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INTRODUCCION

Desde tiempos inmemoriales los seres humanos han observado el cielo nocturno, contemplan-
do las estrellas con emocién y asombro. De tales observaciones surgieron las primeras preguntas
vitales para esclarecer nuestra existencia: jquienes somos?, ;de donde venimos?, ;dénde nos en-
contramos?, ;jcual sera nuestro destino final? Tales preguntas estdn indisolublemente ligadas a
todo lo que nos rodea, y de lo que también nosotros mismos somos parte integrante: el Uni-
verso. Estudiando el Universo hemos podido establecer algunas de las leyes fisicas que rigen su
comportamiento, lo cual, en principio, nos ha permitido intentar responder a las interrogantes
anteriores. En particular, hemos aprendido que existen cuatro interacciones fundamentales: la
interaccién electromagnética, la gravitatoria, la nuclear o fuerte y la débil, que son responsables
de todos los fenémenos que ocurren en el Universo. De las dos tltimas interacciones mencionadas
solo tuvimos conocimiento en el siglo pasado.

Hasta finales del siglo XIX y principios del XX, se pensé que con las ideas de la Teoria
electromagnética de Maxwell y la Mecanica de Newton se podia explicar todo lo que sucedia a
nuestro alrededor, lo cual resulté erroneo. Habia problemas con la electrodindamica de los cuerpos
en movimiento, y con la explicacion de fenémenos como el efecto fotoeléctrico y la radiacion
del cuerpo negro, que no podian entenderse de manera satisfactoria usando solamente esas dos
teorias-marco de la Fisica. Esta dificultad di6 lugar a que, en el siglo pasado, nacieran otras dos
teorfas-marco: la Teorfa de la Relatividad Especial (TER), que unifica los conceptos relativos
de espacio y tiempo en un solo ente, el espacio-tiempo, y la Mecanica Cuéntica (MC), que nos
afirma que es imposible conocer con precision infinita el comportamiento futuro de un sistema,
aunque conozcamos sus condiciones iniciales. Ambas han sido combinadas de manera excelente en
las denominadas Teorias Cudnticas de Campos (TCC), que describen, con un detalle y precisién
extraordinarios, tres de las cuatro interacciones fundamentales conocidas [1, 2]. Para describir
la cuarta interaccién, la gravitacion, disponemos de la Teoria General de la Relatividad (TGR),
formulada por Einstein en forma definitiva en el ano 1915, que afirma que las propiedades del
espacio-tiempo se modifican debido al contenido de materia y energia, y viceversa: las propiedades



Introduccion 2

del espacio-tiempo determinan la forma en que se distribuyen en él la materia y la energia.

Sin lugar a dudas, de entre todas las predicciones de la TGR, la mas interesante esta rela-
cionada con la posible existencia de agujeros negros (AN) en el universo [3]-[5]. Al decir de Kip
Thorne [6]: “ De todas las ideas concebidas por la mente humana, desde los unicornios y las
gbrgolas a la bomba de hidrogeno, las més fantastica es, quizas, la del agujero negro: un agujero
en el espacio con un borde perfectamente definido en cuyo interior puede caer cualquier cosa y
de donde nada puede escapar; un agujero con una fuerza gravitatoria tan intensa que incluso la
luz queda atrapada en su poder, un agujero que curva el espacio y distorsiona el tiempo ”.

Los AN son objetos verdaderamente nicos, y lo mas asombroso es que existen mas alla de
nuestra imaginacién, con una amplia gama de valores de sus masas !. En la actualidad, se conocen
en nuestra galaxia méas de 20 sistemas estelares binarios que se piensa contengan como uno de
sus componentes agujeros negros de algunas masas solares, mientras que la unica explicacién
para los procesos energéticos observados en los nucleos galdcticos activos se logra suponiendo la
presencia de agujeros negros supermasivos en sus centros. Ademas, las ideas modernas acerca
de la presencia de dimensiones extra en nuestro universo, hacia las cuales la gravedad puede
escapar, y sus implicaciones para la solucién de problemas de frontera de la Fisica moderna,
como el problema de la jerarquia de las interacciones fundamentales, han dado lugar a la idea
de la posible creacion, en un futuro préximo, de mini ANs en experimentos con colisiones de
hadrones en el LHC 2.

La TGR describe muy bien el macrocosmos: la fisica de los astros y del propio universo 3

Y

mientras que las TCC describen el micromundo: la fisica de los atomos y las particulas elemen-
tales. Sin embargo, la naturaleza es una sola, y no podemos separar las teorias que la describen
a escalas distintas. Por consiguiente, es necesario que los principios que rigen todas estas teorias
sean compatibles. Este hecho ha originado la buisqueda, desde hace mas de medio siglo, de una
teoria que compatibilice los principios de la TGR con la idea de la cuantizacién, o sea, una nueva
sintesis de las ideas de una geometria dindmica del espacio-tiempo y las propiedades cuanticas
de la materia. Precisamente con este problema fundamental de la Fisica contemporanea, a saber,

1Un agujero negro de masa estelar tiene masa del orden de 10 veces la masa del Sol, mientras la masa de AN
intermedios es tres érdenes mayor. Los AN supermasivos, presentes en los centros de las galaxias, poseen masas
del orden de (10% — 10%) M. Finalmente se ha predicho la existencia de mini agujeros negros, con masas tipicas
del orden de la masa de Planck o algo mayores, provenientes principalmente de escenarios propios de las Teorias
de Cuerdas y mundos-brana.

2El Supercolisionador de Hadrones LHC (del inglés Large Hadron Collider), es un gigantesco acelerador de
particulas ubicado en las instalaciones del CERN en Ginebra, Suiza.

3Exceptuando la era primordial.
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la elaboracién de una Teoria Cuantica de la Gravedad (TCG), estan relacionadas las cuestiones
mas interesantes de la Fisica de ANs, y se considera a estos sistemas como una especie de “atomo
de hidrégeno de la TCG”.

Actualmente estamos lejos de contar con una TCG completa y consistente, no obstante,
podemos conocer algunas caracteristicas que ésta debe poseer. Primeramente, sea cual sea la
TCG, es natural esperar que dependa de las siguientes constantes universales: la velocidad de la
luz ¢, que evidenciaria la naturaleza relativista de la teoria, la constante de Dirac h, responsable
de la naturaleza cuantica de la misma y la constante de Cavendish GG, que indicaria que estamos
en presencia de una teoria cuantico-relativista de la gravitacion. Con éstas magnitudes es posible
construir tres unidades fundamentales que definen la escala de Planck: la longitud de Planck

Lp = /% ~ 10"*cm, el tiempo de Planck tp = 1/ 2% ~ 10~*s y finalmente la masa de Planck:

Mp = \/% ~ 1078Kg *. Si tratamos el campo gravitacional como una pequeiia perturbacion,
y tratamos de cuantizarlo siguiendo las pautas de la electrodindmica cuantica (EDC), entonces
el cuadrado de la longitud de Planck aparece como constante de acoplamiento. A diferencia de
la EDC, en la que la constante de acoplamiento Z—i es adimensional (y pequena), la longitud
de Planck tiene dimensiones, de manera que los efectos se hacen grandes cuando las escalas y
longitudes de tiempo de los procesos cuanticos de interés estan por debajo de la escala de Planck.
Cuando esto sucede, los érdenes superiores de la teoria de perturbaciones se vuelven comparables
con los 6rdenes menores, y se pierde el propio concepto de desarrollo en términos de pequenas
perturbaciones. Por tanto, son precisamente los valores de la escala de Planck los que establecen
la frontera a partir de la cual se necesita una TCG completa, y preferiblemente no perturbativa.

