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3

1 Introduction

At the beginning of the 20th century, it was widely believed that physics came to a halt. The
general perception was that physics is completely described by Maxwell’s theory of electro-
magnetism [1], thermodynamics and Newtonian mechanics [2]. These theories have proven
to be of great use, since they find their application in engineering as well as in physics, e.g.,
in classical optics, where Maxwell’s theory is used to describe light by electromagnetic waves.
Furthermore, Newtonian mechanics can be combined with Newton’s law of universal gravity,
which specifies gravitation as an attractive force acting between any two massive bodies. As
a result of this combination, one can, for instance, describe the motion of the planets around
the sun by ellipses. Nevertheless, there were phenomena these established theories could not
explain: For example, atoms were known to exist, although they were not widely approved.
Explaining the structure of atoms by electrons that orbit the nucleus does not justify their
stability, as in Maxwell’s theory, the electron should emit Bremsstrahlung and hence fall into
the nucleus after a certain time. Moreover, Newtonian gravity could not accurately describe
the precession of the perihelion of mercury. Nowadays, these problems are handled using
two revolutionary theories, which emerged around the beginning of the 20th century, namely
quantum mechanics and general relativity:

• Quantum mechanics gives insights into the microscopic world beyond the atomic scale
of 10−10m. Classical trajectories of particles with precisely measurable position and
momentum do not exist anymore: We can only make probabilistic statements about the
trajectory of a quantum particle, while Heisenberg’s uncertainty implies that increasing
the measurement precision of the momentum results in a worse resolution of the position
and vice versa. Specifically, the stability of atoms is explained within quantum theory,
as the electrons energy is bounded from below. One can also quantize fields as described
in quantum field theory, which is basically a combination of quantum mechanics with
the theory of special relativity. Within special relativity, all inertial systems are equal
in the sense that the physical laws of nature have the same form. For the theory of
general relativity, this is extended to any coordinate system - a concept called general
covariance. The theoretical developments of quantum mechanics and quantum field
theory lead to the very important fields of atomic physics, solid state physics, and
quantum optics which enabled technological advances such as the invention of lasers,
computers etc. Quantum field theory also yields a theoretical description of all particles
of the standard model and their interactions. Especially, one can calculate scattering
amplitudes that can be tested for instance in the large hadron collider (LHC) at CERN.
We refer to [4,5] for books on quantum mechanics and for quantum field theory related
literature to [6, 7]. The mathematical framework is mainly provided by representation
theory of Lie groups and Lie algebras [8] and functional analysis [9, 10].

• General relativity is a relativistic theory of gravity and concerned with the macroscopic
world, giving us a description of our universe in the context of cosmology. For introduc-
tory books on general relativity, see for example [11–14]. General relativity replaces the
attractive gravitational force of Newtonian gravity with a purely geometrical picture:
The geometry of spacetime is described by the metric tensor g, which is the analogon
of the gravitational potential in Newtonian gravity and allows us to calculate distances,
areas, and volumes. Then, the gravitational force arises from the backreaction of matter
and geometry in the sense that matter curves geometry and geometry determines the
movement of matter. This backreaction is encoded in the so-called Einstein equations,
introduced in its final form by Albert Einstein in 1915 [15]. On the left hand side of these
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equations we have the so-called Einstein tensor G, which contains the metric tensor. On
the right-hand side occurs the energy momentum tensor T , which contains information
about the matter, e.g., its energy and momentum density. The mathematical language
for general relativity is differential geometry, see, e.g., [14, 16–18]. Specifically, general
relativity solves the puzzle of the perihelion precession of mercury and also describes
several other phenomena, such as the gravitational time dilation, which needs to be
taken into account for the global positioning system (GPS). Moreover, in analogy to
electromagnetic waves, general relativity predicts gravitational waves and most recently,
it was also achieved to directly detect them [19].

Although these theories give much more insight into the structure of our universe and are
experimentally verified in a wealth of experiments, they are limited in the following sense
which will lead us to quantum gravity:

• The calculation of scattering amplitudes is done perturbatively and in particular, the
perturbation series only describes the experimental results correctly up to a certain
order and is in general divergent. In addition, there occur so-called ultraviolet (UV)
divergences, as loop corrections are included into the perturbation series which come
from virtual particles that have in general arbitrary energy. Although renormalization
techniques exist, the hope is that a theory of quantum gravity provides a natural UV
cutoff and hence a natural regularization.

• One solution of the Einstein equations is the so-called Friedmann-Lemâıtre-Robertson-
Walker (FRLW) metric, which allows to describe our universe by a flat, homogeneous,
and isotropic universe that is expanding. Such a universe is experimentally confirmed
by the results of WMAP [20] and the redshift measurements of galaxies. An expanding
universe, however, suggests that at a certain time, all matter content of the universe
was compressed to a single point. This implies an initial singularity with infinite mat-
ter density and curvature, where matter means everything on the right hand side of
Einstein’s equations. Furthermore, general relativity predicts black holes, which are
regions of spacetime from which nothing, not even light, can escape, see for instance
chapter 6 and 12 of [14] and part VII of [11] for more details. In particular, dying
stars may form black holes. In this sense, it is common to say that general relativity
predicts its own failure, as the existence of singularities hints at the incompleteness of
the theory. In the extreme astrophysical situations of the big bang singularity and black
holes, where huge amounts of matter are compressed to tiny regions, it is to be expected
that gravitational effects need to be understood on very short scales. This requires a
combination of quantum mechanics and general relativity in order to describe physics
still appropriately. Length scales relevant for experiments at CERN are much larger
and allow to neglect the gravitational interaction at the fundamental level.

Hence, we see that these days, one of the main open problems of physics is to find a quan-
tum theory of gravity. Actually, the first investigations on this topics were already done in
the 1930s and thus, quantum gravity has acquired a quite long history of research, see for
example appendix B of [21] for an historical overview. Nowadays, among others there are
two candidates for quantum gravity theories, namely string theory and loop quantum gravity
(LQG). These two theories are fundamentally different: String theory [22–24] is a perturba-
tive approach, which makes use of a background metric and wants to provide a unification
of all four fundamental forces. Additionally, string theory postulates a new fundamental pic-
ture by perceiving the elementary particles as different excitations of one-dimensional objects,
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so-called strings, and also introduces extra dimensions as well as supersymmetry. LQG, how-
ever, is a non-perturbative approach, which includes a background-independent quantization
of general relativity. Furthermore, LQG does not make any assumptions about possible extra
structures. See also [25, 26] for lists of publications and [21, 27] for books and [28, 29] for
reviews on LQG. In this thesis, we will be interested in LQG only and will provide more
insights in the following paragraph.

Loop quantum gravity requires a canonical quantization of general relativity. Canoni-
cal quantization means that one starts from a Hamiltonian formulation of a classical theory,
i.e., a formulation in terms of a Hamiltonian and canonically conjugate variables that co-
ordinatize a phase space, and then quantizes this theory. For LQG, the classical starting
point is general relativity. In particular, we start from a Lagrangian formulation and per-
form the Legendre transform to obtain the Hamiltonian formulation. This requires a split
of the spacetime manifold into space and time, i.e., a foliation into spatial hypersurfaces. A
Hamiltonian formulation of general relativity was first achieved using so-called ADM vari-
ables [30]: The components of the (0, 2) tensor q, which describes the geometry of the spatial
hypersurfaces, are the configuration variables. The momenta are given by the components
of the (2, 0) tensor P , which is related to the so-called extrinsic curvature K describing how
the spatial hypersurfaces are embedded in the spacetime manifold. When performing the
Legendre transform, however, there occur constraints, basically due to the fact that not all of
the velocities can be solved for their corresponding momenta. Specifically, there appear the
four constraints Ha, with a = 1, 2, 3, and H, where the former is called spatial diffeomorphism
and the latter Hamiltonian constraint. The motivation for this names is that Ha generates
diffeomorphisms within the spatial hypersurfaces and H diffeomorphisms orthogonal to the
spatial hypersurfaces, i.e., these constraints generate spatial diffeomorphisms and the ‘time’
evolution, respectively. When quantizing this theory, we have two options: We can solve the
constraints at the classical level and quantize the resulting theory, a procedure called reduced
phase space quantization. This way, we directly end up with the physical Hilbert space con-
taining all physical states. Alternatively, we can quantize the full phase space but then we
also have to quantize the constraints, giving us constraint operators that have to annihilate
the physical states. Hence, the physical Hilbert space is not directly determined using Dirac
quantization. Both Dirac quantization and reduced phase space quantization are investigated
in LQG:

• Concerning Dirac quantization, this was done for ADM variables on a mathematically
formal level, which means that a representation for these variables has not been defined,
yet. However, the so-called Ashtekar variables [31] provide a formulation of general
relativity as a SU(2) Yang-Mills gauge theory and this way make contact with the
standard model. The configuration variables are given by the SU(2)-connection A
and the conjugate momenta are determined by the so-called densitized triad E, which
is related to the spatial metric. However, the prize to pay is that there are three
additional constraints. These are called Gauß constraints and generate SU(2) gauge
transformations. Using Ashtekar’s variables, LQG is well-defined at the kinematical
level, i.e., when the constraints are not solved. Furthermore, one can define geometric
operators such as the area and volume operator at the kinematical level, where they
acquire discrete spectra. This is a first hint at a discrete structure of spacetime at
the Planck scale, described by the Planck length lP, which is of the order of 10−35 m.
Concerning experimental tests at these scales, however, we are in a situation similar
to the beginning of the 20th century, where the resolution of the atomic scale was not
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possible: Particle collider such as the LHC at CERN produce particles with kinetic
energies up to 7 TeV being much smaller than the Planck energy EP, which is of the
order of 1019 GeV. Nevertheless, there are astrophysical particles which come much
closer to the Planck energy and the investigation of so-called γ-ray bursts may be an
experimental application of quantum gravity in the future.

• For the reduced phase space quantization, one can use the so-called relational formal-
ism introduced by Rovelli [41–44] and refined by Dittrich in [45, 46]. This formalism
introduces so-called reference fields that allow to establish physical time and spatial
coordinates with respect to which the dynamics of the remaining geometric and mat-
ter degrees of freedom are described. This circumvents the so-called problem of time,
which occurs in general relativity: The Hamiltonian of general relativity is constrained
to vanish and hence does not generate physical time evolution. Using the relational for-
malism, however, one can derive a physical Hamiltonian density that indeed generates
evolution with respect to physical time. The exact form of the physical Hamiltonian
density depends on the specific form of the reference fields, see [47] for an overview of
possible choices. Furthermore, one can show that the observables one constructs from
the phase space variables coordinatize the physical phase space and satisfy a Poisson
algebra that is isomorphic to the original one, for appropriate choices of reference fields.
Hence, the kinematical results of LQG can be carried over to the physical phase space
and thus, one obtains a direct access to the physical Hilbert space one is finally inter-
ested in. In this thesis, we will use the relational formalism to perform a reduced phase
space quantization. In particular, we will be interested in so-called Gaussian dust [48],
which will hand us a Hamiltonian that is totally equivalent to the geometrical part of
the Hamiltonian constraint.

As mentioned before, in this thesis, we will follow the reduced phase space quantization
procedure and specifically, we will investigate a simplified version of general relativity, the so-
called polarized three-torus Gowdy model. We obtain this model by performing a symmetry
reduction of the full theory of general relativity. Afterwards, we carry out the quantization
using the techniques of LQG. Moreover, we work in the algebraic quantum gravity (AQG)
framework, which is similar to LQG and was developed first in [49–52]. The advantage of con-
sidering such toy models is that they are technically much simpler to handle and allow to test
the techniques of the full theory. In this way, we hope to gain more insights into the structure
of the full theory. Several toy models were investigated up to now, the most striking results
were obtained in loop quantum cosmology (LQC), which is reviewed for example in [28, 53].
In particular, within LQC models, the big bang is replaced by a big bounce, a result that is
obtained using the discreteness of the spectrum of geometric operators. Nevertheless, it needs
to be checked if the results of these toy models also survive in the full theory, for which less
results on the quantum dynamics exist. Furthermore, the procedures of symmetry reduction
and quantization do not commute in general.

The polarized three-torus Gowdy model falls into a larger class of toy models: It is a
special case of Gowdy spacetimes [54], which solve Einstein’s equation and possess a two pa-
rameter isometry group, i.e., two Killing vector fields. If these Killing vectors are orthogonal,
we obtain the polarized Gowdy models and the three-torus part comes from the specializa-
tion to spatial hypersurfaces with the topology of a three-torus. Specifically, we will perform
a symmetry reduction of the full theory formulated in terms of Ashtekar’s variables, where
we follow [55, 56]. This will basically result in a U(1) gauge theory on a circle. The loop
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quantization of this theory was performed first in [56, 57]. Furthermore, we will work within
the framework of AQG which was applied to the Gowdy model in [58, 59]. We also want to
point out that for the LQG Gowdy model, the physical Hilbert space could not be constructed
so far. This has been achieved by another procedure, where not all degrees of freedom are
loop quantized. This so-called hybrid quantization was developed in [60–62] and reviewed
in [63]. Within this approach, the classical theory is split into an homogeneous and an in-
homogeneous part, where the former is quantized using LQG techniques and the latter via
Fock quantization. We will not be concerned with the construction of the physical Hilbert
space in this thesis, as we perform a reduced phase space quantization. In particular, the
relational formalism together with Gaussian dust gives us a physical Hamiltonian operator
Ĥphys equivalent to the Hamiltonian constraint of [56]. We will then lift this operator to AQG
and finally write down the corresponding Schrödinger equation that encodes the quantum
dynamics of the Gowdy model. Then, it is the main goal of this thesis to investigate possible
solutions of the Schrödinger equation.

This thesis is organized as follows: In section 2, we discuss the Hamiltonian formulation
of general relativity, where we proceed chronological by starting with the ADM formalism in
section 2.1 and then introducing Ashtekar’s variables in section 2.2. Subsequently, we give an
introduction to loop quantum gravity in section 3, where we will also discuss the framework
of algebraic quantum gravity in section 3.6. Afterwards, in section 4 , we discuss the gen-
eral procedure to perform reduced phase space quantization and also specialize to Gaussian
dust. In section 5, we introduce the polarized three-torus Gowdy model, which includes the
symmetry reduction as well as the algebraic loop quantization. After this, we discuss our re-
sults in section 6 and finally give a summary and comment on future investigations in section 7.
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2 Hamiltonian formulation of general relativity

In the following chapters, we discuss the Hamiltonian formulation of general relativity. The
motivation for starting with the Hamiltonian formulation is that we want to quantize the
Gowdy model using the techniques of loop quantum gravity (LQG). LQG itself is based on
the canonical quantization of general relativity. To perform the canonical quantization, we
need a Hamiltonian formulation of general relativity as the classical starting point, which we
will discuss in the following sections.

2.1 ADM-formalism

A Hamiltonian formulation of general relativity was first achieved within the so-called ADM-
formalism, named after its inventors Richard Arnowitt, Stanley Deser, and Charles W. Misner,
see [30] for the original work from 1962 and [64] for the republication from 2008. We will
discuss the ADM-framework first, although the classical starting point for the Gowdy model
will be the formulation of general relativity in terms of Ashtekar variables, which we will
introduce in section 2.2. For Ashtekar variables, the quantization can be rigorously defined,
whereas for the ADM variables, this has only been formulated at a rather formal level. It
is, however, historically and logically more appropriate to start with the ADM-formalism.
Furthermore, we will discuss, with the help of the ADM formalism, how constraints arise
and how their Poisson algebra looks like. This will help to interpret the classical theory and
emphasize the problems that occur during quantization.

2.1.1 Lagrangian formulation

In this section, we want to set up the Lagrangian formulation of general relativity in the
realm of the ADM-formalism. For this, we introduce in analogy to standard classical mechan-
ics configuration variables and velocities. The latter are the time derivatives of the former,
therefore, we need to specify a time variable. In particular, this needs to be done without
breaking the diffeomorphism invariance imposed by general relativity. We will end up with
an action in (2.1.12) depending on the quantities N,Na, qab, with a, b = 1, 2, 3, which recover
the 10 degrees of freedom in the metric tensor gµν , with µ, ν = 0, ..., 3, we start from. We
will mainly follow the ADM-related chapters of [27], [65] and [66]. Further good references
are [67] , [68], as well as appendix E of [14].

First, we want to set up the general framework. We start from a (D + 1)-dimensional,
Pseudo-Riemannian manifold (M, g) describing spacetime, where g denotes the symmetric
and non-degenerate metric tensor with signature s. In the following, we choose D = 3 as well
as Lorentzian signature s = −1, i.e., a vector field v is called spatial for gµνv

µvν > 0, null for
gµνv

µvν = 0, and timelike for gµνv
µvν < 0. Then, the Einstein-Hilbert action is given by

SEH =
1

κ

∫
M

d4X
√
|det(g)|R(4), (2.1.1)

where Xµ, with µ = 1, ..., 4, denote the spacetime coordinates, κ = 16πG is the coupling con-
stant related to Newton’s constant G, and R(4) is the four-dimensional Ricci scalar connected
to the four-dimensional Riemann curvature tensor R

(4)
µνρσ via R(4) = gµρgνσR

(4)
µνρσ.

In the first step, we perform a split of the spacetime manifold M into space and time
without breaking diffeomorphism invariance. We assume thatM is globally hyperbolic, i.e., M
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can be foliated into spatial hypersurfaces intersecting any causal curve only once. Therefore,
the initial value problem is well posed: Given initial data g, ġ on an instant of time, i.e., on
a certain spatial hypersurface, one can compute the solution everywhere on the spacetime
manifold M. We can now apply a theorem introduced by Geroch [69] and further developed
by Sanchez and Bilal [70]: For a globally hyperbolic spacetime there exists a diffeomorphism

ϕ : R× σ →M, (t, x)→ X = ϕ(t, x), (2.1.2)

where σ denotes the three-dimensional spatial manifold with coordinates xa, where a = 1, ..., 3.
(2.1.2) establishes M ∼= R×σ and gives us a foliation of the spacetime manifold M into spatial
hypersurfaces Σt = ϕ(t, σ) equipped with spatial tangents and timelike normals. The map
ϕt : Σt → M,x → ϕt(x) := ϕ(x, t) provides an embedding of Σt into M. Furthermore, we
can define a time function τ via τ(X) = τ(ϕ(x, t)) = t. It seems that the split into space
and time corresponds to a choice of coordinate system and therefore breaks diffeomorphism
invariance, which, however, is required by general relativity. This is solved by keeping the
foliation arbitrary. Then, any diffeomorphism Φ ∈ Diff(M) can be written as Φ = ϕ ◦ ϕ′,
where ϕ, ϕ′ denote two distinct foliations defined by (2.1.2). Hence, any two foliations can
be related by a diffeomorphism via ϕ = Φ ◦ (ϕ′)−1. This means that the freedom in the
choice of foliation is equivalent to the diffeomorphism group Diff(M) and thus diffeomorphism
invariance is preserved.

In the second step, we introduce the configuration variables and velocities. We first define
a basis for the tangent space Tp(R×Σt) with p ∈ Σt. For this purpose, we use the embedding
and define 3 vector fields tangential to Σt adapting the notation of [65]:

Sa(X) := (∂a)ϕ(t,x)=X = (ϕµ,a(t, x))∂µ . (2.1.3)

Moreover, we can find a conormal vector field n̄ from the condition n̄(Sa) = n̄µS
µ
a = 0. Using

the metric g, we obtain a normal vector field n which satisfies gµνn
µSνa = 0 and is normalized

according to gµνn
µnν = −1. In this way, we have found a basis (n, Sa) of Tp(R×Σt) for every

t and every point p ∈ Σt. Additionally, we can specify the dual basis by (n̄, Sa). If we define
BA := (n, Sa), with A = 0, ..., 3 and B0 := n,B1 := S1 etc., and accordingly BA := (n̄, Sa),
we can specify the 4-duality relations Bµ

AB
A
ν = δµν and Bµ

AB
C
µ = δCA . Now, we can introduce

the configuration variables corresponding to the Riemannian structure defined on each Σt by

qµν = gµν + nµnν . (2.1.4)

This so-called intrinsic metric qµν is uniquely determined by qµνn
µ = 0, i.e., qµν is a spatial

tensor, and qµνb
µ = gµνb

µ, i.e., qµν applied to any vector bµ tangent to Σt describes the same
geometry as gµν . To obtain the velocity of qµν , we need to specify the time derivative, which
we will do following mainly [27,65] and chapter 3.2.1.2 of [66]. Up to now, we only defined a
time function by τ(X) = t = const., but we also need a direction for the time derivative. To
this end, we introduce the so-called deformation or time evolution vector field

T (X) := (∂t)ϕ(t,x)=X = (ϕµ,t(t, x))ϕ(t,x)=X∂µ, (2.1.5)

which basically tells us how points of different spatial hypersurfaces are related for a given
foliation. In the basis (n, Sa), we can expand T as

T (X) = N(X)n(X) +Na(X)Sa(X), (2.1.6)
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where N, the component of T normal to Σt, is called lapse function, and Na, the component of
T tangential to Σt, is called shift vector field. N and Na are completely arbitrary and embody
the arbitrariness of the foliation. Note that we consider spacelike embeddings and Lorentzian
signature, which implies that T is timelike and the condition −N2 + gµνN

µN ν < 0 holds. In
addition, we choose N to be positive, i.e., we have a future directed foliation. Using T , we can
now define the time derivative of an arbitrary tensor field: The relation T µ∂µt = 1 ensures
that the integral curves of T intersect each spatial hypersurface only once. Therefore, the
Lie derivative along T serves as a time derivative, as it quantifies the change of a tensor field
when passing from one spatial hypersurface to another one. In particular, the time derivative
of qµν is given by q̇µν := qµ

′
µ q

ν′
ν LT qµ′ν′ , where the spatial projections qµ

′
µ q

ν′
ν ensure that we

obtain a spatial tensor again. Now, we can introduce the so-called extrinsic curvature tensor
Kµν , which will play the role of the velocity and is defined by

Kµν = qρµq
σ
ν∇ρnσ. (2.1.7)

Here, ∇ denotes the covariant derivative being metric-compatible with g, i.e., ∇ρgµν = 0,
and torsion-free, i.e., [∇µ,∇ν ] f = 0 for an arbitrary function f . The unique connection
associated to the metric-compatible, torsion-free covariant derivative ∇ is called Levi-Civita
connection. The components Γρµν of the Levi-Civita connection are called Christoffel symbols.
(2.1.7) defines Kµν as the spatial projection of the parallel transport of the normal n. Hence,
Kµν tells us how a spatial hypersurface Σt lies in M, justifying the name extrinsic curvature.
Furthermore, Kµν is a symmetric tensor and related to q̇µν via

Kµν =
1

2N
(q̇µν − L ~Nqµ′ν′) . (2.1.8)

In the last step, we rewrite (2.1.1) in terms of tensors defined only on σ. The strategy is
to pull back spacetime tensors, which are defined on Σt = ϕt(σ), via the diffeomorphism ϕ.
Pulling back qµν to σ gives us

qab(t, x) = (ϕ∗q)ab(t, x) =
∂ϕµ

∂xa
(t, x)

∂ϕν

∂xb
(t, x)qµν(ϕ(t, x))) = (SµaS

ν
b qµν)(X)|X=ϕ(t,x). (2.1.9)

For the pull back of Kµν , we obtain

Kab(t, x) = (SµaS
ν
b∇µnν)(X)|X=ϕ(t,x). (2.1.10)

Moreover, the pulled back version of (2.1.8) reads as

Kab(t, x) =
1

2N
(q̇ab − (L ~Nq)ab)(t, x), (2.1.11)

which we will need later on when going over to the Hamiltonian formulation. Note that in
(2.1.11), the lapse function and the shift vector field have to be understood as the pulled back
quantities N(x, t) := N(ϕ(x, t)) and Na(x, t) := qab(x, t)(Sµb gµνN

ν)(ϕ(x, t)). To finalize the
3+1 split of the Einstein Hilbert action, we first need to express the 4-dimensional Ricci scalar
R(4) by the three-dimensional one R(3). The latter is related to the 3-dimensional Riemann
curvature tensor R

(3)
µνρσ which is defined by [Dµ, Dν ]wρ = R

(3)σ
µνρwσ, where wσ is an arbitrary

one-form and D denotes the covariant derivative that is compatible with qµν , i.e., Dµqνρ = 0.
Furthermore, D should be torsion-free, i.e., [Dµ, Dν ] f = 0 for f an arbitrary function. D
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is connected to the g-compatible, torsion-free covariant derivative ∇, as can be seen by its
action Dµwν := qµ

′
µ q

ν′
ν ∇µ′wν′ on a one-form wν . Then, the relation between R(3) and R(4)

follows from the so-called Gauss and Codacci equations, see [27] for details. Pulling back the
volume form d4X

√
|detg|, as well as all quantities in the above mentioned Codacci equation,

results in the so-called ADM-action:

S =
1

κ

∫
R

dt

∫
σ

dDx
√
|det(q)|N(R(D) + [KabK

ab − (Ka
a)2]). (2.1.12)

In this equation, we dropped a total derivative term originating from the Codacci equation
and resulting in a boundary term that we do not want to discuss here. See [27] for more
details on boundary terms. This completes the Lagrangian picture of the ADM-formalism.

2.1.2 Legendre transformation and constraints

In the following, we go over from the Lagrangian to the Hamiltonian formulation. For this, we
have to perform the Legendre transformation, i.e., express all velocities by their canonically
conjugate momenta. This will hand us certain constraints, where part of them fulfill the
so-called Dirac or hypersurface deformation algebra. We will mainly follow [27] and refer to
this reference for detailed derivations of the results stated below.

Firstly, we determine the canonically conjugate momenta. For the momenta P ab conjugate
to qab, we find by functionally differentiating the ADM action (2.1.12) with respect to q̇ab that

P ab :=
δSEH

δq̇ab(t, x)
=

1

κ

√
det(q)(Kab − qabKc

c). (2.1.13)

For the momenta conjugate to Ṅ and Ṅa, we get

Π(t, x) :=
δSEH

δṄ(t, x)
= 0, Πa(t, x) :=

δSEH

δṄa(t, x)
= 0, (2.1.14)

due to the independence of the ADM action on the velocities Ṅ and Ṅa. Then, the phase
space is coordinatized by qab, P

ab, N,Π, Na, and Πa. To state the canonical commutation
relations satisfied by the phase space variables, we first define the Poisson bracket between
two arbitrary tensor fields F (x) and G(x):

{F (x), G(x)} = κ

∫
σ

d3z
[ δF (x)

δqab(z)

δG(x)

δP ab(z)
+
δF (x)

δNa(z)

δG(x)

δΠa(z)
+
δF (x)

δN(z)

δG(x)

δΠ(z)
−F ↔ G

]
. (2.1.15)

Here, we suppressed any possible index structure of F (x) and G(x). (2.1.15) gives us the
following canonical commutation relations:

{N(x),Π(y)} = κδ(3)(x, y), {Na(x),Πb(y)} = κδab δ
(3)(x, y), (2.1.16)

{qab(x), P cd(y)} = κδc(aδ
d
b)δ

(3)(x, y), (2.1.17)

where we left out all Poisson brackets that are zero, namely those between two momenta, two
positions, and momenta and positions being not canonically conjugate.

Secondly, we express the velocities by the corresponding momenta. We can solve q̇ab for
P ab using (2.1.11) and (2.1.13). However, from (2.1.14) follows that we cannot solve the
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other velocities Ṅ and Ṅa for their corresponding momenta Π and Πa. This means that we
have the case of a singular Lagrangian. For this scenario, we can apply the Dirac algorithm
developed by Dirac in [71], see also [72] or chapter 24 of [27] for further introductions. The
Dirac algorithm involves the imposition of so-called primary constraints

C(t, x) := Π(t, x) = 0, Ca(t, x) := Πa(t, x) = 0. (2.1.18)

Then, one performs the Legendre transformation for the remaining variables that could be
solved for their momenta. After some manipulations, we obtain a so-called primary Hamilto-
nian

H =

∫
σ

d3x [λC + λaCa +NaHa +NH], (2.1.19)

including the primary constraints with Lagrange multipliers λ and λa. Furthermore, we have
introduced the so-called spatial diffeomorphism constraint

Ha := −2qacDbP
bc (2.1.20)

and the so-called Hamiltonian constraint

H :=

[
κ√
det(q)

(
qacqbd +

1

2
qabqcd

)
P abP cd +

√
det(q)

κ
R

]
. (2.1.21)

Note that in the primary Hamiltonian, H and Ha are not yet to be understood as constraints.
We denoted them as such because the Dirac algorithm involves a so-called stability analysis
resulting in the requirement that H and Ha have to be set to zero. Before discussing the
stability analysis, we explain a usual procedure in field theory, which is the introduction of
so-called smearing fields: When computing Poisson brackets between fields, we might get a
distributional result, as it is the case in (2.1.17). To avoid this, one smears the fields with
so-called test functions. In case of (2.1.19), the functions λ, λa, N

a, and N naturally arise as
smearing functions, indicated by the following notation:

H =
1

κ

[
C(λ) + ~C(~λ) + ~H( ~N) +H(N)

]
, (2.1.22)

with C(λ) :=
∫
σ
d3x λC and similar definitions for ~C(~λ), ~H( ~N), and H(N). Now, we discuss

the so-called stability analysis we have to perform within the Dirac algorithm: The constraint
surface determined by the primary constraints should be invariant under the evolution gener-
ated by the primary Hamiltonian. For this, we have to compute the Poisson brackets between
the Hamiltonian in (2.1.22) and the primary constraints in (2.1.18), resulting in

{H, C(f)} = H(f), {H, ~C(~f)} = ~H(~f), (2.1.23)

where f, ~f denote arbitrary smearing functions. Then, we demand that the result of the
Poisson brackets in (2.1.23) vanishes weakly, i.e., when the constraints are set to zero. This
gives us the condition that the quantities Ha and H from (2.1.20) and (2.1.21) have to van-
ish as so-called secondary constraints, justifying the previous denomination of Ha and H as
constraints. The same stability analysis has to be performed for the secondary constraints
Ha and H, i.e., we again have to compute the Poisson brackets {H, H(f)} and {H, ~H(~f)}.
Fortunately, it turns out that the resulting expressions are certain combinations of smeared
versions of H and Ha and therefore, no further constraints occur. This completes the Dirac
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algorithm.

Thirdly, we discuss the equations of motion of the phase space variables and introduce
the reduced ADM action. For this purpose, we go to the partially reduced phase space in
which the primary constraints Π = 0 and Πa = 0 are satisfied. For the lapse function and
the shift vector field, we obtain {N,H} = λ and {Na,H} = λa, respectively. As λ and λa
are arbitrary Lagrange multipliers, N and Na are not determined by the dynamics. If we
calculate the equations of motion of the canonical pair (qab, P

ab), we see that the terms C(λ)

and ~C(~λ) in H give no contribution. Hence, concerning the equations of motion of (qab, P
ab),

it is legitimate to look only at the reduced ADM action given by

S =
1

κ

∫
R

dt

∫
σ

d3x
[

˙qabP
ab − (NaHa +NH)

]
, (2.1.24)

and treat N and Na as Lagrange multipliers.

Finally, we examine the Poisson algebra that the Hamiltonian and diffeomorphism con-
straint satisfy. The explicit calculations performed in the Dirac algorithm yield the so-called
Dirac or hypersurface deformation algebra given by

{ ~H( ~N), ~H( ~N ′)} = −κ ~H(L ~N
~N ′), (2.1.25)

{ ~H( ~N), H(N)} = −κH(L ~NN), (2.1.26)

{H(N), H(N ′)} = −κ ~H(q−1(NdN ′ −N ′dN)). (2.1.27)

We want to make several comments on the Dirac algebra following [27,73]:

• From (2.1.25), we see that the diffeomorphism constraints ~H( ~N) form a closed Lie
subalgebra. As we will justify below, this subalgebra can be identified with diff(σ),
the Lie algebra of the spatial diffeomorphism group Diff(σ).

• From (2.1.26), we can infer that diff(σ) is not an ideal of the Dirac algebra, as the
Hamiltonian constraint H(N) is not diffeomorphism invariant. An ideal of a Lie algebra
L is a Lie subalgebra I of L such that [L, I] ⊂ I.

• From (2.1.27), we see that the Dirac algebra, although being closed, is not a true Lie
algebra: The Poisson bracket of two Hamiltonian constraints is again a Hamiltonian
constraint, but with a phase space dependent smearing function, as the inverse metric
q−1 is involved. Therefore, we do not have structure constants but structure functions
and thus, the Dirac algebra is a Lie algebroid.

• Additionally, we see from (2.1.25)−(2.1.27) and (2.1.23) that all constraints commute
weakly. Such a system of constraints is called first class. In accordance with the so-
called Dirac conjecture (see again [71] or [72]), we can interpret first class constraints as
gauge transformations. We apply this to the case of the reduced ADM framework, cf.
(2.1.24). One can show that Ha can be interpreted as the generator of diffeomorphisms
that preserve Σt, captured by the infinitessimal transformation laws

{ ~H( ~N), qab} = (L ~Nq)ab, { ~H( ~N), P ab} = (L ~NP )ab. (2.1.28)

Furthermore, H is the generator of diffeomorphisms orthogonal to Σt with infinitessimal
transformation laws

{H(N), qab} = (LNnq)ab, {H(N), P ab} = (LNnP )ab. (2.1.29)
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However, this interpretation of gauge transformations as spacetime diffeomorphisms is
valid only if the vacuum Einstein equations Gµν = 0 are satisfied and the constraints
are set to zero, i.e., we have a so-called on-shell symmetry. The gauge transformations
that are generated off shell are described by the so-called Bergmann Komar group
BK(M) being inequivalent to Diff(M). This nonequivalence is not too surprising: On
the one hand, Diff(M) is a kinematical symmetry, as there are various ways to construct

Diff(M)-invariant Lagrangians, one example being L =
√
|det(g)|R(4)µνσρR

(4)
µνσρ. On the

other hand, BK(M) is a dynamical symmetry, as it depends on the given Lagrangian,
because we have to perform the canonical analysis to obtain the constraints generating
the BK(M)-transformations off shell.

We want to close the discussion of the ADM framework with the remark that the Hamilto-
nian H is a sum of constraints and therefore constrained to vanish. This implies that physical
observables do not evolve under the time evolution generated by H: Observables O are gauge
invariant phase space functions, which are called strong Dirac observables if they Poisson
commute with all first class constraints. If the observables weakly Poisson commute with
all first class constraints, i.e., the Poisson bracket vanishes on the constraint surface, they
are called weak Dirac observables. As H is the sum of all first class constraints, weak/strong
Dirac observables have to weakly/strongly Poisson commute with the Hamiltonian H. Hence,
if we take the Hamiltonian H as our physical Hamiltonian generating time evolution, every
observable O would be a constant of motion, since Ȯ = {O,H} = 0 on the constraint surface.
Therefore, we would have no evolution of any physical observable O, which is clearly in con-
tradiction to experiment. This is known as the problem of time. There is, however, a way out,
namely by introducing reference fields with respect to which the time evolution of observables
can be described. Within this so-called relational framework, we can construct a physical
Hamiltonian with the prize to pay that we have to introduce additional matter degrees of
freedom, for which we have to find an interpretation. We will discuss this in section 4 in more
detail.

2.2 Ashtekar’s variables

In this chapter, we will introduce the so-called Ashtekar variables, first developed in 1986
by Abhay Ashtekar [31]. The main motivation behind departing from ADM variables to
new variables is that the quantization of the Hamiltonian constraint can be performed using
suitably smeared Ashtekar variables. This, however, has not been show for the ADM-variables
so far. In particular, the connection to well-known techniques from quantum field theory is
much more immediate, as Ashtekar’s variables provide an SU(2)-Yang Mills gauge theory
formulation of general relativity. We mainly stick to [27] and [29] in our presentation.

2.2.1 The basic variables

In the following paragraphs, we will introduce the basic variables that constitute Ashtekar’s
variables. For this, we will first introduce the concept of frame fields, handing us an extended
phase space being equivalent to the ADM phase space once additional constraints are im-
posed. We finally arrive at Ashtekar’s variables using two canonical transformations.

First, we want to discuss the concept of frame fields following chapter 3.5.1 and appendix
AA.4 of [66]. Given a manifold M, we can choose a basis eI(p), with I = 0, 1, 2, 3, for the
tangent space TpM at each point p in M. In our case of four dimensions, the set of vector
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fields eI(p) is called tetrad. We choose e0 to be timelike and the other basis elements e1, e2,
and e3 to be spacelike, captured in the following orthogonality condition:

g(eI , eJ) = gµνe
µ
I e
ν
J = ηIJ = diag(−1, 1, 1, 1). (2.2.1)

A more geometrical picture is obtained by understanding the frame field e as the map
e : M × R4 → TM between the tangent bundle TM and the vector bundle M × R4. We
refer to [18] for an introduction into the fibre bundle language. The typical fibre R4 of
M × R4 is also called internal space, which in this case is just Minkowski space. There-
fore, e specifies a pointwise isometry e(p) : R4 → TpM between Minkowski spacetime, being
equipped with a constant metric, and the tangent space TpM , being equipped with the gen-
eral metric gµν(p). Accordingly, we can define the inverse frame field as e : TM → M × R4.
Given the usual coordinate basis ∂µ, with µ = 0, .., 3, as a section of TM and a basis ξI , with
I = 0, ..., 3, as a section of M ×R4, we can use the frame field to map between the two bases
via e(ξI) = eI = eµI ∂µ and e−1(∂µ) = eIµξI . In particular, we can map a vector field vI in the
internal space to a vector field vµ in TM via vµ = eµI vI . That is why the frame fields are also
called soldering forms.

Now, we can apply the frame field formalism to the ADM framework. We can express the
spatial ADM metric qab by coframe fields, which are called triads for three dimensions. First,
we express the spacetime metric gµν by cotetrads:

gµν = eIµe
J
νηIJ . (2.2.2)

However, the cotetrads are not uniquely determined by (2.2.2): One can perform a Lorentz
transformation L ∈ SO+(1, 3) of the form eIµ → LIJe

J
µ and as η is invariant under Lorentz

transformations, the resulting transformation matrices in (2.2.2) will be canceled. Thus, we
have introduced four additional degrees of freedom. To go over to the ADM framework, we
recognize that (2.2.2) gives us 10 equations between the components of g and the tetrad e. To
solve these equations, we partially fix the SO+(1, 3) gauge freedom in the tetrads by imposing
the so-called time gauge e0

µ = nµ, where nµ denotes the conormal. Furthermore, we use the
explicit form of the components of g and nµ in the ADM frame given by

na = 0, nt = −N, gtt = −N2 + qabN
aN b, gta = qabN

b, gab = qab. (2.2.3)

Then, we obtain from (2.2.2) that ejt = ejaN
a, e0

t = −N, e0
a = 0 and in particular that

qab = eiae
j
bδij. (2.2.4)

This way, we have formulated the ADM framework in terms of triads eja, the lapse function
N , and the shift vector field Na. As for the tetrads, (2.2.4) does not uniquely determine the
triads: We have an additional SO(3) freedom, i.e., eia → Oj

i e
j
a leaves (2.2.4) invariant. To

get back the ADM phase space, we will later remove the three additional rotational degrees
of freedom by imposing three new constraints. In the following, we consider the triads eia as
su(2)-valued one-forms, where we use the isomorphism between the Lie algebras of SO(3) and
SU(2). Classically, it makes no difference to choose either su(2) or so(3). At the quantum
level, however, we want to be able to couple gravity to fermions, which have half-integer spin.
Therefore, su(2) is naturally singled out.

Next, we introduced a phase space that is an extended version of the ADM phase space.
This new phase space is coordinatized by to be specified momenta Ea

j and configuration
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variables Kj
a. The canonical commutation relations read as

{Ki
a(x), Eb

j (y)} =
κ

2
δbaδ

i
jδ(x, y), {Ea

j (x), Eb
k(y)} = {Kj

a(x), Kk
b (y)} = 0. (2.2.5)

The momenta Ea
j , the so-called densitized triads, are defined by

Ea
j :=

√
det(q)eaj . (2.2.6)

The configuration variables Kj
a are related to the extrinsic curvature via Kab = Kj

(ae
i
b)δij,

where the symmetrization is necessary since Kab is a symmetric tensor . Thus, the antisym-
metric part Kj

[ae
i
b]δij needs to vanish leading to the so-called rotational constraint Gab :=

Kj
[ae

i
b]δij = 0. Equivalently, we can consider instead of Gab the constraints

Gjk := GabE
a
jE

b
k = Ka[jE

a
k] = 0, (2.2.7)

where in the second step, we made use of the explicit form of Gab and used the relation
Ej
aE

a
k = δjk with the densitized cotriad Ej

a defined by Ej
a := eja/

√
det(q). In particular, the

extended phase space coordinatized by (Kj
a, E

a
j ) is equivalent to the ADM phase space for

Gjk = 0.

In the following, we will describe the first of two canonical transformations allowing us
to go over from the canonical pairs (Ki

a, E
a
i ) to Ashtekar’s variables. The first canonical

transformation is a rescaling of the basic variables (Ki
a, E

a
i ) by an arbitrary complex number,

the so-called Barbero-Immirzi parameter γ:

(Ki
a, E

a
i )→ (γKi

a,
1

γ
Ea
i ) =: ((γ)Ki

a,
(γ) Ea

i ) (2.2.8)

For each choice of γ, we get a different set of canonical variables. This ambiguity can for ex-
ample be fixed within black hole entropy calculations, see for instance [74]. One might choose
γ to be complex, requiring certain reality conditions, as otherwise, a doubling of the number
of degrees of freedom occurs. The reality conditions, however, are non-trivial to implement
at the quantum level. Therefore, one usually assumes γ to be real.

Before we can perform the second canonical transformations to arrive at Ashtekar’s vari-
ables, we need to introduce the notion of a spin connection. For this purpose, we extend the
covariant derivative D acting only on tensors with spatial indices a, b, c to a covariant deriva-
tive acting on tensors having spatial indices as well as internal indices i, j, k . Specifically, we
get for the cotriad that

Dae
j
b = ∂ae

j
b − Γcabe

j
c + Γjake

k
b , (2.2.9)

which we impose to be zero, i.e., we extend the metric compatibility Daqbc = 0 to the cotriads.
Moreover, we see from Daδjk = 0 that the spin connection satisfies Γajk = −Γakj. The
condition Dae

j
b = 0 also provides us an expression for the spin connection in terms of triads

and cotriads:

Γia =
1

2
εijkebk

(
2∂[be

j
a] + ecje

l
ae
l
c,b

)
. (2.2.10)

Here, we used Γajk = Γlaεjlk following from Γa =: ΓlaTl, with (Tl)jk = εjlk the generators of
SU(2) in the adjoint representation. It turns out that the spin connection is invariant under
the canonical transformation of (2.2.8), which we can see by expressing Γia as a function of
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densitized triads and cotriads using (2.2.10) and (2.2.6).

Having introduced the spin connection, we can now perform the second canonical trans-
formation to deduce Ashtekar’s variables. To this end, we rewrite the rotational constraint
(2.2.7) in the equivalent form

Gj = εjkl
(

(γ)Kk
a

) (
(γ)Ea

l

)
. (2.2.11)

Furthermore, we have the identity

0 = Da

(
(γ)Ej

a

)
= ∂a

(
(γ)Ea

j

)
+ εjklΓ

k
a

(
(γ)Ea

l

)
, (2.2.12)

following from Dae
j
b = 0 and the invariance of the q−compatible covariant derivative D under

the transformation (2.2.8). The latter follows from the invariance of the Christoffelsymbols
Γabc. In (2.2.12), we also used that Ea

j has density weight one, which cancels the Christoffel
symbol when writing out Da. Inserting into (2.2.11) a clever zero of the form (2.2.12), we
arrive at the so-called Gauss constraint

Gj =(γ) D(γ)
a Ea

j := ∂a
(

(γ)Ea
j

)
+ εjkl

(
(γ)Aja

)
. (2.2.13)

Here, we introduced the su(2)-valued Ashtekar connection(
(γ)Aja

)
:= Γja +

(
(γ)Kj

a

)
(2.2.14)

and the new covariant derivative Da acting on spatial indices as Daub := Daub and on internal
indices as Davj := ∂avj + εjklA

k
avl. One can show that ((γ)A,(γ) E) constitute a canonically

conjugate pair [31, 75]:

{Ea
j (x), Akb (y)} =

κγ

2
δab δ

k
j δ

(3)(x, y), {Ea
j (x), Eb

k(y)} = {Aja(x), Abk(y)} = 0. (2.2.15)

Additionally, the extended phase space described by ((γ)A,(γ) E) reduces to the ADM phase
space for Gj = 0, that is, if one performs a symplectic reduction with respect to the Gauß
constraints Gj. This way, we have carried out the affine canonical transformation given by

((γ)Ki
a,

(γ) Ea
i )→(γ) Aja := Γja +(γ) Kj

a. (2.2.16)

In the following, we will drop the labels (γ) for a clearer notation.

We want to close this section with some remarks:

• Note that (2.2.13) has exactly the form of a Gauß law known from Yang-Mills gauge
theory with gauge group SU(2). Therefore, we can understand GR as a non-abelian
SU(2) Yang-Mills gauge theory described by a SU(2) connection A = Aja dx

a ⊗ τj,
where τj denote the generators of su(2), and an electric field E = Ea

j ∂a ⊗ τj.

• As we have three additional constraints, the Dirac algebra of constraints stated in
(2.1.25)−(2.1.27) has to be extended. For this, we introduce the smeared Gauß con-
straint

G(Λ) :=

∫
σ

d3xΛjGj, (2.2.17)

with Λ = Λjτj being Lie algebra-valued. Then, we obtain the following relations:

{G(Λ), G(Λ′} = G([Λ′,Λ]), (2.2.18)
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{G(Λ), ~H( ~N)} = −G(L ~NΛ), (2.2.19)

{H(N), G(Λ))} = 0. (2.2.20)

(2.2.18) tells us that G(Λ) generates SO(3) or rather SU(2) gauge transformations.
(2.2.19) is the expected transformation of a scalar density of weight one under infinites-
imal SU(2) gauge transformations. From (2.2.20), we can infer that the Hamiltonian
constraint is invariant under SU(2) gauge transformations.

• If we keep the dimension D general, we would have an SO(D) connection A with
D(D − 1)/2 components and a D-bein E with D components. In order to have a
canonically conjugate pair, the number of components have to match, which is true
only for D = 3. However, there exist generalizations to higher dimensions: In [76–79]
this was achieved by considering a connection AaIJ . Here, the internal indices I, J
correspond to the gauge group SO(D + 1) or SO(D, 1) in the case of Euclidean or
Lorentzian signature for the internal metric, respectively.

2.2.2 New form of the constraints and Thiemann’s identities

In this section, we state the Hamiltonian and diffeomorphism constraint in terms of Ashtekar’s
variables and introduce the so-called Thiemann identities. The latter highlight one of the big
advantages of Ashtekar’s variables over ADM variables. We mainly follow [27,29].

In Ashtekar variables, we get the following expressions for the diffeomorphism and Hamil-
tonian constraint [29]:

Ha = F j
abE

b
j , (2.2.21)

H =
γ

2

εjklF
j
abE

a
kE

b
l√

det(q)
− γ(γ2 + 1)

εjmnεjklK
m
a K

n
b E

a
kE

b
l√

det(q)
, (2.2.22)

with the curvature tensor F j
ab defined by

F j
ab := 2∂[aA

j
b] + εjklA

k
aA

l
b. (2.2.23)

Adapting the usual notation, we call the first term of (2.2.22) the Euclidean part HE and the
second term the Lorentzian part HL. We can also rewrite the reduced ADM action (2.1.24)
in terms of Ashtekar variables [27]:

SEH =
1

κ

∫
R

dt

∫
σ

d3x
[
2ȦiaE

a
i −

(
ΛjGj +NaHa +NH

)]
. (2.2.24)

Note that for γ = ±i the second term in the Hamiltonian constraint would vanish. In this case,
however, A would take values in the Lie algebra of the non-compact gauge group SL(2,C).
This poses a problem at the quantum level, because the construction of the Hilbert space relies
on the harmonic analysis of compact gauge groups, in particular that of SU(2). Furthermore,
as noted before, additional reality conditions need to be implemented at the quantum level.

Now we want to introduce the so-called Thiemann identities developed first in [80]. The
main motivation behind Thiemann’s work is to get rid of the non-polynomial structure of the
Hamiltonian constraint due to the 1/

√
det(q) factor. Classically,

√
det(q) is the integrand of

the volume functional of a spatial slice σ:

V :=

∫
σ

d3x
√
|det(q)|. (2.2.25)
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In the quantum theory,
√
det(q) can be quantized using the volume operator that can be

defined in the context of LQG. As we need to quantize 1/
√
det(q), we may use the inverse

of the volume operator. Proceeding this way, however, we will encounter singularities, as the
volume operator has a non-trivial kernel. To solve this problem, one rewrites the Hamiltonian
constraint using Thiemann’s identities which we present in the following. We have that
det(e) := det(eja) = 1

6
εjklε

abcejae
k
be
l
c, which we can rewrite using det(e) = sgn(det(e))

√
det(q)

and (2.2.6) to get

εabcekc (x) = sgn(det(e))εijk
Ea
i E

b
j√

det(q)
(x). (2.2.26)

One can further show that the following identity holds:

4

κ
εabc{V,Akc (x)} = 2εabc

δV

δEc
k(x)

= εabcekc (x). (2.2.27)

Combining (2.2.26) and (2.2.27) gives us the final identity [80]

sgn(det(e))
εijkEa

i E
b
j√

det(q)
(x) = εabc{V,Akc (x)}. (2.2.28)

This expression allows us to simplify the Euclidean part, which in its smeared version reads
as

HE(N) = sgn(det(e))
8

κ

∫
σ

d3xεabctr (Fab{V,Ac(x)}) , (2.2.29)

where tr denotes the su(2)−trace. We see from (2.2.29) that it involves no longer polynomial
terms and this was one of the main reasons why in [80], for the first time, a quantization of the
Hamiltonian constraint was successfully performed. We will will explain the quantization in
more detail in section 3.5. Having simplified the Euclidean part of the Hamiltonian constraint,
we now turn to the Lorentzian part. Besides the 1/

√
det(q) factor, we also need to find an

expression for Kj
a. For this purpose, we introduce the densitized extrinsic curvature

K :=

∫
σ

d3xKi
aE

a
i , (2.2.30)

satisfying the identities [80]

{V,HE(1)} = K,
δK

δEa
j

= Kj
a, (2.2.31)

where we defined HE(1) := HE(N = 1). This gives us the identity

{{V,HE(1)}, Aja} = Kj
a (2.2.32)

helping us to express Kj
a in terms of quantities, for which well defined operators exist. Now,

we can rewrite the Lorentzian part of (2.2.22) using (2.2.32) for Km
a K

m
b and (2.2.28) for

Ea
kE

b
l /
√
det(q). We arrive at the smeared quantity

HL(N) = sgn(det(e))
16

κ3

∫
σ

d3xεabctr ({{V,HE(1)}, Aa(x)}{{V,HE(1)}, Ab(x)}{V,Ac(x)}) .

