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Abstract

The tension between measurements of the Hubble constant from different cosmological probes has
been much debated in recent years. If it is not resolved by measurement errors, then it necessitates
new physics beyond the standard flat ACDM model. In order to assess the significance of the tension,
having independent probes of the Hubble constant is crucial. In this presentation, I describe various
late-Universe probes for measuring the Hubble constant: the cosmic distance ladder, megamasers,
standard sirens and strong lensing. Focussing on strongly lensed quasars and supernovae, I show
that they have the potential to deliver a 1% measurement of the Hubble constant in the upcoming
years.

1 Introduction

In the past decade, the so-called flat A cold dark matter (ACDM) cosmological model consisting of
dark energy (with density characterised by the cosmological constant A) and CDM in a spatially flat
Universe has emerged as the standard cosmological model. This model has provided excellent fits to
various cosmological observations, especially the temperature anisotropies in the cosmic microwave
background (CMB).

Despite the successes of the ACDM model, there is currently an intriguing tension in the measure-
ments of the Hubble constant (H) from independent probes. In particular, the measurement from
observations of the CMB by [1] under the flat ACDM model is more than 40 lower than the local mea-
surement from the Cepheid distance ladder by the “Supernovae, Hy, for the Equation of State of Dark
Energy” (SHOES) programme [2] . This tension, if not explained by yet unaccounted-for measurement
uncertainties, has great implications for cosmology, requiring new physics beyond the standard flat
ACDM model. By using a separate distance calibrator, the tip of the red giants (instead of Cepheids),
[3] measured Hj that is in between the values from [1] and [2] through the Carnegie-Chicago Hubble
Program (CCHP) [4]. There is ongoing debate about the method, e.g. [5, 6], and the results from
CCHP and SHOES are not fully independent due to calibrating sources/data that are common among
the two distance ladders. This highlights the value of having independent probes for the Hubble
constant. In the following sections, we provide an overview of the various late-Universe probes of
the Hubble constant.



2 Distance Ladder

The distance ladder has a long history in providing measurements of Hy. In fact, the Hubble Space
Telescope (HST) Key Project was based on this method and yielded a measurement of Hy with 10%
uncertainty [7], resolving the multi-decade “factor-of-two” controversy in Hy.

By measuring distances (d) to objects in the Hubble flow (with negligible peculiar velocities) and
their recessional velocities (v) via redshifts, Hy can be inferred through the Hubble-Lemaitre law
v = Hod. However, direct distance measurements to such faraway objects are difficult to acquire.
Thus, a practical way is to measure absolute distances to nearby objects (through e.g. parallax), and
then use methods to measure relative distances (such as supernovae) to further away objects. This
builds a “ladder” to obtain distances to faraway object in the Hubble flow.

In the SHOES programme, [2] used Milky Way parallax, detached eclipsing binaries (DEB) in the
Large Magellanic Cloud [8] and the maser galaxy NGC4258 to calibrate the Cepheid distance scale,
that are in turn calibrating the supernova distance scale. Using all three anchors (parallax, DEB and
NGC4258), [2] measured Hy = 74.03 + 1.42km s~ Mpc~1.

In the CCHP, [3] calibrated the supernova distance scale using the tip of the red giant branch
instead of Cepheids, and measured Hy = 69.8 4-0.8(£1.1% stat) 4= 1.7(£2.4% sys) km s~ Mpc~!. This
measurement is in between the discrepant Planck and SHOES results, and is within 2¢ of either one.

3 Megamasers

Water masers in orbit around supermassive black holes (SMBH) at centers of galaxies provide a geo-
metric approach for measuring Hy. One could measure the velocity v, of the masers in orbit around
the SMBH (through observations of the Doppler shifts in the maser lines), and their angular posi-
tions 6, from the central SMBH. In addition, observations of the change in velocities of the “systemic
masers” (which are the masers located in front of the SMBH for nearly edge-on maser disks), the
acceleration a, could be measured. This provides a determination of the physical size of the disk r,
since a, = v2/r. This physical size could then be compared to the angular size, to derive the angu-
lar diameter distance to the maser: D = r/6, = v2/(a,0,). For disks that are not viewed edge-on,
there is an additional sin i factor in the numerator. Through the distance-redshift relation, the angular
diameter distance then provides a measurement of H.

