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Abstract

A search for the rare B0→ K∗0τ+τ− decay is performed using 9 fb−1 of proton-
proton (pp) collision data collected at the LHCb experiment at CERN. The decay
is reconstructed using two final states: the fully hadronic one, in which both
τ leptons decay in the τ− → π−π+π−(π0)ντ channel, and the mixed hadronic-
leptonic, in which one τ decays in the aforementioned channel and the other in the
τ− → µ−ντνµ channel. The measure of the branching ratio is performed relatively
to that of the normalization mode B0→ D−(→ π−K+π−)D+

s (→ K+K−π+). The
full event selection makes use of Boosted Decision Trees (BDT) based on kinematic
and isolation variables in order to reduce the amount of background. A binned
maximum likelihood fit on the output of a BDT classifier is performed to extract
the number of signal events in the data. The data distribution is still blind, however
an expected upper limit in the case where no signal is observed is computed to be
3.2 · 10−4 at 95% CL.
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Résumé en Français

Cadre théorique

Le modèle standard (MS) de la physique des particules représente la théorie la
plus avancée pour décrire le comportement des particules élémentaires et leurs inter-
actions. Malgré son impressionnant pouvoir prédictif, plusieurs faits expérimentaux
suggèrent l’existence d’une théorie plus générale des particules élémentaires :

énergie et matière noire : environ 95 % de l’univers est composé d’énergie noire
et de matière noire, qui ne sont pas décrites par le MS [1] ;

asymétrie matière-antimatière : l’univers est principalement composé de ma-
tière, alors que l’antimatière n’est observée que sporadiquement dans les rayons
cosmiques ou produite artificiellement dans les accélérateurs de particules.
Cette asymétrie n’est pas prise en compte par le modèle [2] ;

masse des neutrinos : des observations récentes montrent que les neutrinos ont
une masse non nulle, alors que le MS les prédit sans masse [3, 4].

Les recherches d’une nouvelle physique au-delà du MS sont menées selon deux
approches principales : les recherches directes et indirectes. Les premières consistent
à détecter directement de nouvelles particules, tandis que les secondes consistent
à mesurer des observables précisément calculées afin de mettre en évidence des
divergences avec la théorie, ce qui indiquerait la présence d’une nouvelle physique.
Les recherches indirectes impliquant des désintégrations de mésons B sont par-
ticulièrement intéressantes. Parmi les six quarks, le b est le quark le plus lourd
capable d’hadroniser avant de se désintégrer, permettant ainsi une grande variété
d’études. De plus, la durée de vie moyenne relativement longue des mésons B les
rend particulièrement adaptés pour être étudiés dans les accélérateurs de particules.
Récemment, des signes de divergences par rapport aux prédictions du MS ont

été observées dans plusieurs mesures expérimentales impliquant des désintégrations
de hadrons B. Parmi les plus importantes, figurent les mesures suivantes :

• les mesures RK∗0 = B̄(B0→K∗0µ+µ−)

B̄(B0→K∗0e+e−)
et RK = B̄(B+→K+µ+µ−)

B̄(B+→K+e+e−)
effectuées par

LHCb [5, 6] dévient par environ 2.4σ et 3.1σ de la prédiction du MS ;

• les analyses angulaires de B+ → K∗+µ+µ− et B0 → K∗0µ+µ− [7, 8] montrent
des tensions locales de l’ordre de 3σ pour les observables P2 et P ′5 ;
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• la mesure combinée de R(D) et R(D∗) [9, 10, 11] montre un écart d’environ
3.4σ par rapport à la prédiction du MS.

Les écarts observés par rapport aux prédictions théoriques, appelés anomalies de
saveur, suggèrent une possible violation de l’universalité de la saveur leptonique
(LFU), qui stipule que les trois leptons chargés sont identiques, à l’exception des
valeurs de leurs masses. Les indices d’une nouvelle physique dans les désintégrations
semileptoniques impliquant des leptons τ dans l’état final suggèrent que des effets
de violation de LFU pourraient apparaître dans les courants neutres b→ sτ+τ−.
Leurs rapports d’embranchement devraient être amplifiés de plusieurs ordres de
grandeur par rapport à ceux prévus par le MS pour expliquer la valeur centrale de
R(D(∗)). À l’heure actuelle, les désintégrations rares de B avec des leptons τ dans
l’état final sont encore peu étudiées, les résultats expérimentaux étant [12, 13, 14] :

B̄(B0 → τ+τ−) < 2.1 · 10−3 à 95% CL,
B̄(B0

s → τ+τ−) < 6.8 · 10−3 à 95% CL,
B̄(B+ → K+τ+τ−) < 2.25 · 10−3 à 90% CL,
B̄(B0 → K∗0τ+τ−) < 2.0 · 10−3 à 90% CL.

(1)

Dans ce document, la première tentative de recherche de la désintégration
rare B0 → K∗0τ+τ− à LHCb est présentée. La désintégration a un rapport de
branchement d’environ 10−7 [15], qui pourrait être amélioré de plusieurs ordres de
grandeur grâce aux contributions des particules de nouvelle physique.

Le détecteur LHCb au LHC
Le Large Hadron Collider (LHC) est un accélérateur pp d’une circonférence de

26.7 km situé à l’Organisation Européenne pour la Recherche Nucléaire (CERN).
Le tunnel est situé entre 45 et 170 m sous terre. Deux faisceaux de protons sont
accélérés dans des directions opposées et entrent en collision dans quatre points
d’interaction, où les principales expériences (ATLAS, CMS, ALICE et LHCb) sont
installées et recueillent des données. Au cours de la période de prise de données du
Run 1 (2011-2012), les protons ont été accélérés à des énergies de 3.5 TeV, tandis
que pendant le Run 2 (2015-2018), ils ont été accélérés à des énergies de 6.5 TeV,
correspondant respectivement à des energies dans le centre de masse des collisions
pp de

√
s = 7 et 13TeV. L’analyse décrite dans ce document exploite les données

de collision de Run 1 et Run 2.
L’objectif principal de l’expérience LHCb est d’étudier les processus de violation

de CP et d’étudier les désintégrations rares des hadrons beaux et charmés. L’appareil
est constitué d’un spectromètre à un seul bras d’une couverture angulaire autour
de la ligne de faisceau de 10 mrad à 300 mrad dans le plan de courbure. Une
vue schématique de la disposition du détecteur est illustrée sur la Figure 1. Les
principaux composants sont :
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Figure 1 : Disposition du détecteur LHCb.

• le VErtex LOcator (VELO) utilisé pour mesurer avec précision la position
des vertex ;

• un aimant dipolaire fournissant le champ de courbure pour le spectromètre ;

• les stations du système trajectographique pour effectuer des mesures de
position et de quantité de mouvement des particules ;

• deux détecteurs Ring Imaging CHerenkov (RICH) effectuant l’identification
des particules ;

• un système trajectographique fournissant des informations de déclenchement
et d’identification pour les muons.

Analyse expérimentale

L’analyse est effectuée à l’aide de l’ensemble de données complet de LHCb
enregistré à ce jour (Run 1–2). L’objectif est de mesurer le rapport d’embranchement
de la désintégration rare B0→ K∗0τ+τ− en utilisant la désintégration B0→ D−D+

s

comme canal de normalisation :

B(B0→ K∗0τ+τ−) ∝
Nobs
B0→K∗0τ+τ−

εB0→K∗0τ+τ−
Bnorm

εnorm
Nobs

norm
. (2)
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En l’absence de signal, une limite supérieure pour le rapport d’embranchement sera
calculée.
Dans cette analyse, deux états finaux différents sont considérés :

• état final 3π3π : les deux leptons τ sont reconstruits en utilisant leur
désintégration en trois pions chargés, qui a un rapport de branchement de
B(τ− → π−π+π−ντ ) = (9.31 ± 0.05)%, ou dans la désintégration avec un
pion neutre supplémentaire, qui a un rapport d’embranchement B(τ− →
π−π+π−π0ντ ) = (4.62± 0.05)% [16].

• état final 3πµ : un lepton est reconstruit en utilisant sa désintégration
en trois pions chargés ou celle avec le pion neutre, tandis que l’autre est
reconstruit en utilisant son mode de désintégration leptonique τ− → µ−νµντ
qui a un rapport d’embranchement B(τ− → µ−νµντ ) = (17.39± 0.04)% [16].

Dans les deux états finaux le K∗0 est reconstruit via sa désintégration K∗0 → K−π+

dont le rapport d’embranchement est B(K∗0 → K−π+) ∼ 2
3
. Une vue schématique

des deux états finaux est rapportée sur la Figure 2.

B0 τ

τ

K*0

(a) État final 3π3π

B0 τ

τ

K*0

(b) État final 3πµ

Figure 2 : Vue schématique des deux états finaux. Le B0 et les particules intermédiaires
sont indiqués sur la figure, tandis que les lignes bleues représentent les hadrons
dans l’état final, la ligne violette indique le muon et les lignes pointillées
rouges indiquent les neutrinos. Le pion neutre est omis.

Les candidats pour le mode de normalisation sont sélectionnés à l’aide d’un
ensemble de coupures sur des variables d’isolation et cinématiques, en plus des
coupures sur la masse invariante des mésons D. L’ajustement sur les données du
canal de normalisation de la masse invariante est effectué séparément pour chaque
année de prise de données et est illustré sur la Figure 3.
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Figure 3 : Ajustement des données du canal de normalisation sur la masse invariante.
Le signal est représenté en rouge, les fonds sont représentés avec les lignes
pointillées et la distribution totale est représentée en bleu.
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En plus de la masse invariante calculée à partir des particules chargées dans
l’état final, il est possible de reconstruire analytiquement la quantité de mouvement
manquante des neutrinos en appliquant des contraintes de masse sur les leptons τ .
La distribution de masse reconstruite est illustrée sur la Figure 4. Elle ne montre
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Figure 4 : Masse reconstruite analytiquement pour des évènements de signal simulés
(bleu) et données (rouge) pour les deux états finaux en 2016. Les autres années
de prise de données présentent des distributions similaires.

pas un pouvoir de discrimination suffisant entre le signal et le bruit de fond. Il a
donc été décidé d’effectuer l’ajustement final sur la distribution d’un classificateur
d’analyse multivariée Boosted Decision Tree (BDT).
L’analyse utilise la masse invariante du K∗0 afin de séparer l’échantillon de

données en sous-régions avec des rapports signal/fond différents. Le méson K∗0
a une masse invariante mK∗0 = 891.66 ± 0.26MeV. La distribution de masse
est illustrée sur la Figure 5 pour la simulation et les données. En utilisant quatre
coupures, cinq régions différentes de la distribution de masse invariante sont definies.
Elles sont étiquetées de “1” à “5” sur la Figure 5 et sont les mêmes pour les deux
états finaux. L’échantillon de données peut être divisé en trois sous-échantillons
mutuellement exclusifs :

• région de signal : la masse invariante du K∗0 doit se situer dans la région
3. Les candidats sont ceux qui ressemblent le plus au signal et forment le
sous-échantillon sur lequel l’ajustement final est effectué ;

• région de fond : la masse invariante du K∗0 doit se trouver dans les régions
1 ou 5. La contamination du signal sur les données de ce sous-échantillon est
négligeable et les candidats sont donc utilisés comme proxy pour le bruit de
fond ;

• région de contrôle : la masse invariante du K∗0 doit se trouver dans les
régions 2 ou 4. Les candidats de ce sous-échantillon sont utilisés pour modéliser
le bruit de fond dans l’ajustement final. Cependant, étant donné qu’une
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Figure 5 : Distribution de masse invariante du K∗0 2016 pour les évènements de signaux
simulés (a) et données (b) pour l’état final 3π3π . Les distributions pour
l’autre état final et les autres années de prise de données sont similaires.

quantité de signal non négligeable est présente, la contamination du signal
doit être prise en compte.

Afin de séparer le signal du bruit de fond, une procédure de sélection a été
mise en place. Elle est composée de deux étapes principales, la première étant une
sélection par coupures et la seconde une sélection basée sur une analyse multivarié :

• sélection par coupures : des variables d’isolation et cinématiques qui présentent
un pouvoir discriminant particulièrement élevé sont utilisées à ce stade. Cette
première étape de sélection vise à rejeter le fond le plus trivial tout en
conservant une quantité de signal élevée. De plus, elle rejette les évènements
parasites qui se situent loin dans les queues des distributions ;

• sélection multivariée : elle est composée de deux BDT en séquence, où le
second est entraîné après la sélection sur le premier. Ils sont entraînés à l’aide
d’évènements simulés de signaux et de données de la région de fond. Les
BDT sont entraînés séparément pour chaque état final à l’aide de variables
cinétiques et d’isolation. Cette étape de sélection vise à supprimer la majeure
partie du bruit de fond.

Les efficacités de sélection sont évaluées sur la simulation, mais comme la si-
mulation ne reproduit pas parfaitement la distribution de certaines variables, des
techniques spécifiques basées sur les données ont été utilisées pour calculer des
corrections et/ou des incertitudes systématiques. De plus, le canal de normalisation
a été utilisé pour calculer les corrections à appliquer aux efficacités de sélection en
raison des différences entre les données et les simulations dans les variables utilisées
dans la sélection hors ligne.

Après la phase de sélection, un autre BDT est entraîné en exploitant le pouvoir
discriminant restant. Ce dernier BDT est utilisé pour effectuer un ajustement afin
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d’extraire le nombre d’évènements de signal dans les données. Le modèle utilisé
dans l’ajustement est défini comme suit :

Datay = fyµ · Sigy +
sy
cy
nctly ·Ctly − fyµ

sy
cy

εctly

εsigy
·Conty, (3)

où l’indice y fait référence à une année spécifique de prise de données d’un état final
donné et par souci de clarté, les PDF normalisés ont été mis en évidence en bleu
tandis que les paramètres ajustés ont été mis en évidence en rouge. Les différents
termes sont :

Datay : histogramme représentant le nombre total d’évènements de signal et de
bruit de fond ;

Sigy : distribution décrivant le BDT du signal, extraite de la simulation dans la
région de signal ;

Ctly : distribution décrivant le fond, extraite des données de la région de contrôle ;

Conty : distribution décrivant la contamination des évènements de signal dans la
région de contrôle, extrait de la simulation ;

µ : rapport de branchement du signal, le paramètre d’intérêt partagé entre les
états finaux et les années de prise de données ;

sy
cy

: rapport du nombre (inconnu) d’évènements de fond dans la région de signal et
de contrôle ;

fy : fraction d’évènements de signal pour une année de prise de données et un état
final ;

εctly

ε
sig
y

: rapport des efficacités dans la région de contrôle et du signal ;

nctl
y : nombre d’évènements dans la région de contrôle.

Les différentes distributions sont montrées sur les Figures 6 et 7.
La distribution des données dans la région de signal est encore masquée. Une

limite supérieure dans le cas où aucun signal n’est observé a été calculée avec la
méthode CLs [17] comme étant :

B(B0→ K∗0τ+τ−) < 3.2 · 10−4 à 95% CL. (4)
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Figure 6 : Distribution du BDT dans l’état final 3π3π pour les données dans la région
de contrôle (rouge), simulation dans la région de signal (bleu) et simulation
dans la région de contrôle (vert) pour chaque année de prise de données.
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Figure 7 : Distribution du BDT dans l’état final 3πµ pour les données dans la région
de contrôle (rouge), simulation dans la région de signal (bleu) et simulation
dans la région de contrôle (vert) pour chaque année de prise de données.
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Introduction

The effort of the particle physics community aimed at developing a comprehensive
theory of elementary particles has led to the foundation of the Standard Model
(SM). Despite the astonishing predictive power of the theory, the limitations of the
SM motivate the quest for a more general description of the behavior of elementary
particles. Chapter 1 of this thesis presents the main features of the SM and the
motivations behind the search for new physics (NP). It focuses the attention on
indirect searches in the flavor sector, more specifically on the study of rare B
hadron decays. Because of their low values, the branching ratios of such decays
could be sensitive to small corrections due to NP contributions. In particular, rare
B hadron decays involving τ leptons in the final state might play a crucial role in
the search for NP, since they are still poorly investigated and their branching ratios
might be enhanced by NP contributions up to several orders of magnitude [15].
Searches for NP are now pursued at the Large Hadron Collider (LHC), where

four experiments (ATLAS, CMS, ALICE and LHCb) are installed and take data.
The LHCb experiment is optimized for the detection of B hadrons, and is therefore
well-suited to perform the aforementioned studies. Chapter 2 describes the CERN
accelerator complex, with a particular focus on the LHCb experiment.
Chapters 3 to 10 describe the search for the rare B0→ K∗0τ+τ− decay, per-

formed on 9 fb−1 of data collected at the LHCb experiment. An event selection is
established, which involves the use of multivariate classifiers in order to drastically
reduce the amount of background. Successively, a binned maximum likelihood fit is
used to extract the number of signal events in data. Since the reconstructed mass
distribution offers poor discriminating power, the fit is performed on the output of
a multivariate classifier. Despite the fact that the data distribution is still blind,
an expected upper limit in the case where no signal is observed is computed.
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Part I

Theoretical framework and
experimental apparatus
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Chapter 1

The Standard Model and beyond

This chapter focuses on the description of the SM of particle physics and the
search for a beyond the SM theory. In Sec. 1.1 the main features of the SM
are presented, together with a brief summary of the theoretical and experimental
motivations for the search for a more fundamental theory; Sec. 1.2 shows an
overview of the theory of electroweak interactions, with particular attention on
the Higgs mechanism and the quark mixing; in Sec. 1.3 the modern theoretical
methods to investigate the presence of new physics are introduced, together with
the most up-to-date experimental results in the field of flavor physics; finally Sec.
1.4 is dedicated to a brief introduction about the phenomenology beyond the SM
of rare B hadron decays with τ leptons in the final state.
For further information on the SM the reader is referred to [18].

