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ABSTRACT

The equivalence between the quantum group (qZ(N,ﬂ:;L)/U(l))‘“z = (,pﬂ(N;L)qs at q2=—1 over a non-

Grassmannian field and ol(LlN—L)s over a Grassmannian field is discussed.

to gAN;L)_ (q"=-1) ~ o(L|N-L).
GA(N;L)

. at q =rr1th root of unity, m>2.
s

Specifically, representations ql(z;l)qs at m™

The equivalence extends

This suggests a generalization of ol(L]N—L)- to Zm—grading via

root of

unity are shown, via their fusion and braiding properties, to transform as s-deformed parafermions,

or spin-1/m anyons. They contrast sharply with corresponding representations of a#(2) .
s

Recently representations of quantum groups,
especially 6&(N,C) (henceforth M(N)q) at roots
q

of uH}ty have attracted a great deal of atten-

tion. Here we discuss representations at
roots of unity of another quantum group
(henceforth and

(gUN,C;L)/U) QEN;L)_
called twisted quantum group of AM_1 in [2,3]).

Some of the especially interesting properties of
these representations are already known: (a) For
N=2, s generic and ¢ =-1, the representation
gives the Alexander-Conway link polynomial,
whose counterpart is the Jones polynomial deriv-
able from the fundamental representation of
ol(z)q, q generic. ‘ (b) The state model asso-

ciated with the Alexanders—%onway polynomial is
the free fermion model.”™ (c) There is a
hierarchy of Alexander-Conway link polynomials

. h
correigor]ding N=2, s generic and q2=mt root of
unity. > (d The representations of
g2(N;L) at q°"=-1 coincide with those of

a,s

ol(L|N-L) , whose associated link polynomials
8

are just Witten’s Wilson-lines for the 3D topo-
logocal Ch[eargl—Simons theory with gauge group
SU(L|N-L).™

In this report (where w = exp(2ni/m),
qm = w:/z) we give a summary of properties of
the representations of ql(Z;l)qm,s, s generic
(q£(2;l_.)qls reduces to 4)1(2)s unless L=1). They

are parafermionic and unlike the representations
of oé(2), s generic, which have a one-to-one
S

correspondence to the representations of 68(2).
We show that g@f(2;1) provides a generaliza-
qm,s

tion of the Zz-gr‘ading of al(2) to Zm—grading.
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The generators of the Hopf algeg_ram of

ql(z;l)q o denoted by 4, are I, H and X, where

in the classical limit I generates the U(1l) fac-
tor in @f(2) ~ al(2)xU(1) and the other three
generate o£(2). In the quantized case, I is

sti+11 ) cen%r‘a}2 to ﬁ, and [H,X7]= #2X~ and
X', X I=(k™-k “V/(q-q ) as in ol(2), except
that q

K = q(H—I)/Z R )

H/2

instead of k=q in ol(Z)q.

absorb the effect of I on k in (1) into H by a
redefinition ?_f,‘] the latter, which will no longer
be traceless. For reasons that will become
transparent we use the expression (1) in which
the role of I and that of the second parameter s
is made explicit from the outset (in which case
the respective numbers of generators in the
Cartan subalgebra and deformation parameters
still match). For convenience we write p=s/q.
First note the trivial special case of (1) at
p°=1, whence the U(l) factor in ql(N;L)qs is

modded out and « is reduced to a8(2)
properties are well known.

It is possible to

, Whose
q

We consider only the nontrivial case p2$1.
Then #4 has a finite regresentation over the vec-
tor field V only when q~ is a root of unity:

2_ ~1_ -2Wi/m
=e

q =w (2)

, m = positive integer

The same result obtains when one chooses,
instead of (2), q°=w™ , provided m’ is prime to
m. Given (2), the elements (X°)™ are central in
4, and a fundamental m-dimensional matrix repre-
sentation m: «>End(V) is obtained when the
relations

*'m
n((X7)) =0 (3)



are imposed. In what follows, it will be under-
stood that all expressions given for elements in
A are those under the homomorphism =, and that
lpl={|i>; i=1 to m} is a basis for V, with the
highest (lowest) state with respect to X" being

|1> (Jm>). Then |m> (}1>) are the highest (low-
est) state with respegt to X. With the aid of
the derived relation N (meapt_ to hold when
acted on a state € KerX \Im(X")™)
(xH% )1 =
[vl ! v .2 -u+j , -2 u-j
X))Vt —3 g ke ‘"kg (4)
[v-u] ! -1
q J=1 q-q
one obtains from standard methods:
I[i> = (m-1]i>, H|i> = (m+1-2D)|i>  (5)

