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4.2. Tensor de enerǵıa-momentum renormalizado en la aproximación de Schwinger-

DeWitt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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INTRODUCCIÓN

Desde tiempos inmemoriales los seres humanos han observado el cielo nocturno, contemplan-

do las estrellas con emoción y asombro. De tales observaciones surgieron las primeras preguntas

vitales para esclarecer nuestra existencia: ¿quienes somos?, ¿de donde venimos?, ¿dónde nos en-

contramos?, ¿cual será nuestro destino final? Tales preguntas están indisolublemente ligadas a

todo lo que nos rodea, y de lo que también nosotros mismos somos parte integrante: el Uni-

verso. Estudiando el Universo hemos podido establecer algunas de las leyes f́ısicas que rigen su

comportamiento, lo cual, en principio, nos ha permitido intentar responder a las interrogantes

anteriores. En particular, hemos aprendido que existen cuatro interacciones fundamentales: la

interacción electromagnética, la gravitatoria, la nuclear o fuerte y la débil, que son responsables

de todos los fenómenos que ocurren en el Universo. De las dos últimas interacciones mencionadas

solo tuvimos conocimiento en el siglo pasado.

Hasta finales del siglo XIX y principios del XX, se pensó que con las ideas de la Teoŕıa

electromagnética de Maxwell y la Mecánica de Newton se pod́ıa explicar todo lo que suced́ıa a

nuestro alrededor, lo cual resultó erróneo. Hab́ıa problemas con la electrodinámica de los cuerpos

en movimiento, y con la explicación de fenómenos como el efecto fotoeléctrico y la radiación

del cuerpo negro, que no pod́ıan entenderse de manera satisfactoria usando solamente esas dos

teoŕıas-marco de la F́ısica. Esta dificultad dió lugar a que, en el siglo pasado, nacieran otras dos

teoŕıas-marco: la Teoŕıa de la Relatividad Especial (TER), que unifica los conceptos relativos

de espacio y tiempo en un solo ente, el espacio-tiempo, y la Mecánica Cuántica (MC), que nos

afirma que es imposible conocer con precisión infinita el comportamiento futuro de un sistema,

aunque conozcamos sus condiciones iniciales. Ambas han sido combinadas de manera excelente en

las denominadas Teoŕıas Cuánticas de Campos (TCC), que describen, con un detalle y precisión

extraordinarios, tres de las cuatro interacciones fundamentales conocidas [1, 2]. Para describir

la cuarta interacción, la gravitación, disponemos de la Teoŕıa General de la Relatividad (TGR),

formulada por Einstein en forma definitiva en el año 1915, que afirma que las propiedades del

espacio-tiempo se modifican debido al contenido de materia y enerǵıa, y viceversa: las propiedades

1



Introducción 2

del espacio-tiempo determinan la forma en que se distribuyen en él la materia y la enerǵıa.

Sin lugar a dudas, de entre todas las predicciones de la TGR, la más interesante está rela-

cionada con la posible existencia de agujeros negros (AN) en el universo [3]-[5]. Al decir de Kip

Thorne [6]: “ De todas las ideas concebidas por la mente humana, desde los unicornios y las

górgolas a la bomba de hidrógeno, las más fantástica es, quizás, la del agujero negro: un agujero

en el espacio con un borde perfectamente definido en cuyo interior puede caer cualquier cosa y

de donde nada puede escapar; un agujero con una fuerza gravitatoria tan intensa que incluso la

luz queda atrapada en su poder, un agujero que curva el espacio y distorsiona el tiempo ”.

Los AN son objetos verdaderamente únicos, y lo más asombroso es que existen más allá de

nuestra imaginación, con una amplia gama de valores de sus masas 1. En la actualidad, se conocen

en nuestra galaxia más de 20 sistemas estelares binarios que se piensa contengan como uno de

sus componentes agujeros negros de algunas masas solares, mientras que la única explicación

para los procesos energéticos observados en los núcleos galácticos activos se logra suponiendo la

presencia de agujeros negros supermasivos en sus centros. Además, las ideas modernas acerca

de la presencia de dimensiones extra en nuestro universo, hacia las cuales la gravedad puede

escapar, y sus implicaciones para la solución de problemas de frontera de la F́ısica moderna,

como el problema de la jerarqúıa de las interacciones fundamentales, han dado lugar a la idea

de la posible creación, en un futuro próximo, de mini ANs en experimentos con colisiones de

hadrones en el LHC 2.

La TGR describe muy bien el macrocosmos: la f́ısica de los astros y del propio universo 3,

mientras que las TCC describen el micromundo: la f́ısica de los átomos y las part́ıculas elemen-

tales. Sin embargo, la naturaleza es una sola, y no podemos separar las teoŕıas que la describen

a escalas distintas. Por consiguiente, es necesario que los principios que rigen todas estas teoŕıas

sean compatibles. Este hecho ha originado la búsqueda, desde hace más de medio siglo, de una

teoŕıa que compatibilice los principios de la TGR con la idea de la cuantización, o sea, una nueva

śıntesis de las ideas de una geometŕıa dinámica del espacio-tiempo y las propiedades cuánticas

de la materia. Precisamente con este problema fundamental de la F́ısica contemporánea, a saber,

1Un agujero negro de masa estelar tiene masa del orden de 10 veces la masa del Sol, mientras la masa de AN

intermedios es tres órdenes mayor. Los AN supermasivos, presentes en los centros de las galaxias, poseen masas

del orden de (105 − 109)M⊙. Finalmente se ha predicho la existencia de mini agujeros negros, con masas t́ıpicas

del orden de la masa de Planck o algo mayores, provenientes principalmente de escenarios propios de las Teoŕıas

de Cuerdas y mundos-brana.
2El Supercolisionador de Hadrones LHC (del inglés Large Hadron Collider), es un gigantesco acelerador de

part́ıculas ubicado en las instalaciones del CERN en Ginebra, Suiza.
3Exceptuando la era primordial.
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la elaboración de una Teoŕıa Cuántica de la Gravedad (TCG), están relacionadas las cuestiones

más interesantes de la F́ısica de ANs, y se considera a estos sistemas como una especie de “átomo

de hidrógeno de la TCG”.

Actualmente estamos lejos de contar con una TCG completa y consistente, no obstante,

podemos conocer algunas caracteŕısticas que ésta debe poseer. Primeramente, sea cual sea la

TCG, es natural esperar que dependa de las siguientes constantes universales: la velocidad de la

luz c, que evidenciaŕıa la naturaleza relativista de la teoŕıa, la constante de Dirac ~, responsable

de la naturaleza cuántica de la misma y la constante de Cavendish G, que indicaŕıa que estamos

en presencia de una teoŕıa cuántico-relativista de la gravitación. Con éstas magnitudes es posible

construir tres unidades fundamentales que definen la escala de Planck : la longitud de Planck

LP =
√

~G
c3

≈ 10−33cm, el tiempo de Planck tP =
√

~G
c5

≈ 10−44s y finalmente la masa de Planck:

MP =
√

~c
G

≈ 10−8Kg 4. Si tratamos el campo gravitacional como una pequeña perturbación,

y tratamos de cuantizarlo siguiendo las pautas de la electrodinámica cuántica (EDC), entonces

el cuadrado de la longitud de Planck aparece como constante de acoplamiento. A diferencia de

la EDC, en la que la constante de acoplamiento e2

~c
es adimensional (y pequeña), la longitud

de Planck tiene dimensiones, de manera que los efectos se hacen grandes cuando las escalas y

longitudes de tiempo de los procesos cuánticos de interés están por debajo de la escala de Planck.

Cuando esto sucede, los órdenes superiores de la teoŕıa de perturbaciones se vuelven comparables

con los órdenes menores, y se pierde el propio concepto de desarrollo en términos de pequeñas

perturbaciones. Por tanto, son precisamente los valores de la escala de Planck los que establecen

la frontera a partir de la cual se necesita una TCG completa, y preferiblemente no perturbativa.

En segundo lugar, aún en ausencia de una TCG consistente, podemos intentar obtener in-

formación acerca de la influencia del campo gravitatorio clásico sobre los fenómenos cuánticos.