(2.2.33)
As the Euclidean part is contained in the Lorentzian part, it is reasonable to first quantize
the Euclidean part and use the result for quantizing the Lorentzian part afterwards. This
finishes our discussion of the Hamiltonian formulation of general relativity.
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3 Loop quantization of general relativity

In the following sections, we want to review loop quantum gravity (LQG). LQG is obtained
by canonically quantizing general relativity. In particular, we start from a Hamiltonian for-
mulation, which we discussed in section 2, and quantize this theory. When quantizing a
constrained theory, for which general relativity is an example, we have in general two options:

• Dirac quantization: We may quantize the full phase space, i.e., we find representations
of the Poisson algebra that our basic phase space variables satisfy. The representation
space is called kinematical Hilbert spaceHkin. On this space, we implement the classical
constraints as well-defined constraint operators. The physical states are then annihilated
by the constraint operators and comprise the so called physical Hilbert spaceHphys, with
the additional structure of an inner product.

• Reduced phase space quantization: We may solve the constraints classically and
construct gauge invariant quantities, i.e., a complete set of weak or strong Dirac observ-
ables. Then, we compute the algebra of the Dirac observables which we quantize, i.e.,
we find representations of it. This way, we directly end up with the physical Hilbert
space without having to solve any constraint equations.

Both approaches have their advantages and disadvantages: On the one hand, for Dirac quan-
tization, the algebra of the basic variables is quite easily represented by interpreting the
configuration variables as multiplication operators and the momenta as derivative operators.
To obtain the physical Hilbert space, however, we have to find the joint kernel of all constraint
operators. Specifically for general relativity, this is troublesome: The Gauß constraint can be
solved, see the discussion at the end of section 3.3.4, and also the diffeomorphism constraint.
For the latter, one uses the techniques of refined algebraic quantization and group averaging,
see, e.g., section 3.3.2 of [29] as well as [81]. The Hamiltonian constraint operator, however,
cannot be solved using the same techniques as for the other constraints and hence renders the
Dirac quantization incomplete. On the other hand, for reduced phase space quantization, the
advantage is that we directly end up with the physical Hilbert space after we quantized the
observable algebra. However, the construction of weak or strong Dirac observables may be a
very hard task for certain theories. Especially for general relativity, this has only succeeded
in an asymptotically flat scenario where one approaches Minkowski space at spatial infinity
and recovers the Poincaré charges as Dirac observables, see section 1.5 of [27]. Furthermore,
if we managed to find Dirac observables, the observable algebra may be very complicated and
thus, we may not find a representation thereof.

It depends on the theory of interest which approach is more convenient and in this thesis,
we want to perform a reduced phase space quantization of the polarized three torus Gowdy
model. We avoid the previously mentioned problems of constructing and quantizing observ-
ables and their potentially complicated Poisson algebra, respectively, by using the so-called
relational formalism, which we will introduce in section 4. We basically add degrees of free-
dom, allowing us in the end to lift our basic variables to observables satisfying a Poisson
algebra that is equivalent to the original one. Hence, finding a representation of this algebra
is easy, as we can use the kinematical results established for the Dirac quantization of LQG.
We will discuss the kinematics of LQG in more detail in the sections 3.2 and 3.3. Before
we come to this, we introduce in the subsequent section the general quantization programme
for Dirac quantizing a classical field theory constrained by a set of first class constraints, for
which general relativity is a specific example. In particular, we will point out ambiguities we
have at various points of the quantization programme.
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3.1 The canonical quantization programme

In the following, we introduce the general canonical quantization programme providing us
the necessary steps to obtain loop quantum gravity as a quantization of general relativity.
This procedure may also be applied to any other classical theory and in particular to field
theories. To explain these steps, we mainly follow [65], [73], [27] as well as chapter 13.2 of [82].

The starting point is a phase space modeled by an infinite dimensional symplectic manifold,
which is a smooth manifold M equipped with a symplectic form ω. In more detail, ω is a
smooth two-form that is non-degenerate, i.e., ω(X, Y ) = 0 for all Y ∈ T (M) implies X = 0,
as well as closed, i.e., dω = 0. Then, we can define the Poisson bracket for f, g ∈ C∞(M) as

{f, g} := χf (g). (3.1.1)

Here, χf denotes the Hamiltonian vector field with respect to f that is uniquely determined
by the symplectic form via iχfω + df = 0, where iχf denotes the interior product. We refer
to chapter 19.3 of [27] for more details on symplectic geometry. Furthermore, we assume the
symplectic manifold to be constrained by a set of first class constraints CI with I ranging in
some index set I. We remind that a set of constraints is called first class if the constraints
weakly Poisson commute, i.e., their Poisson bracket vanishes if the constraints are set to zero.
If we also have second class constraints C̃J , with J ∈ J , i.e., constraints that do not weakly
Poisson commute with all other constraints, we have to replace the Poisson bracket by the
corresponding Dirac bracket which is constructed as follows: For two phase space functions
f and g we define

{f, g}∗ := {f, g} −
∑

N,M∈J

{f, C̃M}SMN{C̃N , g}. (3.1.2)

Here, SMN denotes the inverse of SMN := {C̃M , C̃N}, i.e., SMKSKN = δMN .

Now, we list the steps of the quantization programme as presented in [27]:

• Firstly, we choose a classical Poisson algebra P which is a set of so-called elementary
functions that are globally defined and coordinatize our phase space, i.e., every function
on M can be written in terms of them. The corresponding mathematical condition
would be that the elements of P separate the points of M , i.e., for any p, p′ ∈ M with
p 6= p′, there exists an f ∈ P such that f(p) 6= f(p′). Additionally, we choose P to
be a Poisson ∗-subalgebra of C∞(M): Complex linear combinations of elements of P
are again in P and furthermore, P is closed with respect to complex conjugation and
the Poisson bracket. This is motived by the fact that we want to quantize the Poisson

bracket by i~{̂., .} and the complex conjugate a∗ of a ∈ P as the adjoint operator â†.

• Secondly, we construct from the classical Poisson algebra P the quantum ∗-algebra
A 1. The general procedure for this would be to first construct the free algebra J
containing finite linear combinations of all words w, which are finite sequences defined
by w := (a1...an), where a1, ..., an ∈ P and n is finite2. To implement the canonical

1An algebra A is a vector space over a field K with a bilinear multiplication map ◦ : A×A→ A. In case that
◦ is associative, A is called an associative algebra. We obtain a ∗-algebra by equipping A with an involution
map ∗ : A → A, a 7→ a∗, which satisfies (za + z′a′)∗ = z∗a∗ + z′∗a′∗, (aa′)∗ = a′∗a∗, (a∗)∗ = a. If A also
contains a unit element 1 satisfying 1 ◦ a = a ◦ 1 = a ∀a ∈ A, we obtain a unital ∗-algebra.

2More precisely, one constructs the tensor algebra T (P) := ⊕∞n=0 ⊗n
k=1 P =: J , where for n = 0 we get

C. Then, a general element of J is given by a = (w0, w1, ..., wn, ...), with w0 ∈ C and wn a finite linear
combination of elements w1n ⊗ ...⊗ wnn while w1n, ..., wnn ∈ P.
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commutation relations and the involutive structure, we consider the two sided ideal I
generated by elements of P that are of the form aa′ − a′a− i~{a, a′} and a∗ − ā, where
the bar denotes complex conjugation. Then, we divide the free algebra J by I to obtain
the quantum ∗-algebra as

A := J /I. (3.1.3)

• Thirdly, we investigate the representations of the quantum ∗-algebra A, which involves
the construction of the kinematical Hilbert space Hkin on which the elements of A are
represented as linear operators3. To construct a representation from a given algebra,
we may use the so-called Gelfand–Naimark–Segal (GNS) construction. This is done in
LQG for the so-called Ashtekar-Lewandowski representation, which provides a unique
representation under certain assumptions. We will discuss this in more detail in section
3.3.3.

• Finally, we construct the physical Hilbert space. Within Dirac quantization, this re-
quires to find those states that annihilate the constraint operators ĈI , i.e., to solve the
equations ĈIΨphys(q) = 0 ∀I ∈ I, where Ψphys(q) denotes a physical state depending on
the configuration variables q. To perform this step, one can apply the group averaging
technique under certain assumptions for the constraints, or the more general procedure
of direct integral decomposition involving the so-called Master constraint. We refer to
chapter 3 of [27] for more details on group averaging and direct integral decomposition,
but will discuss the Master constraint programme in section 3.6 as it is important to
motivate algebraic quantum gravity.

We now want to comment on the ambiguities occurring in the above quantization pro-
gramme.

• We begin with the choice of P: We should avoid any redundancy and hence, we con-
sider the smallest possible subalgebra in the sense that we cannot remove elements of P
without violating our previously stated conditions on P. Furthermore, we should adapt
the choice of P such that the Poisson algebra simplifies and we can find representations
of P as operators on Hkin. Another criterion is that the elements of P transform simple
under gauge transformations, which facilitates the quantization of Dirac observables.
Furthermore, we will define the basic variables in a background independent fashion,
which hence prohibits to use the standard Fock quantization procedure that invokes the
background structure at various points. Note that if the elements a ∈ P are unbounded,
this will lead to unbounded operators which are defined only on dense domains, respec-
tively. These domains, however, do not necessarily have to coincide, which occurs, for
example, in standard quantum mechanics for the position and momentum operator. In
particular, this leads to problems when calculating the commutator of these operators.
In this case, one may consider the so-called Weyl elements, which are bounded and
defined by the one-parameter family Ut(a) := exp (ita). Additionally, note that in case
of field theories, one would obtain a distributional Poisson algebra and hence consid-
ers smeared quantities. Especially for LQG, we will introduce a specific smearing, see
section 3.2.

3In more detail, a representation of a ∗-algebra A is a pair (π,H), given by the representation Hilbert space
H and the ∗-homomorphisms π : A → L(H) mapping from the ∗−algebra into the set of linear operators
L(H) defined on H. In particular, the homomorphism properties read as π(aa′) = π(a)π(a′), π(za+ z′a′) =
zπ(a) + z′π(a′), while the compatibility with the involution is encoded in π(a∗) = π(a)†, where † denotes
the adjoint. Furthermore, we impose π(1) = 1H for a unital algebra and represent the Poisson brackets via
π({a, a′}) = 1

i~ [π(a), π(a′)], where [., .] denotes the commutator.



24 3 Loop quantization of general relativity

• Now, we consider the ambiguities occurring for the quantum ∗-algebra A constructed
from P. Different choices of P, related by a canonical transformation, will in general
lead to different abstract algebras of operators and hence to different quantum theories.
Furthermore, if we fix one particular P, there may be many representations, which also
might not be unitary equivalent. This is the generic case in field theories where an un-
countably infinite number of unitary inequivalent representations occurs, e.g., already
for the Fock quantization of a free scalar field with mass m. In case of quantum me-
chanics, however, we have the Stone-von Neumann uniqueness theorem, which is proved
using the Weyl elements for position and momentum. This theorem tells us that under
very mild assumptions, the Schrödinger representation is unique up to unitary trans-
formations. Restricting for simplicity to one dimension, the Schrödinger representation
provides a representation of the Heisenberg algebra {q, p} = i~1H, {q, q} = {p, p} = 0
on the Hilbert space of square integrable functions H = L2(R, dx), with the Lebesgue
measure dx on R, via

πS(q̂ψ)(x) = xψ(x), πS(p̂ψ)(x) = −i~∂ψ
∂x

(x). (3.1.4)

The assumptions going into this uniqueness result are that the representation is irre-
ducible, i.e., there are only trivial invariant subspaces4, and weakly continous, i.e., the
map t→< ψ,Ut(a)φ > is continous ∀ψ, φ ∈ H, where Ut(a) denote the above introduced
Weyl elements. Using the so-called Stone theorem, weak continuity tells us that also
the momentum and position operators exist and hence, we can recover the Heisenberg
algebra. Weak continuity, however, is not satisfied in LQG and thus, the representation
of LQG is not unitarily equivalent to the Schrödinger representation. Nevertheless, as
we mentioned before, one can establish a uniqueness result for LQG, see section 3.3.3.
Specifically, one uses dynamical input, namely, that the gauge group is represented
unitarily.

We conclude this section with the following remarks:

• The Poisson algebra P we will be concerned with in LQG corresponds to the case of
M having the structure of a cotangent bundle T ∗O, where O denotes the configuration
space. Then, P would be the smallest and closed Lie subalgebra of the product space
Fun(Q)× V (Q), where Fun(Q) are the functions on Q and V (Q) the vector fields on
Q. The Lie algebra structure is given by

{(f, v), (f ′, v′)} := (v[f ′]− v′[f ], [v, v′]), (3.1.5)

with the Lie bracket [., .] defined for vector fields.

• There are also further tasks included in the quantization programme which we did not
mention so far. One task would be to investigate if the constraint algebra is represented
anomaly-free. This is especially important in LQG when considering the representa-
tion of the Poisson bracket between two Hamiltonian constraints that involves structure
functions, see our discussion in section 3.6. Furthermore, one has to consider the semi-
classical analysis, which we will also discuss in section 3.6. In particular, both of these
issues will help us to motivate the introduction of algebraic quantum gravity.

4In more detail: Given a representation π : A → L(H), a subspace V of H is called invariant if π(a)V ∈
H, ∀a ∈ A and V is called trivial if either V = {0} or V = H.
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3.2 Holonomy-flux algebra

In this section, we apply the first step of the quantization programme of section 3.1 to general
relativity formulated in terms of Ashtekar variables.

3.2.1 Motivation and basic variables

We first observe that the canonical commutation relations of the connection variables in
(2.2.15) involve delta distributions. To avoid such distributional results, we have to introduce
a smearing of the variables. The main guidance for the smearing will be that the smeared
quantities transform nicely under gauge transformations and that they are define in a back-
ground independent way.

A first guess may be the smearing [27,65]

E(f) :=

∫
σ

d3xf jaE
a
j , F (A) :=

∫
σ

d3xF a
j A

j
a. (3.2.1)

However, one can show that the transformation behaviour under gauge transformations, gen-
erated by the Gauss constraint, is not nice in the sense that it is not easy to construct gauge
invariant quantities. In section 6.1 of [27], further proposals for smearing are discussed, which,
however, do not lead to a closed Poisson algebra. Hence, one uses different techniques, in
particular inspired from lattice gauge theory as we will present in the next paragraphs.

We will now present the smearing separately for holonomies and fluxes.

Connections: A = Ajaτjdx
a is a Lie algebra-valued one-form and therefore naturally

integrated in one dimension, where naturally means that it can be done without using a
background metric. However, it is not convenient to use the connection one-form inte-
grated over some one dimensional submanifold of σ, but instead, one introduces so-called
holonomies, cf. [29, 65]: We denote a holonomy defined for a curve c : [0, 1] → σ by
A(c) := A(c, 1) = A(c, t)|t=1, where A(c, t) : [0, 1] → SU(2) is the unique solution of the
parallel transport equation

d

dt
A(c, t) = A(c, t)A(c(t)), A(c, 0) = 12, (3.2.2)

where A(c(t)) := Aja(c(t))τj/2ċ
a(t). This is an ordinary differential equation of first order

which is uniquely solved using the initial condition A(c, 0) = 12. Solving (3.2.2) iteratively
gives us the following infinite series for A(c) := A(c, 1):

A(c) = P exp

(∫
e

A

)
= 1 +

∞∑
n=1

∫ 1

0

dt1

∫ 1

t1

dt2...

∫ 1

tn−1

dtnA(c(t1))...A(c(tn)). (3.2.3)

Here, P denotes the path ordering symbol and orders the smallest path parameter to the left.
Two further important properties are

A(c1 ◦ c2) = A(c1)A(c2), A(c−1) = A(c)−1. (3.2.4)

The first relation is true for two curves c1, c2 whose end and starting point coincide, i.e.,
f(c1) = b(c2), while in the second relation, we defined c−1(t) := c(1 − t). Furthermore,
A(c) is invariant under reparametrizations. The main motivation for using holonomies is



26 3 Loop quantization of general relativity

their simple behaviour under SU(2) gauge transformations: The connection transforms as
Ag = gAg−1 − dgg−1, whereas the holonomy acquires the simple transformation behaviour

Ag(c) = g(b(c))A(c)g(f(c))−1), (3.2.5)

where the transformation only acts at the starting and end point of the curve along which
the connection is smeared. In particular, we can construct the gauge invariant Wilson loop
Tr(P exp

(∫
α
A
)

with α being a closed loop. To see the gauge invariance, we note that α, being
a closed loop, satisfies b(α) = f(α) and hence, when performing a SU(2) gauge transformation,
we can use the cyclicity of the SU(2) trace, as well as g(f(α))−1g(b(α)) = 1SU(2) which
finishes the argument. The choice of holonomies as elementary configuration variables is the
reason why the theory was named loop quantum gravity. Furthermore, the connection
A transforms as Aϕ = ϕ∗A, for ϕ being a spatial diffeomorphism. Hence, we obtain for
holonomies that

Aϕ(c) = A(ϕ−1(c)). (3.2.6)

Densitized triads: So far, we introduced a one-dimensional smearing for the connection.
We also have to introduce a smearing for the densitized triads E = Ea

j τj∂a in order to avoid
a distributional result when calculating the Poisson bracket between E and holonomies. In
particular, a two dimensional smearing is needed, as it turns out that for a three dimensional
smearing such as E(f) :=

∫
σ
f jaE

a
j , the Poisson algebra does not close. In particular, the

Poisson bracket between a matrix element (A(e))mn and E(f) results in an integral over
holonomies, see [27] for details. Hence, a two dimensional smearing is necessary. As 2-forms
are naturally, i.e., background independently, integrated in two dimensions, we use the Hodge
dual ∗ to construct from Ea

j , being a su(2)-valued vector density of weight +1, the 2-form

(∗E)jab = Ec
j εabc having density weight zero, as εabc has density weight -1. Smearing the

quantity ∗E with an su(2)-valued smearing field nj and integrating the result over a two-
dimensional surface S results in the so called electric flux:

E(S, n) :=

∫
S

nj(∗E)j =

∫
S

njεabcE
a
j dx

b ∧ dxc. (3.2.7)

We obtain the following transformation behaviour under SU(2) gauge transformations and
spatial diffeomorphisms, respectively:

Eg
n(S) = EAdg−1n(S), Eϕ

n (S) = E(ϕ−1)∗n(ϕ(S)). (3.2.8)

While the spatial diffeomorphisms act in a simple way, the gauge transformations act rather
non-local. This, however, is resolved when constructing gauge invariant quantities such as
the area operator, cf. section 3.4., where one considers the limit in which the surfaces shrink
to points.

We want to remark that the transformations (3.2.5),(3.2.6), and (3.2.8) are implemented
as automorphisms of P, as only the labels are changed under the action of spatial diffeomor-
phisms and gauge transformations and hence, the algebraic structure remains unchanged.
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3.2.2 The Poisson algebra

In the previous section, we have specified the elementary functions of our classical Pois-
son algebra. Now, we need to compute the Poisson bracket relations. The Poisson bracket
{A(c′), A(c)} vanishes and we proceed with the calculation of {En(S), A(c)} in the following.
Note, however, that the Poisson bracket we defined in section 2 requires the basic variables to
be smeared in 3 dimensions, respectively. The smearing we introduced for the connections and
densitized triads, however, is well motivated by background independence, but only one- and
two-dimensional, respectively. Hence, one has to introduce a suitable regularization, where
one extends the curves to tubes and the surfaces to disks to arrive at a three-dimensional
smearing for holonomies and fluxes, respectively. See chapter 6.4 of [27] for more details.

We first consider the simple case of a surface S punctured once by a curve c : [0, 1] → σ
in a point p. In particular, we can split up c into c1 ◦ c2 with f(c1) = p = b(c2). Then, one
can show that [29]

{En(S), A(c)} = ±κγ
2
A(c1)τjn

j(p)A(c2). (3.2.9)

In this equation, we have a positive (negative) sign if the normal to S and the tangent of c
are oriented the same (opposite) way. If the edge does not intersect with S, then (3.2.9) is zero.

(3.2.9), however, does not describe the generic case, it may also happen that the edge
lies in the surface or intersects it more than once or even infinitely many often. This would
result in an infinite number of holonomies on the right hand side of (3.2.9). To avoid this, one
restricts to piecewise analytic or rather semianalytic curves and surfaces instead of smooth
ones. The transition to analytic structures is justified by the fact that smooth surfaces and
paths can intersect infinitely many often and thus, {En(S), A(c)} would result in infinitely
many holonomies. The restriction to piecewise and not entire analytic structure is motivated
by locality, because an analytic path specified on an small open neighborhood is determined
globally by its analytic extension. Furthermore, a diffeomorphism preserving analytic struc-
tures would be non-local which turns out to be undesirable for the proof of the uniqueness
result, cf. [27]. Hence, we consider in the following the set of curves c ∈ C, c : [0, 1]→ σ, con-
sisting of piecewise semianalytic curves, which are basically a composition of analytic curves
meeting in certain points where the curves are at least one time differentiable. Note that the
definitions of semianalyticity and piecewise analyticity are similar, with the difference that
for example a semianalytic curve has to be at least one time differentiable at points of non-
analyticity, while a piecewise analytic curve only has to be continous. Moreover, we restrict
to semianalytic surfaces, which are basically unions of analytic surfaces whose closures meet
in piecewise analytic curves, see [27] for a precise definition.

We will restrict our choice of curves even further, namely, we define the set of paths P
as the set of equivalence classes of curves c ∈ C. Two curves are said to be equivalent if 1.
they have the same beginning and end point and 2. are identical up to a finite number of
retracings and reparametrizations. The latter condition is motivated by the fact that such
curves yield the same holonomy due to the properties we described in the context of (3.2.4).

On P . we can define a so-called groupoid structure. For this purpose, we define the
composition of two curves c1, c2 as

(c1 ◦ c2)(t) :=

{
c1(2t) t ∈ [0, 1/2],

c2(2t− 1) t ∈ [1/2, 1].
(3.2.10)
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Furthermore, the inverse of a curve is given by c−1(t) := c(1− t). Then, we can compose and
invert paths by applying the respective operations on the representatives:

pc1 ◦ pc2 := pc1◦c2 , pc ◦ p−1
c = b(pc). (3.2.11)

Here, pc denotes an equivalence class of curves with representative c. This way, we do not
obtain a group but a groupoid structure, as not all elements can be composed. In particular,
a path can be broken up into several parts, called edges ei for i = 1, ..., n, of which a path is
the composition.

We now introduce so-called elementary edges e which lie in a certain way with respect to
a given surface S: An edge e is called of type out if S ∪ e = ∅, of type in if S ∪ e = e, and
of type up or down if it intersects S in one point p = S ∪ e and lies above or below S. For
the latter case, the point p may either be the starting or the end point of e, which we denote
as b(e) and f(e), respectively. We illustrated the possible elementary edges in figure 3.2.2,
where we chose for e being of type up or down that S ∪ e = b(e).

out

up

in

down

n

S

Figure 1: Illustration of the elementary edge of type up, down, out, and in as shown in [65].
Furthermore, n denotes the normal of the surface S.

We can now generalize (3.2.9) and obtain [28]

{En(S), A(e)} =
κγ

2

ε(S, e)

2
×

{
A(e)τjn

j(p) if p = b(e),

−τjnj(p)A(e) if p = f(e),
(3.2.12)

where ε(S, e) is +1 for e of type up, −1 for e of type down, and 0 for e of type out.

To extend (3.2.12) to functions of holonomies, we have to introduce the following notions:

• A graph γ is basically a finite collection of edges ei, with i = 1, ..., |E(γ)| where E(γ)
denotes the set of edges. The edges of γ meet in a certain number of points which are
called vertices vi, with i = 1, ..., |V (γ)| where V (γ) denotes the set of vertices.

• Denoting the space of smooth connections as A, a function f : A → C is called cylin-
drical with respect to a graph γ if there exists a smooth function Fγ : SU(2)|E(γ)| → C
such that one can write f as

f(A) = Fγ(A(e1), ..., A(en)). (3.2.13)
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Here, ei, with i = 1, ..., n, denote the edges of the graph γ.

• To define the space of cylindrical functions, we have to note that given a function f
cylindrical with respect to some graph γ, f will also be cylindrical with respect to a
larger graph γ′. Identifying such functions as equivalent defines an equivalence relation
∼. The space of smooth cylindrical functions is then defined as the quotient space

Cyl∞ := ∪γCyl∞γ / ∼, (3.2.14)

where Cyl∞γ contains the smooth functions cylindrical with respect to γ. One can show
that Cyl∞ is a C∗-algebra when equipped with the supremum norm and pointwise
addition and multiplication5.

Now, we can extend (3.2.12) to smooth cylindrical functions f ∈ Cyl∞ using the Leibniz rule
and obtain

{En(S), f} =
κγ

4

∑
e∈E(γ)

ε(e, S)nj(p)

{
[A(e)τj]AB if p = b(e)

− [τjA(e)]AB if p = f(e)

}
∂Fγ

∂A(e)AB
({A(e′)}e′∈E(γ)).

(3.2.15)
Note that in this equation, γ is chosen to be adapted to S, i.e., each edge of γ is either of type
up, down, in or out. We can achieve this by dividing the edges suitably, which introduces
new, so-called virtual vertices.

We now turn to the Poisson bracket between two fluxes En(S) and En′(S
′). The classi-

cal relation {Ea
j (x), Eb

k(y)} = 0 suggests to set {En(S), En′(S
′)} to zero. However, as dis-

cussed in [83], if we write out the Jacobi identity between a cylindrical function and two
fluxes En(S), En′(S

′) and use (3.2.15), we would get a contradiction when assuming that
{En(S), En′(S

′)} = 0 holds. Hence, we would not have a Lie algebra structure. The way out
of this problem is to introduce the derivations Yn(S) := {En(S), .}, which are the Hamilto-
nian vector fields of the fluxes and are called flux vector fields. These also satisfy the Jacobi
identity for the differential geometric Lie bracket. Using the construction in (3.1.5), we can
define a Lie algebra structure. Nevertheless, we have to keep in mind that

{{En(S), En′(S
′)}, f} = [Yn(S), Yn′(S

′)] · f 6= 0, (3.2.16)

which implies that at the quantum level, the operators describing the spatial geometry are
non-commuting.

We now want to scetch how to rewrite (3.2.15) as the action of the derivation Yn(S) :=
{En(S), .}. For this purpose, we introduce left- and right-invariant vector fields defined by [27]

(Rjf)(h) :=
d

dt

∣∣∣f(etτjh), (Ljf)(h) :=
d

dt

∣∣∣f(hetτj), (3.2.17)

for h an element of a Lie group G. For matrix Lie groups such as G = SU(2), these vector
fields have the coordinate representation Rj = (τjh)AB∂/∂hAB and Lj = (hτj)AB∂/∂hAB, see,
e.g., [16] for a proof. This allows us to recast (3.2.15) into the following form:

Yn(S) · f := {En(S), f} =
κγ

4

∑
e∈E(γ)

ε(e, S)nj(p)

{
Rj
e if p = b(e)

−Lje if p = f(e)

}
Fγ({A(e′)}e′∈E(γ)).

(3.2.18)

5A C∗-algebra C is an algebra equipped with an involution as well as a norm, such that the induced metric
makes the algebra complete, giving us a Banach algebra. If the so-called C∗ property ||a∗a|| = ||a2|| for all
a ∈ C is satisfied, we obtain a C∗-algebra.
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Here, Rj
e and Lje only act on the copy of G labeled by e. We see that (3.2.18) is again a

cylindrical function and hence, the flux vector fields indeed define derivations on Cyl∞.

Finally, we can state the definition of the classical Poisson ∗-subalgebra which is the first
step of the quantization programme described in section 3.1: The so called holonomy flux
algebra P is a Lie ∗-subalgebra of Cyl∞ × V (Cyl∞), where Cyl∞ are the smooth cylindrical
functions and V (Cyl∞) denotes the set of flux vector fields Yn(S) := {En(S), .} defined on
Cyl∞. The Lie bracket is defined in (3.1.5). Furthermore, the involution on P is given by
complex conjugation.

3.3 The Ashtekar-Lewandowski representation

We continue in the quantization programme and construct the quantum ∗-algebra A using
the standard construction discussed in the context of (3.1.3). Note that the flux vector fields
will correspond to unbounded operators, which causes domain issues. To avoid this, we may
consider the corresponding Weyl elements. We will not discuss this in detail at this point
and refer to chapter 7 of [27] for a treatment thereof. The next step in the quantization pro-
gramme is the discussion of representations of the quantum ∗-algebra A. We will concentrate
on the so-called Ashtekar-Lewandowski representation. Note, however, that there are also
other representations reported, see, e.g., [84–86].

In standard QM, the classical configuration space is R3. To find the representation Hilbert
space L2(R3, d3x) of square integrable functions on R3, one needs to construct a measure on
that space, which turns out to be the standard Lebesgue measure. In our case, we have a
field theory and the classical configuration space is the infinite dimensional space of smooth
connections A. Hence, to obtain the corresponding space of square integrable functions, we
need to develop measure theory on infinite dimensional spaces. To handle this, it is a common
procedure in the quantization of canonical field theories to extend the classical configuration
space to some larger, distributional space, see, e.g., [28, 87] for a discussion. In our case,
we need to introduce the space of generalized or distributional connections A, which is also
called the quantum configuration space. In the following chapter, we want to give a more
geometrical explanation of A.

3.3.1 The space of generalized connections

In the following, we will establish a more intuitive picture of the space of generalized connec-
tions A and also equip it with a topology, such that measure theory can be developed thereon.

In particular, one can show that A is homeomorphic to the set Hom(P , G) containing
all, i.e., not necessarily continuous homeomorphisms from the set of paths P in σ, which we
introduced in section 3.2.2, into the gauge group G.

To motivate that Hom(P , G) is the distributional extension of A, we observe that a con-
nection A ∈ A defines an element of Hom(P , G) due to A(pc) = A(c) ∈ G. Furthermore,
Hom(P , G) is larger than A, as the latter space actually depends on the principal fibre bundle
P and should be written as AP . In our case, we have P defined via the spatial manifold σ
as the base space and SU(2) as the structure group of P . Hom(P , G) , however, does not
depend on the principal bundle and hence contains all spaces AP at once. Thus, Hom(P , G)
is definitely larger than A. It also contains distributional elements for which specific examples
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are discussed in [88].

Now, we will discuss how we can turn Hom(P , G) into a topological space such that it
is compact and Hausdorff 6, which allows us to equip Hom(P , G) with a measure. We refer
to [27,89] for more details and will only state the main ideas following [65]:

• We first consider the space Xγ := Hom(γ,G) containing the groupoid homomorphisms
from the graph γ, which is a subgroupoid, i.e., γ ⊂ P , into the gauge group SU(2). We
introduced the notion of a graph in section 3.2.2. To establish a topology on Xγ, we
recognize that each xγ ∈ Xγ is completely determined by the group elements xγ(e) for
e ∈ E(γ) and hence, we have a bijection

ργ : Xγ → G|E(γ)|, xγ 7→ (xγ(e))e∈E(γ). (3.3.1)

Since G is a compact Hausdorff space and G|E(γ)| for finite |E(γ)|, too, we can equip Xγ

with a compact Hausdorff topology via the identification (3.3.1).

• Now we proceed to the infinite product

X∞ :=
∏
γ∈Γ

Xγ, (3.3.2)

where Γ denotes the set of all compactly supported and semianalytic graphs. We can
define a topology on X∞ by the so-called product or Tychonov topology such that it
becomes compact and Hausdorff.

• We cannot identifyA directly with X∞ as the elements ofA have to satisfy an additional
compatibility condition: We first define a partial and directed order ≺ on Γ7 by defining
γ ≺ γ′ if and only if γ is contained in γ′, i.e., every e ∈ E(γ) can be written as a
finite composition of the edges e′ ∈ E(γ′) and their inverses. Now, we introduce the
projection maps pγ′γ : Xγ′ → Xγ defined for all γ ≺ γ′ as restriction maps. We also
have the compatibility condition pγ′′γ = pγ′γ ◦ pγ′′γ′ , with γ ≺ γ′ ≺ γ′′. This translates
to elements A ∈ A in the sense that pγ′γ(A|γ′) = A|γ. This leads us to consider the set

X := {(xγ)γ∈Γ | pγ′γ(xγ′) = xγ, ∀γ ≺ γ′} (3.3.3)

containing those elements of X∞ that are compatible in the above introduced sense. X
is called the projective limit of the projective family (Xγ, pγγ′)γ≺γ′∈Γ. To equip X with
a topology, we use that it is a subspace of X∞ and take the induced subspace topology,
i.e., the open sets of X are the sets U ∩ X with U ⊂ X∞ any open set in X∞. Using
this, one can show that X is compact and Hausdorff as well.

• The final step is to establish a bijection between Hom(P , G) and X such that the
topological properties are inherited from X onto Hom(P , G). See section 6.2.2 of [27]
for a proof.

6A topological space is called Hausdorff if any two different points of that space have distinct open neigh-
borhoods. It is furthermore called compact if every open cover has a finite subcover, where an open cover is
a collection of open subsets, whose union contains the whole topological space.

7That the relation ≺ on Γ defines a partial order means that it is reflexive, i.e., γ ≺ γ, symmetric, i.e.,
γ ≺ γ′, γ′ ≺ γ ⇒ γ = γ′, and transitive, i.e., γ ≺ γ′, γ′ ≺ γ′′ ⇒ γ ≺ γ′′. Furthermore, directed means that
∀γ, γ′ ∈ Γ ∃γ′′ : γ, γ′ ≺ γ′′.
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In total, we can identify the space of distributional connections A := Hom(P , G) with the
projective limit such that A becomes a topological and compact Hausdorff space.

We can now extend our definition of cylindrical functions in (3.2.14) to the projective limit
X and hence to A. Denoting the continuous, complex-valued functions on Xl by C(Xl), we
define the smooth cylindrical functions on X as

Cyl∞(X) = ∪γ∈ΓC(Xγ)/ ∼, (3.3.4)

with the equivalence relation ∼ defined by

f ∼ f ′ ⇔ p∗γ′′γf = p∗γ′′γ′f
′ ∀γ, γ′ ≺ γ′′. (3.3.5)

This is basically the same definition as (3.2.14), i.e., equivalence means that we can find a
subgroupoid γ′′ that contains γ, γ′. Note that an element of Cyl(X) is actually an equivalence
class of functions on Xγ, i.e., f ∈ Cyl(X) might be denoted as [fγ]∼. One can show, however,
that Cyl(X) can be identified with C(X), which is the set of continuous functions on the
projective limit X. To show this, one makes use of the so-called Gel’fand-Naimark-Segal
theory, of which a review is presented in chapter 27 of [27].

3.3.2 The kinematical Hilbert space

To obtain the kinematical Hilbert space from A, we need to define a suitable measure, for
which we use projective techniques. This will also hand us an inner product. We again fol-
low [27].

We will first describe the construction of a measure onA. The starting point is a projective
family (Xγ, pγγ′)γ≺γ′∈Γ with continuous and surjective projection maps pγ′γ : Xγ′ → Xγ.
On this projective family, we can define a family of measures (µγ)γ∈Γ which is said to be
consistently defined if∫

Xγ′

dµγ′(Xγ′) [p∗γ′γfγ](Xγ′) =

∫
Xγ

dµγ(Xγ) fγ(Xγ) ∀γ ≺ γ′, fγ ∈ C(Xγ). (3.3.6)

This condition implies that if we enlarge the subgroupoid γ, with respect to which the sets
Xγ are defined, the result of the integral, defined with respect to the corresponding measure
µγ, does not change. Specializing to the case of A, cylindrical functions are defined by

fγ(xγ) = Fγ({xγ(e)}e∈E(γ)) = (ρ∗γFγ)(xγ), (3.3.7)

with Fγ : G|E(γ)| → C being continous and ργ defined in (3.3.1). We see that any cylindrical
function over a graph γ can be expressed via a function on SU(2)|E(γ)|. Hence, if we want to
find a measure on A, we may take the Haar measure on SU(2) or rather |E(γ)| copies of it.
This motivates to define the family of cylindrically consistent measures via

µ0γ(fγ) =

∫
Xγ

dµ0γ(xγ)(ρ
∗
γFγ)(xγ) =

∫
G|E(γ)|

[dµH(he)]Fγ({A(e)}e∈E(γ)). (3.3.8)

Here, µH denotes the unique Haar probability measure of the compact Lie group SU(2) that is
invariant under right and left translations as well as inversions. In particular, (3.3.8) satisfies
(3.3.6). The consistency condition (3.3.6) yields us that the linear functional

Λ(f) :=

∫
Xγ

dµγ(Xγ)fγ(xγ), (3.3.9)
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with f = [fγ]∼ ∈ Cyl(X), is well defined, i.e., it does not depend on the representative fγ
of f . One can show that the linear functional (3.3.9) is even defined on C(X), the space
of continous functions on X. Together with the fact that X is a topological space, which is
also compact and Hausdorff, we can apply the so-called Riesz-Markov theorem. This theorem
allows us to identify a regular Borel probability measure µ0 on X with the consistently defined
family of measures (µγ)γ∈Γ, while we have the relation µ0 ◦ p−1

l = µγ. µ0 is also called the
uniform measure or Ashtekar-Lewandowski measure.

We can now define the inner product for two smooth cylindrical functions f, f ′ ∈ Cyl∞ as∫
SU(2)n

n∏
i=1

dµH(A(ei))Fγ(A(e1), ..., A(en))F ′γ(A(e1), ..., A(en)), (3.3.10)

where n := E(γ). Note that for f, f ′ being cylindrical with respect to two different graphs
γ, γ′, we pursue the following strategy: We take a graph γ′′ containing γ and γ′, e.g., we
may choose γ′′ = γ ∩ γ′. Then, by definition, f and f ′ are still cylindrical with respect to
this graph. Furthermore, we assign trivial holonomies to those edges in γ′′ not contained in
γ, γ′. Cylindrical consistency will guarantee us that the outcome of the inner product does
not change.

Finally, we can define the kinematical Hilbert space by taking the completion of Cyl∞

with respect to the norm induced by the inner product (3.3.10). This gives us the so-called
Ashtekar-Isham-Lewandowski Hilbert space H = L2(A, µ0) of functions over A which are
square integrable with respect to µ0.

3.3.3 The representation and uniqueness result

We can now state the so-called Ashtekar-Lewandowski representation of the quantum ∗-algebra
A, which is constructed from the holonomy flux algebra. The representation space is H =
L2(A, µ0) and the cylindrical functions act as multiplication operators

(πAL(f)ψ)(A) = f(A)ψ(A) (3.3.11)

for ψ ∈ H, while the flux vector fields act as derivative operators

(πAL(Yn(S))ψ)(A) = −i~Ŷn(S)[ψ], (3.3.12)

for ψ in the domain of Ŷn(s). Using (3.2.18), we can also specify the action of Ŷn(S) on
cylindrical functions, which lie dense in H [29]:

Ŷn(S) · f =
κγ

4

∑
v∈V (γ)

ni(v)

[∑
eatv

ε(S, e)Ĵ
(v,e)
i Fγ({A(e′)}e′∈E(γ))

]
, (3.3.13)

where we defined

Ĵ
(v,e)
i := 1H ⊗ 1H ⊗ ...⊗

{
Rj
e if p = b(e)

−Lje if p = f(e)

}
⊗ 1H ⊗ ...⊗ 1H. (3.3.14)

In particular, one can show that under certain assumptions, the Ashtekar-Lewandowski
representation is unique. This is the content of the so-called LOST theorem [90,91] imposing
the following restrictions on the representation (π,H) of the quantum ∗-algebra A:
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• Firstly, (π,H) should be irreducible, i.e., any ψ in a common dense domain D of all
π(a) is cyclic. That ψ is cyclic means that {π(a)ψ|a ∈ A} is dense in H. Specifically,
one can show that non-degenerate representations, i.e., those satisfying π(a)ψ = 0 ∀a ∈
A⇒ ψ = 0, are a direct sum of cyclic representations. Hence, it suffices to study cyclic
representations, i.e., those admitting a cyclic vector. Now, we can use the so-called
Gelfand-Naimark-Segal (GNS) theorem, which establishes a one-to-one correspondence
between cyclic representations and positive linear functionals ω : A→ C, where positiv-
ity means ω(a∗a) ≥ 0. We refer to chapter 29 of [27] for more details. Hence, we can
now study GNS states instead of representations.

• Secondly, part of the classical symmetries, i.e., in our case SU(2) gauge transformations
and spatial diffeomorphisms, should be implemented as unitary operators. One way to
implement this is by requiring the state, corresponding to the cyclic representation, to
be invariant under the classical symmetries.

The LOST theorem tells us that there is only one diffeomorphism and gauge invariant state
ω, whose so-called GNS data (Hω, πω,Ωω) from the GNS theorem coincide with the Ashtekar-
Lewandowski representation. Here, πω denotes a cyclic representation on the representation
Hilbert space Hω and Ωω is a normed and cyclic vector contained in Hω.

3.3.4 Spin network functions

In this section, we want to introduce a convenient orthonormal basis of the kinematical Hilbert
space H := L2(A, dµ0), the so-called spin network functions. We mainly follow [27] and also
refer to [92] for more details.

First, we introduce an orthonormal basis for the Hilbert space L2(SU(2), dµH). Note
that the subsequent construction is valid for any compact Lie group. In the following, we
fix a representative of the equivalence class of finite-dimensional, unitary, and irreducible
representations of SU(2). We denote this representative by (πj,Hj), labeled by the half-
integer spin quantum number j ∈ N/2. Then, we use the so-called Peter and Weyl theorem,
proved for instance in section 31 of [27]. This theorem guarantees that the following functions
on SU(2) provide an orthonormal basis of L2(SU(2), dµH):

bjmn(g) :=
√
dj[πj]mn, m, n = 1, ..., dj. (3.3.15)

Here, [πj]mn denotes a matrix element of the representation πj labeled by the half-integer
spin quantum number j and dj = 2j + 1 is the dimension of the representation space Hj. In
particular, we have the orthonormality relation

< bjmn, bj′m′n′ >=

∫
G

dµH(g)[πj]mn[πj′ ]m′n′ = δjj′δmm′δnn′ . (3.3.16)

We can now use (3.3.15) to define an orthonormal basis of H = L2(A, dµ0). To this end,
we introduce the following orthonormal functions, which are called spin network functions:

Tγ,~j,~m,~n : A → C, A→
∏

e∈E(γ)

bjemene(A(e)). (3.3.17)

Here, we defined ~j := {je}e∈E(γ), ~m := {me}e∈E(γ), and ~n := {ne}e∈E(γ). These functions pro-
vide a basis for Hγ, the Hilbert space associated to a graph γ. Now, we introduce so-called
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intertwiners, which in general are maps I : H1 → H2 between representation Hilbert spaces
H1 and H2 corresponding to representations (π1,H1) and (π2,H2) such that π2(.)I = Iπ1(.).
Then, we assign to each vertex an intertwiner and contract them suitably with the spin net-
work functions (3.3.17), giving us the so-called gauge variant spin network functions denoted

as Tγ,~j,~I with ~I := (Iv)v∈V (γ). One can show that these functions provide an orthonormal basis

of H = L2(A, dµ0).

The concept of intertwiners is especially useful to solve the Gauß constraint. When con-
structing the Gauß constraint operator explicitly, its action on cylindrical functions is annihi-
lated if at each vertex, the spins associated to the edges meeting in the vertex couple to total
spin zero, see, e.g., section 3.3 of [29] and section 9.1 of [27]. This can be achieved by choosing
intertwiners that project onto the trivial representation. The resulting gauge invariant spin
network functions Tγ,~j,~I provide an orthonormal basis for L2(A/G, dµ0), where A/G denotes
the distributional extension of the space of connections A modulo gauge transformation G.

3.4 Geometric operators

We now come to one of the characteristic properties of loop quantum gravity, namely the dis-
creteness of geometry. This is implied by the spectrum of geometrical operators constructed
from the classical length, area, and volume functionals.

We start with the area operator, since it is the most easiest geometrical operator to derive.
We closely follow [29]. The classical area functional is given by

Ar(S) =

∫
U

d2u
√
det(X∗q)(u), (3.4.1)

where X∗q denotes the pull back of the spatial metric with respect to the embedding X of
the surface defined by X : U ⊂ R2 → S. Using the key classical identity

√
det(X∗q) =√

nanbEa
jE

b
kδ
jk, with n the conormal to S, one can rewrite the area functional in terms of

Ashtekar variables. We also need to regularize the area functional, for which we choose a
partition of U as U = ∪ni=1Ui, giving us

Ar(S) =
n∑
i=1

∫
Ui

d2u
√
nanbEa

jE
b
kδ
jk(X(u)) ≈

n∑
i=1

√
Ej(SUi)Ek(SUi)δ

jk(v). (3.4.2)

Here, v denotes a point centered in Ui. Furthermore, we introduced the fluxes Ej(SUi) :=∫
Ui
d2u naE

a
j (X(u)), which are defined via the fluxes En(S), we introduced in (3.2.7), as

Ej(SUi) := Eτj(S), i.e., we choose the su(2) basis elements τj as a smearing function. If
we consider the limit n → ∞ in (3.4.2), we recover (3.4.1). We can quantize (3.4.2) using
(3.3.14), which results in the following action of the area operator on a spin network function:

Âr(S)Tγ,~j,~I =
γl2P
4

n∑
i=1

√√√√√
 ∑
v∈V (γ),eatv

ε(SUi , e)Ĵ
(v,e)

2

Tγ,~j,~I . (3.4.3)

Here, l2P := κ~ denotes the Planck length. The spectrum of the area operator can be cal-
culated analytically and turns out to be discrete, see [29] for more details. We also want to
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remark that there exists a smallest possible eigenvalue of the are operator. This so-called
area gap has the value l2Pγ

√
3

8
and is important for the description of black holes within LQG.

Furthermore, note that the area operator is ill-defined in the usual Fock representation moti-
vating the previously introduced, non-standard quantization techniques that allow us to give
a meaning to geometrical operators.

Now, we introduce the volume operator. The volume functional of a region R is defined
by

V (R) :=

∫
R

d3x
√
det(q), (3.4.4)

which can be expressed by the densitized triads using the identity

det(q) = |det(Ea
j )| =

∣∣∣∣ 1

3!
εabcε

ijkEa
i E

b
jE

c
k

∣∣∣∣ . (3.4.5)

To replace the densitized triads by their well defined operator counterparts (3.3.14), we need
to introduce a regularization in analogy to our discussion of the area operator. For this,
we basically choose a partition of the spatial region R into cubic cells. As derived in detail
in [93] and section 13.3 of [27], one arrives at the following expression for the volume operator
measuring the volume of the spatial region R for a given graph γ:

V̂ (R)γ =

∫
R

d3x
̂√
det(q)(x)γ =

∫
R

d3xV̂ (x)γ =

(
lP
2

)3 ∑
v∈V (γ)

δ(3)(x, v)V̂v,γ, (3.4.6)

where

V̂v,γ :=

√√√√√
∣∣∣∣∣∣ i48

∑
eI∩eJ∩eK)v

ε(eI , eJ , eK)εIJKQ̂IJK

∣∣∣∣∣∣. (3.4.7)

Here, we defined Q̂IJK := εijkJ
(v,eI)
i J

(v,eJ )
j J

(v,eK)
k and ε(eI , eJ , eK) = ±1, 0 is the sign factor,

which vanishes if the three vectors tangent to the edges eI , eJ , eK , meeting at the vertex
v, are linearly dependent. This coincides with the operator introduced by Ashtekar and
Lewandowski in [94].

We now want to discuss some properties of the volume operator (3.4.7). It is defined cylin-
drically consistent: If we consider the volume operator defined on a graph γ′, we can restrict it
to functions defined on a smaller graph γ, where it coincides with the volume operator V̂ (R)γ,

i.e., we have (V̂ (R)γ′)|γ = V̂ (R)γ. Furthermore, the volume operator is essentially self-adjoint
and has a pure point spectrum. Concerning the spectral properties, a closed formula for the
calculation of matrix elements of the volume operator exists [93]. This is, for instance, used
in [95–98] to develop a numerical calculation scheme for matrix elements of the volume opera-
tor. These results also suggests the existence of a volume gap which, however, depends on the
vertex embedding. Analytic computations of the spectrum are in general hard to perform.
Nevertheless, in [51], matrix elements of the volume operator with respect to semiclassical
states could be calculated analytically using perturbative methods and in particular, with
error control.

Note, however, that (3.4.7), which in the following we denote as V̂AL, is not the only
volume operator that is reported. There also exists a second one, introduced by Rovelli and
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Smolin in [99], which we refer to as V̂RV in the following. Both volume operators use differ-
ent regularization techniques and are inequivalent. They are also unique up to an arbitrary
regularization constant. The main differences between V̂AL and V̂RS are the following: First
of all, they are structurally different, while they both contain the operator Q̂IJK . However,
in V̂AL there occurs the factor ε(eI , eJ , eK) which does not appear in V̂RV . This implies that
V̂AL is only diffeomorphism-covariant, while V̂RV is covariant under homeomorphisms, as it
does need any information about the orientation of the edges. Furthermore, also planar edges
contribute for V̂RV , which is not the case for V̂AL. Both operators, however, only act non-
trivially at at most three-valent vertices. Note that the operator V̂AL in (3.4.7) is preferred
due to the following reasons : On the one hand, we have a kinematical reason provided by the
consistency check in [100, 101]. The main results is that V̂RV does not pass this consistency
check, while V̂AL does. Furthermore, the regularization constant is fixed in [100, 101], which
was already used in (3.4.7). On the other hand, there are also a dynamical reason, namely
that the Hamiltonian or Master constraint are not densely defined when using V̂RV instead of
V̂AL. See also section 13.3 of [27] for a discussion.