172
X_|i> = ([i]q(sm—lq—l+l_s—m+1ql-l)/(q_q—l)] Ii+1>v

<i|X'|i+> = <i#l|X7| > (6)

The R-matrix may P‘ﬁ calculated from the
method either of Drinfeld  or of [2]. Here we
only give its m~ eigenvalues, whose degeneracies
determine the fusion rule of the direct product
[plelp] and whose values characterize the braid-
ing of the irreducible representations in the
direct product, as expressed in the following
two relations

m
[plelpl=e [o‘j], (dimensionality of [crj]=nj) (7)
J=t
Rle ] = r [o 8
[ JI J[ J] (8)
That is, the degeneracy of r‘J is nj, and
ZJnJ:mz. For the R-matrix under study, r‘J and

nj are given by

, n; j=1 to m} =
(rj ;] }

(9)

]Jw(l—j)(J—Z)/zs(m—l)(3-—2_])

{-(~1 , m; j=1 to m)

There are m distinct eigenvalues, all with
degeneracy m. This contrasts sharply with the
R-matrix, denoted by R‘, of the m-dimensional
representation [p’] of 02(2)5, whose eigenvalues
r\I
J
by

and degeneracies n’J for generic s are given

{rg, n’J; j=1 to m} =

2 (10)
{-(—1)Js(m—lm_zmﬂzmm‘l_] ], 2m-2j+l; j=1 to m}

For m=2, the link polynomials corresponding to
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[pl] and [p’] are respectively j?zst] the
Alexander-Conway and Jones polynomials ™™, It
follows from the fact £ coincides wzith2 thg1 Hopf
algebra 4’ of M(Z)s in the limit s"=q"=w ~ that

R(s?’=w)=R’(s’=v™"). On the other hand (9) and
(10) are discretely distinct. Therefore at
least one of the relations cannot be continuous
in that limit. It turns out that both are not;
for a detailed discussion see [10].

To have a better understanding of the dif-
ference between (9) and (10) we return to «
{instead of +the homomorphism n) and consider,
instead of X~, the generators

- H/2

+ H/2,,+ Y_-—-Xq

Y =q X, (11)

Define an x-commutator to be [A,B]xEAB-xBA.

Then, +ins'cead+ of having a commutation relation
like X™ do, Y~ satisfy

H/2, (I-H)/2 1 -(I-H)/2_-1
w (w s - w s )

YLyl = A (12)
w
where w=q_2 and A is a nonessential normaliza-

tipn constant so long as q2=t1. The ?%producg_ on
Y, now has a nonstandard appearance AlYT) =

Y..@quI/Z N p—vz@Y...
The left-hand side of (12) is an

w-commutator. In particular, when w=-1, it is

an anti~commutator. In this case, under the

homomorphism m of (5) for m=2, thIe _rlight—hand
side of (12) is proportional to (s -s ), which
vanishes in the limit s»1. If one replaces the
normalization constant A by (s-s~ )', then (12)
is exactly the commutation relation satistfied
by the raising and lowering generators of
4;2(1]1)s (note that the fundamental representa-

tion of H in <>,£(1|1)’i is proportional to the

unit matrix, just as that of 1 is). In this
sense gl(2;1) ., 15 €quivalent to ol(lll)s.
q2,
To understand this notion further, consider

(9) and (10) for the case m=2, and write the two
states |1> and |2> as |+> and |->, the represen-
tations [o‘j] for j=1 and 2 (see (7)) as [b] and

[f], and [a‘}] as [s] and [a], respectively. For

reason that will be clear presently, b, f, s and
a stand for boson, fermion, symmetric and anti-
symmetric, respectively. We have

Ribl=slbl, RIfl=-s"[f] (for eSS (13)
R'[sl=slsl, R‘[al=-s"lal (for o&(2)) (14)
The two sets of equations appear identical, but
they carry quite different meanings. It suf-

fices to point out that whereas both the symme-
tric states |+>]|+> and |->|-> lie in the three
dimensional [s] in the case of 01’,(2)5, in the



case of (;Z(Z;l)qz |+>|+> lies in the two dimen-

sional [b] while |->|-> lies in the two dimen-
sional [f]. Thus, in the limit s-»1, [f] changes
sign under braiding not because it is antisymme-
tric, like [a] is, but because its constituents
are fermionic.