En segundo lugar, atin en ausencia de una TCG consistente, podemos intentar obtener in-
formacion acerca de la influencia del campo gravitatorio clasico sobre los fenémenos cuanticos.
En este sentido conviene recordar lo ocurrido con la propia teoria cuantica, en cuyos inicios se
realizaron muchos célculos en los que, por ejemplo, el campo electromagnético era considerado
un campo clasico de fondo, interactuando con la sustancia cuantizada. Tal aproximacién se-
micldsica dié lugar a resultados correctos compatibles con el experimento, y posteriormente
con los obtenidos con la Electrodindmica Cuantica. De forma analoga, podemos esperar que exis-
ta un régimen similar para la naturaleza cuantica de la gravedad, en el cual podamos considerar
el campo gravitatorio como un fondo clésico, en el que se propagan los campos de la teoria

cuantica. Si adoptamos la TGR para describir la gravedad, entonces estariamos en presencia de

4Puede definirse el equivalente a la masa de Planck, o sea la energia de Planck cuyo valor es de aproximadamente
10°GeV.
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una Teorfa Cudntica de Campos en espacio-tiempos curvos (TCEC) [7].

La escala de Planck también nos permite tener una idea del rango de aplicacion de la TCEC,
también conocida como Gravedad Semiclasica. Debemos esperar que cuando las distancias y
tiempos involucrados en los fendémenos fisicos de interés sean mucho mas grandes que los deter-
minados por la escala de Planck, entonces los efectos cuanticos del campo gravitatorio deben ser
despreciables. El hecho de que la longitud de Planck sea pequena (20 6rdenes de magnitud por
debajo de las dimensiones de un nicleo atémico), nos deja entonces mucho terreno en el cual
podemos utilizar la TCEC. De hecho, la teoria ha sido utilizada para investigar nuevos efectos
fisicos originados en la modificacion de los procesos cuanticos por la gravedad, desde el trabajo
pionero de Hawking [8]. En el mismo se demostré que los AN emiten radiaciéon como si fuesen
cuerpos calientes, con una temperatura que depende exclusivamente de sus propiedades: masa,
carga eléctrica y momento angular. También fueron calculadas otras magnitudes tipicamente
termodinamicas, como la entropia de un agujero negro, que resulto ser proporcional a un cuarto
del area de su horizonte de eventos. Este resultado condujo a la idea de que, en forma parecida
a un holograma, los grados de libertad de una TCG se encuentran codificados en la frontera de
la regién en que esa teoria esté definida [9, 10].

Entre los intentos por construir una TCG, destacan las teorias de supergravedad (SUGRA)
y las Teorfas de Cuerdas (TC). Las teorias SUGRA surgieron a partir de la implementacién
de los principios de supersimetria ®> en la TGR. El objetivo principal que se conseguia con el
uso de la supersimetria en la TGR era el de cancelar las divergencias ultravioletas que surgian
cuando se intentaba cuantizar dicha teoria siguiendo las mismas prescripciones que dictaba la
Teoria cuantica de Campos. Sin embargo, con el tiempo se demostré que las teorias SUGRA no
eliminaban todas las divergencias ultravioletas de la TGR, y por tanto no brindaban un escenario
coherente para llevar a cabo la cuantizacion de las mismas. Esta fue la razén por la que tales
teorias fueron desechadas ©.

Por otro lado, las TC abandonan la idea de que las particulas elementales son objetos pun-
tuales y asumen que éstas corresponden a excitaciones de un objeto unidimensional fundamental
(una supercuerda’)[11]. La cuantizacién de una cuerda relativista en el espacio-tiempo de Min-
kowski produce una infinidad de modos de oscilaciéon con diferentes valores de energia. Uno de
esos modos, con masa cero y espin dos, puede ser identificado con el graviton, la particula me-

5La supersimetria no es més que la simetria que convierte bosones en fermiones y viceversa.

6Lo interesante es que, afios después, el interés en las SUGRA renacié, como consecuencia de que las mismas
constituyen el limite a bajas energias de las Teorias de Supercuerdas.

"Se entiende por supercuerda un objeto unidimensional, o cuerda, supersimétrica, o sea, cuya teoria incorpora
los principios de supersimetria.
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diadora de la interaccion gravitacional en una TCG, por lo que se acostumbra a decir, en este
sentido, que las cuerdas ofrecen una vision unificada de la teoria de las interacciones fundamen-
tales, en la cual la gravedad ya estd cuantizada [12]. Por otro lado, existen varias teorias de
supercuerdas consistentes, y todas envuelven diez dimensiones espacio-temporales. Estas teorias,
junto a la SUGRA en once dimensiones, estan ligadas por relaciones conocidas como dualidades,
que indican que probablemente todos estos modelos constituyen limites distintos de una tinica
teorfa, cuya formulacién es atn desconocida, y que ha recibido el nombre de Teoria M [13].

Al igual que en la TGR, en las teorias SUGRA, las TC y la Teoria M, aparecen soluciones de
agujero negro [14]. Otro tipo de soluciones que aparecen en las teorfas SUGRA, y que representan
objetos extendidos en varias dimensiones, reciben el nombre de p-branas negras. También, como
mostraremos mas adelante en esta Tesis, es posible encontrar soluciones de AN en la gravedad
semicléasica, lo cual sugiere una pregunta clave: ;Es posible la existencia en la naturaleza de
sistemas de este tipo?

La pregunta anterior indica claramente que una cuestion vital es la relacionada con la estabi-
lidad de las soluciones de AN y branas ante perturbaciones externas. Aunque las perturbaciones
sean inicialmente pequenas, puede darse el caso de que ganen intensidad con el decursar del tiem-
po y como consecuencia causen la inestabilidad del objeto compacto e incluso su destruccion.
De ahi que, para investigar la posible existencia de tales sistemas fisicos en nuestro Universo,
un primer paso es estudiar su respuesta ante tales perturbaciones. Si el AN resulta estable, esto
implica que la solucién describe un estado final posible para la evoluciéon dindamica de un sistema
gravitacional. Si, por otro lado, encontramos una inestabilidad, esto indica entonces la existen-
cia de una rama distinta de soluciones, hacia las cuales puede tender la original, y en ese caso
podemos anticipar una nueva variedad de soluciones posibles.

Aparte de la cuestion de la estabilidad, el andlisis de perturbaciones nos dice mucho acerca
de las propiedades basicas de un AN. Las perturbaciones de un AN producen una senal carac-
teristica, formada por un conjunto de frecuencias denominadas cuasinormales, cuya deteccién
indicaria de manera contundente la presencia del mismo. El espectro de modos cuasinormales
contiene informacion acerca de la estructura geométrica de la métrica de fondo, especialmente
en las cercanias del horizonte de eventos, y a su estudio se ha dedicado multitud de trabajos,
elaborandose técnicas de célculo tanto analiticas como numéricas ([15]-[65]).

También desde el punto de vista astrofisico, es ttil estudiar las perturbaciones de AN con
masas estelares, intermedias y supermasivos, principalmente las concernientes al propio espacio-
tiempo alrededor de los mismos. Si la nueva generaciéon de antenas gravitacionales como LIGO,
LISA, VIRGO y otras son capaces de detectar la senal gravitacional de un AN, la contribucién
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dominante de dicha senal serda el modo cuasinormal con la menor frecuencia, o sea, el modo
cuasinormal fundamental.

Otro aspecto interesante del estudio de perturbaciones en espacio-tiempos de AN y branas
estd relacionado con el descubrimiento, a través de investigaciones en las TC, de una conexion
entre la descripcion de ciertos sistemas fisicos fuertemente acoplados y la gravedad cuantica. Los
primeros indicios de esto aparecieron en estudios de las teorfas de calibracién SU(N) con un gran
niumero de colores N. En ese limite, t’"Hooft observé la existencia de cadenas de gluones con un
comportamiento muy semejante a las cuerdas. Posteriormente se percibidé que esas cuerdas viven
en un espacio con mas dimensiones que aquel en que viven los gluones [66, 67]. Sin embargo, fue a
partir del andlisis de D-branas, ® que en 1998 Maldacena conjeturé una equivalencia exacta entre
modelos de supercuerdas y determinadas teorias de calibracién [68]. Esta equivalencia, conocida
como correspondencia AdS/CFT 9 contempla las ideas contenidas en el principio holografico: los
grados de libertad gravitacionales en n dimensiones estdn asociados con campos cuanticos que
viven en la frontera (n — 1)-dimensional de ese espacio [69].

