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Abstract

For any quantum state representing a physical system of identical particles, the
density operator must satisfy the symmetrization principle (SP) and conform
to super-selection rules (SSR) that prohibit coherences between differing total
particle numbers. Here we consider bi-partitite states for massive bosons, where
both the system and sub-systems are modes (or sets of modes) and particle
numbers for quantum states are determined from the mode occupancies. Defining
non-entangled or separable states as those prepared via local operations (on the
sub-systems) and classical communication processes, the sub-system density
operators are also required to satisfy the SP and conform to the SSR, in contrast
to some other approaches. Whilst in the presence of this additional constraint
the previously obtained sufficiency criteria for entanglement, such as the sum
of the S, and S y variances for the Schwinger spin components being less than
half the mean boson number, and the strong correlation test of |(a™ (I;T)")|2
being greater than ((a%)"a™ (b")"b")(m,n=1,2, ...) are still valid, new tests
are obtained in our work. We show that the presence of spin squeezing in at
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least one of the spin components S., S‘y and S‘Z is a sufficient criterion for the
presence of entanglement and a simple correlation test can be constructed of
[{(a™ (13*)”) |* merely being greater than zero. We show that for the case of relative
phase eigenstates, the new spin squeezing test for entanglement is satisfied (for
the principle spin operators), whilst the test involving the sum of the S, and
S‘y variances is not. However, another spin squeezing entanglement test for
Bose—FEinstein condensates involving the variance in S . being less than the sum
of the squared mean values for S.and S y divided by the boson number was based
on a concept of entanglement inconsistent with the SP, and here we present a
revised treatment which again leads to spin squeezing as an entanglement test.

1. Introduction

Since the work of Einstein ef al [1] on local realism, the famous cat paradox of Schrodinger [2]
and the derivation of inequalites by Bell [3] and others [4], entanglement has been recognized as
being one of the essential features that distinguishes quantum physics from classical physics. In
macroscopic systems entanglement is of particular importance as it blurs the boundary between
the classical and quantum worlds. This paper considers tests that are sufficient (though not
necessary) to confirm such entanglement.

One way to detect macroscopic entanglement is by applying the so called spin squeezing
inequalities [S5] to a large number of particles. The importance of spin squeezing in quantum
metrology was emphasized by Kitagawa and Ueda [6] and it has been demonstrated that
such states beat the standard quantum limit in 1nterferometry [7]. For spin angular momentum

A

operators S, Sy, S spin squeezing of S, with respect to S is defined as
(A8) < 181 with (A8) > 21821 (1)

where (AS”%) is the variance of the spin operator S » (n=x,y, z) Analogous definitions apply
to other pairs of spin operators, or to a spin operator and any of its perpendicular components.
For N spin-1/2 distinguishable particles each in the same coherent state, correlations between
the spins resulted in spin squeezing in the total spin components [6], as it allows the fluctuations
in one direction perpendicular to the spin component to be reduced. In such systems of
distinguishable particles Sorensen et al [8, 9] showed that spin squeezing required entanglement
of the N particles. Here however, we consider N identical bosons occupying two modes,
where the Schwmger angular momentum operators for two modes, A and B with annihilation
operators d, b are S, = (b'a+d'h)/2, 8, = (b'd —a'h)/2i and S, = (b'b —a'd)/2 and the
system behaves like a giant spin with spin quantum number § = N /2.