1.1 Particles and interactions

The SM is the theory describing elementary particles and their interactions.
It was built during the 60’s and 70’s within the Quantum Field Theory (QFT)
framework and has been experimentally tested since then, showing its extremely
powerful predicting nature. The theory describes phenomena from the scale of
O(1 eV) to O(100GeV), giving a consistent description of three out of the four
forces known in nature: the strong, electromagnetic and weak interactions. Despite
its incredible predictive power, the SM does not account for some well-established
experimental facts:

dark energy and matter: around 95% of the universe is known to be composed
of dark energy and dark matter, which are not described by the SM [1];

matter - anti-matter asymmetry: the universe is composed primarily of mat-
ter, while anti-matter is only observed sporadically in cosmic rays or produced
artificially in particle accelerators. This asymmetry is not accounted for by
the model [2];

neutrino mass: recent observations show that neutrinos have a non-zero mass,
while the SM predicts them to be massless [3, 4].
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Besides these experimental facts, numerous theoretical prejudices affect the theory:
the Higgs boson mass is expected to be much larger than the measured value
unless a powerful fine-tuning cancellation happens between the bare mass and the
quantum corrections. Is there a deeper motivation for this cancellation to happen?
Why are the masses of elementary particles so different (and hence why does the
theory require a large number of free parameters)? Is it possible to include the
gravitational force in this framework? The ensemble of these motivations inspire the
search for a more comprehensive and fundamental theory of elementary particles.

The fundamental entities described by the SM are dynamic fields, i.e. mathemati-
cal functions defined at each point of the space-time x ≡ (t, ~x), where x is a compact
notation which includes both the temporal and the spatial coordinates. The field
equations are derived from a Lagrangian density L by applying the principle of
least action to the path followed by a given field ϕ(x), leading to the equations

∂L
∂ϕ(x)

− ∂

∂xα

(
∂L

∂
∂xα

ϕ(x)

)
= 0, (1.1)

where the Einstein summation convention for the α indices is used. The fields are
quantized by interpreting them as field operators (i.e. operators defined at each
point of the space-time) and imposing canonical relations between them and their
conjugate momenta π(x) ≡ ∂L

∂ϕ̇(x)
, where ϕ̇(x) stands for the time derivative of the

field. In this scheme, particles are interpreted as excitations of the field at a given
point of the space-time. In particular, the elementary particles are divided into
two classes: bosons and fermions. Bosons are particles with integer spin and their
fields φ(x) are quantized imposing commutation relations:

[φ(t, ~x), πφ(t, ~x′)] = i δ(~x− ~x′), (1.2)

where [A,B] ≡ AB − BA, with A and B two operators, πφ is the conjugate
momentum of the field φ and δ(~x − ~x′) indicates the 3-dimensional Dirac delta
function. Fermions are particles with half-integer spin and their associated fields
ψ(x) are quantized imposing anti-commutation relations:

[ψ(t, ~x), πψ(t, ~x′)]+ = i δ(~x− ~x′), (1.3)

where [A,B]+ ≡ AB + BA and πψ is the conjugate momentum of the field ψ.
Fermions obey the Pauli exclusion principle which states that two identical fermions
can not occupy the same quantum state simultaneously. This does not apply to
bosons.
The Lagrangian of the SM is invariant under local gauge transformations of the
fields with respect to three symmetry groups:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (1.4)
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where the subscripts C, L and Y stand for color, weak isospin and weak hyper-charge
quantum numbers respectively. These symmetries accommodate the description of
the particles interactions:

Electroweak interaction: it is the unified description of the electromagnetic
interaction (the Quantum Electrodynamics, or QED) and the weak interaction.
The unification is achieved under the SU(2)L⊗U(1)Y symmetry group, where
all the particles are assigned a value of L3 (third component of the weak
isospin) and Y . The electroweak symmetry is spontaneously broken via the
Higgs mechanism: SU(2)L ⊗ U(1)Y → U(1)Q, where Q indicates the electric
charge defined as Q = 1

2
Y + L3, the only conserved quantum number. More

details on the electroweak interactions and the Higgs mechanism are given in
Sec. 1.2.

Strong interaction: it is described by the Quantum Chromodynamics (QCD)
which relies on the SU(3)C symmetry group. In this scheme particles are
assigned a color charge C, which can acquire three different values, labelled
green, blue and red in analogy with the primary colors. Every observable
state has to be a color singlet, hence particles carrying color come in bound
states in order to satisfy this constraint.

The elementary particles of the SM are represented in Fig. 1.1 and are described
in the following.

Bosons

Bosons are the mediators of the fundamental interactions, and are referred to
also as gauge bosons. The known elementary bosons are three massive spin-1
(vector) bosons, the W± and Z, mediators of the weak force, and two massless
spin-1 bosons, the photon (γ), mediator of the electromagnetic force, and the gluon
(g), mediator of the strong force. In addition the Higgs boson (H) is a massive
spin-0 (scalar) boson associated to the Higgs field, which ensures the spontaneous
symmetry breaking required to make the W± and the Z massive.
The Lagrangian of a scalar boson field and its adjoint φ†(x) reads as:

L = ∂µφ
†∂µφ−m2φ†φ, (1.5)

where µ spans over the four space-time indices andm is a parameter representing the
particle mass. Using Eq. 1.1 the equations of motion, known as the Klein-Gordon
equations, are obtained: (

�+m2
)
φ = 0,(

�+m2
)
φ† = 0,

(1.6)
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Figure 1.1: Elementary particles in the SM with some properties [19].

where � ≡ ∂µ∂
µ is the d’Alembert operator. The solution of the Klein-Gordon

equations, which describes the motion of the free scalar boson, reads as:

φ(x) =
1

(2π)3/2

∫
dp√
2p0

(
a(p)e−ipx + a†(p)eipx

)
, (1.7)

where p0, p and p are the temporal component, the spatial part and the total
four-momentum respectively, and a(†) is the annihilation (creation) operator. The
generalization for the vector case is given by the Lagrangian:

L = −1

2

(
∂µW

†
ν − ∂νW †

µ

)
(∂µW ν − ∂νW µ) +m2W †

µW
µ, (1.8)

and the solutions of the equations of motion are:

Wµ(x) =
1

(2π)3/2

∑
λ

∫
dp√
2p0

ελµ(p)
(
a(p)e−ipx + b†(p)eipx

)
,

W †
µ(x) =

1

(2π)3/2

∑
λ

∫
dp√
2p0

ελµ(p)
(
b(p)e−ipx + a†(p)eipx

)
,

(1.9)
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where ελµ are the polarization vectors and the sum is taken over all the polarization
states λ. The two different types of operators a and b reflect the fact that particles
and anti-particles do not coincide.
The Lagrangian of a massless vector boson reduces to:

L = −1

4
FµνF

µν , (1.10)

with Fµν = ∂νAµ − ∂µAν , and the solution of the equations of motion is:

A0(x) = 0,

Ai(x) =
1

(2π)3/2

∑
λ

∫
dp√
2p0

ελi (p)
(
e−ipxaλ(p) + eipxa†λ(p)

)
,

(1.11)

where the sum is taken over all the polarization states, which reduce to two in case
of m = 0. The subscript i refers to the three spatial components of the field, while
A0(x) = 0 is the result of the particular gauge choice.

Fermions

Fermions are the building blocks constituting matter and are divided into quarks,
which carry color charge and are therefore sensitive to the strong force, and leptons,
which instead carry no color charge. Both leptons and quarks are divided into
three families, in turn composed of two spin-1/2 particles each. A quark family is
composed of a u-type (u, c or t) and a d-type (d, s or b) quark, with an electric
charge of +2/3 and −1/3 respectively, while a lepton family is composed of a
negative-charged lepton (e−, µ−, τ−) and a neutral lepton, the neutrino (νe, νµ, ντ ).
Every fermion has a corresponding anti-particle with opposite quantum numbers.

Quarks are bound together by the strong force to form hadrons. In order to form
color singlets, either quark - anti-quark pairs or bound states of three quarks exist,
called respectively mesons and baryons. Moreover, exotic structures composed of
four or five quarks [20] have been recently observed by the LHCb collaboration [21,
22].
The Dirac Lagrangian, describing the fermion field, is defined as follows:

L = ψ̄(x)(i/∂ −m)ψ(x), (1.12)

where /∂ ≡ γµ∂µ, γµ are the Dirac gamma matrices, m is the mass of the fermion
and ψ̄(x) ≡ ψ†γ0. By using Eq. 1.1 one obtains the equations of motion, known as
the Dirac equations: (

i/∂ −m
)
ψ(x) = 0,

ψ̄(x)
(
i/∂ −m

)
= 0.

(1.13)
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The solutions of the Dirac equations, which describe the free fermion, are:

ψ(x) =
1

(2π)3/2

∑
r=− 1

2
, 1
2

∫
dp
√
m

p0

(
ar(p)ur(p)e−ipx + b†r(p)vr(p)eipx

)
,

ψ̄(x) =
1

(2π)3/2

∑
r=− 1

2
, 1
2

∫
dp
√
m

p0

(
br(p)v̄r(p)e−ipx + a†r(p)ūr(p)eipx

)
,

(1.14)

where the sum is taken on the spin values r, a(†)
r and b

(†)
r are the annihilation

(creation) operators for fermions and anti-fermions respectively and ur and vr are
4-component spinors.
The Dirac field can be decomposed into components of left (ψL) and right (ψR)
chirality :

ψ(x) =
1− γ5

2
ψ(x)︸ ︷︷ ︸

ψL

+
1 + γ5

2
ψ(x)︸ ︷︷ ︸

ψR

, (1.15)

where γ5 ≡ iγ0γ1γ2γ3 and 1±γ5
2

are projection operators. In the limit m = 0
chirality and helicity, i.e. the projection of the spin along the momentum direction,
coincide.

Particle interactions

The Lagrangians presented in Sec. 1.1 describe the behavior of the free, non-
interacting fields. In the following the theory in the case of interacting particles is
briefly described. Of particular interest for particle physics is the case in which
particles are scattered. The initial state is described by the vector |i〉 long before
the scattering happens, i.e. when ti = −∞, in which the particles are far apart
and do not interact with each other. Quantum field theory allows to compute the
probability for the state to evolve into the state |f〉 at tf = +∞, long after the
particles have come close to each other, have scattered and have propagated far
apart again. To calculate such a quantity one should solve the coupled non-linear
equations of the fields. This is an extremely difficult problem, which can be solved
only in perturbation theory, in which the Lagrangian is written as the sum of the
one of the free fields plus an interaction term, which must be sufficiently weak to
be treated as a perturbation.
The Hamiltonian density of a system is defined as:

H = π(x)φ̇(x)− L(φ(x)), (1.16)

where π(x) is the conjugate momentum of the field φ. The energy of the system
is then obtained integrating Eq. 1.16 over all space. If the Lagrangian can be
decomposed into a free term and an interaction term, then the same applies for
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the Hamiltonian density:
H = Hfree +HI . (1.17)

The amplitude of a scattering process is given by:

M = 〈f |S|i〉, (1.18)

where S is called S-Matrix and is defined as:

S = I +
∞∑
n=1

(−i)n
n!

∫
d4x1

∫
d4x2...

∫
d4xnT{HI(x1)HI(x2)...HI(xn)}, (1.19)

where I is the identity matrix, T indicates the time-ordered product of the fields
and the integrals extend from −∞ to +∞ for the four space-time coordinates. The
probability for the process to happen is then obtained as |M|2. Every term of the
series in Eq. 1.18 can be associated to a diagram in a one-to-one correspondence
by means of simple rules called Feynman rules, which allow to write down the
expression of the scattering amplitude directly from the diagrams, avoiding tedious
calculations of the S-Matrix terms. In these Feynman diagrams the propagating
particles are represented as external lines, while energy and momentum exchanges
are mediated by intermediate virtual particles represented as internal lines. The
rules state that for each vertex in the diagram the amplitude of the process must
be multiplied by the coupling constant of the interaction. Therefore the more
“complex” the diagram is, the less it will contribute to the total amplitude. The
simplest diagram, shown in Fig. 1.2(a), is obtained by joining two vertices with one
virtual particle, and it corresponds to the first order term in perturbation theory,
called tree-level. When computing higher order terms of the S-Matrix, loops are
introduced in the diagrams. An example is shown in Fig. 1.2(b). Each loop is
associated with a divergent integral. The process to eliminate such divergences
and obtain finite results is called renormalization. It consists in redefining the
values of some physical quantities, like masses and coupling constants, in terms
of effective values measured in experiments, and transferring the divergences into
the relations between the effective and the bare values of the non-interacting (and
hence unobservable) particles.

1.2 The flavor sector

The theory of electroweak interactions was developed during the 60’s with the
aim of unifying the descriptions of the electromagnetic and weak interactions. The
electromagnetic interactions are responsible for processes like the emission of light
from an accelerated charge or the decay of the π0 into two photons, while the
weak interaction is responsible for processes like the β-decay (n→ pe−νe) or the
muon decay (µ− → e−νµνe). The former affects all charged particles, while the
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(a) (b)

Figure 1.2: Examples of a tree-level (a) and a higher order (b) Feynman diagrams.

latter affects all known elementary particles. The weak interaction violates some
fundamental symmetries:

Parity (P): it is obtained by inverting all the spatial coordinates of a system.
It is violated in weak processes [23] because the W± only couples with the
left-handed component of the fermion fields;

Charge conjugation (C): it is obtained by exchanging all particles of the system
in their associated anti-particles. The symmetry does not change the chirality
of the particle, hence it is violated by the weak interaction. Both P and C
are maximally violated in the SM;

CP symmetry: it is the product of parity and charge conjugation, and it was
discovered to be violated at a very low level in some weak processes [24] (see
Sec. 1.2). Because of the CPT theorem [25], that establishes the conservation
of the CPT symmetry, obtained from the product of the CP symmetry and
the time reversal (T), also the latter has to be violated in weak processes.

The part of the SM which describes the masses and mixing of quarks and leptons
is called flavor sector.

The Higgs mechanism

It was observed experimentally that the weak force has a short range of interaction.
This suggests that, contrary to the photon, the W± and Z bosons are massive
particles. In fact, using the uncertainty principle [26] ∆E∆t >∼ ~

2
with ∆t ∼ r

c
and

∆E = mc2 (using the mass of the Z), one gets r ∼ ~
2mc
∼ 10−3 fm. However, adding

a mass term to the Lagrangian causes an explicit breaking of the fundamental
symmetries of Equation 1.4: a term such as 1

2
M2

W±(W±
µ)2, withW±

µ the gauge field
associated with the W± boson, is clearly not invariant under phase transformations.
The mass terms are generated by means of the Higgs mechanism [27], which
introduces a new scalar field φ to provide a spontaneous symmetry breaking, whose
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Lagrangian is constructed from Eq. 1.5:

L = ∂µφ
†∂µφ− V (φ†φ), (1.20)

where
V (φ†φ) = −µ2(φ†φ) + λ(φ†φ)2, (1.21)

with µ > 0 and λ > 0 two constants. The potential V has a local maximum for
φ = 0 and it is invariant under global phase transformations, being symmetric under
rotation along the V axis. The minimum of the potential, which is interpreted as
the ground state of the theory (the vacuum), is not unique and the field acquires a
vacuum expectation value v = µ√

2λ
as shown in Fig. 1.3. The Higgs field is a weak

isospin doublet:

φ =

(
φ+

φ0

)
=

(
π1+iπ2√

2
σ+iπ3√

2

)
, (1.22)

where the + and 0 stand for the electric charge and σ and πi (i = 1, 2, 3) are real
fields, with

σ(x) = σ̃(x) + v. (1.23)

The term σ̃ represents the fluctuations of the field in the radial direction, which

Figure 1.3: Schematic view of the Higgs potential [28].

are interpreted as the presence of a new particle, the Higgs boson. The πi fields are
instead massless spin-0 states called Goldstone bosons, whose presence in the theory
is motivated by the spontaneous symmetry breaking, as stated by the Goldstone
theorem [29].
The Lagrangian in Eq. 1.20 is invariant under global phase transformations, but to
make it invariant under local gauge transformations it is necessary to replace the
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usual derivative with the covariant derivative:

∂µφ→ Dµφ = (∂µ −
i

2
gwW

A
µ τ

A − i

2
gyBµ)φ, (1.24)

where τA (with A = 1, 2, 3) are the Pauli matrices, WA
µ and Bµ are four complex

vector fields and gw and gy are the coupling constants of the SU(2)L and U(1)Y
groups respectively. Replacing Eq. 1.24 in Eq. 1.20 it is possible to extract the
term

Lmass = g2
w

v2

8
[(W 1

µ)2 + (W 2
µ)2] +

v2

8
(gwW

3
µ − gyBµ)2. (1.25)

These are mass terms related to the four fields, and by defining the physical fields
as

W±
µ ≡

W 1
µ ± iW 2

µ√
2

,

Zµ ≡
gwW

3
µ − gyBµ√
g2
w + g2

y

,

Aµ ≡
gyW

3
µ + gwBµ√
g2
w + g2

y

,

(1.26)

the W± and the Z acquire masses equal to

M2
W± = g2

w

v2

4
,

M2
Z = g2

w

v2

4
(1 +

g2
y

g2
w

) = M2
W±/ cos2 θW ,

(1.27)

with cos θW = gw√
g2w+g2y

, while the field Aµ associated with the photon remains

massless. Applying some particular gauge transformations it is possible to eliminate
the πi fields of Eq. 1.22, whose degrees of freedom become the longitudinal
polarizations of the massive bosons.