Desde el punto de vista practico la correspondencia AdS/CFT posee una gran variedad de
aplicaciones [70, 71]. Mediante calculos puramente gravitacionales se han investigado las propie-
dades no perturbativas de un plasma de quarks y gluones (PQG), cuya interaccion es descrita
por una teoria de norma no abeliana basada en el grupo SU(3), denominada Cromodindmica
Cudntica (CDC) ' A pesar de las diferencias entre la CDC y SYM, los resultados encontrados
concuerdan relativamente bien con los datos experimentales [75]. Han sido estimadas de manera
excelente magnitudes como el coeficiente de cizalladura, el tiempo de termalizacion del PQG,
asi como la fuerza de arrastre sobre un quark pesado en movimiento dentro del plasma, y otros
aspectos de la CDC, como la masa del estado “glueball”[76, 77, 78, 79].

Ua forma especifica de la correspondencia AdS/CFT, conocida como correspondencia cali-
bre/gravedad (C/G), explota la relativa simplicidad de los calculos en la TGR para la investi-

8Las D-branas son objetos extendidos no perturbativos que aparecen como ingredientes fundamentales de las
teorias de supercuerdas.

9El ejemplo original descubierto por Maldacena, indica que una teorfa de Super Yang Mills (SYM) con N/ = 4
espinores y grupo de norma SU(N), que es una teoria de campos conforme, es equivalente a una teoria de super-
cuerdas cerradas de tipo IIB. Las diez dimensiones en esa teoria de supercuerdas asumen un formato particular:
cinco dimensiones forman una esfera S° y las demés, un espacio con curvatura constante negativa, denominado
espacio anti de Sitter (AdS). La teorfa de campos es definida en el espacio de Minkowski usual, que es la frontera
tetradimensional del espacio-tiempo AdS.

10E] PQG es, como su nombre lo indica, un plasma formado por quarks y gluones, que interactian fuertemente
entre si, y ha sido descubierto en experimentos que involucran colisiones entre iones pesados relativistas [72, 73, 74].
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gacién del espectro de vibraciones de AN, y ha sugerido una nueva interpretacion de los modos
cuasinormales en términos de dicha correspondencia [80]. Segin esta idea, un AN en el espacio-
tiempo AdS es dual a un sistema en equilibrio térmico en la teoria de campos conforme definida
en la frontera, con una temperatura caracterizada por la temperatura de Hawking del AN. Per-
turbar esta geometria es equivalente a perturbar el estado termodindmico correspondiente en la
teoria dual, de acuerdo a la descripcion de este tltimo que ofrece la teoria de la respuesta lineal.
El tiempo de amortiguamiento de la perturbacién, dado por el inverso de la parte imaginaria del
modo cuasinormal fundamental, equivale a la escala de tiempo para el retorno al equilibrio en
la teoria de campos conforme. De esta manera, el cdlculo de las frecuencias cuasinormales de un
agujero negro en un espacio-tiempo AdS, nos ofrece la posibilidad de obtener no solo la energia de
las excitaciones elementales, dada por la parte real de dichas frecuencias, sino también el tiempo
de termalizacién de un sistema descrito por una teoria de campos conformes con acoplamiento
fuerte.

Lo anterior ha abierto el camino a posibles aplicaciones de la dualidad C/G a la Fisica de la
Materia Condensada [81]. Se conoce que algunos metales manifiestan el fenémeno de la super-
conductividad, en el que desaparece la resistividad eléctrica por debajo de cierta temperatura
critica T,. La teoria microscépica de este fenémeno, construida por Bardeen, Cooper y Schrieffer
(teoria BCS) [82], sugiere que parejas de electrones con valores opuestos del espin pueden formar,
mediante la interaccion con fonones, estados ligados denominados pares de Cooper. Tales estados
ligados son bosones, y por debajo de cierta temperatura critica pueden condensarse, dando lugar
al estado de superconductividad. Sin embargo, la teoria BCS trabaja bien para superconductores
en el régimen de acoplamiento débil, o sea, para temperatura critica muy baja. Se espera que los
superconductores a altas T, involucren electrones fuertemente ligados, y en este caso las ideas
holograficas pudiesen ayudarnos a entender algunos aspectos de sus propiedades fisicas. Motiva-
dos por lo anterior, en la ultima década han aparecido trabajos en los cuales se modelan, por el
lado gravitacional, superconductores holograficos usando, por ejemplo, AN asintéticamente AdS
con “cabello” escalar, donde el condensado estd “representado”por el “cabello ”del AN [83, 84].
La temperatura en la teoria de campos conforme es dual a la temperatura de Hawking del AN,
de manera que lo que se necesita es un AN que posea cabello escalar a bajas temperaturas y lo
pierda para 7' > T.. En la literatura han aparecido generalizaciones del modelo anterior, a las que
se anaden, por ejemplo, campos magnéticos o correcciones de 6rdenes superiores en la curvatura.

En esta Tesis se resumen algunos de nuestros trabajos vinculados con varias de las cuestiones
antes mencionadas ([85]-[98]), persiguiendo como objetivo general el estudio de la dindmica de
campos clasicos y cuanticos en espacio-tiempos de ANs y branas. La estructura de la Tesis, en
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correspondencia con los objetivos especificos propuestos, es la siguiente:

En el Capitulo 1, luego de una introduccion breve a las ideas y ecuaciones fundamentales
de la TGR, definimos un espacio-tiempo de fondo general, cuyo elemento de linea incluye como
casos particulares a todos los estudiados en el resto de la Tesis. Luego de calcular sus magnitu-
des geométricas fundamentales, revisamos algunas soluciones de AN y branas que aparecen en
escenarios propios no solo de la TGR, sino también de las teorias SUGRA, las TC y la Teoria M.
En el Capitulo 2 se desarrolla la teoria de perturbaciones lineales para campos clasicos bosonicos
y fermidnicos, que se propagan en un espacio-tiempo de fondo genérico descrito por la métrica
presentada antes. Ademads, se describen brevemente las principales etapas que caracterizan la
evolucion temporal de perturbaciones en espacio-tiempos de AN.

Los resultados generales anteriores son aplicados, en el Capitulo 3, al estudio de la propagacion
de campos en espacio-tiempos de AN estaticos en varias dimensiones, asi como en el exterior de
p-branas negras. Se determinan las frecuencias cuasinormales, se investiga la estabilidad de dichos
sistemas, y se estudia el decaimiento de las perturbaciones para tiempos asintoticamente grandes,
determinandose los exponentes que cuantifican dicho efecto.

En el Capitulo 4, luego de revisar brevemente los principales aspectos formales de la TCEC,
se obtienen expresiones analiticas generales para las componentes del tensor de energia-impulso
renormalizado de campos cuanticos masivos que se propagan en espacio-tiempos curvos. Este
resultado se aplica a la investigacion de la polarizacion de vacio gravitacional en espacio-tiempos
con simetria esférica, especificamente el caso de AN con carga eléctrica, y espacio-tiempos con
simetria axial, correspondientes a cuerdas negras estaticas. Se demuestra que como consecuencia
de este efecto, se violan varias de las condiciones clasicas de energia de los campos.

El Capitulo 5 incluye los resultados concernientes al célculo de correcciones cuanticas a la
métrica de un agujero negro esféricamente simétrico, usando el tensor de energia-impulso renor-
malizado obtenido antes, como fuente en las ecuaciones semiclasicas de Einstein. Se obtienen
soluciones semiclasicas de AN con carga eléctrica, y se analiza la propagacion de un campo es-
calar sin masa en dicho espacio-tiempo, determinandose las frecuencias que caracterizan la fase
cuasinormal de la respuesta. Se demuestra que, como consecuencia de la polarizacién del vacio
gravitacional debida a campos cuanticos masivos, un agujero negro semicldsico es mejor oscila-
dor que su contraparte clasico. Finalmente se presentan las Conclusiones y las perspectivas para
el trabajo en los temas abordados. Como complemento, se anade una cantidad considerable de
Anexos, que incluyen detalles de los calculos que, por razones de espacio, son solo presentados
de manera resumida en el cuerpo principal de la Tesis, asi como las Tablas de las frecuencias
cuasinormales determinadas para los distintos sistemas estudiados.
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AGUJEROS NEGROS Y BRANAS

1.1. Introducciéon

En la TGR la geometria del espacio-tiempo se describe mediante una variedad diferenciable
con una métrica de signatura lorentziana dada por ds? = g,sdr®dx”, donde g,s es el tensor
métrico, que se obtiene como solucién de las ecuaciones de Einstein':

Gag + Agaﬁ = 87TTa5. (11)

donde Gus = Ras — 59asR, es el tensor de Einstein, R = "’ R,5 la curvatura escalar, Ros el
tensor de Ricci, y A la constante cosmoldgica. En el miembro derecho de (1.1) tenemos, como
fuente en las ecuaciones, al tensor de energia-momentum 7,3 de los campos de materia.