It is important to distinguish how [f] is
given a f{ermionic exchange property (here,
because (Y7)” are central, there is no differ-
ence between braiding and transposition) in (the
unquantized) of(1|1) and in ql(Z;l)qZI. In the

former, which has a trivial coproduct, the task
is achieved by making the vector space expli-
citly contain a Grassmann variable, namely the
state ]—>. In the latter the fermionic property
of |—> is encoded in the braiding property of R
in a Hopf algebra with a nontrivial coproduct,
while the vector space is nonGrassmannian.

The ﬁ}r}alysis above can be transplanted onto

ge(N;L) . to demonstrate its equivalence to
q2,s

ol(L|N-L)s. This explains why, for the funda-

mental representations of the two quantum

groups, the link polynomials, which are actually
eigenvalues of invariants of the quantum group,
are identical, as are their associated graded
vector mi:u?els, and why the latter are nonquasi-
. 3 - .
classical. The equivalence carries over to
the limit s51 to establish the equivalence
between the Hopf algebra q,l’,(N;L)q21 and the

graded Lie algebra ol(L|N-L). For ql(N;L)qu

the formula (13) still applies, except that the
dimensionality of {b] is N(N-1)/2+L and that of
[f] is N(N+1)/2-L. These are to be contrasted
with the dimensionalities of [s] and [a] in
AZ(N)S, being respectively N(N+1)/2 and N(N-

1)/2.

The Zz-grading of af(2) into of(1|1) does

not lend itself to a direct generalization to

higher gradings. However, the discussion above

shows that a Z -grading can be achieved by way
m

of the Hopf algebra of ql(Z;l)qs at q2 =w’?,

’ m

which in the following we call sdm. Recall that

the configuration space for a system of states
having the property of higher than Z2 grading is

nonsimply connected, so that, instead of trans-
position, one must speak of braiding of two
states. This explains why a quantum group is
necessary for higher gradings. That dlm has the

property of a Zm—graded algebra is already clear

from (9) and (12), especially when the latter is
recast into the form
(m>2)

Y.,y ]w = (15)

m

a(S)(Pm—B(S))

where P is idempotent of order m, and « and B
m
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are central elements depending on s and I. The
right-hand side of (15) does not vanish in the
limit s»1 for m>2, so it is not necessary to
have a factor (s-s ) .

From (9), the fusion states [O‘J] defined in
(8) for Am at s=1 braid as

v
R[o-J] =(-1) w j[o-j];
(16)

v, = -(j-1)(j-2)/2 (mod m)

In particular [01]=[b] is bosonic, [0‘2]=[f] is
fermionic, while the other states are such that
Rm[0‘11=t[o*J]. These latter states may be inter-

preted as anyonic states with "spin" 1/m; they
are direct generalizations of a fermionic state,
which has spin 1/2. The dimensionality of [o*j]

Thus the representation
(Since the link

is m, independent of j.
[p] of sdm is parafermionic.

polynomial for sdz, is just the Wilson line for

the supersymmetric Cheré—(ﬁimons theory with
SU(1|1) gauge symmetry,  one is intrigued
with the possibility of the link polynomials for

4 , m>2, being related to the Wilson lines for
m

fractionally supersymmetricm] Chern-Simons
theories.) In comparison, for of(2), the cor-

responding fusion states [0'; ] are just normal

spin m-j states: they have respective dimension-
alities 2(m-j)+1 and are either symmetric (j
odd) or antisymmetric (j even) under R’. Since
02(2)s is a continuous deformation of af(2), the

eigenstates of R’ for generic s cannot be
anyonic even as they have unusual braiding pro-
perties. They are just normal spin states
dzefor:rlned. For a discussion of the situation at
s=w_-, when adm coincides with 02(2)5, see [10].
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DISCUSSION

Q. A. LeClair (Cornell Univ.): Why do you call your

symmetries fractional supersymmetries if you don’t
have the Poincaré generators in the algebra? I don’t
think the name is justified.

. H. C. Lee: The representations are those for 1/m-—

statistics anyons. [ mention fractional supersym-
metry because I think the representations are
characteristic of those of fractional supersymmetric
systems, plus the fact that the link invariants for
(sl(n/n)xU(1))g2=—1,s are exactly thelink invariants
of Wilson lines in the three-dimensional supersym-
metric topological field theory with SU(n/n) gauge
group.