The Higgs mechanism provides also a way to give mass to leptons and quarks.
Considering only one generation of leptons for simplicity, and since Q = I + Y/2,
the quantum numbers are assigned in this way:

L =

(
νe
e

)Y=−1

L

R =
(
e
)Y=−2

R
, (1.28)

where L (R) is a doublet (singlet) of weak isospin and represents the left (right)
component of the field. Since for the Higgs field Y = 1, the following term is an
invariant:

Lleptons = Ye(L̄φR + R̄φcL), (1.29)
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where Ye is the Yukawa coupling for electrons and φc = iτ 2φ∗ (with τ 2 the second
Pauli matrix). Considering only the terms due to the vacuum expectation value,
the result is:

Lleptons = Ye
v√
2

(ēLeR + ēReL) = Ye
v√
2
ēe. (1.30)

Analogously, for one generation of quarks the quantum numbers are:

QL =

(
u
d

)Y=1/3

L

(
u
)Y=4/3

R

(
d
)Y=−2/3

R
. (1.31)

Therefore another invariant term to be added to the Lagrangian is:

Lquarks = Yd(Q̄LφdR + d̄RφcQL) + Yu(Q̄LφcuR + ūRφQL), (1.32)

where Yu and Yd are the Yukawa couplings for up and down quarks respectively.
Considering only the terms due to the vacuum expectation value, the result is:

Lquarks = Yd
v√
2

(d̄LdR + d̄RdL) + Yu
v√
2

(ūLuR + ūRuL)

= Yd
v√
2
d̄d+ Yu

v√
2
ūu.

(1.33)

Introducing the three families of quarks using the upper indices i, j = 1, 2, 3, the
most general coupling to the Higgs field can be written as:

Lquarks = Y ijd (Q̄i
Lφd

j
R + d̄iRφcQ

j
L) + Y iju (Q̄i

Lφcu
j
R + ūiRφQ

j
L). (1.34)

Quark mixing and the CKM matrix

Fermions are assigned the following flavor quantum numbers:

Lepton flavor Every lepton is assigned a quantum number Ll = 1, where l =
e, µ, τ is the lepton family, while every anti-lepton is assigned Ll̄ = −1;

Quark flavor Four different quark quantum numbers are defined: strangeness (S),
charmness (C), bottomness (B) and topness (T). For a given hadron they are
assigned as:

• S = −(ns − ns̄),
• C = (nc − nc̄),
• B = −(nb − nb̄),
• T = (nt − nt̄),

where nq (nq̄) is the (anti-)quark content of the hadron. Lepton flavor is conserved
in the SM as a result of a so-called accidental symmetry. Therefore processes who
violates lepton flavor conservation, like J/ψ → e−µ+, are forbidden and have never
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been observed experimentally. Quark flavour is instead not conserved at tree-level
in processes in which a W± is exchanged, like the Λ→ pπ− decay.
In addition, a property of the SM called lepton flavor universality (LFU) states
that the three families of leptons share the same weak coupling constant, while the
only difference between them is their interaction with the Higgs field, which results
in leptons having different masses. Therefore, theoretical predictions of physical
observables do not depend on the nature of the lepton, and any eventual difference
in final results is only due to the different values of their masses.
It was observed that processes involving a variation of strangeness ∆S = 1, for

example K− → µ−νµ, are suppressed by a factor of ∼ 20 with respect to processes
with ∆S = 0, for example π− → µ−νµ. To preserve the universality of the weak
interaction, the Cabibbo angle θc was introduced, allowing the mass eigenstates to
be rotated with respect to the flavor eigenstates [30]. According to the theory, the
three quarks known at the time (u, d, s), are organized into a doublet:(

u
dc

)
=

(
u

d cos θc + s sin θc

)
. (1.35)

In this way the ∆S = 1 amplitudes are suppressed by a factor sin2 θc, while the
∆S = 0 amplitudes are suppressed by a factor cos2 θc. Flavor changing neutral
currents (FCNC), i.e. processes in which a quark decays into a different quark with
same charge (for examples a b→ s`` transition) were not observed experimentally.
According to the Cabibbo theory however, these processes are allowed:

(
u dc

)(u
dc

)
= uu+ (dd cos2 θc + ss sin2 θc)︸ ︷︷ ︸

No flavor changing

+ (ds+ sd) sin θc cos θc︸ ︷︷ ︸
FCNC

, (1.36)

where the coupling constants and the space-time structure operator γµ(1− γ5) are
omitted.
A fourth quark (c) was introduced in order to cancel out the FCNC contributions
[31]: (

u
dc

)
=

(
u

d cos θc + s sin θc

)
,

(
c
sc

)
=

(
c

s cos θc − d sin θc

)
, (1.37)

(
u dc

)(u
dc

)
+
(
c sc
)( c

sc

)
=

uu+ cc+ (dd+ ss) cos2 θc + (ss+ dd) sin2 θc.

(1.38)

Therefore these processes can only happen through higher order loops in perturba-
tion theory and are hence suppressed in the SM.

The introduction of a third generation of quarks (b and t) is needed in order to
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describe the observed CP violation in the weak sector. The Cabibbo mechanism is
generalized using the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which allows
to write the expression for the quark couplings as:

JW =
(
u c t

)
V

ds
b

 , (1.39)

where V is the CKM matrix, a unitary N× N complex matrix, with N the number
of quark generations, a free parameter of the SM. The V matrix can be seen also
as the matrix needed to diagonalize the mass matrix in Eq. 1.34. Experimental
measurements [32] have excluded the existence of a fourth-generation neutrino
up to a mass of mZ

2
, where mZ ∼ 90GeV is the mass of the Z boson, therefore

constraining N to the value N = 3.
The number of free parameters of a unitary N× N complex matrix is:

(N− 1)2 =
1

2
N(N− 1)︸ ︷︷ ︸

Mixing angles

+
1

2
(N− 1)(N− 2)︸ ︷︷ ︸
Complex phases

. (1.40)

According to Eq. 1.40 and using N = 3, three mixing angles and one complex phase
appear. The CKM matrix can be written as [16]:

V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ,

(1.41)

where sij ≡ sin θij, cij ≡ cos θij and δ is the complex phase responsible for CP
violation. Since it is known experimentally that s13 � s23 � s12 � 1, the
matrix can be rewritten in a form that highlights this hierarchy, called Wolfenstein
parametrization [33], by defining

λ = sin(θc) = s12,

Aλ2 = s23,

Aλ3(ρ− iη) = s13e
iδ

(1.42)
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and

ρ̄ = ρ(1− λ2/2 +O(λ4)),

η̄ = η(1− λ2/2 +O(λ4)).
(1.43)

The CKM matrix expressed in terms of λ, A, ρ̄ and η̄ is unitary to all orders in λ.
It reads as:

V =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (1.44)

Since experimentally λ = 0.22658± 0.00044 [16], the elements on the diagonal are
approximately 1, while the couplings between quarks of different families become
smaller as the difference in mass increases. From the unitarity of the matrix it
follows that ∑

k

VikV
∗
jk = δij,∑

k

V ∗kiVkj = δij.
(1.45)

The six vanishing combinations of Eq. 1.45 can be seen as constraints on the sides
of triangles in the complex plane, called unitary triangles. The most widely used is
described by the relation:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.46)

Fig. 1.4 shows the most updated values of the unitary triangle parameters. The
measurements come from different sectors: the εK parameter is the CP violation in
the K0−K0 mixing, while sin(2β) is related to the time-dependent CP asymmetry
of neutral B decays. α is measured using B → ππ, ρπ and ρρ decay modes, while
the γ parameter is measurable from tree level B decays. |Vub| is measured from
inclusive B → Xu`ν`, where Xu is any light hadron containing u quarks, using
B → τντ , or from the ratio of Λb → pµ−νµ and Λb → Λ+

c µ
−νµ which allows to

exctract
∣∣∣VubVcb

∣∣∣. Currently the measured values of the magnitudes of the CKM
matrix elements are [16]:

V =

0.97401± 0.00011 0.22650± 0.00048 0.00361+0.00011
−0.00009

0.22636± 0.00048 0.97320± 0.00011 0.04053+0.00083
−0.00061

0.00854+0.00023
−0.00016 0.03978+0.00082

−0.00060 0.999172+0.000024
−0.000035

 , (1.47)
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while the values of the three angles and the complex phase are:

sin θ12 = 0.22650± 0.00048,

sin θ23 = 0.04053+0.00083
−0.00061,

sin θ13 = 0.00361+0.00011
−0.00009,

δ = 1.196+0.045
−0.043.

(1.48)

γ
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Figure 1.4: Constraints on the (ρ̄, η̄) plane [34].

Contrary to quarks, mixing effects for leptons are forbidden in the SM since
the neutrinos are massless and only left-handed neutrino couplings are allowed.
However, experimental measurements show that neutrino can oscillate between
different flavor eigenstates [3, 4], which implies that the neutrino masses are different
for the three families, and therefore that at least two of them must be non-zero. To
account for neutrino oscillations the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
unitary matrix was introduced, which describes the mixing between mass and flavor
eigenstates. One consequence is that lepton flavor violation can take place at loop
level via neutrino oscillations, as shown in Fig. 1.5. However the rate of such
processes is suppressed by a factor ( mν

mW
)4 ∼ O(10−48), and it can be considered

negligible in flavor physics studies.
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Figure 1.5: Feynman diagram for the lepton flavor violating decay µ− → e−γ. The
neutrino oscillation allows the mixing between different flavors in the lepton
sector.

1.3 Searches for new physics beyond the Standard
Model

The search for new physics beyond the SM is motivated by the reasons exposed in
Sec. 1.1 and consists of two main approaches: the direct and indirect searches. The
former consists of directly detecting new particles, which could be either present
in the environment (e.g. WIMPs and axions [35, 36]) or produced with particle
accelerators (e.g. SUSY [37]); the latter consists instead of measuring the values of
observables and comparing them to the theoretical predictions, aiming at finding
discrepancies with the theory, which would indicate the presence of new physics.
Of particular interest for this thesis are the indirect searches involving B meson
decays. Among the six quarks, the b is the heaviest which hadronizes before
decaying, allowing to study many decay channels. Moreover the relatively long
mean lifetimes of B mesons make them particularly suitable to be investigated in
particle accelerators.

Effective field theories

Theoretical predictions for B-hadron decays are challenging because of the
multiple energy scales involved. The weak interaction responsible for the FCNC
processes is governed by the electroweak scale MW ∼ 80GeV, while the strong
interaction responsible for binding together the quarks in the final state hadrons is
governed by the strong scale ΛQCD ∼ 0.2GeV. The energy scale of B hadron decays
is approximately mb ∼ 4GeV, small compared to the electroweak scale but large
compared to the strong scale. The two contributions can be factorized with the help
of an effective field theory (EFT) approach. An example of EFT is the Fermi theory
of β-decay: the neutron decay n→ pe−νe is mediated by the exchange of aW−, but
since the mass difference between proton and neutron ∆m = mn −mp ∼ 1.3MeV
is small compared to the electroweak scale, the presence of theW− can be neglected
and incorporated into an effective coupling constant, the Fermi constant GF . The
interaction is therefore described as a four-body interaction between the initial and
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final state particles.

Modern EFT theories make use of the local operator product expansion (OPE)
[38]: the FCNC processes are treated as point-like interactions and encoded in
Wilson coefficients Ci(µ) computed in perturbation theory, while the long-distance
physics governed by QCD is described by effective operators Qi(µ) calculated with
non-perturbative methods like lattice QCD. The µ parameter indicates the energy
scale, which is arbitrary and normally set at the value of the mass of the decaying
particle µ = mB. Since this choice is arbitrary, a cancellation must happen in the
EFT between the operators and the Wilson coefficients, so that the amplitude does
not depend on µ. In this scheme, a B hadron decay amplitude reads as:

A(B → f) = 〈f |Heff |B〉 =
GF√

2

∑
i

λCi(mB)〈f |Qi(mB)|B〉, (1.49)

where Heff is the effective hamiltonian, the index i runs over all the possible pair of
Wilson coefficients and effective operators entering the calculation of the amplitude
and λ encodes the relevant CKM parameters.
The effective hamiltonian for rare B decays in the SM contains terms related
to b→ qγ, b→ q`−`+ and b→ νν quark-level transitions, with q = s or d. The
Wilson coefficients of these operators are calculated from the Feynman diagrams in
Fig. 1.6. The effective hamiltonian reads as:

(a) (b) (c)

(d) (e)

Figure 1.6: Feynman diagrams entering the calculation of the Wilson coefficients for b→ s
transitions in the SM. The cross indicates a chirality flip.
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Hb→q
eff =

4GF√
2

(
λqu

2∑
i=1

CiQu
i + λqc

2∑
i=1

CiQc
i − λqt

10∑
i=3

CiQi − λqtCνQν

)
, (1.50)

where λqp = VpbV
∗
pq, with p an up-type quark and a sum over the hermitian conjugate

terms is implied. The operators in the sum are defined as follows:

• current-current operators (Fig. 1.6(a)):

Qp
1 = (q̄LγµT

apL)(p̄Lγ
µT abL), (1.51)

Qp
2 = (q̄LγµpL)(p̄Lγ

µbL); (1.52)

• QCD penguins operators (Fig. 1.6(b)):

Q3 = (q̄LγµbL)
∑
p

(p̄γµp), (1.53)

Q4 = (q̄LγµT
abL)

∑
p

(p̄γµT ap), (1.54)

Q5 = (q̄LγµγνγpbL)
∑
p

(p̄γµγνγpp), (1.55)

Q6 = (q̄LγµγνγpT
abL)

∑
p

(p̄γµγνγpT ap); (1.56)

• electromagnetic and chromomagnetic dipole operators (Figs. 1.6(c), 1.6(d)):

Q7 =
e

16π2
mb(q̄Lσ

µνbR)Fµν , (1.57)

Q8 =
gs

16π2
mb(q̄Lσ

µνT abR)Ga
µν ; (1.58)

• semi-leptonic operators (Fig. 1.6(e)):

Q9 =
e2

16π2
(q̄LγµbL)

∑
l

(¯̀γµ`), (1.59)

Q10 =
e2

16π2
(q̄LγµbL)

∑
l

(¯̀γµγ5`), (1.60)

Qν =
e2

8π2
(q̄LγµbL)

∑
l

(ν̄`Lγ
µν`L). (1.61)

The L and R subscripts refer to left and right chirality projections, T a are the
generators of the SU(3) group, e is the electric charge, gs is the strong coupling
constant, Fµν is the electromagnetic tensor and Ga

µν is the strong tensor.
The dominant contributions for b→ q`+`− transitions are given by the semileptonic
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operators Q9 and Q10, and the photon pole encoded in Q7. The corresponding
Wilson coefficients are computed at the energy scale µ = mB and are usually
expressed in the form of effective coefficients:

• Ceff7 (µ) = C7(µ) +
∑6

i=1 yiCi(µ),

• Ceff9 (µ, q2) = C9(µ) +
∑6

i=1 zi(q
2)Ci(µ),

where y = [0, 0,−1
3
,−4

9
,−20

3
,−80

9
] and zi(q2) are coefficients which depend on the

transferred momentum of the dilepton system q2.
The expression for the effective hamiltonian of b→ q`+`− transitions reads as:

Hb→q`+`−
eff =

GFαe√
2π

V ∗tqVtb

(
Ceff9,q (q2)Q9,q + C10,q(µ)Q10,q −

2i

q2
Ceff7,q (µ)Q7,q

)
, (1.62)

where αe is the electromagnetic coupling constant and the subscript q in the Wilson
coefficients and operators refers to the particular quark in the final state.
Besides b→ q`+`− decays, theoretical predictions are computed for Bq → `+`−

decays, which are forbidden at tree level in the SM, are CKM- and helicity-
suppressed. The theoretical branching ratios of such processes read as:

B(Bq → `+`−) = τBq
G2
Fα

2
e

16π2
f 2
Bqm

2
lmBq

√
1− 4m2

l

mB2
q

|VtbV ∗tq|2|C10|2, (1.63)

where τBq is the B meson lifetime, fBq is the fragmentation fraction of the B meson,

and the term
√

1− 4m2
l

m
B2
q

is responsible for the helicity suppression. This class of

decays is particularly clean since they only depend on Q10 and are free from QCD
penguin diagram contributions. However, it is useful to rewrite Eq. 1.63 for the
time-integrated decay [39]:

B̄(Bq → `+`−) =
1 +Ayq
1− y2

q

B(Bq → `+`−), (1.64)

with

yq =
ΓqH − ΓqL
ΓqH + ΓqL

,

A =
Γq,`H − Γq,`L
Γq,`H + Γq,`L

,

(1.65)

where ΓqL(H) and Γq,`L(H) are the Bq → `+`− total and partial widths for the light
(heavy) B mass eigenstates. In the following only time-integrated decays will be
considered.
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New Physics in EFT

New physics contributions could modify the values of the SM Wilson coefficients
or could generate new operators which are not present in the SM. It is possible to
write a large number of FCNC four-quark operators, however their effect enters
as a higher-order correction and new physics effects are diluted by the presence
of the current-current operator Q2 which is generated at three-level. Instead, by
considering dipole operators and operators containing two quarks and two leptons,
it is possible to build a large class of models sensitive to new physics contributions.
In general, these operators can be different for b or c quarks. The right-handed
operators (not present in the SM) are indicated with a ′ superscript. New physics
dipole operators read as:

Q
(′)
7,q =

e

16π2
mb(q̄L(R)σ

µνbR(L))Fµν ,

Q
(′)
8,q =

gs
16π2

mb(q̄L(R)σ
µνT abR(L))G

a
µν .

(1.66)

In new physics models, LFU could be violated and therefore the operators could
be dependent on the specific lepton ` considered:

Q
(′)`
9,q =

e2

16π2
(q̄L(R)γµbL(R))¯̀γµ`,

Q
(′)`
10,q =

e2

16π2
(q̄L(R)γµbL(R))¯̀γµγ5`,

Q(′)`
ν,q =

e2

8π2
(q̄L(R)γµbL(R))ν̄`Lγ

µν`L.

