family,
especially to my wife Pálma for her continuous support throughout my PhD studies and
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A
Appendix

A.1 Jordan-Wigner transformation

Spin 1
2

chains can be mapped to spinless fermions hopping on a lattice. The anticom-
mutation relations of the spin ladder operators S+

j and S−j are similar to the fermion
creation and annihilation operators on a single lattice site, but they commute on differ-
ent sites. This can be fixed by introducing a non-local string operator, with which the
Jordan-Wigner transformation reads

S+
j = c+

j e
iπ

∑
l<j c

+
l cl (A.1)

S−j = e−iπ
∑
l<j c

+
l clcj (A.2)

Szj = c+
j cj −

1

2
(A.3)

It can be shown, that the operators c+
j and cj satisfy the canonical anticommutation

relations for fermions. This transformation maps the XY Hamiltonian in Eq. (2.15) to

H(γ, h) =
N−1∑

j=1

{
c+
j cj+1 + c+

j+1cj + γ[c+
j c

+
j+1 + cj+1cj − 2h(c+

j cj −
1

2
)]
}

(A.4)

− 2h(c+
NcN −

1

2
)− eiπ

∑N
l=1 [c+

Nc1 + cNc
+
1 + γ(c+

Nc
+
1 + c1cN)]

This Hamiltonian does not conserve the total number of particles, but it conserves its
parity, since particles are created and destroyed in pairs. The boundary terms can be
eliminated by a proper choice of the boundary conditions: antiperiodic (cN+1 ≡ −c1) in
the even sector and periodic (cN+1 ≡ c1) boundary conditions in the odd sector give
formally the same Hamiltonian

H(γ, h) =
N∑

j=1

c+
j cj+1 + c+

j+1cj + γ(c+
j c

+
j+1 + cj+1cj)− 2h(c+

j cj −
1

2
) (A.5)

for both sectors, but with different quantization for the momentum corresponding to the
boundary conditions.

An additional SzjS
z
j+1 coupling to the XY Hamiltonian would translate to a nearest

neighbor interaction for the fermions.
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A.2. Non-Markovian equation

A.2 Non-Markovian equation

If we drop the Markovian assumption, we have to solve the integro-differential equation
Eq. (4.15),

ρ̇S(t) =
∑

µ∈{x,y,z}

∫ t

0

dsΓµ(s)[Aµ(t− s)ρS(t− s)Aµ(t)− Aµ(t)Aµ(t− s)ρS(t− s)] + h.c,

(A.6)

or after expanding ρ̂(t) = 1
2

+ ρ(t) · σ and Âµ(t) = aµ(t) · σ,

dρ(t)

dt
=

∫ t

0

dsB(t, s)ρ(s) + b(t) (A.7)

where

B(t, s) = 4 Re{
∑

µ

Γµ(s)[aµ(t− s) ◦ aµ(t)− I aµ(t− s) · aµ(t)]} (A.8)

b(t) = 2 Re{
∑

µ

∫ t

0

dsΓµ(s)i[aµ(t− s)× aµ(t)]} (A.9)

To test the Markovian approximation, we solved numerically the above integro-differential
equation with Heun’s method (a two-stage predictor-corrector method), and compared the
solution with the Markovian approximation (FIG. A.1). There is a very small quantitative
difference in the stationary states, but the qualitative picture does not change.

Figure A.1: Comparison of the Markovian and non-Markovian time evolution in an Ohmic
environment for short (a) and long (b) times.

A.3 Expectation values in the rotated interaction pic-

ture

The Hamiltonian generating the time evolution for the whole system and environment
is H̃(t) = H̃S(t) + H̃E + H̃SE. We are interested in observables restricted only to the
system: [O, H̃E] = 0. In the Schrödinger picture the observables are time independent,
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and the expectation values are determined by the density matrix as 〈O〉 = Tr{ρ̃(t)O}.
The time evolution of the density matrix is given by

i∂tρ̃(t) = [H̃(t), ρ̃(t)] (A.10)

ρ̃(t) = Ũ ρ̃(0)Ũ † (A.11)

where Ũ is the time evolution operator generated by H̃(t). In the interaction picture we
push the time evolution of the system and the environment to the operators, i.e.

