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ABSTRACT A short review of the theoretical possibilities for determining
the particle spectra in lattice gauge theories is done. As an example, the
determination of QCD spectrum at strong coupling in a random lattice mod-
el which is rotationnally invariant, is presented.
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1 - INTRODUCTION

in this paper, we give a very short review of the problems encountered

in the theoretical calculation of mass spectra; more details can be found

(1

in the literature, e.g. ) . We also present a recent calculation per-

)

formed on a random lattice at strong coupling

Let us first recall that lattice gauge theories deal with dynamical
gauge field variables Ul located on the links of a lattice and belonging
to a gauge group G (typically SU(N)). The pure gauge action
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is a sum over the elementary plaquette contributions which use the paral-
lel transporter UP 19k1 UlJUJkUklun In the weak coupling limit
B= 2N/q 4o, the lattice system is conjectured to reduce to the continuous
Yang-Mills field theory. In the case of asymptotically free theories
(e.g. SU(N) with N22) and according to the renormalization group
analysis, the dimensioned quantities are expressed in terms of the lat-

tice mass scale
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which is to be kept fixed as the lattice spacing a#0, g 90. The first two
numerical constants ﬁ0=11N/48n2 and g l=17N2/384ﬂ4 are universal and

independent of the regularization of the theory.

Let us discuss first the pure gauge theory with respect to its glue-
ball mass spectrum. The problem is to compute the non-dimensioned quan-
tity m/A in the limit f+=. The usual lattice systems using continuous

non-Abelian gauge groups exhibit two different behaviours as f§ varies.



® A strong couplingregime for low §. In the whole region, strong coupl-
ing series yield very good results. This region is naturally con-

fined.

® A weak coupling region. For high enough dimension (d25), the two
regions are separated by a first order phase transition, where the
physical quantities have a jump. Very precise results are easily
obtained using statistical tecnniques(l) . In particular, the whole
phase structure of the system is well described by the mean field
approximation and its systematic corrections. However, these high

dimensional systems are not of physical interest.

Unfortunately, the situation becomes worse in four dimensions. Now,
the weak coupling region is also confined. It is remarkable that asymp-
totic freedom results are very well reproduced, even at lowest order, in
this region. Any physical length § is indeed such that A{ is almost con-
stant. Between weak and strong coupling regions, there is some evidence
for the absence of a phase transition. However, a sharp change in the
properties of the system is observed (near $=2.2 for SU(2) and $=5.6 for
SU(3)). The different approaches of the determination of physical quan-

tities now lead to the following comments.

® Mean field method is no more directly usable. d=4 appears as the
upper critical dimension where the series of mean field corrections
diverge. In particular, the predicted first order phase transition

is not present at d=4.

® Weak coupling expansions correspond in fact to the usual perturbation
theory and is not suited for a correct description of confinement

effects.

L4 It is possible to simulate the system by numerical Monte-Carlo
method. Due to time and storage constraints, these very heavy and
costful simulations are always performed at the very beginning of the
weak coupling region and their results extrapolated to == using

asymptotic freedom formula.
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L] The most interesting method on the theoretical point of view is to use
the strong coupling expansion, which naturally lead to confinement.
The series(a) are rapidly convergent in the strong coupling region.
However, the extrapolation in the weak coupling regime is rather dif-
ficult, due to the existence of nearby complex singularities near the

cross-over point.

An empirical rule is to extrapolate smoothly the curves obtained by
some resummation technique (e.g. Padé approximants) from the strong cou-
pling series, using the asymptotic behaviour. Figure 1, extracted from
ref.(4), illustrates this technique for the SU(2) glueball mass. The
same analysis performed in SU(3) shows less stability in the results.

(5)_

This suggests the use of more elaborate extrapolation techniques

We want also to point out the problem of rotational invariance. With

regular lattices, one think that this symmetry is restored in the weak

coupling region, and there is some numerical evidence for it(s) . This can

.

be checked by computing the energy-momentum dispersion of glueballs

The energy E(p) may be expanded for small p as

a E(p) = F(§) + a’F,(H)Zp, + a’F () (2p0)% a*F (B)Zplpo «ov (3)

N

In the approach of the physical region, we expect to recover the invariant

spectrum E(p)2=m2 + pz, hence

F(B)+am 2FF -1 -aF3F2->1 F3F3+o (4)

This program works reasonably well, but suffers from the lack of conver-
gence of the (short) series in four dimensions. Another approach is to
compute the off-axis glueball masses and compare to the on-axis

(®)

masses

We have not discussed the problems related to the introduction of
matter fields and, in particular, fermion fields. They are the subject of

some contributions in this conference.



v
1

)
[l
1
1
'
]
1
1
)
i
'
'
1
]
1
]
1
1
L]
1
L}

FENFES S ISR S S TSt N WY Y

-5 1.0 1.6 2.0 2.5

B

NN & TS|

3.0 3.6

Figure 1.