A notable area in which the detection of macroscopic entanglement can take place is that
of trapped ultra-cold gases, where entanglement may be present over micron scales. Moreover,
since nonlinear interactions between particles are required to generate spin squeezing [6], ultra-
cold gases are an ideal test bed for witnesses based on spin-squeezing inequalities due to the
tunable atom-atom interaction. In addition to achieving interferometry beyond the standard
quantum limit, existing experiments have claimed to demonstrate macroscopic entanglement in
ultra-cold gases via witnesses based on spin squeezing inequalities [10—12].
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However, when detecting entanglement in systems of identical massive bosons with such
inequalities care must be taken for two reasons. Firstly, entanglement is a relative concept
that crucially depends on which sub-systems are being considered. A quantum state may be
entangled for one choice of the sub-systems but may be non-entangled if another choice of sub-
systems is made. For distinguishable particles, the sub-systems are usually individual particles,
with internal (spin and polarization) or external (position and momentum) degrees of freedom
possessing the quantum correlations. However, for identical particles the individual atoms
cannot be distinguishable sub-systems, and entanglement will refer to the quantum field modes
that the particles may occupy [13]. The modes are orthonormal single particle states, which may
be localized in different spatial regions or may be delocalized where the opposite applies. The
system and sub-systems are now modes, and cases with differing N are just different quantum
states of the same system. Note however that a different concept of entanglement—particle
entanglement—has also been applied to identical particle systems [14, 15]. Here we formulate
spin squeezing entanglement witnesses for massive identical bosons as above in equation (1) via
second quantization, so the symmetrization principle (SP) applies to all the identical bosons.

In the present paper we follow the approach of Werner [16] and define separable states
as those which can be prepared via local operations (on the sub-systems) and classical
communication processes (LOCC). A relevant example of such states occurs in ultra-cold atom
experiments, where mesoscopic ensembles can be prepared with definite particle numbers in
optical lattice sites. This means that for bipartite systems the density operator for separable
states can be written in the form

ﬁsep:ZPRﬁR:ZPRﬁg(gﬁg’ (2)
R R

where sub-systems A, B have been prepared in correlated quantum states p4 and p% with
a probability Pg. Entangled states are those which are not of this form. This definition can
be straightforwardly extended to multiple modes. It is important to realize that the terms in
Psep have a physical meaning—the sub-system quantum states p% and /% must correspond
to physical states that can actually be prepared in A, B considered as stand-alone systems.
The sub-system states before the preparation begins are unimportant, apart from being a
separable product of sub-system states—these might be easily preparable sub-system lowest
energy pure states. This point of view regarding the nature of separable states is not new,
see for example [17-19]. However, other papers focus on the mathematical form for p and
do not require LOCC preparation for defining what they refer to as separable but non-local
states [20, 21]. In the latter papers the p%4 and 5% are not required to represent physical states
that could be prepared in the isolated sub-systems. However, for LOCC based separable states
the joint probability for measurements of physical quantities Q4 and Qp for the sub- systems
resultmg in eigenvalues A 4; and A g; will be of the form P4 5(i, j) =), Pr PA(Z)PB(]) where
I, and I Bj are the projectors onto sub-spaces with eigenvalues A,;, Ap; and the factors

PAG) =Tra(I14;p%) and PE(j) = Trp(Il Bjp%) give the probablhtles that the measurement
results Lai and Ap; occur if the sub-systems A and B are in states p% and p%. If the p4 and
0% did not specify possible physical states for the sub-systems, then the probabilities PA(z)
and PF(j) would not have a physical meaning. This property of separable states in which
the joint measurement probability is determined from measurement probabilities of physically
possible separate sub-system states, is the key feature whose absence in non-separable states led
Schrodinger to refer to such states as entangled states. Note that after preparation, a separable
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state may evolve into an entangled state, such as when interactions between the sub-systems
take effect.

In addition, for systems of identical bosons we argue that to define the separable states (and
hence the entangled states) one should take into account the presence of the particle-number
super-selection rule (SSR) not only at the global level—as required for any quantum state but
also crucially at the level of the local sub-systems in the case of separable states. Simply put,
the global SSR means that for any quantum state of massive bosons, o, should commute with
the total particle number in the system [p, N1 =0, and hence no coherences exist between Fock
states with differing N. For the separable states given by equation (2) for two modes, this means
in addition that for physical sub-system states, ,65,5 for X = A, B should also commute with
the local particle numbers—thus 5% satisfy [$%, Ny] =0. Note that both / and the 5% may
be mixed states, with statistical mixtures of particle number states. This additional local particle
number SSR restriction leads to further tests of entanglement based on spin squeezing which are
radically different to some of the well known entanglement witnesses. As we shall see below,
a similar situation applies to other entanglement tests. In this letter, following an overview of
the pertinent concepts, we will investigate how the spin squeezing and other inequalities are
modified to detect entanglement when local particle number SSR are enforced for separable
states.