We close this chapter with the remark that one can also define a length operator. We will
not go into detail about this, but emphasize that the lenght operator turns out to be the most
difficult geometric operator. In [102], the Thiemann identities are used to replace the cotriads
occurring in the length functional. This procedure, however, results in a length operator that
is a function of the volume operator, whose spectrum is difficult to determine which hence
carries over to the spectrum of the length operator. Other proposals for length operators can
be found for example in [103, 104]. This finishes the discussion of the kinematical setup of
LQG.

3.5 The Hamiltonian constraint

Now, we want to discuss the quantization of the Hamiltonian constraint. We already intro-
duced the Thiemann identities in section 2.2.2, which allow us to rewrite the Hamiltonian
constraint in the non-polynomial form (2.2.29), (2.2.33). We see that the Euclidean part
(2.2.29) consists of the volume, the connection, and the curvature tensor. If we know how to
quantize these quantities, we can define the Euclidean constraint operator, which then allows
us to quantize the Lorentzian constraint containing the Euclidean part as well as the volume
and the connection. Therefore, in the following, we only describe the quantization strategy
for the Euclidean part and refer to [27, 32] for details on the quantization of the Lorentzian
part.

We first describe the strategy of [32] to express (2.2.29) in terms of holonomies and fluxes.
For this, we need to introduce a regularization, i.e., a partition of the spatial manifold into
three-dimensional cells. In [32], these cells were chosen to be tetrahedrons 4, giving us a
triangulation T (ε) of σ. ε denotes the so-called regulator, whose limit ε → 0 corresponds
to shrinking the tetrahedrons to points. In principle, the shape of the regularization cells is
arbitrary, they only have to be suitably small such that the Hamiltonian constraint can be
well approximated by a Riemann sum, see also section VI, C. of [28] and section 4.1 of [29]
for a discussion. To illustrate the regularization, we choose tetrahedrons in the following, for
which the Hamiltonian constraint can be written as [40]

H(N) = limε→0

∑
4∈T (ε)

N(v(4))H(4). (3.5.1)
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Here, v(4) is an interior point of the tetrahedron 4 and H(4) is given by H(χ4), where χ4
denotes the characteristic function of the tetrahedron4. The strategy is now to rewrite (3.5.1)
in terms of holonomies and fluxes. For this, following [32], we denote the three edges spanning
a tetrahedron by eI , which intersect in the point v(4) with outgoing orientation. Then, we
can define the loops αIJ := eI ◦ aIJ ◦ e−1

J where aIJ denotes the arc joining the endpoint of
the two edges eI , eJ . Now, we use the following techniques to replace the connection and the
curvature in (2.2.29):

• Concerning the connection A, we can express it via holonomies the following way:

{
∫
eI

A, V (R)} ≈ A(eI){A(eI)
−1, V (R)} (3.5.2)

which can be shown by approximating the left hand side by εėaI(0){Aja(e(0))τj/2, V (R)}
and expanding the holonomies on the right hand side up to first order, i.e., A(eI) ≈
1 + εAja(e(0))τj/2ė

a
I(0).

• Concerning the curvature F , we will use a technique already known in lattice gauge
theory, for which a review can be found in [105]: We consider a loop, e.g., a rectangular
one, which is spanned by two edges eI , eJ of sufficiently small coordinate length ε.
Denoting this loop as αIJ , one finds that [27]

A(αIJ) = 1SU(2) + ε2F j
abė

a
I(0)ėbJ(0)τj/2 +O(ε3). (3.5.3)

This allows us to express F j
ab by a holonomy defined with respect to the loop αIJ .

Using the above two points and the explicit form of the Euclidean part (2.2.29), we can rewrite
(3.5.1) as

HE(N) =
8

3κ
limε→0

∑
4∈T (ε)

N(v(4))εIJKtr
(
A(αIJ)A(eK){A(eK)−1, V (Rv(4))}

)
. (3.5.4)

This expression can now be quantized by implementing the holonomies as multiplication oper-
ators, using the volume operator (3.4.7), and replacing the Poisson bracket by the commutator
times 1/i~. Afterwards, one considers the limit ε → 0 which is discussed in section 10.4.2
of [27].

In particular, we are interested in triangulations adapted to a graph. This means that
every vertex v ∈ V (γ) is contained in a tetrahedron, with v(4) = v, and the edges spanning
the tetrahedron intersect in a vertex. Then, due to the volume operator (3.4.7) acting only
on vertices, the quantum version of (3.5.4) will only give contributions for such tetrahedra,
resulting in a finite action. Note that the operator ordering is important. In principle, we
could also order A(αIJ) to the right such that the Hamiltonian constraint operator would
give a contribution for every v(4) ∈ 4, which are not necessarily vertices of the graph, hence
resulting in a not densely defined operator. Furthermore, if we consider a tetrahedron 4
containing a vertex of the graph, the edges eI spanning 4 are chosen to be segments of the
edges of the graph. Then, the arcs aIJ closing a loop αIJ are lying outside of γ. Hence,
when acting with the Hamiltonian constraint on a spin network function, it will attach the
holonomies defined for the loop αIJ to the spin network function, thereby changing the un-
derlying graph to a new one γ′ containing the loop. That is why, the regularization of [27] is
called graph-changing. The investigation of the dynamics described by such a Hamiltonian
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constraint leads to the subject of quantum spin dynamics, which is discussed in the series of
papers [33–40].

However, we are interested in graph-preserving operators due to the following reasons: On
the one hand, we later on want to pass to the algebraic quantum gravity formalism, where
a graph-preserving quantization is used. On the other hand, we will use the relational for-
malism applied to Gaussian dust, giving us a physical Hamiltonian that is diffeomorphism
invariant at the classical level. When quantizing the physical Hamiltonian, we would like to
carry over this classical symmetry, specifically, we construct it as a spatially diffeomorphism
invariant operator using the kinematical representation we discussed in section 3.3. However,
it was shown in [81] that this representation requires to implement spatially diffeomorphism
invariant operators as graph-preserving. To this end, we use a so-called graph-preserving
regularization, for which we introduce the notion of minimal loops [106]: A minimal loop
αIJ is completely defined by edges of a graph γ. In particular, it starts at a vertex v, where
it goes along the edge eI ∈ E(γ) and ends again at v along e−1

J , the inverse of eJ ∈ E(γ).
The loop is furthermore minimal in the sense that there exists no other loop being defined
the same way and traversing fewer edges. Using minimal loops to construct the Hamiltonian
constraint operator, we do not end up with the aforementioned graph-changing behaviour of
the operator introduced in [32].

To construct the graph-preserving Hamiltonian constraint operator, we can again use the
approximations (3.5.2) and (3.5.3) to write down a regulated expression for the Euclidean
part, analogous to (3.5.4). We arrive at the following operator, acting at a vertex v of γ in
graph-preserving fashion, see also section 4.2 of [29]:

ĤE,v =
1

l2P|Tv(γ)|
Pγ

 ∑
(e1,e2,e3)∈Tv(γ)

εIJK

|Lγ,v,eI ,eJ |
∑

αIJ∈Lγ,v,eI ,eJ

tr
(
Â(αIJ)Â(eK)[Â(eK)−1, V̂γ,v]

)Pγ .
(3.5.5)

Here, Tv(γ) denotes the set of ordered triples at v ∈ V (γ), while the tangent vectors of
these edges are linearly independent. Furthermore, Lγ,v,eI ,eJ is the set of minimal loops and

V̂γ,v is the volume operator introduced in (3.4.7). The projection operators Pγ in (3.5.5) en-

sure that ĤE,v indeed acts graph-preserving: The holonomy operators in (3.5.5) are defined
with respect to edges coinciding with the graph and act as multiplication operators. Hence,
when considering their action on a spin network function over γ, there occurs a product of
representations. To express this product again in terms of spin network functions, one has
to perform a Clebsch-Gordan decomposition, in which the trivial representation may occur.
Edges with trivial representations, however, are not seen by the action and hence drop out,
i.e., the graph underlying the spin network function is changed. To avoid this, the projection
operators Pγ : H 7→ H′γ are introduced, which project onto the Hilbert space H′γ of which H
is a direct sum, i.e., H =

⊕
γH′γ. The exact definition of H′γ can be found for example in [28]

and [29]. This way, (3.5.5) acts graph-preserving. Note that for (3.5.5), no limiting proce-
dure is involved, and hence, (3.5.5) corresponds to the so-called effective operator viewpoint
discussed in [27]: Here, one drops the regularization parameter ε and the continuum limit of
infinitely fine triangulations corresponds to considering finer graphs. This way, the classical
limit of the operator will just be an approximation of the classical quantity. However, one
could see it the other way round, i.e., the classical quantity is only an approximation of the
quantum object, which defines a more fundamental theory.
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This finishes our discussion of the Hamiltonian constraint operator and we will continue
with the framework of algebraic quantum gravity in the next section.

3.6 Algebraic quantum gravity

One of the main open problems of loop quantum gravity is the question if one can obtain
general relativity as the semiclassical limit of loop quantum gravity. This is also the main
motivation for introducing algebraic quantum gravity (AQG), which was developed first in
the series of papers [49–52]. In the following paragraphs, we present the main arguments to
motivate AQG, while we mainly follow [49].

The first point is that the infinitessimal generators of diffeomorphisms cannot be imple-
mented in the Ashtekar Lewandowski representation. To see this, we go back to section 3.3.3,
where we discussed the LOST theorem which ensures the existence of a unique diffeomor-
phism invariant state. Now, using the GNS construction, such a state provides us with a
unitary action of spatial spatial diffeomorphisms ϕ as operators Û(ϕ), see, e.g., section 29.1
of [27]. Explicitly, the action of Û(ϕ) on spin network function is given by [29]

Û(ϕ)Tγ,~j,~I = Tϕ(γ),~j,~I , (3.6.1)

i.e., only the graph γ underlying the spin network function is mapped to ϕ(γ), while the labels
~j and ~I are left invariant. This action, however, is not weakly continous, which in general
means the following for a one-parameter family of unitary operators Û(ϕt):

limt→0 < Tγ,~j,~I , Û(ϕt)Tγ′,~j ′,~I ′ >=< Tγ,~j,~I , Tγ′,~j ′,~I ′ >, ∀Tγ,~j,~I , Tγ′,~j ′,~I ′ . (3.6.2)

Since (3.6.2) has to be true for every two spin network functions, we can evaluate it for
Tγ,~j,~I = T

γ′,~j
′
,~I
′ . Then, the right hand side of (3.6.2) will give one, while for the left hand

side, we use (3.6.1) to get < Ts, Û(ϕt)Ts =< Ts, Tϕt(s) >, which vanishes. To see the latter,
we take ϕt as the one-parameter family of diffeomorphisms generated by some vector field
which is supported on γ. Then, there exists some range for t in which ϕt(γ) is different from
γ, yielding us that the corresponding spin network functions are defined over different graphs
and hence orthogonal. Thus, we arrive at < Ts, Tϕt(s) >= 0 which finishes our argument. In
total, we get from (3.6.2), evaluated for the same spin network functions, that 0 = 1 which
is a contradiction and hence, weak continuity is violated. Now, we can apply the so-called
Stone theorem which tells us that there exist no infinitessimal generators of diffeomorphisms
in the quantum theory. Another way to see this is via the regularization of the diffeomorphism
constraint ~C( ~N) =

∫
σ

d3xNaF j
abE

b
j (x): Approximating the integral as a Riemann sum gives

a factor of ε3. For the curvature, we can use (3.5.3) which basically gives us F ∼ hα/ε
2 for a

loop α. For Eb
j , we introduce the fluxes via ∼ E(S)/ε2. In total, we obtain the regularized

diffeomorphism constraint D ∼ ε3NahαE(S)/ε4 which is of the order 1/ε. Hence, the limit
ε→ 0 is ill-defined and thus, also the regularization of the diffeomorphism constraint. There-
fore, the infinitessimal diffeomorphisms cannot be implemented as operators.

The non-existence of infinitessimal diffeomorphisms in the quantum theory now causes
a problem concerning the anomaly-free representation of the Dirac algebra, which contains
these operators. For the relations (2.1.25) and (2.1.26) we can define the finite quantum
analogues as [27]

U(ϕ)U(ϕ′)U(ϕ)−1 = U(ϕ ◦ ϕ′ ◦ ϕ), (3.6.3)
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U(ϕ)Ĉ(N)U(ϕ)−1 = Ĉ(N ◦ ϕ), (3.6.4)

and hence, no problem occurs here. For the relation (2.1.27), however, we have the dif-
feomorphism constraint involved on the right hand side together with structure functions.
Thus, we cannot simply exponentiate this relation as we do not have a true Lie algebra. A
way out of this is to require that the commutator of two Hamiltonian constraint annihilates
diffeomorphism invariant states, which is exactly what the operator corresponding to the dif-
feomorphism constraint should do. This was shown to be valid for the operator [32] which,
however, is a graph-changing operator, and the property of being graph-changing enters cru-
cially into the result for the commutator.

From the previous paragraph, we see that the anomaly-free representation of the Dirac
algebra requires a graph-changing Hamiltonian constraint which now poses a problem con-
cerning the semiclassical analysis: The construction of so-called kinematical coherent states
is well-known [107–109]. In particular, the goal is to find coherent states Ψγ,m defined on a
given graph γ and peaked at classical phase space point (A0, E0) := m such that

< Ψγ,m, Ĥ(N)Ψγ,m >= H(N)(m) +O(~). (3.6.5)

Furthermore, the quantum fluctuations should be small. The problem is now that if we use
coherent states Ψγ,m defined for one particular graph, so-called cutoff states, the expectation
value (3.6.5) will vanish for a graph-changing Hamiltonian constraint: Using that Ψγ,m is a

linear combination of spin network functions, the action of Ĥ(N) will change the underlying
graph in the vicinity of its vertices. Hence, Ĥ(N)Ψγ,m results in a linear combination of spin
network functions defined over a graph which is different from γ. As spin network functions
defined for different graphs are orthogonal, (3.6.5) vanishes. We may use other coherent states
such as the distributional states Φ :=

∑
γ Ψγ,m, the so-called shadow states, which are basi-

cally a sum of cutoff states. However, it turns out that these states are also insufficient, see
the discussion on page 380 of [27].

A way out of the previously discussed problems is the so-called Master constraint pro-
gramme, proposed in [106] and tested in various models in [110–114]. The strategy is to
replace the infinite number of Hamiltonian and diffeomorphism constraints by one single
Master constraint. One can also include the Gauß constraints within the so-called extended
Master constraint programme, where the Master constraint is defined as

M =

∫
σ

d3x
H2(x) +HaHbqab + δijGiGj√

det(q)
. (3.6.6)

Annihilating the Master constraint (3.6.6) is totally equivalent to annihilating the Gauss,
diffeomorphism, and Hamiltonian constraints, respectively. Furthermore, (3.6.6) is also sen-
sitive to Dirac observables O: If we would simply compute {O,M}, this would always vanish
weakly, i.e., on the constraint surface, as one can see by direct computation while using the
Leibniz rule at various points. This is solved by inspecting {O, {O,M} ≈ 0 instead, which
turns out to be equivalent to {O, Gi} ≈ 0, {O, Ca} ≈ 0, and {O, H} ≈ 0. Now, a big ad-
vantage of the Master constraint is that the Dirac algebra trivializes to {M,M} = 0, which

is easily represented in the quantum theory as [M̂, M̂ ] = 0. This solves the problem of the
anomaly-free representation of the Dirac algebra. However, we need to quantize M , for which
we may proceed in two ways [40]: On the one hand, we may quantize M in graph-changing
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fashion. As M is spatially diffeomorphism invariant, we must quantize it on the spatially dif-
feomorphism invariant Hilbert space, cf. [81]. However, we again would encounter a problem
in the semiclassical analysis, namely that only kinematical coherent states are well-known.
On the other hand, we may quantize M graph non-changing which then becomes an operator
on the kinematical Hilbert space. This now allows to do semiclassical analysis as we can
use the well-known kinematical coherent states. Hence, the graph non-changing quantization
seems to be preferred. However, we still have the problem that the known semiclassical states
do not approximate all degrees of freedom of LQG which are encoded in all possible graphs
we can embed into σ. Specifically, constructing coherent states by summing over all possible
graphs gives an uncountably infinite series which does not result in a normalizable state.

From the previous discussion, we can conclude that the semiclassical tools developed so
far are graph-dependent which motivates the introduction of AQG: Within this framework,
the graph-dependence is removed by replacing the uncountably infinite amount of finite and
embedded graphs γ with a single infinite abstract graph α. The abstract graph is defined
by a set of abstract points, which we call vertices in LQG, and has information about how
many abstract arrows, which we call edges in LQG, between the abstract points exist. See,
e.g., [115] for more details on algebraic graphs. This way, we loose geometrical information
such as the topology of σ and the braiding of the edges. However, the algebraic graph can be
embedded in all possible ways into σ and only with the embedding we choose the how edges
are related. In particular, the embedding of the algebraic graph will only be done within
the semiclassical sector. Furthermore, as we can embed α arbitrarily dense, one may say
that the continuum limit is built in. Moreover, all diffeomorphism invariant and therefore
embedding independent operators can be lifted to AQG. The Master constraint operator is
now implemented graph-nonchanging, hence implying that the existing semiclassical tools can
be used. To perform the classical limit, information about the spatial manifold together with
some initial data thereon as well as an embedding is needed from which one can construct
a coherent state using the results of [107–109]. This way, it was shown in [50, 51] that for a
cubic and six-valent algebraic graph the semiclassical limit of the Master constraint is correct
up to first order and also the first order corrections were shown to be finite.

Now, we want to specify the kinematical structure of AQG which is motivated by LQG.
We again follow [49]:

• For the quantum ∗-algebra, we associate to each edge e of a given abstract graph α an
element A(e) of the compact, connected, and semi-simple Lie group G, as well as an
element E(e) of the Lie algebra L(G). Furthermore, A(e) and E(e) satisfy the following
algebraic relations motivated by the LQG algebra presented in section 3.2.2:

[A(e), A(e′)] = 0, (3.6.7)

[Ej(e), A(e′)] = i~Q2δe,e′τj/2A(e), (3.6.8)

[Ej(e), Ek(e
′)] = −i~Q2δe,e′fjklEl(e

′). (3.6.9)

Here, Q denotes the coupling constant and we defined Ej(e) := −2Tr(τjE(e)), where
τj are the anti-Hermitian and trace-free generators8 of the Lie group G normalized such
that Tr(τjτl) = −1/2δjk. Furthermore, an involutive structure is defined by A(e)∗ =
[A(e)−1]T and Ej(e)

∗ = Ej(e).

8This is possible as any compact and semi-simple Lie group can be thought of as a subgroup of SU(2).
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• For the kinematical Hilbert space, we consider the infinite tensor product (ITP) Hilbert
space

H⊗ := ⊗e∈αHe, (3.6.10)

with He ' L2(G, dµH), where dµH denotes the Haar measure on G. Vectors in H⊗ are
denoted as ⊗f := ⊗efe, with fe ∈ He. Then, H⊗ is the closure of the finite linear span
of vectors ⊗f . We also can define an inner product by

< ⊗f ,⊗f ′ >:=
∏
e

< fe, f
′
e >He , (3.6.11)

which induces a norm. Specifically, we restrict to vectors ⊗f having finite but nonzero
norm. See also [107, 116] for more details on infinite tensor product Hilbert spaces.
Choosing the ITP Hilbert space as the representation space is naturally in the sense
that we can apply the uniqueness results established in LQG.

• The action of our basic operators A(e) and E(e) on elements of the ITP Hilbert space
H⊗ is given by [49]

A(e)⊗f := [A(e)fe]⊗ [⊗e 6=e′fe′ ], (3.6.12)

E(e)⊗f := [E(e)fe]⊗ [⊗e 6=e′fe′ ], (3.6.13)

with

[A(e)fe](h) := hfe(h), [Ej(e)fe](h) := i~Q2[
d

dt
]t=0fe(e

tτj/2h), (3.6.14)

i.e., A(e) acts as a multiplication operator, which is unitary and bounded, and E(e) as
a derivative operator, which is essentially self-adjoint.

We close this section by specifying the most important ingredient for the quantum dy-
namics, namely the volume operator lifted to AQG, which is given by [49]:

V̂v := l3P

√√√√∣∣∣∣∣ 1
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∑
e1∩e2∩e3=v

εv(e1, e2, e3)εijkEi(e1)Ej(e2)Ek(e3)

∣∣∣∣∣. (3.6.15)

Here, e1, e2, e3 denote three different edges meeting at the vertex v ∈ α. The factor εv(e1, e2, e3)
is totally skew and adapted to the algebraic graph α such that it coincides with the LQG
definition in (3.4.7) when choosing an embedding for α.
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4 Reduced phase space quantization

In this section, we discuss the necessary ingredients to perform a reduced phase space quan-
tization of general relativity, i.e., to solve the Hamiltonian and diffeomorphism constraint at
the classical level and quantize the thus obtained classical theory. For this purpose, we use
the so called relational formalism, originally introduced by Rovelli in [41–44] and refined by
Dittrich in [45, 46]. This formalism involves the introduction of additional matter degrees
of freedom which serve as reference fields, i.e., they provide rulers and clocks with respect
to which we describe the time evolution and measure the spatial coordinates. Hence, the
problem of time we discussed in section 2 is resolved at the cost of additional matter degrees
of freedom which need to be interpreted. Specifically, we will be concerned with Gaussian
dust as reference field [47,48] which provides us a physical Hamiltonian that is equivalent to
the Hamiltonian constraint. Furthermore, the observable algebra that we have to quantize is
isomorphic to the original Poisson algebra.

4.1 General formalism

First, we discuss the general formalism for the introduction of reference matter and the con-
struction of observables. We follow closely [52] and refer to [117] and [27, 118, 119] for more
details.

The starting point is a system of first class constraints CI , with I taking values in some
index set I. Our goal is to construct gauge invariant quantities or rather observables Of

from arbitrary phase space functions f . Then, we want the observables to be weak or, if
possible, strong Dirac observables, i.e., {Of , CI} vanishes weakly or strongly. To this end,
we introduce certain reference fields T I , called clocks, which are basically functions on phase
space and parametrize the gauge orbits generated by the first class constraints CI . We need
one clock for each constraint and additionally, we chose the fields T I such that the matrix
MJ

I := {CI , TK} is invertible. Furthermore, we do not work with CI directly but consider the
equivalent constraints C ′I :=

∑
J [M−1]JICJ , where the invertibility condition we imposed on

MJ
I comes into play. Using the new constraints C ′I , we arrive at {C ′I , TJ} ≈ δJI , i.e., the clocks

and the new constraints form a canonical pair. We can now define the Hamiltonian vector
fields corresponding to C ′I by χI := {C ′I , .}. One can show that the χI weakly commute
such that later on, when we construct observables, the order in which the χI act is not
relevant, motivating the introduction of the constraints C ′I . In particular, we consider the
linear combination χβ :=

∑
I β

IχI . Then, we can state the gauge flow generated by these
Hamiltonian vector fields χβ as the following infinite series:

αβ(f) := exp (χβ) · f =
∞∑
n=0

1

n!
χnβ · f. (4.1.1)

Using this, we can construct observables Of from a phase space function f by computing the
gauge flow αβ(f) and evaluating it for that specific gauge where the clocks T I assume the
values τ I with respect to the gauge flow, i.e., for αβ(TI) = τI which we shortly denote by
αβ(T ) = τ . In summary, this means that we construct observables via computing

Of (τ) := [αβ(f)]αβ(T )=τ . (4.1.2)

Evaluating αβ(T I) and using {C ′I , TJ} ≈ δJI , one can show that on the constraint surface,
we have αβ(T I) ≈ T I + βI , which is easy to solve due to the convenient definition of the
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constraints C ′I . Moreover, we obtain that (4.1.2) is weakly equivalent to

Of (τ) := [αβ(f)]β=T−τ . (4.1.3)

Hence, we see that Of (τ) determines the value of f in the gauge β = T − τ . Note that in
(4.1.3), we first have to compute the action of the gauge flow and then insert β = T − τ , as β
becomes phase space dependent by the replacement β = T − τ and hence, first inserting and
then computing the gauge flow would yield a different result.

In the following, we summarize the key properties of the observables (4.1.3) and the
associated multi-parameter family of observable maps Oτ : f → Of (τ):

• The functions (4.1.3) are weak Dirac observables, i.e. {CI , Of (τ)} ≈ 0.

• Oτ : f → Of (τ) is a homeomorphism between the commutative algebras of phase space
functions and weak Dirac observables, i.e.

Of (τ) +Of ′(τ) ≈ Of+f ′(τ), Of (τ)Of ′(τ ≈ Off ′(τ). (4.1.4)

• Oτ : f → Of (τ) is also a Poisson homomorphism in the sense that

{Of (τ), Of ′(τ)} ≈ {Of (τ), Of ′(τ)}∗ ≈ O{f,f ′}∗(τ), (4.1.5)

where {., .}∗ denotes the Dirac bracket defined in the following way: In general, one
would have a set of gauge fixing conditions GI forming a second class system with the
constraints CI . Then, we can define the corresponding Dirac bracket by [27]

{f, f ′}∗ = {f, f ′} − {f, Cµ}Kµν{Cν , f ′}, (4.1.6)

where µ = (j, I), with j = 1, 2 and C1I := CI , C2I := GI . Furthermore, Kµν is the
inverse matrix of Kµν := {Cµ, Cν}, i.e., we have KµρKρν = δµν . In our case, we have
βI = GI = TI − τI and arrive at [52]

{f, f ′}∗ = {f, f ′} − {f, CI}[M−1]IJ{T J , f ′}+ {f ′, CI}[M−1]IJ{T J , f}. (4.1.7)

• Furthermore, for the phase space coordinatized by canonical pairs (qa, p
a), describ-

ing the gravitational part, and (T I , PI), describing the reference fields, any function
f(T I , PI , qa, p

a) admitting a Taylor expansion has an associated observable defined by

Of (τ) ≈ f(OT I (τ), OPI (τ), Oqa(τ), Opa(τ)). (4.1.8)

We can show this using (4.1.4) and the explicit form of the Taylor expansion, which in
case of a two dimensional phase space is given by f =

∑∞
m,n=0 fmnq

mpn, with suitable
coefficients fmn.

There is an important consequence of the Poisson homomorphism property (4.1.5): If we
denote the phase space variables describing the geometrical part by (qa, pb), we obtain

{Oqa(τ), Opb(τ)} ≈ O{qa,pb}∗(τ) = O{qa,pb}(τ) = Oδab
= δab . (4.1.9)

Here, we used (4.1.5) and the fact that the Dirac bracket coincides with the Poisson bracket
for phase space functions depending only on (qa, pa), since these functions commute with
the clocks T I . From (4.1.9) we observe that on the observable level, (qa, pb) are still, at
least weakly, canonically conjugate. Thus, using the relational formalism, we can avoid the
quantization of a complicated observable algebra, a problem we mentioned at the beginning
of section 3.



4.2 Observables and physical Hamiltonian of Gaussian dust 47

4.2 Observables and physical Hamiltonian of Gaussian dust

We now want to discuss a specific choice of reference fields T I , namely Gaussian dust [48].
This will allow us to rewrite the constraints in the form CI = PI+hI(T, q

a, pa), where the func-
tions hI depend on the reference field T that we will introduce to describe the time evolution.
We will then reduce with respect to the new constraints, for which hI will be independent of
T at least at the gauge-invariant level. This way, we obtain a physical Hamiltonian that is
equivalent to the geometrical Hamiltonian constraint.

First, we want to introduce the concept of Gaussian dust. The Lagrangian describing it
is given by [47,48]

LGD = −|det(g)|1/2
{ρ

2
[gµνT,µT,ν + 1] + gµνT,µ

[
WjS

j
,ν

]}
, (4.2.1)

which contains in total 8 fields T, ρ,Wj, S
j. We will choose the fields T as a clock providing

the time coordinate and the fields Sj as rulers providing spatial coordinates. Concerning the
interpretation of Gaussian dust, details can be found in [48]. In particular, one can define the
vector fields Uµ := gµνT,ν and V µ

j := gµνSj,ν for which we can rewrite (4.2.1) and derive the
Euler Lagrange equations that give us the following: We obtain UµUµ = −1, i.e., U defines
a congruence of affinely parametrized geodesics. Furthermore, we get UµV

µ
j = 0, i.e., V µ

j is
orthogonal to the geodesics defined by U . We can choose U to be the foliation vector field
such that T plays the role of time and labels the spatial hypersurfaces, while Sj, being con-
stant along the geodesics, labels the geodesics and thus plays the role of spatial coordinates.
Moreover, the pull back of the metric on the so called dust manifold S, coordinatized by
σj := Sj(x), acquires Gaussian form, i.e., g00 = −1, gta = 0, with the lapse function being one
and the shift vector field vanishing. Furthermore, the energy momentum tensor of Gaussian
dust can be calculated via Tµν = −2/

√
det(g) · ∂LGD/∂gµν which turns out to be the one of

a perfect, pressure-less fluid justifying the denomination dust.

Now, we want to derive the new form of the constraints. For this purpose, we add (4.2.1)
to the geometrical Lagrangian Lgeo = 1

κ

√
det(g)R(4). Then, we perform the canonical analysis

for L = Lgeo+LGD, i.e., we compute the canonical conjugate momenta giving us the canonical
pairs (T, P ), (ρ, πρ), (Wj, π

j), (Sj, Pj) and proceed with the steps of the Dirac algorithm, which
we introduced in section 2. The detailed analysis is presented in appendix A of [47] and we will
only state the result: We obtain the following diffeomorphism and Hamiltonian constraints:

ctota = PT,a + PjS
j
,a + ca, (4.2.2)

ctot = P + c
√

1 + qabT,aT,b − qabT,acb. (4.2.3)

These constraints contain the dust degrees of freedom as well as the geometrical Hamiltonian
and diffeomorphism constraints, which we denoted as ca and c, respectively. The constraints
(4.2.2),(4.2.3) fall into the following theoretical framework: In general, we can split the canon-
ical pairs into two sets (T I , PI) and (qa, pa), where the former correspond to the clock fields
and their conjugate momenta, while the latter correspond to the geometrical phase space
variables. Then, we can rewrite the constraints at least locally as

CI = PI + hI(T
I , qa, pa), (4.2.4)

such that one can solve them for PI . If the functions do not depend on T I , we would obtain
a so called deparametrised theory which provides a further simplification and is discussed
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for example in [52] and [117]. For Gaussian dust, however, this is not the case as, e.g., the
Hamiltonian constraint (4.2.3) can be written as

ctot = P + h(T, q, p), h(T, q, p) := c
√

1 + qabT,aT,b − qabT,acb, (4.2.5)

with h(T, q, p) depending on T . Nevertheless, the constraints (4.2.2) and (4.2.3) strongly
Poisson commute. To see this, we inspect (4.2.4) and use an abstract argument as discussed
in [52]: The constraints (4.2.4) still form a first class system and hence, they result in a linear
combination of first class constraints bKIJCK with bKIJ some coefficients. Now, we observe that
the constraints are linear in PI and hence, when calculating {CI , CJ}, the dependence on
PI drops out. To reach equality with bKIJCK , which depends on the PI , we have to set the
coefficients to zero, which finishes the proof. Furthermore, we do not have to introduce new
constraints C ′I :=

∑
J [M−1]JICJ , as done in the previous section, since due to (4.2.4) we have

that MJ
I := {CI , T J} = δIJ and hence C ′I = CI . Following [47], we can now reduce with

respect to the constraints (4.2.4) which we will do in the following paragraphs.

To solve (4.2.2) and (4.2.3), i.e., to construct invariants with respect to these constraints,
we introduce the Hamiltonian vector fields

χβ =

∫
σ

d3xβµ(x)ctotµ (x), (4.2.6)

where µ = 0, ..., 3 and β0 := τ(x)−T (x), βj = σj−Sj(x), and ctot0 := ctot. As (4.2.2) and (4.2.3)
Poisson commute, the Hamiltonian vector fields χβ Poisson commute as well. Furthermore,
Sj(x) commutes with ctot and hence, we can perform the reduction in two steps [117]:

Of (τ) = [αβ0([α~β(f)]~β=~σ−~S)]β0=τ−T := O
(2)

O
(1)
f (σ)

(τ), (4.2.7)

i.e., we first reduce with respect to the diffeomorphism constraints to obtain the diffeomor-
phism invariant quantity O

(1)
f (σ) and afterwards, we reduce with respect to the Hamiltonian

constraint, giving us in total an observable depending on physical time τ and the spatial
coordinates σj := Sj(x) coordinatizing the so called dust manifold S.

Now, we will explicitly perform the two steps contained in (4.2.7):

• Firstly, we reduce with respect to the diffeomorphism constraint. One can show that
for a function f(x), which is a scalar on σ, we can perform this reduction by [117]

O
(1)
f (σ) = f(x)~S(x)=σ = f(xσ) =

∫
X

d3x|det(∂S/∂x)|δ(Sk(x), σk)f(x). (4.2.8)

Here, we denoted the spatial manifold as X instead of σ, as we did in section 2, to avoid
confusion with the dust coordinates σj. (4.2.8) means that we construct diffeomorphism
invariant scalar functions by evaluating the diffeomorphism variant quantity at that
point xσ, at which Sj(x) has the constant value σj 9. To perform the reduction for more
general variables such as the spatial metric qab, we construct quantities that are scalars
on the spatial manifold X . Explicitly, we use the map Sj : X → S or rather its inverse,
whose existence we ensure by the condition det(S) 6= 0. This way, we end up with the

9Note that σj =const. and hence, Sj(x) = σj(x) is solved for x for arbitrary Sj .
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duality relations Saj S
j
b = δab and Saj S

k
a = δjk. We can now construct a scalar on X for

instance for the spatial metric by

qij = Sai S
b
jqab. (4.2.9)

Evaluating (4.2.9) at xσ corresponds to the pull back of qab via the diffeomorphism
S−1 : X → S, x→ σ. In particular, the analog to (4.2.8) for the spatial metric is given
by

q̃ij(σ) := O(1)
qij

(σ) =

∫
σ

d3x|det(∂S/∂x)|δ(S(x), σ)Sai S
b
jqab(x, t). (4.2.10)

Similarly, we can construct observables from the scalars P/J , T , and pij := pabSjaS
k
b /J ,

with J := det(∂S/∂x) introduced for the correct density weight. Then, we obtain the

partially reduced phase space coordinatized by (q̃ij(σ), p̃ij(σ)) and (T̃ (σ), P̃ (σ)), where
the latter pair just equals (T, P/J) evaluated at the point xσ. For constructing the
observables of the Hamiltonian constraint (4.2.3), we can use (4.1.8) to obtain

c̃tot(σ) := O
(1)
ctot(σ) = ctot(O(1)

q , O(1)
p , O

(1)
T O

(1)
P ) = ctot(q̃, p̃, T̃ , P̃ ) = P̃ (σ) + h̃(T̃ , q̃, p̃).

(4.2.11)
Similarly, we can proceed for the diffeomorphism constraint (4.2.2) to obtain the quan-
tity c̃totj (σ).

• Secondly, we reduce with respect to the Hamiltonian constraint. For a general, diffeo-
morphism invariant function g, we have to compute

O(2)
g (σ, τ) = [αβ0 · g]β0=τ−T =

[
exp

({∫
d3xβ0(x)ctot(x), .

})
· g
]
β0=τ−T

. (4.2.12)

We now restrict to diffeomorphism invariant functions g that are independent of the
dust variables, such that we can evaluate the above expression at β0(x) = τ(x)− T (x)
before computing the Poisson bracket, while we can also replace ctot = P + h by h.
Furthermore, choosing τ(x) = τ = const. allows us to rewrite (4.2.12) in terms of the
diffeomorphism invariant phase space variables. In total, we can rewrite (4.2.12) as [52]

O(2)
g (σ, τ) =

∞∑
n=0

1

n!
{h̃(τ), g}(n), h̃(τ) :=

∫
S
d3σ(τ − T̃ (σ))h̃(T̃ , q̃, p̃). (4.2.13)

One can show that this expression strongly Poisson commutes with all constraints.
Furthermore, the evolution with respect to τ is given by

d

dτ
O(2)
g (σ, τ) = {O(2)

h̃(1)
(τ), O(2)

g (σ, τ)}, (4.2.14)

where h̃(1) :=
∫
d3σh̃(T̃ , q̃, p̃). We see that O

(2)

h̃(1)
serves as our physical Hamiltonian and

using (4.1.8) we can rewrite it as

H := O
(2)

h̃(1)
=

∫
d3σh̃(O

(2)

T̃
, O

(2)
q̃ , O

(2)
p̃ ). (4.2.15)

The dependence on O
(2)

T̃
drops out as we will show in the following: If we look at (4.2.3),

we see that in the above formula, the dependence on T is only via spatial derivatives of
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T , i.e., we only have to compute the observables O
(2)

T̃,σj
(τ). These, however vanish due

to
O

(2)

T̃
(σ, τ) = τ = const. (4.2.16)

which implies O
(2)

T̃,σj
(τ) = ∂σjτ = 0. Hence, all terms in (4.2.3) containing spatial

derivatives of T simplify or vanish, giving us in the end that

h̃(O
(2)

T̃
, O

(2)
q̃ , O

(2)
p̃ ) = c(O

(2)
q̃ , O

(2)
p̃ ) =: H(σ). (4.2.17)

Inserting this into (4.2.15) gives us the final form of the physical Hamiltonian:

Hphys :=

∫
S
d3σ H(σ). (4.2.18)

Most importantly, we can conclude from (4.2.17) and (4.2.18) that the physical Hamil-
tonian is equivalent to the integral over the dust manifold of the geometrical part of the
Hamiltonian constraints, which we denoted as c. In particular, Hphys corresponds to the
smeared quantity c(N = 1), i.e., the lapse function is one in our formalism. Further-
more, Hphys generates the time evolution of observables Of (σ, τ), which are invariant
with respect to (4.2.2) and (4.2.3), via

d

dτ
Of (σ, τ) = {Hphys, Of (σ, t)}. (4.2.19)

Evaluating this for Of (σ, τ) = Hphys shows that the physical Hamiltonian does not
explicitly depend on time. Another crucial point concerns the observable algebra of our
phase space variables: At the observable level, the canonical pair (T, P ) drops out as
T is pure gauge and P can be expressed via the constraints (4.2.2) and (4.2.3). Hence,
the reduced phase space is coordinatized by

Qij(σ, τ) := O
(2)
q̃ij

(σ, τ), P ij(σ, τ) := O
(2)

p̃ij
(σ, τ), (4.2.20)

which are still canonically conjugate variables, as we can see using (4.1.9) which now
holds strongly:

{Qij(σ), P kl(σ′)} = O{qab(x),P cd(y)} = Oδc
(a
δd
b)
δ(x,y) = δk(iδ

l
j)δ(σ, σ

′). (4.2.21)

Hence, we obtain a Poisson algebra that is isomorphic to the original algebra and thus,
the kinematical results of LQG can be carried over to the physical level.

Note that the above discussion was done for ADM variables but analogous steps can be
performed for Ashtekar variables, see, e.g., [52].
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5 The polarized three-torus Gowdy model

In this thesis, we use Gowdy spacetimes as a toy model, i.e., as a symmetry reduced and hence
simplified version of the full theory of general relativity on which we apply the quantization
techniques of LQG and AQG. Furthermore, we use the relational formalism introduced in
section 4 with Gaussian dust as a reference fluid. This way, we solve the diffeomorphism and
the Hamiltonian constraints at the classical level and remain with a physical Hamiltonian
density that is equivalent to the geometric contribution of the Hamiltonian constraint.

We first want to define Gowdy spacetimes. They were first studied extensively by Robert
Gowdy in [54]. These models comprise globally hyperbolic spacetimes with closed spatial hy-
persurfaces that solve the vacuum Einstein equations and possess a two parameter isometry
group, the torus group T 2 ' U(1) × U(1), i.e., they have two Killing vectors. In particular,
Gowdy proved that the two Killing vectors commute and all possible spatial topologies are
homeomorphic to a three sphere S3, a three-handle S1 × S2, or a three-torus T 3. It is the
latter topology that is technically the most simple and we will concentrate on in this the-
sis. The Gowdy models we specified so far are called unpolarized Gowdy models but there
exists a simpler class of models, the so-called polarized Gowdy models, which we obtain by
imposing the two Killing vectors to be orthogonal. The classical solutions of the polarized
three-torus Gowdy model are well-known, see for example [120] and [56]. Note that some
of these solutions exhibit an initial singularity while others do not. We will work with the
polarized Gowdy model as it provides a further simplification of our theory. This was also
done in previous work on the loop quantization of the three-torus Gowdy model on which
this thesis is based, see [56,57] and [58,59].

We will derive the polarized three-torus Gowdy model in section 5.1 by performing a
symmetry reduction of the full theory formulated in terms of Ashtekar variables (Aja, E

b
j ),

which we presented in section 2.2. This also includes a partial gauge fixing and two canoni-
cal transformations, resulting in the polarized three-torus Gowdy model formulated as a one
dimensional field theory. On this model, we then apply the techniques of LQG and AQG, cf.
section 5.2. For the LQG formulation, we use the constructions from [56, 57], which are in
analogy to the spherical symmetric model discussed in [121, 122]. For the AQG formulation,
we rely on the two master theses [58,59].

Before we continue with the discussion of the symmetry reduction of the three-torus Gowdy
model in section 5.1, we discuss in the following paragraphs the role of the Gowdy model com-
pared to other toy models.

To obtain a symmetry reduced quantum theory, there are in principle two scenarios [123]:

• On the one hand, we may first quantize the system and restrict to invariant states,
i.e., identify the symmetric sector. For this, we need to have good control over our
quantum system. The full theory of loop quantum gravity, however, is not complete
yet while the kinematical formulation is well established and further progress was made
for example in [52, 124–126]. One can nevertheless use the definition of kinematical
invariant states in [55] as distributions with support on invariant connections. We will
discuss the classification of invariant connections as done in [55,127] in section 5.1.1.

• On the other hand, we may first symmetry reduce the classical phase space to an
invariant subspace, which we then quantize.
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In general, both approaches may lead to different symmetric sectors and hence different re-
sults. In this thesis, we choose the toy model approach, i.e., we first symmetry reduce and
then quantize the Gowdy model. Specifically, we will use the construction of invariant con-
nections as discussed in section 5.1.1.

The motivation for considering toy models in the first place is that they possess certain
symmetries and hence are technically much simpler to handle than the full theory. Thus, us-
ing toy models, we can test the full theory for consistency and possibly gain more insights into
its structure. In particular, we can investigate open problems of the full theory, for example
concerning the dynamics and its semiclassical limit. A problem within the investigation of the
dynamics in the full theory is that the Hamiltonian constraint contains the volume operator,
whose spectrum, however, is hard to compute analytically while perturbative methods exist,
see our discussion in section 3.4. In the polarized three-torus Gowdy model, however, the
volume operator acts diagonally and hence we can calculate the spectrum of the Gowdy vol-
ume operator more easily. Note that this is a generic feature in toy models, see, e.g., [128] for
the construction of volume operators for some cosmological models and [129] for the spherical
symmetric model. Another peculiarity of toy models is the avoidance of initial singularities,
see for instance [130], which may be a hint that in the full theory this occurs as well, although
the results of toy models cannot be directly translated, see for example [131, 132] for a dis-
cussion. This can also be investigated in the polarized three-torus Gowdy model.

In general, we can distinguish between midi- and mini-superspace toy models:

• Midi-superspace models involve infinitely many degrees of freedom, i.e., they are sym-
metry reduced field theories. Especially, they occur in inhomogeneous cosmological
models, where one particular example is the Gowdy model. See [63,133] for reviews on
midi-superspace models.

• Mini-superspace models involve only finitely many degrees of freedom, i.e., there are no
field degrees of freedom present. These kind of theories occur in homogeneous cosmolog-
ical models. The quantization of these models using techniques from LQG is performed
within loop quantum cosmology (LQC), see [128, 134–136] and for reviews [28, 53].
In particular, one can perform the loop quantization of the flat Friedmann-Lemâıtre-
Robertson-Walker (FLRW) spacetime, which has only one geometric degree of freedom
described by the scale factor a(t) and hence is one of the simplest possible toy models.
The FLRW model is also physically very interesting as experimental data hint at the
flatness of the universe. Following [63], we see that within this toy model, the Gauß and
the diffeomorphism constraints are trivially satisfied which is the generic case in homo-
geneous cosmological models. Hence, we are left with only the Hamiltonian constraint.
In the Gowdy model, for comparison, the symmetry reduction results in one Gauß, one
diffeomorphism and the Hamiltonian constraint. The results of LQC are very peculiar
as the big bang singularity is resolved and replaced by a big bounce. To achieve this,
the kinematical result of the discreteness of area is adopted from the full theory.

Finally, we want to summarize the motivation for investigating inhomogeneous models
such as the Gowdy model following [63]: The quantization of homogeneous models is very
well studied and it is the natural next step to investigate models with more degrees of freedom
such as the inhomogeneous ones. In particular, the full theory involves field degrees of free-
dom which can be tested in inhomogeneous but not in homogeneous models. Additionally, as
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we mentioned before, singularity avoidance is a generic feature in homogeneous models and
it needs to be checked if this happens due to the high symmetry of the model or if it also
appears in inhomogeneous theories. Thus, the investigation of such models might give a hint
whether singularities will also be avoided in the full theory.

This finishes our general discussion of toy models and we now proceed with the symmetry
reduction of the Gowdy model in the next section.

5.1 Symmetry reduction

In the following chapters, we perform the symmetry reduction of the three-torus Gowdy
model whose steps we want to summarize in the following: In section 5.1.1, we first explain
the general procedure to classify invariant connections for which we introduce the so-called
generalized Wang theorem [55, 127]. Afterwards, in section 5.1.2, we apply the generalized
Wang theorem to the three-torus Gowdy model. Following [56, 137], we will also perform a
partial gauge fixing which sets 4 of the 9 canonical pairs (Aja, E

a
j ) to zero, thereby solving two

Gauß and two diffeomorphism constraints. Additionally, as was done in [56] in analogy to the
spherical symmetric model [121, 122], we introduce two canonical transformations giving us
new canonical variables that simplify the quantization and especially the volume functional.
We also reduce to the polarized Gowdy model, i.e., impose that the two Killing vectors are
orthogonal, which eliminates one canonical pair, see again [56]. Additionally, we solve the
Gauß constraint at the classical level which eliminates another canonical pair. This was done
in [56] but in the follow-up paper [57], the quantization was performed on the gauge variant
level. We end up with a U(1) gauge theory constrained by the first class system of one Gauß,
one diffeomorphism and the Hamiltonian constraint while we have three canonical pairs, i.e.,
six basic variables, namely one U(1) connection and two scalar fields on the connection side
plus three canonically conjugate fluxes. Furthermore, we have only one physical field degree
of freedom remaining.

5.1.1 The generalized Wang theorem

In this section, we first describe the general classification scheme of invariant connections
following [53,55,66,138], which use the constructions introduced in [127]. This results in the
so-called generalized Wang theorem which we apply to the Gowdy model in section 5.1.2.

The starting point is a principal fibre bundle P (σ,G, π) whose constituents we explain in
the following: σ denotes the base space which is given by the spatial manifold of our globally
hyperbolic spacetime manifold M ' R × σ. Furthermore, G denotes the structure or gauge
group and π : P → σ is the projection map from the total space P to the base manifold σ.
On this principal bundle, we can define a connection one-form ω. See also, for instance, [18]
for more detailed definitions. We now want to classify those connection one forms ω that are
invariant with respect to a certain symmetry group S, i.e., those that satisfy

s∗ω = ω ∀s ∈ S. (5.1.1)

This condition only has to be satisfied up to gauge transformations as the connection ω does
not need to be exactly invariant under a symmetry transformation, it will also result in the
same physics if it is only invariant up to a gauge transformation.
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To classify symmetric connections, the first ingredient is an action of S on the spatial
manifold σ, which is such that [121]

σ ' B × S/F. (5.1.2)

Here, B = σ/S denotes the reduced base space and S/F are the orbits where F denotes the
isotropy group of S. In general, the isotropy group is defined for each point x ∈ σ as the set
of elements of S that leave x invariant. To nevertheless arrive at (5.1.2), we assumed that the
action of S on σ is such that each orbit is given by S/F , where F denotes a fixed isotropy
group. In general, we may use so-called orbit bundles, see for example [55] and [139].

Given (5.1.2), we can classify S-symmetric principal fibre bundles, which are principal fibre
bundles that admit an action of the symmetry group as automorphisms on P . In particular,
we obtain a classifying pair (λ,Q) which is given by a conjugacy class of homomorphisms
λ : F → G and the principal fibre bundle Q(B,ZG(λ(F )), πQ). Concerning the latter, the
base space is defined by B = σ/S, the structure group is given by the centralizer ZG(λ(F )),
i.e., all those g ∈ G that commute with all h ∈ λ(F ), and the projection map πQ is defined
as projecting from the total space Q down to the base manifold B, i.e., πQ : Q→ B.

Given the classifying pair (λ,Q), the so-called generalized Wang theorem allows us to
classify symmetric connections. We obtain from this theorem that the invariant connections
acquire the local form [121]

A = AB + AS/F , (5.1.3)

where AB is the connection on the reduced bundle Q and AS/F contains Lie algebra-valued
scalar fields Φ : Q×L(F )⊥ → L(G) defined on Q. L(F )⊥ denotes the orthogonal complement
of L(F ) with respect to the Killing form on S, i.e., we have a decomposition of L(S) as
L(F ) ⊕ L(F )⊥ which is true for semi-simple Lie algebras. Furthermore, the scalar fields Φ
have to satisfy [138]

Adλ(f)(Φ(X)) = Φ(AdfX) ∀f ∈ F,X ∈ L(S), (5.1.4)

where Ad denotes the adjoint action. Specifically, AS/F is constructed via Λ ◦ i∗θMC , where Λ
is a map from L(S) to L(G), i : S/F ↪→ S is an embedding map and θMC denotes the Maurer-
Cartan form of S, i.e., the one-form that is invariant with respect to left translations of S and
takes values in L(S). We refer to [55,66,127] for proofs and more details on the Wang theorem.