En este sentido conviene recordar lo ocurrido con la propia teoŕıa cuántica, en cuyos inicios se

realizaron muchos cálculos en los que, por ejemplo, el campo electromagnético era considerado

un campo clásico de fondo, interactuando con la sustancia cuantizada. Tal aproximación se-

miclásica dió lugar a resultados correctos compatibles con el experimento, y posteriormente

con los obtenidos con la Electrodinámica Cuántica. De forma análoga, podemos esperar que exis-

ta un régimen similar para la naturaleza cuántica de la gravedad, en el cual podamos considerar

el campo gravitatorio como un fondo clásico, en el que se propagan los campos de la teoŕıa

cuántica. Si adoptamos la TGR para describir la gravedad, entonces estaŕıamos en presencia de

4Puede definirse el equivalente a la masa de Planck, o sea la enerǵıa de Planck cuyo valor es de aproximadamente

1019GeV .
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una Teoŕıa Cuántica de Campos en espacio-tiempos curvos (TCEC) [7].

La escala de Planck también nos permite tener una idea del rango de aplicación de la TCEC,

también conocida como Gravedad Semiclásica. Debemos esperar que cuando las distancias y

tiempos involucrados en los fenómenos f́ısicos de interés sean mucho más grandes que los deter-

minados por la escala de Planck, entonces los efectos cuánticos del campo gravitatorio deben ser

despreciables. El hecho de que la longitud de Planck sea pequeña (20 órdenes de magnitud por

debajo de las dimensiones de un núcleo atómico), nos deja entonces mucho terreno en el cual

podemos utilizar la TCEC. De hecho, la teoŕıa ha sido utilizada para investigar nuevos efectos

f́ısicos originados en la modificación de los procesos cuánticos por la gravedad, desde el trabajo

pionero de Hawking [8]. En el mismo se demostró que los AN emiten radiación como si fuesen

cuerpos calientes, con una temperatura que depende exclusivamente de sus propiedades: masa,

carga eléctrica y momento angular. También fueron calculadas otras magnitudes t́ıpicamente

termodinámicas, como la entroṕıa de un agujero negro, que resultó ser proporcional a un cuarto

del área de su horizonte de eventos. Este resultado condujo a la idea de que, en forma parecida

a un holograma, los grados de libertad de una TCG se encuentran codificados en la frontera de

la región en que esa teoŕıa está definida [9, 10].

Entre los intentos por construir una TCG, destacan las teoŕıas de supergravedad (SUGRA)

y las Teoŕıas de Cuerdas (TC). Las teoŕıas SUGRA surgieron a partir de la implementación

de los principios de supersimetŕıa 5 en la TGR. El objetivo principal que se consegúıa con el

uso de la supersimetŕıa en la TGR era el de cancelar las divergencias ultravioletas que surǵıan

cuando se intentaba cuantizar dicha teoŕıa siguiendo las mismas prescripciones que dictaba la

Teoŕıa cuántica de Campos. Sin embargo, con el tiempo se demostró que las teoŕıas SUGRA no

eliminaban todas las divergencias ultravioletas de la TGR, y por tanto no brindaban un escenario

coherente para llevar a cabo la cuantización de las mismas. Esta fue la razón por la que tales

teoŕıas fueron desechadas 6.

Por otro lado, las TC abandonan la idea de que las part́ıculas elementales son objetos pun-

tuales y asumen que éstas corresponden a excitaciones de un objeto unidimensional fundamental

(una supercuerda7)[11]. La cuantización de una cuerda relativista en el espacio-tiempo de Min-

kowski produce una infinidad de modos de oscilación con diferentes valores de enerǵıa. Uno de

esos modos, con masa cero y esṕın dos, puede ser identificado con el gravitón, la part́ıcula me-

5La supersimetŕıa no es más que la simetŕıa que convierte bosones en fermiones y viceversa.
6Lo interesante es que, años después, el interés en las SUGRA renació, como consecuencia de que las mismas

constituyen el ĺımite a bajas enerǵıas de las Teoŕıas de Supercuerdas.
7Se entiende por supercuerda un objeto unidimensional, o cuerda, supersimétrica, o sea, cuya teoŕıa incorpora

los principios de supersimetŕıa.
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diadora de la interacción gravitacional en una TCG, por lo que se acostumbra a decir, en este

sentido, que las cuerdas ofrecen una visión unificada de la teoŕıa de las interacciones fundamen-

tales, en la cual la gravedad ya está cuantizada [12]. Por otro lado, existen varias teoŕıas de

supercuerdas consistentes, y todas envuelven diez dimensiones espacio-temporales. Estas teoŕıas,

junto a la SUGRA en once dimensiones, están ligadas por relaciones conocidas como dualidades,

que indican que probablemente todos estos modelos constituyen ĺımites distintos de una única

teoŕıa, cuya formulación es aún desconocida, y que ha recibido el nombre de Teoŕıa M [13].

Al igual que en la TGR, en las teoŕıas SUGRA, las TC y la Teoŕıa M, aparecen soluciones de

agujero negro [14]. Otro tipo de soluciones que aparecen en las teoŕıas SUGRA, y que representan

objetos extendidos en varias dimensiones, reciben el nombre de p-branas negras. También, como

mostraremos más adelante en esta Tesis, es posible encontrar soluciones de AN en la gravedad

semiclásica, lo cual sugiere una pregunta clave: ¿Es posible la existencia en la naturaleza de

sistemas de este tipo?

La pregunta anterior indica claramente que una cuestión vital es la relacionada con la estabi-

lidad de las soluciones de AN y branas ante perturbaciones externas. Aunque las perturbaciones

sean inicialmente pequeñas, puede darse el caso de que ganen intensidad con el decursar del tiem-

po y como consecuencia causen la inestabilidad del objeto compacto e incluso su destrucción.

De ah́ı que, para investigar la posible existencia de tales sistemas f́ısicos en nuestro Universo,

un primer paso es estudiar su respuesta ante tales perturbaciones. Si el AN resulta estable, esto

implica que la solución describe un estado final posible para la evolución dinámica de un sistema

gravitacional. Si, por otro lado, encontramos una inestabilidad, esto indica entonces la existen-

cia de una rama distinta de soluciones, hacia las cuales puede tender la original, y en ese caso

podemos anticipar una nueva variedad de soluciones posibles.

Aparte de la cuestión de la estabilidad, el análisis de perturbaciones nos dice mucho acerca

de las propiedades básicas de un AN. Las perturbaciones de un AN producen una señal carac-

teŕıstica, formada por un conjunto de frecuencias denominadas cuasinormales, cuya detección

indicaŕıa de manera contundente la presencia del mismo. El espectro de modos cuasinormales

contiene información acerca de la estructura geométrica de la métrica de fondo, especialmente

en las cercańıas del horizonte de eventos, y a su estudio se ha dedicado multitud de trabajos,

elaborandose técnicas de cálculo tanto anaĺıticas como numéricas ([15]-[65]).

También desde el punto de vista astrof́ısico, es útil estudiar las perturbaciones de AN con

masas estelares, intermedias y supermasivos, principalmente las concernientes al propio espacio-

tiempo alrededor de los mismos. Si la nueva generación de antenas gravitacionales como LIGO,

LISA, VIRGO y otras son capaces de detectar la señal gravitacional de un AN, la contribución
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dominante de dicha señal será el modo cuasinormal con la menor frecuencia, o sea, el modo

cuasinormal fundamental.

Otro aspecto interesante del estudio de perturbaciones en espacio-tiempos de AN y branas

está relacionado con el descubrimiento, a través de investigaciones en las TC, de una conexión

entre la descripción de ciertos sistemas f́ısicos fuertemente acoplados y la gravedad cuántica. Los

primeros indicios de esto aparecieron en estudios de las teoŕıas de calibración SU(N) con un gran

número de colores N . En ese ĺımite, t’Hooft observó la existencia de cadenas de gluones con un

comportamiento muy semejante a las cuerdas. Posteriormente se percibió que esas cuerdas viven

en un espacio con más dimensiones que aquel en que viven los gluones [66, 67]. Sin embargo, fue a

partir del análisis de D-branas, 8 que en 1998 Maldacena conjeturó una equivalencia exacta entre

modelos de supercuerdas y determinadas teoŕıas de calibración [68]. Esta equivalencia, conocida

como correspondencia AdS/CFT 9 contempla las ideas contenidas en el principio holográfico: los

grados de libertad gravitacionales en n dimensiones están asociados con campos cuánticos que

viven en la frontera (n− 1)-dimensional de ese espacio [69].

Desde el punto de vista práctico la correspondencia AdS/CFT posee una gran variedad de

aplicaciones [70, 71]. Mediante cálculos puramente gravitacionales se han investigado las propie-

dades no perturbativas de un plasma de quarks y gluones (PQG), cuya interacción es descrita

por una teoŕıa de norma no abeliana basada en el grupo SU(3), denominada Cromodinámica

Cuántica (CDC) 10. A pesar de las diferencias entre la CDC y SYM, los resultados encontrados

concuerdan relativamente bien con los datos experimentales [75]. Han sido estimadas de manera

excelente magnitudes como el coeficiente de cizalladura, el tiempo de termalización del PQG,

aśı como la fuerza de arrastre sobre un quark pesado en movimiento dentro del plasma, y otros

aspectos de la CDC, como la masa del estado “glueball”[76, 77, 78, 79].

