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ABSTRACT A short review of the theoretical possibilities for determining 
the particle spectra in lattice gauge theories is done . As an example , the 
determination of QCD spectrum at strong coupling in a random lattice mod­
el which is rotationnally invariant , is presented. 
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1 - Ill'rROilUC'.rIOK 

ln this paper , we give a very short review of the problems encountered 

in the theoretical calculation of mass spectra; more details can be found 

in the literature , e.g. <1 > . We also present a recent calculation per­

formed on a random lattice at strong coupling( Z ) . 

Let us first recall that lattice gauge theories deal with dynamical 

gauge field variables u1 located on the links of a lattice and belonging 

to a gauge group G (typically SU( N ) ) .  The pure gauge action 

s ( 1 )  

is a sum over the elementary plaquette contributions which use the paral­

lel t
�
ansporter up .. uijkl =Uijujkukl u1i . In the weak coupling limit 

/l=2N/g .... , the lattice system is conjectured to reduce to the continuous 
Yang-Mills field theory. In the case of asymptotically free theories 

(e.g.  SU( N )  with Nl!:2 ) and according to the renormalization group 

analysis ,  the dimensioned quantities are expressed in terms of the lat­

tice mass scale 

-1 
A = a  ( 2 ) 

which is to be kept fixed as the lattice spacing a .. o ,  g2 .. o .  The first two 

numerical constants p0=11N/48n2 and tJ1=17N2/384n4 are universal and 

independent of the regularization of the theory. 

Let us discuss first the pure gauge theory with respect to its glue­

ball mass spectrum. The problem is to compute the non-dimensioned quan­

tity m/A in the limit p..... The usual lattice systems using continuous 
non-Abelian gauge groups eXhibit two different behaviours as fl varies . 



• A strong coupling regime for low 13 .  In the whole region , strong coupl­

ing series yield very good results .  This region is naturally con­

fined. 

• A wealt coupling region. For high enough dimension (125 ) ,  the two 

regions are separated by a first order phase transition , where the 

physical quantities have a jump. Very precise results are easily 

obtained using statistical techniques <1 > . In particular , the whole 

phase structure of the system is well described by the mean field 

approximation and its systematic corrections . However , these high 

dimensional systems are not of physical interest. 

Unfortunately, the situation becomes worse in four dimensions . Now , 

the weak coupling region is also confined. It is remark.able that asymp­

totic freedom results are very well reproduced, even at lowest order , in 

this region. Any physical length � is indeed such that A� is almost con­

stant . Between weak and strong coupling regions , there is some evidence 

for the absence of a phase transition. However , a sharp change in the 

properties of the system is observed (near 13=2 .2 for SU(2 ) and fJ=S .6 for 

SU( 3 ) ) .  The different approaches of the determination of physical quan­

tities now lead to the following comments .  

• Mean field method is no more directly usable. d=4 appears as the 

upper critical dimension where the series of mean field corrections 

diverge. In particular , the predicted first order phase transition 

is not present at d=4. 

• Weak coupling expansions correspond in fact to the usual perturbation 

theory and is not suited for a correct description of confinement 

effects. 

• It is possible to simulate the system by numerical Monte-carlo 

method. Due to time and storage constraints , these very heavy and 

costful simulations are always performed at the very beginning of the 

weak coupling region and their results extrapolated to fl= using 

asymptotic freedom formula. 
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• The most interesting method on the theoretical point of view is to use 

the strong coupling expansion, which naturally lead to confinement . 

The series ( J )  are rapidly convergent in the strong coupling region. 

However , the extrapolation in the weak coupling regime is rather dif­

ficult , due to the existence of nearoy complex singularities near the 

cross-over point. 

An empirical rule is to extrapolate smoothly the curves obtained l:ly 

some resurnrnation technique (e .g. Pade approximants )  from the strong cou­

pling series , using the asymptotic l:lehaviour. Figure 1 ,  extracted from 

ref . (4 ) , illustrates this technique for the SU(2 ) glueoall mass. The 

same analysis performed in SU( 3 )  shows less stal:lility in the results . 

This suggests the use of more elal:lorate extrapolation techniques ( 5 ) . 

We want also to point out the problem of rotational invariance. With 

regular lattices , one think that this symmetry is restored in the weak 

coupling region , and there is some numerical evidence for it ( 6 ) . This can 

l:le checked oy computing the energy-momentum dispersion of gluel:lalls( 7 ) . 

The energy E(p)  may l:le expanded for small p as 

a E(p)  

In  the approach of the physical region , we expect to recover the invariant 

spectrum E(p)2=rn2 + p2 , hence 

F( jl }-+am ( 4 )  

This program works reasonaoly well , out suffers from the lack o f  conver­

gence of the ( snort ) series in four dimensions . Another approach is to 

compute the off-axis glueoall masses and compare to the on-axis 

masses ( S ) . 