Strong coupling expansion for the glueball mass. Different curves
correspond to different resummations of the series. Dotted lines are

extrapolations in the weak coupling region.

Monte Carlo data also
appear.(figure from ref (4)).

2 -~ A ROTATIONAL INVARIANT MODEL.

We want now to present a calculation performed on a random lattice.
The randomness is expected to preserve from the beginning the rotational
invariance. One hopes to avoid the preceding problems; furthermore, as
the occurence of the cross-over separating the strong- and weak-coupling
regimes is perhaps related to the restoration of the rotational invari-
ance, there is some hope to obtain a better convergence of the strong
coupling series up to the physical region. Another motivation is the pos-
sibility of a more convincing comparison of a computed spectrum with the
experimental one, where particles are identified by their spin content.

Finally, the impossibility of setting chiral fermions without species

multiplication(g) might be overcome in a Euclidean invariant regulariza-

tion.
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The model is defined on a d-dimensional random distribution of sites

(10)

with a density p. The standard random model introduces the defi-
nition of nearest neighbours; as a consequence, practical evaluations of
observables are almost untractable. We introduce interactions between
any two points of the lattice, with a Gaussian factor of range b. The phy-
sical 1limit is obtained for fixed value of pbd, as b+0 where locality is
restored. Gauge fields U(X,y) are introduced for any couple of points and

the action is

2 2 2
s=_8 3 3cl/zﬂ-alb-zaexp(_ (x=y) +(y-z)"+(2-x) ) x

P3bd b2
x TUGYIUY2UZX) + =5 T IOTEYIEYAY) (5)
p D

where fermionic fields for quarks have been introduced.

As a first step in a systemstic strong coupling expansion, the calcu-

lation of the particle spectrum is performed
® at =0 where the action is linear in U.

L] at the leading order in 1/N, which allows to use a steepest descent

method already applied for regular lattice systems(n).

® at leading order in 1/pl:>d

(2)

We refer for details to ~ ‘. The steps of the calculation are as fol-
lows. First, using the linearity in U, the gauge fields U are integrated
over. The resulting action only depends on the mesonic local composite
fields g(x)q(x) and baryonic composite fields q(x)q(x)q(x). Then it is
linearized into these composite fields using the standard integral tran-
sformations which introduce new effective mesonic and baryonic fields
with conjugated "mean fields". This linearization allows now the inte-
gration over the Grassmannian quark fields, and the remaining

integrations can be estimated using the steepest descent method.



JPc I Particle ggggrggiﬁg% %ES‘H‘*H&@I
- 1 n 140 (input) 140

ot 0 | m, (ui+ad) 140 550 (n)
ot o | m, (s8) 689 958 (n')
0 1/2 K 495 (input) 495

17 1 P 770 (input) 770

1 0 w 770 783

1 0 ® 997 1020

1 1/2 'y 889 892

o " 1 n 1502 1300

o " 0 | M (ua+ad) 1502 -

o " o | w (s5) 1578 1440

0 1/2 K 1539 14007

1 1 e’ 1150 12507 , 1600
1 0 W' 1150 -

1 0 ?' 1285 1680

1~ 1/2 ' 1218 16507

TABLE : mesonic spectrum with our random lattice model.

Calculations are nevertheless intricate and rather long; the inter-
ested reader will find details in(Z), and we only quote here the table
giving the mesonic spectrum of this model. Note that the scale b is fixed
by a fit to the spectrum computed at =0 and appears as an effective
interaction range. 1Its value is to be adjusted at each value of § and is
expected to vanish when f grows indefinitely. Here, b = 0.45fm. We have
introduced three species of quarks and have used the masses of the p, &
and K to fit our parameters. Note that the x appears as the Goldstone par-
ticle with a vanishing mass when the chirality is restored by setting the
quark mass to Zero. In this kind of models, there is a degeneracy between
particles of different isospin. In particular, the w is degenerated with

the n, which indicates the absence of U(1l)-anomaly. However, this is in
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fact expected at leading order in 1/N. The calculation of various cor-
rections will 1ift this degeneracy. It is now important to evaluate these

corrections to check the correct chiral structure of our model.

We also mention that the baryon spectrum is also computed within the
same approximations. We only mention here that it seems satisfactory,
although the ratio mA/nLN is a bit low. BAll details can be found in
ref.(2).

3 - CONCLUSION

In spite of various pitfalls, strong coupling methods have achieved
remarkable results. It seems that longer series might offer a real alter-

native to Monte-Carlo simulations.
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