5.1.2 Symmetry reduction of the three-torus Gowdy model

Now, we perform the symmetry reduction of the three-torus Gowdy model for which we first
apply the generalized Wang theorem to the Gowdy model, which was done in [59]. For this,
we have to specify the following ingredients:

• The constituents of the principal fibre bundle P (σ,G, π) are given by σ = T 3 and
G = SU(2).

• The symmetry group is the torus group S = T 2 ' U(1)× U(1).

• We can define a left action of S on σ the following way: If we coordinatize a point p
in σ by three angular variables (θ1, θ2, θ3) and a group element s ∈ S by two angular
variables (x, y), a left action of the symmetry group S = T2 is given by

l :S × σ → σ, (s, p) 7→ s · p := (x+ θ1, y + θ2, θ3). (5.1.5)
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This action is free, i.e., we have a trivial isotropy group F = {e}, where e denotes the
identity in S. The Maurer Cartan form invariant with respect to (5.1.5) is just given
by θMC = (θMC)ρdx

ρ with constant components (θMC)ρ for ρ = 1, 2 and dx1 := dx,
dx2 := dy.

• For the classifying pair (λ,Q) of the S-symmetric principal fibre bundle P (σ,G, π), we
obtain the following: λ is trivial as F = {e}. Concerning Q, we have that σ/S = S1

and from G = SU(2) it follows that ZG(λ(F )) = SU(2), i.e., Q is an SU(2) principal
fibre bundle over S1.

We now have all necessary ingredients to rewrite (5.1.3) in the case of the Gowdy model:
AB is given by the SU(2)-valued connection on the reduced bundle Q defined over S1. In
the following, we coordinatize S1 by the angular variable θ. In particular, the connection
components only depend on θ. Concerning AS/F , we have Lie algebra-valued scalar fields on
the reduced bundle Q defined over S1 , i.e., they also depend only on θ, and furthermore take
values in SU(2). We arrive at the following form of the invariant connection A of the Gowdy
model:

A = Aiθ(θ)τidθ + Aiρ(θ)τidx
ρ, ρ = x, y, i = 1, 2, 3, (5.1.6)

where we denoted the reduced SU(2) connection components as Aiθ(θ) and the scalar fields
as Aiρ(θ). With this notation, we stay close to [56]. Furthermore, in (5.1.6), τi denote the
generators of su(2) given by the Pauli matrices σi via τi := −iσi/2 and xρ denote the coordi-
nates of S, i.e., xx := x, xy := y. Note that the gauge group is reduced in the following sense:
The connection A is invariant with respect to S only up to gauge transformations. As the
connection components depend on θ only, the gauge transformations are reduced in the sense
that they are allowed to depend on θ only such that they map invariant connections again to
invariant connections. We can also find the conjugate momenta to (5.1.6), which are given by

E = Eθ
i (θ)τi∂θ + Eρ

i (θ)τi∂ρ, ρ = x, y, i = 1, 2, 3. (5.1.7)

We observe that all basic variables only depend on θ. Thus, in the constraints stated in
(2.2.13),(2.2.21), and (2.2.22) in terms of Ashtekar variables, all partial derivatives with re-
spect to x and y will drop out. We still have 3 diffeomorphism and 3 Gauß constraints denoted
as GI ,Cρ,G3,Cθ with I = 1, 2 and ρ = x, y. Specifically, Cθ is the generator of Diff(S1). As
pointed out in [137], the diffeomorphism constraints Cρ do not have a geometrical interpre-
tation anymore and hence it is not necessary to keep them in the following. In particular, we
can introduce a partial gauge fixing, which allows to solve Cρ as well as GI which we will do
in the following paragraph.

To arrive at the so-called unpolarized Gowdy model, we partially fix the gauge, which
solves two diffeomorphism and two Gauß constraints, and furthermore perform two canonical
transformations. This way, the quantization becomes technically more easy and especially the
form of det(E) simplifies such that the volume becomes a diagonal operator at the quantum
level. We describe these two necessary steps, the partial gauge fixing and the two canonical
transformations, in the following listing:

• Firstly, we partially fix the gauge following [56,137]:

0 = Eθ
I = Eρ

3 , 0 = AIθ = A3
ρ, (5.1.8)
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where ρ = x, y and I = 1, 2. Using this, we can simplify det(E), the key ingredient to
calculate the volume functional:

det(E) = det

Ex
1 Ex

2 Ex
3

Ey
1 Ey

2 Ey
3

Eθ
1 Eθ

2 Eθ
3

 (5.1.8)
= det

Ex
1 Ex

2 0
Ey

1 Ey
2 0

0 0 Eθ
3

 = Eθ
3(Ex

1E
y
2 −Ex

2E
y
1 ). (5.1.9)

Furthermore, one can show that (5.1.8) solves the constraints GI and Cρ. We remain
with one Gauß, one diffeomorphism and the Hamiltonian constraint, which in smeared
versions read as [56]:

G := G3 =
1

κ′γ

[
∂θE

θ
3 + ε K

3J AJρE
ρ
K

]
, (5.1.10)

Cθ =
1

κ′γ

[
(∂θA

I
ρ)E

ρ
I + ε K

3J AJρE
ρ
KA

3
θ − κγA3

θG3

]
, (5.1.11)

C =
1

2κ′
1√
|detE|

[
2A3

θE
θ
3A

J
ρE

ρ
J + AJρE

ρ
JA

K
σ E

σ
K − AKρ E

ρ
JA

J
σE

σ
K − 2ε K

3J (∂θA
J
ρ )Eρ

KE
θ
3

− (1 + γ2)
(
2K3

θE
θ
3K

J
ρE

ρ
J +KJ

ρE
ρ
JK

K
σ E

σ
K −KK

ρ E
ρ
JK

J
σE

σ
K

)]
. (5.1.12)

Here, we used that all phase space variables depend on θ only and hence all partial
derivatives with respect to x and y drop out which we already remarked after (5.1.7).
Furthermore, we defined κ′ := κ

4π2 , i.e., we absorb a factor of 4π2. We get this factor
when computing the smeared versions of the constraints because these involve integrals
over θ, x, and y with the latter two integrals just giving 4π2 as our basic variables
depend on θ only. We will work with the smeared constraints further below, but at this
point keep the unsmeared versions, integrate out the x and y integrals, and absorb the
factor of 4π2 into κ. Note that to arrive at (5.1.11), we used, compared to section 2,
the diffeomorphism constraint in the form Ca := Ha − AjaGj, which generates spatial
diffeomorphisms.

• Secondly, we perform two canonical transformations, which are inspired by the spheri-
cally symmetric model [121,122] and were translated to the Gowdy model in [56]:

– The first canonical transformation we perform is given by

Ex
1 = Ex cos β, Ex

2 = Ex sin β,

Ey
1 = −Ey sin β̄, Ey

2 = Ey cos β̄
(5.1.13)

for the electric fields and by

A1
x = Ax cos(α + β), A2

x = Ax sin(α + β),

A1
y = −Ay sin(ᾱ + β̄), A2

y = Ay cos(ᾱ + β̄)
(5.1.14)

for the connections. This is in analogy to the introduction of polar coordinates
with Ex, Ey, Ax, and Ay playing the role of the radius, as for example Ex =√

(Ex
1 )2 + (Ex

2 )2 and similarly for the other variables. The angular variables in
(5.1.14) are introduced in this particular way only for convenience. To complete
the first canonical transformation, we define

X := Ax cosα, Y := Ay cos ᾱ,

P β := −ExAx sinα, P̄ β := −EyAy sin ᾱ.
(5.1.15)
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This way, we end up with the configuration variables A := γ−1A3
θ, X, Y, β, β̄ with

conjugate momenta E := Eθ
3 , E

x, Ey, P β, P̄ β, where the canonical commutation
relations are for example for A and E given by

{A(θ), E(θ′)} = κ′γδ(θ, θ′). (5.1.16)

In total, we have 10 canonical variables and three first class constraints giving us 2
physical field degrees of freedom and 4 physical degrees of freedom in phase space,
respectively.

– The second canonical transformation has the form

ξ = β − β̄, η = β + β̄,

P ξ =
P β − P̄ β

2
, P η =

P β + P̄ β

2
.

(5.1.17)

This way, we replace the canonically conjugate variables β, β̄, P β, P̄ β by η, ξ, P η, P ξ.

Using (5.1.13)-(5.1.17), we can rewrite the constraints to complete the formulation of the
unpolarized Gowdy model. For this, we refer to [56] as in this thesis, we are only interested
in the polarized Gowdy model which we will introduce in the next paragraph. Prior to that,
we show explicitly how the two canonical transformations in (5.1.13)-(5.1.17) simplify det(E)
in (5.1.9):

det(E) = E(Ex cos β · Ey cos β̄ + Ex sin β · Ey sin β̄) = EExEy cos ξ =: E, (5.1.18)

where in the second step, we used the trigonometric identity cos β cos β̄ + sin β sin β̄ =
cos(β − β̄) = cos ξ. We see already in the unpolarized Gowdy model that the volume ac-
quires a simple form.

Following [56], now we go over from the unpolarized to the polarized Gowdy model by
imposing the two Killing vectors ∂x, ∂y, corresponding to the isometry group T 2, to be or-
thogonal. When we look at the form of the line element of the unpolarized Gowdy model [56]

ds2 = cos ξ
ExEy

Eθ
3

dθ2 +
Eθ

3

cos ξ

Ey

Ex
dx2 +

Eθ
3

cos ξ

Ex

Ey
dy2 − 2

Eθ
3

cos ξ
sin ξdxdy, (5.1.19)

we see that for orthogonal Killing vectors ∂x, ∂y, the dxdy-term has to vanish. This is equiv-
alent to the condition ξ(θ) = 0, which we require as an additional constraint. Hence, we have
to perform the stability analysis according to the Dirac algorithm, which we introduced in
section 2.1.2: We need to compute the Poisson bracket between ξ(θ) and the primary Hamil-
tonian and impose the result to be weakly vanishing, i.e., we demand ξ̇(θ) ≈ 0. From this,
we get the additional constraint

χ(θ) := 2P ξ + Eθ
3∂θ(ln

Ey

Ex
) ≈ 0, (5.1.20)

which together with ξ(θ) ≈ 0 forms the so-called polarization constraints. These constraints do
weakly Poisson commute with the Gauß, the diffeomorphism and the Hamiltonian constraint
but not among each other. Hence, they form a system of second class constraints for which we
can use the Dirac bracket and implement the constraints strongly. In particular, we eliminate
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the variables ξ, P ξ using the polarization constraints. For completeness, we state the definition
of the Dirac bracket for two phase space functions F,G:

{F,G}∗ = {F,G} −
∫

dθ

∫
dθ′
[
{F, ξ(θ)}{ξ(θ), χ(θ′)}−1{χ(θ′, G}

+ {F, χ(θ)}{χ(θ), ξ(θ′)}−1{ξ(θ′), G}
]
.

(5.1.21)

As the polarization constraints weakly Poisson commute with the Gauß, the diffeomorphism
and the Hamiltonian constraint, the constraint algebra with respect to Dirac brackets will not
differ from the one calculated using the original Poisson brackets. From (5.1.21), we can also
see that the equations of motions for all phase space variables remain unchanged using the
Dirac bracket, except the ones of ξ and P ξ. Hence, we can stick to the original Poisson bracket
for the polarized model. We end up with the following form of the Gauß, diffeomorphism and
Hamiltonian constraints [56,57]:

G =
1

κ′
[∂θE + P η] , (5.1.22)

Cθ =
1

κ′γ

[
(∂θX)Ex + (∂θY )Ey − (∂θE

θ
3)A3

θ + (∂θη)P η + (∂θξ)P
ξ)
]
, (5.1.23)

C =− 1

κ′
1√

det(E)

[ 1

γ2
(XExY Ey +AE(XEx + Y Ey) + E∂θη(XEx + Y Ey))

+
1

4
∂θE −

1

4
(E∂θln(

Ey

Ex
))2
]
− κ′

4

G2

√
E
− γ

2
∂θ

(
G√
E

)
, (5.1.24)

where for the Hamiltonian constraint, we eliminated P η in terms of the Gauß constraint.
Furthermore, using ξ = 0, we can rewrite the expression for det(E) in (5.1.9) as

E := det(E) = EExEy, (5.1.25)

which implies that the volume functional is simply the integrated square root of the product
of three electric fluxes. As the electric fluxes correspond to diagonal operators in the quan-
tum theory, cf. section 5.2.2, the volume operator will act diagonally. We see from (5.1.24)
that

√
E enters in every summand and hence the volume operator is a crucial ingredient for

quantizing the Hamiltonian constraint. Therefore, the diagonal action of the volume operator
provides a significant simplification, especially compared to the full theory.

From the Gauß constraint in (5.1.22), we can also see that A transforms as a U(1) con-
nection: If we calculate the Poisson bracket between the smeared Gauß constraint G(Λ) :=∫
S1 dθ ΛG, where G := G3 and Λ := Λ3, and A(θ), we get:

{G(Λ),A(θ)} = −∂θΛ(θ). (5.1.26)

This is the infinitesimal version of the transformation law of an U(1) connection A with
respect to finite gauge transformations given by

A → −dg g−1 + gAg−1, (5.1.27)

as one can check by inserting into this equation g = exp (iΛ) ≈ 1 + iΛ for small Λ.

We now solve the Gauß constraint following [56]. For this, we observe from (5.1.22) that
all variables except for A and η are gauge-invariant. Specifically, η is translated under gauge
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transformation generated by the Gauß constraint: For an infinitessimal gauge transformation,
we get {G(Λ), η(θ)} = Λ(θ) and hence arrive for a finite gauge transformation at

exp ({G(Λ), .}) · η(θ) =
∞∑
n=0

1

n!
{G(Λ), η(θ)}(n) = (η + Λ)(θ), (5.1.28)

where {., .}(n) denotes the iterated Poisson brackets, cf. section 4. In the second step of
(5.1.28), we used {G(Λ), {G(Λ), η(θ)}} = 0. From (5.1.28), it follows that we can assume
η to be any constant and in particular, we can impose the constraint η ≈ 0, which forms
a second class system with the Gauß constraint while weakly Poisson commuting with all
other constraints [56]. Using the associated Dirac bracket, we can strongly set η and G to
zero. Furthermore, the Dirac bracket reduces to the original Poisson bracket for phase space
functions independent of (η, P η). We are now left with 6 canonical pairs (A, E), (X,Ex),
(Y,Ey) and can express the constraints in terms of these variables which we do in the next
paragraph following [56,57].

We first consider the Hamiltonian constraint, which we rewrite in the following form:

H :=

∫
S1

dθ NC =

∫
S1

dθ N [Ceucl + Clor] := Heucl + Hlor, (5.1.29)

where we introduced the so-called Euclidean part

Heucl :=

∫
S1

dθ NCeucl = − 1

κ′γ2

∫
S1

dθN
1√
E

[XExY Ey +AE(XEx + Y Ey)] (5.1.30)

and the so-called Lorentzian part

Hlor :=

∫
S1

dθ NClor = H
(1)
lor + H

(2)
lor + H

(3)
lor , (5.1.31)

which we split in three terms given by

H
(1)
lor :=− 1

4κ′

∫
S1

dθN
(∂θE)2

√
E

, (5.1.32)

H
(2)
lor :=

1

4κ′

∫
S1

dθN
(E)2

√
E

(
∂θE

x

Ex
− ∂θE

y

Ey

)2

, (5.1.33)

H
(3)
lor :=

1

κ′

∫
S1

dθN∂θ

(
E(∂θE)√

E

)
. (5.1.34)

For a better comparison with [57], we remark that in [57] the term corresponding to the
Euclidean part is named the kinetic term HK and the term corresponding to the Lorentzian
part the potential term HP . We now want to justify the split (5.1.29) of the Hamiltonian
constraint. We see that only in the Euclidean part (5.1.30) the configuration variables A, X, Y
are contained, whereas in the Lorentzian part (5.1.32)-(5.1.34) this is not the case. In partic-
ular, the Euclidean part (5.1.30) has a structure that resembles the Euclidean part of the full
theory

Heucl,full =
εjklF

j
abE

a
kE

b
l√

E
, (5.1.35)

with the connection components contained in the curvature tensor F j
ab = ∂[aA

j
b] + εjklAkaA

l
b.

This justifies that we denote (5.1.30) as the Euclidean part. Note, however, that (5.1.30) is
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not resulting solely from terms of (5.1.35). We collected the remaining terms of the Gowdy
Hamiltonian constraint in another operator which we denoted as the Lorentzian part, cf.
(5.1.31). We again split this constraint into three terms in analogy to [57]. Furthermore,
the split in (5.1.29) is also justified in the quantum theory where the Euclidean part will
correspond to a graph-changing operator in LQG and a label-changing operator in AQG,
respectively, while the Lorentzian part acts diagonally in both LQG and AQG.

Besides the Hamiltonian constraint, we also have one diffeomorphism constraint given
by [56,57]

Cθ =
1

κ′γ
[Ex∂θX + Ey∂θY −A∂θE ] . (5.1.36)

From this, we see that the basic variables transform as scalars under θ-coordinate transfor-
mations on S1 generated by Cθ. For example, for X(θ) and the smeared diffeomorphism

constraint C̃(N θ) :=
∫
S1 N

θCθ, we obtain

exp
(
{C̃(N θ), .}

)
·X(θ) =

∞∑
n=0

1

n!
{C̃(N θ), X(θ)}(n) = X(θ −N θ(θ)), (5.1.37)

where we used (5.1.16) to compute

{C̃(N θ), X(θ)} = −N θ(θ)∂θX(θ),

{C̃(N θ), {C̃(N θ), X(θ)}} = N θ(θ)∂θ{C̃(N θ), X(θ)} = (N θ(θ))2∂2
θX(θ).

(5.1.38)

Then, we arrive at {C̃(N θ), X(θ)}(n) = (−N θ(θ))n∂nθX(θ) and finally (5.1.37). For the den-
sity weights, we choose the conventions of [56, 57], i.e., X, Y, E have density weight zero and
Ex, Ey,A have density weight 1. Specifically, we used for (A, E) that, in one dimension, a
tensor density of contravariant rank p, covariant rank q, and density weight w can be seen
as a scalar density of weight w + q − p, as one can see from the tensor transformation law.
Hence, we can assign a density weight of one to the one-form A which requires E to have
density weight zero.

5.2 Algebraic loop quantization of the polarized three-torus Gowdy
model

In the following chapters, we quantize the classical theory of the polarized three-torus Gowdy
model. In particular, we will perform a reduced phase space quantization for which we
apply the relational formalism in section 5.2.1. This way, we end up with a theory where
all constraints are solved at the classical level and that is equivalent to the one described
in [56, 57]. The prize we have to pay, however, is that we have introduced additional dust
degrees of freedom playing the role of physical observers. Subsequent to section 5.2.1, we
proceed in section 5.2.2 with a discussion on the LQG and AQG techniques in the context of
the Gowdy model. We apply these to the volume operator, the Hamiltonian constraint and
the Gauß constraint in the ensuing sections.

5.2.1 Application of the relational formalism

To perform a reduced phase space quantization of the Gowdy model, we first apply the re-
lational formalism we discussed in section 4: We use Gaussian dust as reference fields which
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allows us to rewrite the unsmeared versions Cθ,C of the Hamiltonian and diffeomorphism
constraints in (5.1.29) and (5.1.36) in a deparametrised form. Then, we reduce with respect
to these new constraints, i.e., we construct observables invariant under the gauge flow of
these constraints. Applying this to the basic variables gives us, for instance, the observable
OX(τ, σθ) associated with the configuration variable X and similarly for the remaining vari-
ables, where τ denotes the physical time and σθ is one of the coordinates σj, j = x, y, θ, of the
dust manifold S and provides a ruler for the coordinate θ ∈ S1. The observables correspond-
ing to the basic variables coordinatize the reduced phase space and in particular, we obtain
an observable algebra that is isomorphic to the original Poisson algebra. We also obtain a
time-independent physical Hamiltonian

Hphys :=

∫
S

d3σC(σθ), (5.2.1)

where C(σθ) := OC(σθ) = C(OX , OY , OA, OEx , OEy , OE) is the observable associated to the
unsmeared Hamiltonian constraint C given by (5.1.29)-(5.1.34). This physical Hamiltonian
generates the time evolution of an observable via

∂Of (τ, σ)

∂τ
= {Of (τ, σ),Hphys}. (5.2.2)

We can now go over to the quantum theory, where (5.2.2) becomes the Heisenberg equation

∂Ôf (τ, σ)

∂τ
= i~[Ôf (τ, σ), Ĥphys]. (5.2.3)

Assuming that Ĥphys has been implemented as a self-adjoint operator, we can use the unitary

transformation Û(τ) = exp (− i
~τ Ĥphys) to go over to the Schrödinger picture and obtain the

time-dependent Schrödinger equation

i~∂τΨ(τ) = ĤphysΨ(τ) (5.2.4)

for some state Ψ that we will specify at the beginning of section 6.

We conclude by making some important remarks concerning our notation which we adapt
to stay close to [56,57]:

• In the following, in abuse of notation, we will denote the observables corresponding to
the basic variables also by A, X, Y, E , Ex, Ey.

• For quantizing (5.2.1), we can apply the techniques of [57] but just have to replace
θ ∈ S1 by the dust coordinate σθ and the integral over the circle by the integral over
the dust manifold. When discussing the quantization in section 5.2.4, however, we will,
also in abuse of notation, denote σθ still as θ and the dust manifold as S1 in order to
have a better comparison with [57].

• Note that we will not use the quantized version of (5.2.1) as our physical Hamiltonian
operator when writing down a Schrödinger equation, as it is not self-adjoint and not
even symmetric. Hence, we use a symmetrized version of it, see section 6.
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5.2.2 Holonomies, states and fluxes

In the following, our strategy will be to first introduce holonomies, Gowdy states and fluxes in
the LQG framework following [57] and then directly translate this to the AQG framework fol-
lowing [58,59]. In particular, we will obtain the kinematical Hilbert space of the Gowdy model.

We begin with the definition of an embedded graph in the polarized three-torus Gowdy
model: A graph γ consists of a finite number of non-overlapping arcs or edges e of a circle
which meet in vertices v, cf. figure 2. We collect all edges and vertices in the sets E(γ) and
V (γ), respectively.

v1

v3

v2

e1

e2

e3

Figure 2: Drawing of an embedded three-valent Gowdy graph γ, where v1, v2, v3 denote the
vertices and e1, e2, e3 the edges.

To define a Gowdy state, we need to specify the holonomies, where we follow the notation
of [57]:

• A is a U(1)-connection and thus we smear it along an edge e ∈ E(γ) to obtain the
U(1)-holonomy

h(k)
e (A) := exp

(
i
k

2

∫
e

A
)
, (5.2.5)

with k ∈ Z and the factor of 1/2 introduced for later convenience when we intro-
duce SU(2)-valued analogues of the holonomies that are well-defined on the kinematical
Hilbert space, cf. (5.2.36)-(5.2.38).

• X and Y are scalar fields, which is a consequence of the symmetry reduction we pre-
sented in section 5.1 resulting in (5.1.3). For scalar fields, one introduces so-called
point-holonomies, see [27,55,121] and [140–142] for details. We apply this procedure to
the Gowdy model and define

h(µ)
v (X) := exp

(
i
µ

2
X(v)

)
, h(ν)

v (Y ) := exp
(
i
ν

2
Y (v)

)
. (5.2.6)

We can perceive these holonomies as representations of the Bohr compactification of the
real line denoted as RBohr, which is the distributional extension of R and is the analog
to the space of generalized connections A in the full theory. It can be understood as the
spectrum of the unital C∗-algebra of almost periodic functions10. In particular, RBohr is
a compact and abelian group, whose representations are labeled by real numbers, which

10We introduced the definition of a unital C∗-algebra in the context of (3.2.14) in section 3.2.2. The
spectrum of such an algebra A is defined as the set of non-zero maps χ : A → C, the so-called characters,
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we denoted as µ and ν respectively in (5.2.6).

The kinematical Hilbert space can be constructed using projective techniques, which we
introduced in section 3. We follow the discussion of the spherical symmetric model in [121]:
For the U(1)-connection, we denote the space of generalized connections as AB, motivated by
the form of the invariant connection A = AB +AS/F . AB is the projective limit with respect
to the projective family (AB, pγγ′): The label set is given by closed and oriented graphs γ in
S1, the set AB contains elements AγB mapping from the set of edges E(γ) to U(1)N , where
|E(γ)| = N , and the projection maps pγγ′ are defined as the restriction maps pγγ′(A

γ
B) = AγB|γ′

for γ′ ⊂ γ. Similarly, we proceed for the point holonomies, where we denote the space of
generalized connections as AS/F , which we obtain as the projective limit of the projective
family (AS/F , p̃γγ′): The label set is given by a set of points in B which we can choose as the
set of vertices V (γ), the set AS/F contains maps AγS/F from V (γ) to RN

Bohr, where |V (γ)| = N ,

and the projection maps p̃γγ′ are defined as the restriction maps p̃γγ′(A
γ
S/F ) = AγS/F |γ′ for

γ′ ⊂ γ. Now, we can define the space of generalized Gowdy connections AB×S/F as the
projective limit of the tensor product AB ⊗AS/F . On AB×S/F , we then can define cylindrical
functions and an inner product using the Haar measure of the groups U(1) and RBohr: For
fγ, f

′
γ two functions cylindrical with respect to a Gowdy graph γ which has N vertices and

N edges, we can define the inner product as

< fγ, f
′
γ >=

∫
U(1)N

[
N∏
i=1

dµU(1)(h
(ki)
ei

(A))

]∫
R 2N
Bohr

[
N∏
i=1

dµBohr(h
(µi)
vi

(X))dµBohr(h
(νi)
vi

(Y ))

]
×

× fγ
(
{h(ki)

ei (A}i=1,...,N , {h(µi)
vi (X)}i=1,...,N , {h(νi)

vi (Y )}i=1,...,N

)
×

× f ′γ
(
{h(ki)

ei
(A}i=1,...,N , {h(µi)

vi
(X)}i=1,...,N , {h(νi)

vi
(Y )}i=1,...,N

)
,

(5.2.7)

where the Haar measures of U(1) and RBohr are defined by

µU(1)(f) =
1

2π

∫ π

−π
dϕ f(ϕ), µBohr(g) = lim

C→∞

1

2C

∫ +C

−C
dx g(x), (5.2.8)

where f and g are functions on U(1) and RBohr, respectively. Taking the completion of the
space of cylindrical functions with respect to the inner product (5.2.7) gives us the kinematical
Gowdy Hilbert spaceHGowdy. Specifically, at each vertex, we have the Hilbert spaceHv, which
is given by a tensor product of two copies of L2(RBohr, dµBohr), the space of functions on RBohr

that are square integrable with respect to dµBohr, see also [142], corresponding to the two
point holonomies sitting at each vertex, i.e., we have

Hv = L2(RBohr, dµBohr)⊗ L2(RBohr, dµBohr). (5.2.9)

In analogy to the spin network functions in the full theory, we can define an orthonormal
basis of the kinematical Hilbert space HGowdy by the so-called charge network functions which
we shortly call Gowdy states :

|γ, k, µ, ν〉 :=
∏

e∈E(γ)

exp

(
i
ke
2

∫
e

A
)
·
∏

v∈V (γ)

[
exp

(
i
µv
2
X(v)

)
exp

(
i
νv
2
Y (v)

)]
. (5.2.10)

which are ∗-homomorphism, i.e., they satisfy χ(ab) = χ(a)χ(b), χ(a+ b) = χ(a) + χ(b), χ(a∗) = χ(a)∗. Here,
we are interested in the algebra of almost periodic functions which is the complex span of functions Tk := eikx,
x, k ∈ R, with period 2π/k. Using pointwise multiplication and addition and the supremum norm on R, this
algebra becomes a unital C∗-algebra. See for example chapter 28 of [27] for more details.



64 5 The polarized three-torus Gowdy model

More precisely, we define a state of the loop quantized Gowdy model by assigning

• to each edge e ∈ E(γ) an irreducible representation of the U(1)-holonomy (5.2.5) labeled
by ke ∈ Z and

• to each vertex v ∈ V (γ) the irreducible representations of the point holonomies (5.2.6)
labeled by µv and νv ∈ R, respectively.

Multiplying all these irreducible representations of the holonomies at all vertices and edges
gives (5.2.10). See the left hand side of figure 3 for an illustration of a Gowdy state. We also
refer to chapter 9.1.2 of [138] and [121,122] for a comparison to the spherical symmetric case.

We can now calculate the action of the holonomies on a Gowdy state. For a general U(1)-
holonomy with charge k0 ∈ Z and the connection A smeared along an edge ei ∈ E(γ), we
obtain

exp

(
i
k0

2

∫
ei

A
)
|γ, k, µ, ν〉 = exp

(
i
ki + k0

2

∫
ei

A
)
·
∏

e∈E(γ)\ei

exp

(
i
ke
2

∫
e

A
)
×

×
∏

v∈V (γ)

[
exp

(
i
µv
2
X(v)

)
exp

(
i
νv
2
Y (v)

)]
:= |γ, ki + k0, µ, ν〉 .

(5.2.11)

The notation |ki + k0, µ, ν〉 implies that all k-labels remain the same compared to the state
|k, µ, ν〉 and only the ith label ki is shifted by k0. Similarly, we can proceed for the point
holonomies. For example for the X-holonomy defined at a vertex vi with charge µ0 ∈ R, we
get

exp
(
i
µ0

2
X(vi)

)
|γ, k, µ, ν〉 =

∏
e∈E(γ)

exp

(
i
ke
2

∫
e

A
)
·
∏

v∈V (γ)

exp
(
i
νv
2
Y (v)

)
×

× exp

(
i
µvi + µ0

2
X(vi)

)
·
∏

v∈V (γ)\vi

exp
(
i
µv
2
X(v)

)
:= |γ, k, µvi + µ0, ν〉 .

(5.2.12)

We obtain the action of the point holonomy exp
(
iν0

2
Y (vi)

)
with ν0 ∈ R from (5.2.12) by

exchanging µ and X with ν and Y .

Now, we define the flux operators. These are implemented as derivative operators, but
have to be smeared appropriately according to their density weight. Following our conven-
tion introduced below (5.1.38), E is a scalar and hence we do not have to smear it. The
corresponding operator defined for each θ ∈ σ/S = S1 is given by

Ê(θ) = −iγl2P
δ

δA(θ)
= −iγl2P

δh
(k)
e (A)

δA(θ)

∂

∂h
(k)
e (A)

, (5.2.13)

with the Planck area l2P defined by l2P = κ′~. This operator has the following action on a
Gowdy state [57]:

Ê(θ) |γ, k, µ, ν〉 =
γl2P
2

ke+(θ) + ke−(θ)

2
|γ, k, µ, ν〉 . (5.2.14)



5.2 Algebraic loop quantization of the polarized three-torus Gowdy model 65

Here, e+(θ) denotes the edge that is outgoing and e−(θ) the edge that is ingoing at θ ∈ S1.
We arrive at (5.2.14) the following way: We consider first the case that θ coincides with a
vertex vi in which two edges ei−1 and ei meet. If we apply Ê(θ) to a Gowdy state, there will
be two U(1)-holonomies in (5.2.10) that depend on vi. Hence, we have to apply the Leibniz
rule and get the sum of two representation labels, namely ke+(θ) = kei and ke−(θ) = kei−1

.
We also need to take into account that performing the functional differentiation results in an
integral over a delta function peaked at the borders of the integral, which gives an additional
factor of 1/2. If θ is not a vertex, it divides the same edge ei into two pieces and hence
e+(θ) = e−(θ) = ei resulting in the same label kei . In this case, no additional factor of 1/2
appears from the integral over the delta function. This way, we arrive at (5.2.14) which is
valid for a general θ ∈ S1. The other two fluxes Ex and Ey are scalar densities of weight
one and thus we integrate them over an interval I of the circle. Following [57], we denote the
smeared fluxes as

F̂x,I :=

∫
I

Êx, F̂y,I :=

∫
I

Êy, (5.2.15)

with Êx, Êy defined in analogy to (5.2.13). Then, we obtain the following action for these
flux operators [57]:

F̂x,I |γ, k, µ, ν〉 =
∑

v∈V (γ)∩I

µv |γ, k, µ, ν〉 , (5.2.16)

F̂y,I |γ, k, µ, ν〉 =
∑

v∈V (γ)∩I

νv |γ, k, µ, ν〉 . (5.2.17)

Note again that if a vertex coincides with an endpoint of I, we get an additional factor of 1/2
in the actions of F̂x,I and F̂y,I , which arises from the integral over a delta function.
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v
1

v2 v3
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Figure 3: Left: Illustration of a Gowdy state (5.2.10) for 3 vertices in LQG. Right: Illustra-
tion of an abstract Gowdy state (5.2.21) for 3 vertices in AQG.

We now want to go over to the AQG framework but first remark that the big advan-
tage compared to LQG is that the Hamiltonian constraint acts in a graph-preserving way.
For LQG, this depends in principle on the chosen regularization, see chapter V of [57] for
a discussion. In particular, the action of the LQG Hamiltonian constraint operator of [57]
will be more complicated as new vertices are created, see also our discussion at the end of
section 5.2.4. Note, however, that the graph-changing action is required such that the Poisson
bracket between two Hamiltonian constraints, which results in a diffeomorphism constraint
with structure functions, can be implemented in the quantum theory. See also our discussion
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in section 3.6.

As introduced in section 3.6, within AQG, we consider one infinite abstract algebraic
graph α instead of infinitely many finite graphs γ. An abstract graph for N = 3 vertices is
illustrated on the right hand side of figure 3. In order to stay close to the LQG graph, we
charge only the vertices vi and edges ei with i = 1, ..., N , N := |E(γ)|, with the convention
that the edge ei is to the right and the edge ei−1 is to the left of the vertex vi. We also charge
the edge e0, which is to the left of e1 in figure 3, with the label kN and charge all other edges
and vertices of the infinite graph α trivially such that the circle symmetry of the embedded
graph γ is implemented. We can recover γ from the abstract graph α by embedding all ver-
tices vi, with i = 1, ..., N + 1, and all edges ej, with j = 1, ..., N , while identifying the vertices
v1 and vN+1. The remaining vertices and edges of α we may map to a common vertex and
edge, respectively, giving us accumulation points. However, these edges and vertices are not
seen by the Hamiltonian constraint operator as it contains the volume operator, which has
eigenvalue zero at trivially charged vertices and edges, cf. (5.2.34).

We now carry over the holonomies and fluxes from LQG to AQG, define so-called abstract
Gowdy states, and state the action of the AQG holonomies and fluxes thereon. Following the
general procedure presented in section 4, we assign to each edge e ∈ E(α) Lie group elements
A(e) and Lie algebra elements E(e) which correspond to the holonomies and fluxes in the
embedded case and satisfy the algebra (3.6.7)-(3.6.9). We construct these variables in the
following separately for the holonomies and fluxes:

• Holonomies: We define the Lie group element A(e) corresponding to the LQG U(1)-
holonomy (5.2.5) as A(e) := exp

(
iki

2
Aei
)
, i.e., we replace the integral

∫
e
A in (5.2.5)

by the expression Ae that corresponds to an integral over the embedded edge e when
choosing an embedding for α. To stay close to the LQG case, we denote A(e) by h

(ki)
ei (A)

in the following. Concerning the point holonomies, we observe that all operators that
are defined only at vertices straightforwardly carry over to algebraic quantum gravity as
they are independent of the embedding. In summary, the AQG holonomies are defined
by

h(ki)
ei

(A) := exp

(
i
ki
2
Aei
)
, (5.2.18)

h
(µi)
i (Xi) := exp

(
i
µi
2
Xi

)
, (5.2.19)

h
(νi)
i (Yi) := exp

(
i
νi
2
Yi

)
, (5.2.20)

with Xi := X(vi), Yi := Y (vi) and, as discussed above, Ae equal to
∫
e
A in the embedded

case, that is for an embedding X we have A(X(e)) = exp (iki/2
∫
X(e)
A) where A is a

U(1) connection. Then, we can define a so-called abstract Gowdy state:

|k, µ, ν〉 :=
∏

e∈E(α)

exp

(
i
ke
2
Ae
) ∏
i∈V (α)

exp
(
i
µi
2
Xi

) ∏
i∈V (α)

exp
(
i
νi
2
Yi

)
. (5.2.21)

Note that these states do not span the entire infinite tensor product Hilbert space,
as only a finite number of edges and vertices of the infinite graph α are charged non-
trivially. We obtain the following action of the holonomies in analogy to (5.2.11) and
(5.2.12):

exp

(
i
k0

2
Aei
)
|k, µ, ν〉 = |ki + k0, µ, ν〉 , (5.2.22)
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exp
(
i
µ0

2
Xi

)
|k, µ, ν〉 = |k, µi + µ0, ν〉 , (5.2.23)

exp
(
i
ν0

2
Yi

)
|k, µ, ν〉 = |k, µ, νi + ν0〉 . (5.2.24)

• Fluxes: In LQG, Ê(θ) can act on any point of an edge. In AQG, however, an embedded
edge does not exist and therefore the action can only be defined on a vertex and is in
analogy to (5.2.14) given by

Êi |γ, k, µ, ν〉 =
γl2P
2

ki + ki−1

2
|k, µ, ν〉 , (5.2.25)

where Êi := Ê(vi). Furthermore, we changed our notation for the labels in (5.2.14)
slightly by defining ki := ke+(θ) and ki−1 := ke−(θ) as the k-labels of the edges ei and
ei−1 where i denotes the ith vertex of α. The remaining fluxes require a smearing along
arcs in LQG, cf. (5.2.15), and hence we have to proceed similar to the definition of
the U(1)-element A(e): We assign the Lie algebra elements F̂x,ei and F̂y,ei to each edge
ei ∈ E(α) and impose them to satisfy the relation (3.6.8) with the corresponding point
holonomies (5.2.19), (5.2.20). When we choose an embedding, the flux operators F̂x,ei
and F̂y,ei correspond to the smeared quantities in (5.2.15). This way we obtain for the
action

F̂x,ei |k, µ, ν〉 =
γl2P
2
µi |k, µ, ν〉 ,

F̂y,ei |k, µ, ν〉 =
γl2P
2
νi |k, µ, ν〉 .

(5.2.26)

5.2.3 The volume operator

So far, we quantized the basic variables but now we want to apply these results to more
general quantities, where we start in this section with the volume functional and then pro-
ceed with the Hamiltonian constraint in the next section. We again first perform the loop
quantization of the volume functional following [56] and afterwards translate the result to the
AQG framework.

For an arc I, the volume functional is given by

V (I) =

∫
I

dθ
√
|det(E)| =

∫
I

dθ
√
|EExEy|. (5.2.27)

We can partition the arc I into N sufficiently small intervals Ii of length ε with i = 1, ..., N .
Then, we can rewrite the above volume functional as

V (I) ≈
N∑
i=1

∫
Ii

dθi
√
|EExEy|(θi) =

N∑
i=1

∫ θi+ε

θi

dθ̃i

√
|EExEy|(θ̃i). (5.2.28)

We can now approximate the integral and pull the resulting ε inside the square roots:

V (I) ≈
N∑
i=1

√
|E||εEx||εEy|(θi), (5.2.29)
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with θi a point contained in the interval Ii. Reintroducing the integrals over the fluxes Ex, Ey,
we recover the definition of the fluxes Fx,Ii ,Fy,Ii smeared along the interval Ii, cf. (5.2.15):

V (I) ≈
N∑
i=1

√
|E|(θi)|

∫ θi+ε

θi

Ex||
∫ θi+ε

θi

Ey| =
N∑
i=1

√
|E(θi)||Fx,Ii||Fy,Ii |. (5.2.30)

We can promote this to a well defined operator using (5.2.13) and (5.2.15):

V̂ (I) :=
N∑
i=1

√
|Ê(θi)||F̂x,Ii ||F̂y,Ii | =:

N∑
i=1

V̂ (Ii, θi). (5.2.31)

Using the action of the fluxes in (5.2.14), (5.2.16), and (5.2.17), we obtain the following action
of the volume operator:

V̂ (I) |γ, k, µ, ν〉 =
1√
2

(
γl2P
2

)3/2 ∑
v∈V (γ)∩I

√
|µv||νv||ke+(v) + ke−(v)| |γ, k, µ, ν〉 . (5.2.32)

As mentioned before, the fluxes give no contribution for intervals that contain no vertex.
Hence, the sum in (5.2.31) reduces to contributions from vertices.

Now, we carry over the volume operator V̂ (I) defined in LQG for an arc I of S1 to AQG.
Using the AQG equivalents of the fluxes stated in (5.2.25) and (5.2.26), we obtain the volume
operator in AQG which consists of a sum over all vertices of the abstract graph, i.e., it is an
infinite sum of the following form:

V̂ :=
∑
i∈V (α)

V̂i =
∑
i∈V (α)

√
|Êi||F̂x,ei ||F̂y,ei |. (5.2.33)

Using the action of the AQG fluxes stated in (5.2.25) and (5.2.26), we obtain the action of
the volume operator V̂i acting at a vertex i of the abstract graph α:

V̂i |k, µ, ν〉 =
1√
2

(
γl2P
2

)3/2√
|µi||νi||ki + ki−1| |k, µ, ν〉 . (5.2.34)

Having defined the volume operator in this section and holonomies and fluxes in the
former, we have now all necessary ingredients to tackle the quantization of the Hamiltonian
constraint in the next section.

5.2.4 The Hamiltonian constraint operator

In the following, we explain the quantization procedure for the Hamiltonian constraint. Ac-
tually, we are interested in the quantization of the physical Hamiltonian (5.2.1), which is
equivalent to the Hamiltonian constraint but depends on the dust coordinate σθ and involves
an integral over the dust manifold. In the following, as mentioned before in abuse of notation
we will denote the dust manifold as S1 and the physical coordinates as θ. Hence, we start from
the classical expression in (5.1.29). We will consider the Euclidean and the Lorentzian part
separately. For each parts, we scetch how to derive the LQG-quantized version following [57]
and afterwards we go over to the AQG framework as was done before in [58,59].
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Quantization of the Euclidean part: We explain our strategy, following [57], exem-
plarily for the first term of the Euclidean part (5.1.30). First, we introduce a regularization,
i.e., we partition S1 into N intervals I containing the points θi. In particular, we choose the
intervals I of sufficiently small length ε such that we can rewrite the integral over S1 as a
Riemann sum. This way, we obtain the following expression for the first term of the Euclidean
part (5.1.30):

− 1

γ2κ′

∫
S1

dθ
XExY Ey√
|E|

(θ) ≈ − 1

γ2κ′

N∑
i=1

εXExY Ey√
|E|

(θi). (5.2.35)

Now, for convenience, we introduce the following SU(2)-valued analogues of the LQG holonomies
defined in (5.2.5) and (5.2.6) :

hθ(I) := exp

(
τ3k0

∫
I

A
)

= cos

(
k0

2

∫
I

A
)

+ 2τ3 sin

(
k0

2

∫
I

A
)
, (5.2.36)

hx(θ) := exp (µ0X(θ)τ1) = cos
(µ0

2
X(θ)

)
+ 2τ1 sin

(µ0

2
X(θ)

)
, (5.2.37)

hy(θ) := exp (µ0Y (θ)τ2) = cos
(ν0

2
Y (θ)

)
+ 2τy sin

(ν0

2
Y (θ)

)
, (5.2.38)

with τi, i = 1, 2, 3, a basis of su(2) that is defined by the Pauli matrices via τi = −iσi/2 and
satisfies the following identities:

Tr(τi) = 0, τiτj = −1

4
δij1SU(2) +

1

2
εijkτk. (5.2.39)

Via (5.2.36)-(5.2.38), we also provide a closer contact to the holonomies of the full theory,
which are also SU(2)-valued. The action of the SU(2)-holonomies on abstract Gowdy states
follows from expressing the occurring sines and cosines by complex exponentials exp

(
ik0

2

∫
I
A
)
,

exp
(
iµ0

2
Xi

)
, and exp

(
iν0

2
Yi
)

which are exactly the holonomies introduced in (5.2.5) and
(5.2.6). Hence, the SU(2)-holonomies are well defined on the kinematical Hilbert space. This
also motivates the factors of 1/2 we introduced in the definition of the holonomies (5.2.5) and
(5.2.6). Furthermore, as stated in (5.2.30), we define the following volume functional for an
arc I and a point θ ∈ I:

V (I) :=

√
|E(θ)|

∣∣∣∣∫
I

Ex

∣∣∣∣ ∣∣∣∣∫
I

Ey

∣∣∣∣. (5.2.40)

Using this and (5.2.36)-(5.2.38), one can show that the following identity holds:

Tr
{[
hxhyh

−1
x h−1

y − hyhxh−1
y h−1

x

]
hθ{h−1

θ , V }
}
≈ κ′γ

2
k0µ0ν0

εXY ExEy

√
E

(θ), (5.2.41)

where Tr denotes the SU(2)-trace and for simplicity, we left out the θ-dependence of the
holonomies and fluxes and the I-dependence of the volume functional. We see from (5.2.41)
that the right hand side contains exactly the same configuration variables and fluxes as (5.2.35)
and thus we found a way to approximate the Euclidean operator by holonomies and the
volume. We can prove (5.2.41) in three steps:

• Firstly, we rewrite the expression in square brackets. Plugging in the definitions (5.2.37)
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and (5.2.38) of the holonomies hx and hy while suppressing any θ- or I-dependence gives

hxhyh
−1
x h−1

y − hyhxh−1
y h−1

x =8 sin
(µ0

2
X
)

cos
(µ0

2
X
) [

sin
(ν0

2
Y
)]2

τ1−

− 8 sin
(ν0

2
Y
)

cos
(ν0

2
Y
) [

sin
(µ0

2
X
)]2

τ2+

+ 8 sin
(µ0

2
X
)

cos
(µ0

2
X
)

sin
(ν0

2
Y
)

cos
(ν0

2
Y
)
τ3.

(5.2.42)

Then, we evaluate this expression for small X, Y , which allows us to approximate to
first order the sine-functions by their argument and the cosine-functions by 1. This
gives

hxhyh
−1
x h−1

y − hyhxh−1
y h−1

x ≈ µ0ν0XY
2τ1 − µ2

0ν
2
0X

2Y τ2 + 2µ0ν0XY τ3. (5.2.43)

• Secondly, we use an identity that is in analogy to the Thiemann identities we introduced
in section 2.2.2:

hθ(I){h−1
θ (I), V (I)} = −κ

′γ

2
τ3k0

∫
I
Ex
∫
I
Ey

V (I)
≈ −κ

′γ

2
ετ3k0

ExEy

√
E

(θ), (5.2.44)

where θ is a point in the interval I. The first step of this identity can be shown by
computing the functional derivatives of h−1

θ with respect to A and of V with respect to
E . In the second step, we approximated the fluxes and the volume by∫

I

Ex ≈ εEx(θ),

∫
I

Ey ≈ εEy(θ),

V (I) =

√
|E(θ)|

∣∣∣∣∫
I

Ex

∣∣∣∣ ∣∣∣∣∫
I

Ey

∣∣∣∣ ≈√|E(θ)||εEx(θ)||εEy(θ)| = ε
√
|E(θ)|.

(5.2.45)

• Thirdly, we multiply (5.2.43) and (5.2.44) and take the SU(2)-trace of the resulting
expression. Finally, using (5.2.39) when computing the trace, we arrive at (5.2.41).

Similarly, we can proceed for the other two terms of the Euclidean constraint and end up
with the following identities, see also [57] and [58,59]:

Tr
{[
hyhθh

−1
y,εh

−1
θ − hθhy,εh

−1
θ h−1

y

]
hx{h−1

x , V }
}
≈ κ′γ

2
k0µ0ν0

εAEY Ey

√
E

,

Tr
{[
hθhx,εh

−1
θ h−1

x − hxhθh−1
x,εh

−1
θ

]
hy{h−1

y , V }
}
≈ κ′γ

2
k0µ0ν0

εAEXEx

√
E

,

(5.2.46)

where hx,ε := hx(θ + ε) and similarly for hy,ε and the inverse of these holonomies. We also
state the other Thiemann identities necessary for deriving (5.2.46) as we will need them later
on for the Lorentzian part:

hx(θ){h−1
x (θ), V (I)} ≈ −κ

′γ

2
µ0τ1

EyE√
E

(θ),

hy(θ){h−1
y (θ), V (I)} ≈ −κ

′γ

2
ν0τ2

ExE√
E

(θ).

(5.2.47)



5.2 Algebraic loop quantization of the polarized three-torus Gowdy model 71

We can now rewrite the Euclidean constraint (5.1.30) using the identities (5.2.41) and
(5.2.46). In particular, we can directly state the operator of the Euclidean constraint, as the
identities (5.2.41) and (5.2.46) all contain quantities that are well defined operators on the
kinematical Hilbert space, namely the volume and the SU(2)-holonomies. We also need to
replace Poisson brackets by commutators via {., .} → 1

i~ [., .] and finally arrive at the operator

Ĥeucl = i
2

κ′γ3µ0ν0l2P

N∑
i=1

Tr
{[
ĥxĥyĥ

−1
x ĥ−1

y − ĥyĥxĥ−1
y ĥ−1

x

]
ĥθ[ĥ

−1
θ , V̂i]+

+
[
ĥyĥθĥ

−1
y,ε ĥ

−1
θ − ĥθĥy,εĥ

−1
θ ĥ−1

y

]
ĥx[ĥ

−1
x , V̂i]+

+
[
ĥθĥx,εĥ

−1
θ ĥ−1

x − ĥxĥθĥ−1
x,εĥ

−1
θ

]
ĥy[ĥ

−1
y , V̂i]

}
),

(5.2.48)

where we again suppressed the θ- and Ii-dependence of the holonomies and the volume.

In the following, we choose the arbitrary numbers k0 ∈ Z, µ0, ν0 ∈ R appearing in the
previous formulas to be 1, which lightens our notation a little bit more. This choice will
become clearer when seeing the final form of the Hamiltonian constraint operator. We will
discuss the choice k0 = µ0 = ν0 = 1 in more detail at the end of the section.