En este Capitulo introducimos un espacio-tiempo D-dimensional general que describe la geo-
metria asociada a varias soluciones de AN. Revisamos ademas las caracteristicas de algunas de
estas soluciones, que seran objeto de estudio en el resto de la Tesis.

!En el resto de la Tesis empleamos el sistema de unidades de Planck, en el que la constante de Cavendish G,
la velocidad de la luz c y la constante de Planck A son iguales a 1.
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1.2. Algunas soluciones de Agujero Negro

En lo adelante consideramos una variedad D-dimensional? MP = N'™ x K™ con elemento de

linea?

ds® = g, dz"dz" = gy (y)dy*dy’ + w’(y)do,, (1.2)

n’

donde w(y) es una funcién arbitraria definida sobre la variedad lorentziana Ny do? = ~;;(x)da'da?
es la métrica de K", que asumimos es una variedad de Einstein. Cuando el elemento de linea
(1.2) describe el espacio-tiempo de un AN, entonces K" describe la estructura de una seccién
espacial de su horizonte de eventos. Si ™ es de curvatura constante, la curvatura seccional K = 0
describe un espacio plano; K = 1 uno esférico; y K = —1 un espacio hiperbdlico [64].

Si MP = 0? x SP~2 es el producto tensorial de un espacio de 6rbitas bidimensional con la
(D — 2)-esfera, entonces (1.2) toma la forma:

ds® = —A(r)dt* + B(r)dr® + C(r)dQ%_,. (1.3)

La métrica anterior sirve para describir ANs D-dimensionales esféricamente simétricos [65]. La
solucién de Schwarzschild-Tangherlini se obtiene con C(r) = r?, A(r) = B(r)™' =1 - 3%y
describe un AN estdtico que presenta un horizonte de eventos en r = ry = (2M )ﬁ, y una
singularidad en 7 = 0. En la expresion anterior M se puede interpretar como la masa del AN
medida por un observador infinitamente alejado.

También existen soluciones de AN estatico en la teoria de Einstein-Maxwell, con elemento de
linea:

oM Q?

_l_
rD—3 r2D—6

oM Q?

+
D=3 r2D—6

ds* = —(1 — Ydt? + (1 — Y rdr? 4 r2dQ, . (1.4)

donde Q representa la carga eléctrica (o magnética) del sistema . Para D = 4 se distinguen tres
situaciones fisicas: si 0 < |@Q| < M hay dos horizontes, el de eventos ry = M + \/M? — Q? y
el de Cauchy rc = M — y/M? — @2, mientras que para || = M, ambos horizontes coinciden
y tenemos una solucién de AN extremo. Si Q > M la solucién tiene una singularidad desnuda
temporal en el origen.

?La dimensién D de la variedad completa es la suma D = m + n.

3Introducimos coordenadas z* = (y%, %) en MP | y en correspondencia con esto distinguiremos entre tensores
que yacen en las distintas variedades usando indices con letras griegas mintdsculas para denotar tensores en M?P,
indices latinos en el rango a, b..., h para tensores en N, e indices latinos en el rango i, j, ..., p para tensores sobre
K.

4A la solucién que describe un AN con carga eléctrica se le denomina solucién de Reissner-Norsdtrom.
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Para el sector bosénico de la SUGRA ITA(IIB) 10-dimensional, se obtienen soluciones de tipo
NPF2 5 §8P con carga eléctrica (Q localizada en el origen, que reciben el nombre de p-branas
[99, 100]. Tales objetos se describen por la métrica general introducida antes, con w?(g) =

-2\ a a a jra
? (1= 52)" v o)y dy® = —Alo)dt? + B(o)dg? + C(o) iy dC"dC*, donde A(g), B(o) y
C(0) dependen del nimero p y de dos pardmetros: a y b, que estan relacionados con la masa y

la carga de la p-brana. Para que no existan singularidades nulas es necesario que a > 0. En este
caso, para todo valor de de p < 6 el punto ¢ = b es una singularidad genuina del espacio-tiempo,
mientras que ¢ = a es un horizonte de eventos, lo que permite interpretar tal configuracién como
un AN en 10 dimensiones. El caso extremo tiene lugar cuando a = b, en el que la singularidad y
el horizonte de sucesos se unen convirtiéndose en una singularidad desnuda para todos los valores
de p excepto p = 3 [69]. La 3-brana extrema continia teniendo un horizonte de eventos en ¢ = a,
pero la singularidad fisica esta localizada en o = 0.

Existen también soluciones no extremas de AN cuerdistico (ANC), obtenidas por interseccion
de branas en la Teorfa-M [101]-[104], cuya métrica es (1.3) con A(r) = h(r)_%f(r), B(r) =
R PE ()L Cr) = r2h(r) VP72, donde f(r) = 1= ()™ y h(r) = TI% |1+ ()77 Qi)

1

Esta métrica representa una familia de soluciones de AN parametrizadas por rg = u?-3,y np
cargas @; = sinh®*(8;) que pueden escribirse en términos de los pardmetros §;, provenientes de
la compactificacién de las dimensiones adicionales®. Si al menos una de las cargas es nula, se
tiene un AN con una singularidad genuina en el origen, escondida por un horizonte de eventos en
r = ry, mientras que para todas las cargas distintas de cero la solucién describe un AN regular
con un horizonte de eventos en r = ry y un horizonte interno en el origen [99].

También hay soluciones de ANC asintéticamente AdS parametrizadas por tres cargas, pro-
venientes del modelo STU de la teoria SUGRA calibrada (SUGRAC) D = 5, N = 2. El ele-
mento de linea es (1.3) con A(r) = f(r)h(r)"3, B(r) = f(r)h(r)3, C(r) = r2h(r)3, siendo
fir)=1-5+ Z—zh(r), hr) = 11, (1+ %) y L el radio AdS definido por L? = —3. El
horizonte de eventos es la mayor de las raices de la ecuacién f(r) = 0.

Las ecuaciones de Einstein-Maxwell con constante cosmoldgica negativa poseen soluciones

que describen cuerdas negras (CNs), cuya métrica viene dada por ds* = —(a?p* — %)alt2 +
@dﬁ + p2dp?® + a?p*dz?, donde M es la masa por unidad de longitud de la cuerda y
a? = —%A, siendo A la constante cosmoldgica negativa. La solucién tiene un horizonte de eventos
localizado en py = @, y una singularidad polinémica genuina en el origen [105].

51 es el denominado pardmetro de no-extremalidad, y np un nimero que depende de la dimensién D del
espacio-tiempo.
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PROPAGACION DE CAMPOS ALREDEDOR DE AGUJEROS
NEGROS. FORMALISMO LINEAL

2.1. Introduccion

En el Universo no existen agujeros negros aislados. Por consiguiente, un AN siempre estara en
un estado perturbado, y siempre que se quiera conocer algo acerca de su interaccion con el en-
torno astrofisico o microscépico, se debera comenzar por un analisis de sus perturbaciones. La
evolucion temporal de una perturbacion alrededor de un AN posee un periodo inicial transi-
torio relativamente corto que depende fuertemente de las condiciones iniciales, seguido por un
periodo largo de oscilaciones propias amortiguadas, llamadas modos cuasinormales, y, a tiempos
muy grandes, una etapa en que los modos cuasinormales son suprimidos por colas potenciales o
exponenciales.