Ua forma espećıfica de la correspondencia AdS/CFT, conocida como correspondencia cali-

bre/gravedad (C/G), explota la relativa simplicidad de los cálculos en la TGR para la investi-

8Las D-branas son objetos extendidos no perturbativos que aparecen como ingredientes fundamentales de las

teoŕıas de supercuerdas.
9El ejemplo original descubierto por Maldacena, indica que una teoŕıa de Super Yang Mills (SYM) con N = 4

espinores y grupo de norma SU(N), que es una teoŕıa de campos conforme, es equivalente a una teoŕıa de super-

cuerdas cerradas de tipo IIB. Las diez dimensiones en esa teoŕıa de supercuerdas asumen un formato particular:

cinco dimensiones forman una esfera S5 y las demás, un espacio con curvatura constante negativa, denominado

espacio anti de Sitter (AdS). La teoŕıa de campos es definida en el espacio de Minkowski usual, que es la frontera

tetradimensional del espacio-tiempo AdS.
10El PQG es, como su nombre lo indica, un plasma formado por quarks y gluones, que interactúan fuertemente

entre śı, y ha sido descubierto en experimentos que involucran colisiones entre iones pesados relativistas [72, 73, 74].
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gación del espectro de vibraciones de AN, y ha sugerido una nueva interpretación de los modos

cuasinormales en términos de dicha correspondencia [80]. Según esta idea, un AN en el espacio-

tiempo AdS es dual a un sistema en equilibrio térmico en la teoŕıa de campos conforme definida

en la frontera, con una temperatura caracterizada por la temperatura de Hawking del AN. Per-

turbar esta geometŕıa es equivalente a perturbar el estado termodinámico correspondiente en la

teoŕıa dual, de acuerdo a la descripción de este último que ofrece la teoŕıa de la respuesta lineal.

El tiempo de amortiguamiento de la perturbación, dado por el inverso de la parte imaginaria del

modo cuasinormal fundamental, equivale a la escala de tiempo para el retorno al equilibrio en

la teoŕıa de campos conforme. De esta manera, el cálculo de las frecuencias cuasinormales de un

agujero negro en un espacio-tiempo AdS, nos ofrece la posibilidad de obtener no solo la enerǵıa de

las excitaciones elementales, dada por la parte real de dichas frecuencias, sino también el tiempo

de termalización de un sistema descrito por una teoŕıa de campos conformes con acoplamiento

fuerte.

Lo anterior ha abierto el camino a posibles aplicaciones de la dualidad C/G a la F́ısica de la

Materia Condensada [81]. Se conoce que algunos metales manifiestan el fenómeno de la super-

conductividad, en el que desaparece la resistividad eléctrica por debajo de cierta temperatura

cŕıtica Tc. La teoŕıa microscópica de este fenómeno, constrúıda por Bardeen, Cooper y Schrieffer

(teoŕıa BCS) [82], sugiere que parejas de electrones con valores opuestos del esṕın pueden formar,

mediante la interacción con fonones, estados ligados denominados pares de Cooper. Tales estados

ligados son bosones, y por debajo de cierta temperatura cŕıtica pueden condensarse, dando lugar

al estado de superconductividad. Sin embargo, la teoŕıa BCS trabaja bien para superconductores

en el régimen de acoplamiento débil, o sea, para temperatura cŕıtica muy baja. Se espera que los

superconductores a altas Tc involucren electrones fuertemente ligados, y en este caso las ideas

holográficas pudiesen ayudarnos a entender algunos aspectos de sus propiedades f́ısicas. Motiva-

dos por lo anterior, en la última década han aparecido trabajos en los cuales se modelan, por el

lado gravitacional, superconductores holográficos usando, por ejemplo, AN asintóticamente AdS

con “cabello” escalar, donde el condensado está “representado”por el “cabello ”del AN [83, 84].

La temperatura en la teoŕıa de campos conforme es dual a la temperatura de Hawking del AN,

de manera que lo que se necesita es un AN que posea cabello escalar a bajas temperaturas y lo

pierda para T > Tc. En la literatura han aparecido generalizaciones del modelo anterior, a las que

se añaden, por ejemplo, campos magnéticos o correcciones de órdenes superiores en la curvatura.

En esta Tesis se resumen algunos de nuestros trabajos vinculados con varias de las cuestiones

antes mencionadas ([85]-[98]), persiguiendo como objetivo general el estudio de la dinámica de

campos clásicos y cuánticos en espacio-tiempos de ANs y branas. La estructura de la Tesis, en
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correspondencia con los objetivos espećıficos propuestos, es la siguiente:

En el Caṕıtulo 1, luego de una introducción breve a las ideas y ecuaciones fundamentales

de la TGR, definimos un espacio-tiempo de fondo general, cuyo elemento de ĺınea incluye como

casos particulares a todos los estudiados en el resto de la Tesis. Luego de calcular sus magnitu-

des geométricas fundamentales, revisamos algunas soluciones de AN y branas que aparecen en

escenarios propios no solo de la TGR, sino también de las teoŕıas SUGRA, las TC y la Teoŕıa M.

En el Caṕıtulo 2 se desarrolla la teoŕıa de perturbaciones lineales para campos clásicos bosónicos

y fermiónicos, que se propagan en un espacio-tiempo de fondo genérico descrito por la métrica

presentada antes. Además, se describen brevemente las principales etapas que caracterizan la

evolución temporal de perturbaciones en espacio-tiempos de AN.

Los resultados generales anteriores son aplicados, en el Caṕıtulo 3, al estudio de la propagación

de campos en espacio-tiempos de AN estáticos en varias dimensiones, aśı como en el exterior de

p-branas negras. Se determinan las frecuencias cuasinormales, se investiga la estabilidad de dichos

sistemas, y se estudia el decaimiento de las perturbaciones para tiempos asintóticamente grandes,

determinándose los exponentes que cuantifican dicho efecto.

En el Caṕıtulo 4, luego de revisar brevemente los principales aspectos formales de la TCEC,

se obtienen expresiones anaĺıticas generales para las componentes del tensor de enerǵıa-impulso

renormalizado de campos cuánticos masivos que se propagan en espacio-tiempos curvos. Este

resultado se aplica a la investigación de la polarización de vaćıo gravitacional en espacio-tiempos

con simetŕıa esférica, espećıficamente el caso de AN con carga eléctrica, y espacio-tiempos con

simetŕıa axial, correspondientes a cuerdas negras estáticas. Se demuestra que como consecuencia

de este efecto, se violan varias de las condiciones clásicas de enerǵıa de los campos.

El Caṕıtulo 5 incluye los resultados concernientes al cálculo de correcciones cuánticas a la

métrica de un agujero negro esféricamente simétrico, usando el tensor de enerǵıa-impulso renor-

malizado obtenido antes, como fuente en las ecuaciones semiclásicas de Einstein. Se obtienen

soluciones semiclásicas de AN con carga eléctrica, y se analiza la propagación de un campo es-

calar sin masa en dicho espacio-tiempo, determinándose las frecuencias que caracterizan la fase

cuasinormal de la respuesta. Se demuestra que, como consecuencia de la polarización del vaćıo

gravitacional debida a campos cuánticos masivos, un agujero negro semiclásico es mejor oscila-

dor que su contraparte clásico. Finalmente se presentan las Conclusiones y las perspectivas para

el trabajo en los temas abordados. Como complemento, se añade una cantidad considerable de

Anexos, que incluyen detalles de los cálculos que, por razones de espacio, son solo presentados

de manera resumida en el cuerpo principal de la Tesis, aśı como las Tablas de las frecuencias

cuasinormales determinadas para los distintos sistemas estudiados.



Caṕıtulo 1

AGUJEROS NEGROS Y BRANAS

1.1. Introducción

En la TGR la geometŕıa del espacio-tiempo se describe mediante una variedad diferenciable

con una métrica de signatura lorentziana dada por ds2 = gαβdx
αdxβ , donde gαβ es el tensor

métrico, que se obtiene como solución de las ecuaciones de Einstein1:

Gαβ + Λgαβ = 8πTαβ . (1.1)

donde Gαβ ≡ Rαβ − 1
2
gαβR, es el tensor de Einstein, R = gαβRαβ la curvatura escalar, Rαβ el

tensor de Ricci, y Λ la constante cosmológica. En el miembro derecho de (1.1) tenemos, como

fuente en las ecuaciones, al tensor de enerǵıa-momentum Tαβ de los campos de materia.