(1.67)

New scalar (QS), pseudo-scalar (QP ) and tensor (QT ) operators not present in the
SM read as:

Q
(′)`
S,q =

e2

16π2
(q̄L(R)bR(L))¯̀̀ ,

Q
(′)`
P,q =

e2

16π2
(q̄L(R)bR(L))¯̀γ5`,

Q
(′)`
T,q =

e2

16π2
(q̄L(R)σ

µνbR(L))¯̀
L(R)σµν`R(L),

(1.68)

while in lepton flavor violating models, operators which couple with different lepton
families `i and `j can be present:

Q
(′)`i`j
9,q =

e2

16π2
(q̄L(R)γµbL(R))¯̀

iγ
µ`j, (1.69)

and analogously for Q(′)`i`j
[10,S,P,T ],q.

Relations between the different Wilson coefficients can be defined in case of models
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with particular symmetries:

• in minimal flavor violating (MFV) models [40] Ci,s = Ci,d and C ′i ≈ 0;

• in constrained MFV models [41] C(′)
S,P,T = 0 i.e. only SM operators are present;

• in models involving LFU C
(′)e
i,q = C

(′)µ
i,q = C

(′)τ
i,q ;

• in models involving lepton flavor conservation C(′),`j`k
i,q = 0;

• in models with weakly coupled new physics [42] C`
S,q = −C`

P,q, C
′,`
S,q = C

′`
P,q,

and C(′)`
T,q = 0.

The state of the art of experimental searches in the flavor
sector

Rare and LFV dileptonic B decays

SM predictions for B0
(s) → `+`− decays are computed using Eq. 1.64 and are

reported in Table 1.1 [43]:

Table 1.1: SM predictions for B0
(s) → `+`− decays. The first column indicates the nature

of the B meson while the second, third and fourth columns provide the values
of the branching ratios depending on the final state. The branching ratios
of B0 decay modes are lower than the corresponding B0

s modes due to CKM
suppression, while the effect of helicity suppression is visible by comparing the
rates of different final states for the same B meson.

B meson e+e− µ+µ− τ+τ−

B0 (2.48± 0.21) · 10−15 (1.06± 0.09) · 10−10 (2.22± 0.19) · 10−8

B0
s (8.54± 0.55) · 10−14 (3.65± 0.23) · 10−9 (7.73± 0.49) · 10−7

The best experimental limits on the B0 → e−e+ and B0
s → e−e+ decays were set

by the LHCb collaboration [44]:

B̄(B0 → e−e+) < 3.0 · 10−9 at 95% CL, (1.70)
B̄(B0

s → e−e+) < 11.2 · 10−9 at 95% CL. (1.71)

The expected branching ratios of these modes are highly suppressed from the
helicity factor, which puts them beyond any present and near future experimental
sensitivity (in case they should be SM-like).

The CMS and LHCb collaborations have published in 2014 the result of a joint
analysis [45] presenting the first measurement of the B0

s → µ+µ− branching ratio
and the first evidence of the B0 → µ+µ− decay. The LHCb collaboration has
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updated the measurements in 2021 with additional data [46], obtaining the world
best results from a single experiment:

B̄(B0 → µ−µ+) < 2.6 · 10−10 at 95% CL, (1.72)
B̄(B0

s → µ−µ+) =
(
3.09 + 0.46 + 0.15

− 0.43− 0.11

)
· 10−9, (1.73)

where the first uncertainty is statistical and the second systematic.
The branching ratios of the B0

(s) → τ+τ− decays are the highest among the three
lepton families mainly because of the large value of the τ mass which mitigates the
helicity suppression. However the experimental searches of modes with τ leptons
are highly complex due to the many final states the τ decays into, reducing the
overall reconstruction efficiency. Moreover at least one neutrino is present for each τ
decay, which escapes the apparatus undetected. The first limit on the B0 → τ+τ−

branching ratio was set by the BaBar collaboration [47], but the world best limit
on this mode and the first limit on the B0

s → τ+τ− branching ratio were set by the
LHCb collaboration [12]:

B̄(B0 → τ+τ−) < 2.1 · 10−3 at 95% CL, (1.74)
B̄(B0

s → τ+τ−) < 6.8 · 10−3 at 95% CL. (1.75)

Several searches for LFV decays, highly suppressed in the SM (O(10−48)), have
been performed and no evidence of such decays has ever been reported. The world
best limits on the B0

(s) → τ±µ∓ and B0
(s) → e±µ∓ branching fractions have been

set by the LHCb collaboration [48, 49]:

B̄(B0 → τ±µ∓) < 1.4 · 10−5 at 95% CL, (1.76)
B̄(B0

s → τ±µ∓) < 4.2 · 10−5 at 95% CL, (1.77)
B̄(B0 → e±µ∓) < 1.3 · 10−9 at 95% CL, (1.78)
B̄(B0

s → e±µ∓) < 7.2 · 10−9 at 95% CL. (1.79)

More results on LFV modes can be found in [50, 51, 52].

Rare semileptonic B decays

Transitions of the type B → H`+`−, where H is a meson containing an s or a
d quark, are powerful probes for new physics beyond the SM. These transitions
happen as b→ q`+`− at quark level and only at higher order in perturbation theory,
as described in Sec. 1.2. They are therefore sensitive to the hypothetical presence
of new particles entering the loops, which could enhance the branching ratios with
respect to the SM predictions. Contrary to B0

(s) → `+`− decays, they suffer from
larger theoretical uncertainties due to the evaluation of hadronic form factors,
however they depend on different Wilson coefficients (as shown in Eq. 1.63) and
allow to probe a larger set of new physics models.
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In order to cancel out theoretical and experimental uncertainties, ratios of branching
fractions of the form

RH =
B̄(B → H`+`−)

B̄(B → H`′+`′−)
(1.80)

are defined, where ` and `
′ indicates two different lepton families. Moreover,

because of LFU, when `(′) = e, µ the ratio is very close to 1. Differences arise
when considering τ decays, since the τ mass is considerably higher than the ones
of electrons and muons. The RK∗0 and RK ratios are defined as follows:

RK∗0 =
B̄(B0 → K∗0µ+µ−)

B̄(B0→ K∗0e+e−)
, (1.81)

RK =
B̄(B+ → K+µ+µ−)

B̄(B+ → K+e+e−)
. (1.82)

The SM predictions for these ratios are 1 with an O(1%) uncertainty [53].
The most precise measurements of such ratios have been performed by the LHCb
collaboration [5, 6] and are shown in Fig. 1.7:

RK∗0 =

{
0.66+0.11

−0.07 ± 0.03 for 0.045 < q2 < 1.1GeV2

0.69+0.11
−0.07 ± 0.05 for 1.1 < q2 < 6.0GeV2

, (1.83)

RK = 0.846+0.042 +0.013
−0.039−0.012 for 1.1 < q2 < 6.0GeV2. (1.84)

The measurements show a tension with respect to the SM expectation of respectively
∼ 2.4σ and ∼ 3.1σ.
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Figure 1.7: Measurements of RK∗0 (a) and RK (b). The measurements by the Belle and
BaBar collaborations are in agreement with the SM predictions but are less
precise.

A different approach to the study of B → H`+`− transitions is represented by
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angular analyses. Such decays are described by the di-muon invariant mass squared
q2 and a set of decay angles ~Ω. The angular distribution of the decay can be
parametrized in terms of angular observables. The so-called optimized observables
P

(′)
i are defined as ratios of angular observables in such a way to minimize the

effect of theoretical uncertainties. More details about angular observables can be
found in [54, 55].
The results of angular analyses of the B0 → K∗0µ+µ− and B+ → K∗+µ+µ− decays
[7, 8] are in agreement with the SM predictions for most of the angular observables,
however local discrepancies are observed. The larger ones refer to the P2 observable
in the q2 interval 6.0− 8.0GeV2 measured in the B+ → K∗+µ+µ− analysis and to
the P ′5 observable in the same q2 interval measured in the B0 → K∗0µ+µ− analysis.
They are presented in Fig. 1.8 and they show a tension of respectively 3.0σ and
2.9σ with respect to the theoretical predictions computed in [56, 57].
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Figure 1.8: Experimental measurements of the P2 (a) and P
′
5 (b) oservables for the

B+ → K∗+µ+µ− and B0 → K∗0µ+µ− analyses respectively.

Tree-level semileptonic B decays

Analogously to Eq. 1.80, it is possible to define ratios of branching fractions for
tree-level semileptonic B decays, governed by the b→ c`−ν` quark-level transition.
The R(D(∗)) ratios are defined as:

R(D) =
B̄(B0 → D−τ+ντ )

B̄(B0 → D−µ+νµ)
, (1.85)

R(D∗) =
B̄(B0 → D∗−τ+ντ )

B̄(B0 → D∗−µ+νµ)
. (1.86)
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The SM predictions for the two ratios are [58]

R(D) = 0.298± 0.003,

R(D∗) = 0.252± 0.005.
(1.87)

The reason of the difference with respect to unity is the value of the τ mass, which
is substantially higher than the µ mass. A combination of the measurements of
the two ratios is performed using inputs from various experiments, whose most
updated values can be found in [9, 10, 11]. The result is shown in Fig. 1.9 and is
equal to

R(D) = 0.339± 0.026± 0.014,

R(D∗) = 0.295± 0.010± 0.010.
(1.88)

The result show a tension with respect to the SM prediction of about 3.4σ.
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Figure 1.9: Combined measurements of the R(D) and R(D∗) ratios. The red oval shows
the averaged measurement and is in tension with respect to the SM predictions
of about 3.4σ [58].

The R(J/ψ) ratio is defined as

R(J/ψ) =
B̄(B+

c → J/ψτ+ντ )

B̄(B+
c → J/ψµ+νµ)

, (1.89)

for which the predicted SM value lies in the range between 0.25 and 0.28, depending
on the modeling approach for the form factors. The ratio has been measured by
the LHCb collaboration [59]:

R(J/ψ) = 0.71± 0.17± 0.18, (1.90)
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where the first uncertainty is statistical and the second systematic. The result is in
tension with respect to the SM predictions at the level of about 2σ.

Global fits

Experimental measurements are combined together with the use of global fits,
which allow to take into account the effect of different measurements on the Wilson
coefficients. Fig. 1.10 shows the result of the global fit in a scenario in which
new physics contributions in b → s`+`− transitions are encoded into the Cµ

9,s

and Cµ
10,s Wilson coefficients, performed by different theory groups [60, 61, 62,

63]. Fig. 1.10(a) shows the result of the global fit taking into account LFU

(a) (b)

Figure 1.10: Results of the global fit to LFU and B0
s → µ+µ− observables (a) and to

a larger set of b→ s`+`− observables including angular analyses (b). The
notation CNPµ9(10) refers to the new physics contributions in the Cµ9(10),s Wilson
coefficient.

observables and the measurements of the properties of B0
s → µ+µ−. Fig. 1.10(b)

shows the result of the global fit taking into account a larger set of b → s`+`−

observables, including angular analyses. The fits performed by different groups
show a remarkable agreement and a preference for new physics contributions. The
differences in Fig. 1.10(b) are mainly due to different approaches used to compute
non-local hadronic contributions.
Several new physics models have been developed in order to account for the

observed anomalies in the flavor sector. Among the most cited ones are the
leptoquark (LQ) and heavy vector boson (Z ′) models.
A LQ is a particle that carries baryonic and leptonic number at the same time,
and therefore couples to both leptons and quarks. Moreover, they can be scalar or
vector states and are specified by the set of quantum numbers (SU(3)C , SU(2)L)Y .
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A Z ′ boson is a neutral vector boson heavier than the Z boson which have different
tree-level couplings with the three families of leptons and quarks.
Examples of b→ s`+`− transitions involving a LQ and a Z ′ boson are shown in
Fig. 1.11.

(a) (b)

Figure 1.11: Examples of tree-level b→ s`+`− transitions mediated by a LQ (a) and a Z ′

boson (b).

1.4 Phenomenology of b→ sτ+τ− decays beyond
the Standard Model

The hints of new physics in semileptonic decays involving τ leptons in the final
state suggest large LFU violation effects in b→ sτ+τ− neutral currents, with
enhancements of up to three orders of magnitude for their branching ratios to
explain the central value of R(D(∗)) [15]. Currently, rare B decays with τ leptons
in the final state are still poorly investigated. In fact, in addition to the limits on
B̄(B0

(s) → τ+τ−) in Eqs. 1.74 and 1.75, the available experimental results concern
the searches for the B+ → K+τ+τ− and B0 → K∗0τ+τ− decays by the BaBar and
Belle collaborations respectively [13, 14]:

B̄(B+ → K+τ+τ−) < 2.25 · 10−3 at 90% CL, (1.91)
B̄(B0 → K∗0τ+τ−) < 2.0 · 10−3 at 90% CL. (1.92)

This makes such class of decays particularly interesting, since not many constraints
have been established and therefore large room for beyond the SM effects is still
present.
The SM values for the branching fractions of such decays are computed using Eq.
1.62 considering only the contribution due to Qττ

9,s and Qττ
10,s. Averaging over the
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charged and neutral modes for B → K(∗)τ+τ− gives the results [15]:

B̄(B → Kτ+τ−)
[15,22]
SM = (1.20± 0.12) · 10−7, (1.93)

B̄(B → K∗τ+τ−)
[15,19]
SM = (0.98± 0.10) · 10−7, (1.94)

B̄(B0
s → φτ+τ−)

[15,18.8]
SM = (0.86± 0.06) · 10−7, (1.95)

where the superscripts indicate the q2 range for the dilepton system.
The new physics contributions are be encoded in the Wilson coefficients as

Cττ
9(10),s ≈ Cττ, SM

9(10),s − (+)∆, (1.96)

where

∆ =
2π

αe

Vcb
VtbV ∗ts

(√
Rx

RSM
x

− 1

)
. (1.97)

The expression for the Wilson coefficients depends on the ratio Rx
RSM
x

, where Rx can
be either R(J/ψ) or R(D(∗)). Since a contribution to the SM coefficients Cττ, SM

9,s

and Cττ, SM
10,s has as a result only a redefinition of the Fermi constant for b→ s`+`−

transitions, the Rx
RSM
x

ratios are independent of the particular choice made for x.
The factor multiplying the parentheses in Eq. 1.97 is 2π

αe

Vcb
VtbV

∗
ts
∼ 860 and using the

central value for R(D(∗)) the ∆ factor turns out to be of O(100), which represents
the dominant contribution in the Wilson coefficients, overwhelming completely the
SM predictions. Neglecting the SM contributions, the branching fractions shown in
Eqs. 1.93, 1.94 and 1.95 read as:

B̄(B → Kτ+τ−) = (8.8± 0.8) · 10−9∆2, (1.98)
B̄(B → K∗τ+τ−) = (10.1± 0.8) · 10−9∆2, (1.99)
B̄(B0

s → φτ+τ−) = (9.1± 0.5) · 10−9∆2. (1.100)

Therefore such decays could be enhanced up to branching ratios of O(10−4).

Conclusions

Despite the extraordinary predictive power of the SM, some well established
experimental facts and compelling theoretical arguments motivate the presence
of a more fundamental theory of elementary particles. A set of experimental
measurements in the flavor sector pointing towards a violation of LFU suggests
that new physics particles could couple differently to the three families of leptons,
and could manifest themselves by introducing differences in branching fractions
of hadron decays involving different leptons in the final state. Some new physics
models suggest that the third generation of leptons could be the most sensitive to
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the presence of new physics. Moreover, B decays with τ leptons in the final state
are still largely unexplored, which leaves lots of room for the presence of beyond
the SM effects.

In the near future, many experimental results are expected to shed light on flavor
anomalies, in particular the LHCb and Belle II experiments are expected to bring
significant insights of the structure of the electroweak interaction.
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Chapter 2

The LHCb experiment at the LHC

The search for the rare B0→ K∗0τ+τ− decay is performed on data collected by
the LHCb experiment [64, 65], a dedicated B and D physics experiment installed
at the Large Hadron Collider (LHC) [66]. The facility is part of the European
Organization for Nuclear Research (CERN), at the French-Swiss border near the
city of Geneva.
A brief introduction to B physics at particle colliders is presented in Sec. 2.1,

while Sec. 2.2 describes the LHC accelerator complex and Sec. 2.3 is dedicated to
the description of the LHCb detector.

2.1 B physics at colliders

The main interest in studying B physics arises from the fact that the b quark is
the heaviest one to hadronize before decaying, allowing for a plethora of physics
studies. Moreover, B hadrons have a relatively long lifetime and form displaced
decay vertices, a “signature” of their presence.

The number of b quarks produced at a particle accelerator (Nb) can be expressed
as:

Nb = σbb

∫
L(t)dt, (2.1)

where σbb is the production cross-section of a bb pair and Lint =
∫
L(t)dt is the

integrated luminosity, i.e. the amount of data collected by the experiment in a
given amount of time. The instantaneous luminosity L(t) refers to the amount of
data per unit of time that the accelerator provides.
There exist two main classes of accelerators used to produce b quarks in large
quantities: B factories and pp (or pp) colliders.