We can lift (5.2.48) directly to the algebraic framework: The SU(2)-holonomies can be
expressed in terms of the holonomies in (5.2.5) and (5.2.6) which themselves have well defined
equivalents in AQG, cf. (5.2.18)-(5.2.20). Also, the volume operator can be defined in AQG,
cf. (5.2.33).

We will, however, not use the AQG version of (5.2.48), as we want to calculate the action
of the Euclidean constraint operator for which there exists a more convenient form. To derive
this form, we perform the following steps:

• For the holonomies in square brackets, we use the expansion (5.2.42), which is also true
at the operator level.

• For the remaining part, we write out the commutator and use the definition of the
SU(2)-holonomy hθ in (5.2.36) to arrive at

ĥθ[ĥ
−1
θ , V̂i] =V̂i − cos

(
1

2
Aei
)
V̂i cos

(
1

2
Aei
)
− sin

(
1

2
Aei
)
V̂i sin

(
1

2
Aei
)

+

+ 2τ3

[
cos

(
1

2
Aei
)
V̂i sin

(
1

2
Aei
)
− sin

(
1

2
Aei
)
V̂i cos

(
1

2
Aei
)]

.

(5.2.49)

Note that the appearing sines and cosines actually are multiplication operators, i.e.,
they can be expressed as complex exponentials, which are exactly the holonomies in
(5.2.18)-(5.2.20).

• Multiplying (5.2.49) with the expansion (5.2.42) and evaluating the trace using the
identities for τi in (5.2.39), yields the following expression for the first term of (5.2.48):

Tr
{[
ĥxĥyĥ

−1
x ĥ−1

y − ĥyĥxĥ−1
y ĥ−1

x

]
ĥθ[ĥ

−1
θ , V̂i]

}
= −2 sin (Xi) sin (Yi)×

×
[
cos

(
1

2
Aei
)
V̂i sin

(
1

2
Aei
)
− sin

(
1

2
Aei
)
V̂i cos

(
1

2
Aei
)]

.
(5.2.50)
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It is now convenient to introduce the operator

Ôθ
1,i := cos

(
1

2
Aei
)
V̂i sin

(
1

2
Aei
)
− sin

(
1

2
Aei
)
V̂i cos

(
1

2
Aei
)
, (5.2.51)

which allows us to write (5.2.50) as

−2 sin (Xi) sin (Yi)Ô
θ
1,i. (5.2.52)

Similarly to (5.2.52), we can rewrite the remaining terms of (5.2.48):

Tr
{[
ĥyĥθĥ

−1
y,ε ĥ

−1
θ − ĥθĥy,εĥ

−1
θ ĥ−1

y

]
ĥx[ĥ

−1
x , V̂i]

}
= −4 sin

(
1

2
Yi+1

)
cos

(
1

2
Yi

)
sin (Aei)Ôx

1,i,

Tr
{[
ĥθĥx,εĥ

−1
θ ĥ−1

x − ĥxĥθĥ−1
x,εĥ

−1
θ

]
ĥy[ĥ

−1
y , V̂i]

}
= −4 sin

(
1

2
Xi+1

)
cos

(
1

2
Xi

)
sin (Aei)Ô

y
1,i,

(5.2.53)

where we introduced the following family of operators:

Ôx
α,i = cos

(
1

2
Xi

)
V̂ α
i sin

(
1

2
Xi

)
− sin

(
1

2
Xi

)
V̂ α
i cos

(
1

2
Xi

)
, (5.2.54)

Ôy
α,i = cos

(
1

2
Yi

)
V̂ α
i sin

(
1

2
Yi

)
− sin

(
1

2
Yi

)
V̂ α
i cos

(
1

2
Yi

)
, (5.2.55)

Ôθ
α,i = cos

(
1

2
Aei
)
V̂ α
i sin

(
1

2
Aei
)
− sin

(
1

2
Aei
)
V̂ α
i cos

(
1

2
Aei
)
, (5.2.56)

with α a real number which is 1 for (5.2.52) and (5.2.53). We keep α arbitrary in (5.2.54)-
(5.2.56) as we need this later on for the Lorentzian part, see (5.2.64).

Finally, using (5.2.52) and (5.2.53), we can rewrite (5.2.48) in AQG as

Ĥeucl =
∑
i∈V (α)

Ĥeucl,i = −i 4

κ′l3Pγ
3

[
sin (Xi) sin (Yi) Ô

θ
1,i + 2 sin

(
1

2
Yi+1

)
cos

(
1

2
Yi

)
sin (Aei) Ôx

1,i

+2 sin

(
1

2
Xi+1

)
cos

(
1

2
Xi

)
sin (Aei) Ô

y
1,i

]
.

(5.2.57)

The advantage of this form is that we can derive the action of the Euclidean part on an
abstract Gowdy state much easier. This finishes our discussion of the quantization of the
Euclidean constraint operator in AQG.

Quantization of the Lorentzian part: We consider exemplarily the first term of the
Lorentzian part (5.1.32), which we can rewrite as a Riemann sum in analogy to (5.2.35):

H
(1)
lor −

1

κ′

∫
S1

dθ

[
(∂θE)2

4
√
E

]
≈ − 1

4κ′

N∑
i=1

[
(ε∂θE(θi))

2√
ε2E(θi)

]
= − 1

4κ′

N∑
i=1

[
(E(θi + ε)− E(θi))

2

V (Ii)

]
,

(5.2.58)
where in the second step, we used E(θi + ε) ≈ E(θi) + ε∂θE(θi) and (5.2.45) to introduce the
volume V (Ii). In (5.2.58), we can quantize the flux E using (5.2.13), but need to come up with
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a strategy to replace the inverse volume: Following [57], we can use the Thiemann identities
(5.2.44) and (5.2.47) to show the following classical identity:

Z(I) := εabcTr
[
ha{h−1

a , V (I)}hb{h−1
b , V (I)}hc{h−1

c , V (I)}
]

=
3

2

(
κ′γ

2

)3

µ0ν0V (I). (5.2.59)

Using this and h{h−1, V α} = αV α−1h{h−1, V }, with α ∈ R arbitrary at this point, we can
show another classical identity:

Zα(I) := εabcTr
[
ha{h−1

a , (V (I))α}hb{h−1
b , (V (I))α}hc{h−1

c , (V (I))α}
]

=

=
3

2

(
κ′γ

2

)3

µ0ν0α
3 (V (I))3α−2 = α3 (V (I))3α−3 Z(I).

(5.2.60)

This identity allows us to replace the inverse volume in (5.2.58) by inserting a one of the
following form:

(1)l =

(
16

3(κ′γ)3µ0ν0

· Z(I)

V (I)

)l
=

(
16

3(κ′γ)3µ0ν0

)l
·
(

Zα(I)

α3(V (I))3α−2

)l
, (5.2.61)

where l ∈ R is arbitrary. In the first step, we used (5.2.59) and in the second step we used
(5.2.60) to express Z(I) by Zα(I) and powers of the volume. To cancel the inverse volume in

(5.2.58), we impose (3α− 2) · l !
= −1, which is equivalent to the condition

α
!

=
2

3
− 1

3l
. (5.2.62)

This way, we have introduced a quantization ambiguity. In summary, we can rewrite the first
term of the Lorentzian part in (5.2.58) as

− 1

4κ′

(
16

3(κ′γα3)3

)l N∑
i=1

[
(E(θi + ε)− E(θi))

2 (Zα(Ii))
l

]
. (5.2.63)

We see from this expression that the inverse volume no longer occurs, but is replaced by the
quantity (Zα(Ii))

l, which motivates the introduction of the classical identities (5.2.59) and
(5.2.60). All operators occurring in (5.2.63) can be quantized using the flux and holonomy
operators as also the introduced quantities Zα(Ii) contain only the holonomies and the volume,
cf. (5.2.60). We directly go over to the AQG framework, for which we identify in (5.2.63)
θi + ε with the next vertex and denote the operators corresponding to Zα(Ii) as Ẑα,i. We can
also express these operators in terms of the family of operators in (5.2.56), as was introduced
in [57] for LQG:

Ẑα,i := εabcTr
(
ĥa[ĥ

−1
a , V̂i]ĥb[ĥ

−1
b , V̂i]ĥc[ĥ

−1
c , V̂i]

)
= −12Ôx

α,iÔ
y
α,iÔ

θ
α,i (5.2.64)

To prove this identity, we expand the operators ĥa using (5.2.36)-(5.2.38) and evaluate the
trace using (5.2.39). Furthermore, we use that diagonal operators commute, which is the case
for the family of operators in (5.2.56), as we show in section 6.1.1. Finally, we can write down
the operator corresponding to the first term of the Lorentzian part, which we denote by

Ĥ
(1)

lor =
N∑
i=1

Ĥ
(1)

lor,i := − 1

4κ′

(
− i
~

)3l(
16

3(κ′γ)3α3

)l (
Êi+1 − Êi

)(
Ẑα,i

)l
. (5.2.65)
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Similarly, we can proceed for the two remaining terms of the Lorentzian part, yielding the
Lorentzian constraint operator

Ĥlor =
N∑
i=1

[
Ĥ

(1)

lor,i + Ĥ
(2)

lor,i + Ĥ
(3)

lor,i

]
, (5.2.66)

with Ĥ
(1)

lor,i defined in (5.2.65) and the other two parts given by

Ĥ
(2)

lor,i =
1

4κ′

(
− i
~

)3l(
16

3(κ′γ)3α3

)l (
Êi
)4 [
F̂x,eiF̂y,ei+1

− F̂y,eiF̂x,ei+1

]2 (
Ẑβ,i

)l
(5.2.67)

and

Ĥ
(3)

lor,i =
1

κ′

(
− i
~

)3l(
16

3(κ′γ)3α3

)l [
Êi+1

(
Êi+2 − Êi+1

)(
Ẑα,i+1

)l
− Êi

(
Êi+1 − Êi

)(
Ẑα,i

)l]
.

(5.2.68)

Note that for Ĥ
(2)

lor,i, we deviate from the quantization strategy presented in [57], but proceed
as was done in [58,59]: Looking at the classical expression in (5.1.33), we see that the inverse
of Ex and Ey appears in the factor

∂θE
x

Ex
− ∂θE

y

Ey
. (5.2.69)

To quantize this expression, we may introduce inverse fluxes as done on page 17 of [57], or
just rewrite the inverse of Ex and Ey as

1

Ex
=

EyE
EyEEx

=
EyE

(
√
E)2

and
1

Ey
=

ExE
ExEEy

=
ExE

(
√
E)2

. (5.2.70)

This way, we end up with a different power of the inverse volume, which we can eliminate
by inserting a one of the form (5.2.61) giving us a parameter β, which is different from α

and related to l via β = 2
3
− 5

3l
. Then, the inverse volume in H

(2)
lor can be substituted by the

quantity Zβ(I), which is defined just like Zα(I) in (5.2.60) with α replaced by β. We finally
arrive at the operator (5.2.67).

Before we continue in the next chapter with a discussion of the Gauß constraint, we want
to make two remarks:

• Firstly, we want to comment on the choice k0 = µ0 = ν0 = 1 in the Euclidean and
Lorentzian operators (5.2.57), (5.2.65)-(5.2.68). The main motivation for this is that we
want to simplify our notation as the action of the Hamiltonian constraint becomes quite
complicated, see section 6.1. Note, however, that in general, k0 ∈ Z and µ0, ν0 ∈ R
could be chosen arbitrarily. We may perceive this freedom of choice in analogy to
the full theory: When acting with the Hamiltonian constraint of the full theory on
a spin network function, the loop holonomy changes the graph underlying the spin
network function. The representation of this loop holonomy can in principle be chosen
arbitrarily, in particular one chooses it to be the spin 1/2 representation, see [27, 143]
for a discussion. This choice is motivated by the results of [144], which indicate that
higher spin representations lead to spurious solutions for three spacetime dimensions
which hence presumably also holds in four dimensions. Therefore, this ambiguity seems
to be fixed in the full theory, while for the Gowdy model and similarly for the LQC
models, we do not have such guidance to fix k0 ∈ Z and µ0, ν0 ∈ R .
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• Secondly, we want to discuss the regularization chosen in [57] and its implications. This
will emphasize the simplifications our transition from LQG to AQG provides, especially
for calculating the action of the Hamiltonian constraint operator Ĥ and investigating
the Schrödinger equation (5.2.4). In [57], the regularization is chosen such that each
interval Ii of the partition of S1 with length ε contains at most one vertex 11. This has
two main consequences:

– On the one hand, when calculating the action of Ĥ, for example the operator

Ĥ
(3)

lor,i stated in (5.2.68) acts differently in LQG and AQG. The LQG version of
(5.2.68) is obtained by replacing all operators defined for vertices and edges of
the algebraic graph α by operators defined for points θi ∈ Ii and intervals Ii of
the chosen regularization of the embedded graph γ. When calculating the action,
one considers the infinite refinement limit, i.e., one takes the limit ε → 0 which
sends the number of intervals Ii to infinity. The regularization of [57] with at most
one vertex contained in each regularization interval now implies that if a vertex
is contained in the interval Ii, then there will be no vertex in the neighboring
intervals. We now have that fluxes act trivially on intervals that contain no vertex,
cf. (5.2.16) and (5.2.17). In the LQG version of (5.2.68), the operators Ẑα,i and

Ẑα,i+1 both contain fluxes and hence the former operator acts non-trivially, while
the latter operator acts trivially as it is defined for the interval Ii+1 where no vertex
is contained in the infinite refinement limit. This, however, is not the case in AQG,
where we have an abstract graph and do not perform any limit ε → 0 and hence
both operators Ẑα,i and Ẑα,i+1 in (5.2.68) contribute non-trivially. This change of
the action has to be considered but does not cause any trouble.

– On the other hand, the Hamiltonian constraint operator Ĥ will act graph-changing
in LQG, see [57], which results in a more involved action compared to AQG. To
see this, we consider the graph-changing part of the LQG Hamiltonian constraint,
which is called ĤK in [57]. This operator can be derived from the AQG Euclidean
operator (5.2.57) by replacing all operators defined at vertices and edges by the
same operators defined at points θi ∈ Ii and intervals Ii of the regularization.
Hence, the LQG operator will contain point holonomies defined for a point θi ∈ Ii,
which is in general not a vertex, as well as U(1) holonomies defined for intervals
Ii, which do not coincide with the edges of the graph. Hence, when calculating the
action of this operator on a Gowdy state |γ, k, µ, ν〉, new vertices and edges are
created and hence the underlying graph γ is changed. In AQG, however, the points
θi and intervals Ii for which the holonomies are defined, respectively, coincide with
vertices and edges of the abstract graph α, cf. (5.2.57), and thus the AQG operator
acts only label-changing but graph-preserving. We will present the action of the
AQG operator in section 6.1.1. The graph-changing action of the LQG operator
has in particular consequences when we later want to solve the time-independent
Schrödinger equation

Ĥphys ϕ = E ϕ, (5.2.71)

where Ĥphys is a symmetric combination of the Hamiltonian constraint operator,
see section 6, and for ϕ we will choose as an ansatz a linear combination of Gowdy
states with coefficients labeled by the representation labels ki, µi, νi, i = 1, ..., N
for N the number of vertices of the embedded graph γ. Furthermore, E plays the

11We may also choose different regularizations, see section V of [57] for a discussion.
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role of the energy. As Ĥphys acts graph-changing, the linear combination ϕ has to
include a sum over all graphs γ, which is an uncountably infinite sum and hence
results in a non-normalizable state. We may handle this by considering the solution
states as distributional in analogy to the discussion in section 6.3.2 below (6.3.46).
The problem that remains, however, is that the LQG Hamiltonian constraint acts
in a much more complicated way as in AQG. This is undesirable especially when
we later on want to derive difference equations from the action of Ĥphys, see section
6.3.1.

5.2.5 The Gauß constraint

In this section, we want to discuss the solution of the Gauß constraint at the quantum level.
So far, we solved the Gauß constraint already at the classical level and thus, the configuration
variable η does not appear in the Gowdy states and the constraints and neither does the
canonically conjugate momentum P η.

Now, we want to discuss the implications if we do not eliminate the canonical pair (η, P η)
at the classical level. In this case, we introduce a point holonomy for the angular variable
η ∈ R/Z defined by [57]

hλv(η) = exp (iλη(v)), (5.2.72)

with λ ∈ Z and hence hλv(η) ∈ U(1). As this holonomy is defined at each vertex and hence
embedding independent, the generalization to AQG is straightforward, giving the AQG holon-
omy we may denote by hλi (η) in analogy to (5.2.19) and (5.2.20). The holonomy corresponding
to η also has to be included in the definition of the Gowdy states |γ, k, µ, ν〉 in (5.2.10) and
abstract Gowdy states |k, µ, ν〉 in (5.2.21), resulting in the states |γ, k, µ, ν, λ〉 and |k, µ, ν, λ〉,
respectively. The action of the LQG or rather AQG holonomies hλv(η) and hλi (η) can be
calculated in analogy to (5.2.11) and (5.2.12) for LQG and (5.2.18)-(5.2.20) for AQG. We
also need to define the flux conjugate to η, which is in LQG given by the smeared quantity
Fη,Ii :=

∫
Ii
P η, which is implemented as a derivative operator analogous to (5.2.13) and acts

as [57]

F̂η,Ii |γ, k, µ, ν, λ〉 = γl2P
∑

v∈V (γ)∩I

λv |γ, k, µ, ν, λ〉 . (5.2.73)

To define the AQG equivalent of this flux, we proceed just as for the AQG fluxes F̂x,ei and

F̂y,ei in (5.2.26): We define the quantity F̂η,ei , which corresponds to
∫
ei
P̂ η when choosing an

embedding. The AQG analogue to (5.2.73) is then given by

F̂η,ei |k, µ, ν, λ〉 = γl2Pλi |k, µ, ν, λ〉 . (5.2.74)

Another consequence of keeping (η, P η) is that for the Euclidean part (5.2.57), we have to do
the replacement

sin (Aei)→ sin [(Aei)−∆i], (5.2.75)

where we introduced the abbreviation ∆i := ηi − ηi+1 := η(vi)− η(vi+1) to stay close to [57].

Now, we consider the quantization of the Gauß constraint in LQG following [57]. First,
we regularize the Gauß constraint G =

∫
S1 dθ (P η + ∂θE) by

G ≈
N∑
i=1

[Fη,Ii + E(θi + ε)− E(θi)] . (5.2.76)
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This can be quantized using (5.2.13) for E(θi) and E(θi+ε) and the flux operator F̂η,Ii :=
∫̂
Ii
P η,

yielding the constraint operator

Ĝ ≈
N∑
i=1

[
F̂η,Ii + Ê(θi + ε)− Ê(θi)

]
. (5.2.77)

To solve the LQG Gauß constraint, we have to calculate its action on a Gowdy state
|γ, k, µ, ν〉. For this, we have to consider the infinite refinement limit. If a vertex is contained
in the interval Ii, this will not be the case for the neighboring intervals. In particular, θi + ε
and θi split up the same edge and hence, suppressing prefactors, E(θi + ε) results in ke+(v)/2
and E(θi + ε) in ke−(v)/2. Combining this with the action (5.2.73) gives the following action
of Ĝ [57]:

Ĝ |γ, k, µ, ν, λ〉 = γl2P
∑
v∈V (γ)

[
λv +

ke+(v)− ke−(v)

2

]
|γ, k, µ, ν, λ〉 (5.2.78)

In [57], the authors suggest to annihilate the Gauß constraint in this LQG scenario by imposing
at each vertex the condition

λv = −ke
+(v)− ke−(v)

2
. (5.2.79)

An alternative to this vertex-wise solution would be to annihilate the sum over all vertices in
(5.2.78). For this, we recognize that∑

v∈V (γ)

ke+(v)− ke−(v)

2
= 0 (5.2.80)

due to the periodic boundary conditions on the labels we have for the Gowdy model, i.e., we
identify the first and the (n+ 1)th vertex for n = |V (γ)|. Hence, we can deduce the condition∑

v∈V (γ)

[
λv +

ke+(v)− ke−(v)

2

]
=
∑
v∈V (γ)

λv
!

= 0. (5.2.81)

We now want to quantize the Gauß constraint in the AQG-framework. For this, we
identify in (5.2.77) θi with the vertex i and θi + ε with the vertex i+ 1 of the abstract graph
α. Furthermore, we use the AQG operator (5.2.25) for E and the AQG equivalent of F̂η,Ii
given by F̂η,ei . This way, we arrive at the AQG Gauß constraint operator:

Ĝ ≈
N∑
i=1

[
F̂η,ei + Êi+1 − Êi

]
. (5.2.82)

To solve the AQG Gauß constraint, we consider its action which we obtain using (5.2.74)
and (5.2.25):

Ĝ |k, µ, ν, λ〉 = γl2P

N∑
i=1

[
λi +

ki+1 − ki
4

− ki + ki−1

4

]
|k, µ, ν, λ〉 =

[
λi +

ki+1 − ki−1

4

]
|k, µ, ν, λ〉 .

(5.2.83)
From this, we can deduce the condition

λi = −ki+1 − ki−1

4
, (5.2.84)
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which annihilates the Gauß constraint vertex-wise. The analogue of (5.2.81) in AQG is given
by

N∑
i=1

λi = 0. (5.2.85)

In (5.2.79) and (5.2.84), the impact of the differences in the action of the fluxes in AQG and
LQG manifests.

Although the conditions (5.2.79) and (5.2.81) for annihilating the Gauß constrain opera-
tor in LQG and (5.2.84),(5.2.85) in AQG are not complicated, we solve the Gauß constraint
already at the classical level. One reason is that η is pure gauge, as we discussed in the
context of (5.1.28), but the main reason is that due to (5.2.75) holonomies with respect to η
are contained in the Euclidean part of the Hamiltonian constraint operator and hence, if we
act with this operator on an abstract Gowdy state |k, µ, ν〉, the η degrees of freedom of the
Gowdy state will change. This will complicate the action and in particular, we later want
to derive difference equations from the Euclidean part in section 6.3 and the inclusion of η
degrees of freedom will complicate our analysis. Hence, we solve the Gauß constraint at the
classical level and work in the phase space reduced with respect to the Gauß constraint, where
the canonical pair (η, P η) can be dropped.

This ends our discussion of the algebraic loop quantization of the three-torus Gowdy model
and we will now proceed with the discussion of the Schrödinger equation in the next section.
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6 The Schrödinger equation of the polarized three-torus

Gowdy model

In the following sections, we investigate the Schrödinger equation of the polarized three-torus
Gowdy model.

First, we want to state the theoretical framework on which the subsequent analysis is
based. To write down the Schrödinger equation of the Gowdy model, we use Gaussian dust
as a reference field at the classical level to obtain a physical Hamiltonian, see [47,48] and sec-
tion 4. This classical physical Hamiltonian is equivalent to the Hamiltonian constraint, which
we can loop quantize using [57]. As presented in section 5.2, we also apply the techniques of
algebraic quantum gravity (AQG) developed in [49–52] to [57]. This way, we can remove the
graph dependence in the Gowdy states, which allows to perform a semiclassical analysis of the
Gowdy model. This, however, will not be done in this thesis. In particular, using the AQG
framework, we obtain a graph-preserving action of the Hamiltonian constraint. This was in-
vestigated before in two master theses: In [58], the results of [57] and the AQG framework were
applied to the physical Hamiltonian of the Brown-Kuchař dust model [145]. In [59], the same
techniques were applied to construct the Master constraint operator of the Gowdy model.
Combining [57–59] and using Gaussian dust as a reference field, we arrive at the Schrödinger
equation of the Gowdy model, whose constituents we will explain in the following paragraphs.

The time dependent Schrödinger equation reads as

i~∂τΨ(τ) = ĤphysΨ(τ), (6.0.1)

with the state Ψ(τ) depending on the physical time τ and its time evolution with respect to τ
being generated by the physical Hamiltonian Ĥphys. We will specify the explicit form of Ψ(τ)

and Ĥphys in the following two paragraphs.

For the physical Hamiltonian Ĥphys, we could choose the quantization of (5.2.1), which

is equivalent to the geometric part of the Hamiltonian constraint Ĥ we discussed in section
5.2.4. The Hamiltonian constraint, however, is not self-adjoint and not even symmetric as
we will see in section 6.1.2. Since we want the physical Hamiltonian operator to be at least
symmetric, we will use the following symmetric combination of Ĥ:

Ĥphys :=
1

2

(
Ĥ + Ĥ

†)
=

1

2

(
Ĥeucl + Ĥ

†
eucl + Ĥlor + Ĥ

†
lor

)
=

1

2

(
Ĥeucl + Ĥ

†
eucl

)
+ Ĥlor. (6.0.2)

In the last step, we used Ĥlor = Ĥ
†
lor and Ĥeucl 6= Ĥ

†
eucl, which we will show in section 6.1.2

and 6.1.3, respectively. This way, we have constructed a symmetric physical Hamiltonian.

For the state Ψ(τ), we separate the time dependence as Ψ(τ) = χ(τ) · ϕ just like in
standard quantum mechanics. χ(τ) only depends on the physical time τ and not on any k-,
µ- or ν-label. For ϕ, we consider the following formal infinite linear combination of abstract
Gowdy states as an ansatz:

ϕ :=
∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν |k, µ, ν〉 , (6.0.3)

whereN denotes the number of vertices and k, µ, ν are multi-labels defined by k := (k1, ..., kN),
µ := (µ1, ..., µN), and ν := (ν1, ..., νN). Furthermore, we introduced the arbitrary coefficients

Ck,µ,ν := Ck1,...,kN ,µ1,...,µN ,ν1,...,νN (6.0.4)
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that depend on all k-, µ- and ν-labels. Moreover, the µ- and ν-labels take values in the sets
m := m1 × ... × mN and n := n1 × ... × nN , respectively, which are infinite subsets of RN

defined by the sets

mi := {µ̃i + p | p ∈ Z} and ni := {ν̃i + p | p ∈ Z} ∀i ∈ {1, ..., N}, (6.0.5)

where µ̃i and ν̃i are arbitrary real numbers defined for each i. We now want to justify the
definition (6.0.5), which will also explain our formal ansatz in (6.0.3). For this, we first describe
how a general state in the Hilbert space corresponding to the point holonomies is defined. We
restrict to a vertex vi where we have two point holonomies exp ( i

2
µiXi) and exp ( i

2
νiYi). As

discussed below (5.2.6), these point holonomies can be perceived as irreducible representations
of the Bohr compactification RBohr, labeled by µi ∈ R and νi ∈ R, respectively. Focusing on
the X point holonomy, the Hilbert space at the vertex vi is given by HXi

vi
:= L2(RBohr, dµBohr),

which contains functions f over RBohr that are square integrable with respect to the Haar
measure dµBohr of RBohr defined by µBohr(f) := lim

C→∞
1

2C

∫ +C

−C dxf(x). Then, the inner product

on HXi
vi

is defined by

< f, g >:= lim
C→∞

1

2C

∫ +C

−C
dxf(x)∗g(x). (6.0.6)

A general basis state of HXi
vi

is given by |µi〉 := exp ( i
2
µix) and the inner product for two

different basis states |µi〉 and |µ′i〉 results in

〈µi, µ′i〉 := lim
C→∞

1

2C

∫ +C

−C
dx e

i
2

(µ′i−µi) = δµ,µ′ , (6.0.7)

where δµ,µ′ denotes the Kronecker delta. Hence, we have the completeness relation∑
µi∈mi

|µi〉 〈µi| = 1HXiv
, (6.0.8)

with µi taking values in a finite subset mi of R, which we may for example choose as mi =
{−1.2,

√
2, π}. In particular, an arbitrary state inHXi

vi
is given by the finite linear combination

φ =
∑
µi∈mi

cµi |µi〉 , (6.0.9)

where cµi denotes an arbitrary coefficient and mi is a finite subset of R. The latter implies
that the state φ has finite norm and hence is an element of HXi

v . However, our strategy to
solve the Schrödinger equation, which we explain in detail in section 6.3, demands to consider
formal infinite linear combinations of the type of (6.0.3), where besides the k-labels, with
k ∈ ZN , also the µ- and ν-labels take values in infinite sets defined by (6.0.5). To justify this,
we consider a finite linear combination of the type

ϕ :=
∑
k∈KN

∑
µ∈m′

∑
ν∈n′

Ck,µ,ν |k, µ, ν〉 , (6.0.10)

where K is a finite subset of Z and m′, n′ are finite subsets of RN , e.g., n′ = m′ = u×...×u with
u := {−1.2,

√
2, π}. We will show, however, that the physical Hamiltonian maps out of the

subspace spanned by states of the form of (6.0.10). This is disadvantageous for our strategy
to construct special solutions of the time-independent Schrödinger equation Ĥphysϕ = Eϕ,
where E plays the role of the energy. In particular, our strategy includes to derive difference
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equations for the coefficients Ck,µ,ν from the action of the Euclidean part. This action will
give us a linear combination of states with shifted labels, see (6.1.8). We then transform the
shifts in the states to the coefficients and the ansatz (6.0.10) prohibits to derive difference
equations and hence we choose the infinite linear combination (6.0.3). We now want to show
that the physical Hamiltonian does not leave the states (6.0.10) invariant. This is caused by
the Euclidean part, while the Lorentzian part acts diagonally as we will see in section 6.1.1
and hence does preserve the subspace spanned by the states (6.0.10). For the Euclidean part,
we consider exemplarily the first term, explicitly given in (5.2.57) for some arbitrary vertex
i. This term contains the operator Ôθ

1,i, which acts diagonally, see section 6.1.1, and thus will
not map out of the subspace spanned by states of the form of (6.0.10). This, however, will
happen for the operators sin (Yi) and sin (Xi) in the first term of (5.2.57). To see this, we
rewrite these operators in terms of holonomies:

sin (Yi) =
1

2i

(
ei
νi
2
·2Yi − e−i

νi
2
·2Yi
)
, sin (Xi) =

1

2i

(
ei
µi
2
·2Xi − e−i

µi
2
·2Xi
)
. (6.0.11)

Now, we have for our ansatz in (6.0.10) that νi ∈ u = {−1.2,
√

2, π} and hence there occurs
a state |k, µ, ν〉 in the linear combination of states in (6.0.10) with νi =

√
2, while the other

k-, µ- and ν-labels take some value in K and u, respectively. If we act on this state with
the holonomy exp (iνi/2 · 2Yi) contained in the Euclidean constraint operator via (6.0.11), the
resulting state will have the label νi =

√
2 + 2 which is not contained in u = {−1.2,

√
2, π}.

Accordingly, this state does not occur in the linear combination in (6.0.10). The same ar-
gument holds for any holonomy contained in the Euclidean constraint operator in (5.2.57).
Consequently, the Euclidean constraint operator and therefore the physical Hamiltonian maps
out of the subspace spanned by states of the form of (6.0.10). We can avoid this problem
for the k-labels by choosing K as the whole set of positive and negative integers Z. For the
µ- and ν-labels we have to proceed differently: Considering the label νi, we can choose an
arbitrary value ν̃i and construct the set ni in which νi takes values as ni := {ν̃i + p | p ∈ Z}.
This way, the action of the holonomy exp (iνi/2 · 2Yi) does not map out of the label set ni.
Similarly, we can define all other intervals mi, ni and we recover the definitions for the µ- and
ν-label sets in (6.0.5). Finally, we arrive at the formal infinite linear combination in (6.0.3).

Now, we rewrite the time-dependent Schrödinger equation in (6.0.1) to arrive at the time-
independent Schrödinger equation. First, we use the separation of the time dependence
Ψ(τ) = χ(τ) · ϕ to rewrite (6.0.1) as

i~(∂τχ(τ))ϕ = (Ĥphysϕ)χ⇔ i~
∂τχ(τ)

χ
=

Ĥphysϕ

ϕ
. (6.0.12)

Note that the assumptions χ 6= 0 and ϕ 6= 0 enter here. Both sides of the second equation of
(6.0.12) can only be the same if they equal the same constant. We denote this constant as E
because it plays the role of the energy. Then, we arrive at the following two equations:

∂τχ(τ) = − i
~
Eχ(τ), (6.0.13)

Ĥphysϕ = Eϕ. (6.0.14)

The first equation is solved by

χ(τ) = χ(0) exp

(
− i
~
Eτ

)
. (6.0.15)
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Thus, we have, in analogy to standard quantum mechanics, reduced the problem of solving
the time-dependent Schrödinger equation (6.0.1) to solving the time-independent Schrödinger

equation (6.0.14). To investigate (6.0.14), we first have to specify the action of Ĥeucl, Ĥ
†
eucl

and Ĥlor = Ĥ
†
lor, which we will do in the following chapter 6.1.

6.1 The physical Hamiltonian

In the following sections, we calculate the action of the physical Hamiltonian Ĥphys, which is

given by the action of the operators Ĥeucl and Ĥlor as well as their adjoint counterparts Ĥ
†
eucl

and Ĥ
†
lor.

6.1.1 Action of the Euclidean and Lorentzian part

In this chapter, we explain the action of the Euclidean constraint operator Ĥeucl and the
Lorentzian constraint operator Ĥlor. The action of these operators was first stated in [57] and
extended to the AQG framework in [58,59].

We start with the action of the Euclidean constraint operator Ĥeucl. This operator is the
sum of three terms, cf. (5.2.57). In all those terms, the operators Ôa

α,i, with a ∈ {x, y, θ},
act first. These operators act diagonally, which we show by expressing the sine and cosine
operators occurring in the explicit form of Ôa

α,i in (5.2.56) by complex exponentials just as we

did in (6.0.11). Then, we can rewrite for example Ôx
α,i as

Ôx
α,i = cos (

1

2
Xi)V̂

α
i sin (

1

2
Xi)− sin (

1

2
Xi)V̂

α
i cos (

1

2
Xi) =

1

2i

[
e−

i
2
XiV̂ α

i e
i
2
Xi − e

i
2
XiV̂ α

i e
− i

2
Xi
]
.

(6.1.1)
In section 5.2, we introduced the action of the volume operator and the point holonomies
e±

i
2
Xi on a basis state |k, µ, ν〉. We use this to specify the action of Ôx

α,i on |k, µ, ν〉:

Ôx
α,i |k, µ, ν〉 = o ·

(
|µi + 1|

α
2 − |µi − 1|

α
2

)
|νi|

α
2 |ki + ki−1|

α
2 |k, µ, ν〉 , (6.1.2)

where we collected all constant prefactors in the constant

o :=
1

2i

[
1√
2

(
γl2P
2

) 3
2

]α
. (6.1.3)

Similarly, we can compute the action of Ôy
α,i and Ôθ

α,i:

Ôy
α,i |k, µ, ν〉 = o ·

(
|νi + 1|

α
2 − |νi − 1|

α
2

)
|µi|

α
2 |ki + ki−1|

α
2 |k, µ, ν〉 , (6.1.4)

Ôθ
α,i |k, µ, ν〉 = o ·

(
|ki + ki−1 + 1|

α
2 − |ki + ki−1 − 1|

α
2

)
|µi|

α
2 |νi|

α
2 |k, µ, ν〉 . (6.1.5)

After the operators Ôa
α,i have acted as part of the Euclidean constraint operator, certain sine

and cosine operators act. Note that these operators commute as they can be expressed by
complex exponentials or rather holonomies which themselves commute. To state the action of
the sine and cosine operators, consider for example the first term of the Euclidean constraint
operator, where the operators sin (Xi) and sin (Yi) occur, cf. (5.2.57). We obtain the following
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action of these operators:

sin (Xi) sin (Yi) |k, µ, ν〉 =− 1

4

(
e
i
2

2Xi − e−
i
2

2Xi
)(

e
i
2

2Yi − e−
i
2

2Yi
)
|k, µ, ν〉 =

=− 1

4

(
e
i
2

2Xi − e−
i
2

2Xi
)(
|k, µ, νi + 2〉 − |k, µ, νi − 2〉

)
=

=− 1

4

(
|k, µi + 2, νi + 2〉 − |k, µi − 2, νi + 2〉

− |k, µi + 2, νi − 2〉+ |k, µi − 2, νi − 2〉
)
.

(6.1.6)

Similarly, for the second term of the Euclidean constraint operator in (5.2.57), we can compute

sin

(
1

2
Yi+1

)
cos

(
1

2
Yi

)
sin (Aei) |k, µ, ν〉 = −1

8

(
|ki + 2, µ, νi + 1, νi+1 + 1〉

− |ki + 2, µ, νi + 1, νi+1 − 1〉+ |ki + 2, µ, νi − 1, νi+1 + 1〉 − |ki + 2, µ, νi − 1, νi+1 − 1〉
− |ki − 2, µ, νi + 1, νi+1 + 1〉+ |ki − 2, µ, νi + 1, νi+1 − 1〉 − |ki − 2, µ, νi − 1, νi+1 + 1〉

+ |ki − 2, µ, νi − 1, νi+1 − 1〉
)
. (6.1.7)

The action of the product of the operators sin
(

1
2
Xi+1

)
cos
(

1
2
Xi

)
sin (Aei) contained in the

third term of Ĥeucl follows from (6.1.7) by exchanging the µ- and ν-labels. Using this and
(6.1.2)-(6.1.7), we can write down the action of the Euclidean constraint operator on the
formal ansatz for ϕ we stated in (6.0.3):

Ĥeucl ϕ =

(
N∑
i=1

Ĥeucl,i

)(∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν |k, µ, ν〉

)
=

=
∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν

[
N∑
i=1

(
Ĥeucl,i |k, µ, ν〉

)]
=

= A
∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν

N∑
i=1

{[√
|µi||νi|

(√
|ki + ki−1 + 1| −

√
|ki + ki−1 − 1|

)]
×

×
[
|k, µi + 2, νi + 2〉 − |k, µi − 2, νi + 2〉 − |k, µi + 2, νi − 2〉+ |k, µi − 2, νi − 2〉

]
+
[√
|ki + ki−1||νi|

(√
|µi + 1| −

√
|µi − 1|

)]
×

×
[
|ki + 2, µ, νi + 1, νi+1 + 1〉 − |ki + 2, µ, νi + 1, νi+1 − 1〉+ |ki + 2, µ, νi − 1, νi+1 + 1〉

− |ki + 2, µ, νi − 1, νi+1 − 1〉 − |ki − 2, µ, νi + 1, νi+1 + 1〉+ |ki − 2, µ, νi + 1, νi+1 − 1〉

− |ki − 2, µ, νi − 1, νi+1 + 1〉+ |ki − 2, µ, νi − 1, νi+1 − 1〉
]

+
[√
|ki + ki−1||µi|

(√
|νi + 1| −

√
|νi − 1|

)]
×

×
[
|ki + 2, µi + 1, µi+1 + 1, ν〉 − |ki + 2, µi + 1, µi+1 − 1, ν〉+ |ki + 2, µi − 1, µi+1 + 1, ν〉

− |ki + 2, µi − 1, µi+1 − 1, ν〉 − |ki − 2, µi + 1, µi+1 + 1, ν〉+ |ki − 2, µi + 1, µi+1 − 1, ν〉

− |ki − 2, µi − 1, µi+1 + 1, ν〉+ |ki − 2, µi − 1, µi+1 − 1, ν〉
]}

.

(6.1.8)
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In the above equation, we collected all constant prefactors into the global factor

A :=
κ′
√
γl2P

8γ2
. (6.1.9)

Here, we deviate from [57] by a factor of 2 which might be a typo: In [57], the authors end
up with the prefactor (κ′

√
γl2P)/(4γ2) without carrying out the action of the sine- and cosine-

functions, which would lead to an additional factor of 1
4
. Therefore, from [57], we would get

(κ′
√
γl2P)/(16γ2) if we carry out the action of the sine- and cosine-functions, giving the factor

of 2 deviation from our calculation.

In this paragraph, we provide more insight into the structure of the action of Ĥeucl stated
in (6.1.8). We recognize that (6.1.8) basically consists of three summands, which correspond
to the three operators of which the operator Ĥeucl is a sum of , cf. (5.2.57). Each of the
three summands in (6.1.8) is a product of two factors that are both parenthesized by square
brackets:

• The first factor consists of label-dependent prefactors, e.g.,
√
|µi||νi|(

√
|ki + ki−1 + 1|−√

|ki + ki−1 − 1|) for the first summand of (6.1.8). These label-dependent prefactors

arise from the action of the operators Ôa
1,i, with a = x, y, θ, cf. (6.1.2)-(6.1.5).

• The second factor is the sum of states with certain labels being shifted. This results
from the action of the sine and cosine operators. We want to give an overview of the
kind of shifted states that are contained in each of the three summands of (6.1.8):

– The first summand contains in total four shifted states of the form |k, µi ± 2, νi ± 2〉,
i.e., states where the ith µ- and the ith ν-label is shifted by ±2, respectively.

– The second summand contains in total eight shifted states of the form
|ki ± 2, µ, νi ± 1, νi+1 ± 1〉, i.e., states where the ith k-label is shifted by ±2, the
ith ν-label by ±1, and the (i+ 1)th ν-label by ±1.

– The third summand equals the second summand if we interchange the µ- and the
ν-labels.

Now, we explain the action of the Lorentzian part shown in (5.2.65), (5.2.67), and (5.2.68).

For this, we first need to discuss the action of the operators
(
Ẑα,i

)l
and

(
Ẑβ,i

)l
introduced

in section 5.2.4. The action of the latter follows from the action of the former simply by

replacing α with β. Using the explicit expression of
(
Ẑα,i

)l
, we obtain the following result:(

Ẑα,i

)l
|k, µ, ν〉 =

(
−12Ôx

α,iÔ
y
α,iÔ

θ
α,i

)l
|k, µ, ν〉 =

=z ·
[
|µi|α|νi|α|ki + ki−1|α

(
|µi + 1|

α
2 − |µi − 1|

α
2

)
×

×
(
|νi + 1|

α
2 − |νi − 1|

α
2

) (
|ki + ki−1 + 1|

α
2 − |ki + ki−1 − 1|

α
2

)]l
,

(6.1.10)

where we collected all constant prefactors in the overall factor

z := o · (−12)l
(

1

2i

)3l
[

1√
2

(
γl2P
2

) 3
2

]3lα

, (6.1.11)
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with o defined earlier in (6.1.3). We arrive at the result of (6.1.10) the following way: Ẑα,i is

a product of the operators Ôx
α,i, Ô

y
α,i and Ôθ

α,i, as written down in the first step of (6.1.10).

Therefore, the action of Ẑα,i is a product of the actions stated in (6.1.2)-(6.1.5). Additionally,

Ẑα,i is to the power of l. Putting everything together, we arrive at the result of (6.1.10).
Using (6.1.10) and the action of the fluxes stated in section 5.2.2, we can now calculate the
action of the Lorentzian part.

We begin with the action of the third term of the Lorentzian constraint operator Ĥ
(3)

lor , cf.
(5.2.68), which turns out to vanish if we sum over all N vertices as required for Ĥphys. First,
we state its action on an arbitrary basis state |k, µ, ν〉:

N∑
i=1

Ĥ
(3)

lor,i |k, µ, ν〉 =
N∑
i=1

A′ ·
{

(ki+1 + ki)(ki+2 − ki)
[
(|µi+1 + 1|

α
2 − |µi+1 − 1|

α
2 )×

× (|νi+1 + 1|
α
2 − |νi+1 − 1|

α
2 ) · (|ki+1 + ki + 1|

α
2 − |ki+1 + ki − 1|

α
2 )×

× |µi+1|α|νi+1|α|ki+1 + ki|α
]l

− (ki + ki−1)(ki+1 − ki−1)
[
(|µi + 1|

α
2 − |µi − 1|

α
2 )×

× (|νi + 1|
α
2 − |νi − 1|

α
2 ) · (|ki + ki−1 + 1|

α
2 − |ki + ki−1 − 1|

α
2 )×

× |µi|α|νi|α|ki + ki−1|α
]l} |k, µ, ν〉 ,

(6.1.12)

where we defined

A′ :=
κ′
√
γl2P

4
·
(

1

2α3

)l
with α =

2

3
− 1

3l
.

Here, we deviate from [57], where a prefactor of 2κ′
√
γl2P ·

(
1

8α3

)l
is obtained which might be

a typo. To arrive at (6.1.12), we used the action of
(
Ẑα,i

)l
stated in (6.1.10) and the action

of the fluxes stated in section 5.2.2. The latter gives

(Êi+2 − Êi+1) |k, µ, ν〉 ∝ (ki+2 + ki+1 − ki+1 − ki) |k, µ, ν〉 = (ki+2 − ki) |k, µ, ν〉 . (6.1.13)

We can do the same calculation for (Êi+1− Êi) and end up with (6.1.12). To see why (6.1.12)
is zero, we recognize that it is a telescope sum: (6.1.12) is the difference between two terms.
Both terms have the same structure and can be obtained from each other by shifting i by ±1.
Therefore, (6.1.12) is given by the telescope sum

A′
N∑
i=1

(xi+1 − xi), (6.1.14)

with

xi :=(ki + ki−1)(ki+1 − ki−1)
[
(|µi + 1|

α
2 − |µi − 1|

α
2 )(|νi + 1|

α
2 − |νi − 1|

α
2 )×

× (|ki + ki−1 + 1|
α
2 − |ki + ki−1 − 1|

α
2 )|µi|α|νi|α|ki + ki−1|α

]l (6.1.15)

Carrying out the telescope sum in (6.1.14) gives xN+1 − x1, which vanishes as xN+1 = x1.
The latter is true as for Gowdy states we identify the (N + 1)th with the first label, i.e.,
kN+1 = k1, µN+1 = µ1, and νN+1 = ν1. Therefore, we have xN+1 = xN and the telescope sum
in (6.1.14) vanishes. Consequently, the action of the Lorentzian part reduces to the action of
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Ĥ
(1)

lor and Ĥ
(2)

lor , which we will specify in the following paragraph.

We can calculate the action of the other two terms of the Lorentzian part, Ĥ
(1)

lor and Ĥ
(2)

lor ,

in analogy to the one of Ĥ
(3)

lor . Hence, we refer to the previous paragraph for more detailed

explanations and only state the final result. As the action of Ĥ
(3)

lor vanishes, we can in particular
write down the action of the whole Lorentzian part:

Ĥlor ϕ =

[
N∑
i=1

(
Ĥ

(1)

lor,i + Ĥ
(2)

lor,i

)][∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν |k, µ, ν〉

]
=

=
∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν

[
N∑
i=1

(
Ĥ

(1)

lor,i + Ĥ
(2)

lor,i

)
|k, µ, ν〉

]
=

=
∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν

N∑
i=1

{
−B(ki+1 − ki−1)2

[
(|µi + 1|

α
2 − |µi − 1|

α
2 )×

× (|νi + 1|
α
2 − |νi − 1|

α
2 )× (|ki + ki−1 + 1|

α
2 − |ki + ki−1 − 1|

α
2 )|µi|α|νi|α|ki + ki−1|α

]l
+B′(ki + ki−1)4(µiνi+1 − µi+1νi)

2
[
(|µi + 1|

β
2 − |µi − 1|

β
2 ) · (|νi + 1|

β
2 − |νi − 1|

β
2 )×

× (|ki + ki−1 + 1|
β
2 − |ki + ki−1 − 1|

β
2 )|µi|β|νi|β|ki + ki−1|β

]l} |k, µ, ν〉 .
(6.1.16)

Here, the first term with the constant prefactor B results from the action of Ĥ
(1)

lor and the

second term with the constant prefactor B′ results from the action of Ĥ
(2)

lor . We defined the
constant prefactors by

B :=

√
γl2P

16κ′

(
1

2α3

)l
with α =

2

3
− 1

3l
, B′ =

√
γl2P

16κ′

(
1

2β3

)l
with β =

2

3
− 5

3l
. (6.1.17)

Here, we deviate in B from [57], where a prefactor of

√
γl2P

2κ′

(
1

8α3

)l
is stated. The prefactor B′

cannot be compared to [57], as the authors of [57] use inverse fluxes to quantize Ĥ
(2)

lor , see page
17 of [57] and our discussion in section 5.2.4 in the context of (5.2.70) .

6.1.2 The adjoint of the Euclidean part

In this section, we determine the explicit form of the adjoint of the Euclidean operator, Ĥ
†
eucl,

as well as its action. It will turn out that the Euclidean operator is not symmetric and there-
fore we get a different action for the adjoint operator.

First, we compute Ĥ
†
eucl by determining the adjoint of the individual parts of Ĥeucl. These

are given by sine and cosine operators and the family of operators Ôa
α,i with a ∈ {x, y, θ}.

All of these operators contain holonomies and fluxes, for which we know how to compute the
adjoint operators:

• The fluxes are already symmetric, i.e.:

Êi = Ê†i , F̂x,i = F̂ †x,i, F̂y,i = F̂ †y,i. (6.1.18)
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As the volume operator is the product of all three fluxes, cf. (5.2.33), it is symmetric,
too:

(V̂i)
† = V̂i. (6.1.19)

• Holonomies are implemented as unitary operators, which implies that(
e±

i
2
Xi
)†

= e∓
i
2
Xi (6.1.20)

and analogously for e±
i
2
Yi and e±

i
2
Aei .