En este capitulo ofrecemos un tratamiento lo mas general y abarcador posible del problema
relacionado con el estudio de perturbaciones de diferente espin alrededor de ANs. Algunos de los
resultados presentados se resumen en nuestros trabajos [93]-[98].

2.2. Formalismo Lineal

Consideremos la dindmica de un sistema de campos de materia ¢, acoplados a un campo de
gravedad. La solucién general de las ecuaciones de Einstein y las de los campos la constituyen la
métrica y los campos propagéandose en la misma, que denotaremos por ds? = gos (z) dz®dz’ y
ok = ¢k (z). Para ANs estacionarios, la métrica y los campos pueden expresarse como la suma

de cantidades de fondo no perturbadas ggg, cpl(go) y las perturbaciones hng, dpy, 0 sea: gop —

12
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gggﬂLhag, Op — @,&O)—l—égok. Adem4s, despreciamos contribuciones de orden O ((ha5)2) ,O (hagder),
O((0pr)?) y superiores.

Si asumimos que los campos de materia considerados son débiles en el sentido de que el
efecto de su tensor de energia-momentum sobre la métrica de fondo del AN puede despreciarse,
entonces las perturbaciones de dichos campos fisicos en el fondo gravitacional no se acoplan a
las perturbaciones de la métrica y, por consiguiente, dichos campos no son mas que campos de
prueba en el fondo gravitatorio del AN.

2.3. Ecuaciones de evolucion para perturbaciones

En la Tesis se demuestra que la evoluciéon temporal de perturbaciones de diferente espin
alrededor de ANs se describe, por lo general, por una ecuacién de ondas de la forma:

Py Oy

ot? or?

donde 1, es la amplitud de la perturbacién y o representa el conjunto de ntimeros que describen

+Vo(r)ge =0, (2.1)

el espectro de la parte angular del operador de evolucién temporal. En la ecuacién anterior V, (r)
representa el potencial efectivo que contiene toda la informacion sobre el objeto compacto en
cuestion. A continuacién resumimos brevemente los resultados para cada campo de prueba.

2.3.1. Perturbacion escalar

En el espacio-tiempo (1.3) , una perturbacion escalar ¢(z*) con masa p, acoplada minimamen-
te a la gravedad se describe mediante la ecuacién (2.1) para la variable maestra escalar g, (y%),
con el potencial efectivo !:

V0 = 5 (5 ) ) - U 22)

C(r) 4
G(r) dependen de las componentes de la métrica y sus derivadas respecto a la variable radial.
d _ [Ad

dre Bdr °

donde U,(r) = A [ L {WF(T) - D2G(r) = 0(0+ D - 3)} - /ﬂ}, y las funciones F'(r),

»2

Ademas, en (2.1) r, representa la coordenada ”tortuga”# definida segin

¢ >0y |m| < ¢ son los niimeros multipolar y azimutal, respectivamente.

2Si la constante cosmoldgica A > 0, la coordenada tortuga mapea toda la regién exterior al AN en el intervalo
(—00,00). En el caso del espacio AdS ( A < 0 ) el intervalo es (—00, 74e0), donde .o es un valor finito que
depende de la constante de integracién que entra en la definicién de la coordenada tortuga.



Capitulo 2 14

2.3.2. Perturbaciones de prueba electromagnéticas

Una perturbacién electromagnética se describe mediante la 1-forma A, que define el tensor
del campo electromagnético® F,., = vHA,, — v,,Au. De acuerdo a su comportamiento ante el
grupo de simetrias de K", encontramos dos sectores tensoriales irreducibles de A,,: uno escalar y
otro vectorial. Para espacio-tiempos descritos por la métrica (1.3) las ecuaciones de evolucién de
cada sector se reducen a (2.1), con los potenciales efectivos:

A D -2 d d
(escalar) o . “ e
V, (r) = 4rzB(D 4)[ . +(dr1nB drlnA)}
A
+ Se(e+D-3). (2.3)
A D -6 d d
(vector) At . “ @
V, (r)y = oz (D 4)[ . +(dr1nA drlnB>}
A
+ SW+n(E+D-1). (2.4)

2.3.3. Perturbaciones de prueba fermidnicas

Para un campo de Dirac neutro sin masa propagandose en un espacio-tiempo descrito por
1.3), el potencial efectivo resulta
p

dA,

=4
Ve dr,

+ A7 (2.5)

donde Ay(r) = (€ + %) \/g , mientras que un campo de Rarita-Schwinger en un espacio-tiempo

de Schwarzschild se describe por el potencial efectivo
dTg (’I“)

ar. (2.6)

V2 (r) = Qulr) —

con la funcién T (r) definida por T,(r) = —Fel(r) (L+3)(l+1)\/({+3)(l+1)+1+ 7 (In Fy(r)),

y Fu(r) = A’"TG/QQL;(T), siendo A = r? — 2Mr.

3Denotaremos por m, D,y ﬁi, las derivadas covariantes definidas en MP, N™ y K", respectivamente.
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2.3.4. Perturbaciones gravitacionales.

El caso fisicamente mas interesante es el de las perturbaciones gravitacionales. Proyectando
h,. con relacién a K", y analizando su comportamiento ante el grupo de simetrias de dicha va-
riedad, encontramos tres sectores tensoriales irreducibles para las perturbaciones gravitacionales:
escalar, vectorial y tensorial. Para remover la ambigiiedad de calibracién propia de las pertur-
baciones gravitacionales, podemos construir nuevas variables invariantes de norma, y escribir las
ecuaciones de perturbacién para cada sector en términos de las mismas. Por ejemplo, para el
sector tensorial se obtiene la ecuacion maestra

O (y") + WD (y*) = 0, (2.7)
donde W) (y*) = L [@(Dw)2 — 20w — k2 — QK} . En el caso particular en que el espacio-
tiempo global K" sea la n-esfera 8™, obtenemos (2.1) con el mismo potencial efectivo que el de

un campo escalar sin masa con acople minimo a la gravedad. Este es uno de los resultados mas
importantes de la Tesis.

2.4. Evolucién temporal de las perturbaciones y modos

cuasinormales

Podemos estudiar la evolucién temporal de perturbaciones resolviendo (2.1) directamente,
usando métodos numéricos [39, 65]. Las frecuencias cuasinormales pueden determinarse direc-
tamente a partir de la data numérica, y ademas estudiar las colas de los campos para tiempos
asintéticamente grandes.

Otra forma de obtener las frecuencias cuasinormales es resolviendo el problema de autovalo-

res*:

(d—2 +w? =V (7")) R, (r) =0. (28)

2
dr?

obtenido mediante la sustitucién ¥(t,7) = > 7 jexp (—iw,t) Ry, (1) en (2.1). En la frontera
de la region de trabajo, la funciéon que describe la perturbacién debe ser una onda puramente
emergente, exceptuando el caso de espacios asintéticamente AdS, en los que usualmente se impone
en el infinito espacial una condicién de frontera de Dirichlet.

4En lo adelante suprimimos los subindices que indican la dependencia de la misma, con los niimeros angulares
o, y el subindice n de w,, entendiendo que w es cualquier frecuencia perteneciente al espectro cuasinormal.
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PERTURBACIONES DE AGUJEROS NEGROS CLASICOS

En este Capitulo se resumen nuestros trabajos [90]-[96], en los que se estudian perturbaciones
de diferente espin, en varios espacio-tiempos de interés.