En este Caṕıtulo introducimos un espacio-tiempo D-dimensional general que describe la geo-

metŕıa asociada a varias soluciones de AN. Revisamos además las caracteŕısticas de algunas de

estas soluciones, que serán objeto de estudio en el resto de la Tesis.

1En el resto de la Tesis empleamos el sistema de unidades de Planck, en el que la constante de Cavendish G,

la velocidad de la luz c y la constante de Planck h son iguales a 1.

9
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1.2. Algunas soluciones de Agujero Negro

En lo adelante consideramos una variedad D-dimensional2 MD = Nm ×Kn con elemento de

ĺınea3

ds2 = gµνdz
µdzν = gab(y)dy

adyb + w2(y)dσ2
n, (1.2)

donde w(y) es una función arbitraria definida sobre la variedad lorentzianaNm y dσ2
n = γij(x)dx

idxj

es la métrica de Kn, que asumimos es una variedad de Einstein. Cuando el elemento de ĺınea

(1.2) describe el espacio-tiempo de un AN, entonces Kn describe la estructura de una sección

espacial de su horizonte de eventos. Si Kn es de curvatura constante, la curvatura seccional K = 0

describe un espacio plano; K = 1 uno esférico; y K = −1 un espacio hiperbólico [64].

Si MD = O2 × SD−2 es el producto tensorial de un espacio de órbitas bidimensional con la

(D − 2)-esfera, entonces (1.2) toma la forma:

ds2 = −A(r)dt2 +B(r)dr2 + C(r)dΩ2
D−2. (1.3)

La métrica anterior sirve para describir ANs D-dimensionales esféricamente simétricos [65]. La

solución de Schwarzschild-Tangherlini se obtiene con C(r) = r2, A(r) = B(r)−1 = 1 − 2M
rD−3 , y

describe un AN estático que presenta un horizonte de eventos en r ≡ rH = (2M)
1

D−3 , y una

singularidad en r = 0. En la expresión anterior M se puede interpretar como la masa del AN

medida por un observador infinitamente alejado.

También existen soluciones de AN estático en la teoŕıa de Einstein-Maxwell, con elemento de

ĺınea:

ds2 = −(1 − 2M

rD−3
+

Q2

r2D−6
)dt2 + (1− 2M

rD−3
+

Q2

r2D−6
)−1dr2 + r2dΩ2

D−2. (1.4)

donde Q representa la carga eléctrica (o magnética) del sistema 4. Para D = 4 se distinguen tres

situaciones f́ısicas: si 0 < |Q| < M hay dos horizontes, el de eventos rH = M +
√
M2 −Q2 y

el de Cauchy rC = M −
√
M2 −Q2, mientras que para |Q| = M , ambos horizontes coinciden

y tenemos una solución de AN extremo. Si Q > M la solución tiene una singularidad desnuda

temporal en el origen.

2La dimensión D de la variedad completa es la suma D = m+ n.
3Introducimos coordenadas zµ = (ya, xi) en MD, y en correspondencia con esto distinguiremos entre tensores

que yacen en las distintas variedades usando ı́ndices con letras griegas minúsculas para denotar tensores en MD,

ı́ndices latinos en el rango a, b..., h para tensores en Nm, e ı́ndices latinos en el rango i, j, ..., p para tensores sobre

Kn.
4A la solución que describe un AN con carga eléctrica se le denomina solución de Reissner-Norsdtröm.
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Para el sector bosónico de la SUGRA IIA(IIB) 10-dimensional, se obtienen soluciones de tipo

N p+2 × S8−p, con carga eléctrica Q localizada en el origen, que reciben el nombre de p-branas

[99, 100]. Tales objetos se describen por la métrica general introducida antes, con w2(̺) =

̺2
(
1− b7−p

̺7−p

)α2

, y gab(y)dyadyb = −A(̺)dt2 +B(̺)d̺2 + C(̺)
∑p

a=1 dζ
adζa, donde A(̺), B(̺) y

C(̺) dependen del número p y de dos parámetros: a y b, que están relacionados con la masa y

la carga de la p-brana. Para que no existan singularidades nulas es necesario que a > b. En este

caso, para todo valor de de p ≤ 6 el punto ̺ = b es una singularidad genuina del espacio-tiempo,

mientras que ̺ = a es un horizonte de eventos, lo que permite interpretar tal configuración como

un AN en 10 dimensiones. El caso extremo tiene lugar cuando a = b, en el que la singularidad y

el horizonte de sucesos se unen convirtiéndose en una singularidad desnuda para todos los valores

de p excepto p = 3 [69]. La 3-brana extrema continúa teniendo un horizonte de eventos en ̺ = a,

pero la singularidad f́ısica está localizada en ̺ = 0.

Existen también soluciones no extremas de AN cuerd́ıstico (ANC), obtenidas por intersección

de branas en la Teoŕıa-M [101]-[104], cuya métrica es (1.3) con A(r) = h(r)−
D−3

D−2f(r), B(r) =

h(r)
1

D−2f(r)−1, C(r) = r2h(r)1/D−2, donde f(r) = 1−
(
rH
r

)D−3
y h(r) =

∏nD

i=1

[
1 +

(
rH
r

)D−3
Qi

]
.

Esta métrica representa una familia de soluciones de AN parametrizadas por rH = µ
1

D−3 , y nD

cargas Qi = sinh2(δi) que pueden escribirse en términos de los parámetros δi, provenientes de

la compactificación de las dimensiones adicionales5. Si al menos una de las cargas es nula, se

tiene un AN con una singularidad genuina en el origen, escondida por un horizonte de eventos en

r = rH , mientras que para todas las cargas distintas de cero la solución describe un AN regular

con un horizonte de eventos en r = rH y un horizonte interno en el origen [99].

También hay soluciones de ANC asintóticamente AdS parametrizadas por tres cargas, pro-

venientes del modelo STU de la teoŕıa SUGRA calibrada (SUGRAC) D = 5, N = 2. El ele-

mento de ĺınea es (1.3) con A(r) = f(r)h(r)−
2

3 , B(r) = f−1(r)h(r)
1

3 , C(r) = r2h(r)
1

3 , siendo

f(r) = 1 − µ
r2

+ r2

L2h(r), h(r) =
∏3

i=1

(
1 + Qi

r2

)
y L el radio AdS definido por L2 = − 3

Λ
. El

horizonte de eventos es la mayor de las ráıces de la ecuación f(r) = 0.

Las ecuaciones de Einstein-Maxwell con constante cosmológica negativa poseen soluciones

que describen cuerdas negras (CNs), cuya métrica viene dada por ds2 = −(α2ρ2 − 4M
αρ

)dt2 +
1

(α2ρ2− 4M
αρ

)
dρ2 + ρ2dϕ2 + α2ρ2dz2, donde M es la masa por unidad de longitud de la cuerda y

α2 = −1
3
Λ, siendo Λ la constante cosmológica negativa. La solución tiene un horizonte de eventos

localizado en ρH =
3
√
4M
α

, y una singularidad polinómica genuina en el origen [105].

5µ es el denominado parámetro de no-extremalidad, y nD un número que depende de la dimensión D del

espacio-tiempo.
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PROPAGACIÓN DE CAMPOS ALREDEDOR DE AGUJEROS

NEGROS. FORMALISMO LINEAL

2.1. Introducción

En el Universo no existen agujeros negros aislados. Por consiguiente, un AN siempre estará en

un estado perturbado, y siempre que se quiera conocer algo acerca de su interacción con el en-

torno astrof́ısico o microscópico, se deberá comenzar por un análisis de sus perturbaciones. La

evolución temporal de una perturbación alrededor de un AN posee un peŕıodo inicial transi-

torio relativamente corto que depende fuertemente de las condiciones iniciales, seguido por un

peŕıodo largo de oscilaciones propias amortiguadas, llamadas modos cuasinormales, y, a tiempos

muy grandes, una etapa en que los modos cuasinormales son suprimidos por colas potenciales o

exponenciales.

En este caṕıtulo ofrecemos un tratamiento lo más general y abarcador posible del problema

relacionado con el estudio de perturbaciones de diferente esṕın alrededor de ANs. Algunos de los

resultados presentados se resumen en nuestros trabajos [93]-[98].