Using these results, we get for the family of operators Ôx
α,i that(

Ôx
α,i

)†
=

[
1

2i

(
e−

i
2
XiV̂ α

i e
i
2
Xi − e

i
2
XiV̂ α

i e
− i

2
Xi
)]†

= − 1

2i

(
e−

i
2
XiV̂ α

i e
i
2
Xi − e

i
2
XiV̂ α

i e
− i

2
Xi
)

= −Ôx
α,i,

(6.1.21)
where we used that(

e−
i
2
XiV̂ α

i e
i
2
Xi
)†

=
(
e
i
2
Xi
)† (

V̂ α
i

)† (
e−

i
2
Xi
)†

= e−
i
2
XiV̂ α

i e
i
2
Xi

due to (6.1.19) and (6.1.20). Similarly, we get(
e+ i

2
XiV̂ α

i e
− i

2
Xi
)†

= e+ i
2
XiV̂ α

i e
− i

2
Xi .

The minus sign we pick up in (6.1.21) results from the prefactor of 1
2i

. The other ingredient for

calculating Ĥ
†
eucl is given by the adjoint of the sine- and cosine-operators, such as for example

sin (Xi) and cos (Xi). We can show that these operators are symmetric using (6.1.20):

[sin (Xi)]
† =

[
1

2i

(
eiXi − e−iXi

)]†
= − 1

2i

(
e−iXi − e+iXi

)
= sin (Xi), (6.1.22)

[cos (Xi)]
† =

[
1

2

(
eiXi + e−iXi

)]†
=

1

2

(
e−iXi + e+iXi

)
= cos (Xi). (6.1.23)

Similarly, we can proceed for all other sine and cosine operators appearing in Ĥeucl. Now, we
can calculate the adjoint of the first term of Ĥeucl. In a first step, we obtain[

i
4

κ′l3Pγ
3

sin (µ0Xi) sin (ν0Yi) Ô
θ
1,i

]†
= (−i) 4

κ′l3Pγ
3

[
Ôθ

1,i

]†
[sin (µ0Xi) sin (ν0Yi)]

† . (6.1.24)

Note that the order of the operators has changed. Using (6.1.21)-(6.1.23), we arrive at[
i

4

κ′l3Pγ
3

sin (µ0Xi) sin (ν0Yi) Ô
θ
1,i

]†
= i

4

κ′l3Pγ
3
Ôθ

1,i sin (µ0Xi) sin (ν0Yi) . (6.1.25)

Note that the minus sign we get from (6.1.21) is canceled by the overall i-factor contained in
Ĥeucl. Furthermore, note that we used in (6.1.25) that all holonomies commute and therefore
the change of the order in the sine operators when taking the adjoint does not matter. The
analogous steps can be performed for the remaining terms of Ĥeucl, yielding the following
expression for the adjoint Euclidean constraint operator:

Ĥ
†
eucl,i = −i 4

κ′l3Pγ
3

[
Ôθ

1,i sin (Xi) sin (Yi) + 2ÔX
1,i sin

(
1

2
Yi+1

)
cos
(

2
Yi

)
sin (Aei)

+2ÔY
1,i sin

(µ0

2
Xi+1

)
cos

(
1

2
Xi

)
sin (Aei)

]
.

(6.1.26)
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We now state the action of Ĥ
†
eucl. The action is similar to the one of Ĥeucl with one

substantial difference: The holonomies in Ĥ
†
eucl act before the diagonal operators Ôa

α,i. For

Ĥeucl, it is exactly the other way round. Hence, for Ĥeucl, the diagonal operators Ôa
α,i act

first and give additional to constant factors also label-dependent prefactors. For Ôx
α,i, e.g.,

these label-dependent prefactors are of the form (
√
|µi + 1|−

√
|µi − 1|)

√
|νi||ki + ki−1|. The

holonomies then act after the operators Ôa
α,i have acted, which results in states with shifted

labels, cf. (6.1.6) and (6.1.7). For Ĥ
†
eucl, however, the holonomies act first, resulting in the same

shifted states as obtained for Ĥeucl. Afterwards, the fluxes act on each of the shifted states,
resulting in label-dependent prefactors different from those of Ĥeucl. Note that compared to

Ĥeucl, the constant prefactors stay the same because the same operators are contained in Ĥ
†
eucl,

only their order is modified. This way, we arrive at the following action of Ĥ
†
eucl on the formal

ansatz for ϕ, which we stated in (6.0.3):

Ĥ
†
eucl ϕ =

(
N∑
i=1

Ĥ
†
eucl,i

)(∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν |k, µ, ν〉

)
=

=
∑
k∈ZN

∑
µ∈m

∑
ν∈n

N∑
i=1

Ĥ
†
eucl,iCk,µ,ν |k, µ, ν〉 =

=A
∑
k∈ZN

∑
µ∈m

∑
ν∈n

N∑
i=1

Ck,µ,ν ·

{(√
|ki + ki−1 + 1| −

√
|ki + ki−1 − 1|

)
×

×
[√
|µi + 2||νi + 2| |k, µi + 2, νi + 2〉 −

√
|µi − 2||νi + 2| |k, µi − 2, νi + 2〉

−
√
|µi + 2||νi − 2| |k, µi + 2, νi − 2〉+

√
|µi − 2||νi − 2| |k, µi − 2, νi − 2〉

]
+
(√
|µi + 1| −

√
|µi − 1|

) [ √
|ki + ki−1 + 2|νi + 1| |ki + 2, µ, νi + 1, νi+1 + 1〉

−
√
|ki + ki−1 + 2||νi + 1| |ki + 2, µ, νi + 1, νi+1 − 1〉

+
√
|ki + ki−1 + 2||νi − 1| |ki + 2, µ, νi − 1, νi+1 + 1〉

−
√
|ki + ki−1 + 2||νi − 1| |ki + 2, µ, νi − 1, νi+1 − 1〉

−
√
|ki + ki−1 − 2||νi + 1| |ki − 2, µ, νi + 1, νi+1 + 1〉

+
√
|ki + ki−1 − 2||νi + 1| |ki − 2, µ, νi + 1, νi+1 − 1〉

−
√
|ki + ki−1 − 2||νi − 1| |ki − 2, µ, νi − 1, νi+1 + 1〉

+
√
|ki + ki−1 − 2||νi − 1| |ki − 2, µ, νi − 1, νi+1 − 1〉

]
+
(√
|νi + 1| −

√
|νi − 1|

) [ √
|ki + ki−1 + 2||µi + 1| |ki + 2, µi + 1, µi+1 + 1, ν〉

−
√
|ki + ki−1 + 2||µi + 1| |ki + 2, µi + 1, µi+1 − 1, ν〉

+
√
|ki + ki−1 + 2||µi − 1| |ki + 2, µi − 1, µi+1 + 1, ν〉

−
√
|ki + ki−1 + 2||µi − 1| |ki + 2, µi − 1, µi+1 − 1, ν〉

−
√
|ki + ki−1 − 2||µi + 1| |ki − 2, µi + 1, µi+1 + 1, ν〉

+
√
|ki + ki−1 − 2||µi + 1| |ki − 2, µi + 1, µi+1 − 1, ν〉

−
√
|ki + ki−1 − 2||µi − 1| |ki − 2, µi − 1, µi+1 + 1, ν〉
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+
√
|ki + ki−1 − 2||µi − 1| |ki − 2, µi − 1, µi+1 − 1, ν〉

]}
(6.1.27)

Now, we want to comment on an additional requirement concerning the definition of the
abstract Gowdy states we gave in section 5.2.2 in the context of figure 3. For the Euclidean
and the Lorentzian operator it is totally fine to excite N vertices and N + 1 edges only,
while charging all other infinitely many edges and vertices trivially, which are then not seen
by these operators. To see this, we remark that in both operators, the volume operator
is contained and acts first while its eigenvalue (7.0.17) is zero at trivially charged vertices.
Note that the volume operator is actually contained in the family of operators Ôa

α,i, with
a = x, y, θ, cf. (5.2.54)-(5.2.56), such that holonomies act before and after it, but in such a
way that we still obtain a zero action at trivially charged vertices and edges. For example,
Ôx
α,i will yield us the eigenvalue

(
|µi + 1|α2 − |µi − 1|α2

)
|νi|

α
2 |ki + ki−1|

α
2 , which still vanishes,

e.g., for µi = 0. However, for the adjoint of the Euclidean operator (5.2.57), the order of
holonomies and the volume operator changes, in particular the holonomies act first. This
has the following consequence: We concentrate on the first term of the adjoint Euclidean
operator, cf. (6.1.26), where the point holonomies are involved in sin (Xi) sin (Yi) and the
volume operator is contained in Ôθ

α,i. To compute the action on the N + 1th vertex, we note
that this vertex carries the labels µN+1 = νN+1 = 0, while the label of the outgoing edge is
kN+1 = 0, but that of the ingoing edge is kN 6= 0. See also figure 3 for an illustration in
the case of N = 3 vertices. The point holonomies in sin (Xi) sin (Yi) will change the labels
µN+1 = νN+1 = 0 at the N +1th vertex to non-zero values. Hence, when the volume operator
acts afterwards, we get a non-zero action, especially due to the fact that the k-labels do not
cure this, as the label of the ingoing edge equals kN which is non-zero in general. A similar
thing would happen if we act at the vertex that is preceding the first vertex. For the other
parts of the adjoint Euclidean operator, however, this does not occur, as these terms only
contain holonomies that change the k-labels together with one of the point holonomy charges
such that one of the µ- or ν-labels always stays zero at trivially charged vertices. Thus, this
results in a zero action of the volume operator, as its eigenvalue is proportional to the square
root of the point holonomy labels, cf. (7.0.17). We propose the following strategy to avoid the
scenario of the adjoint Euclidean operator acting non-trivially at the N + 1th vertex and the
vertex preceding the first vertex: Looking at the eigenvalue of the volume operator (7.0.17),
we can observe that the sum of neighboring k-labels occurs and this is actually the reason
for the above discussed problem. Instead of setting the label kN+1 to zero, we could set it
to −kN . Then, the volume operator acting at the N + 1th vertex measures the sum of the
ingoing and outgoing k-labels which now vanishes. We then have to extend this to the whole
abstract graph, i.e., we alternately set the k-labels to kN and −kN , see also figure 4, where we
illustrated the situation for N = 2 vertices. To go back to the embedded case, we may pursue
the following strategy: We take the N vertices and edges with charges µ1, ..., µN , ν1, ..., νN ,
and k1, ..., kN , and map them to a circle where they fill a certain segment. On the remaining
part of the circle, we create two new trivially charged vertices v′ and v′′, giving us two new
edges. On one of these, we map the infinitely many edges that carry the charge +kN , and on
the other one, we map the infinitely many edges that carry the charge −kN . We do this in
such a way that the ordering of the labels is not changed, i.e., at the first vertex, the k label
of the ingoing edge is kN and at the Nth vertex, the k label at the outgoing edge is kN as
well. Hence, the circle symmetry is implemented, see again figure 4. Furthermore, the action
of all operators contained in the physical Hamiltonian operator will vanish at the new vertices
v′ and v′′. This discussion shows that the definition of the algebraic graph we introduced in
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section 5.2.2 can be extended the following way, at least for the Hamiltonian constraint and
the Lorentzian part: While again charging N vertices and N + 1 edges non-trivially with the
circle symmetry being implemented, one may charge the infinitely many other vertices and
edges such that the zero volume conditions (7.0.18) are satisfied. Finally, when discussing our
results in the sections 6.2-6.7, we always assume suitably defined Gowdy states such that the
above described scenario does not occur.

k2 k1μ ν
1 1 μ ν

2 2

v
1

v2

k2 -k2-k20 0 0 0 0 0 0 0

-k2

v
1

v2

v'

v''

μ ν
1 1

μ ν
2 2k1 k2

k2 0 0

0 0

Figure 4: Illustration of the modified definition of an abstract graph (top) and an embedded
graph (bottom) for N = 2 vertices.

6.1.3 The adjoint of the Lorentzian part

In this section, we determine the adjoint of the Lorentzian part which we denote by Ĥ
†
lor. It

will turn out that the Lorentzian part is symmetric and therefore the action of the Lorentzian
part and its adjoint is identical.

As shown in section 6.1.1, the first term of the Lorentzian part vanishes when summing up
the contributions from all vertices. Accordingly, the Lorentzian part reduces to the expression

Ĥlor =
N∑
i=1

(
Ĥ

(1)

lor,i + Ĥ
(2)

lor,i

)
. (6.1.28)

Taking the adjoint of Ĥlor thus amounts to taking the adjoint of Ĥ
(1)

lor,i and Ĥ
(2)

lor,i.

We start with the calculation of the adjoint of Ĥ
(1)

lor,i:

Ĥ
(1)†
lor,i =

[
− 1

4κ′

(
− i
~

)3l(
16

3(κ′γ)3α3

)l (
Êi+1 − Êi

)(
Ẑα,i

)l]†
=

= − 1

4κ′

(
16

3(κ′γ)3α3

)l [(
− i
~

)3l
]† [(

Ẑα,i

)l]† (
Êi+1 − Êi

)†
.

(6.1.29)

We already know that the fluxes Êi, Êi+1 are symmetric, cf. (6.1.18), and hence only need two
more ingredients to finish this calculation:
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• We can write out the factor (−i/~)3l as (1/~3)l · il. Hence, we get a factor of (−1)l when
taking the adjoint of (−i/~)3l.

• For the adjoint of
(
Ẑα,i

)l
we need to compute the adjoint operator

(
Ẑα,i

)†
for which

we get (
Ẑα,i

)†
= (−12Ôx

α,iÔ
y
α,iÔ

θ
α,i)
† = +12Ôx

α,iÔ
y
α,iÔ

θ
α,i = −Ẑα,i, (6.1.30)

where we used (6.1.21) in the second step. In consequence, we get a factor of (−1)l

when computing

[(
Ẑα,i

)l]†
.

Plugging the results of the above two points into (6.1.29), we see that we get two factors of
(−1)l. Due to (−1)l · (−1)l = (−1)2l = +1 we arrive at

Ĥ
(1)†
lor,i = Ĥ

(1)

lor,i, (6.1.31)

i.e., the first term of the Lorentzian part is symmetric. Note that there appears a change in

the order of the fluxes Ê and the operators
(
Ẑα,i

)l
when we compute the adjoint in (6.1.29).

This, however, does not matter, as both operators act diagonally on any basis state |k, µ, ν〉
and therefore commute.

Now, we discuss the second term of the Lorentzian part Ĥ
(2)

lor,i. Looking at the explicit form

of Ĥ
(2)

lor,i in (5.2.67), we see that it has a similar structure as the first term of the Lorentzian

part Ĥ
(1)

lor,i in (5.2.65): Ĥ
(2)

lor,i consists of certain fluxes and the operator
(
Ẑβ,i

)l
. The latter is

the same operator as
(
Ẑα,i

)l
, the operator appearing in in Ĥ

(1)

lor,i, if we replace α by β. Hence,

we see that calculating the adjoint of Ĥ
(2)

lor,i is in total analogy to the steps performed for Ĥ
(1)

lor,i:

The only parts of Ĥ
(2)

lor,i that will give a change in sign are (−i/~)3l and
(
Ẑβ,i

)l
. Thus, as

explained in the two points below (6.1.29), we pick up two factors of (−1)l when taking the
adjoint and obtain

Ĥ
(2)†
lor,i = Ĥ

(2)

lor,i, (6.1.32)

i.e., also the second term of Ĥlor is symmetric.

Finally, we combine (6.1.31) and (6.1.32) to arrive at

Ĥ
†
lor =

[
N∑
i=1

(
Ĥ

(1)

lor,i + Ĥ
(2)

lor,i

)]†
= Ĥlor, (6.1.33)

i.e., Ĥlor is a symmetric operator. Consequently, also the action of Ĥlor and Ĥ
†
lor is the same.

6.1.4 Action of the physical Hamiltonian

Using (6.1.8), (6.1.27) and (6.1.16), we can state the action of our symmetric, physical Hamil-
tonian Ĥphys on the formal ansatz for ϕ we stated in (6.0.3):

Ĥphys ϕ =

[
N∑
i=1

(
1

2

(
Ĥeucl + Ĥ

†
eucl

)
+ Ĥlor

)][∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν |k, µ, ν〉

]
=
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=
∑
k∈ZN

∑
µ∈m

∑
ν∈n

N∑
i=1

Ck,µ,ν ·

{
1

2
A
(√
|ki + ki−1 + 1| −

√
|ki + ki−1 − 1|

)
×

×
[(√

|µi + 2||νi + 2|+
√
|µi||νi|

)
|k, µi + 2, νi + 2〉

−
(√
|µi − 2||νi + 2|+

√
|µi||νi|

)
|k, µi − 2, νi + 2〉

−
(√
|µi + 2||νi − 2|+

√
|µi||νi|

)
|k, µi + 2, νi − 2〉

+
(√
|µi − 2||νi − 2|+

√
|µi||νi|

)
|k, µi − 2, νi − 2〉

]
+ A

(√
|µi + 1| −

√
|µi − 1|

)
×

×
[(√

|ki + ki−1 + 2|νi + 1|+
√
|ki + ki−1|νi|

)
|ki + 2, µ, νi + 1, νi+1 + 1〉

−
(√
|ki + ki−1 + 2||νi + 1|+

√
|ki + ki−1|νi|

)
|ki + 2, µ, νi + 1, νi+1 − 1〉

+
(√
|ki + ki−1 + 2||νi − 1|+

√
|ki + ki−1|νi|

)
|ki + 2, µ, νi − 1, νi+1 + 1〉

−
(√
|ki + ki−1 + 2||νi − 1|+

√
|ki + ki−1|νi|

)
|ki + 2, µ, νi − 1, νi+1 − 1〉

−
(√
|ki + ki−1 − 2||νi + 1|+

√
|ki + ki−1|νi|

)
|ki − 2, µ, νi + 1, νi+1 + 1〉

+
(√
|ki + ki−1 − 2||νi + 1|+

√
|ki + ki−1|νi|

)
|ki − 2, µ, νi + 1, νi+1 − 1〉

−
(√
|ki + ki−1 − 2||νi − 1|+

√
|ki + ki−1|νi|

)
|ki − 2, µ, νi − 1, νi+1 + 1〉

+
(√
|ki + ki−1 − 2||νi − 1|+

√
|ki + ki−1|νi|

)
|ki − 2, µ, νi − 1, νi+1 − 1〉

]
+ A

(√
|νi + 1| −

√
|νi − 1|

)
×

×
[(√

|ki + ki−1 + 2||µi + 1|+
√
|ki + ki−1|µi|

)
|ki + 2, µi + 1, µi+1 + 1, ν〉

−
(√
|ki + ki−1 + 2||µi + 1|+

√
|ki + ki−1|µi|

)
|ki + 2, µi + 1, µi+1 − 1, ν〉

+
(√
|ki + ki−1 + 2||µi − 1|+

√
|ki + ki−1|µi|

)
|ki + 2, µi − 1, µi+1 + 1, ν〉

−
(√
|ki + ki−1 + 2||µi − 1|+

√
|ki + ki−1|µi|

)
|ki + 2, µi − 1, µi+1 − 1, ν〉

−
(√
|ki + ki−1 − 2||µi + 1|+

√
|ki + ki−1|µi|

)
|ki − 2, µi + 1, µi+1 + 1, ν〉

+
(√
|ki + ki−1 − 2||µi + 1|+

√
|ki + ki−1|µi|

)
|ki − 2, µi + 1, µi+1 − 1, ν〉

−
(√
|ki + ki−1 − 2||µi − 1|+

√
|ki + ki−1|µi|

)
|ki − 2, µi − 1, µi+1 + 1, ν〉

+
(√
|ki + ki−1 − 2||µi − 1|+

√
|ki + ki−1|µi|

)
|ki − 2, µi − 1, µi+1 − 1, ν〉

]
−B(ki+1 − ki−1)2

[
(|µi + 1|

α
2 − |µi − 1|

α
2 )(|νi + 1|

α
2 − |νi − 1|

α
2 )×

× (|ki + ki−1 + 1|
α
2 − |ki + ki−1 − 1|

α
2 )|µi|α|νi|α|ki + ki−1|α

]l
+B′(ki + ki−1)4(µiνi+1 − µi+1νi)

2
[
(|µi + 1|

β
2 − |µi − 1|

β
2 ) · (|νi + 1|

β
2 − |νi − 1|

β
2 )×

× (|ki + ki−1 + 1|
β
2 − |ki + ki−1 − 1|

β
2 )|µi|β|νi|β|ki + ki−1|β

]l}
(6.1.34)
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Here, we repeated the result for the action of the Lorentzian part stated in (6.1.16). Fur-

thermore, we summarized the action of Ĥeucl and Ĥ
†
eucl the following way: As we explained

previous to (6.1.27), the label-dependent prefactors make up the difference between the action

of Ĥeucl and Ĥ
†
eucl and the shifted states of the respective actions in (6.1.8) and (6.1.27) are

the same. Therefore, we can collect all identical states when taking the sum of the actions

of Ĥeucl and Ĥ
†
eucl. This way, we obtain the label-dependent prefactors in front of the shifted

states in (6.1.34).

6.2 Zero volume states

Before we discuss our strategy to look for special solutions of the Schrödinger equation, we
first want to present those formal states ϕ that are annihilated by the volume operator V̂i at
all vertices i = 1, .., N , i.e.:

V̂i ϕ = V̂i

(∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν |k, µ, ν〉

)
= 0 ∀ i = 1, ...N. (6.2.1)

Accordingly, we call the states ϕ satisfying (6.2.1) zero volume states. As the volume operator
is contained in both the Euclidean and the Lorentzian constraint operator, it is advisable to
discuss zero volume states in detail.

To specify the zero volume states ϕ, we first require the action of the volume operator on
a single basis state |k, µ, ν〉 to be zero :

V̂i |k, µ, ν〉 =
1√
2

(
γl2P
2

)√
|µi||νi||ki + ki−1| |k, µ, ν〉

!
= 0. (6.2.2)

Looking at this equation, we can immediately state three possible choices for the sets of labels
k := (ki)i=1,...,N , µ := (µi)i=1,...,N , and ν := (νi)i=1,...,N of a zero volume basis state |k, µ, ν〉:

1. Possibility: µi = 0 and νi, ki arbitrary ∀i = 1, .., N ,

2. Possibility: νi = 0 and µi, ki arbitrary ∀i = 1, .., N ,

3. Possibility: ki = 0 and µi, νi arbitrary ∀i = 1, .., N .

The drawback of these three possibilities is that in each case an entire degree of freedom
is eliminated. In particular, the third condition corresponds to the elimination of the U(1)-
connection A, which, however, provides a direct link to the gravitational part of the full theory
opposed to the scalars X and Y . To circumvent this, we have the following alternative:

4. Possibility: Combine possibilities 1-3 by choosing alternately µi, νi or ki, ki−1 to
be zero ∀i = 1, .., N

We want to illustrate this possibility with an example: Consider a state |k, µ, ν〉 with µ1 = 0
and all other labels arbitrary. Then, the volume operator has a zero action when acting at
the first vertex, cf. (6.2.2). If als ν2 = 0 is true for the state |k, µ, ν〉, the volume operator
acting at the second vertex has a zero action as well . If we continue setting alternately µ- and
ν-labels to zero up to the Nth vertex, we have accomplished that the action of the volume
operator is zero at each vertex. In particular, we achieved this without eliminating an entire
degree of freedom, as it is the case for either of the possibilities 1-3. In the above example,
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one could also substitute the choice of ν2 = 0 with k2 = k3 = 0 and similar for the other
choices of labels. Thus, we see that using the fourth possibility, we obtain a variety of zero
volume states. Note that if we want to eliminate the action of the volume operator at the ith
vertex via choosing the k-labels, we need ki and ki−1 to be zero, since both labels appear as
a sum in the action of the volume operator, cf. (6.2.2).

There is also another possibility which, however, is applicable only for an even number of
vertices N:

5. Possibility (only for N even): ki = −ki−1 and µi, νi arbitrary ∀i = 1, .., N .

To understand this possibilities, we recognize that in (6.2.2), the sum of two neighboring
k-labels ki and ki−1 appears. This sum is zero if the neighboring k-labels have the same
modulus but different sign, i.e., if ki = −ki−1 ∀i = 1, .., N . For an odd number of vertices,
possibility 5 is not applicable, which we will illustrate by an example: Consider a state with
three vertices. Choosing k1 = −k2 6= 0 annihilates the contribution of the volume operator at
the second vertex as k1 + k2 = 0 and therefore (6.2.2) is satisfied for i = 2. If we additionally
choose k1 = k3 6= 0, the contribution of the volume operator at the third vertex will vanish
as well. This, however, is not true at the first vertex as k1 + k3 6= 0 due to k1 = k3 6= 0. We
could, however, also annihilate this contribution by choosing µ1 = 0 or alternatively ν1 = 0.
We can generalize this to an arbitrary odd number of vertices N:

6. Possibility (only for N odd): ki = −ki−1 ∀i ∈ {1, ..., N} \ j, kj = kj−1 and µj = 0
or νj = 0; all other µ and ν labels remain arbitrary.

In analogy to possibility 4, we get two additional kind of zero volume states for an even and
odd number of vertices, respectively:

7. Possibility (only for N even): Combine possibilities 1-3 with 5.

8. Possibility (only for N odd): Combine possibilities 1-3 with 6.

We illustrate these possibilities with an example, respectively: For possibility 7, we consider
a state with 4 vertices. We can annihilate the contribution of the volume operator at the
first vertex by choosing µ1 = 0, the contribution at the second vertex by selecting k2 = −k1

and the contribution at the third and fourth vertex by setting ν3 = 0 and µ4 = 0. This
way, k3, k4, ν1, µ2, ν2, µ3, and ν4 remain arbitrary. For possibility 8, we consider a state with
3 vertices. We could choose the labels according to k1 = −k2, µ2 = 0, ν3 = 0 to annihilate the
contributions of the volume operator at each vertex, separately. This way, k3, µ1, ν1, ν2, and
µ3 remain arbitrary.

Now, we extend the previously stated possibilities 1-8, which specify conditions on a single
basis sate |k, µ, ν〉, to a state ϕ satisfying (6.2.1). In particular, the conditions on the labels
k, µ, ν are equivalent to conditions on the coefficients Ck,µ,ν of a formal state ϕ: We just
set the coefficients to zero if the respective condition of the labels is not satisfied. For the
possibilities 1-3, this would give us the conditions:

1. Possibility: Ck,µ,ν 6= 0 if µi = 0 ∀i = 1, ..., N ,

2. Possibility: Ck,µ,ν 6= 0 if νi = 0 ∀i = 1, ..., N ,

3. Possibility: Ck,µ,ν 6= 0 if ki = 0 ∀i = 1, ..., N ,



6.3 Annihilation of the action of the Euclidean part 95

which we can combine in analogy to the fourth possibility. Similarly, we can proceed for all
other possibilities.

After having classified zero volume states, we make two important remarks:

• If we compute the norm of a formal state ϕ, this leads us to

< ϕ,ϕ > =
∑
k′∈ZN

∑
µ′∈m

∑
ν′∈n

∑
k∈ZN

∑
µ∈m

∑
ν∈n

C∗k′,µ′,ν′Ck,µ,ν 〈k′, µ′, ν ′|k, µ, ν〉 =

=
∑
k∈ZN

∑
µ∈m

∑
ν∈n

|Ck,µ,ν |2 , (6.2.3)

where in the first step, ∗ denotes complex conjugation. In the second step, we used the
orthonormality of the basis states |k, µ, ν〉 to eliminate the sums over k′, µ′, and ν ′. To
make ϕ a zero volume state, we set certain coefficients to zero, according to the above
listed possibilities, while imposing the other coefficients to be non-zero. Hence, we can
choose the non-zero coefficients arbitrarily and in particular such that the sums over
the k-, µ- and ν-labels in (6.2.3) are finite. Therefore, the norm of a zero volume state
ϕ is finite for an appropriate choice of the values of the non-zero coefficients.

• For a zero volume state ϕ we also have

Ĥeuclϕ = 0, Ĥlorϕ = 0, (6.2.4)

as the volume operator acts first in both operators, which can be seen from the explicit

form of the operators given in section 5.2.4. For Ĥ
†
eucl, however, we have that

Ĥ
†
euclϕ 6= 0. (6.2.5)

To see this, we first note that calculating the action of Ĥ
†
eucl on a volume zero state

ϕ reduces to calculating it on a zero volume basis state |k, µ, ν〉. Furthermore, we
remind that taking the adjoint of Ĥeucl changes the order of the operators such that
the volume operator acts after the holonomies have acted. However, |k, µ, ν〉 is not
a zero volume state anymore if a holonomy has acted upon it: Consider for example
the zero volume state |k, µ, ν〉 := |k1, k2, µ1 = 0, µ2, ν1, ν2 = 0〉 for 2 vertices. After the
holonomy exp (i/2X1) has acted, we get the state |k1, k2, µ1 = 1, µ2, ν1, ν2 = 0〉. This
state is not a zero volume state anymore, as the contribution of the volume operator at
the first vertex is not annihilated due to µ1 = 1 6= 0. We can extend this example to all
other kind of zero volume states and any number of vertices. Hence, we arrive at the

result from (6.2.5) which basically results from the holonomies acting first in Ĥ
†
eucl and

therefore changing a zero volume state ϕ into a state ϕ′ that is not annihilated by the
volume operator anymore.

6.3 Annihilation of the action of the Euclidean part

To construct a very special solution of the time-independent Schrödinger equation

Ĥphysϕ = Eϕ (6.3.1)

we pursue the following strategy: Given the expression for the physical Hamiltonian

Ĥphys =
1

2

(
Ĥeucl + Ĥ

†
eucl

)
+ Ĥlor,
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we want to exploit the diagonal action of the Lorentzian part on a basis state |k, µ, ν〉 to
produce the energy eigenvalue E of (6.3.1). In parallel, we want to annihilate the action of

Ĥeucl and Ĥ
†
eucl. More precisely, we investigate how to choose the coefficients of ϕ on the one

hand, such that Ĥeucl and Ĥ
†
eucl have a zero action on ϕ, i.e.,

Ĥeuclϕ = 0, Ĥ
†
euclϕ = 0. (6.3.2)

On the other hand, we inspect how to choose the coefficients of ϕ such that the action of Ĥlor

simplifies to
Ĥlor ϕ = E ϕ. (6.3.3)

Note that the ansatz for ϕ is very special as it contains sums over all possible labels which
for general coefficients results in a non-normalizable state, i.e., ϕ is in general not an element
of the Gowdy Hilbert space. We nevertheless work with that ansatz for ϕ in (6.0.3) because
it will allow to derive difference equations from the complicated action of the Euclidean part
and its adjoint, cf. (6.1.8) and (6.1.27). This way we gain some insight into the details of the
action of our physical Hamiltonian.

In the following sections 6.3-6.5, we first try to accomplish (6.3.2). We will furthermore
discuss if the solutions we found this way also allow to obtain (6.3.3). Afterwards, we take the
opposite route by starting from (6.3.3) in section 6.6 and discussing if the solutions constructed
this way also allow to achieve (6.3.2) or at least simplify the action of the Euclidean operator
and its adjoint.

6.3.1 Special separation ansatz and derivation of difference equations

In this section, we impose the condition

Ĥeuclϕ
!

= 0, (6.3.4)

from which we derive difference equations for the coefficients Ck,µ,ν of our ansatz ϕ, which is
defined in (6.0.3). For this purpose, we use a special separation ansatz for the coefficients.
We recommend [146] and [147] for an introduction into difference equations. In particular,
the method of separation of variables for partial difference equations is described in [147] and
also in [148,149].

In the first step, we consider the action of the Euclidean operator Ĥeucl in (6.1.8) and
translate the shifts contained in the states to the coefficients. As explained in section 6.1.1,
in the paragraph after (6.1.8), the action of Ĥeucl consists of three summands that we will
consider separately. For the first summand of (6.1.8), we examine the first state with all sums
and prefactors:

A
∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν

N∑
i=1

{√
|µi||νi|

(√
|ki + ki−1 + 1| −

√
|ki + ki−1 − 1|

)
|k, µi + 2, νi + 2〉

}
.

(6.3.5)
Now, we make the substitutions µ̃i = µi+2 and ν̃i = νi+2 which are equivalent to µi = µ̃i−2
and νi = ν̃i − 2. Plugging this into (6.3.5) gives us

A
∑
k∈ZN

∑
µ̃∈m

∑
ν̃∈n

Ck,µ̃i−2,ν̃i−2

N∑
i=1

{√
|µ̃i − 2||ν̃i − 2|

(√
|ki + ki−1 + 1| −

√
|ki + ki−1 − 1|

)
|k, µ̃i, ν̃i〉

}
,

(6.3.6)
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where we introduced the notation

Ck,µ̃i−2,ν̃i−2 := Ck,µ1,...,µ̃i−2,...µN ,ν1,...ν̃i−2,...,νN , (6.3.7)

i.e., Ck,µ̃i−2,ν̃i−2 denotes the coefficient for which all labels remain unshifted except for the
labels µ̃i and ν̃i, which are shifted both by −2. Furthermore, looking at the definition of the
sets m and n defined in (6.0.5) in which the µ and ν-labels take values, respectively, we see
that the sums over the µ and ν labels are invariant under the substitutions µi = µ̃i − 2 and
νi = ν̃i − 2. Hence, we can replace the sums in (6.3.5) over µ and ν by sums over µ̃ and ν̃ in
(6.3.6). If we now rename µ̃i, ν̃i by µi, νi, we arrive at

A
∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µi−2,νi−2

N∑
i=1

{√
|µi − 2||νi − 2|

(√
|ki + ki−1 + 1| −

√
|ki + ki−1 − 1|

)
|k, µ, ν〉

}
.

(6.3.8)

Similarly, we can proceed with all other states of the first summand of (6.1.8). Now, we look
at the second summand of the action of Ĥeucl in (6.1.8). Again, we consider as an example
only the first state with all sums and prefactors:

A
∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν

N∑
i=1

{√
|ki + ki−1||νi|

(√
|µi + 1| −

√
|µi − 1|

)
|ki + 2, µ, νi + 1, νi+1 + 1〉

}
.

(6.3.9)

In this equation, in analogy to the first summand of (6.1.8), we perform the substitutions

ν̃i = νi + 1, ν̃i+1 = νi+1 + 1 and k̃i = ki + 2. For the ν-labels, we use again invariance of the
sum, see the discussion below (6.3.7). For the k-labels, we sum over all integer values and

hence the sum is invariant under the substitution k̃i = ki + 2, too. This would not be the
case if we choose the finite linear combination in (6.0.10) which again motivates to pick the

one in (6.0.3). After renaming k̃i, ν̃i, and ν̃i+1 by ki, νi, and νi+1, respectively, we obtain the
following expression for (6.3.9):

A
∑
k∈ZN

∑
µ∈m

∑
ν∈n

Cki−2,µ,νi−1,νi+1−1

N∑
i=1

{√
|ki + ki−1 − 2||νi − 1|

(√
|µi + 1| −

√
|µi − 1|

)
|k, µ, ν〉

}
,

(6.3.10)

with the notation for the coefficients in analogy to (6.3.7):

Cki−2,µ,νi−1,νi+1−1 := Ck1,...ki−2,...kN ,µ1,...,µN ,ν1,...,νi−1,νi+1−1,...,νN . (6.3.11)

Similarly, we can proceed for all other states of the second and also the third contribution
of (6.1.8), as the second equals the third contribution if we interchange the µ- and ν-labels.
Combining the above results, we can rewrite (6.3.4) the following way:

0
!

= A
∑
k∈ZN

∑
µ∈m

∑
ν∈n

N∑
i=1

{(√
|ki + ki−1 + 1| −

√
|ki + ki−1 − 1|

)
×

×
[√
|µi − 2||νi − 2| Ck,µi−2,νi−2 −

√
|µi + 2||νi − 2| Ck,µi+2,νi−2

−
√
|µi − 2||νi + 2| Ck,µi−2,νi+2 +

√
|µi + 2||νi + 2| Ck,µi+2,νi+2

]
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+
(√

µi + 1−
√
µi − 1

)
×

×
[√
|νi − 1||ki + ki−1 − 2| Cki−2,µ,νi−1,νi+1−1 −

√
|νi − 1||ki + ki−1 − 2| Cki−2,µ,νi−1,νi+1+1

+
√
|νi + 1||ki + ki−1 − 2| Cki−2,µ,νi+1,νi+1−1 −

√
|νi + 1||ki + ki−1 − 2| Cki−2,νi+1,µ,νi+1+1

−
√
|νi − 1||ki + ki−1 + 2| Cki+2,µ,νi−1,νi+1−1 +

√
|νi − 1||ki + ki−1 + 2| Cki+2,νi−1,µ,νi+1+1

−
√
|νi + 1||ki + ki−1 + 2| Cki+2,µ,νi+1,νi+1−1 +

√
|νi + 1||ki + ki−1 + 2| Cki+2,νi+1,µ,νi+1+1

]
+
(√

νi + 1−
√
νi − 1

)
×

×
[√
|µi − 1||ki + ki−1 − 2| Cki−2,µi−1,µi+1−1,ν −

√
|µi − 1||ki + ki−1 − 2| Cki−2,µi−1,µi+1+1,ν

+
√
|µi + 1||ki + ki−1 − 2| Cki−2,µi+1,µi+1−1,ν −

√
|µi + 1||ki + ki−1 − 2| Cki−2,µi+1,µi+1+1,ν

−
√
|µi − 1||ki + ki−1 + 2| Cki+2,µi−1,µi+1−1,ν +

√
|µi − 1||ki + ki−1 + 2| Cki+2,µi−1,µi+1+1,ν

−
√
|µi + 1||ki + ki−1 + 2| Cki+2,µi+1,µi+1−1,ν +

√
|µi + 1||ki + ki−1 + 2| Cki+2,µi+1,µi+1+1,ν

]}
×

× |k, µ, ν〉 . (6.3.12)

In this equation, we can first of all cancel the overall prefactor of A. Second of all, this
equation is true iff every summand with respect to the sums over the k-, µ- and ν-labels is
zero. The same argumentation holds for the sum over i. Therefore, we will leave out the
state |k, µ, ν〉 and all sums in the following. In (6.3.12), we have reached our goal to derive
difference equations for the coefficients of a formal state ϕ. Next, we try to simplify (6.3.12)
even further by performing a special separation ansatz for the coefficients.

In the second step we perform the following separation ansatz:

Ck,µ,ν = Ck · Cµ1 · Cµ2 · ... · CµN · Cν1 · Cν2 · ... · CνN , (6.3.13)

i.e., we keep all the k-labels together in one coefficient but decouple all µ- and ν-labels. We do
not separate the k-labels at this point because we see from (6.3.12) that we have prefactors of
the form of

√
ki + ki−1 ± 2, which we cannot factorize in a product of two functions f1(ki) and

f2(ki−1). We now plug in the separation ansatz of (6.3.13) into (6.3.12) which will allow us to
write (6.3.12) in a compact way. We explain our strategy with the help of the first summand
of (6.3.12): For simplicity, we leave out the k-dependent prefactor and the coefficient Ck
giving us [√

|µi − 2||νi − 2| Cµi−2Cνi−2 −
√
|µi + 2||νi − 2| Cµi+2Cνi−2

−
√
|µi − 2||νi + 2| Cµi−2Cνi+2 +

√
|µi + 2||νi + 2| Cµi+2Cνi+2

]
.

(6.3.14)

In this equation, we can factor out
√
|µi − 2|Cµi−2 and

√
|µi + 2|Cµi+2 to arrive at[√

|µi − 2|Cµi−2

(√
|νi − 2|Cνi−2 −

√
|νi + 2|Cνi+2

)
+
√
|µi + 2|Cµi+2

(
−
√
|νi − 2|Cνi−2 +

√
|νi + 2|Cνi+2

)]
.

(6.3.15)

As the terms in round brackets equal up to a minus sign, we can rewrite this equation in a
compact form:(√

|µi + 2|Cµi+2 −
√
|µi − 2|Cµi−2

)
·
(√
|νi + 2|Cνi+2 −

√
|νi − 2|Cνi−2

)
. (6.3.16)
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We can now proceed analogously for the other two terms of (6.3.12): For the second term of
(6.3.12), we use the separation ansatz in (6.3.13) and obtain the following expression whereat
we leave out the µ-dependent prefactor and the coefficients Cµ1 ...CµN :[√

|νi − 1||ki + ki−1 − 2| Cki−2,µ,νi−1,νi+1−1 −
√
|νi − 1||ki + ki−1 − 2| Cki−2,µ,νi−1,νi+1+1

+
√
|νi + 1||ki + ki−1 − 2| Cki−2,µ,νi+1,νi+1−1 −

√
|νi + 1||ki + ki−1 − 2| Cki−2,νi+1,µ,νi+1+1

−
√
|νi − 1||ki + ki−1 + 2| Cki+2,µ,νi−1,νi+1−1 +

√
|νi − 1||ki + ki−1 + 2| Cki+2,νi−1,µ,νi+1+1

−
√
|νi + 1||ki + ki−1 + 2| Cki+2,µ,νi+1,νi+1−1 +

√
|νi + 1||ki + ki−1 + 2| Cki+2,νi+1,µ,νi+1+1

]
.

(6.3.17)

Here, we deviate from our notation introduced in (6.3.7) and include the unshifted label ki−1

in Cki±2,ki−1
. Hereby, we want to indicate that ki and ki−1 are coupled via the prefactors√

|ki + ki−1 ± 2|. We can now sort (6.3.17) by the factors
√
|ki + ki−1 ± 2|Cki±2,ki−1

which
yields √

|ki + ki−1 − 2|Cki−2,ki−1

(√
|νi − 1|Cνi−1Cνi+1−1 −

√
|νi − 1|Cνi−1Cνi+1+1

+
√
|νi + 1|Cνi+1Cνi+1−1 −

√
|νi + 1|Cνi+1Cνi+1+1

)
+
√
|ki + ki−1 + 2|Cki+2,ki−1

(
−
√
|νi − 1|Cνi−1Cνi+1−1 +

√
|νi − 1|Cνi−1Cνi+1+1

−
√
|νi + 1|Cνi+1Cνi+1−1 +

√
|νi + 1|Cνi+1Cνi+1+1

)
.

(6.3.18)

The terms in round brackets equal up to a minus sign and can be factorized themselves:
Factoring out

√
|νi ± 1|Cνi±1 gives us√

|νi − 1|Cνi−1

(
Cνi+1−1 − Cνi+1+1

)
+
√
|νi + 1|Cνi+1

(
Cνi+1−1 − Cνi+1+1

)
=

=
(
Cνi+1−1 − Cνi+1+1

) (√
|νi − 1|Cνi−1 +

√
|νi + 1|Cνi+1

)
,

(6.3.19)

where we used that the terms in round brackets in the first equation are the same and can
be factored out. Combining (6.3.19) with (6.3.18) gives us the compact equation(√

|ki + ki−1 − 2|Cki−2,ki−1
−
√
|ki + ki−1 + 2|Cki+2,ki−1

)
×

×
(
Cνi+1−1 − Cνi+1+1

) (√
|νi − 1|Cνi−1 +

√
|νi + 1|Cνi+1

)
.

(6.3.20)

We can carry out the same steps for the third term of (6.3.12) which equals the second term
of (6.3.12) if we interchange the µ- and ν-labels. Then, we obtain:(√

|ki + ki−1 − 2|Cki−2,ki−1
−
√
|ki + ki−1 + 2|Cki+2,ki−1

)
×

×
(
Cµi+1−1 − Cµi+1+1

) (√
|µi − 1|Cµi−1 +

√
|µi + 1|Cµi+1

) (6.3.21)

We see that (6.3.20) and (6.3.21) share the same difference equation for the k-coefficients.
Therefore, when reinserting (6.3.20) and (6.3.21) into (6.3.12), we can factor out the difference
equations for the k-coefficients. Using this and (6.3.16), we obtain the following expression
for (6.3.12):
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0
!

=
(√
|ki + ki−1 + 1| −

√
|ki + ki−1 − 1|

)
Ck ·

(√
|µi + 2|Cµi+2 −

√
|µi − 2|Cµi−2

)
×

×
(√
|νi + 2|Cνi+2 −

√
|νi − 2|Cνi−2

)
+
(√
|ki + ki−1 − 2| Cki−2,ki−1

−
√
|ki + ki−1 + 2| Cki+2,ki−1

)
×

×

[(√
|µi + 1| −

√
|µi − 1|

)
Cµ

(
Cνi+1−1 − Cνi+1+1

)(√
|νi − 1| Cνi−1 +

√
|νi + 1| Cνi+1

)
+
(√
|νi + 1| −

√
|νi − 1|

)
Cν

(
Cµi+1−1 − Cµi+1+1

)(√
|µi − 1| Cµi−1 +

√
|µi + 1| Cµi+1

)]
.

(6.3.22)

Note that this equation has to be satisfied at all vertices i and for all labels ki, ki−1, µi, µi+1, νi,
and νi+1. Furthermore, this equation consists of the sum of two terms, each having a nice
product form. To make the action of the Euclidean operator Ĥeucl vanish, we take advantage
of the product form of (6.3.22) by setting the individual factors to zero. For this, there are
several possibilities for which we have to check if the corresponding difference equations are
solvable. We will discuss this in the following two chapters. First, we state some of the
most immediate possibilities to satisfy (6.3.22), whereat we have to keep in mind that the
corresponding conditions on the coefficients have to be satisfied for all i:

• To annihilate the first term of (6.3.22), we could impose the linear, homogeneous dif-
ference equations with nonconstant coefficients√
|µi + 2|Cµi+2−

√
|µi − 2|Cµi−2 = 0 or

√
|νi + 2|Cνi+2−

√
|νi − 2|Cνi−2 = 0, (6.3.23)

which are of fourth order in µi and νi, respectively.

• To annihilate the second term of (6.3.22), we recognize that it consists of two factors:
One factor is given by a relation between k-coefficients, which we could impose to be
zero, giving us the linear, homogeneous difference equation with nonconstant coefficients√

|ki + ki−1 − 2| Cki−2,ki−1
−
√
|ki + ki−1 + 2| Cki+2,ki−1

= 0, (6.3.24)

which is of fourth order in ki. The other factor is given by the sum of two terms which
both are a product of two relations between the ν- and the µ-coefficients, respectively.
Therefore, to make the second term of (6.3.22) vanish, we may, alternatively to (6.3.24),
impose the linear, homogeneous difference equations with constant coefficients

Cµi−1
− Cµi+1

= 0 and Cνi−1
− Cνi+1

= 0, (6.3.25)

which are of second order in µi and νi, respectively. We could also impose the linear,
homogeneous difference equations with nonconstant coefficients√

|µi − 1|Cµi +
√
|µi + 1|Cµi = 0 and

√
|µi − 1|Cνi +

√
|νi + 1|Cνi = 0, (6.3.26)

which are of second order in µi and νi, respectively.
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It turns out that any of the above listed equations is solvable ∀i = 1, ..., N , the exception
being (6.3.24), which cannot be solved at all vertices. The problem in (6.3.24) arises from the
square root prefactors, which couple two k-labels from neighboring vertices. We will explain
this in more detail in section 6.3.3. In the following two chapters, we discuss the possibilities
for combining the relations (6.3.23)-(6.3.26) such that (6.3.22) is satisfied. It appears that we
have two main classes of solutions: One class restricts only coefficients with µ- and ν-labels,
cf. section 6.3.2, while the other restricts coefficients with all kinds of labels, cf. section 6.3.3.
We will also discuss the explicit solutions of (6.3.23)-(6.3.26).

6.3.2 Explicit solutions restricting only µ- and ν-labels

In this chapter, we state explicit solutions of (6.3.22) that only involve conditions on coeffi-
cients with µ- and ν-labels, i.e., on the coefficients Cµi and Cνi for i = 1, ..., N . Thus, for the
Gowdy states this corresponds to only the scalar X and Y degrees of freedom being influ-
enced, while we can choose the coefficients Ck freely, i.e., the U(1) degrees of freedom remain
arbitrary.

First, we discuss the difference equations we need to impose to satisfy (6.3.22) without
restricting the coefficients Ck. These difference equations are given by√

|µi + 1|Cµi+1 +
√
|µi − 1|Cµi−1 = 0 ∀i ∈ {1, ....N} and (6.3.27)√

|νi + 1|Cνi+1 +
√
|νi − 1|Cνi−1 = 0 or Cνi+1 − Cνi−1 = 0 ∀i ∈ {1, ....N}. (6.3.28)

We now explain why these conditions suffice to satisfy (6.3.22). We see that (6.3.27) is
contained in the second term of (6.3.22) but will annihilate only part of it: The term containing
shifted ν-coefficients survives. To make this residual term vanish, we observe that it has a
product form. Thus we can impose one of the factors to be zero, i.e., we can choose on of the
difference equations in (6.3.28). Up to now we only justified how (6.3.27) and (6.3.28) make
the second term of (6.3.22) vanish. We claim now that (6.3.27) also annihilates the first term
of (6.3.22). In particular, we can show that if (6.3.27) is satisfied then also√

|µi + 2|Cµi+2 −
√
|µi − 2|Cµi−2 = 0 (6.3.29)

is true which makes the first contribution of (6.3.22) vanish as the relation in (6.3.29) appears
there. To show that (6.3.29) follows from (6.3.27), we shift in (6.3.27) µi by ±1 to obtain√

|µi + 2|Cµi+2 +
√
|µi|Cµi = 0 and

√
|µi|Cµi +

√
|µi − 2|Cµi−2 = 0. (6.3.30)

Taking the difference between these two equations recovers (6.3.29) which finishes our argu-
ment. Note that if we assume that (6.3.29) holds, (6.3.27) is not fulfilled. To see this, we
shift (6.3.29) by ±1 in µi to obtain√
|µi + 3|Cµi+3−

√
|µi − 1|Cµi−1 = 0 and

√
|µi + 1|Cµi+1 +

√
|µi − 3|Cµi−3 = 0. (6.3.31)

Taking the difference between these two equations will not recover (6.3.27). In summary, we
have that if (6.3.27) is fulfilled, also (6.3.29) holds, but not vice versa. We conclude that
imposing the difference equations (6.3.27) and (6.3.28) solves (6.3.22). We can now proceed
to solving these equations explicitly.