3.1. Perturbaciones de ANs de Schwarzschild

La Figura (3.1) presenta los resultados de la integracion caracteristica de la ecuacién de evo-
lucién para un campo de gravitinos que se propaga en un AN de Schwarzschild. En la version
completa de la Tesis, se muestran ademas los perfiles de evoluciéon temporal de perturbaciones
escalares, vectoriales, espinoriales y gravitacionales. En todos los casos se distinguen las fases
transitoria, cuasinormal y colas potenciales a tiempos muy grandes. Para evaluar las frecuencias
cuasinormales usamos dos métodos diferentes: un ajuste de la data numérica usando el algoritmo
de Prony, y un método semianalitico de tipo WKB de sexto orden, con excelente coincidencia en
los resultados obtenidos por ambos procedimientos. La Figura (3.1) muestra ademas los modos
cuasinormales calculados para la perturbacién de Rarita-Schwinger. Para un nimero multipo-
lar dado, los sobretonos superiores se vuelven menos oscilatorios, y decrece el factor de calidad
T = |Re(w)|/[Im(w)| de los modos. Lo contrario sucede para los modos con nimero multipolar
mayor y el mismo ntimero de sobretono. A medida que se incrementa el espin de una perturbacién
bosonica, esta decae mas rapidamente, y lo opuesto sucede para perturbaciones fermiénicas. En
cuanto a la relajacion de las perturbaciones fuera del AN, nuestros resultados para el caso de
perturbaciones de espin s = 0,1/2, 1y 2, se corresponden con los reportados previamente [51, 52].
Sin embargo, las perturbaciones de gravitino desaparecen mas rapidamente, y nuestros resulta-

dos numéricos sugieren que el decaimiento a tiempos asintéticamente grandes es proporcional a
t7(25+5)

16
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Figura 3.1: Perfil logaritmico de la evolucion temporal de gravitinos con ¢ = 2 (izquierda) y sus
modos cuasinormales para varios { (derecha) en un AN de Schwarzschild con ry = 2.

3.2. Perturbacién escalar sin masa en p-branas negras

Algunos resultados de la integracion caracteristica se muestran en la Figura 3.2, donde se
observa el cuadro usual de la dindmica perturbativa de campos en espacio-tiempos de ANs.
La ultima fase depende fuertemente del valor del parametro k, que puede interpretarse como un
parametro de masa para el campo escalar en la teoria. Para k£ = 0, observamos un decaimiento no
oscilatorio que sigue una ley de potencias. Pero, si k # 0, la cola es oscilatoria, con una envolvente
del tipo ley de potencias. Las frecuencias cuasinormales se determinaron usando el método WKB
de sexto orden y el ajuste de la data numérica proveniente de la integracion caracteristica. Se
observo que para valores grandes del pardmetro a, que para b fijo representa esencialmente la
masa de la brana, con el aumento de k los modos son més oscilatorios y menos amortiguados. Por
otro lado, las frecuencias w escalan aproximadamente con el inverso del pardametro de masa a~!
(excepto para valores pequenos de dicho pardametro). Con el aumento del parametro p, disminuyen
de forma aproximadamente lineal las partes real e imaginaria de las frecuencias.

Para tiempos asintoticamente grandes la perturbacién no masiva decae siguiendo una ley
de potencias proporcional a t*?. Para p = 1,3,5,6, podemos determinar analiticamente que
a=20 —p+8parap =1,3,5y, a =2(+ 3 para p = 6. Para p = 0,2, 4, nuestros resultados
numéricos sugieren una expresion similar con o = 2¢ — p 4+ 10. Para k # 0, las simulaciones
numéricas sugieren colas de la forma v, ~ sin(kt)t=7®% . Si p = 6, podemos usar los resultados
generales obtenidos en las referencias [58, 59, 62] para campos escalares masivos, y asi determinar
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Figura 3.2: Grdficos Log-Log de la evolucion temporal de una perturbacion escalar en una p-brana
no extrema. Se indican la fase cuasinormal y la cola a tiempos grandes. Los parametros de la
brana sonp=0,a=2,b=05,¢=1and k=0 (arriba), k = 1 (abajo). La figura se ha tomado
de la referencia [90].

el coeficiente en la ley de potencias de manera analitica, que resulta: y(p = 6,¢) = 5/6. Para
otros valores de p el problema analitico permanece abierto.

En el caso de la geometria extrema el analisis es mas sutil. Si p = 3, estamos en presencia de
una solucién de AN y el problema de las perturbaciones esta claramente formulado. Para p < 5,
el potencial luce similar al caso no-extremo, lo que implica que el problema de propagacién de
ondas unidimensional inicial es similar al discutido previamente para el caso no extremo!.

1Las frecuencias cuasinormales, que se muestran en el Anexo F de la Tesis, fueron calculadas usando la férmula
WKB de sexto orden. La singularidad desnuda de tipo tiempo [69] para p = 6, hace que el problema de Cauchy
no sea bien comportado, por lo que excluimos este caso de nuestros calculos numéricos.
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3.3. Propagacion de campos en espacio-tiempos de agu-
jeros negros cuerdisticos

3.3.1. Campos fermioénicos

En esta secciéon consideramos perturbaciones no masivas de Dirac en espacio-tiempos de
ANCs. En estos casos el potencial efectivo se describe por medio de las expresiones (2.5). Los
perfiles de potencial en todos los casos, desde D = 4 hasta D = 9 son similares: en forma de
barrera definida positiva, que tiende a cero cuando nos alejamos del origen, y se anulan en el ho-
rizonte de eventos. Por consiguiente, es de esperar que todos los agujeros negros cuerdisticos sean
estables ante perturbaciones fermiénicas, hecho que confirman nuestros resultados numéricos.

La integracion caracteristica muestra que las perturbaciones evolucionan siguiendo el patrén
convencional que aparece en la propagacion de campos en otros tipos de AN. La Figura 3.3 mues-
tra la evolucién temporal de un campo de Dirac sin masa en espacio-tiempos de ANCs regulares
de varias dimensiones para cargas iguales a 1. Los resultados para diferentes configuraciones de
cargas son similares. Como puede observarse, la fase cuasinormal disminuye su duracion con el
aumento de la dimension del espacio-tiempo. Este patrén es igual para todas las configuraciones
de cargas estudiadas. Las frecuencias cuasinormales fueron calculadas usando el método WKB
de sexto orden y un ajuste de la data numérica mediante el método de Prony.

Un incremento en la carga del AN produce un decrecimiento en la frecuencia y el factor de
amortiguamiento de la oscilacion. Para valores fijos de las cargas, la frecuencia de oscilacion se
incrementa para nimeros multipolares altos, con nimero de sobretono fijo. Resulta interesante
que el factor de amortiguamiento de las frecuencias cuasinormales con n = 0 alcanza rapidamente
un valor fijo para grandes valores del nimero multipolar. Esta situacién es diferente para niimeros
de sobretono grandes, ya que el factor de amortiguamiento de la oscilacién cuasinormal para n fijo
decrece con (. El comportamiento cualitativo anterior es genérico, independiente de los valores
de las cargas y la dimensién fisica en la solucion.

Por otro lado, para D = 4, la data numérica sugiere un decaimiento a tiempos muy grandes
proporcional a t~%*3) Para D > 4 nuestro estudio numérico sugiere que ANCs de dimensién
impar se relajan a tiempos asintéticamente grandes siguiendo una ley de potencias proporcional a
t~6+D=2) ‘mientras que en el caso de dimensién par el relajamiento es més rapido, proporcional a

{—(2643D=8) 2043D=16) ‘para D = 8. Es importante recalcar que una dependencia

,paraD =6,yat
parecida fue demostrada analiticamente para el caso de perturbaciones escalares en espacio-

tiempos de Schwarzschild-Tangherlini [61].
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Figura 3.3: Grdficos logaritmicos de la evolucion temporal de perturbaciones de Dirac no masivas
en agujeros negros cuerdisticos. Los pardametros de la solucion son f =1y D =4, Q1 = Qs =

Qs = Q4 =1 (arriba izquierda),y D =5, Q1 = Q2 = Q3 = 1 (arriba derecha).

3.3.2. Evolucion de un campo escalar sin masa en el ANC del modelo
STU

La Figura 3.4 muestra la evolucién temporal del modo fundamental gravito-tensorial (modo
(=2 de la perturbacién escalar) para ANCs del modelo STU, con dos cargas iguales y una
tercera variando, y la evolucién de modos con distinto valor de ¢, respectivamente. Las frecuencias
cuasinormales se calcularon ajustando la data numérica obtenida, pues en este caso, es imposible
la aplicacién del método WKB.

Lo primero que salta a la vista es que toda la evoluciéon temporal estd dominada por la fase
cuasinormal, a diferencia del caso de perturbaciones en espacio-tiempos asintéticamente planos.
Como en el caso que analizamos el potencial efectivo diverge en el infinito espacial, no aparecen
colas potenciales. Ademads, con el aumento de la carga, —Im(w) aumenta, lo que corresponde a
una disminucién de la escala de tiempo de decaimiento, como muestran también las Figuras 3.5
y 3.6.