2.2. Formalismo Lineal

Consideremos la dinámica de un sistema de campos de materia ϕk acoplados a un campo de

gravedad. La solución general de las ecuaciones de Einstein y las de los campos la constituyen la

métrica y los campos propagándose en la misma, que denotaremos por ds2 = gαβ (x) dx
αdxβ y

ϕk = ϕk (x). Para ANs estacionarios, la métrica y los campos pueden expresarse como la suma

de cantidades de fondo no perturbadas g
(0)
αβ , ϕ

(0)
k y las perturbaciones hαβ , δϕk, o sea: gαβ →

12
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g
(0)
αβ+hαβ, ϕk → ϕ

(0)
k +δϕk. Además, despreciamos contribuciones de ordenO

(
(hαβ)

2),O (hαβδϕk),

O((δϕk)
2) y superiores.

Si asumimos que los campos de materia considerados son débiles en el sentido de que el

efecto de su tensor de enerǵıa-momentum sobre la métrica de fondo del AN puede despreciarse,

entonces las perturbaciones de dichos campos f́ısicos en el fondo gravitacional no se acoplan a

las perturbaciones de la métrica y, por consiguiente, dichos campos no son más que campos de

prueba en el fondo gravitatorio del AN.

2.3. Ecuaciones de evolución para perturbaciones

En la Tesis se demuestra que la evolución temporal de perturbaciones de diferente esṕın

alrededor de ANs se describe, por lo general, por una ecuación de ondas de la forma:

∂2ψσ

∂t2
− ∂2ψσ

∂r2∗
+ Vσ(r)ψσ = 0, (2.1)

donde ψσ es la amplitud de la perturbación y σ representa el conjunto de números que describen

el espectro de la parte angular del operador de evolución temporal. En la ecuación anterior Vσ(r)

representa el potencial efectivo que contiene toda la información sobre el objeto compacto en

cuestión. A continuación resumimos brevemente los resultados para cada campo de prueba.

2.3.1. Perturbación escalar

En el espacio-tiempo (1.3) , una perturbación escalar φ(zµ) con masa µ, acoplada mı́nimamen-

te a la gravedad se describe mediante la ecuación (2.1) para la variable maestra escalar ϕℓ,m(y
a),

con el potencial efectivo 1:

V
(E)
ℓ (r) =

1

16

(
B

A

)
H2(r)− Uℓ(r), (2.2)

donde Uℓ(r) = A
[

1
C(r)

{
(D−2)(4−D)

4
F (r)− D−2

2
G(r)− ℓ(ℓ+D − 3)

}
− µ2

]
, y las funciones F (r),

G(r) dependen de las componentes de la métrica y sus derivadas respecto a la variable radial.

Además, en (2.1) r∗ representa la coordenada ”tortuga”2 definida según d
dr∗

=
√

A
B

d
dr

.

1ℓ ≥ 0 y |m| ≤ ℓ son los números multipolar y azimutal, respectivamente.
2Si la constante cosmológica Λ ≥ 0, la coordenada tortuga mapea toda la región exterior al AN en el intervalo

(−∞,∞). En el caso del espacio AdS ( Λ ≤ 0 ) el intervalo es (−∞, r∗∞), donde r∗∞ es un valor finito que

depende de la constante de integración que entra en la definición de la coordenada tortuga.
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2.3.2. Perturbaciones de prueba electromagnéticas

Una perturbación electromagnética se describe mediante la 1-forma Aµ, que define el tensor

del campo electromagnético3 Fµν = ∇µAν − ∇νAµ. De acuerdo a su comportamiento ante el

grupo de simetŕıas de Kn, encontramos dos sectores tensoriales irreducibles de Aµ: uno escalar y

otro vectorial. Para espacio-tiempos descritos por la métrica (1.3) las ecuaciones de evolución de

cada sector se reducen a (2.1), con los potenciales efectivos:

V
(escalar)
ℓ (r) =

A

4r2B
(D − 4)

[
D − 2

r
+

(
d

dr
lnB − d

dr
lnA

)]

+
A

r2
ℓ (ℓ+D − 3) . (2.3)

V
(vector)
ℓ (r) =

A

4rB
(D − 4)

[
D − 6

r
+

(
d

dr
lnA− d

dr
lnB

)]

+
A

r2
(ℓ+ 1) (ℓ+D − 4) . (2.4)

2.3.3. Perturbaciones de prueba fermiónicas

Para un campo de Dirac neutro sin masa propagándose en un espacio-tiempo descrito por

(1.3), el potencial efectivo resulta

Vℓ = ±dΛℓ

dr∗
+ Λ2

ℓ . (2.5)

donde Λℓ(r) =
(
ℓ+ D−2

2

)√
A
C
, mientras que un campo de Rarita-Schwinger en un espacio-tiempo

de Schwarzschild se describe por el potencial efectivo

V
( 3
2
)

ℓ (r) = Qℓ(r)−
dTℓ(r)

dr∗
(2.6)

con la función Tℓ(r) definida por Tℓ(r) = − 1
Fℓ(r)

(ℓ+3)(ℓ+1)
√
(ℓ+ 3)(ℓ+ 1) + 1 + d

dr∗
(lnFℓ(r)),

y Fℓ(r) =
r6

△3/2Qℓ(r), siendo ∆ = r2 − 2Mr.

3Denotaremos por ∇µ, Da y D̂i, las derivadas covariantes definidas en MD, Nm y Kn, respectivamente.
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2.3.4. Perturbaciones gravitacionales.

El caso f́ısicamente más interesante es el de las perturbaciones gravitacionales. Proyectando

hµν con relación a Kn, y analizando su comportamiento ante el grupo de simetŕıas de dicha va-

riedad, encontramos tres sectores tensoriales irreducibles para las perturbaciones gravitacionales:

escalar, vectorial y tensorial. Para remover la ambigüedad de calibración propia de las pertur-

baciones gravitacionales, podemos construir nuevas variables invariantes de norma, y escribir las

ecuaciones de perturbación para cada sector en términos de las mismas. Por ejemplo, para el

sector tensorial se obtiene la ecuación maestra

�̂ϕGT (ya) +W (GT )ϕGT (ya) = 0, (2.7)

dondeW (GT )(ya) = 1
w2

[
n(2−n)

4
(Dw)2 − n

2
w�̂w − k2T − 2K

]
. En el caso particular en que el espacio-

tiempo global Kn sea la n-esfera Sn, obtenemos (2.1) con el mismo potencial efectivo que el de

un campo escalar sin masa con acople mı́nimo a la gravedad. Este es uno de los resultados más

importantes de la Tesis.

2.4. Evolución temporal de las perturbaciones y modos

cuasinormales

Podemos estudiar la evolución temporal de perturbaciones resolviendo (2.1) directamente,

usando métodos numéricos [39, 65]. Las frecuencias cuasinormales pueden determinarse direc-

tamente a partir de la data numérica, y además estudiar las colas de los campos para tiempos

asintóticamente grandes.

Otra forma de obtener las frecuencias cuasinormales es resolviendo el problema de autovalo-

res4: (
d2

dr2∗
+ ω2 − V (r)

)
Rω (r) = 0. (2.8)

obtenido mediante la sustitución ψ(t, r) =
∑∞

n=0 exp (−iωnt)Rωn (r) en (2.1). En la frontera

de la región de trabajo, la función que describe la perturbación debe ser una onda puramente

emergente, exceptuando el caso de espacios asintóticamente AdS, en los que usualmente se impone

en el infinito espacial una condición de frontera de Dirichlet.

4En lo adelante suprimimos los sub́ındices que indican la dependencia de la misma con los números angulares

σ, y el sub́ındice n de ωn, entendiendo que ω es cualquier frecuencia perteneciente al espectro cuasinormal.
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PERTURBACIONES DE AGUJEROS NEGROS CLÁSICOS

En este Caṕıtulo se resumen nuestros trabajos [90]-[96], en los que se estudian perturbaciones

de diferente esṕın, en varios espacio-tiempos de interés.

3.1. Perturbaciones de ANs de Schwarzschild

La Figura (3.1) presenta los resultados de la integración caracteŕıstica de la ecuación de evo-

lución para un campo de gravitinos que se propaga en un AN de Schwarzschild. En la versión

completa de la Tesis, se muestran además los perfiles de evolución temporal de perturbaciones

escalares, vectoriales, espinoriales y gravitacionales. En todos los casos se distinguen las fases

transitoria, cuasinormal y colas potenciales a tiempos muy grandes. Para evaluar las frecuencias

cuasinormales usamos dos métodos diferentes: un ajuste de la data numérica usando el algoritmo

de Prony, y un método semianaĺıtico de tipo WKB de sexto orden, con excelente coincidencia en

los resultados obtenidos por ambos procedimientos. La Figura (3.1) muestra además los modos

cuasinormales calculados para la perturbación de Rarita-Schwinger. Para un número multipo-

lar dado, los sobretonos superiores se vuelven menos oscilatorios, y decrece el factor de calidad

Υ = |Re(ω)|/|Im(ω)| de los modos. Lo contrario sucede para los modos con número multipolar

mayor y el mismo número de sobretono. A medida que se incrementa el esṕın de una perturbación

bosónica, esta decae más rápidamente, y lo opuesto sucede para perturbaciones fermiónicas. En

cuanto a la relajación de las perturbaciones fuera del AN, nuestros resultados para el caso de

perturbaciones de esṕın s = 0, 1/2, 1 y 2, se corresponden con los reportados previamente [51, 52].