2. Global and local super-selection (SSR)

The particle-number SSR is a fundamental constraint for systems of massive bosons. It occurs
because physically realizable processes cannot create states which are coherent superpositions
of different Fock states with differing total particle number. Thus, all global operators should
commute with the total particle number operator. For states that are separable, the sub-system
states are also required to be physical states, so analogous constraints must also apply to the
sub-systems, and hence the sub-system states also have no coherences between Fock states with
differing local particle number. This feature is required for separable states in identical particle
systems if—as described above—joint measurements are to be based on physical probabilities
for such measurements on the sub-systems. Indeed, the SSR also limits the allowed local
operations on the modes (e.g. unitary operations of the form Us@U p)—they too have to
commute with the local particle numbers. Enforcing the local SSR leads to a more restricted
set of separable states than would apply if they are ignored, which can be expected to modify
an entanglement witness that was based upon the non-restricted definition of separability, in
which the p4 and 52 are not required to satisfy the local particle number SSR. Other authors
have applied the SSR at a local level, see [17, 20, 22-26] for instance. A similar separable state
was used [27] to show that the visibility of interference fringes between two spatial modes is
an entanglement witness for modes of massive particles. Non-local SSR conforming coherent
superpositions of number states (such as Glauber coherent states) were once thought necessary
for describing interferometry and coherence effects in Bose—Einstein condensates (BEC), but it
is now recognized [28, 29] that valid descriptions of these effects can be based on Fock states.
We will now make a brief comment about the connection between reference systems
and SSR. It has long been known [30] that by using a suitable reference system one
can, at least in principle, perform protocols (e.g. Ramsay interferometry, dense coding and
Bell inequalities) whose description involves coherences between different particle numbers
[24, 31, 32]. However, this apparent inconsistency can be resolved [33]. The key point is that the

4
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system states involved in a process are described differently by observers possessing different
phase reference systems. If one observer describes the state as in equation (2) in terms of
a reference system where the sub-system density operators 6% do not conform to the local
particle number SSR, then a second observer without access to this reference system would
also describe a separable state, but now with the transformed sub-system density operators p%
compatible with the local sub-system SSR. A more detailed discussion in terms of the U (1)
symmetry group is presented in [22] (see also [34, appendix 4]). In this paper, we work from
the viewpoint of the second observer. Phase reference systems such as BEC with large boson
numbers—described by the second observer as being in statistical mixtures of Glauber coherent
states with large fixed amplitudes and all phases having equal weight, and which satisfies
the SSR for the BEC mode—are often involved in protocols such as Ramsay interferometry,
dense coding, Bell inequalities. Bosons from the BEC reference interact and exchange with the
primary system that is involved, for example two mode [31, 32] or four mode systems [24].
From the point of view of the first observer, the evolution from each large amplitude Glauber
coherent state of the BEC times the initital state of the primary system can create states of the
primary system that violate the SSR. However, from the point of view of the second observer,
the evolved state of the primary system conforms to the SSR following averaging over the BEC
phases. In our approach, separable states are described by an observer with different phase
reference systems with unknown phases for the different sub-systems—as is appropriate for
sub-systems that are separate. On the other hand, entangled states are described by an observer
with a single phase reference system (albeit one where the phase is unknown), so that entangled
states are global particle number SSR compliant. This is appropriate for composite systems
where the sub-systems are combined into an entangled state on which measurements for overall
system operators can also be performed. In the present paper the protocol is spin squeezing
and we will describe this in terms of reference systems so that the state equation (2) satisfies
(o, Nyx]=0for X = A, B, which can be achieved in ultra-cold gas experiments.