ρ(t) = U †SU
†
E

˜ρ(t)UEUS (A.12)

i∂tρ(t) = [H̃SE(t), ρ(t)] (A.13)

and the expectation values are calculated as 〈O〉 = Tr{ρ(t)U †EU
†
SOUSUE}. The time

evolution of the reduced density matrix of the system, ρ′S(t) = TrE{ρ(t)}, is given by the
Bloch-Redfield equation Eq.(4.17). The expectation value of operators acting only on the
system are evaluated as

〈O〉 = Tr{ρ′S(t)U †SOUS} . (A.14)

The unitary operator US(t) is explicitly expressed in Eq.(4.23), that is

US(t) = e−
1
2 iωtσzU †pe

−1
2 iΩ
′tσzUp (A.15)

ŨS(t) = e−
1
2 iωtσzU †pe

−1
2 iΩ
′tσz (A.16)

where Up = e
1
2 iθσy is a time-independent, but momentum dependent rotation. For conve-

nience, we solved the time evolution of ρ′S in the rotated frame generated by Up, that is,
ρS(t) = Upρ

′
S(t)U †p . Correspondingly the operators are written in the rotated interaction

picture with respect to the operator ŨS(t).

〈O〉 = Tr{ρS(t)Ũ †SOŨS} . (A.17)

Especially for the z component of the spin operator, which determines the electric current

1
2 〈σz〉 = cos θρz(t)− sin θ[cos(Ω′t)ρx(t)− sin(Ω′t)ρy(t)] , (A.18)

where we used the decomposition of ρS in Eq.(4.27). Consequently the time average of
〈σz〉 obtains contribution from the ±Ω′ Fourier coefficients of ρx,y(t), in addition to the
time average of ρz(t). The transverse operators read

1
2 〈σx〉 = sin θ cos(ωt)ρz(t) + [cos θ cos(Ω′t) cos(ωt)− sin(Ω′t) sin(ωt)]ρx(t)− (A.19)

− [cos θ sin(Ω′t) cos(ωt) + cos(Ω′t) sin(ωt)]ρy(t) (A.20)
1
2 〈σy〉 = sin θ sin(ωt)ρz(t) + [cos θ cos(Ω′t) sin(ωt) + sin(Ω′t) cos(ωt)]ρx(t)− (A.21)

− [cos θ sin(Ω′t) sin(ωt)− cos(Ω′t) cos(ωt)]ρy(t) (A.22)

We see that on average it describes a circular motion with frequency ω,

1
2〈σx cos(ωt) + σy sin(ωt)〉 = sin θρz(t) + cos θ[cos(Ω′t)ρx(t)− sin(Ω′t)ρy(t)] , (A.23)

which is also determined by the 0th Fourier component of ρz(t) and the ±Ω′ Fourier
coefficients of ρx,y(t).
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A.4 Matrix elements (dominant frequency approxi-

mation)

The diagonal matrix elements of B̃(0) and b̃(0) were already given in the main text.
The Lamb shift η2 is

η2 =− ib
2
z

8

( Ω

Ω′
)2

[Γ∗z(−Ω′)− Γz(−Ω′)− Γ∗z(Ω
′) + Γz(Ω

′)] (A.24)

+ i
b2
x

32

{(
1 +

ω − p
Ω′

)2
[Γ∗x(ω − Ω′)− Γx(ω − Ω′)− Γ∗x(Ω

′ − ω) + Γx(Ω
′ − ω)]

+
(
1− ω − p

Ω′
)2

[Γ∗x(−ω − Ω′)− Γx(−ω − Ω′)− Γ∗x(Ω
′ + ω) + Γx(Ω

′ + ω)]

}

+ ”x↔ y”

for the XYZ case, and the same for the XXZ/XXX cases are given by the substitution
Γy = Γx, Γy = Γz = Γx.

The Fourier component ν∗ = Ω′ − ω appears only in the XXX case, with the matrix
elements

χ =
(bx − iby)bz

16

{
ω − p

Ω′
(
1 +

ω − p
Ω′

)
[Γx(Ω

′ − ω)− Γ∗x(ω − Ω′) + Γ∗x(0)− Γx(0)]

(A.25)

−Ω2

Ω′2
[Γ∗x(ω)− Γx(−ω) + Γ∗x(Ω

′)− Γx(−Ω′)]

}

β1 =
(bx − iby)bz

8

{
ω − p

Ω′
(
1 +

ω − p
Ω′

)
[Γx(Ω

′ − ω) + Γ∗x(ω − Ω′)] (A.26)

−Ω2

Ω′2
[Γx(Ω

′) + Γ∗x(−Ω′)]

}

β2 =
(bx − iby)bz

8

{
ω − p

Ω′
(
1 +

ω − p
Ω′

)
[Γ∗x(0) + Γx(0)]− Ω2

Ω′2
[Γ∗x(ω) + Γx(−ω)]

}
(A.27)

δ =
(bx − iby)2

32

(
1 +

ω − p
Ω′

)2
[Γx(Ω

′ − ω) + Γ∗x(ω − Ω′)] (A.28)

but the second harmonic 2ν∗ is present in the XXZ and XYZ cases as well. In the former
δ is identical to that of the XXX case, while for the latter