We nave not discussed the problems related to the introduction of 

matter fields and, in particular , fermion fields . They are the sul:lject of 

some contributions in this conference . 
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Figure 1. 
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Strong coupling expansion for t h e  gl ueball mass. Different curves 

correspond to different resummations of the •eries. Dotted lines are 

extrapolations in the weak coupling region. Monte Carlo data also 

appear. (figure from ref (4)). 

2 - A ROTATIOHAL IllVARIAHT MODEL. 

We want now to present a calculation performed on a random lattice . 

The randomness is expected to preserve from the beginning the rotational 

invariance . One hopes to avoid the preceding problems ; furthermore ,  as 

the occurence of the cross-over separating the strong- and weak-coupling 

regimes is perhaps related to the restoration of the rotational invari­

ance, there is some nope to obtain a better convergence of the strong 

coupling series up to the physical region . Another motivation is the pos­

sibility of a more convincing comparison of a computed spectrum with the 

experimental one , where particles are identified by their spin content . 

Finally , the impossibility of setting chiral fermions without species 

multiplication ( 9 )  might be overcome in a Euclidean invariant regulariza­

tion. 
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The model is defined on a d-dimensional random distribution of sites 

with a density p. The standard random model ( lO ) introduces the defi­

nition of nearest neighbours ;  as a consequence , practical evaluations of 

observables are almost untractable. We introduce interactions between 

any two points of the lattice , with a Gaussian factor of range b. The phy­

sical limit is obtained for fixed value of pbd , as b-+O where locality is 

restored. Gauge fields U(x,y) are introduced for any couple of points and 

the action is 

s = -�� I  3d/2�-�-2dexp(­
p3bd 

x Tr (U(x,y)U(y,z)U(z ,x) ) 

where fermionic fields for quarks have been introduced. 

As a first step in a systematic strong coupling expansion , the calcu­

lation of the particle spectrum is performed 

• at �=O where the action is linear in u .  

• at the leading order in 1/N , which allows to use a steepest descent 

method already applied for regular lattice systems ( 11 ) . 

• at leading order in 1/pbd 

We refer for details to<2 > .  The steps of the calculation are as fol­

lows . First , using the linearity in U ,  the gauge fields U are integrated 

over. The resulting action only depends on the mesonic local composite 

fields q(x)q(x) and baryonic composite fields q(x)q(x)q(x) . Then it is 

linearized into these composite fields using the standard integral tran­

sformations which introduce new effective mesonic and baryonic fields 

with conjugated "mean fields".  This linearization allows now the inte­

gration over the Grassrnannian quark fields , and the remaining 

integrations can be estimated using the steepest descent method. 



JPC I Particle ffiR��rrfiiii� ��ri�e�Ml 

-+ 0 1 1t 140 ( input ) 140 

-+ "11 cuii+ddJ 140 550 ('I) )  0 0 
-+ 0 0 112 c ssJ 689 958 (11 ' ) 
-

0 l/2 K 495 ( input ) 495 

--1 1 p 770 ( input ) 770 
--

1 0 "' 770 783 

--1 0 'I' 997 1020 
-

1/2 
. 

889 892 l K 
-+ 0 1 1t' 1502 1300 

-+ cuii+da) 1502 0 0 11 '  -
1 

-+ 0 0 11 '  2 c ss l  1578 1440 

-0 l/2 K '  1539 1400? 
--

1 1 p ' 1150 1250? , 1600 

--l 0 "' ' 1150 -
--

1 0 'I'' 1285 1680 
-

1/2 
. 

l K'  1218 1650? 

TABLE mesonic spectrum with our random lattice model. 

calculations are nevertheless intricate and rather long; the inter­

ested reader will find details in( 2 ) , and we only quote here the table 

giving the mesonic spectrum of this model. Note that the scale b is fixed 

by a fit to the spectrum computed at /j=O and appears as an effective 

interaction range . Its value is to be adjusted at each value of p and is 

expected to vanish when /J grows indefinitely. Here , b = o.45fm. We nave 

introduced three species of quarks and nave used the masses of the p ,  1t 
and K to fit our parameters. Note that the 1t appears as the Goldstone par­

ticle with a vanishing mass when the chirality is restored by setting the 

quark mass to zero. In this kind of models , there is a degeneracy between 

particles of different isospin. In particular , the 11 is degenerated with 

the 1t, which indicates the absence of U (l )-anomaly. However , this is in 
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fact expected at leading order in l/N . The calculation of various cor­

rections will lift this degeneracy. It is now important to evaluate these 

corrections to check the correct chiral structure of our model . 

we also mention that the baryon spectrum is also computed within the 

same approximations. We only mention here that it seems satisfactory , 
although the ratio m.t/� is a bit low. All details can be found in 

ref . ( 2 ) .  

3 - CO!ICLUSIO!I 

In spite of various pitfalls , strong coupling methods nave achieved 

remarkable results . It seems that longer series might Offer a real alter­

native to Monte-carlo simulations . 
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