Un resultado interesante es el relacionado con el comportamiento del campo escalar de prueba
con el aumento del nimero multipolar ¢. La Figura 3.4 muestra que los modos con mayor ntimero
multipolar decaen més lentamente, al contrario de lo que sucede para ANs asintéticamente planos.
El comportamiento anterior es independiente de las cargas en la solucion de ANC.
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Figura 3.4: Graficos semi-logaritmicos de la evolucion temporal de perturbaciones escalares sin
masa en ANCs del modelo STU en 5D. Los parametros de la solucion son: { =2, Q1 = Qs =1,
Qs =1/10,4/10,7/10,1 (arriba desde la curva superior a la inferior) y Q; = 1, £ =2,...,7 (abajo

desde la curva inferior a la superior).
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Figura 3.5: Dependencia de la parte real de las frecuencias cuasinormales con el parametro de
carga Q1 para un ANC del modelo STU. El resto de los pardmetros de la solucion son £ = 0,1 y

n=0,0Q;=Q;=1.
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Figura 3.6: Dependencia de la parte imaginaria de las frecuencias cuasinormales con el parametro
de carga Q1 para un ANC' del modelo STU. El resto de los parametros de la solucion son £ = 0,1

yn=0,02=Q3=1
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TEORIA CUANTICA DE CAMPOS EN ESPACIO-TIEMPOS
CURVOS

4.1. Introduccion

En la TCEC se consideran las propiedades cuanticas de todos los campos del modelo estandar,
pero se trata al campo gravitatorio como un fondo clasico. Asi, el campo gravitacional se sigue
describiendo por ecuaciones de Einstein, cuya fuente es el tensor de energia-momentum de los
campos de materia cuanticos (7}, ),en, calculado en un espacio-tiempo de fondo clésico fijo [106,
110].

Este Capitulo contiene un resumen de nuestros trabajos [85]-[89], en los que se usa el método
de la accion efectiva cudntica para obtener expresiones analiticas aproximadas de (7),,),e, para
campos cuanticos masivos en espacio-tiempos curvos arbitrarios, y se investiga la polarizacion
del vacio gravitacional en espacio-tiempos de CNs estéticas.

4.2. Tensor de energia-momentum renormalizado en la

aproximacién de Schwinger-DeWitt

Consideremos un campo arbitrario ¢*(x) definido sobre un espacio-tiempo D-dimensional,
cuya dindmica sea generada por el operador minimo de segundo orden [7, 107]

AB_{éA(D m?) + Q4 (x }\/75“; (4.1)

donde 0 = gV, V, es el operador covariante de Laplace-Beltrami, V, es la derivada covariante,
m es el pardmetro de masa del campo cudntico y Q“5(x) es una matriz arbitraria.
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En la Tesis se demuestra que los operadores que describen la dindmica de campos escalares,
vectoriales y espinoriales masivos pueden reducirse siempre a la forma (4.1). Para tales campos,
es posible escribir la accién efectiva cuantica renormalizada, al nivel de un lazo, en forma de
un desarrollo asintético en potencias inversas del cuadrado de la masa del campo!. El primer
término de dicho desarrollo puede ser escrito en la forma general

1
19272m?2
b SRR B 4 o RERRY 4 o RIS,

+ O‘éS)RWRgpoRMW + ag)S)RpUWRWMRMPU + O‘%f))RpuguRM/\VWR)\pWa)

T (1)ren / d*zg'/? (af)RDR + o R, OR™ + o 'R + o' RR,, R™ (4.2)

1 10
_ ey
~19202m? Zl% e

1=

donde los coeficientes numéricos ozz(s) dependen del espin del campo.

A partir de la accién efectiva renormalizada podemos obtener las componentes del tensor de
energia-momentum de los campos de materia cuanticos en presencia de un campo gravitacional
externo [85]-[89]

. 2 5F(1)ren
ren  \/—g g (x)

Debido a la dificultad que supone calcular las derivadas funcionales en la expresiéon anterior,

(T )ren = <out, vac|T,, (z)]in, Vac> (4.3)

durante mucho tiempo se pensé que esta era una tarea imposible de resolver?. En nuestros
trabajos [85]-[89] se di6 solucién a esta cuestién, y se obtuvieron expresiones analiticas para
(1)) ren correspondiente a campos de diferente espin.

Una vez construido el tensor de energia-momentum de un campo cuantico en un fondo curvo,
podemos usar esta magnitud como fuente en las ecuaciones semiclédsicas de Einstein:

1
R, — §gu,,R + Agu = 81(T)w) ren (4.4)

!Este desarrollo asintético define la denominada aproximacién de Schwinger-DeWitt, conveniente para el es-
tudio de la polarizacién de vacio de campos masivos siempre y cuando la longitud de onda de Compton A = 1/m
sea mucho menor que la escala de longitud caracteristica L..

2Birrel y Davies, en la pagina 190 de su libro clasico Quantum Fields in Curved Space, escribieron al respecto
(La Wii)ren, de Birrel y Davies es nuestra I'(;)en): ... in a practical calculation it is not possible to follow this
route. This is because in order to carry out the functional differentiation of I'(}),en With respecto to g, ..., it is
generally necessary to know Wq,e, for all geometries g,,,,. This is impossible difficult.”
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Resolviendo las ecuaciones (4.4) podemos hallar las correcciones cudnticas al espacio-tiempo de
fondo, debidas a los efectos de retroaccion de los campos cuanticos no gravitacionales.

4.3. Polarizacién del vacio gravitacional en el espacio-
tiempo de una CN estatica

En el espacio-tiempo de una cuerda negra estatica® se pueden obtener resultados simples para
(T )ren, tal y como fue demostrado por primera vez en nuestros trabajos [85]-[89)].

En el caso general, todas las componentes del (7},,)e, de un campo escalar masivo son
positivas en el horizonte de eventos para valores de la constante de acoplamiento que satisfacen
la relacién n® + 4%77 < 2—}0, por lo que la densidad de energia ¢ = —Tt(E) " es negativa, lo cual
resulta en una violacién de la Condicién débil de energia(CDE). Un campo masivo espinorial
cuantico viola ademas, la condicién de energia dominante (CEDom).

Finalmente, un campo masivo vectorial, viola la condicién nula de energia (CNE) en el hori-
zonte. Para que la CDE se satisfaga, necesitamos una densidad de energia positiva, tal y como
obtenemos en este caso particular, pero ademas se requiere que la CNE se satisfaga, por lo que un
campo vectorial masivo en el espacio-tiempo de una cuerda negra estatica viola la CDE, al igual
que en los casos escalar y espinorial. Si la CNE se satisface y la suma de las presiones principales
y la densidad de energia del campo es positiva, entonces se cumple la Condicién fuerte de energia
(CFE), mientras que la CEDom requiere que —e < p; < e. Por consiguiente, en este caso también
se violan ambas condiciones de energia.

3En la versién completa de la Tesis se incluye ademds un estudio de los efectos de la polarizacién de vacio
gravitacional alrededor de un AN con carga eléctrica.
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AGUJEROS NEGROS SEMICLASICOS EN CUATRO
DIMENSIONES Y SUS MODOS CUASINORMALES

5.1. Introduccion

En este Capitulo abordamos el estudio de los cambios que la polarizacion del vacio gravita-
cional produce sobre el espectro cuasinormal de un campo escalar que se propaga en el exterior
de un AN semiclasico. Los resultados descritos son un resumen de nuestros trabajos [91, 92].

5.2. Modos cuasinormales de un campo escalar sin masa
en un AN semiclasico de Reissner-Nordstrom

Hasta donde nos es conocido, el primer estudio de la influencia de las correcciones cuanticas
al espacio-tiempo de un AN en 4D sobre sus modos cuasinormales fue realizado en nuestros
trabajos [91, 92].