3. Spin squeezing requires entanglement

Under the global and local particle-number SSR requirements for physical states of
indistinguishable particles, the spin squeezing inequalities equation (1) are satisfied only
if entanglement is present between the modes A and B. The proof is as follows. Using
realization, pg, of the separable state equatlon (2) the operators in the variance are
($2)p = (52 Vg =1/4(N)g+1/2n4n8 and (S,)x = (S),)R =0, with n% = (Ny)x. Then, since
for any operator €2 the inequality (AQ?) > Y, Pr(AQ?) applies [35], the inequality (AS?) >
> e PRIASH =>4 PR(j—‘(J\A/)R+%nIA§n§) holds and likewise for (AS‘%). For SSR-restricted

separable states, equation (2), the expectation Values of the z spin component %(3‘1) =
> & Pr3(n% —n%) can be bounded from above as 1[(S.)| < Y PR4|nR nal <Y Prilng+
ngl. Thus, (AS2) —L1|(S) >3, Pri(ngn®) >0 and likewise (AS2)—11(S;)| >0. This
shows for general separable states in equation (2) over two modes, A and B in which the local
mode SSR applies, the spin variances in both the x and y directions satisfy

1(S.)| 3)

N | =

~ 1 A ~
(AS) = SIS (AS) >
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and hence there is no spin squeezing of S, with respect to §y or vice versa It is straightforward
to show that analogous results apply to the other pairs of spin components S v S . and S i S, or
to each spin component and any perpendicular spin component. Thus we have now shown that
spin squeezing in any spin component is a test of entanglement—entanglement being defined
here in terms of separable states satisfying the local particle number SSR. There are, of course,
entangled states which do not show spin squeezing. One example is the famous Schrodinger
cat like NOON state, (|[N,0)+|0, N))/ V2, which describes all the particles in mode A and
none in mode B superposed with no particles in mode A and all particles in mode B. For large
N such states are however notoriously difficult to create in experiments. The NOON state
is global particle number SSR compliant, and its density operator is the same for any observer
with a different overall phase reference system. Note that for an observer with separate unrelated
phase reference systems for the two modes, the state is seen as a separable state, whose density
operator is a 50:50 mixture with one state having N bosons in mode A and none in mode B, the
other having no bosons in mode A and N in mode B.

4. Other spin squeezing tests and local SSR separable states

There are several entanglement tests, based both on spin squeezing and other protocols that can
be used to detect entanglement in systems, where the definition of entanglement is based on
separable states which do not satisfy the physically based particle-number SSR. Of course any
test that is derived for arbitrary p% must also demonstrate the present entanglement based on
[/6;5, N x] = 0. Several such tests are discussed elsewhere [34]. However, it is interesting and
necessary for experiments to consider whether additional tests arise when they are re-derived
for systems of identical massive bosons based on the physical definition of a separable state (2),
where the local SSR is satisfied. We will focus on certain commonly used inequalities in this
paper, although other tests also exist (see [36, 37]).

4.1. Hillery et al 2006 spin squeezing test

A paper by Hillery and co-workers [38] derives an entanglement witness (equation (4))
based upon spin squeezing, based on general (non-SSR-restricted) separable states of the
electromagnetic field. It has been used to detect entanglement in e.g. the following proposals
for trapped ultra-cold gases [39, 40]. We confirm that the main result of [38] is still valid for
the SSR restricted state (2), but provide an example where the Hillery test based on the sum
of J, and J y variances for rotated spin components fails to detect entanglement in the relevant
modes, whereas a simple spin squeezing test (as in equation (3)) involving a rotated component
jy is satisfied.
Hillery et al [38] show that for general separable states

1 A
(AS7) +(AS]) > S(N). (4)
To obtain this result it is found that for a product state pp that (AS%) R+ (AS?) R= %(1\7 YR+

nn8 —(a) g |*(b")r|?), where for non-SSR compliant p% the terms (d)z and (b')x are not

necessarily zero. Noting that |(d)|*> < (1\7 <) and likewise for mode b, it follows that (ASf) R+
(AS})R > %((]\A/)R. From (AQ?) >3, Pr(AQ2%)y the result in equation (4) then follows.



New J. Phys. 16 (2014) 013026 B J Dalton et al

For SSR- restricted separable states however, the result (AS2) R+ (AS2) ;((1\7 Y& still holds
because n4nk >0 alone is needed. The Hillery et al spin squeezing test for entanglement then
is (AS?) + (ASZ) (N ). If this applies the state cannot be separable.