B Factories

B factories collide e+e− pairs at the center-of-mass energies (
√
s) of the Υ (4S)

and Υ (5S) resonances in order to maximize the number of produced B mesons.
The main advantage of colliding elementary particles is a very clean environment,
with a low amount of background. In such machines, the trigger system, i.e. the
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system which decides whether a given event is interesting to the physics program
and therefore recorded by the detector, has an efficiency of almost 100%. The main
disadvantage of B factories is the relatively low σbb, of ∼ 1nb. Moreover, the

√
s

that can be reached at an e+e− circular accelerator is limited by the energy loss
due to photon emission by light charged particles. In this type of accelerators, B
hadrons are produced isotropically, therefore the detectors have full solid angle
coverage which allows to account for missing energy due to neutral particles. To
study time-dependent processes the two beams need to have different energies in
such a way to boost the B hadron.
The main B factories are Belle at KEKB [67], which took data from 1999 to 2010,
its successor Belle II at SuperKEKB [68], which started the data-taking in early
2019 and BaBar at PEP-II [69], which ran from 1999 to 2008.

pp (pp) colliders

Proton-proton (and proton - anti-proton) colliders have the great advantage of
running at energies well above the ones of e+e− accelerators, and since in such
machines the bb production cross-section grows linearly with the energy, it reaches
very high values of O(100µb). In particular in the case of

√
s = 7 and 13 TeV, the

cross-section is (72.0± 0.3± 6.8)µb and (144± 1± 21)µb [70]. Moreover, in pp
collisions where the actual collision happens at the parton level, a large variety of
B hadrons is produced, allowing the study of a very broad physics program. The
main processes through which a bb pair is produced are shown in Fig. 2.1 and are:

• flavor excitation, which contributes with ∼ 54% of the total production;

• gluon splitting, which contributes with ∼ 27% of the total production;

• pair production, which contributes with ∼ 16% of the total production.

Contrary to e+e− colliders, the hadron containing the b quark is not necessarily
the antiparticle of the one containing the b quark.
The drawback of such an environment is the large amount of background produced
by the parton interactions, which reduces the trigger performances.
The main experiments operating at hadron colliders are the D0 and CDF collabo-
rations at Tevatron (pp) [71, 72], who ran from 1985 to 2011, and LHCb, ALICE,
ATLAS and CMS at the LHC (pp), which started data-taking in 2008.

2.2 The Large Hadron Collider
The LHC is a 26.7 km-long proton-proton accelerator installed in the tunnel

previously built to host the Large Electron-Positron Collider (LEP), located between
45 and 170m underground. The hadrons are accelerated in two separate series of
cavities and are collided in four interaction points, where the main experiments are
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(a) (b)

(c)

Figure 2.1: Feynman diagrams for flavor excitation (a), gluon splitting (b) and pair
production (c).

installed and take data. Since the tunnel is 3.7m-wide, it was impossible to install
two separate proton rings. Therefore the twin-bore magnet design was chosen, that
allows to build a more compact structure but leads to the disadvantage that the
two rings are magnetically coupled. Protons are accelerated to energies of 3.5 and
6.5TeV, corresponding to

√
s = 7 and 13TeV respectively.

The four experiments have different features and goals:

ATLAS and CMS: they are general-purpose detectors taking data at an instan-
taneous luminosity of O(1034 cm−2 s−1) [73, 74]. They have a broad scientific
program and they share the merit of the discovery of the Higgs boson in 2012
[75, 76];

ALICE: it is a dedicated experiment for the study of lead-lead collisions taking
data at a luminosity of O(1027 cm−2 s−1) [77];

LHCb: it is a dedicated b physics experiment taking data at a luminosity of
O(1032 cm−2 s−1). It is described in detail in Sec. 2.3.

A schematic view of the CERN accelerator complex is shown in Fig. 2.2. Protons
are extracted from hydrogen gas and are accelerated to an energy of 50MeV in a
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linear accelerator. They are then injected into the Proton Synchrotron Booster
and accelerated to an energy of 1.4GeV, before going into the Proton Synchrotron,
where they reach an energy of 25GeV, and into the Super Proton Synchrotron
(SPS), in which are boosted to an energy of 450GeV. Finally they are injected into
the LHC where they are further accelerated and collided. Each beam is composed
of a series of bunches, up to a maximum value of 2556, with about 1011 protons
per bunch. The period of time between an injection and a beam dump is called fill.
The nominal bunch crossing frequency is 40MHz, which corresponds to a collision
every 25ns, but the effective collision rate is decreased due to some additional
spacing between bunches needed in order to dump the beam safely. Protons are
accelerated using RadioFrequency (RF) chambers, each delivering an electric field
of 5MV/m, and are bent using 1232 superconductive magnets, each delivering a
magnetic field of 8.3T.
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Figure 2.2: Schematic view of the CERN accelerator complex [78].
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The expression for the instantaneous luminosity reads as:

L =
n2Nbf

4πσxy
F, (2.2)

where n is the number of particles in one bunch, Nb is the number of bunches in
the accelerator, f is the revolution frequency, σ is the size of the bunches in the
transverse plane and F is a factor taking into account the crossing angle between the
two beams. The size of the bunches can be written as σxy = εβ, where ε describes
the geometry of the beam and β is determined by the magnet configuration. In
order to maximize the luminosity, the beams must be squeezed in the transverse
plane, i.e. β must be minimized. The minimum value for β is indicated with β∗.
The LHCb experiment requires the instantaneous luminosity to be tuned in order
to have about 1–2 collisions per bunch crossing, such that the detector is not
overwhelmed with multiple interactions which would degrade its performance. In
order to do so, a luminosity leveling mechanism controls the transverse spacing
between two colliding bunches in order to keep the luminosity constant during a
fill.

2.3 The LHCb experiment

The main goal of the LHCb experiment is to investigate CP-violating processes
and study rare decays of beauty and charm hadrons. The apparatus is a single-arm
spectrometer covering the region around the beam line from 10 to 300(250)mrad in
the bending (non-bending) plane, defined as the plane in which particles are (not)
deflected by the magnetic field, and corresponding to a pseudorapidity interval
of 2 < η < 5. This very peculiar geometry reflects the fact that most of the B
hadrons are produced at small angles in the forward direction, as shown in Fig. 2.3.
The integrated luminosity recorded from the detector is shown in Fig. 2.4. The
period 2011–2012 is called “Run 1” while the period 2015–2018 is called “Run 2”
(2015–2018). The analysis described in this thesis exploits the full LHCb dataset,
from both Run 1 and 2.
The layout of the experiment is shown in Fig. 2.5. The main components are:

• the VErtex LOcator (VELO) used to precisely measure the position of dis-
placed vertices;

• a dipole magnet providing the bending field for the spectrometer;

• the tracking stations used to perform measurements of the particles’ momenta;

• two Ring Imaging CHerenkov (RICH) detectors performing particle identifi-
cation;
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The red region indicates the LHCb acceptance.

• a calorimeter system used to provide trigger and particle identification infor-
mation for hadrons, electrons and photons;

• a muon system providing trigger and particle identification information for
muons.
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Figure 2.4: Integrated luminosity recorded by the LHCb experiment for each year of
data-taking.

Figure 2.5: Layout of the LHCb detector.
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Vertex Locator

The VELO is a silicon tracker providing measurements of the position of charged
particles very close to the interaction region. These measurements are of crucial
importance since they allow to reconstruct the position of displaced decay vertices
of B and D hadrons. The resolution on the hadron flight distance is ∼ 20µm for a
3GeV particle, which corresponds to an uncertainty of ∼ 50 fs on the measure of
its lifetime.
It is composed of 21 horizontal silicon modules covering the region z = −18−80 cm
along the beam direction z, where z = 0 indicates the interaction point, and
R = 8− 42mm, where R indicates the radial distance from the beam axis. Each
module is composed of two silicon layers, the R-sensor and the φ-sensor, which
measure the radial distance from the beam and the azimuthal position around the
beam respectively. The pitch of the R-sensor increases linearly with the distance
from the beam axis in the range 38− 102µm. The φ-sensor is divided in an inner
and an outer part. The former covers the region 8− 17mm from the beam axis
and its pitch increases linearly in the range 38 − 78µm, while the latter covers
the region 17 − 42mm with a pitch in the range 39 − 97µm. The sensors are
300µm-thick and they overlap, ensuring the full coverage of the azimuthal angle.
A schematic view of the VELO is presented in Fig. 2.6.
The VELO is split in two halves which are brought close together during the
data-taking period, in the so-called closed configuration. This allows the VELO to
reach the innermost position close to the proton beam. To preserve the integrity
of the detector and to reduce the radiation damage, the two halves are moved
at a distance of 6 cm with respect to each other during the beam injection and
acceleration, the so-called open configuration.

Magnet

The dipole magnet is used to bend charged particles in the horizontal plane
in order to measure their momenta. It is composed of two saddle-shaped coils
supported by an iron yoke. Contrary to the other major LHC experiments, the
LHCb magnet is a warm magnet, allowing the polarity to be inverted. This is
done periodically, such that data are taken with both polarities in order to reduce
systematic uncertainties that may arise because of the left-right asymmetry. The
integrated magnetic field produced by the magnet is equal to 4Tm for tracks of
10m length. The field mapping is performed using 60 sensors in order to achieve
the required momentum resolution.

Tracking stations

Four tracking stations are used to perform precise measurements of particles’
momenta: the Tracker Turicensis (TT), positioned before the magnet (upstream
tracker), and the T1, T2 and T3 stations, positioned after the magnet (downstream
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(a)

(b)

Figure 2.6: Schematic representation of the VELO (a) and of one of the silicon modules
(b).

tracker). Each of the downstream stations is divided in two regions: the Inner
Tracker (IT) and the Outer Tracker (OT). The IT and the TT are based on silicon
strips and together form the Silicon Tracker (ST), while the OT uses straw tubes.
Even though the IT represents only 1.3% of the total IT and OT region, it contains
about 20% of the total tracks because of the much greater flux of particles in the
region close to the beam pipe. Each of the ST stations is composed of four layers:
the first and the fourth have vertical stripes, while the second and the third have
strips rotated by +5° and −5° respectively, in order to measure the position on the
perpendicular plane.
The measured hits are translated to actual tracks by means of a fitting algorithm
based on a Kalman filter, which combines the information on the momentum and
its resolution, the geometry of the detector and the magnetic field.
A measured track belongs to one of the following categories (Fig. 2.7):
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long tracks: tracks which have hits in the VELO and in all the tracking stations.
The momentum measurement is very precise;

VELO tracks: tracks which have hits only in the VELO. They are used to measure
the position of the interaction point, the so-called primary vertex (PV). In
general more than one PV can be present in an event, and the closest one
to the track associated with the decay head is called “best” PV. Throughout
this thesis the term PV refers to the best PV, unless differently specified;

upstream tracks: low-momentum tracks which have hits in the VELO and in
the TT and are bent away from the magnet;

downstream tracks: tracks that have hits in all the tracking stations but not in
the VELO. They are used to study long-lived particles;

T tracks: tracks that have hits only in the tracking stations after the magnet.
They are due to long-lived particles or material interactions.

Figure 2.7: Schematic representation of the different types of tracks measured by the
LHCb detector.

The resolution of the overall tracking system on the momentum of long tracks
varies from 0.4% at 5GeV to 1.0% at 200GeV, while the resolution on the impact
parameter is (15 + 29GeV/pT)µm, where pT is the transverse momentum in GeV.
All the tracks considered in the analysis described in this thesis are long tracks.

RICH

The two RICH detectors provide particle identification information using Che-
renkov light emitted by a particle traversing a medium with a speed greater than
the speed of light in that medium. The Cherenkov light is emitted in a cone, whose
aperture is related to the particle speed v via the formula:

cos θ =
1

βn
, (2.3)
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where β = v/c, c is the speed of light in a vacuum, n is the refraction index of the
medium and θ is the Cherenkov angle, namely the angle between the particle’s
momentum and the plane orthogonal to the wavefront of the Cherenkov radiation.
The photons emitted are reflected out of the spectrometer acceptance using a
combination of spherical and flat mirrors, and are detected using Hybrid Photon
Detectors (HPDs) in the wavelength range 200− 600nm. The ring resolution is
proportional to ∆θ/

√
N where ∆θ is the uncertainty on θ and N is the number of

photons in the ring. The information on the measured Cherenkov angle is used to
perform a likelihood fit used to assign a mass hypothesis to the particle.
The upstream detector, RICH1, is located before the TT and covers the full LHCb
solid angle and the low momentum range ∼ 1− 60GeV using aerogel and C4F10 as
radiators. RICH2 is located after the tracking stations and covers the momentum
range ∼ 15− 100GeV, using CF4 as radiator. A schematic view of the two RICH
detectors is presented in Fig. 2.8, while in Fig. 2.9 the Cherenkov angle as a
function of the momentum is shown for different particles. Fig. 2.10 shows the
performance of the RICH identification measured with background-subtracted data
collected in 2012 and 2016.

(a) (b)

Figure 2.8: Representation of RICH1 (a) and RICH2 (b).

Calorimeters

The calorimeter system is composed of multiple layers as shown in Fig. 2.11. It
measures the incoming particle’s energy and mainly provides particle identification
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Figure 2.9: Cherenkov angle as a function of the particle’s momentum in the C4F10

radiator in data.

(a) (b)

Figure 2.10: Efficiency (empty dots) and fake rate (filled dots) of the RICH system as a
function of the particle momentum measured in 2012 (a) and 2016 (b) for
two different particle identification requirements.

and trigger information. It is composed of the Scintillator Pad Detector (SPD),
the Pre-Shower Detector (PS), the Electromagnetic Calorimeter (ECAL) and the
Hadronic Calorimeter (HCAL). The SPD/PS system is composed of two identical
planes of rectangular scintillator pads of high granularity separated by a lead
converter of 2.5 X0, where X0 ≈ 0.56 cm is the radiation length for lead. It is 7.6m-
wide and 6.2m-high and the scintillation light is transmitted via wavelength-shifting
(WLS) fibers to multianode photomultiplier tubes, located outside the detector
acceptance. Its main purpose is to distinguish between electron and neutral pions
or photons.
The ECAL is composed of 66 layers of lead absorber 2mm-thick and scintillator
tiles 4mm-thick, readout using WLS fibers. It is 42 cm-long, corresponding to
25 X0, with a Molière radius of 3.5 cm. The outer acceptance is 300 (250)mrad in
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Figure 2.11: Schematic representation of the different layers of the calorimeter system,
with examples of interaction by photons (γ), electrons (e) and hadrons (h).

the bending (non-bending) plane, while the inner is greater than 25mrad, in order
to reduce the radiation damage. The energy resolution is σE/E = 10%/

√
E ⊕ 1%,

with E in GeV.
The HCAL is composed of layers of iron and scintillating tiles, 16mm and 4mm-
thick respectively. The overall structure measures 8.4m in height, 6.8m in width
and 1.65m in depth, the latter corresponding to 5.6λI , where λI is the hadronic
interaction length of iron. The energy resolution is σE/E = 69%/

√
E ⊕ 9%, with

E in GeV.

Muon stations

The muon stations provide highly efficient muon identification and trigger, a
feature of the LHCb experiment which allows to perform some of its most important
measurements. Given the high penetrating power of muons, the muon system is
placed at the end of the experimental apparatus. It is composed of five stations
(M1–5), one of them (M1) placed before the calorimeters in order to improve pT

measurements for the trigger and four of them (M2–5) located after the calorimeters
and separated by iron blocks 80 cm-thick. The minimum momentum necessary
for a muon to penetrate all the five stations is approximately 6GeV and the track
is required to have aligned hits in every station above a certain pT threshold in
order to be identified as a muon (at the L0 trigger level, see Sec. 2.3). The iron
blocks ensure the absorption of hadrons, electrons and photons before the last
muon station.
The muon system structure is shown in Fig. 2.12. Every station is composed
of four regions (R1–4) of increasing cell size (such that the occupancy is about
the same in the whole detector) made up of Multiwire Proportional Chambers,
except for the inner region of M1 in which the particle flux is greater and where the
triple-GEM technology is adopted. In order to obtain an overall hit reconstruction
efficiency of ∼ 95%, the efficiency of most regions must exceed 99%. The hit
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efficiency is measured for each region of each station using muon candidates
triggered independently of the muon system during data-taking runs in 2010 and
2011–2012, and the results are shown in Fig. 2.13.

(a) (b)

Figure 2.12: Schematic side view of the muon system (a) and structure of a single station
(b).

Figure 2.13: Average measured hit efficiency for each region of the muon stations [79].

Trigger

The trigger system reduces the amount of data to be processed by the experiment
by selecting physically interesting events. As already mentioned in Sec. 2.2, the
nominal crossing rate at the LHC is 40MHz, reduced to ∼ 30MHz because of
additional spacing required to allow dump kickers, and has to be further reduced to
a few kHz, so that data can be written to storage. The trigger system is composed
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of two stages: the Level-0 Trigger (L0) and the High Level Trigger (HLT), further
divided into HLT1 and HLT2. It operates in real time, defined as the time between
the collisions and the moment in which the data are permanently stored.
The L0 is a hardware stage that reduces the rate from ∼ 30MHz to ∼ 1MHz,
which is the maximum allowed rate for the detector read-out system. It selects
events with:

• calorimeter clusters above a certain ET threshold;

• tracks in the muon system above a certain pT threshold.