The Megamaser Cosmology Project (MCP) [9, 10] aims to determine Hj precisely via measure-
ments of geometric distances to galaxies in the Hubble flow. The Hubble constant based on the anal-
ysis of six megamaser galaxies in the MCP is Hy = 73.9 & 3.0kms~! Mpc~! [11], assuming a fixed
uncertainty for the velocities of 250 kms™! due to peculiar motions. Peculiar motions of galaxies
are currently the dominant source of uncertainty in deriving H, from the megamasers. Nonetheless,
different peculiar velocity corrections performed by [11] do not change H, by more than 1o.

4 Standard Sirens

GW170817 is the first gravitational wave (GW) source detected with electromagnetic (EM) counter-
part [12], providing the first opportunity to measure H through the “standard sirens” approach pro-
posed by [13]. The gravitational wave of GW170817 originates from the merger of a binary neutron-
star system. Through observations of the gravitational wave signal with the Advanced Laser In-
terferometer Gravitational-wave Observatory (LIGO) [14] and Virgo [15] detectors, the luminosity
distance to the binary system is determined. From the EM observations, the galaxy that hosted the
binary system is identified as NGC 4993. Optical observations of NGC4993 subsequently allow the
determination of the recessional velocity (incorporating peculiar motion of the galaxy). By combin-
ing the luminosity distance from the GW and the recessional velocity from the EM counterpart and
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using the Hubble-Lemaitre law, [16] made the first measurement of Hy = 7 OféQ kms~! Mpc~! from
this standard siren.

While the measurement is statistically consistent with both the SHOES and Planck results given
its uncertainties, this very first measurement has started the era of standard sirens. The current un-
certainties in GW170817 are dominated by the unknown inclination of the binary orbit of the neutron
stars, since the inclination is highly degenerate with H,. Additional gravitational wave detectors in
the future would be able to constrain better the inclination. Furthermore, more sirens are expected
from future observations of GW sources, providing a completely independent route of measuring H.

5 Strongly Lensed Quasars and Supernovae

Strong gravitational lensing occurs when there is a chance alignment of a massive object along the
line of sight to a background source. The foreground massive object acts like a lens, and deflects the
light rays from the background source such that multiple images of the background source appear
around the foreground lens galaxy. When the source is one that varies in its luminosity, such as an
activie galactic nucleus or supernova, the variability of the source manifests in each of the multiple
images but delayed in time due to the different light paths. [17] proposed to use such time delays to
measure Hy. This requires (1) measurements of the time delays by monitoring the lens systems over
time, (2) model of the lens mass distribution, and (3) characterisation of mass distributions along the
line of sight to the background source.

The HOLiCOW collaboration [18] obtained exquisite imaging and spectroscopic observations of
lensed quasars with time delays from the COSMOGRAIL collaboration [19, 20] and radio monitoring
[21, 22]. Through the blind analyses of 6 strongly lensed quasars' from the HOLICOW and SHARP
collaborations [23, 24, 25, 26, 27, 28, 29], [30] measured Hy = 73393:; kms~' Mpc~!. The newly
formed TDCOSMO collaboration has performed a detailed investigations of systematic uncertainties
of 7 lensed quasars [31], including a seventh lens system analysed by the STRIDES collaboration [32]
in addition to the 6 HOLiCOW lenses. In contrast to [33], [31] finds no evidence of bias or errors larger
than the current statistical uncertainties reported by HOLiICOW /SHARP /STRIDES.

In addition to lensed quasars, the first lensed supernovae (envisioned by [17]) are being discovered
in recent years [34, 35]. Given the exciting prospects of discovering more lensed supernovae, [36]
have launched the HOLISMOKES programme to study cosmology and stellar physics with lensed
supernovae. With the hundreds of new lens systems expected from current and future surveys, a 1%
measurement of Hy from lensing time delays will be achievable [37, 38].

6 Conclusions

The current tension in the Hy measurements from Planck and the SHOES collaborations poses an ex-
citing opportunity for potential discovery of new physics beyond the standard cosmological model.
In order to verify that the tension is not due to measurement errors, it is crucial to have multiple inde-
pendent probes. In this presentation, I have outlined four late-Universe methods that are promising
to yield independent measurements of H, with uncertainties reaching 1% to address the Hj tension
in the coming years.
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