In the following, we state the explicit solutions of the difference equations in (6.3.27) and
(6.3.28):
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• For solving (6.3.27), we recall the definition of the set mi in which µi takes values, cf.
(6.0.5):

mi := {µ̃i + p | p ∈ Z}, (6.3.32)

where µ̃i is an arbitrary real number. We observe that if we choose µ̃i to be any integer
value, the resulting sets mi will be the same as µ̃i gets shifted by an integer p in (6.3.32).
Hence, also the relations between the coefficients given by (6.3.27) coincide. Analogously
we observe that if µ̃i is not an integer but any other real number, we can restrict to
µ̃i ∈ (0, 1) and also recover all possible sets mi. In total, we can restrict without loss
of generality to the cases of µ̃i = 0 and µ̃i ∈ (0, 1) and discuss the solutions of (6.3.27)
for the corresponding label sets mi. First, we rewrite (6.3.27) in a form that is more
convenient for finding an iterative solution: We first shift µi by +1 in (6.3.27) and obtain√

|µi + 2|Cµi+2 +
√
|µi|Cµi = 0. (6.3.33)

We now isolate one coefficient for which we have two possibilities:

Cµi+2 = −

√
|µi|
|µi + 2|

Cµi = 0 (6.3.34)

Cµi = −

√
|µi + 2|
|µi|

Cµi+2 = 0. (6.3.35)

Using this, we first solve (6.3.27) for µi ∈ Z which corresponds to µ̃i = 0. Writing out
(6.3.34) and (6.3.35) for some values of µi gives us:

µi (6.3.34)
0 C2 = 0 · C0 = 0

1 C3 = −
√

1
3
C1

2 C4 = −
√

1
3
C2 = 0

3 C5 = −
√

3
5
C3 = +

√
1
5
C1

4 C6 = −
√

4
6
C4 = 0

5 C7 = −
√

5
7
C5 = −

√
1
7
C1

µi (6.3.35)
-1 C−1 = −C1

-2 C−2 = −0 · C0 = 0

-3 C−3 = −
√

1
3
C−1 = +

√
1
3
C1

-4 C−4 = −
√

2
4
C−2 = 0

-5 C−5 = −
√

3
5
C−3 = −

√
1
5
C1

-6 C−6 = −
√

4
6
C−4 = 0

In these tables, we used, if possible, the expressions for the coefficients from the lines
before to either get that the coefficients are zero or related to the coefficient C1. From
the above tables, we can read off the solutions of (6.3.27) for µi ∈ Z:

C2µi = 0 and C2µi+1 = (−1)µi

√
1

|2µi + 1|
C1 , (6.3.36)

i.e., only the odd coefficients are non-zero and C1 serves as an initial condition. Note
that C0 also remains arbitrary, as can be seen from the first line of the left and the
second line of the right above table. Now, we consider the case of non-integer values
for µ̃i which corresponds to µ̃i ∈ (0, 1). Evaluating (6.3.34) at µi = µ̃i and considering
shifts by positive integers gives us the following equations:
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µi = (6.3.34)

µ̃i Cµ̃i+2 = −
√
| µ̃i
µ̃i+2
|Cµ̃i

µ̃i + 1 Cµ̃i+3 = −
√
| µ̃i+1
µ̃i+3
|Cµ̃i+1

µ̃i + 2 Cµ̃i+4 = −
√
| µ̃i+2
µ̃i+4
|Cµ̃i+2 = +

√
| µ̃i
µ̃i+4
|Cµ̃i

µ̃i + 3 Cµ̃i+5 = −
√
| µ̃i+3
µ̃i+5
|Cµ̃i+3 = +

√
| µ̃i
µ̃i+5
|Cµ̃i+1

Evaluating (6.3.35) at µi = µ̃i and considering shifts by negative integers gives us the
following equations:

µi = (6.3.35)

µ̃i − 1 Cµ̃i−1 = −
√
| µ̃i+1
µ̃i−1
|Cµ̃i+1

µ̃i − 2 Cµ̃i−2 = −
√
| µ̃i
µ̃i−2
|Cµ̃i

µ̃i − 3 Cµ̃i−3 = −
√
| µ̃i−1
µ̃i−3
|Cµ̃i−1 = +

√
| µ̃i+1
µ̃i−3
|Cµ̃i+1

µ̃i − 4 Cµ̃i−4 = −
√
| µ̃i−2
µ̃i−4
|Cµ̃i−2 = +

√
| µ̃i
µ̃i−4
|Cµ̃i

In the above tables, we used, if possible, the expressions for the coefficients from the
lines before. Furthermore, we can read off the solution of (6.3.27) from the above tables:

Cµ̃i+2n = (−1)n

√∣∣∣∣ µ̃i
µ̃i + 2n

∣∣∣∣Cµ̃i ,
Cµ̃i+2n+1 = (−1)n

√∣∣∣∣ µ̃i + 1

µ̃i + 2n+ 1

∣∣∣∣Cµ̃i+1,

(6.3.37)

with n ∈ Z. We obtain that all coefficients are in general non-zero and Cµ̃i , Cµ̃i+1 serve
as an initial condition. We also want to remark that we focused on µ̃i = 0 and µ̃i = (0, 1)
because for general µ̃i, we cannot write down a solution of the form of (6.3.37) which is
generally valid as we divide by zero for some choices of µ̃i in (6.3.37). This happens for
example in the second equation of (6.3.37) for µ̃i = −1 and n = 0.

• Now, we state the explicit solution of (6.3.28). We already solved the first equation of
(6.3.28) in the point before. For the other equation, we shift νi by +1 and obtain

Cνi+2 − Cνi = 0. (6.3.38)

This difference equations is solved in [147] on page 121: We first determine the charac-
teristic equation of (6.4.19), i.e., we make the ansatz Cνi = rνi with r a to be determined
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real or complex constant. Plugging this ansatz into (6.3.38) gives us

r2 − 1 = (r + 1)(r − 1) = 0. (6.3.39)

This yields us the roots r1 = 1 and r2 = −1. The fundamental set of solutions of
(6.3.38) is given by C

(1)
νi = (r1)νi = 1 and C

(2)
νi = (r2)νi = (−1)νi . The general solution

is then given by a linear combination of the fundamental solutions:

Cνi = c1 + c2(−1)νi , (6.3.40)

where c1 and c2 are arbitrary constant coefficients. Using −1 = eiπ we may rewrite the
fundamental solution C

(2)
νi as cos (πνi) and (6.3.40) as

Cνi = c1 + c2 cos (πνi), (6.3.41)

where we may also add a function sin (πνi) which, however, is zero for the case νi ∈ Z.

Note that in (6.3.27) and (6.3.28) we can also exchange all µ- with all ν-labels, giving us
another way to solve (6.3.22). The reason for this is that all terms of (6.3.22) are symmetric
with respect to exchanging all µ with all ν-labels. Furthermore, we could solve (6.3.27) and
(6.3.28) only for certain vertices i and for the remaining vertices, we could solve the versions
of (6.3.27) and (6.3.28) with all µ- and ν-labels interchanged.

To conclude this section, we make two remarks:

• Note that (6.3.27) and (6.3.28) do not restrict the coefficients Ck. Therefore, we can
define the states ϕ in (6.0.3) that correspond to the solutions of (6.3.27) and (6.3.28) as

ϕk :=
∑
µ∈m

∑
ν∈n

CkCµ1 ...CµNCν1 ...CνN |k, µ, ν〉 , (6.3.42)

i.e., we can omit the sum in (6.0.3) and label the state by k := (k1, k2, ..., kN). Note
that we included the coefficient Ck in the above equation, representing the possibility
that we can multiply the state by an arbitrary function of the k-labels.

• Now, we comment on the norm of the state given in (6.3.42). We already computed the
norm of a general formal state ϕ in (6.2.3), the only difference now is that we do not
have a sum over the k-labels:

< ϕk, ϕk >=
∑
µ∈m

∑
ν∈n

|CkCµ1 ...CµNCν1 ...CνN |2. (6.3.43)

The explicit form of the non-zero coefficients Cµi and Cνi is for all i either given by a
inverse square root function, cf. (6.3.36) and (6.3.37), or a constant or cosine-function,
cf. (6.3.41). If we plug these functions into (6.3.43), the sums do not converge, as we
either end up with an infinite sum over a constant or cosine-function, or an infinite sum
of the form ∑

µi∈mi

1

µi
, (6.3.44)

where we considered here as an example only the sum over µi. This infinite sum can be
traced back to the harmonic series which is not converging. Hence, our solutions ϕk are
not normalizable. This, however, is a general scenario occurring for an operator having a
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continous spectrum. If we consider for example the momentum operator ~̂p = −i/~~∇ in
three dimensions, it has a continous spectrum and plane waves as eigenfunctions. Plane
waves, however, are not square integrable and therefore not contained in the Hilbert
space H := L2(R3, d3x), which is the space of functions on R3 being square integrable
with respect to the Lebesgue measure d3x. Nevertheless, one can perceive plane waves
as so-called generalized eigenfunctions of ~̂p or rather as distributions. See for example
chapter VI of [150] for an introduction into the theory of distributions. More precisely,

the eigenfunctions of ~̂p have a meaning as the linear functionals

l~p(.) :=< ~p, . >:=

∫
d3x e

i
~~x~p . , (6.3.45)

which are defined on a dense domain of H, namely the Schwartz space S(R3), which is
the space of smooth functions on R3 of rapid decrease. To explain this a little bit more,
we consider the general linear functional

l(.) :=

∫
d3p c(~p) < ~p, . >, (6.3.46)

with arbitrary coefficients c(~p) and < ~p, . > defined as in (6.3.45). Applying (6.3.46) to
an element of H := L2(R3, d3x) does not result in a finite complex number for general
coefficients c(~p) and hence, (6.3.46) would not define a linear functional on H. However,
if we restrict to a dense domain of H, namely the Schwartz space S, (6.3.46) indeed
defines a linear functional: Applying l to f ∈ S gives us

l(f) =

∫
d3p c(~p) < ~p, f > . (6.3.47)

Now, we can use the Fourier transform of f , given by f(x) =
∫

d3p′f̃(~p ′)e
i
~~x~p

′
where

f̃ is of rapid decrease. Inserting this into (6.3.47) and using < ~p, ~p ′ >= δ(~p − ~p ′), we
obtain

l(f) =

∫
d3p

∫
d3p′ c(~p)f̃(p′)δ(~p− ~p ′) =

∫
d3p c(~p)f̃(p), (6.3.48)

which is finite as f̃(p) is of rapid decrease. Hence, (6.3.46) really defines a linear func-
tional on the dense subset S ⊂ H and therefore also (6.3.45) does. Thus, although the
eigenfunctions of the momentum operator are not normalizable, they have a meaning
as linear functionals defined on a dense domain of the Hilbert space. Note that the
space of linear functionals S ′, which is also called the space of tempered distributions,
contains the elements (6.3.46) and is also larger than H′ which is the dual of H, giving
us the so-called Gelfand triple or rigged Hilbert space S ⊂ H ⊂ S ′. Here, S ⊂ H is
clear as not every square integrable function is also of rapid decrease12. For H ⊂ S ′ we
use that H being a Hilbert space is reflexive, i.e., it is isomorphic to its dual H′ which
is a consequence of the Riesz lemma13. Hence, using the identification H ' H′, we can
compare H to the dual space S ′. Furthermore, H′ is a subset or more precisely, it can
be embedded into S ′, which we illustrate using (6.3.46): If we act with (6.3.46) on a
function f ∈ H, we need to restrict the coefficients to obtain a finite complex numbers
such that (6.3.46) is in H′. However, if we let the linear functionals (6.3.46) act on

12Choose for instance f(x) = 1/x in one dimension.
13This theorem ensures that for a continuous linear functional T : H → C on a Hilbert space H there exists

a unique v ∈ H such that T (.) =< v, . > and additionally, we have that ||T || = supw 6=0
|T (w)|
||w|| = ||v||.
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the dense domain S we can keep the coefficients c(~p) arbitrary and in particular choose
much more singular coefficients, yielding a larger class of linear functionals than H′.
Hence, we arrive at H′ ⊂ S ′. Having discussed the case of the momentum operator,
now we want to apply this to our case: The states ϕk in (6.3.42), which correspond to
the plane waves, are non-normalizable eigenfunctions of the Euclidean operator Ĥeucl,
which corresponds to the momentum operator, with eigenvalue zero. Thus, we would
have to show that the zero is contained in the continous part of the spectrum of Ĥeucl.
For this, we would have to construct the projection-valued measure associated with
Ĥeucl, which is a very hard task for this complicated operator and goes beyond the work
of this thesis. The fact that the solution states are not normalizable, however, can be
handled by constructing the following linear functionals from the solution states ϕk in
analogy to (6.3.45):

Φk :=
∑
µ∈m

∑
ν∈n

[CkCµ1 ...CµNCν1 ...CνN ]∗ < k, µ, ν, . >, (6.3.49)

where the coefficients Cµi , Cνi are those of the solution state ϕk in (6.3.42). We now
want to consider the sector of the infinite tensor product Hilbert space spanned by
abstract Gowdy states, which we call HGowdy, and find a subset thereof, such that when
we apply the functional (6.3.49) to states contained in the subset, we obtain a finite
complex number. For this, we consider the following general linear functional defined
in analogy to (6.3.46):

Φ =
∑
k∈ZN

∑
µ∈m

∑
ν∈n

C ′k,µ,ν < k, µ, ν, . >, (6.3.50)

where m,n are subsets of RN as defined in (6.0.5) and in particular the same as for ϕk
in (6.3.42). Furthermore, C ′k,µ,ν denote some arbitrary coefficients . We now consider a
general element of HGowdy given by

ϕ :=
∑
k∈ZN

∑
µ∈m

∑
ν∈n

C ′′k,µ,ν |k, µ, ν〉 , (6.3.51)

with the coefficients C ′′k,µ,ν additionally satisfying∑
k∈ZN

∑
µ∈m

∑
ν∈n

|C ′′k,µ,ν |2 <∞ (6.3.52)

such that ϕ is normalizable. Applying the linear functional Φ to ϕ and using the
orthonormality of the abstract Gowdy states yields

Φ(ϕ) =
∑
k′∈ZN

∑
µ∈m

∑
ν∈n

[
C ′k,µ,ν

]∗
C ′′k,µ,ν , (6.3.53)

which for general C ′k,µ,ν is only finite if the coefficients C ′′k,µ,ν are chosen appropriately.
Hence, (6.3.52) and (6.3.53) are two conditions which need to be satisfied for elements
ϕ ∈ HGowdy in (6.3.51) such that Φ defines a linear functional on them. An example of
a state fulfilling the conditions (6.3.52) and (6.3.53) is the following state:

ϕ̃ :=
∑
k∈KN

∑
µ∈m′

∑
ν∈n′

C̃k,µ,ν |k, µ, ν〉 , (6.3.54)
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where C̃k,µ,ν denote arbitrary, real or complex coefficients, K is a finite subset of Z and
m′ = m′1 × ... ×m′N , n′ = n′1 × ... × n′N are finite subsets of RN defined in analogy to
(6.0.5) by

m′i := {µ̃i + p | p ∈ P ⊂ Z, |P | <∞} and n′i := {µ̃i + p | p ∈ P ⊂ Z, |P | <∞},
(6.3.55)

where i ∈ {1, ..., N} and µ̃i, ν̃i ∈ R. The norm of the state ϕ̃ in (6.3.54) is finite, simply
because the summation labels take values in finite sets. Therefore, ϕ̃ really defines an
element of the Gowdy Hilbert space. If we apply the linear functional (6.3.50) to such
a state ϕ̃, we can use the orthonormality of the basis states |k, µ, ν〉 to obtain

Φ(ϕ) =
∑
k∈KN

∑
µ∈m′

∑
ν∈n′

[
C ′k,µ,ν

]∗
C̃k,µ,ν , (6.3.56)

which is a finite, complex number as the sets KN , m′, and n′ are finite. In summary,
(6.3.49) defines a linear functional on a subset of HGowdy, spanned by states (6.3.51)
satisfying (6.3.52) and (6.3.53), where (6.3.54) is an explicit example for such states.
As we kept the linear functional (6.3.49) general, we can infer that also the special
linear functionals Φk defined for each k in (6.3.49) are linear functionals on the domain
spanned by states (6.3.51) satisfying (6.3.52) and (6.3.53) . Hence, we can conclude
that in analogy to the momentum operator, the solution states ϕk in (6.3.42) do not
have a meaning as elements of the Hilbert space HGowdy, but as linear functionals on a
subset of it.

6.3.3 Explicit solutions restricting all labels

In the following, we present explicit solutions of (6.3.22) that involve conditions on coefficients
with all kinds of labels, i.e., k-, µ- and ν-labels. We end up with solutions where some of the
µ- and ν-coefficients remain arbitrary. Furthermore, in these solutions, the k-coefficients can
be separated in a certain way and contain arbitrary functions of certain k-labels. Additionally,
in the case of an odd number of vertices, the k-coefficients do not depend on one particular
k-label.

First, we show in the following two paragraphs that the difference equation√
|ki + ki−1 − 2| Cki−2,ki−1

−
√
|ki + ki−1 + 2| Cki+2,ki−1

= 0, (6.3.57)

which annihilates the second term of (6.3.22), is only solvable for all i = 1, ..., N for N = 2.
Already for N = 3, we are forced to the trivial solution Ck1,k2,k3 = 0 ∀k1, k2, k3 if we want to
solve (6.3.57) for all i, that is, at each vertex.

First, we solve (6.3.57) for all i = 1, ..., N for N = 2 vertices. For i = 1, (6.3.57) reads as√
|k1 + k2 − 2| Ck1−2,k2 −

√
|k1 + k2 + 2| Ck1+2,k2 = 0 (6.3.58)

and for i = 2 as √
|k1 + k2 − 2| Ck1,k2−2 −

√
|k1 + k2 + 2| Ck1,k2+2 = 0, (6.3.59)

where we used in (6.3.58) that for Gowdy states we have k0 = k2. For solving (6.3.58), we
recognize that in this equation the sum of the labels of the coefficients equals the expression
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in the square root prefactors. For example, for the first coefficient of (6.3.58), Ck1−2,k2 , the
sum of the labels is k1 + k2 − 2 which also appears in the square root prefactor. Therefore,
one might think that the solution for a general coefficient Ck1,k2 is just given by 1/

√
|k1 + k2|.

Plugging this ansatz into (6.3.58) would cancel the square root prefactors in (6.3.58) and
result in 1 − 1 = 0, i.e., (6.3.58) is satisfied. However, for k1 + k2 = 0 we have to find a
different solution than Ck1,k2 = 1/

√
|k1 + k2| as we would divide by zero in this case. In

(6.3.58), this scenario corresponds to the case of k1 + k2± 2 = 0. We restrict in the following
to the case k1 + k2 − 2 = 0, the other one can be treated analogously. For k1 + k2 − 2 = 0,
(6.3.58) yields

0 · Ck1−2,k2 −
√
|k1 + k2 + 2| Ck1+2,k2 = 0, (6.3.60)

from which follows that the coefficient Ck1+2,k2 has to be zero whereas the coefficient Ck1−2,k2

remains undetermined. However, (6.3.58) is true for all k1 and k2 and thus comprises a
whole set of difference equations. Accordingly, the coefficients Ck1+2,k2 and Ck1−2,k2 will
show up in another difference equation, respectively. For Ck1+2,k2 this happens for the labels
k′1 = k1 + 4, k′2 = k2, for which (6.3.58) reads as√

|k′1 + k′2 − 2| Ck′1−2,k′2
−
√
|k′1 + k′2 + 2| Ck′1+2,k′2

=

=
√
|k1 + k2 + 2| Ck1+2,k2 −

√
|k1 + k2 + 6| Ck1+6,k2 = 0,

where we resubstituted k′1 = k1 + 4 and k′2 = k2. As Ck1+2,k2 = 0, it follows from the above
equation that Ck1+6,k2 has to be zero as well. Again, Ck1+6,k2 appears in another relation
and will imply Ck1+10,k2 = 0 etc. Therefore, we obtain in a first step that for labels fulfilling
k1 + k2 − 2 = 0, we have that Ck1+2+4·n,k2 = 0, with n ≥ 0 a positive integer. Similarly, the
coefficient Ck1−2,k2 that remains arbitrary in (6.3.60) appears in another relation, namely for
k′1 = k1 − 4, k′2 = k2, for which (6.3.58) reads as :√

|k1 + k2 − 6| Ck1−6,k2 −
√
|k1 + k2 − 2| Ck1−2,k2 = 0. (6.3.61)

However, Ck1−2,k2 still remains arbitrary, as the square root prefactor is zero due to k1+k2−2 =
0, the condition we imposed at the beginning of our argument. Hence, we can infer from
(6.3.61) that Ck1−6,k2 has to be zero. Again, Ck1−6,k2 appears in another difference equation
resulting in Ck1−10,k2 = 0 etc. In total, we get that Ck1−2,k2 with k1 + k2 − 2 = 0 is arbitrary
and all other coefficients resulting from shifting k1 in Ck1−2,k2 by 4 ·n with n ∈ Z \ 0 are zero.
In general, for an arbitrary coefficient Ck1,k2 with labels k1, k2 satisfying k1 + k2 = 0, we get
that Ck1,k2 can be chosen arbitrarily and all coefficients Ck1+4·n,k2 with n ∈ Z \ 0 vanish. If we
also choose the arbitrary coefficient Ck1,k2 to be zero, we can treat the case k1 + k2 = 0 in a
compact way by just imposing that Ck1,k2 = 0 if |k1 + k2| mod 4 = 0. This way, we can write
down the solution of (6.3.58) as

Ck1,k2 =

{
0 if |k1 + k2| mod 4 = 0,

1√
|k1+k2|

otherwise
. (6.3.62)

This also solves (6.3.59): We see that (6.3.58) and (6.3.59) are symmetric in k1, k2. The
equations have exactly the same structure, only that either k1 or k2 is shifted by ±2. Thus,
to solve (6.3.59), we can follow the same steps we did for (6.3.58). Then, we get for an
arbitrary coefficient Ck1,k2 with labels k1, k2 satisfying k1 + k2 = 0, using 6.3.59, that Ck1,k2
can be chosen arbitrarily and all coefficients Ck1,k2+4·n with n ∈ Z \ 0 vanish. Setting the
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arbitrary coefficient to zero, we again can compactly treat this case by imposing Ck1,k2 = 0

for |k1 + k2| mod 4 = 0. For k1 + k2 6= 0, we can make the ansatz Ck1,k2 = 1/
√
|k1 + k2|.

Therefore, (6.3.62) also solves (6.3.59). We end up with the result that for 2 vertices, (6.3.57)
can be solved for all i and now proceed to the case of 3 vertices.

Now, we try to solve (6.3.57) for all i = 1, ..., N for N = 3 vertices. We will show that
already when we try to solve two equations of the type of (6.3.57) simultaneously, we get a
contradiction that can only be removed if we choose the trivial solution, i.e., all coefficients
Ck1,k2,k3 are zero. First, we rewrite (6.3.57) for convenience as

Cki+4,ki−1
=

√
|ki + ki−1|
|ki + ki−1 + 4|

Cki,ki−1
, (6.3.63)

which we get by shifting (6.3.57) in ki by +2 and then isolating the coefficient Cki+4,ki−1
on

the left hand side. Note that for |ki + ki−1 + 4| = 0, we would have divided by zero. For
any such labels ki, ki−1, however, we will choose the corresponding coefficients to be zero and
impose Ck1,k2 = 0 if |ki + ki−1| mod 4 = 0 in analogy to the solution of (6.3.62). Therefore,
we implicitly assume in (6.3.63) that the case |ki + ki−1| mod 4 = 0 is excluded. For i = 1, 2,
(6.3.63) reads as

Ck1+4,k2,k3 =

√
|k1 + k3|
|k1 + k3 + 4|

Ck1,k2,k3 , Ck1,k2+4,k3 =

√
|k1 + k2|
|k1 + k2 + 4|

Ck1,k2,k3 . (6.3.64)

We now shift k1 by +4 in the second of the above equations, giving us

Ck1+4,k2+4,k3 =

√
|k1 + k2 + 4|
|k1 + k2 + 8|

Ck1+4,k2,k3 =

√
|k1 + k2 + 4|
|k1 + k2 + 8|

√
|k1 + k3|
|k1 + k3 + 4|

Ck1,k2,k3 , (6.3.65)

where in the second step, we used the first equation of (6.3.64) to replace Ck1+4,k2,k3 . Shifting
k2 by +4 in the first equation of (6.3.64) gives us

Ck1+4,k2+4,k3 =

√
|k1 + k3|
|k1 + k3 + 4|

Ck1,k2+4,k3 =

√
|k1 + k3|
|k1 + k3 + 4|

√
|k1 + k2|
|k1 + k2 + 4|

Ck1,k2,k3 , (6.3.66)

where in the second step, we used the second equation of (6.3.64) to replace Ck1,k2+4,k3 . Now,
we recognize that (6.3.65) and (6.3.66) give two relations that involve the same coefficients
Ck1+4,k2+4,k3 and Ck1,k2,k3 . In order to match these two conditions, we have to impose√

|k1 + k2|
|k1 + k2 + 4|

!
=

√
|k1 + k2 + 4|
|k1 + k2 + 8|

,

which, however, is a contradiction. The only other possibility to match the conditions stated
in (6.3.65) and (6.3.66) is that Ck1,k2,k3 is zero. Now, we chose k1, k2, k3 arbitrary up to the
condition |ki + ki−1| mod 4 6= 0 for i = 1, 2, 3. For labels fulfilling |ki + ki−1| mod 4 = 0 for
i = 1, 2, 3, we set the corresponding coefficients to zero anyway. Therefore, we can conclude
that for all k1, k2, k3 the coefficients have to be zero. This trivial solution, however, is un-
desirable. Adding the difference equation (6.3.63) for i = 3 to (6.3.64) will not improve the
situation: We can construct a contradiction for the i = 2, 3 contributions of (6.3.63) the same
way we did above for the i = 1, 2 contributions. This generalizes to an arbitrary number
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of vertices and we end up with the result that we cannot solve (6.3.57) for all i = 1, ..., N
simultaneously.

It is, however, possible to solve (6.3.57) in the case of 3 vertices for one i. In the following,
we exemplarily consider (6.3.57) for i = 2, which reads as√

|k1 + k2 − 2| Ck1,k2−2,k3 −
√
|k1 + k2 + 2| Ck1,k2+2,k3 = 0. (6.3.67)

This difference equation can be solved in analogy to the solution for 2 vertices stated in
(6.3.62):

Ck1,k2,k3 =

{
0 if |k1 + k2| mod 4 = 0,

1√
|k1+k2|

· f1(k1) · f2(k3) otherwise.
(6.3.68)

Here, f1(k1) and f2(k3) are arbitrary real or complex functions of k1 or rather k3. We show
that (6.3.68) is indeed a solution of (6.3.67) by plugging (6.3.68) into (6.3.67): That the first
case of (6.3.68) solves (6.3.67) was already shown for 2 vertices, see the arguments before
(6.3.62). For the second case of (6.3.68), the coefficients appearing in (6.3.67) are given by

Ck1,k2−2,k3 =
f1(k1) · f2(k3)√
|k1 + k2 − 2|

, Ck1,k2+2,k3 =
f1(k1) · f2(k3)√
|k1 + k2 + 2|

. (6.3.69)

If we plug this into (6.3.67), the square root factors will cancel and what remains is f1(k1)f2(k3)−
f1(k1)f2(k3) = 0. Hence, (6.3.68) is indeed a solution of (6.3.67). Furthermore, we see from
the product structure of the solution in (6.3.68) for the non-zero case that we can separate
the coefficients as Ck1,k2,k3 = Ck1,k2Ck3 , with Ck3 arbitrary and Ck1,k2 given by

Ck1,k2 =

{
0 if |k1 + k2| mod 4 = 0,

1√
|k1+k2|

· f(k1) otherwise,
(6.3.70)

where again f(k1) denotes an arbitrary real or complex function, which we can include be-
cause (6.3.67) only contains shifts in the k2 label. We can also solve (6.3.57) for i = 1 or i = 3
using an ansatz similar to (6.3.70).

In the following, we solve more than one of the equations (6.3.57) simultaneously for graphs
with more than 3 vertices. We have to distinguish between an even and an odd number of
vertices:

• N even: First, we consider the example of 4 vertices. We can perform the separation
ansatz Ck1,k2,k3,k4 = Ck1,k2Ck3,k4 with

Ck1,k2 =

{
0 if |k1 + k2| mod 4 = 0,

1√
|k1+k2|

· f1(k1) otherwise,
(6.3.71)

solving (6.3.57) for i = 2, which reads as√
|k1 + k2 − 2| Ck1,k2−2 −

√
|k1 + k2 + 2| Ck1,k2+2 = 0. (6.3.72)

Furthermore, we impose

Ck3,k4 =

{
0 if |k3 + k4| mod 4 = 0,

1√
|k3+k4|

· f2(k3) otherwise,
(6.3.73)
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to solve (6.3.57) for i = 4, which reads as√
|k3 + k4 − 2| Ck3,k4−2 −

√
|k3 + k4 + 2| Ck3,k4+2 = 0. (6.3.74)

We can generalize this to an arbitrary, even number of vertices N = 2 · n, with n ≥ 2 a
positive integer number. We exclude the special case of two vertices, which we treated
at the beginning of this section. The first step is to perform the separation ansatz

Ck1,...,kN = Ck1,k2 · Ck3,k4 · ... · CkN−1,kN . (6.3.75)

Here, the coefficients Ckr,ks with (r, s) = (1, 2), (3, 4), ..., (N − 1, N) are determined by

Ckr,ks =

{
0 if |kr + ks| mod 4 = 0,

1√
|kr+ks|

· fI(kr) otherwise,
(6.3.76)

in analogy to (6.3.71) and (6.3.73). This solves (6.3.57) for i = 2, 4, ..., N . Furthermore,
in (6.3.76), I ranges from 1 to N/2 as we have N/2 possible values for the index r.
Thus, we end up with N/2 arbitrary functions fI .

• N odd: Here, we proceed in analogy to the case of an even number of vertices. First, we
consider the example of 5 vertices. We can perform the separation ansatz Ck1,k2,k3,k4,k5 =
Ck1,k2Ck3,k4Ck5 , with Ck1,k2 and Ck3,k4 determined by (6.3.71) and (6.3.73). This way,
(6.3.57) is solved for i = 2, 4. The difference to the case of an even number of vertices
is now that we have an arbitrary coefficient Ck5 . We can generalize this to an arbitrary
number of odd vertices N = 2 · n+ 1, with n ≥ 1 a positive integer number. We do not
treat the case of one vertex here, for which we would obtain only one equation of the
type of (6.3.57) that can be solved iteratively. The separation ansatz for general, odd
N is now given by

Ck1,...,kN = Ck1,k2 · Ck3,k4 · ... · CkN−2,kN−1
· CkN . (6.3.77)

Here, the coefficients Ckr,ks for (r, s) = (1, 2), (3, 4), ..., (N − 2, N − 1) are determined in
analogy to (6.3.76). This way, we solve (6.3.57) for i = 2, 4, ..., N − 1. We end up with
(N − 1)/2 arbitrary functions and one arbitrary coefficient CkN .

Note that the separation ansätze of (6.3.75) and (6.3.77) are not the only possible ones. For
example for an even number of vertices, one could instead of (6.3.75) choose the ansatz

Ck1,...,kN = Ck1,kN · Ck2,k3 · ... · CkN−2,kN−1, (6.3.78)

with the coefficients Ckr,ks for (r, s) = (1, N), (2, 3), ..., (N − 2, N − 1) satisfying (6.3.76) and
solving (6.3.57) for i = 1, 3, ..., N − 1. Note that we used in (6.3.78) that only neighboring
k-labels are coupled by square root prefactors in (6.3.57) and that the labels k1 and kN are
adjacent, as we identify kN+1 with k1 and k0 with kN for Gowdy states. Similar to (6.3.78),
we could proceed in the case of an odd number of vertices.

Finally, we use the results from the previous paragraph to annihilate the action of the
Euclidean operator, i.e., we solve (6.3.22). The solutions we state here restrict coefficients
with all kind of labels, i.e., k-, µ- and ν-labels.
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• For an even number of vertices, we use (6.3.75) and (6.3.76) to annihilate the second
term of (6.3.22) for i = 2, 4, 6, ..., N . To make also the first contribution of (6.3.22)
vanish for i = 2, 4, 6, ..., N , we can choose√
|µi + 2|Cµi+2−

√
|µi − 2|Cµi−2 = 0 or

√
|νi + 2|Cνi+2−

√
|νi − 2|Cνi−2 = 0. (6.3.79)

To solve the remaining contributions of (6.3.22) for i = 1, 3, 5, ..., N − 1 we can pick√
|µi + 1|Cµi+1 +

√
|µi − 1|Cµi−1 = 0 and

√
|νi + 1|Cνi+1 +

√
|νi − 1|Cνi−1 = 0,

(6.3.80)
for which we already showed in section 6.3.2 that these conditions suffice to annihilate
both terms of (6.3.22). We recognize from (6.3.79) that the coefficients Cνi or Cµi for
i = 1, 3, 5, ..., N−1 remain arbitrary. Furthermore, as stated in the previous paragraph,
we have N/2 arbitrary functions involved in the solutions for the k-coefficients, cf.
(6.3.76).

• For an odd number of vertices, we can proceed in analogy to the case of an even number
of vertices. The only difference is that we annihilate the second term of (6.3.22) using
(6.3.77) and (6.3.76) not for i = 2, 4, 6, ..., N , as it is the case for N even, but for
i = 2, 4, 6, ..., N−1. For the first term of (6.3.22) for i = 2, 4, 6, ..., N−1, we use (6.3.79)
and thus, the coefficients Cνi or Cµi for i = 1, 3, 5, ..., N − 1 remain arbitrary. For the
remaining contributions of (6.3.22) for i = 2, 4, 6, ..., N , we use (6.3.80). Furthermore,
we have (N − 1)/2 arbitrary functions involved in the solutions of the k-coefficients, cf.
(6.3.76), and also the coefficient CkN remains arbitrary.

To complete the solutions for (6.3.22) we presented in this paragraph, we solve (6.3.79) explic-
itly. The other occurring difference equations in (6.3.80) we already solved in section 6.3.2.
We will exemplarily treat the difference equation for the µi-coefficient in (6.3.79), where it
suffices to consider the cases µ̃i = 0, i.e., µi ∈ Z, and µ̃i = (0, 1), see the discussion in section
6.3.2 below (6.3.32). For µi ∈ Z, we can solve (6.3.79) by

Cµi =

{
0 if µi ∈ 4 · Z,

1√
|µi|

otherwise.
(6.3.81)

The second case results from the observation that in (6.3.79), the expressions in the square
roots and the labels of the coefficients coincide. Thus, plugging the ansatz Cµi = 1/

√
|µi|

into (6.3.79) cancels the square root factors and results in 1 − 1 = 0. The first condition of
(6.3.81) we can deduce by first evaluating (6.3.79) for µi = 2 which gives C4 = 0. Then, we
look at (6.3.79) for µi = 2 + 4 · n with n ∈ Z \ 0, from which we can iteratively deduce that
C4 = C8 = C12 = ... = 0 and C−4 = C−8 = C−12 = 0. Note that C0 remains arbitrary, as it is
not fixed by (6.3.79): C0 appears in (6.3.79) for µi = 2,−2 resulting in the equations

√
4C4 − 0 · C0 = 0 and 0 · C0 −

√
4C−4 = 0, (6.3.82)

in which C0 remains undetermined. To write down the solution for Cµi in a compact way, we
did set C0 to zero in (6.3.81). Now, for µi taking non-integer values, i.e., µ̃i ∈ (0, 1), we can
simply make the ansatz

Cµi =
1√
|µi|

(6.3.83)

because now we do not divide by zero, as µi is non-zero.

We close this section with some remarks:
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• The solutions we presented in this section allow arbitrary coefficients. Therefore, we
could do the same as in the previous section 6.3.2 in (6.3.42), namely we could label
the solution states ϕ by the unfixed labels. For example, for an even number of vertices
and Cµi for i = 1, 3, 5, ..., N − 1 arbitrary, we could omit the sums in (6.0.3) over µi for
i = 1, 3, 5, ..., N − 1 and denote the solution state as ϕµ1,µ3,...,µN−1

.

• As we derived for the solution states in section 6.3.2, also here the norm of the solution
states is infinite. The µ- or rather ν-coefficients are solved by inverse square root func-
tions, cf. (6.3.81) and (6.3.83). This results in non-converging sums when computing
the norm, as we already explained in section 6.3.2 in the context of (6.3.43). For the
k-coefficients we will encounter sums of the form∑

ki∈Z

1

|ki|
,

when computing the norm. This series is divergent, as it can be traced back to the
divergent harmonic series. Therefore, the solution states we presented in this section
are not normalizable.

• We also want to point out the possibility of combining the solutions presented in the
current and the previous section with the zero volume conditions in section 6.2. For ex-
ample, we can satisfy (6.3.22) by choosing for each vertex one of the conditions presented
in the sections 6.2, 6.3.2 or 6.3.3.

This finishes our discussion of the annihilation of the Euclidean operator Ĥeucl and we now
turn to the annihilation of its adjoint in the next chapter.

6.4 Annihilation of the action of the adjoint Euclidean part

In this section, we derive conditions on the coefficients Ck,µ,ν of a formal state ϕ that make

the action of the adjoint Euclidean operator Ĥ
†
eucl vanish.

First, we proceed in analogy to section 6.3 to derive a difference equation of the form
of (6.3.22). We choose a similar separation ansatz as in (6.3.13), but also separate the k-
coefficients:

Ck,µ,ν = Ck1 · ... · CkN · Cµ1 · ... · CµN · Cν1 · ... · CνN . (6.4.1)

We will justify further below, why the separation of the k-coefficients is legitimate. The

difference between the Euclidean operator and its adjoint is that for Ĥ
†
eucl, the holonomies act

before the volume operator whereas for Ĥeucl it is exactly opposite. This results in a different

action and is the main reason why the difference equations we derive in the following for Ĥ
†
eucl

differ from those of Ĥeucl in (6.3.22). We illustrate this for the first shifted state in first term

of the action of Ĥ
†
eucl in (6.1.27), while we omit all k-dependent prefactors as well as the sum

over the k-labels for simplicity:

∑
µ∈m

∑
ν∈n

N∑
i=1

Cµ1 ...CµNCν1 ...CνN
√
|µi + 2||νi + 2| |k, µi + 2, νi + 2〉 , (6.4.2)

where we already performed the separation ansatz (6.4.1). We can now perform the substi-
tutions µ̃i = µi + 2, ν̃i = νi + 2 in analogy to section 6.3.1. Again, we use the translation
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invariance of the sums to arrive at the following expression being equivalent to (6.4.2):∑
µ∈m

∑
ν∈n

Cµ1 ...Cµi−2...CµNCν1 ...Cνi−2...CνN
√
|µi||νi| |k, µ, ν〉 . (6.4.3)

We see that the label dependent coefficients are now of the form
√
|µi||νi| after we transferred

the shift. For Ĥeucl, the same term would have lead to the factor
√
|µi − 2||νi − 2|. We can

proceed the same way for the other three states contained in the first term of the action of

Ĥ
†
eucl in (6.1.27). For the other two terms of (6.1.27), we consider exemplarily the first state

contained in the second term of (6.1.27), while we omit all µ-dependent parts for simplicity:∑
k∈Z

∑
ν∈n

Ck1 ...CkNCν1 ...CνN
√
|ki + ki−1 + 2|νi + 1| |ki + 2, µ, νi + 1, νi+1 + 1〉 . (6.4.4)

We now perform the substitutions k̃i = ki+2, ν̃i = νi+1, and ν̃i+1 = νi+1 +1. After renaming
k̃i, ν̃i, and ν̃i+1 as ki, νi, and νi+1, respectively, we arrive at∑

k∈Z

∑
ν∈n

Ck1 ...Cki−2...CkNCν1 ...Cνi−1Cνi+1−1...CνN
√
|ki + ki−1|νi| |k, µ, ν〉 . (6.4.5)

We can proceed similarly for all other terms of the action of Ĥ
†
eucl in (6.1.27) to arrive at

0
!

=
(√
|ki + ki−1 + 1| −

√
|ki + ki−1 − 1|

)√
|µi|
√
|νi|
(
Cµi+2 − Cµi−2

)(
Cνi+2 − Cνi−2

)
+

+
√
|ki + ki−1| (Cki−2 − Cki+2)×

×

[(√
|µi + 1| −

√
|µi − 1|

)√
|νi|
(
Cνi+1−1 − Cνi+1+1

)
(Cνi−1 + Cνi+1) +

+
√
|µi|
(√
|νi + 1| −

√
|νi − 1|

)(
Cµi+1−1 − Cµi+1+1

)
(Cµi−1 + Cµi+1)

]
.

(6.4.6)

We observe that, compared to the analogous expression for the Euclidean operator in (6.3.22),
the label-dependent prefactors can be pulled out of the relations between the coefficients. In
particular, ki and ki−1 are not coupled through the prefactor

√
|ki + ki−1| anymore, which

justifies the separation ansatz we made in (6.4.1).

Now, we state possible solutions of (6.4.6). Just like (6.3.22), (6.4.6) consists of the sum

of two terms, where each term has a nice product form. To obtain a zero action of Ĥ
†
eucl, we

can set the individual factors to zero. For this, the possible choices involve, in analogy to
section 6.3.2 and 6.3.3, only conditions on µ- and ν-labels or conditions on all labels, while
certain coefficients remain arbitrary. We present these possible choices in the following, while
we always first state the difference equations that have to be satisfied, then explain why they
fulfill (6.4.6) and finally, deduce the explicit form of the coefficients satisfying the respective
difference equations:

• The first possibility only restricts coefficients with µ- and ν-labels by the difference
equations

Cµi−1 − Cµi+1 = 0 and Cνi−1 − Cνi+1 = 0 ∀ i = 1, ..., N (6.4.7)
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or alternatively

Cµi−1 + Cµi+1 = 0 and Cνi−1 + Cνi+1 = 0 ∀ i = 1, ..., N. (6.4.8)

We see that in both cases, the coefficients Ck remain undetermined. Now, we want to
show that these two choices satisfy (6.4.6). We begin with (6.4.7): That these conditions
make the second term of (6.4.6) vanish is immediate as both relations appear there. The
first term of (6.4.6) also vanishes if (6.4.7) is fulfilled: We can show that (6.4.7) also
satisfies

Cµi+2 − Cµi−2 = 0 or Cνi+2 − Cνi−2 = 0, (6.4.9)

which annihilates the first term of (6.4.6). To see this, we first shift µi and νi by ±1 in
(6.4.7), giving us the four difference equations

Cµi+2 = Cµi , Cµi−2 = Cµi , Cνi+2 = Cνi , Cνi−2 = Cνi . (6.4.10)

Taking the difference between the first two and the last two equations, respectively,
recovers the relations in (6.4.9). Thus, (6.4.7) also satisfies (6.4.9) but not vice versa:
Starting from (6.4.9) and shifting both µi and νi by ±1 yields

Cµi+3 = Cµi+1, Cµi−3 = Cµi−1, Cνi+3 = Cνi−1, Cνi−3 = Cνi−1. (6.4.11)

Taking the difference between the first two and the last two equations, respectively, will
not recover the relations in (6.4.7). Now, we turn to (6.4.8): These relations appear in
the second term of (6.4.6) and thus will make it vanish. Furthermore, (6.4.9) will also
be true if (6.4.8) is satisfied and therefore, the first term of (6.4.6) vanishes, too. To
see this, we shift µi and νi by ±2 in (6.4.8) resulting in the relations

Cµi+2 = −Cµi , Cµi−2 = −Cµi , Cνi+2 = −Cνi , Cνi−2 = −Cνi . (6.4.12)

If we take the difference between the first two and the last two equations, respectively, we
recover the relations in (6.4.9). Thus, (6.4.7) also satisfies (6.4.9) but not vice versa. The
argument for the latter statement is in analogy to the one we made for the relations in
(6.4.7). In total, (6.4.6) is satisfied if (6.4.7) or (6.4.8) is accomplished. In the following,
we discuss the explicit solutions of (6.4.7) and (6.4.8). Concerning (6.4.7), we already
derived the explicit solution, which is stated in (6.3.41) exemplarily for Cνi :

Cνi = c1 + c2 cos (πνi). (6.4.13)

Concerning (6.4.8), we consider exemplarily the difference equation for νi and proceed
in analogy as done for (6.3.41), following [147]: We use the ansatz Cνi = rνi , where r
is an arbitrary real or complex number, and write down the characteristic equation of
(6.4.8):

r2 + 1 = (r + i)(r − i) = 0. (6.4.14)

From this we obtain the roots r1 = i, r2 = −i and the fundamental solutions C
(1)
νi = iνi ,

C
(1)
νi = −iνi . Using exp (±π

2
i) = ±i we can rewrite the fundamental solutions as

C(1)
νi

= cos (
π

2
νi), C(2)

νi
= sin (

π

2
νi). (6.4.15)

The general solution for Cνi is then given by

Cνi = c1 cos (
π

2
νi) + c2 sin (

π

2
νi), (6.4.16)

with c1 and c2 arbitrary real or complex constants.
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• The second possibility involves conditions on coefficients with all kinds of labels. These
conditions are given by

Cµi−2 − Cµi+2 = 0 or Cνi−2 − Cνi+2 = 0 ∀i = 1, ..., N (6.4.17)

and simultaneously Cki−2 − Cki+2 = 0 ∀i = 1, ..., N. (6.4.18)

We deduce from the first equation that either all of the µ- or all of the ν-coefficients
remain undetermined. To see that the above difference equations satisfy (6.4.6), we
observe that both of the relations in (6.4.17) appear in the first summand of (6.4.6)
and therefore make it vanish. (6.4.18) appears in the second summand of (6.4.6) and
will annihilate this term. To solve (6.4.17) and (6.4.18) explicitly, we observe that
these relations have the same form of the following linear, fourth order, homogeneous
difference equation with constant coefficients:

Cn−2 − Cn+2 = 0, (6.4.19)

with n ∈ {ki, µi, νi}. This equation is solved explicitly in [147] on page 125: First, we
determine the characteristic equation of (6.4.19), i.e., we make the ansatz Cn = rn with
r a to be determined real or complex constant. Plugging this ansatz into (6.4.19) gives
us

r2 − r−2 = 0⇔ r4 − 1 = 0. (6.4.20)

We can factorize this according to

0 = r4 − 1 = (r2 − 1)(r2 + 1) = (r + 1)(r − 1)(r + i)(r − i). (6.4.21)

The roots of this equation are given by r1/2 = ±i and r3/4 = ±1. In general, the

fundamental set of solutions of (6.4.18) is given by C
(j)
n = rnj for j = 1, .., 4. Using that

±i = e±iπ/2, we obtain C
(1,2)
n = e±inπ/2, which is equivalent to C

(1)
n = cos (πn/2) and

C
(2)
n = sin (πn/2). Then, the fundamental set of solutions is given by

C(1)
n = cos

(π
2
n
)
, C(2)

n = sin
(π

2
n
)
, C(3)

n = 1n = 1, C(4)
n = (−1)n. (6.4.22)

A general solution of (6.4.18) will be a linear combination of the fundamental solutions:

Cn = c1 cos
(π

2
n
)

+ c2 sin
(π

2
n
)

+ c3 + c4(−1)n, (6.4.23)

with arbitrary constants cm,m = 1, ..., 4.

We end this chapter with some remarks that are in analogy to those we made at the end
of the sections 6.3.2 and 6.3.3:

• The solution states of this chapter are not normalizable, as the coefficients are either
constant or given by sine and cosine-functions, cf. (6.4.13), (6.4.16), and (6.4.23).
Plugging these solutions into the computation for the norm, cf. (6.2.3), yields infinity.

• Furthermore, some coefficients remain arbitrary: For the first possibility we presented
above, the k-coefficients remain arbitrary. For the second possibility, either the µ- or
the ν-coefficients remain arbitrary. Therefore, we could label the solution states by the
arbitrary labels, just as we did in (6.3.42).

• Note that the zero volume states do not annihilate the adjoint Euclidean operator, as
we already explained at the end of section 6.2. Thus, we cannot combine the solutions
of this section with the zero volume states, as we discussed at the end of section 6.3.3
for the Euclidean operator.
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6.5 Simultaneous annihilation of the Euclidean part and its adjoint

In the following, we present solutions that annihilate the Euclidean part Ĥeucl and simultane-

ously its adjoint Ĥ
†
eucl.

First, we compare the difference equations we need to impose to annihilate Ĥeucl and Ĥ
†
eucl

separately, i.e., we examine (6.3.22) and (6.4.6) in contrast. We see that almost all difference
equations resulting from Ĥeuclϕ = 0 contain label dependent prefactors. The difference equa-

tions resulting from Ĥ
†
euclϕ = 0 are , concerning the structure of the coefficients, the same as

those of Ĥeucl, with the decisive difference of having constant prefactors. The only relations
that come up in (6.3.22) as well as in (6.4.6) are given by

Cµi+1−1 − Cµi+1+1 and Cνi+1−1 − Cνi+1+1. (6.5.1)

Now, we discuss solutions that annihilate both the Euclidean operator and its adjoint. If

we impose the expressions in (6.5.1) to be zero at all vertices i, Ĥ
†
eucl will vanish, cf. section

6.4. This way, also the second contribution of the difference equations resulting from Ĥeucl

is annihilated as it contains (6.5.1), cf. (6.3.22). However, the first term of (6.3.22) will not
vanish, as it contains difference equations with label-dependent prefactors, namely√

|µi + 2|Cµi+2 −
√
|µi − 2|Cµi−2 and

√
|νi + 2|Cνi+2 −

√
|µi − 2|Cνi−2. (6.5.2)

To show this, we impose the relations in (6.5.1) to be zero and rewrite them as we did in
(6.4.10). Plugging this into (6.5.2) gives the relations(√

|µi − 2| −
√
|µi + 2|

)
Cµi and

(√
|νi − 2| −

√
|νi + 2|

)
Cνi , (6.5.3)

which are non-vanishing if the coefficients Cµi , Cνi are non-zero. Thus, (6.5.2) does not vanish
and hence, also the Euclidean operator is not annihilated. We have, however, an alternative
to annihilate the Euclidean operator together with its adjoint: We can apply the zero volume
states presented in section (6.2) to annihilate Ĥeucl. For example, we may set Cµi = 0 for

µi 6= 0, which will erase the action of Ĥeucl, as well as that part of the second contribution
of (6.4.6) containing the prefactor (

√
|µi + 1| −

√
µi − 1). For the remaining contributions

of (6.4.6), we can impose the fourth order difference equations (6.4.19) for the k- and ν-labels.