Moreover, a pile-up system in the VELO estimates the number of pp collisions,
while the calorimeter measures the total energy deposit and the number of charged
tracks in the SPD. The information from the three detectors is collected by the
L0 Decision Unit (DU) which takes the final decision. Measurements of trigger
efficiency for hadrons and muons are shown in Fig. 2.14.
The HLT is a software stage executed on an Event Filter Farm. Two different

(a) (b)

Figure 2.14: Trigger efficiency measured on background-subtracted data collected during
Run 1 for hadrons (a) and muons (b) [80]. The notation εTOS refers to the
TOS (Triggered On Signal) efficiency, the probability that the signal alone
(i.e. without the rest of the event) fires the trigger.

workflows are used in Run 1 and Run 2.
In Run 1 the HLT performed a partial reconstruction of the event, while the full
reconstruction was performed offline given the large computing time required (about
2 seconds per event, while the HLT needs to operate around 50 times faster). The
HLT1 algorithm reconstructed the VELO tracks and matched some of them to
hits in the tracking system. In the HLT2 the time requirement was large enough
to match every track with p > 3GeV and pT > 300MeV to hits in the tracking
system.
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In Run 2, the entire HLT1 output is buffered on the Event Filter Farm, in order
to perform online calibration and alignment before the data are further processed.
The HLT2 performs then a full reconstruction during periods with no beams. The
HLT1 is now able to match every VELO track to hits in the TT, and performs a
first estimation of the charge and momentum, the latter with an uncertainty of
∼ 20%. It selects events on the basis of the reconstructed transverse momentum
and impact parameter with respect to the primary vertex, and reduces the rate
of events from ∼ 1MHz to ∼ 110(80) kHz in Run 2 (Run 1). Several changes
are introduced in the HLT2 reconstruction algorithms, that allow to obtain a full
reconstruction without loss of quality with respect to Run 1. It selects events with
multi-tracks detached vertices compatible with coming from B or D hadrons, and
reduces the rate of events from ∼ 80 kHz to ∼ 12.5(5) kHz in Run 2 (Run 1).
Fig. 2.15 shows the trigger workflows for Run 1 and Run 2.

40 MHz bunch crossing rate

450 kHz
h±

400 kHz
µ/µµ

150 kHz
e/γ

L0 Hardware Trigger : 1 MHz 
readout, high ET/PT signatures

Software High Level Trigger
Introduce tracking/PID information, 
find displaced tracks/vertices
Offline reconstruction tuned to trigger 
time constraints
Mixture of exclusive and inclusive 
selection algorithms

2 kHz 
Inclusive

Topological

2 kHz 
Inclusive/
Exclusive 

Charm

1 kHz
Muon and 
DiMuon

5 kHz (0.3 GB/s) to storage

LHCb 2012 Trigger Diagram

(a)

40 MHz bunch crossing rate

450 kHz
h±

400 kHz
µ/µµ

150 kHz
e/γ

L0 Hardware Trigger : 1 MHz 
readout, high ET/PT signatures

Software High Level Trigger

12.5 kHz (0.6 GB/s) to storage

Partial event reconstruction, select 
displaced tracks/vertices and dimuons

Buffer events to disk, perform online 
detector calibration and alignment

Full offline-like event selection, mixture 
of inclusive and exclusive triggers

LHCb 2015 Trigger Diagram

(b)

Figure 2.15: Trigger workflow in Run 1 (a) and Run 2 (b).

Offline analysis

In Run 1 the raw event was stored and the reconstruction was performed offline,
while in Run 2 the fully reconstructed events from HLT2 are organized into three
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data streams:

Full: used for analyses that need to run dedicated event reconstructions. The raw
data information is retained;

Turbo: used for analyses that do not need further offline reconstruction. Among
all particles belonging to the whole event only specific candidates are saved
and the raw data is discarded;

TurboCalib: used to collect calibration data in order to perform online monitoring,
measurement of particle identification and tracking efficiencies. The raw data
information is retained and both the online and offline reconstructions are
performed.

The main advantages of implementing the online reconstruction and saving the
events via the Turbo stream is the reduced computing time needed to run the
reconstruction algorithms and the smaller size of the final dataset.
The offline reconstruction is performed by the Brunel program, which creates
physics objects and performs the calculation of the associated quantities (track
quality, likelihoods, ...).

The stripping process

Reconstructed events from the Turbo stream are selected and organized into
stripping lines. These are algorithms used to build candidates and apply a first
offline selection in order for the analysts to save space and processing time. The
stripping process is run centrally during so-called stripping campaigns, and in order
to perform specific selections the analysts can submit new lines or modify existing
ones.

Events and candidates

The terms “event” and “candidate” refer to different concepts throughout the
document. An event is defined as the whole set of reconstructed tracks from a pp
collision. A candidate (or, more specifically, a signal candidate) is defined as the set
of reconstructed tracks which are hypothesized to be part of the same underlying
decay chain the analyst is interested in. Therefore, an event can contain one or
more candidates.

Simulation

Monte Carlo (MC) simulations are an essential data analysis tool in order to
study the properties of signal events and their interactions with the detector. To
produce such simulated samples, the LHCb collaboration uses a series of dedicated
tools. The Pythia package [81] simulates pp interactions such as the ones in
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Fig. 2.1 in a specific LHCb configuration. Generated events are then forced to
decay into final states of interest for the analysis. In particular, decays of hadronic
particles, including meson mixing, are generated with the EvtGen tool [82], and
the final state radiation is simulated with Photos [83]. Finally, the Geant4
tool [84] simulates the interaction of the particles with the detector. The result
of the interactions undergoes the digitization procedure, which translates energy
deposits in the detector into electronic signals. Successively, the L0 trigger decision
is emulated and the HLT and reconstruction algorithms are applied.

Experimental prospects for the LHCb detector

The LHC is scheduled to deliver data for four additional runs (Run 3–6). Run 3
will begin in 2022 and will last until the end of 2024, when the accelerator will start
a major upgrading phase, the Long Shutdown 3 (LS3, 2025–2027). During this
period the High-Luminosity LHC (HL-LHC) will be installed, which will deliver pp
collisions at a nominal luminosity ∼10 times higher than the current one, starting
from Run 4.

The LHCb detector is currently in its Phase-1 upgrade, which will allow to take
data at a luminosity of O(1033) cm−2 s−1. The major improvement of this phase is
the dismantling of the L0 hardware trigger and the implementation of a full software
trigger, increasing the efficiency selection of hadronic final states. The VELO will
be replaced with a new one in order to avoid degradation of performances due to
ageing of the detector, while a new downstream Scintillating Fiber (Sci-Fi) detector
will replace the current downstream tracker. Moreover, most of the front-end
electronics will be replaced with newer and more efficient one.
A Phase-2 upgrade, if approved, will be installed starting from 2031, which will
allow to take data at a luminosity of O(1034) cm−2 s−1 during Run 5 and 6. To
cope with a foreseen average number of pp interactions per bunch-crossing of ∼50,
a precise track timing system will be installed in order to disentangle b-hadron
decays from combinatorial background. At the end of Run 6 the LHCb detector
will have accumulated 300 fb−1.

The present timeline for the LHC and LHCb upgrades is shown in Fig. 2.16.

Figure 2.16: Timeline for the LHC.
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Part II

Search for the rare B0→ K∗0τ+τ−

decay
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Chapter 3

Introduction and analysis strategy

The second part of this thesis describes the search for the rare B0→ K∗0τ+τ−

decay performed on 9 fb−1 of proton-proton collision data recorded with the LHCb
experiment at centre-of-mass energies of

√
s = 7TeV,

√
s = 8TeV and

√
s = 13TeV

in 2011, 2012 and the period 2015–2018 respectively, for a total of 6 data-taking
years. It represents the first attempt in LHCb to search for the aforementioned
decay.
In this analysis, two different final states are considered:

• 3π3π final state: both τ leptons are reconstructed through the 3-prong
decay into three charged pions τ− → π−π+π−ντ or into the decay with an
additional neutral pion τ− → π−π+π−π0ντ ;

• 3πµ final state: one τ lepton is reconstructed through its hadronic decay
into pions, while the other is reconstructed using its leptonic decay mode
τ− → µ−νµντ .

In both final states the K∗0 is reconstructed via its decay K∗0 → K−π+. A
schematic view of the two final states is reported in Fig. 3.1.
The observed number of B0 → K∗0τ+τ− events Nobs

K∗0τ+τ− is related to the
branching ratio via the expression

B(B0→ K∗0τ+τ−) =
Nobs
K∗0τ+τ−

εK∗0τ+τ−NB0

≡ αNobs
K∗0τ+τ− , (3.1)

where εK∗0τ+τ− is the total signal efficiency and NB0 is the total number of produced
B0 hadrons. Since the measurements of luminosity and cross-section are affected by
large uncertainties at hadron colliders, the total number of produced B0 hadrons is
determined using a second decay with a relatively high branching fraction, called
normalization channel. The chosen normalization channel for this analysis is the
B0→ D−(→ π−K+π−)D+

s (→ K+K−π+) decay. The normalization factor α for the
3π3π (3πµ) final state reads as:

α =
εD−D+

s
· B(B0→ D−D+

s ) · B(D+ → π+π+K−) · B(D+
s → K+K−π+)

Nobs
D−D+

s
· εK∗0τ+τ− · B(K∗0 → K−π+) · F3π3π(3πµ)

, (3.2)
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(a) 3π3π final state
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(b) 3πµ final state

Figure 3.1: Schematic view of the two final states. The B0 and the intermediate particles
are indicated in the figure, while the blue lines represent the hadrons in the
final state, the purple line indicates the muon and the dotted red lines indicate
the neutrinos. The neutral pion is omitted.

where εD−D+
s
is the normalization efficiency, Nobs

D−D+
s
is the normalization yield

extracted from a fit to the data,

F3π3π = (B(τ− → π−π+π−ντ ) + B(τ− → π−π+π−π0ντ ))
2,

F3πµ = 2 · (B(τ− → π−π+π−ντ ) + B(τ− → π−π+π−π0ντ )) ·
B(τ− → µ−νµντ ),

(3.3)

and the branching fractions are taken from the PDG [16] and reported in Table 3.1.
The value of B(K∗ → (Kπ)0) quoted in the PDG includes contribution from the
K−π+ and K0π0 final states, and in absence of further experimental information
the value B(K∗0 → K−π+) = B(K∗ → (Kπ)0) · 2

3
is used, where the additional 2

3

factor is the squared Clebsch-Gordan coefficient relating an isospin state |1
2
, 1

2
〉 to

the direct sum of the states |1, 1〉 and |1
2
,−1

2
〉. The value of the normalization

Table 3.1: Branching ratios of signal and normalization modes entering the calculation of
the normalization factor α.

Channel Branching ratio (%)

K∗ → (Kπ)0 99.754± 0.021
τ− → π−π+π−ντ 9.31± 0.05
τ− → π−π+π−π0ντ 4.62± 0.05
τ− → µ−νµντ 17.39± 0.04

B0→ D−D+
s 0.72± 0.08

D+ → π+π+K− 9.38± 0.16
D+
s → K+K−π+ 5.39± 0.15

factor α is reported in Sec. 8.2, after the evaluation of the signal and normalization
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efficiencies and the extraction of the normalization yield.

3.1 Workflow
The analysis workflow is common to both final states and is divided into three

main steps: the event selection, the likelihood fit, and, in case no signal is observed,
the transformation of the fit result into an upper limit on the B0→ K∗0τ+τ−

branching ratio.

Selection

1. The first step of the selection procedure is the stripping process, which has
been briefly introduced in Sec. 2.3. The stripping requirements are listed in
Sec. 5.4 and are applied on events which fire any trigger line. Specific trigger
requirements are then applied, as reported in Sec. 5.5.

2. The further step of the selection consists of a loose cut-based selection de-
scribed in Sec. 5.6, which rejects the most trivial backgrounds while retaining
most of the signal. The list of variables and their cut values are chosen using
the B0→ K∗0τ+τ− MC samples only.

3. The cut-based stage is followed by a multivariate (MVA) selection involving
two boosted decision trees (BDT) in sequence, described in Sec 5.7. The
BDTs are trained with simulated signal events and data from a background-
dominated region in the K∗0 mass sidebands.

4. The poor mass resolution from missing the neutrinos makes it very hard to
differentiate signal from background in a mass fit. A final BDT, called fitBDT,
is trained and its output is used as an input for the likelihood fit, as described
in Chapter 8. The MC training samples used for the fitBDT are required to
pass the same selection as for the data, including the cuts on the selection
BDTs. The fitBDT is flattened on the signal sample, and its output falls in
the range [0, 1].

5. The BDTs combine variables chosen with a procedure aiming at maximizing
a weighted area under the ROC curve. The optimization of the selection and
fit procedures involves the choice of the BDT variables, the tuning of the
BDT hyper-parameters and the value of the cuts on the selection BDTs, as
explained in Chapter 9.

Likelihood fit

To determine the number of signal decays in the data, a binned maximum
likelihood fit is performed on the output of the fitBDT. The framework for this
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fit uses histogram templates to describe the signal and background components.
The signal template is taken from simulation, while the background template is
obtained with a data-driven method from the K∗0 mass sidebands. The final fit
is performed simultaneously on all the data-taking years of both final state, for a
total of 12 samples. For the sake of completeness, also the separate fits to both
final states are reported.

Branching ratio limit

The event yield obtained with the likelihood fit is translated into a branch-
ing ratio measurement through the use of the normalization mode B0→ D−(→
π−K+π−)D+

s (→ K+K−π+), studied in Chapter 6. This mode has three plus three
charged tracks in the final state, proceeds via two intermediate particles, and has a
relatively high branching ratio. It has previously been studied by LHCb in [85].
The drawback consists in the absence of an equivalent for the K∗0 decay and for
the muon in the 3πµ final state.
In the case where no excess of events is observed with respect to the expected
background, a limit on the branching ratio of the signal is set with the use of the
CLs method [17].

3.2 Subsamples
The K∗0 mass distribution is used to define sub-regions of the data with different

values of signal-to-background ratio. An alternative strategy involving a “pseudo-
Dalitz” plane1, built upon the values of the invariant masses of oppositely charged
pions from τ lepton decays, has been discarded because of the lower sensitivity
obtained and is reported in Appendix A for the sake of completeness.
The K∗0 meson has an invariant mass of mK∗0 = 891.66± 0.26MeV. The K∗0

mass distribution is shown in Fig. 3.2 for simulated B0→ K∗0τ+τ− events and
data. Using four cuts, five different ranges of the K∗0 invariant mass distribution
are defined. They are labelled from “1” to “5” in Fig. 3.2 and are the same for the
two final states. The data sample is split in three mutually exclusive sub-samples:

signal region (K∗0 mass in range 3):
the invariant mass of the K-π system is required to lie around the nominal
value of the K∗0 invariant mass. These signal candidates are the most signal-
like, and form the sub-sample on which the final fit is performed. The
boundaries of this region are defined in such a way to contain about 75% of
the total amount of well-reconstructed signal events:

846 ≤ mK∗0 < 938MeV; (3.4)
1For ease of use it will be named “Dalitz” plane throughout this thesis, even though a Dalitz
plot is classically defined in terms of the squared masses.
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Figure 3.2: K∗0 invariant mass distribution for 2016 simulated B0 → K∗0τ+τ−

3π3π events (a), 3π3π data (b), simulated B0→ K∗0τ+τ− 3πµ events (c) and
3πµ data (d) after the stripping selection. The MC samples used to generate
the distributions do not contain the neutral pions component.

background region (K∗0 mass in range 1 or in range 5):
the invariant mass of the K-π system is required to lie in the lowest or upper-
most sidebands. The contamination from signal on data in this sub-sample is
negligible and therefore the candidates are used as proxy for background. As
shown in Chapter 5, these candidates are used as background samples for the
training of the MVA classifiers. The boundaries of this region are chosen to
contain about 15% of the total data:

700 ≤ mK∗0 < 724MeV or 1053 ≤ mK∗0 < 1100MeV; (3.5)

control region (K∗0 mass in range 2 or in range 4):
the invariant mass of the K-π system is required to lie in the middle sidebands.
The candidates in this sub-sample are used as proxy for the background in
the final fit. However, since a non-negligible amount of signal is present, the
contamination from signal is taken into account, as shown in Sec. 8. The
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boundaries of this region are:

724 ≤ mK∗0 < 846MeV or 938 ≤ mK∗0 < 1053MeV. (3.6)

The fraction of candidates in each region are reported in Sec. 4.4.
In order not to introduce an experimenter bias, a blinding procedure is applied.

In particular, the most sensitive bins of the fitBDT distribution (corresponding to
the BDT range [0.7, 1]) are masked in the signal region of the data.
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Chapter 4

Event samples

In this chapter the event samples used to perform the analysis are introduced.

4.1 Data
A summary of the recorded luminosity for each data-taking year is given in Table

4.1.

Table 4.1: Recorded luminosity corresponding to each data-taking year, where a relative
error of 2% is implied. The center-of-mass energy is also reported.

Year
√
s(TeV) Recorded luminosity ( fb−1)

2011 7 1.0
2012 8 2.0
2015 13 0.3
2016 13 1.6
2017 13 1.7
2018 13 2.1

Different datasets are used in the analysis, each of them selected by a specific
stripping line:

• Opposite-Sign (OS) 3π3π data: used to perform the search for signal candi-
dates of the 3π3π final state;

• OS 3πµ data: used to perform the search for signal candidates of the 3πµ final
state;

• OS normalization data: used to obtain the B0→ D−D+
s normalization sample;

• Same-Sign (SS) 3π3π data: SS data are selected requiring both reconstructed
τ candidates to have the same charge and are used in the analysis only to
perform cross-checks;

• SS 3πµ data.
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Attempts to use the SS data to model the background have been performed, however
the poor statistics after the full selection makes them less suitable for this purpose.
Besides this limitation, also the physics background composition differs with respect
to OS data: an extra track from the rest of the event is always needed in SS data
in order to build a signal candidate.

4.2 Monte Carlo simulation
MC samples are used to study the properties of the signal and normalization

modes. An overview is given in Tables 4.2, 4.3 and 4.4. In order to save CPU

Table 4.2: Overview of the different MC samples used in the analysis for the 3π3π final
state. The data-taking year, stripping mode and the number of generated
events in the LHCb geometrical acceptance are shown.