Note that we have previously shown that for local SSR comphant separable states that
(ASD) +(AS]) > 1(S.)]. The quantity |(S,)| is smaller than 1 (N) since |(S)| < Y_p Pr3lng —
ngl <Y g Prylnk +ngl = (N) However, (AS}) +(AS}) < 1(S.)] is not a vahd entanglement
test because there are no quantum states where thls is true, as noted in [38]

Although it may be thought that because |( Z)| is smaller than 1 3 (N) the Hillery test invol-
ving <AS§) + (AS§)< %(]\Af ) would be more likely to demonstrate entanglement in the modes
A, B than the tests obtained in this paper such as showing (AS’)ZC) < %|(S‘Z}| or (A§§> < %|(§Z)|,
this is not always the case. The relative phase eigenstate [41, 42] is an entangled pure state
for N bosons defined by |¥,6,)= ="\ expikt,) IN/2—k)* ® IN/2+k)®)//N+1,
where 0, = p(2n /(N +1)) with p=—-N/2, —N/2+1, .., +N /2 specifies the relative phase.
In terms of spin components S’x, .§'y and §Z the covariance matrix [43] for spin fluctuations
is non-diagonal and spin squeezing does not occur. As the variances are such that (AS)ZC) +
(AS‘?) = (% - ’g—j)N 2 and which exceeds %N , the Hillery test for entanglement also fails even

though the state is entangled for modes A, B. Principal spin components J,=38 s J y =
(sin6,) Sx +(cos6,) S‘y, jz = —(cosb,) S'x +(sin6,) S‘y are obtained by a rotation, and for
these the covariance matrix is diagonal with (AJ?) = SN2 (A 2) T+:InN and (AJ 2)

%— —)N2 for large N. The mean values are (fx) = (fy) =0, (jz) = —%N (see [42] for
details). The principal spin components are related to annihilation operators ¢, d for new modes

C, D via expressions of the form J (ch +ch)/2 etc, where d = — exp( i6,)(¢ — d)/\/i
and b = —exp(—%i@l,)(é+c€’) / V2, and the relative phase state can be rewritten as a linear
combination of Fock states for the new modes |[N/2 —1)¢ ® [IN/2+1)? with [ =—N/2,---,
+N /2. Note that there must be terms with differing / since jz(|N/2—l)C QIN/2+1)P) =
I(IN/2— N ® |N/2+Z)D) and (AJE) > 0. The relative phase state is therefore an entangled
state for the modes C, D. In the relative phase state J y 1s squeezed with respect to J so the
spin squeezing test for entanglement of modes C, D based on separable states consistent with
the local particle number SSR is satisfied. However, for the Hillery test (AJ2) + (AJ )~ 5N,
which considerably exceeds %N . Thus the Hillery test for entanglement fails.

4.2. Sorensen et al 2001 spin squeezing test

Care must be taken when applying a spin squeezing entanglement based witness derived in
an early paper by Sorensen et al [8] for systems of N distinguishable two-level particles to the
situation when the particles are identical [15]. The witness shows that entanglement exists when
the state satisfies the following spin squeezing inequality

q \2
gr= N@AS) (5)
(802 + (8,2

The proof is based on writing the separable state density operator in the form pPg, =
> Pr Pk ® p% ®p% ... where ph is the density operator for the ith distinguishable particle,
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whose internal states are |@,(i)) and |¢(i)). The density matrix for p% is a 2 x 2 matrix and the
spin operators are defined by expressions such as .§x = (D)) (D (D) + 1P (D)) (Pp(D)])/2,
etc, which are sums over the particles. The hermiticity, positiveness, unit trace for all the density
matrices lead to £ > 1 for these separable states of two level distinguishable particles. This
result cannot just be applied to identical bosonic particles without further development, since
the Sorensen separable state density operator does not satisfy the SP. Also Benatti er al [44]
have shown that this inequality diverges for two mode states where the local particle-number
SSR is enforced, as is easily seen by noting that Sy =1(S y) =0 for a physical separable
state, equation (2) involving single modes as sub-systems. Just considering N boson states
for a total of two modes is not adequate. One way to revise the Sorensen et al result to an
equivalent theory now based on mode entanglement involves sub-systems each consisting of
two modes, which we may list as ak, where & = a, b and k lists modes with the same «. The
k may correspond to spatial modes localized on different lattice sites. For identical particles