δ =
b2
x

32

(
1 +

ω − p
Ω′

)2
[Γx(Ω

′ − ω) + Γ∗x(ω − Ω′)]− ”x↔ y” (A.29)

In the case of Fourier component ν∗∗ = Ω′ − 2ω the second harmonic δ ≡ 0 in all the
coupling schemes. The other matrix elements are

χ =
b2
x

32

Ω

Ω′
(
1 +

ω − p
Ω′

)
[Γ∗x(ω)− Γx(−ω) + Γx(Ω

′ − ω)− Γ∗x(ω − Ω′)]− ”x↔ y” (A.30)

β1 =
b2
x

16

Ω

Ω′
(
1 +

ω − p
Ω′

)
[Γx(Ω

′ − ω) + Γ∗x(ω − Ω′)]− ”x↔ y” (A.31)

β2 =
b2
x

16

Ω

Ω′
(
1 +

ω − p
Ω′

)
[Γ∗x(ω) + Γx(−ω)]− ”x↔ y” (A.32)
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for the XYZ case, and

χ =
(bx − iby)2

32

Ω

Ω′
(
1 +

ω − p
Ω′

)
[Γ∗x(ω)− Γx(−ω) + Γx(Ω

′ − ω)− Γ∗x(ω − Ω′)] (A.33)

β1 =
(bx − iby)2

16

Ω

Ω′
(
1 +

ω − p
Ω′

)
[Γx(Ω

′ − ω) + Γ∗x(ω − Ω′)] (A.34)

β2 =
(bx − iby)2

16

Ω

Ω′
(
1 +

ω − p
Ω′

)
[Γ∗x(ω) + Γx(−ω)] (A.35)

for the XXZ and XXX cases.
The matrix elements of the Fourier coefficients Ω′ in the XYZ are

χ =
b2
z

8

Ω

Ω′
ω − p

Ω′
[Γz(0)− Γ∗z(0)− Γz(Ω

′) + Γ∗z(−Ω)] (A.36)

+
b2
x

32

Ω

Ω′

{(
1 +

ω − p
Ω′

)
[−Γx(ω) + Γ∗x(−ω) + Γx(Ω

′ − ω)− Γ∗x(ω − Ω′)] +

+
(
1− ω − p

Ω′
)

[−Γ∗x(ω) + Γx(−ω) + Γ∗x(−Ω′ − ω)− Γx(Ω
′ + ω)]

}
+ ”x↔ y”

β1 = −b
2
z

4

Ω

Ω′
ω − p

Ω′
[Γz(Ω

′) + Γ∗z(−Ω′)] (A.37)

+
b2
x

16

Ω

Ω′

{(
1 +

ω − p
Ω′

)
[Γx(Ω

′ − ω) + Γ∗x(ω − Ω′)]

−
(
1− ω − p

Ω′
)

[Γx(Ω
′ + ω) + Γ∗x(−ω − Ω′)]

}
+ ”x↔ y”

β2 = −b
2
z

4

Ω

Ω′
ω − p

Ω′
[Γz(0) + Γ∗z(0)] (A.38)

+
b2
x

16

Ω

Ω′

{(
1 +

ω − p
Ω′

)
[Γx(ω) + Γ∗x(−ω)]

−
(
1− ω − p

Ω′
)

[Γx(−ω) + Γ∗x(ω)]

}
+ ”x↔ y”

δ =
b2
z

8

Ω2

Ω′2
[Γz(Ω

′) + Γ∗z(−Ω)] (A.39)

+
b2
x

32

[(ω − p
Ω′

)2 − 1
]

[Γx(Ω
′ + ω) + Γx(Ω

′ − ω) + Γ∗x(ω − Ω′) + Γ∗x(−ω − Ω′)]

+ ”x↔ y”

and the same for the XXZ and XXX cases are given by the substitution Γy = Γx and
Γy = Γz = Γx, respectively.
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microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature
462, 74 (2009).

[53] M. Z. Hasan and C. L. Kane, “Colloquium : Topological insulators,” Rev. Mod.
Phys. 82, 3045 (2010).

[54] K. v. Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy deter-
mination of the fine-structure constant based on quantized Hall resistance,” Phys.
Rev. Lett. 45, 494 (1980).

[55] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall
conductance in a two-dimensional periodic potential,” Phys. Rev. Lett. 49, 405
(1982).

[56] F. D. M. Haldane, “Model for a quantum Hall effect without landau levels:
Condensed-matter realization of the ”parity anomaly”,” Phys. Rev. Lett. 61, 2015
(1988).

[57] C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev.
Lett. 95, 226801 (2005).

102
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