Channel Year Mode Events

3π± 3π∓ 2011 filtered 0.9 M
3π± 3π∓ 2012 filtered 1.8 M
3π± 3π∓ 2015 filtered 0.5 M
3π± 3π∓ 2016 filtered 1.8 M
3π± 3π∓ 2017 filtered 3.8 M
3π± 3π∓ 2018 filtered 4.8 M

3π±(π0) 3π∓(π0) 2011 filtered 2.1 M
3π±(π0) 3π∓(π0) 2012 filtered 4.1 M
3π±(π0) 3π∓(π0) 2015 filtered 1.1 M
3π±(π0) 3π∓(π0) 2016 filtered 4.1 M
3π±(π0) 3π∓(π0) 2017 filtered 8.6 M
3π±(π0) 3π∓(π0) 2018 filtered 11 M

3π±(π0) 3π∓(π0) 2011 flagged 0.2 M
3π±(π0) 3π∓(π0) 2012 flagged 0.4 M
3π±(π0) 3π∓(π0) 2015 flagged 0.1 M
3π±(π0) 3π∓(π0) 2016 flagged 0.4 M
3π±(π0) 3π∓(π0) 2017 flagged 0.8 M
3π±(π0) 3π∓(π0) 2018 flagged 1.1 M

time, all samples generated for the signal are produced with the requirement
pT > 250MeV on the final state particles, while the samples for the normalization
mode are produced with the requirement p > 1600MeV.
The τ− → π−π+π−ντ and τ− → π−π+π−π0ντ decays are modelled using the
TAUOLA model tuned on BaBar measurements [86].
Two different configurations are used to generate events for the 3π3π final state:
one including the 3-prong charged pions component only, and one including the
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Table 4.3: Overview of the different MC samples used in the analysis for the 3πµ final
state. The data-taking year, stripping mode and the number of generated
events in the LHCb geometrical acceptance are shown.

Channel Year Mode Events

µ± 3π∓ 2011 filtered 0.7 M
µ± 3π∓ 2012 filtered 1.4 M
µ± 3π∓ 2015 filtered 0.6 M
µ± 3π∓ 2016 filtered 1.4 M
µ± 3π∓ 2017 filtered 2.9 M
µ± 3π∓ 2018 filtered 3.8 M

µ± 3π∓(π0) 2011 filtered 1.2 M
µ± 3π∓(π0) 2012 filtered 2.4 M
µ± 3π∓(π0) 2015 filtered 0.5 M
µ± 3π∓(π0) 2016 filtered 1.7 M
µ± 3π∓(π0) 2017 filtered 3.6 M
µ± 3π∓(π0) 2018 filtered 5.0 M

µ± 3π∓(π0) 2011 flagged 0.11 M
µ± 3π∓(π0) 2012 flagged 0.21 M
µ± 3π∓(π0) 2015 flagged 0.08 M
µ± 3π∓(π0) 2016 flagged 0.24 M
µ± 3π∓(π0) 2017 flagged 0.60 M
µ± 3π∓(π0) 2018 flagged 0.74 M

components 3π3π , 3ππ03π/3π3ππ0 and 3ππ03ππ0 in respectively ∼ 44%, ∼ 44%
and ∼ 12% of the cases.
Similarly, two configurations are used to produce the MC samples for the 3πµ final
state: one including the 3-prong charged pions component only, and one including
the components 3πµ and 3ππ0µ in respectively ∼ 67% and ∼ 33% of the cases.
In order to save storage capacity, the majority of the samples are generated in filtered
mode, i.e. keeping only those candidates which pass the stripping requirements,
while the information about the others is lost. However, the stripping lines include
some particle identification (PID) requirements which are not well modelled by
the simulation. In order to compute the signal efficiency for the PID cuts, a
data-driven technique is used and unbiased MC samples are needed, on which the
PID requirements are not applied. For this reason, smaller additional MC samples
are produced in flagged mode, which retains the information on all the candidates
and allows to apply a modified version of the stripping selection which does not
contain the PID requirements. The samples for the normalization channel are
instead produced entirely in flagged mode.
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Table 4.4: Overview of the different MC samples used in the analysis for the study of the
normalization mode. The data-taking year, stripping mode and the number of
generated events in the LHCb geometrical acceptance are shown.

Channel Year Mode Events

B0→ D−D+
s 2011 flagged 0.5 M

B0→ D−D+
s 2012 flagged 1.0 M

B0→ D−D+
s 2015 flagged 0.4 M

B0→ D−D+
s 2016 flagged 1.0 M

B0→ D−D+
s 2017 flagged 1.0 M

B0→ D−D+
s 2018 flagged 1.0 M

B0 → D∗−D+
s 2012 flagged 0.5 M

B0
s → D−s D

∗+
s 2012 flagged 0.5 M

4.3 Truth-matching
In order to reject badly reconstructed candidates present in the MC, a so-called

truth-matching procedure is used. A reconstructed MC track is matched to a “true”
generated particle if at least 70% of the detector hits match between the true and
reconstructed MC tracks, while for neutral objects the true generated particle must
contribute for at least 50% of the reconstructed cluster energy [87].
For the B0→ K∗0τ+τ− signal MC, different truth-matching requirements are

defined:

fully-matched candidates: all the final state particles are assigned the correct
mass hypothesis and come from the same ancestor whose mass hypothesis
matches the one of the B0. Moreover, the decay chain must be fully recon-
structed or, in case this condition is not fulfilled, the ancestor must have a
mass at most 100 MeV above the nominal mass of the B0. This last condition
assures that decays with radiative photons are included in the truth-matched
sample. Such criterion is used to extract the signal samples for the BDT
training;

loose-matched candidates: in addition to the candidates selected by the fully-
matched criterion defined above, also candidates in which at least one track
is not matched to any of the objects in the true generated MC event are
included. Such tracks are most likely the result of a pion decaying in-flight;

swapped-pions candidates: all the final state particles are assigned the correct
mass hypothesis and come from the same ancestor whose mass hypothesis
matches the one of the B0, but at least two pions in the final state are not
associated to the correct intermediate particle (i.e. K∗0, τ+ or τ−). This
requirement is fulfilled by signal candidates in which two or more pions are
swapped between the intermediate particles.
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The selection efficiencies, discussed in detail in Chapter 7, are computed on events
containing at least one candidate passing the logical OR of the loose-matched and
swapped-pions criteria. This requirement allows more than one candidate per event
to pass the truth-matching. However, in case multiple candidates are present after
the full selection, only one is kept, chosen randomly among those belonging to the
same event.
Candidates for the normalization mode are selected applying an equivalent of

the loose matching, retaining either fully reconstructed candidates or candidates in
which at least one particle is not matched to any MC true particle. The rate of
swapped-pions candidates is negligible.

4.4 Candidates in K∗0 mass regions
The K∗0 mass distributions for fully-matched simulated signal events and data

are shown in Fig. 3.2. The fraction of candidates in each K∗0 mass region after
the stripping selection are reported in Tables 4.5 and 4.6. The MC samples used
to compute these fractions include only the charged pions component (and not the
one with neutral pions), and only fully-matched candidates are considered.

Table 4.5: Fraction of candidates belonging to each K∗0 mass region for fully-matched
MC events and OS data for the 3π3π final state after the stripping selection.

Sample Signal region (%) Control region (%) Background region (%)

OS 2011 27.0331± 0.0098 58.041± 0.011 14.9251± 0.0077
OS 2012 27.0056± 0.0064 58.090± 0.0071 14.9041± 0.0051
OS 2015 27.130± 0.010 57.737± 0.012 15.1327± 0.0086
OS 2016 26.8033± 0.0038 58.0779± 0.0043 15.1192± 0.0031
OS 2017 26.8355± 0.0037 58.0829± 0.0041 15.0820± 0.0030
OS 2018 26.7652± 0.0034 58.1637± 0.0037 15.0710± 0.0027
MC 2011 74.69± 0.46 23.16± 0.44 2.17± 0.15
MC 2012 74.90± 0.31 23.01± 0.31 2.10± 0.10
MC 2015 74.34± 0.59 23.43± 0.57 2.30± 0.20
MC 2016 75.11± 0.31 22.70± 0.30 2.20± 0.10
MC 2017 74.99± 0.21 22.93± 0.21 2.080± 0.070
MC 2018 74.60± 0.20 23.28± 0.19 2.165± 0.066
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Table 4.6: Fraction of candidates belonging to each K∗0 mass region for fully-matched
MC events and OS data for the 3πµ final state after the stripping selection.

Sample Signal region (%) Control region (%) Background region (%)

OS 2011 28.116± 0.011 57.136± 0.012 14.7519± 0.0084
OS 2012 27.9245± 0.0069 57.3040± 0.0078 14.7717± 0.0054
OS 2015 28.071± 0.012 57.102± 0.014 14.8263± 0.0098
OS 2016 27.7761± 0.0044 57.3696± 0.0049 14.8540± 0.0035
OS 2017 27.8354± 0.0045 57.3616± 0.0049 14.8029± 0.0035
OS 2018 27.7730± 0.0040 57.4390± 0.0045 14.7884± 0.0032
MC 2011 74.51± 0.35 23.38± 0.34 2.12± 0.11
MC 2012 74.64± 0.24 23.22± 0.23 2.141± 0.081
MC 2015 75.38± 0.44 22.67± 0.43 1.96± 0.14
MC 2016 74.61± 0.29 23.26± 0.28 2.135± 0.095
MC 2017 74.45± 0.21 23.50± 0.20 2.086± 0.068
MC 2018 74.77± 0.18 23.15± 0.18 2.080± 0.060
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Chapter 5

Event selection

This chapter describes in detail the event selection used to suppress the amount
of background present in the dataset.

5.1 Boosted decision trees

The analysis makes extensive use of BDTs, which are a class of multivariate
techniques able to classify events in different categories, in this case signal and
background. They rely on two training samples, one for the signal and one for the
background, which are used to learn to discriminate between the two species, and
on a list of discriminating variables. The building block of a BDT is a decision
tree (DT). In a DT, starting from a root node which contains the training samples,
the events are split in two sub-samples using the variable that maximizes the
discriminating power between signal and background. The process is repeated
iteratively on the sub-samples until a stopping criterion is met (for example the
size of the node reaches its minimum, or the DT reaches its maximum depth). The
final nodes at the bottom of the DT are labelled as “signal” or “background” nodes
depending on the majority of events ending up in the node. These nodes are used
to assign a numerical output to events belonging to them, e.g. +1 for signal and
−1 for background. An illustration of a DT is shown in Fig. 5.1. Several DTs are
combined together to form a BDT, where at each stage the events misclassified by
the previous tree are assigned a higher weight, such that the current tree “focuses”
to learn on them. The weight is defined as

α =
1− ferr
ferr

, (5.1)

where ferr is the misclassification rate from the previous DT.
Finally, the outputs of all DTs are combined together:

BDT(x) =
1

N

N∑
i

lnαi ·DTi(x), (5.2)
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Figure 5.1: Illustration of the logic of a DT [88]

where x represents the input values, N is the total number of DTs in the algorithm
and the other terms are self-explanatory. The performance of a BDT can be further
increased by forcing a “slow learning” of the algorithm with the use of a learning
rate, i.e. an exponent β to the weight: α→ αβ.

5.2 Discriminating variables

Besides standard kinematic and geometric variables (p, pT, η, vertex χ2, ...),
several isolation and B0→ K∗0τ+τ− specific variables are used in the analysis.
They are defined and described in the following.

Particles naming convention

Since the analysis does not distinguish between B0 and B0 decays, talking of
positive- or negative-charged τ may lead to inconsistencies. Throughout the thesis,
a naming convention is assumed to unambiguously refer to the τ lepton candidates:
the τ candidate with the same charge of the K from the K∗0 will be named “positive”
τ and labelled as tauP or τ+, while the one with opposite charge will be named
“negative” and labelled as tauM or τ−. In this way there is no ambiguity, since the
charge of the K from the K∗0 univocally determines the flavor of the B meson
prior to the decay.
Moreover, a numbering convention is assumed for charged pions from τ decays:
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the label “1” refers to the pion having the same charge of its ancestor and the
smallest pT among the two pions with the same charge originating from the same τ ;
the label “2” refers to the pion having opposite charge with respect to its ancestor;
the label “3” refers to the pion having the same charge of its ancestor and the
highest pT among the two pions with the same charge originating from the same
τ . The variables associated to pions from τ decays follow this convention, e.g. the
transverse momentum of the positive-charged pion from the τ− is indicated as
π+

2 pT.

Track isolation variables

The isolation variables measure the activity in terms of other particles in the
proximity of the selected track or displaced vertex, i.e. how likely it is for an extra
track in the vicinity of the reconstructed candidate to be actually part of the same
underlying decay. With more activity near the signal candidate, it becomes less
likely that the candidate is a true B0→ K∗0τ+τ− decay.

Three types of track isolation variables are used in the selection. These variables
were initially conceived for the B0

s→ µ+µ− analysis, successively re-optimized for
the B0

s → τ+τ− analysis [89] and adopted for the present search. They are derived
on the outcome of a BDT, giving an estimation of the isolation level for each
track of the signal candidate. For the training of this BDT an inclusive bb Monte
Carlo has been used to select B0

s → τ+τ− signal candidates (defined as candidates
passing a loose selection for the B0

s → τ+τ− search). Let us now consider a specific
candidate’s track, called signal track (ST). For each event all the other tracks,
called non-signal tracks (NST), are divided into two categories: non-isolating and
isolating tracks. The non-isolating tracks are all tracks coming from displaced B
and D decay vertices that are part of the same true decay chain as the ST. The
isolating tracks are all remaining tracks, coming either directly from the PV or
from another B or D decay in the event, which are essentially unrelated to the ST.
For each of the NST of the event, the common vertex V with the ST is defined as
the midpoint between the two tracks along the line of closest approach1. The BDT
combines the following seven discriminating variables:

• the minimum l/σl of the NST with respect to all PV’s in the event, where l
and σl are the distance and its uncertainty of the NST from a given PV;

• the transverse momentum of the NST;

• the angle between the NST and the ST;

• the parameter fc =
|pST + pNST|α

|pST + pNST|α + pSTT + pNSTT
, where p and pT are the

momentum and transverse momentum of the tracks, α is the angle between
1An actual refit of this vertex for every track in the event is too CPU intense, for likely not
much gain.
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the momentum of the combined NST + ST system and the vector between
the PV and the vertex V ;

• the distance of closest approach of the NST and ST;

• the distance between the vertex V and the B decay vertex;

• the distance between the vertex V and the PV.

The BDT is trained using the non-isolating tracks as background target, and the
isolating tracks as signal target.
The trained BDT is then used to compute the isolation level in B0→ K∗0τ+τ−

events2: for each long track in the event which is not part of the signal candidate,
the BDT response is calculated. Therefore tracks with high BDT values (isolating
tracks) are more likely to come from other B or D decays, whereas tracks with low
BDT values (non-isolating tracks) are more likely to come from the same decay
chain as the considered candidate track, which makes the candidate more likely to
be part of the background. Let a, b and c be the number of tracks with a BDT
value smaller than −0.09, −0.05 and 0, respectively. For each signal candidate
track the isolation variables are defined as:

IsoBDTFirstValue: the sum a+ 100× b+ 1000× c. The values of a, b and c are
recovered for the selection;

IsoBDTSecondValue: the sum
∑

BDT(x)<−0.05 BDT(x), of BDT values for all
tracks x with a BDT output smaller than −0.05;

IsoBDTThirdValue: in Run 1, the sum of the previous variable and the minimal
BDT value of all tracks in the event with a BDT output in the range [−0.05, 0].
In Run 2 the definition has slightly changed in order to get smoother distri-
butions. It is defined as the sum of the previous variable and the minimal
BDT value of all tracks in the event, regardless of what value it assumes.

Examples of distributions are shown in Figs. 5.10 and 5.11 in Sec. 5.6.

Vertex isolation variables

Five types of vertex isolation variables are available. For their construction, the
tracks making up the τ , K∗0 or B decay vertex V are combined with a single other
track from the event, and fitted together into a new vertex V∗. The new vertex
isolation variables are then defined as:

VtxIsoNumVtx: the number of other tracks in the event for which the χ2 of the
new vertex fit is less than nine, χ2

V∗ < 9;

2The BDT has not been optimized specifically for the B0→ K∗0τ+τ− search.
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VtxIsoDeltaChi2OneTrack: the smallest difference in χ2 between the V and
V∗ vertex fits ∆χ2 ≡ χ2

V − χ2
V∗ , among all the other tracks in the event;

VtxIsoDeltaChi2TwoTrack: the smallest difference in χ2 between the V and
V∗∗ vertex fits, where V∗∗ is constructed iteratively by adding one track to
the V∗ vertex that itself has the smallest ∆χ2;

VtxIsoDeltaChi2MassOneTrack: the invariant mass of the tracks used to build
the VtxIsoDeltaChi2OneTrack variable;

VtxIsoDeltaChi2MassTwoTrack: the invariant mass of the tracks used to build
the VtxIsoDeltaChi2TwoTrack variable.

Isolation from neutral objects

Several isolation variables that target neutral objects are used in the analysis.
These variables are only available for Run 2 data, since the stripping lines used for
Run 1 do not compute these quantities. For their construction, let us define a cone
of solid angle Ω = 0.5 around a given candidate track. The neutral cone isolation
variables are then defined as:

vPT: the vector-summed transverse momenta of the neutral objects inside the
cone;

sPT: the scalar-summed transverse momenta of the neutral objects inside the
cone;

Pasym: the asymmetry between the momentum of the track and the momentum of
the neutral objects inside the cone Pasym = ptrack−pneutral

ptrack+pneutral ;

PTasym: the asymmetry between the transverse momentum of the track and
the transverse momentum of the neutral objects inside the cone PTasym =
ptrackT −pneutral

T
ptrackT +pneutral

T
;

IT: ratio between the transverse momentum of the track and the transverse
momentum of the system track + neutral objects inside the cone
IT =

ptrackT√
(ptrackx +pneutral

x )2+(ptracky +pneutral
y )2

;

DELTAETA: the difference between the pseudorapidity η of the track and the
pseudorapidity of the neutral objects inside the cone.
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PID variables

Two different types of PID variables are used in LHCb: the PID and ProbNN.
The PID, also called DLL from difference log-likelihood, use the information from
the calorimeter, muon and RICH systems to form a set of likelihoods relative to
the pion mass hypothesis, that are multiplied:

PIDx = lnL(x)− lnL(π), (5.3)

where
L = LRICH · Lcalo · Lmuon, (5.4)

and x can be the electron, muon, kaon or proton mass hypothesis.
The ProbNN variables are built using multivariate techniques. The input variables of
the classifier are PID information from each sub-system and tracking information.
An additional boolean muon identification variable, called IsMuon is defined. A track
is assigned the label IsMuon if a minimum number of muon stations (depending on
the track momentum) have hits inside a region of interest around the extrapolated
track.