Sin embargo, las perturbaciones de gravitino desaparecen más rapidamente, y nuestros resulta-

dos numéricos sugieren que el decaimiento a tiempos asintóticamente grandes es proporcional a

t−(2ℓ+5).

16
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Figura 3.1: Perfil logaŕıtmico de la evolución temporal de gravitinos con ℓ = 2 (izquierda) y sus

modos cuasinormales para varios ℓ (derecha) en un AN de Schwarzschild con rH = 2.

3.2. Perturbación escalar sin masa en p-branas negras

Algunos resultados de la integración caracteŕıstica se muestran en la Figura 3.2, donde se

observa el cuadro usual de la dinámica perturbativa de campos en espacio-tiempos de ANs.

La última fase depende fuertemente del valor del parámetro k, que puede interpretarse como un

parámetro de masa para el campo escalar en la teoŕıa. Para k = 0, observamos un decaimiento no

oscilatorio que sigue una ley de potencias. Pero, si k 6= 0, la cola es oscilatoria, con una envolvente

del tipo ley de potencias. Las frecuencias cuasinormales se determinaron usando el método WKB

de sexto orden y el ajuste de la data numérica proveniente de la integración caracteŕıstica. Se

observó que para valores grandes del parámetro a, que para b fijo representa esencialmente la

masa de la brana, con el aumento de k los modos son más oscilatorios y menos amortiguados. Por

otro lado, las frecuencias ω escalan aproximadamente con el inverso del parámetro de masa a−1

(excepto para valores pequeños de dicho parámetro). Con el aumento del parámetro p, disminuyen

de forma aproximadamente lineal las partes real e imaginaria de las frecuencias.

Para tiempos asintóticamente grandes la perturbación no masiva decae siguiendo una ley

de potencias proporcional a tα(p,ℓ). Para p = 1, 3, 5, 6, podemos determinar anaĺıticamente que

α = 2ℓ − p + 8 para p = 1, 3, 5 y, α = 2ℓ + 3 para p = 6. Para p = 0, 2, 4, nuestros resultados

numéricos sugieren una expresión similar con α = 2ℓ − p + 10. Para k 6= 0, las simulaciones

numéricas sugieren colas de la forma ψℓ ∼ sin(kt)t−γ(p,ℓ). Si p = 6, podemos usar los resultados

generales obtenidos en las referencias [58, 59, 62] para campos escalares masivos, y aśı determinar
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Figura 3.2: Gráficos Log-Log de la evolución temporal de una perturbación escalar en una p-brana

no extrema. Se indican la fase cuasinormal y la cola a tiempos grandes. Los parámetros de la

brana son p = 0, a = 2, b = 0,5, ℓ = 1 and k = 0 (arriba), k = 1 (abajo). La figura se ha tomado

de la referencia [90].

el coeficiente en la ley de potencias de manera anaĺıtica, que resulta: γ(p = 6, ℓ) = 5/6. Para

otros valores de p el problema anaĺıtico permanece abierto.

En el caso de la geometŕıa extrema el análisis es más sutil. Si p = 3, estamos en presencia de

una solución de AN y el problema de las perturbaciones está claramente formulado. Para p < 5,

el potencial luce similar al caso no-extremo, lo que implica que el problema de propagación de

ondas unidimensional inicial es similar al discutido previamente para el caso no extremo1.

1Las frecuencias cuasinormales, que se muestran en el Anexo F de la Tesis, fueron calculadas usando la fórmula

WKB de sexto orden. La singularidad desnuda de tipo tiempo [69] para p = 6, hace que el problema de Cauchy

no sea bien comportado, por lo que exclúımos este caso de nuestros cálculos numéricos.
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3.3. Propagación de campos en espacio-tiempos de agu-

jeros negros cuerd́ısticos

3.3.1. Campos fermiónicos

En esta sección consideramos perturbaciones no masivas de Dirac en espacio-tiempos de

ANCs. En estos casos el potencial efectivo se describe por medio de las expresiones (2.5). Los

perfiles de potencial en todos los casos, desde D = 4 hasta D = 9 son similares: en forma de

barrera definida positiva, que tiende a cero cuando nos alejamos del origen, y se anulan en el ho-

rizonte de eventos. Por consiguiente, es de esperar que todos los agujeros negros cuerd́ısticos sean

estables ante perturbaciones fermiónicas, hecho que confirman nuestros resultados numéricos.

La integración caracteŕıstica muestra que las perturbaciones evolucionan siguiendo el patrón

convencional que aparece en la propagación de campos en otros tipos de AN. La Figura 3.3 mues-

tra la evolución temporal de un campo de Dirac sin masa en espacio-tiempos de ANCs regulares

de varias dimensiones para cargas iguales a 1. Los resultados para diferentes configuraciones de

cargas son similares. Como puede observarse, la fase cuasinormal disminuye su duración con el

aumento de la dimensión del espacio-tiempo. Este patrón es igual para todas las configuraciones

de cargas estudiadas. Las frecuencias cuasinormales fueron calculadas usando el método WKB

de sexto orden y un ajuste de la data numérica mediante el método de Prony.

Un incremento en la carga del AN produce un decrecimiento en la frecuencia y el factor de

amortiguamiento de la oscilación. Para valores fijos de las cargas, la frecuencia de oscilación se

incrementa para números multipolares altos, con número de sobretono fijo. Resulta interesante

que el factor de amortiguamiento de las frecuencias cuasinormales con n = 0 alcanza rápidamente

un valor fijo para grandes valores del número multipolar. Esta situación es diferente para números

de sobretono grandes, ya que el factor de amortiguamiento de la oscilación cuasinormal para n fijo

decrece con ℓ. El comportamiento cualitativo anterior es genérico, independiente de los valores

de las cargas y la dimensión f́ısica en la solución.

Por otro lado, para D = 4, la data numérica sugiere un decaimiento a tiempos muy grandes

proporcional a t−(2ℓ+3). Para D > 4 nuestro estudio numérico sugiere que ANCs de dimensión

impar se relajan a tiempos asintóticamente grandes siguiendo una ley de potencias proporcional a

t−(2ℓ+D−2), mientras que en el caso de dimensión par el relajamiento es más rápido, proporcional a

t−(2ℓ+3D−8), paraD = 6, y a t−(2ℓ+3D−16), paraD = 8. Es importante recalcar que una dependencia

parecida fue demostrada anaĺıticamente para el caso de perturbaciones escalares en espacio-

tiempos de Schwarzschild-Tangherlini [61].
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Figura 3.3: Gráficos logaŕıtmicos de la evolución temporal de perturbaciones de Dirac no masivas

en agujeros negros cuerd́ısticos. Los parámetros de la solución son ℓ = 1 y D = 4, Q1 = Q2 =

Q3 = Q4 = 1 (arriba izquierda),y D = 5, Q1 = Q2 = Q3 = 1 (arriba derecha).

3.3.2. Evolución de un campo escalar sin masa en el ANC del modelo

STU

La Figura 3.4 muestra la evolución temporal del modo fundamental gravito-tensorial (modo

ℓ=2 de la perturbación escalar) para ANCs del modelo STU, con dos cargas iguales y una

tercera variando, y la evolución de modos con distinto valor de ℓ, respectivamente. Las frecuencias

cuasinormales se calcularon ajustando la data numérica obtenida, pues en este caso, es imposible

la aplicación del método WKB.

Lo primero que salta a la vista es que toda la evolución temporal está dominada por la fase

cuasinormal, a diferencia del caso de perturbaciones en espacio-tiempos asintóticamente planos.

Como en el caso que analizamos el potencial efectivo diverge en el infinito espacial, no aparecen

colas potenciales. Además, con el aumento de la carga, −Im(ω) aumenta, lo que corresponde a

una disminución de la escala de tiempo de decaimiento, como muestran también las Figuras 3.5

y 3.6.

Un resultado interesante es el relacionado con el comportamiento del campo escalar de prueba

con el aumento del número multipolar ℓ. La Figura 3.4 muestra que los modos con mayor número

multipolar decaen más lentamente, al contrario de lo que sucede para ANs asintóticamente planos.