Es posible demostrar [91, 92] que el elemento de linea que describe un AN semiclasico esféri-
camente simétrico viene dado por (1.3) con C(r) =r?y

Lo 2M @ 8t o [T ey
B -l ZJ:N]/OOC (T, d¢, (5.1)
Al = g e A0 (5:2)
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donde
A0 =81 3N, [ ¢8O (U0, — (@)L, de (53)

y el subindice 7 denota a las especies individuales de campos con diferente peso de espin. En las
expresiones anteriores () y M representan la carga y la masa de la solucion clasica. Las integrales
en (5.1) y (5.3) pueden calcularse introduciendo un desarrollo perturbativo en el pardmetro
e = 1/M?, donde M es la masa desnuda del AN.

Si consideramos la evolucion de una perturbacion escalar de prueba no masiva en el exterior de
un AN semiclasico de Reissner-Nordstrom, el potencial efectivo, para todos los valores admisibles
de los parametros que describen la solucién semiclasica, tiene forma de barrera de potencial
definida positiva, lo cual asegura la estabilidad de la solucion. Por consiguiente, podemos calcular
las frecuencias cuasinormales usando la aproximacion WKB de sexto orden.

En la versién completa de la Tesis se demuestra que la polarizacion del vacio gravitacional pro-
duce un corrimiento en las frecuencias cuasinormales del sistema semiclasico. Un AN semiclésico
experimenta un incremento en la parte real de la frecuencia de oscilacion, y un decrecimiento del
factor de amortiguamiento, de manera que se produce un incremento del factor de calidad del
oscilador. Como es de esperar, las diferencias en las frecuencias cuasinormales se reducen en la
medida que aumenta la masa desnuda del sistema.

Asi, el AN semiclasico de Reissner-Nordstrom es un mejor oscilador que su contraparte clasica.
Este resultado estd en correspondencia cualitativa con el obtenido por Konoplya al estudiar la
influencia de la creacién de particulas escalares por medio de la radiacion de Hawking sobre la
métrica de un agujero BTZ [112].

El efecto encontrado puede entenderse como consecuencia del decrecimiento de la masa del
AN semiclasico, con respecto a la masa del agujero desnudo, asociado al caracter exotico de
los campos cuantizados, que violan la condicién de energia débil en las cercanias del horizonte
de sucesos, ya que una disminuciéon de la masa medida por un observador distante ocasiona un
incremento en la frecuencia de oscilacién del sistema.



CONCLUSIONES Y PERSPECTIVAS

En esta Tesis estudiamos la propagacion de campos clésicos y cuanticos en espacio-tiempos de
ANs. A continuacién, a manera de conclusiones, se resumen los principales resultados obtenidos:

1. La dinamica de la propagacion de campos bosénicos y fermionicos alrededor de AN y
branas se describe por la ecuacién de ondas (2.1), donde el potencial efectivo depende de
las caracteristicas propias del AN. Para tiempos intermedios la evolucion esta caracterizada
por un conjunto de modos cuasinormales, cuya frecuencia se puede calcular resolviendo el
problema de autovalores (2.8). Para tiempos muy grandes, la amplitud de la perturbacion
decae siguiendo una ley de potencias en espacios asintéticamente planos, mientras que para
un ANC del modelo STU, la fase cuasinormal domina toda la evoluciéon temporal. En
dependencia del cardcter tensorial de la perturbacion y su comportamiento ante el grupo
de simetrias global del espacio-tiempo de fondo, podemos tener varios sectores tensoriales
irreducibles que caracterizen completamente la dindmica. Es interesante que la estabilidad
de soluciones de alta dimensién puede analizarse en términos de un campo escalar sin masa
con acople minimo a la gravedad, debido a la equivalencia entre la descripcion matematica
de este campo y el sector gravito-tensorial.

2. En todos los casos estudiados no se encontré ninguna inestabilidad. En un AN de Schwarzs-
child, las perturbaciones bosoénicas y fermiénicas se propagan de manera dependiente del
espin. Las perturbaciones bosénicas con espin mayor tienen menor factor de calidad, y lo
contrario sucede en el caso fermiénico. Por otro lado, los campos escalares, electromagnéti-
cos, gravitacionales y de Dirac decaen a tiempos asintéticamente grandes siguiendo una ley
de potencias proporcional al factor t~33) v las perturbaciones de gravitino decaen més
rapidamente, siguiendo una ley proporcional a t (25,

3. En ANCs, el aumento del parametro de carga induce un decrecimiento en la frecuencia
cuasinormal y en el factor de amortiguamiento del sistema. En 4D, el sistema decae a
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tiempos asintéticamente grandes siguiendo una ley de potencias proporcional a t—(2+3),

mientras que, para dimensiones mayores que cuatro, los ANCs de dimensién impar se

relajan siguiendo una ley de potencias proporcional a t~P=2) mientras que en el caso

de dimensién par el relajamiento es més rapido, proporcional a t—(2+3P=8)

q 1~ (26+3D—16)

para D =6,y
para D = 8.

4. Para campos cuanticos masivos, en la aproximacién de grandes masas del campo, se puede
obtener una expresién analitica para el tensor de energia-impulso renormalizado del mismo
en un fondo curvo. Con el mismo podemos resolver el problema de la retroacciéon del campo
cuantico sobre la métrica original, y obtener las correcciones cuanticas a la misma. Para
campos con geometria esférica, uno de los efectos de la retroaccién sobre un AN es el cambio
en la masa del mismo, que disminuye como consecuencia de la violacion, por parte del campo
cuantico, de la condicion débil de energia. Esto podria dar lugar a efectos observables, pues
un AN semiclasico cargado eléctricamente sobre el que se propaga una perturbacién de
prueba escalar se comporta como mejor oscilador que su contraparte clésica.

5. Los campos cuanticos masivos de distinto espin en el espacio-tiempo de una cuerda negra
estatica violan algunas o todas las condiciones de energia locales sobre el horizonte de
eventos. Un campo escalar con acople minimo, o conforme a la gravedad, un campo vectorial
y uno espinorial, violan la CDE en el horizonte. El campo espinorial viola, ademas, la
CEDom, mientras que el campo vectorial viola también la CNE y la CFE.

Como perspectivas para el trabajo futuro podemos mencionar las siguientes:

1. Estudiar la propagacién de campos de espin 1 y fermidnicos en espacio-tiempos de p-branas
negras con vistas a su uso en aplicaciones de la correspondencia AdS/CFT. De la misma
manera, seria interesante investigar la influencia de la carga eléctrica en la propagacién de
gravitinos, estudiando el caso de un AN de Reissner-Nordstrom.

2. Desarrollar un argumento analitico que nos permita obtener el factor de decaimiento, para
tiempos asintéticamente grandes, de perturbaciones de gravitino en ANs, para complemen-
tar los resultados numéricos obtenidos en esta Tesis.

3. Investigar la propagacién de campos de diferente espin, y cargados eléctricamente, en ANC
de modelo STU, con vistas a utizarlos en aplicaciones de la correspondencia AdS/CFT en
la investigacion de superconductores holograficos. Completar el estudio de perturbaciones
bosénicas en el caso de ANCs asintéticamente planos.
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4. Implementar métodos numéricos mas potentes para el calculo de modos cuasinormales,
como el de fracciones continuas para espacio-tiempos generales y el de Horowitz-Hubbeny
para espacio-tiempos asintéticamente AdS.

5. Investigar la polarizacién de vacio en espacio-tiempos de cuerdas negras con carga eléctrica
y rotacién. Analizar si se violan también las condiciones locales de energia en estos casos.
Resolver el problema de retroaccion en sistemas con geometria cilindrica y usar los re-
sultados generales para encontrar correcciones cuanticas a las métricas mencionadas. Una
cuestién muy interesante seria analizar si la cuantizacion de campos es un factor determi-
nante en la presencia de curvas temporales cerradas en cuerdas negras en rotacion, dada la
posible aplicacién de estos sistemas como maquinas de tiempo.

6. Obtener el término de orden siguiente para (TM”)WL, proporcional a la cuarta potencia del
inverso de la masa del campo cudntico, para investigar si, con la mejoria de la aproximacion,
los resultados cambian de manera apreciable. Si es el caso, incluir este nuevo orden en los
resultados obtenidos en esta Tesis.
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