We conclude that for our special ansatz, cf. (6.0.3), it seems unavoidable to use zero
volume states for annihilating both the Euclidean operator and its adjoint. The Lorentzian
part, however, also annihilates zero volume states: In every term of the Lorentzian part, only
fluxes and volume operators are contained. As fluxes and the volume operator commute, we
can let the volume operator act first. The volume operator, however, vanishes when acting
on zero volume states. Therefore, the whole eigenvalue of the Lorentzian part is zero. Hence,
if we choose solution states that annihilate both the Euclidean operator and its adjoint, we
can only achieve a zero eigenvalue of the Lorentzian part. In particular, this means that our
goal in (6.3.3) can only be achieved for E = 0. It remains to investigate if the Lorentzian part
allows any solutions satisfying (6.6.1) for E 6= 0 that simultaneously annihilate or simplify
the Euclidean operator and its adjoint. We will examine this in the next chapter.
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6.6 Degenerate eigenvalues of the Lorentzian part

Our goal in this section is to find states ϕ or rather coefficients Ck,µ,ν satisfying

Ĥlor ϕ =
∑
k∈Z

∑
µ∈m

∑
ν∈n

Ck,µ,ν Ĥlor |k, µ, ν〉 =
∑
k∈Z

∑
µ∈m

∑
ν∈n

Ck,µ,ν Ek,µ,ν |k, µ, ν〉 = E ϕ. (6.6.1)

Here, we denoted the eigenvalue of Ĥlor as Ek,µ,ν , which is everything in the curly bracket of
(6.1.16), including the sum over i, which is why Ek,µ,ν depends on all labels of a given state
|k, µ, ν〉. To perform the last step of (6.6.1), several options come into mind:

• We may think about deriving difference equations from (6.6.1) as done for the Euclidean
part and its adjoint in (6.3.22) and (6.4.6). This, however, is not possible: As no
holonomies are contained in the Lorentzian operator, the action of the Lorentzian part
contains no shifted states which prohibits to derive any kind of difference equation.

• We can try to combine (6.6.1) with the action of the Euclidean operator and its adjoint
to obtain difference equations similar to (6.3.22) and (6.4.6). For this, we inspect the
eigenvalue of the Lorentzian part which consists of two terms, cf. (6.1.16): The first one
is given by

−B(ki+1 − ki−1)2
[
(|µi + 1|

α
2 − |µi − 1|

α
2 )(|νi + 1|

α
2 − |νi − 1|

α
2 )×

× (|ki + ki−1 + 1|
α
2 − |ki + ki−1 − 1|

α
2 )|µi|α|νi|α|ki + ki−1|α

]l (6.6.2)

and results from the action of Ĥ
(1)

lor , cf. (5.2.65). The second one is given by

B′(ki + ki−1)4(µiνi+1 − µi+1νi)
2
[
(|µi + 1|

β
2 − |µi − 1|

β
2 ) · (|νi + 1|

β
2 − |νi − 1|

β
2 )×

× (|ki + ki−1 + 1|
β
2 − |ki + ki−1 − 1|

β
2 )|µi|β|νi|β|ki + ki−1|β

]l
(6.6.3)

and results from the action of Ĥ
(2)

lor , cf. (5.2.67). We observe that the structure of the
eigenvalue of the Lorentzian operator prohibits a separation ansatz as we did for the Eu-
clidean operator and its adjoint in section 6.3 and 6.4: In (6.6.2), there appears a factor
of (µiνi+1 − µi+1νi)

2 which leads to a coupling of neighboring µ- and ν-labels. There-
fore, the µ- and ν-coefficients cannot be separated as done in the separation ansätze of
(6.3.13) and (6.4.1). Furthermore, (6.6.2), contains the factor (ki+1−ki−1)2 which leads
to a coupling of k-labels from every second vertex. Additionally, the labels ki and ki−1

are coupled in (6.6.2) which also occurred for the Euclidean operator. This coupling
arises in (6.6.2) from the factors (|ki+ki−1 +1|α2 −|ki+ki−1−1|α2 ) and |ki+ki−1|α. The
same happens in (6.6.3). Thus, in total, the k-labels ki−1, ki, ki+1 are coupled in (6.6.2),
prohibiting a separation ansatz for the k-labels as we did for the Euclidean operator
in section 6.3.3, in (6.3.75) and (6.3.77), as well as for the adjoint Euclidean operator
in section 6.4, in (6.4.1). We conclude that combining the action of the Lorentzian
part with that of the Euclidean operator and its adjoint, with the goal to derive differ-
ence equations for the coefficients, does not allow any of the previously used separation
ansätze. In particular, the complicated structure of the eigenvalue of the Lorentzian
part seems to prohibit a separation ansatz at all, which, however, makes it difficult to
find solutions.
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• We may investigate those sets of labels (k, µ, ν) := (k1, ..., kN ;µ1, ..., µN ; ν1, ..., νN) that
result in the same eigenvalue Ek,µ,ν , i.e., we may classify degenerate states |k, µ, ν〉.
Then, we apply this to (6.6.1) by setting all coefficients with labels not satisfying the
degeneracy conditions to zero. This way, we can pull the eigenvalue Ek,µ,ν out of the
sums in (6.6.1) to finally reach our goal.

As the first two points we listed above seem hard to realize, we explain the third option
in more detail. We will state a summary of the results at the end of this paragraph. We
first observe that the eigenvalue of the Lorentzian part consists of two terms, cf. (6.6.2) and
(6.6.3), that both are symmetric with respect to exchanging all µ- and ν-labels. Thus, given
the state |k, µ, ν〉, for which the Lorentzian operator has the eigenvalue Ek,µ,ν , we can perform
the following operation on the labels of the state that will not change the value of Ek,µ,ν :

µ1 ↔ ν1, µ2 ↔ ν2, ..., µN ↔ νN . (6.6.4)

Furthermore, Ek,µ,ν is also left invariant with respect to a cyclic permutation of all labels, i.e.:

(k1, k2, ...kN−1, kN ;µ1, µ2, ..., µN−1, µN ; ν1, ν2, ..., νN−1, νN)→
→ (kN , k1, ...kN−2, kN−1;µN , µ1, ..., µN−2, µN−1; νN , ν1, ..., νN−2, νN−1)→ ...

(6.6.5)

Here, we basically exploit the circle symmetry of a Gowdy state: At each vertex, we shift the
corresponding µ- and ν-label to the next vertex. Simultaneously, at each edge, we shift the
corresponding k-label to the next edge. This way, the relation between the labels or rather
their overall order is not changed. Hence, the Lorentzian operator acting on a state with
certain labels will give the same eigenvalue as for the state with cyclically permuted labels.
For the case of an even number of vertices, there arises another possibility. We see that in
both terms of the eigenvalue of the Lorentzian operator, cf. (6.6.2) and (6.6.3), the k-labels
only appear in form of the sum ki + ki−1 or the difference ki+1 − ki−1. If we perform the
following operation on all k-labels

k1 → k1 + a, k2 → k2 − a, ..., kN → kN − a, (6.6.6)

with a an arbitrary integer, we see that the sum of neighboring labels, ki+ki−1, as well as the
difference between every second vertex, ki+1−ki−1, is left invariant. Hence, also the eigenvalue
of the Lorentzian operator will not change. In the case of an odd number of vertices, this
does not work: For example, for three vertices, we could perform the operation

k1 → k1 + a, k2 → k2 − a, k3 → k3 + a.

Taking the sum of the transformed first and third label would result in k1 +k2 + 2a 6= k1 +k2.
Thus, (6.6.6) does not apply for an odd number of vertices.

In summary, given an arbitrary state |k, µ, ν〉 with labels (k, µ, ν) := (k1, ..., kN ;µ1, ..., µN ;
ν1, ..., νN), we get the same eigenvalue Ek,µ,ν for the Lorentzian operator if:

1. we exchange all µ- and all ν-labels (cf. (6.6.4)),

2. cyclically permute all labels simultaneously (cf. (6.6.5)),

3. for an even number of vertices, we add to all k-labels some integer whose modulus is
the same for all k-labels but whose sign alternates from vertex to vertex (cf. (6.6.6)), or
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4. for each step of a cyclic permutation of all labels, we perform 1. or, in the case of
an even number of vertices, 2.

Now, we comment on the possibility that the degeneracy conditions also simplify the action
of the Euclidean operator and its adjoint. Unfortunately, there occurs no major simplification
due to the following reasons:

• If we translate the operations performed in (6.6.4)-(6.6.6) into conditions on the coeffi-
cients Ck.µ,ν , we may not be able to separate the coefficients at all. This is for example
the case for (6.6.5) which is a condition relating all labels. If we only consider the
conditions (6.6.4) and (6.6.6), we may perform the separation ansatz

Ck,µ,ν = Ck1,...,kNCµ1,...,µN ,ν1,...νN , (6.6.7)

i.e., it is possible to separate the k-coefficients from the µ- and ν-coefficients, as the con-
ditions (6.6.4) and (6.6.6) do not couple the respective labels. The µ- and ν-coefficients
itself cannot be separated as (6.6.4) relates all of the respective labels. Furthermore,
(6.6.5) couples all of the k-labels and hence, the corresponding coefficients cannot be sep-
arated as well. If we use (6.6.7), there occurs another problem: This separation ansatz
for the k-coefficients coincides with the ansatz we made for the Euclidean operator in
section 6.3. Thus, we could derive the same difference equations for the k-labels:√

|ki + ki−1 + 2|Ck1,...,ki−1,ki+2,...,kN −
√
|ki + ki−1 − 2|Ck1,...,ki−1,ki−2,...,kN = 0. (6.6.8)

In this equation, the set of k-labels (k1, ..., ki−1, ki + 2, ..., kN), corresponding to the first
coefficient, cannot be generated from the set of k-labels (k1, ..., ki−1, ki−2, ..., kN) by one
of the operations in (6.6.4)-(6.6.6). Thus, if we choose the eigenvalue of the Lorentzian
operator E in (6.6.1) to be the one that corresponds to the set (k1, ..., ki−1, ki+2, ..., kN),
we must impose the coefficient Ck1,...,ki−1,ki+2,...,kN to be non-zero while Ck1,...,ki−1,ki−2,...,kN

has to be zero. Plugging this into (6.6.8), however, yields that also Ck1,...,ki−1,ki+2,...,kN

has to vanish. As we left the k-labels arbitrary, we can infer that all coefficients have to
be zero and we obtain the undesirable trivial solution. We end up with the result that
imposing (6.6.4)-(6.6.6) either spoils the previously made separation ansätze or results
in the trivial solution for the coefficients.

• Furthermore, the subspace spanned by states ϕ with coefficients satisfying (6.6.4)-(6.6.6)

is not preserved by the action of Ĥeucl and Ĥ
†
eucl: For both operators, when acting

on a basis state |k, µ, ν〉, we obtain states where only two or maximally three labels
are shifted, see the discussion in the paragraph after (6.1.8). For example, if we act
with the Euclidean operator on a state |k, µ, ν〉, one of the resulting states will be
|ki + 2, µi + 1, µi+1 + 1, ν〉. The eigenvalue of this state, however, is different from that
of the original one because none of the operations in (6.6.4)-(6.6.6) can generate the
state |ki + 2, µi + 1, µi+1 + 1, ν〉 out of the state |k, µ, ν〉 and vice versa. Hence, when
acting with the Euclidean operator on a state ϕ with coefficients satisfying one of the
conditions in (6.6.4)-(6.6.6), we get back a different state ϕ̃ with a different eigenvalue
Ẽk,µ,ν of the Lorentzian operator. Thus, we conclude that the subspace, spanned by
states ϕ for which the Lorentzian operator has some non-zero eigenvalue E, is not left
invariant by the Euclidean operator and its adjoint.
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The only conditions that drastically simplify the Lorentzian part and the Euclidean operator
together with its adjoint are zero volume states. For those states, however, the eigenvalue of
the Lorentzian operator is zero. Hence, we see that the Euclidean operator and its adjoint are
incompatible with the Lorentzian part in the sense that they only have common eigenfunctions
with eigenvalue zero. To investigate this incompatibility, we have calculated the commutator
between the Lorentzian and the Euclidean operator, cf. appendix A. This computation
results in several shifted states with label dependent prefactors coupling all k-, µ-, and ν-
labels. Thus, we cannot perform a separation ansatz as done in section 6.3 and 6.4. In
particular, the annihilation of the commutator seems to work only for zero volume states, at
least when acting with it on a single basis state |k, µ, ν〉 or our special ansatz (6.0.3).

6.7 Further solutions and final discussion

So far, we always tried to annihilate the action of the Euclidean operator and its adjoint. In
the following, we want to state a solution that results in a non-zero but simplified action of
the Euclidean operator and its adjoint. Choosing

Cµi−1 − Cνi+1 = 0 and Cνi−1 − Cνi+1 = 0 ∀i = 1, ..., N (6.7.1)

annihilates the action of Ĥ
†
eucl, cf. section 6.4, and also the second term of Ĥeucl, cf. (6.3.22).

For the first first term of (6.3.22), we use that√
|µi + 2|Cµi+2 −

√
|µi − 2|Cµi−2 =

(√
|µi + 2| −

√
|µi − 2|

)
Cµi , (6.7.2)

due to Cµi−2 = Cµi and Cµi+2 = Cµi which follows from (6.7.1) by shifting µi by ±1. Then,
the difference equations of the first term of (6.3.22) read as(√

|µi + 2|Cµi+2 −
√
|µi − 2|Cµi−2

)(√
|νi + 2|Cνi+2 −

√
|νi − 2|Cνi−2

)
=(√

|µi + 2| −
√
|µi − 2|

)
·
(√
|νi + 2| −

√
|νi − 2|

)
CµiCνi .

(6.7.3)

In total, we get for the action of Ĥeucl that

Ĥeucl ϕ =
∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,νA
(√
|µi + 2| −

√
|µi − 2|

)
·
(√
|νi + 2| −

√
|νi − 2|

)
|k, µ, ν〉 ,

(6.7.4)

i.e., we eliminated the shifted states resulting from the action of Ĥeucl. However, we do not
get back the original state ϕ but a different one which we denote as

ϕ̃ :=
∑
k∈ZN

∑
µ∈m

∑
ν∈n

C̃k,µ,ν |k, µ, ν〉 , (6.7.5)

with the coefficients

C̃k,µ,ν := Ck,µ,νA
(√
|µi + 2| −

√
|µi − 2|

)
·
(√
|νi + 2| −

√
|νi − 2|

)
.

Then, we can simplify the action of Ĥphys by combining the action of the Lorentzian part with
that of the Euclidean part in (6.7.4) to arrive at

Ĥphys ϕ =
∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,νẼk,µ,ν |k, µ, ν〉 , (6.7.6)
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with

Ẽk,µ,ν := Ek,µ,ν + A
(√
|µi + 2| −

√
|µi − 2|

)(√
|νi + 2| −

√
|νi − 2|

)
. (6.7.7)

Here, Ek,µ,ν denotes the eigenvalue of the Lorentzian part. However, note that (6.7.6) is only
true for the special choice of coefficients stated in (6.7.1). In particular, we cannot apply the

degeneracy conditions of section 6.6 to pull out Ẽk,µ,ν to obtain Ĥphys ϕ = E ϕ for some con-
stant E. This arises from the incompatibility of the conditions for the coefficients we get from
the difference equations in (6.7.1) and those from the degeneracy conditions in (6.6.4)-(6.6.6),
see also the discussion in the context of (6.6.8).

It is also possible to make the Lorentzian part vanish without using the zero volume states.
For this, we impose all k-labels to be equal, as well as all µ- and all ν-labels, i.e.:

k1 = k2 = ... = kN , µ1 = µ2 = ... = µN = ν1 = ν2 = ... = νN . (6.7.8)

This annihilates the eigenvalue of the Lorentzian part: In the term resulting from Ĥ
(1)

lor , cf.
(6.6.2), the factor (ki+1 − ki−1)2 shows up, wich is zero if all k-labels are equal. In the term

resulting from Ĥ
(2)

lor , cf. (6.6.3), we have a factor of (µiνi+1−µi+1νi)
4, which is zero if all µ- and

all ν-labels are equal. However, by imposing (6.7.8), we couple all k-labels with each other
and also all µ- with all ν-labels. This prohibits for example a separation ansatz of the kind
of (6.3.13), where in particular all µ- and ν-labels are decoupled. We would have to change
our separation ansatz to the one in (6.6.7) but then, as discussed in the context of (6.6.7),
we obtain the trivial solution for the k-coefficients.

Our final result is that we can achieve

Ĥphys ϕ = E ϕ (6.7.9)

with the ansatz
ϕ =

∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν |k, µ, ν〉 (6.7.10)

only for E = 0, i.e., we get a zero action of our physical Hamiltonian. For a non-zero action
of our physical Hamiltonian, the best result we can achieve with the specialized ansatz we
used in this work is

Ĥphys ϕ =
∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,νẼk,µ,ν |k, µ, ν〉 , (6.7.11)

for Ẽk,µ,ν defined in (6.7.7). In (6.7.11), we got rid of the shifted states that result from the
action of the Euclidean part and its adjoint. However, we cannot pull out the label-dependent
factor Ek,µ,ν and therefore cannot solve the Schrödinger equation with a non-zero energy, at
least with the ansatz for ϕ stated in (6.7.10).
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7 Summary and outlook

In the following, we want to summarize this thesis and our results. We will also discuss how
our calculations performed in the algebraic quantum gravity context can be applied to other
topics such as the Master constraint operator of [59] and the loop quantum gravity version of
the Hamiltonian constraint operator.

In this thesis, we performed a reduced phase space quantization of the polarized three-
torus Gowdy model, yielding a Schrödinger equation which we investigated. The classical
starting point was the Hamiltonian formulation of general relativity in terms of Ashtekar’s
variables, which we introduced in section 2.2. For the quantization, we used the techniques of
loop quantum gravity (LQG) and algebraic quantum gravity (AQG), which we discussed for
the full theory in section 3. To perform the reduced phase space quantization, the constraints
have to be solved at the classical level. To this end, we introduced the relational formalism
and, specifically, Gaussian dust in section 4. We then applied the introduced machinery in
section 5 to the Gowdy model using former results of [56,57] and [58,59]: First, we performed
the symmetry reduction in section 5.1. This results in a U(1) gauge theory on a circle with
3 canonical pairs (A, E), (X,Ex), (Y,Ey), where A is a U(1) connection with conjugate mo-
mentum E and X, Y are scalars with conjugate momenta Ex, Ey, respectively. Additionally,
we obtained one diffeomorphism and one Hamiltonian constraint. Then, we proceeded with
the algebraic loop quantization of the Gowdy model in section 5.2, where we first applied the
relational formalism for Gaussian dust in section 5.2.1, which solves the remaining constraints
at the classical level. In particular, we constructed the observables associated to our basic
variables, which, at the level of the physical phase space, satisfy a Poisson algebra that is iso-
morphic to the original kinematical Poisson algebra. Furthermore, the physical Hamiltonian
density is equivalent to the geometric contribution of the Hamiltonian constraint. This allows
us to use the results of [56] for the loop quantization of the Gowdy model, which we did in
the subsequent sections, where we also lifted the LQG framework to the AQG level follow-
ing [58, 59]. In section 5.2.5, we also discussed the Gauss constraint and were then finally in
the position to write down and discuss a specific ansatz for constructing special solutions of
the Schrödinger equation in section 6.

Let us summarize our main results presented in section 6: The starting point is the time-
dependent Schrödinger equation

i~∂τΨ(τ) = ĤphysΨ(τ), (7.0.12)

where τ denotes the physical time, Ĥphys the physical Hamiltonian operator, and Ψ(τ) a time-
dependent state. For the state Ψ(τ), we separate the time-dependence just as in standard
quantum mechanics via Ψ(τ) = χ(τ) ·ϕ for ϕ being some time-independent state. This allows
us to formulate the time-independent Schrödinger equation

Ĥphysϕ = Eϕ, (7.0.13)

where E plays the role of the energy since classically, the Hamiltonian commutes with itself and
hence the system is conservative, which should carry over to the quantum theory. Note that ϕ
is different from the wavefunction ϕ(x) of a quantum particle where x denotes the position, i.e.,
a single particle interpretation is not possible. Concerning the physical Hamiltonian operator,
we want it to be at least symmetric which is not satisfied by the geometric contribution of
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the Hamiltonian constraint operator Ĥ, as we showed in section 6.1.2 and 6.1.3. Hence, we
use the following symmetric combination of Ĥ:

Ĥphys :=
1

2

(
Ĥ + Ĥ

†)
. (7.0.14)

One may also take different symmetric combinations, e.g., Ĥphys =

√
Ĥ
†
Ĥ. Due to the square

root, however, we would have to determine the spectrum of Ĥ
†
Ĥ and only then we can calculate

the action of Ĥphys. Hence, we decided to choose (7.0.14) where no square root appears. Now,

if we want to solve (7.0.13), we would have to determine the spectrum of Ĥphys. This amounts
to the diagonalization of a complicated and in particular infinite-dimensional matrix. To
circumvent this and to learn something about the action of Ĥphys, we choose a specific ansatz
for the state ϕ appearing in (7.0.13). In principle, we also need to show that the eigenvalues
E corresponding to the eigenstates ϕ are indeed contained in the spectrum of Ĥphys, which,
however, goes beyond the scope of this work. To analyze (7.0.13) and to construct possible
specific solutions, we choose the following ansatz for ϕ:

ϕ :=
∑
k∈ZN

∑
µ∈m

∑
ν∈n

Ck,µ,ν |k, µ, ν〉 . (7.0.15)

The following ingredients are used in this equation:

• The states |k, µ, ν〉 are the so-called abstract Gowdy states, which we defined in (5.2.21).
These states provide an orthonormal basis for the Hilbert space obtained in the sym-
metry reduced Gowdy model and are the analogue of the spin network functions in the
full theory.

• Furthermore, the states |k, µ, ν〉 are defined with respect to an abstract graph α, which is
basically an infinite spin chain, where only N neighboring vertices and N+1 neighboring
edges are charged non-trivially, see figure 3 for the case of N = 3 vertices. This way, by
choosing an embedding and identifying the first and the N +1th vertex, we can go back
to an embedded graph γ used in LQG, which is basically a circle with a certain number of
points, being the vertices, and arcs between those points, being the edges. The infinitely
many other trivially charged edges and vertices of α are mapped to accumulation points,
which, however, are not seen by the Hamiltonian constraint operator Ĥ appearing in
(7.0.14). The reason for this is the following: Ĥ can be split into the following sum of
two operators, cf. section 5.2.4:

Ĥ = Ĥeucl + Ĥlor. (7.0.16)

Here, Ĥeucl denotes the Euclidean operator, which acts label-changing. In particular,
it can be separated into the sum of three operators that are basically the product of
holonomies and the volume operator, respectively, while the volume operator acts first
in each term. This is also the case for Ĥlor, the so-called Lorentzian operator, which acts
diagonally and is a sum of three operators that are basically a product of the volume
operator and the flux operators. In total, in both Ĥeucl and Ĥlor the volume operator
acts first, which, however, has eigenvalue zero for trivially charged vertices and edges, cf.
section 5.2.3. Thus, Ĥ has a zero action on the trivially charged vertices of the abstract
graph. Note, however, that this is not true for the adjoint of Ĥ, which also appears in
the physical Hamiltonian operator (7.0.14): While Ĥlor turns out to be symmetric, cf.
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section 6.1.3, and hence also Ĥ
†
lor annihilates all trivially charged edges, calculating the

adjoint of the Euclidean operator changes the operator ordering of holonomies and the

volume operator, resulting in Ĥeucl 6= Ĥ
†
eucl. Therefore, the holonomies act first in Ĥ

†
eucl,

thus changing trivial charges to non-trivial ones, which then leads to a nonzero action
of the volume operator. Hence, we have to adjust the definition of an abstract Gowdy

state. Otherwise, the operator Ĥ
†
eucl and thus also Ĥphys would have a non-trivial action

on some of the vertices of the abstract graph, for which we actually want the action to
be trivial such that the circle symmetry is implemented. We discussed this at the end
of section 6.1.2.

• Each vertex vi, with i = 1, ..., N, carries non-trivial labels µi, νi ∈ R. These are the
irreducible representation labels of the Bohr compactification and correspond to the
point holonomies (5.2.19) and (5.2.20) constructed from the scalar fields X and Y ,
respectively. Furthermore, to each edge ei, with i = 1, ..., N , we assign a U(1) represen-
tation label ki, which corresponds to the U(1) holonomy (5.2.18) constructed from the
U(1) connection A. Hence, the labels k, µ, ν in (7.0.15) have to be understood as the
multilabels k := (k1, ..., kN), µ := (µ1, ..., µN), ν := (ν1, ..., νN).

• Finally, in (7.0.15), Ck,µ,ν := Ck1,...,kN ,µ1,...,µN ,ν1,...,νN denote some arbitrary coefficients
and the sets m,n are subsets of RN , whose exact form we discussed in detail at the
beginning of section 6 in (6.0.5).

Note that without any further restrictions on the coefficients, we have infinite series involved in
(7.0.15). Hence, this ansatz is rather formal, as it has an infinite norm for generic coefficients.
It turns out that for so-called zero volume states, which we discussed in section 6.2, this can
be avoided. Zero volume states are those states that are annihilated by the volume operator.
If we consider the action of the volume operator V̂i, defined for a vertex vi of α in (5.2.33),
on a single basis state |k, µ, ν〉, we obtain

V̂i |k, µ, ν〉 =
1√
2

(
γl2P
2

)√
|µi||νi||ki + ki−1| |k, µ, ν〉 . (7.0.17)

This action is zero if the following is satisfied:

µi
!

= 0 ∨ νi
!

= 0 ∨ ki
!

= −ki−1. (7.0.18)

We can use the zero volume states to simplify the action of Ĥphys. In particular, the Euclidean
and the Lorentzian operator can be annihilated, since for these operators, the volume operator
acts first. As we discussed above in the context of (7.0.16), this is not the case for the adjoint
Euclidean part and hence, not all of Ĥphys can be annihilated using zero volume states. To

annihilate Ĥeucl and Ĥlor, we use that these operators can be written as a sum over all vertices,
e.g., Ĥlor =

∑N
i=1 Ĥlor,i, and therefore they contain V̂i at all vertices. Thus, we can choose at

each vertex one of the conditions of (7.0.18) and obtain a zero action of Ĥeucl and Ĥlor. This
results in a rather large class of zero volume states which can also be extended to conditions
on the coefficients of our general state (7.0.15): Choosing for example all µ-labels to be zero
transfers to the condition that Ck,µ,ν 6= 0 if µ = 0. Note that this solution may sound trivial
as it eliminates a whole degree of freedom. To avoid this, we may choose the µ-labels to be
nonzero at some vertices, where we choose another zero volume condition (7.0.18) to obtain
a zero action, see again section 6.2 for a more detailed classification. Note that this way,
the nonzero coefficients have arbitrary values and hence can be chosen such that we obtain a
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normalizable state. The zero volume states are useful later on as they will allow us to solve
(7.0.13) for E = 0. This also means that we have to assume that E = 0 is contained in the
spectrum of Ĥphys. At the classical level, we can interpret E = 0 in the following way: We can
construct the observable OP associated to P , which is the momentum conjugate to the time
reference field T , cf. section 4.2. Then, one can show that OP is determined up to a minus sign
by the physical Hamiltonian density. Thus, a zero energy corresponds to the case where the
energy density of the dust vanishes and this would be the limit in which back reactions of the
dust are neglected. Investigating states with eigenvalue zero is also done in embedded LQG
and Dirac quantization or in the context of the Master constraint programme, which we will
discuss further below. However, our actual goal was to solve the Schrödinger equation with a
non-zero energy. To this end, we pursued the following strategy: Using (7.0.14),(7.0.16), and
the fact that Ĥlor is symmetric while Ĥeucl is not, we obtain the following form of the physical
Hamiltonian operator:

Ĥphys =
1

2

(
Ĥeucl + Ĥ

†
eucl

)
+ Ĥlor. (7.0.19)

The next step is to calculate the action of Ĥphys, which we derived in detail in section 6.1

using the results of [57–59]. In particular, it turns out that the label-changing operators Ĥeucl

and Ĥ
†
eucl result in a linear combination of in total 40 states with label-dependent coefficients,

respectively, see (6.1.8) and (6.1.27) for the explicit actions. The action of the diagonal
operator Ĥlor we stated in (6.1.16). A new result obtained in this thesis is that one of the
terms of the action of Ĥlor results in a telescope sum for the vertices and vanishes using
the circle symmetry of the abstract Gowdy state. See also the discussion in the context of
(6.1.12). This did not show up in [58,59] as the respective authors do not directly work with
the Hamiltonian constraint operator, but certain combinations thereof, namely they consider
the physical Hamiltonian obtained in the Brown-Kuchař model and the Master constraint,
respectively. To analyze (7.0.13), the idea is now to use the diagonal action of Ĥlor to produce
the energy E in (7.0.13) and to annihilate the label-changing operators, i.e., we impose the
following:

Ĥeuclϕ
!

= 0 ∧ Ĥ
†
euclϕ

!
= 0 ∧ Ĥlorϕ

!
= Eϕ. (7.0.20)

We treated all of this possibilities separately in the sections 6.3-6.6:

• The annihilation of Ĥeucl was discussed in section 6.3. The action of Ĥeucl results in
20 shifted states with prefactors that depend on the labels ki, ki−1, µi, νi, cf. (6.1.8).
The occurring states are of the form |k, µi ± 2, νi ± 2〉, |ki ± 2, µ, νi ± 1, νi+1 ± 1〉, and
|ki ± 2, µi ± 1, µi+1 ± 1, ν〉, i.e., either only the µ- and ν-labels at the ith vertex are
shifted, or the label ki together with either νi, νi+1 or µi, µi+1. Our strategy is to
translate the shifts in the states to the coefficients and derive difference equations, see
section 6.3.1. Specifically, we performed the separation ansatz

Ck,µ,ν = Ck · Cµ1 · Cµ2 · ... · CµN · Cν1 · Cν2 · ... · CνN , (7.0.21)

where we keep all the k-labels together in one coefficient Ck := Ck1,...,kN but decouple

all µ- and ν-labels. This allows us to rewrite Ĥeuclϕ
!

= 0 in the convenient product form
(6.3.22). Using (6.3.22), we can now derive several difference equations, which can be
divided into two categories:

– The first one we discussed in section 6.3.2. These solutions give restrictions on the
coefficients with µ- and ν-labels only. Especially, the difference equations are of
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the following form:√
|n+ 2|Cn+2 −

√
|n− 2|Cn−2 = 0,

√
|n+ 1|Cn+1 +

√
|n− 1|Cn−1 = 0,

Cn+1 − Cn−1 = 0, n ∈ {µi, νi}, i = 1, ..., N.

(7.0.22)

We have different options to combine these relations such that Ĥeuclϕ
!

= 0 is sat-
isfied. Note that the coefficients solving the first two of the above three difference
equations are basically inverse square root functions. The last of the three equa-
tions is solved by a periodic function with period 2. In particular, as discussed
at the end of section 6.3.2, the states ϕ corresponding to such coefficients are not
normalizable. This, however, is a general scenario for operators with continuous
spectrum and can be handled by constructing linear functionals from the solution
states, in analogy to the momentum operator in standard quantum mechanics.
The difficult task that remains, however, is to show that zero lies in the continuous
part of the spectrum, which goes beyond the scope of this thesis.

– The second one, we discussed in section 6.3.3. These solutions give restrictions on
conditions with all kinds of labels, that is, k-, µ-, and ν-labels. It turns out that
the difference equations involving k-labels have the form√

|ki + ki−1 − 2| Cki−2,ki−1
−
√
|ki + ki−1 + 2| Cki+2,ki−1

= 0. (7.0.23)

These relations, however, cannot be solved for all i, while the exceptions are the
cases of very simple graphs with one and two vertices. Specifically, we derived
a contradiction when trying to solve the above equation for i = 1 and i = 2 in
the case of 3 vertices. This arises basically due to the coupling of neighboring k-
labels in the square root prefactors in (7.0.23). Nevertheless, we can solve (7.0.23)
at least for one i with the explicit solution of the coefficients basically given by
Cki,ki−1

= 1/
√
|ki + ki−1|. Note that care has to be taken in the case of ki = −ki−1,

where we would divide by zero, see section 6.3.3 for more details. We can generalize
this to an arbitrary number of vertices; for example for 4 vertices, it is possible
to solve (7.0.23), e.g., for i = 1, 2. Nevertheless, we cannot solve (7.0.23) at all
vertices but for the remaining ones, we can use the solutions of section 6.3.2, i.e.,
we choose the µ- and ν-coefficients appropriately. Again, the solution states ϕ will
not be normalizable.

• The annihilation of Ĥ
†
eucl, we discussed in section 6.4. Here, we proceed as for the

Euclidean operator and perform a separation ansatz which now has the form

Ck,µ,ν = Ck1 · ... · CkN · Cµ1 · ... · CµN · Cν1 · ... · CνN , (7.0.24)

i.e., we decouple all labels, especially also the k-labels. This is possible due to the
following reason: Computing the adjoint of Ĥeucl changes the operator ordering such

that the holonomies act first in Ĥ
†
eucl. In particular, we get the same shifted states as

for the Euclidean operator. Then, the volume part acts on this shifted states resulting
in label-dependent prefactors of the shifted states that are similar to but different from
those of the Euclidean operator action. Notably, these prefactors are such that if we
translate the shift from the states to the coefficients, the label dependent prefactors
can just be pulled out and do not manifest themselves in the difference equations.
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Then, (7.0.23) looks similar for Ĥ
†
eucl but without the square root prefactors. This way,

the coupling between neighboring k-labels is removed, which allows us to perform the
separation ansatz (7.0.24). Also the difference equations involving µ- and ν-coefficients
we derive from this ansatz are just like (7.0.22) and (7.0.23), but without any square
root prefactors. Specifically, we can again identify two categories of solutions, namely
those only restricting µ- and ν-coefficients, and those restricting coefficients with all
kinds of labels.

• The next step is to annihilate the Euclidean part and its adjoint simultaneously, which
we discussed in section 6.5. Here, it turns out that we need to use the zero volume
states of section 6.2. This, however, implies that the eigenvalue of the Lorentzian part
vanishes and hence, we can only solve (7.0.13) for a zero energy, at least with the strategy
(7.0.20) and the ansatz (7.0.15). Still, it may have been possible that the investigation

of Ĥlorϕ
!

= Eϕ gives new insights, which, however, turned out not to be the case, as we
will discuss in the next point.

• To extract the energy eigenvalue from the Lorentzian part, we have to solve the following
problem:

Ĥlor ϕ =
∑
k∈Z

∑
µ∈m

∑
ν∈n

Ck,µ,ν Ĥlor |k, µ, ν〉 =
∑
k∈Z

∑
µ∈m

∑
ν∈n

Ck,µ,ν Ek,µ,ν |k, µ, ν〉 = E ϕ,

(7.0.25)
where Ek,µ,ν denotes the eigenvalue of Ĥlor when acting on a basis state |k, µ, ν〉, which
is given explicitly in (6.1.16). To pull this eigenvalue out in the last step of (7.0.25),
we investigated the degeneracy conditions of Ĥlor, i.e., we searched for those sets of
labels (k, µ, ν) resulting in the same eigenvalue Ek,µ,ν . The idea is then to choose those
coefficients Ck,µ,ν to zero whose labels (k, µ, ν) do not satisfy the degneracy conditions.
We discussed this in section 6.6, which, however, gives only conditions that are in conflict
with the Euclidean part and its adjoint, in the sense that the action of these operators
is neither annihilated nor simplified.

In total, we end up with the result that we can only solve (7.0.13) for E = 0, at least with
the formal ansatz (7.0.15) and the strategy (7.0.20). In section 6.7 we also stated some ideas
which at least simplify the action of the physical Hamiltonian but do not yield us a solution of
(7.0.13). Nevertheless, we gained much more insight into the complicated action of the phys-
ical Hamiltonian and found a class of solutions with eigenvalue zero. It would require more
advanced techniques to look for general solutions of the Schrödinger equation in the Gowdy
model than were applied in this thesis. We hope that our results may be used for example
for the Gowdy Master constraint, which was discussed in [59], or even in the framework of
Dirac quantization.

Application of the results found in this thesis, in the context of embedded LQG, might
go into the following direction: In LQG, the action of the Hamiltonian constraint operator
depends on the chosen regularization. For example in [57], every interval of the regularization
contains at most one vertex. There are, however, also other regularizations possible, see chap-
ter V of [57] for a discussion. It would be an interesting question for future research how one
can compare operators in LQG and AQG in a more general context. In particular, one may
fix a certain regularization and then compare the results of LQG and AQG. Furthermore,
one may investigate the physical consequences of regularization ambiguities in LQG and the
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implications in AQG if one stays close to LQG.

The Master constraint of the Gowdy model is discussed in great detail in [59]. Explicitly,
the Master constraint operator is of the form

M̂ =
N∑
i=1

(
ˆ̃
H
†

i
ˆ̃
Hi + Ĉ

†
i Ĉi

)
. (7.0.26)

Here,
ˆ̃
Hi is the sum of two operators that are constructed in analogy to the Euclidean and

Lorentzian operators we stated in (5.2.57) and (5.2.65),(5.2.67),(5.2.68). Note, however that
the Master constraint introduces a different density weight, which manifests itself in the ac-
tion of (7.0.26), as a different power of the volume operator results from this. Nevertheless,

the action of
ˆ̃
Hi and

ˆ̃
H
†

i is quite similar to the one discussed in this thesis. Furthermore,
in (7.0.26), the operator Ĉi arises from the part of the classical Master constraint which
contains the diffeomorphism constraint, cf. (3.6.6). Here, also the metric components occur
and in particular, we obtain an operator that is new compared to the ones we discussed in
this thesis. However, as can be seen in [59], every operator in (7.0.26) contains the volume

operator. Specifically, in
ˆ̃
Hi and Ĉi the volume operator acts first and hence, the zero volume

states we discussed in section 6.2 can be used to annihilate or at least simplify the action
of the Master constraint operator. As in (7.0.26) the Euclidean operator acts first, we may
also apply our results of section 6.3, where we annihilate the Euclidean operator by deriving
and solving difference equations for the coefficients. Note however, that the different density
weight has to be taken into account, leading to different label dependent prefactors in the
difference equations. How the results of the sections 6.3-6.5 can be applied to the operators

Ĉi, Ĉ
†
i in (7.0.26) remains to be investigated.
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Appendices

A Commutator between Euclidean and Lorentzian part

In this appendix, we present the calculation of the commutator between the Euclidean and
the Lorentzian operator defined in (5.2.57) and (5.2.65), (5.2.67), (5.2.68), respectively.

Firstly, we write out the commutator acting on an abstract Gowdy state (5.2.21):[
Ĥeucl, Ĥlor

]
|k, µ, ν〉 = Ĥeucl

(
Ĥlor |k, µ, ν〉

)
− Ĥlor

(
Ĥeucl |k, µ, ν〉

)
. (A.0.27)

Secondly, we calculate the action of the Lorentzian part in the first term of (A.0.27) and
abbreviate the eigenvalue with Hlor(k, µ, ν), which is stated explicitly in (6.1.16). Further-
more, in the second term of (A.0.27), we compute the action of the Euclidean part using
(6.1.8). Then, we get the following expression for (A.0.27):

[
Ĥeucl, Ĥlor

]
|k, µ, ν〉 = Hlor(k, µ, ν)(Ĥeucl |k, µ, ν〉)− Ĥlor

N∑
i=1

{
aki,ki−1,µi,νi

[
|k, µi + 2, νi + 2〉

− |k, µi − 2, νi + 2〉 − |k, µi + 2, νi − 2〉+ |k, µi − 2, νi − 2〉
]

+bki,ki−1,µi,νi

[
|ki + 2, µ, νi + 1, νi+1 + 1〉 − |ki + 2, µ, νi + 1, νi+1 − 1〉

+ |ki + 2, µ, νi − 1, νi+1 + 1〉 − |ki + 2, µ, νi − 1, νi+1 − 1〉 − |ki − 2, µ, νi + 1, νi+1 + 1〉

+ |ki − 2, µ, νi + 1, νi+1 − 1〉 − |ki − 2, µ, νi − 1, νi+1 + 1〉+ |ki − 2, µ, νi − 1, νi+1 − 1〉
]

+cki,ki−1,µi,νi

[
|ki + 2, µi + 1, µi+1 + 1, ν〉 − |ki + 2, µi + 1, µi+1 − 1, ν〉

+ |ki + 2, µi − 1, µi+1 + 1, ν〉 − |ki + 2, µi − 1, µi+1 − 1, ν〉 − |ki − 2, µi + 1, µi+1 + 1, ν〉

+ |ki − 2, µi + 1, µi+1 − 1, ν〉 − |ki − 2, µi − 1, µi+1 + 1, ν〉+ |ki − 2, µi − 1, µi+1 − 1, ν〉
]}

,

(A.0.28)

where we introduced the short notation

aki,ki−1,µi,νi := A
√
|µi||νi|

(√
|ki + ki−1 + 1| −

√
|ki + ki−1 − 1|

)
, (A.0.29)

bki,ki−1,µi,νi := A
√
|ki + ki−1||νi|

(√
|µi + 1| −

√
|µi − 1|

)
, (A.0.30)

cki,ki−1,µi,νi := A
√
|ki + ki−1||µi|

(√
|νi + 1| −

√
|νi − 1|

)
. (A.0.31)

Thirdly, we let the remaining Lorentzian and Euclidean constraint operators act in (A.0.28),
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for which we again use (6.1.16) and (6.1.8) resulting in

[
Ĥeucl, Ĥlor

]
|k, µ, ν〉 = Hlor(k, µ, ν)

N∑
i=1

{
aki,ki−1,µi,νi

[
|k, µi + 2, νi + 2〉

− |k, µi − 2, νi + 2〉 − |k, µi + 2, νi − 2〉+ |k, µi − 2, νi − 2〉
]

+bki,ki−1,µi,νi

[
|ki + 2, µ, νi + 1, νi+1 + 1〉 − |ki + 2, µ, νi + 1, νi+1 − 1〉

+ |ki + 2, µ, νi − 1, νi+1 + 1〉 − |ki + 2, µ, νi − 1, νi+1 − 1〉 − |ki − 2, µ, νi + 1, νi+1 + 1〉

+ |ki − 2, µ, νi + 1, νi+1 − 1〉 − |ki − 2, µ, νi − 1, νi+1 + 1〉+ |ki − 2, µ, νi − 1, νi+1 − 1〉
]

+cki,ki−1,µi,νi

[
|ki + 2, µi + 1, µi+1 + 1, ν〉 − |ki + 2, µi + 1, µi+1 − 1, ν〉

+ |ki + 2, µi − 1, µi+1 + 1, ν〉 − |ki + 2, µi − 1, µi+1 − 1, ν〉 − |ki − 2, µi + 1, µi+1 + 1, ν〉

+ |ki − 2, µi + 1, µi+1 − 1, ν〉 − |ki − 2, µi − 1, µi+1 + 1, ν〉+ |ki − 2, µi − 1, µi+1 − 1, ν〉
]}

−
N∑
i=1

{
aki,ki−1,µi,νi

[
Hlor(k, µi + 2, νi + 2) |k, µi + 2, νi + 2〉

−Hlor(k, µi − 2, νi + 2) |k, µi − 2, νi + 2〉 −Hlor(k, µi + 2, νi − 2) |k, µi + 2, νi − 2〉

+Hlor(k, µi − 2, νi − 2) |k, µi − 2, νi − 2〉
]

+bki,ki−1,µi,νi

[
Hlor(ki + 2, µ, νi + 1, νi+1 + 1) |ki + 2, µ, νi + 1, νi+1 + 1〉

−Hlor(ki + 2, µ, νi + 1, νi+1 − 1) |ki + 2, µ, νi + 1, νi+1 − 1〉
+Hlor(ki + 2, µ, νi − 1, νi+1 + 1) |ki + 2, µ, νi − 1, νi+1 + 1〉
−Hlor(ki + 2, µ, νi − 1, νi+1 − 1) |ki + 2, µ, νi − 1, νi+1 − 1〉
−Hlor(ki − 2, µ, νi + 1, νi+1 + 1) |ki − 2, µ, νi + 1, νi+1 + 1〉
+Hlor(ki − 2, µ, νi + 1, νi+1 − 1) |ki − 2, µ, νi + 1, νi+1 − 1〉
−Hlor(ki − 2, µ, νi − 1, νi+1 + 1) |ki − 2, µ, νi − 1, νi+1 + 1〉

+Hlor(ki − 2, µ, νi − 1, νi+1 − 1) |ki − 2, µ, νi − 1, νi+1 − 1〉
]

+cki,ki−1,µi,νi

[
Hlor(ki + 2, µi + 1, µi+1 + 1, ν) |ki + 2, µi + 1, µi+1 + 1, ν〉

−Hlor(ki + 2, µi + 1, µi+1 − 1, ν) |ki + 2, µi + 1, µi+1 − 1, ν〉
+Hlor(ki + 2, µi − 1, µi+1 + 1, ν) |ki + 2, µi − 1, µi+1 + 1, ν〉
−Hlor(ki + 2, µi − 1, µi+1 − 1, ν) |ki + 2, µi − 1, µi+1 − 1, ν〉
−Hlor(ki − 2, µi + 1, µi+1 + 1, ν) |ki − 2, µi + 1, µi+1 + 1, ν〉
+Hlor(ki − 2, µi + 1, µi+1 − 1, ν) |ki − 2, µi + 1, µi+1 − 1, ν〉
−Hlor(ki − 2, µi − 1, µi+1 + 1, ν) |ki − 2, µi − 1, µi+1 + 1, ν〉

+Hlor(ki − 2, µi − 1, µi+1 − 1, ν) |ki − 2, µi − 1, µi+1 − 1, ν〉
]}

.

(A.0.32)

Finally, we can order (A.0.32) by collecting all eigenvalues Hlor(k, µ, ν) that have the same
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state |k, µ, ν〉 giving us[
Ĥeucl, Ĥlor

]
|k, µ, ν〉 =

N∑
i=1

{
aki,ki−1,µi,νi

[
(Hlor(k, µ, ν)−Hlor(k, µi + 2, νi + 2)) |k, µi + 2, νi + 2〉

− (Hlor(k, µ, ν)−Hlor(k, µi − 2, νi + 2)) |k, µi − 2, νi + 2〉
− (Hlor(k, µ, ν)−Hlor(k, µi + 2, νi − 2)) |k, µi + 2, νi − 2〉

+ (Hlor(k, µ, ν)−Hlor(k, µi − 2, νi − 2)) |k, µi − 2, νi − 2〉
]

+bki,ki−1,µi,νi

[
(Hlor(k, µ, ν)−Hlor(ki + 2, µ, νi + 1, νi+1 + 1)) |ki + 2, µ, νi + 1, νi+1 + 1〉

− (Hlor(k, µ, ν)−Hlor(ki + 2, µ, νi + 1, νi+1 − 1)) |ki + 2, µ, νi + 1, νi+1 − 1〉
+ (Hlor(k, µ, ν)−Hlor(ki + 2, µ, νi − 1, νi+1 + 1)) |ki + 2, µ, νi − 1, νi+1 + 1〉
− (Hlor(k, µ, ν)−Hlor(ki + 2, µ, νi − 1, νi+1 − 1)) |ki + 2, µ, νi − 1, νi+1 − 1〉
− (Hlor(k, µ, ν)−Hlor(ki − 2, µ, νi + 1, νi+1 + 1)) |ki − 2, µ, νi + 1, νi+1 + 1〉
+ (Hlor(k, µ, ν)−Hlor(ki − 2, µ, νi + 1, νi+1 − 1)) |ki − 2, µ, νi + 1, νi+1 − 1〉
− (Hlor(k, µ, ν)−Hlor(ki − 2, µ, νi − 1, νi+1 + 1)) |ki − 2, µ, νi − 1, νi+1 + 1〉

+ (Hlor(k, µ, ν)−Hlor(ki − 2, µ, νi − 1, νi+1 − 1)) |ki − 2, µ, νi − 1, νi+1 − 1〉
]

+cki,ki−1,µi,νi

[
(Hlor(k, µ, ν)−Hlor(ki + 2, µi + 1, µi+1 + 1, ν)) |ki + 2, µi + 1, µi+1 + 1, ν〉

− (Hlor(k, µ, ν)−Hlor(ki + 2, µi + 1, µi+1 − 1, ν)) |ki + 2, µi + 1, µi+1 − 1, ν〉
+ (Hlor(k, µ, ν)−Hlor(ki + 2, µi − 1, µi+1 + 1, ν)) |ki + 2, µi − 1, µi+1 + 1, ν〉
− (Hlor(k, µ, ν)−Hlor(ki + 2, µi − 1, µi+1 − 1, ν)) |ki + 2, µi − 1, µi+1 − 1, ν〉
− (Hlor(k, µ, ν)−Hlor(ki − 2, µi + 1, µi+1 + 1, ν)) |ki − 2, µi + 1, µi+1 + 1, ν〉
+ (Hlor(k, µ, ν)−Hlor(ki − 2, µi + 1, µi+1 − 1, ν)) |ki − 2, µi + 1, µi+1 − 1, ν〉
− (Hlor(k, µ, ν)−Hlor(ki − 2, µi − 1, µi+1 + 1, ν)) |ki − 2, µi − 1, µi+1 + 1, ν〉

+ (Hlor(k, µ, ν)−Hlor(ki − 2, µi − 1, µi+1 − 1, ν)) |ki − 2, µi − 1, µi+1 − 1, ν〉
]}

.

(A.0.33)

We now discuss the annihilation of the commutator. This is motivated by our results
presented in section 6, which imply that the only common eigenstates of the Euclidean and
Lorentzian part have eigenvalue zero. Hence, it may happen that the annihilation of the com-
mutator yields new insights or even some states which are diagonal with respect to Euclidean
and Lorentzian part with non-vanishing eigenvalue. In particular, we can let the commutator
act on our special ansatz (6.0.3). Then, we can use the result of (A.0.33) and transform the
shift of the states to the coefficients, as we did for the Euclidean part in section 6.3. However,
looking at the complicated result of (A.0.33), we see that the prefactors Hlor(k, µ, ν) lead to a
coupling between the labels prohibiting a separation ansatz as performed in 6.3 or 6.4. This
argumentation is similar to that discussed in section 6.6. Nevertheless, we can annihilate the
commutator using the zero volume states presented in section 6.2, as both the Lorentzian and
Euclidean operator vanish for such states and hence, (A.0.27) will vanish, too. Therefore, we
conclude that it seems as our special ansatz (6.0.3) only allows us to annihilate the commuta-
tor between the Euclidean and the Lorentzian operator for zero volume states. Also if we let
the commutator act on a single basis state |k, µ, ν〉, zero volume states seem to be the only
possible solution due to the complicated structure of (A.0.33).
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Zuerst möchte ich mich bei Prof. Kristina Giesel bedanken, die mir diese Arbeit überhaupt
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