El comportamiento anterior es independiente de las cargas en la solución de ANC.
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Figura 3.4: Gráficos semi-logaŕıtmicos de la evolución temporal de perturbaciones escalares sin

masa en ANCs del modelo STU en 5D. Los parámetros de la solución son: ℓ = 2, Q1 = Q2 = 1,

Q3 = 1/10, 4/10, 7/10, 1 (arriba desde la curva superior a la inferior) y Qi = 1, ℓ = 2, ..., 7 (abajo

desde la curva inferior a la superior).
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TEORÍA CUÁNTICA DE CAMPOS EN ESPACIO-TIEMPOS

CURVOS

4.1. Introducción

En la TCEC se consideran las propiedades cuánticas de todos los campos del modelo estándar,

pero se trata al campo gravitatorio como un fondo clásico. Aśı, el campo gravitacional se sigue

describiendo por ecuaciones de Einstein, cuya fuente es el tensor de enerǵıa-momentum de los

campos de materia cuánticos 〈Tµν〉ren, calculado en un espacio-tiempo de fondo clásico fijo [106,

110].

Este Caṕıtulo contiene un resumen de nuestros trabajos [85]-[89], en los que se usa el método

de la acción efectiva cuántica para obtener expresiones anaĺıticas aproximadas de 〈Tµν〉ren para

campos cuánticos masivos en espacio-tiempos curvos arbitrarios, y se investiga la polarización

del vaćıo gravitacional en espacio-tiempos de CNs estáticas.

4.2. Tensor de enerǵıa-momentum renormalizado en la

aproximación de Schwinger-DeWitt

Consideremos un campo arbitrario ϕA(x) definido sobre un espacio-tiempo D-dimensional,

cuya dinámica sea generada por el operador mı́nimo de segundo orden [7, 107]

∆̂A
B =

{
δAB(�̂−m2) +QA

B(x)
}√

−g(x)δ(x, x′), (4.1)

donde �̂ = gµν∇µ∇ν es el operador covariante de Laplace-Beltrami, ∇µ es la derivada covariante,

m es el parámetro de masa del campo cuántico y QA
B(x) es una matriz arbitraria.

23
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En la Tesis se demuestra que los operadores que describen la dinámica de campos escalares,

vectoriales y espinoriales masivos pueden reducirse siempre a la forma (4.1). Para tales campos,

es posible escribir la acción efectiva cuántica renormalizada, al nivel de un lazo, en forma de

un desarrollo asintótico en potencias inversas del cuadrado de la masa del campo1. El primer

término de dicho desarrollo puede ser escrito en la forma general

Γ(1)ren =
1

192π2m2

∫
d4xg1/2

(
α
(s)
1 R�R + α

(s)
2 Rµν�R

µν + α
(s)
3 R3 + α

(s)
4 RRµνR

µν (4.2)

+ α
(s)
5 RRµνρσR

µνρσ + α
(s)
6 Rµ

νR
ν
ρR

ρ
µ + α

(s)
7 RµνRρσR

ρ σ
µ ν

+ α
(s)
8 RµνR

µ
λρσR

νλρσ + α
(s)
9 Rρσ

µνRµν
λγRλγ

ρσ + α
(s)
10R

ρ σ
µ νR

µ ν
λ γR

λ γ
ρ σ,

)

=
1

192π2m2

10∑

i=1

α
(s)
i Wi,

donde los coeficientes numéricos α
(s)
i dependen del esṕın del campo.

A partir de la acción efectiva renormalizada podemos obtener las componentes del tensor de

enerǵıa-momentum de los campos de materia cuánticos en presencia de un campo gravitacional

externo [85]-[89]

〈Tµν〉ren ≡
〈
out, vac|Tµν(x)|in, vac

〉
ren

=
2√−g

δΓ(1)ren

δgµν(x)
. (4.3)

Debido a la dificultad que supone calcular las derivadas funcionales en la expresión anterior,

durante mucho tiempo se pensó que esta era una tarea imposible de resolver2. En nuestros

trabajos [85]-[89] se dió solución a esta cuestión, y se obtuvieron expresiones anaĺıticas para

〈Tµν〉ren correspondiente a campos de diferente esṕın.

Una vez constrúıdo el tensor de enerǵıa-momentum de un campo cuántico en un fondo curvo,

podemos usar esta magnitud como fuente en las ecuaciones semiclásicas de Einstein:

Rµν −
1

2
gµνR + Λgµν = 8π〈Tµν〉ren (4.4)

1Este desarrollo asintótico define la denominada aproximación de Schwinger-DeWitt, conveniente para el es-

tudio de la polarización de vaćıo de campos masivos siempre y cuando la longitud de onda de Compton λ = 1/m

sea mucho menor que la escala de longitud caracteŕıstica Lc.
2Birrel y Davies, en la página 190 de su libro clásico Quantum Fields in Curved Space, escribieron al respecto

(La W(1)ren, de Birrel y Davies es nuestra Γ(1)ren): ”... in a practical calculation it is not possible to follow this

route. This is because in order to carry out the functional differentiation of Γ(1)ren with respecto to gµν ..., it is

generally necessary to know W(1)ren for all geometries gµν . This is impossible difficult.”
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Resolviendo las ecuaciones (4.4) podemos hallar las correcciones cuánticas al espacio-tiempo de

fondo, debidas a los efectos de retroacción de los campos cuánticos no gravitacionales.

4.3. Polarización del vaćıo gravitacional en el espacio-

tiempo de una CN estática

En el espacio-tiempo de una cuerda negra estática3 se pueden obtener resultados simples para

〈Tµν〉ren, tal y como fue demostrado por primera vez en nuestros trabajos [85]-[89].

En el caso general, todas las componentes del 〈Tµν〉ren de un campo escalar masivo son

positivas en el horizonte de eventos para valores de la constante de acoplamiento que satisfacen

la relación η3 + 1
40
η < 1

210
, por lo que la densidad de enerǵıa ε = −T (E) t

t es negativa, lo cual

resulta en una violación de la Condición débil de enerǵıa(CDE). Un campo masivo espinorial

cuántico viola además, la condición de enerǵıa dominante (CEDom).

Finalmente, un campo masivo vectorial, viola la condición nula de enerǵıa (CNE) en el hori-

zonte. Para que la CDE se satisfaga, necesitamos una densidad de enerǵıa positiva, tal y como

obtenemos en este caso particular, pero además se requiere que la CNE se satisfaga, por lo que un

campo vectorial masivo en el espacio-tiempo de una cuerda negra estática viola la CDE, al igual

que en los casos escalar y espinorial. Si la CNE se satisface y la suma de las presiones principales

y la densidad de enerǵıa del campo es positiva, entonces se cumple la Condición fuerte de enerǵıa

(CFE), mientras que la CEDom requiere que −ε ≤ pj ≤ ε. Por consiguiente, en este caso también

se violan ambas condiciones de enerǵıa.

3En la versión completa de la Tesis se incluye además un estudio de los efectos de la polarización de vaćıo

gravitacional alrededor de un AN con carga eléctrica.
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AGUJEROS NEGROS SEMICLÁSICOS EN CUATRO

DIMENSIONES Y SUS MODOS CUASINORMALES

5.1. Introducción

En este Caṕıtulo abordamos el estudio de los cambios que la polarización del vaćıo gravita-

cional produce sobre el espectro cuasinormal de un campo escalar que se propaga en el exterior

de un AN semiclásico. Los resultados descritos son un resumen de nuestros trabajos [91, 92].

5.2. Modos cuasinormales de un campo escalar sin masa

en un AN semiclásico de Reissner-Nordstrom

Hasta donde nos es conocido, el primer estudio de la influencia de las correcciones cuánticas

al espacio-tiempo de un AN en 4D sobre sus modos cuasinormales fue realizado en nuestros

trabajos [91, 92].

Es posible demostrar [91, 92] que el elemento de ĺınea que describe un AN semiclásico esféri-

camente simétrico viene dado por (1.3) con C(r) = r2 y

1

B(r)
= 1− 2M

r
+
Q2

r2
+

8π

r

∑

j

Nj

∫ r

∞
ζ2

〈(
T t
t

)〉j
ren

dζ, (5.1)

A(r) =
1

B(r)
exp {λ(r)} , (5.2)
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donde

λ(r) = 8π
∑

j

Nj

∫ r

∞
ζBj (ζ)

(
〈(T r

r )〉jren −
〈(
T t
t

)〉j
ren

)
dζ. (5.3)

y el sub́ındice j denota a las especies individuales de campos con diferente peso de esṕın. En las

expresiones anteriores Q yM representan la carga y la masa de la solución clásica. Las integrales

en (5.1) y (5.3) pueden calcularse introduciendo un desarrollo perturbativo en el parámetro

ε = 1/M2, donde M es la masa desnuda del AN.