occupying these modes the spin operators S, =3, 3" (164 (i) (b ()] + i (i) (e (0)]) /2,
etc, become Schwinger spin operators S, = Zk([;zdk +c?,tl;k)/2 => 3”;, etc, where the 3”;

and Sy satisfy the usual commutation rules. The sub-system density operators p% now refer
to two mode sub-systems and can be made consistent with the local particle number SSR by
requiring that [Pk, N Kt N 1= 0. The SP automatically applies for psep = Y, Pr [[,(0%)® in
this second quantization treatment. If in addition, we require that the p*% are density operators for
a single boson, then the bosons in different k modes are effectively distinguishable. The proof
in Sorensen et al [8] then applies, noting that for two mode sub-systems (3'7",) & and hence (S’y>
(y = x, y, z) are not necessarily zero. States of this type are routinely created in experiments,
for instance in [45], where the gas is frozen deep in the Mott regime with unity filling and
each atom has two accessible internal states. The sites then act like distinguishable qubits. The
physicality of a separable state is thus guaranteed and there may be entanglement between the
modes within each sub-system. A similar proof extending the test of Sorensen et al to identical
two level systems is given by Hyllus ef al [15] based on a particle entanglement approach.
In their approach bosons in different external modes (such as the different k) are treated as
distinguishable and the SP is ignored for such bosons.

It should be noted that for separable states where the p% are required to satisfy further
conditions in addition to the local particle number SSR, the entanglement tests will differ from
those where the additional conditions are absent. The requirement that the sub-system density
operators pk are restricted to one boson states is an example of such an additional condition.

5. Non-spin squeezing tests and local SSR separable states

In [38, 46] it was found that for separable states based on arbitrary sub-system density
operators p%

@™ (bH" > < (@hHrmambh b (6)

form,n=0, 1, ...so that [(a"(b")")|* > ((a")"a™ (b")"b") is a test for entanglement. This test
must also apply for separable states where the local SSR is satisfied. A particular case of the test
is [(@b")|* = [(@'b)|> > (NuNy).
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However, for separable states satisfying the local particle number SSR we can easily show
that

1@ (b""* = 0. (7)

Hence [{(a™ (Z;T)")|2 > 0 is a test for entanglement based on local SSR compliant separable
states. Since |{a™ (l;T)”) |? is merely required to be non-zero this test is easier to satisfy than the
Hillery one based on equation (6). A particular case of the test is [(Gb")|? > 0. The last result
also follows from (§x) = (3‘ y) =0 for SSR compatible states. Hence this is a simpler test for
entanglement than |(dl;*) RS (N 01\7 ») and has been used instead to detect entanglement [27].

6. Experimental considerations

A recent experiment [12], uses the inequality (5) to detect the entanglement in an ultra-cold
gas. Here, despite their indistinguishability, they consider the particles themselves as the sub-
systems and generate ‘entanglement’ via their internal degrees of freedom. Due to this, the
inequality (5) would be valid as described above if distinguishability could be recovered. This
while technically very difficult, can in principle be achieved. For instance, the gas could be
frozen (without disturbing the internal states of the particles—into the Mott phase of an optical
lattice so that the system behaves as a set of distinguishable qubits. Such a scheme has been
considered above.

On the other hand, an earlier experiment [10] considers the entanglement of two spatial
field modes. Here the application of inequality (5) should be reconsidered due to the fact that
the sub-systems are single modes (with no internal structure).

The experiments only involve a single test for entanglement, and it would be desirable to
confirm entanglement via an independent test.

7. Conclusions

Only three ground breaking experiments [10—12] have shown spin squeezing in cold atom
systems, from which the presence of entanglement is inferred. As such the field is still very
much in its infancy. Our results will advance the field by allowing a greater understanding of
the role of indistinguishability when detecting entanglement. A more extensive presentation of
the work in this paper is in preparation [34].
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