Si consideramos la evolución de una perturbación escalar de prueba no masiva en el exterior de

un AN semiclásico de Reissner-Nordström, el potencial efectivo, para todos los valores admisibles

de los parámetros que describen la solución semiclásica, tiene forma de barrera de potencial

definida positiva, lo cual asegura la estabilidad de la solución. Por consiguiente, podemos calcular

las frecuencias cuasinormales usando la aproximación WKB de sexto orden.

En la versión completa de la Tesis se demuestra que la polarización del vaćıo gravitacional pro-

duce un corrimiento en las frecuencias cuasinormales del sistema semiclásico. Un AN semiclásico

experimenta un incremento en la parte real de la frecuencia de oscilación, y un decrecimiento del

factor de amortiguamiento, de manera que se produce un incremento del factor de calidad del

oscilador. Como es de esperar, las diferencias en las frecuencias cuasinormales se reducen en la

medida que aumenta la masa desnuda del sistema.

Aśı, el AN semiclásico de Reissner-Nordström es un mejor oscilador que su contraparte clásica.

Este resultado está en correspondencia cualitativa con el obtenido por Konoplya al estudiar la

influencia de la creación de part́ıculas escalares por medio de la radiación de Hawking sobre la

métrica de un agujero BTZ [112].

El efecto encontrado puede entenderse como consecuencia del decrecimiento de la masa del

AN semiclásico, con respecto a la masa del agujero desnudo, asociado al carácter exótico de

los campos cuantizados, que violan la condición de enerǵıa débil en las cercańıas del horizonte

de sucesos, ya que una disminución de la masa medida por un observador distante ocasiona un

incremento en la frecuencia de oscilación del sistema.



CONCLUSIONES Y PERSPECTIVAS

En esta Tesis estudiamos la propagación de campos clásicos y cuánticos en espacio-tiempos de

ANs. A continuación, a manera de conclusiones, se resumen los principales resultados obtenidos:

1. La dinámica de la propagación de campos bosónicos y fermiónicos alrededor de AN y

branas se describe por la ecuación de ondas (2.1), donde el potencial efectivo depende de

las caracteŕısticas propias del AN. Para tiempos intermedios la evolución está caracterizada

por un conjunto de modos cuasinormales, cuya frecuencia se puede calcular resolviendo el

problema de autovalores (2.8). Para tiempos muy grandes, la amplitud de la perturbación

decae siguiendo una ley de potencias en espacios asintóticamente planos, mientras que para

un ANC del modelo STU, la fase cuasinormal domina toda la evolución temporal. En

dependencia del carácter tensorial de la perturbación y su comportamiento ante el grupo

de simetŕıas global del espacio-tiempo de fondo, podemos tener varios sectores tensoriales

irreducibles que caracterizen completamente la dinámica. Es interesante que la estabilidad

de soluciones de alta dimensión puede analizarse en términos de un campo escalar sin masa

con acople mı́nimo a la gravedad, debido a la equivalencia entre la descripción matemática

de este campo y el sector gravito-tensorial.

2. En todos los casos estudiados no se encontró ninguna inestabilidad. En un AN de Schwarzs-

child, las perturbaciones bosónicas y fermiónicas se propagan de manera dependiente del

esṕın. Las perturbaciones bosónicas con esṕın mayor tienen menor factor de calidad, y lo

contrario sucede en el caso fermiónico. Por otro lado, los campos escalares, electromagnéti-

cos, gravitacionales y de Dirac decaen a tiempos asintóticamente grandes siguiendo una ley

de potencias proporcional al factor t−(2ℓ+3), y las perturbaciones de gravitino decaen más

rápidamente, siguiendo una ley proporcional a t−(2ℓ+5).

3. En ANCs, el aumento del parámetro de carga induce un decrecimiento en la frecuencia

cuasinormal y en el factor de amortiguamiento del sistema. En 4D, el sistema decae a

28
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tiempos asintóticamente grandes siguiendo una ley de potencias proporcional a t−(2ℓ+3),

mientras que, para dimensiones mayores que cuatro, los ANCs de dimensión impar se

relajan siguiendo una ley de potencias proporcional a t−(2ℓ+D−2), mientras que en el caso

de dimensión par el relajamiento es más rápido, proporcional a t−(2ℓ+3D−8) para D = 6, y

a t−(2ℓ+3D−16) para D = 8.

4. Para campos cuánticos masivos, en la aproximación de grandes masas del campo, se puede

obtener una expresión anaĺıtica para el tensor de enerǵıa-impulso renormalizado del mismo

en un fondo curvo. Con el mismo podemos resolver el problema de la retroacción del campo

cuántico sobre la métrica original, y obtener las correcciones cuánticas a la misma. Para

campos con geometŕıa esférica, uno de los efectos de la retroacción sobre un AN es el cambio

en la masa del mismo, que disminuye como consecuencia de la violación, por parte del campo

cuántico, de la condición débil de enerǵıa. Esto podŕıa dar lugar a efectos observables, pues

un AN semiclásico cargado eléctricamente sobre el que se propaga una perturbación de

prueba escalar se comporta como mejor oscilador que su contraparte clásica.

5. Los campos cuánticos masivos de distinto esṕın en el espacio-tiempo de una cuerda negra

estática violan algunas o todas las condiciones de enerǵıa locales sobre el horizonte de

eventos. Un campo escalar con acople mı́nimo, o conforme a la gravedad, un campo vectorial

y uno espinorial, violan la CDE en el horizonte. El campo espinorial viola, además, la

CEDom, mientras que el campo vectorial viola también la CNE y la CFE.

Como perspectivas para el trabajo futuro podemos mencionar las siguientes:

1. Estudiar la propagación de campos de esṕın 1 y fermiónicos en espacio-tiempos de p-branas

negras con vistas a su uso en aplicaciones de la correspondencia AdS/CFT. De la misma

manera, seŕıa interesante investigar la influencia de la carga eléctrica en la propagación de

gravitinos, estudiando el caso de un AN de Reissner-Nordström.

2. Desarrollar un argumento anaĺıtico que nos permita obtener el factor de decaimiento, para

tiempos asintóticamente grandes, de perturbaciones de gravitino en ANs, para complemen-

tar los resultados numéricos obtenidos en esta Tesis.

3. Investigar la propagación de campos de diferente esṕın, y cargados eléctricamente, en ANC

de modelo STU, con vistas a utizarlos en aplicaciones de la correspondencia AdS/CFT en

la investigación de superconductores holográficos. Completar el estudio de perturbaciones

bosónicas en el caso de ANCs asintóticamente planos.
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4. Implementar métodos numéricos más potentes para el cálculo de modos cuasinormales,

como el de fracciones continuas para espacio-tiempos generales y el de Horowitz-Hubbeny

para espacio-tiempos asintóticamente AdS.

5. Investigar la polarización de vaćıo en espacio-tiempos de cuerdas negras con carga eléctrica

y rotación. Analizar si se violan también las condiciones locales de enerǵıa en estos casos.

Resolver el problema de retroacción en sistemas con geometŕıa ciĺındrica y usar los re-

sultados generales para encontrar correcciones cuánticas a las métricas mencionadas. Una

cuestión muy interesante seŕıa analizar si la cuantización de campos es un factor determi-

nante en la presencia de curvas temporales cerradas en cuerdas negras en rotación, dada la

posible aplicación de estos sistemas como máquinas de tiempo.

6. Obtener el término de orden siguiente para 〈T ν
µ 〉ren, proporcional a la cuarta potencia del

inverso de la masa del campo cuántico, para investigar si, con la mejoŕıa de la aproximación,

los resultados cambian de manera apreciable. Si es el caso, incluir este nuevo orden en los

resultados obtenidos en esta Tesis.
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tation, Cuiabá City, Brazil (2009).

4. Rarita-Schwinger perturbations in four dimensional Schwarzschild black holes, Owen Pavel

Fernández Piedra, presentado en STARS2011, Habana, Cuba (2011).

5. Fermion perturbations in four dimensional stringy black holes, Owen Pavel Fernández Pie-

dra, presentado en STARS2011, Habana, Cuba (2011).

6. Object picture, quasinormal modes and long time tails of fermion perturbations in string

theory black hole with U(1) charges, Owen Pavel Fernández Piedra, Fidel Sosa, José Bernal
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