Other discriminating variables

Ghost probability: probability for a given track to be a fake track built up from
random hits in the detector, based on the output of a neural network algorithm
[90];

Impact Parameter (IP): the minimum distance l of a track from a given vertex.
Unless differently specified, the PV is used in this thesis;

IP χ2: l/σl, where l±σl is the IP of a track from a given vertex. Unless differently
specified, the PV is used in this thesis;

MINimum Impact Parameter (MINIP) χ2: minimum IP χ2 of a given track
with respect to a set of vertices. The primary vertices of the event are used
in this thesis unless differently specified;

Distance Of Closest Approach (DOCA): distance between two given tracks
at the point of closest approach;

DIRection Angle (DIRA): angle between a track’s momentum and the vector
pointing from a given vertex to the particle’s decay vertex. In this thesis it is
expressed in terms of its cosine;

corrected mass: Mcorr =
√
M2

B + (pB · sin(θ))2 + pB · sin(θ), where MB is the
invariant mass of the charged particles in the final state, and θ is the angle
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between the momentum of the B and its flight direction3;

CDFIso: CDFIso =
pBT

pBT +
∑

i p
i
T

, where pBT indicates the B transverse momentum

and the sum is done over the transverse momenta of all the tracks i inside a
cone of solid angle Ω = 1.0 around the B track [91];

rhoMass: for a given τ candidate, rhoMass is defined as the minimum absolute
difference between the combined mass of oppositely charged pions build-
ing up the candidate and the central value of the ρ0 mass (in MeV), e.g.:
τ+ rhoMass ≡ min(|mπ+

1 π
−
2
− 775.49|, |mπ−2 π

+
3
− 775.49|);

resMass: for a given τ candidate, resMass is defined as the maximum abso-
lute difference between the combined mass of oppositely charged pions
building up the candidate and the value of the ρ0 mass (in MeV), e.g.:
τ+ resMass ≡ max(|mπ+

1 π
−
2
− 775.49|, |mπ−2 π

+
3
− 775.49|);

vertex 3D distance: 3-dimensional distance between two vertices V1 and V2.

5.3 B0 mass reconstruction
Several different ways of computing the B0 mass are considered in the analysis and

none of them shows sufficient discriminating power between signal and background
to perform the final fit. However, despite the fact that the fit is performed on the
output of a BDT, some of the different definitions of B0 mass have been used as
discriminating variables in the selection and are therefore reported in the following.

Visible mass The visible B0 mass is defined as the invariant mass of the charged
particles in the final state, without any corrections for the missing energy from
neutrinos. The distributions are reported in Figs. 5.2 and 5.3.

Corrected mass The definition of corrected mass has been given in Sec. 5.2.
The distributions are reported in Figs. 5.4 and 5.5.

Analytically reconstructed mass An analytic reconstruction of the B0 mass
is performed for both final states applying mass constraints to the system: the τ
mass is fixed to its nominal value Mτ = 1777MeV and the neutrino mass is fixed
to 0.
For the 3π3π final state, the decay vertices of the τ lepton are reconstructed using
the information on the three pion tracks while the B0 decay vertex is reconstructed

3The expression M =
√
m2 + p2 + p represents the invariant mass of a particle decaying into a

particle of mass m and a massless particle, with p the momentum of the decay products in
the center-of-mass frame.
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Figure 5.2: Visible B0 mass for simulated 3π3π signal events (blue) and data (red) after
stripping. The whole K∗0 mass spectrum is considered.

combining the information on the K-π system and on the pions from the two τ ’s,
which allow to derive each τ flight direction ~uτ . By measuring the three-pions
system four-momentum p3π = (E3π, ~p3π) the magnitude of the τ momentum is
calculated as

|~pτ | =
(m2

τ +m2
3π)|~p3π| cos θ ± E3π

√
(m2

τ −m2
3π)2 − 4m2

τ |~p3π|2 sin2 θ

2(E2
3π − |~p3π|2 cos2 θ)

, (5.5)

where θ is the angle between the τ and the three-pions system flight direction,
cos θ = ~uτ · ~p3π|~p3π | and m3π is the invariant mass of the three-pions system m2

3π =

E2
3π − |~p3π|2. Due to the quadratic nature of the mass constraint, Eq. 5.5 gives

two mathematically valid solutions. Therefore the B0 mass is reconstructed with a
four-fold ambiguity. However the ambiguity is eliminated using the information on
the B0 flight direction, defined as the unit vector pointing from the PV to the B0

decay vertex: among the four analytic solutions for the B0 momentum ~pB, the one
with the minimum DIRA with respect to the PV is called “optimal” solution.
For the 3πµ final state the vertex τ → µνν is not reconstructed, however its position
is recovered using topological arguments. The τ decaying hadronically is fully
reconstructed, with a two-fold ambiguity on its momentum, using Eq. 5.5. Since
the transverse momentum with respect to the B0 flight direction must balance, the
transverse momentum of the τ decaying leptonically pτ→µT is given by

pτ→µT = −pτ→3π
T − pK∗0T , (5.6)
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Figure 5.3: Visible B0 mass for simulated 3πµ signal events (blue) and data (red). The
whole K∗0 mass spectrum is considered.

where pτ→3π
T and pK∗0T are the transverse momenta with respect to the B0 flight

direction of the τ decaying hadronically and the K∗0 respectively. Once pτ→µT is
known, let us define the plane containing pτ→µT and the B0 flight direction. This
plane must also contain the missing τ decay vertex, which is identified as the
intersection between the µ flight direction and the plane, with a two-fold ambiguity
resulting from the τ mass constraint. The distributions are reported in Figs. 5.6
and 5.7. For Eq. 5.5 to be well-defined, the following condition must be satisfied:

∆ = (m2
τ −m2

3π)2 − 4m2
τ |~p3π|2 sin2 θ ≥ 0 . (5.7)

However, due mostly to vertex resolution, Eq. 5.7 is satisfied by only ∼ 32%
(∼ 54%) of simulated 3π3π (3πµ) signal candidates. Therefore, since variables from
the analytic reconstruction are only used to provide more discrimination power
and not to perform the final fit, ∆ is set to 0 for candidates which do not satisfy
Eq. 5.7, in order to retain 100% of signal candidates.

In this analysis, a naming convention is assumed to indicate the variables derived
from the analytic reconstruction: the quantities derived from Eq. 5.5 with the
positive “+” solution are labelled with the suffix _a, while the ones derived with
the negative “-” solution are labelled with the suffix _b (e.g. the momentum of the
positive τ with positive solution is called tauP_P_a). The quantities derived by
combining information on the two τ ’s are labelled with the combined suffixes, (e.g.
the analytic solution for the B0 mass obtained considering the positive solution
for the positive τ and the negative solution for the second τ is B_M_ab), while
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Figure 5.4: Corrected B0 mass for simulated 3π3π signal events (blue) and data (red).
The whole K∗0 mass spectrum is considered.

the “optimal” solution in the 3π3π final state is labelled with the suffix _opt.
Specifically, the variables used in the analysis are:

• B0 analytically reconstructed mass from optimal solution B_M_opt;

• B0 analytically reconstructed mass from the two τ “+” solutions B_M_aa;

• τ analytically reconstructed momentum from optimal solution tauP(M)_P_-
opt;

• τ analytically reconstructed momentum from “+” solution tauP(M)_P_a;

• τ z component of analytically reconstructed momentum from “+” solution
tauP(M)_PZ_a;

• τ y component of analytically reconstructed momentum from “+” solution
tauP(M)_PY_a;

• τ y component of analytically reconstructed momentum from “-” solution
tauP(M)_PY_b;

• τ transverse component of analytically reconstructed momentum from “-”
solution tauP(M)_PT_b (or tauP(M)_P_tr_b);

• τ transverse component of analytically reconstructed momentum from “+”
solution tauP(M)_PT_a (or tauP(M)_P_tr_a).
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Figure 5.5: Corrected B0 mass for simulated 3πµ signal events (blue) and data (red). The
whole K∗0 mass spectrum is considered.

Refitted mass The “refitted” mass is derived from a refitting of the decay chain
performed using a Kalman filter [92]. The tool has been modified to include the
neutrinos in the decay chain and to initialize their momenta using the analytic
solution. Moreover, the fit is constrained using the values of the τ and ντ masses.
However, due to the fit failing, some candidates show unphysical negative values
for the τ mass. Therefore only events in which the refitting of the decay chain
is successful and no negative masses are present are retained. This requirement
has an efficiency of ∼ 98% on 3π3π simulated signal events and is included in the
cut-based preselection discussed in Sec. 5.6. On the other hand, the refitting of
the decay chain is more challenging for the 3πµ final state, given the presence of
three neutrinos in the final state. The efficiency of the refitting procedure drops to
∼ 50% and hence the use of refitted variables is avoided in order to retain signal
efficiency. The distributions are reported in Figs. 5.8 and 5.9. The variables
derived from the refitting of the decay chain are labelled with the prefix B_OPT_:

• τ refitted decay length B_OPT_tauP(M)_decayLength4;

• τ refitted decay length error B_OPT_tauP(M)_decayLengthErr;

• refitting procedure χ2 B_OPT_chi2;

4This variable is not well reproduced by the simulation in Run 2. In the final version of the
analysis it is replaced by the standard decay length measured from the positions of the decay
vertices.

77



2000 4000 6000 8000 10000
 (MeV)MB

0

0.02

0.04

0.06

0.08

0.1

0.12
N

or
m

al
iz

ed
 c

an
di

da
te

s
2011 MC signal

2011 data

(a) 2011

2000 4000 6000 8000 10000
 (MeV)MB

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N
or

m
al

iz
ed

 c
an

di
da

te
s

2012 MC signal

2012 data

(b) 2012

2000 4000 6000 8000 10000
 (MeV)MB

0

0.02

0.04

0.06

0.08

0.1

0.12

N
or

m
al

iz
ed

 c
an

di
da

te
s

2015 MC signal

2015 data

(c) 2015

2000 4000 6000 8000 10000
 (MeV)MB

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N
or

m
al

iz
ed

 c
an

di
da

te
s

2016 MC signal

2016 data

(d) 2016

2000 4000 6000 8000 10000
 (MeV)MB

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N
or

m
al

iz
ed

 c
an

di
da

te
s

2017 MC signal

2017 data

(e) 2017

2000 4000 6000 8000 10000
 (MeV)MB

0

0.02

0.04

0.06

0.08

0.1

0.12

N
or

m
al

iz
ed

 c
an

di
da

te
s

2018 MC signal

2018 data

(f) 2018

Figure 5.6: Analytically reconstructed B0 mass for simulated 3π3π signal events (blue)
and data (red). The whole K∗0 mass spectrum is considered.

• B0 refitted decay length B_OPT_decayLength;

• number of iterations of the refitting procedure B_OPT_nIter.

5.4 Stripping selection
An overview of the stripping selection cuts applied on 3π3π, 3πµ and normaliza-

tion signal candidates is given in Tables 5.1, 5.2 and 5.3 respectively.
The number of events and candidates passing the stripping selection is given in
Tables 5.4 and 5.5. The high multiplicity is predominantly caused by the many
permutations among the pion tracks from which the candidate is reconstructed
that also pass the selection requirements.
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Figure 5.7: Analytically reconstructed B0 mass for simulated 3πµ signal events (blue)
and data (red). The whole K∗0 mass spectrum is considered.
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Figure 5.8: Refitted B0 mass for simulated 3π3π signal events (blue) and data (red). The
whole K∗0 mass spectrum is considered.
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Figure 5.9: Refitted B0 mass for simulated 3πµ signal events (blue) and data (red). The
whole K∗0 mass spectrum is considered.
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Table 5.1: Overview of the stripping selection cuts for the 3π3π final state.

Cut on value

Visible mass B0 [2− 10]GeV
Invariant mass of charged π’s from τ ’s < 5GeV

Decay vertex χ2 < 100
Flight distance χ2 > 80
Flight distance < 40mm

Charged decay products with pT > 0.8GeV τ ≥ 1
Decay vertex χ2 < 16

Maximum DOCA of charged decay products < 0.2mm
Charged decay products’ invariant mass [500− 2000]MeV
Distance χ2 between PV and decay vertex > 16
Tr. distance between PV and decay vertex [1− 7]mm
Lon. distance between PV and decay vertex > 5.0mm

DIRA with respect to PV > 0.99
pT > 1GeV

Track χ2/ndf π from τ < 4
Ghost probability < 0.4

MINIP χ2 > 16
pT > 250MeV
p > 2GeV

ProbNNπ > 0.55

Mass K∗0 [700− 1100]MeV
pT > 1000MeV

Distance between PV and decay vertex > 3mm
Decay vertex χ2 < 15

ProbNNπ π from K∗0 > 0.55
ProbNNK K from K∗0 > 0.2

Track χ2/ndf Both < 4
pT > 250MeV
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Table 5.2: Overview of the stripping selection cuts for the 3πµ final state.

Cut on value

Visible mass B0 [2− 10]GeV
Invariant mass of µ and charged π’s from τ ’s < 5GeV

Vertex χ2 < 150
Flight distance [3− 70]mm

Charged decay products with pT ≥ 0.8GeV τ ≥ 1
Decay vertex χ2 < 16

Maximum DOCA of decay products < 0.2mm
Charged decay products’ invariant mass [500− 2000]MeV
Distance χ2 between PV and decay vertex > 16
Tr. distance between PV and decay vertex [1− 7]mm
Lon. distance between PV and decay vertex > 5.0mm

DIRA with respect to PV > 0.99
pT > 1GeV

Track χ2/ndf π from τ < 4
Ghost probability < 0.4

MINIP χ2 > 16
pT > 250MeV
p > 2GeV

ProbNNπ > 0.55

pT µ > 1GeV
Track χ2/ndf < 4

IsMuon True
PIDµ > −3

Mass K∗0 [700− 1100]MeV
pT > 1000MeV

Distance between PV and decay vertex > 3
Decay vertex χ2 < 15

ProbNNπ π from K∗0 > 0.55
ProbNNK K from K∗0 > 0.2

Track χ2/ndf Both < 4
pT > 250MeV
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Table 5.3: Overview of the stripping selection cuts for the normalization mode.

Cut on value

Mass B0 [5− 7]GeV
pT > 2GeV

Corrected mass < 10GeV
Decay vertex χ2 < 90

DIRA with respect to PV > 0.99
Flight distance χ2 > 225
Flight distance < 90mm

Number of D/Ds with pT > 4GeV ≥ 1
Number of K/π with pT > 2GeV ≥ 1
max(D MINIP χ2, Ds MINIP χ2) > 150
min(D MINIP χ2, Ds MINIP χ2) > 16
max{min(K/π from D MINIP χ2),
min(K/π from Ds MINIP χ2)} > 20∑

pT of K/π > 7GeV

Mass D [1800− 2030]MeV
Decay products with pT ≥ 0.8GeV ≥ 1

Decay vertex χ2 < 16
Maximum DOCA of decay products < 0.2mm

Distance χ2 between PV and decay vertex > 16
Tr. distance between PV and decay vertex [0.1− 7]mm
Lon. distance between PV and decay vertex > 5.0mm

DIRA with respect to PV > 0.99
pT > 1GeV

ProbNNπ π from D > 0.55
PIDK K from D > −5

Track χ2/ndf Both < 3
Ghost probability < 0.3

MINIP χ2 > 16
pT > 250MeV
p > 2GeV
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Table 5.4: Statistics for the data samples after the 3π3π stripping selection.

Year Polarity Candidates Events Multiplicity

2011 MagDown 12495299 1384143 9.027± 0.008
2011 MagUp 8702273 963299 9.034± 0.010
2012 MagDown 24483963 2808744 8.717± 0.005
2012 MagUp 24012984 2758122 8.706± 0.006
2015 MagDown 10915691 1092239 9.994± 0.010
2015 MagUp 6950073 709633 9.794± 0.012
2016 MagDown 69681180 6971258 9.995± 0.004
2016 MagUp 63971752 6435226 9.941± 0.004
2017 MagDown 73889825 7150940 10.333± 0.004
2017 MagUp 68663120 6695577 10.255± 0.004
2018 MagDown 85420403 8295917 10.297± 0.004
2018 MagUp 89139822 8721523 10.221± 0.004

Table 5.5: Statistics for the data samples after the 3πµ stripping selection.

Year Polarity Candidates Events Multiplicity

2011 MagDown 10141490 3954523 2.565± 0.002
2011 MagUp 7162780 2795352 2.562± 0.002
2012 MagDown 21594076 8589655 2.514± 0.001
2012 MagUp 21411210 8522930 2.512± 0.001
2015 MagDown 7539632 2734522 2.757± 0.002
2015 MagUp 5344105 1962941 2.722± 0.002
2016 MagDown 51527771 18212970 2.829± 0.001
2016 MagUp 50301436 17784150 2.828± 0.001
2017 MagDown 52364489 18245983 2.870± 0.001
2017 MagUp 49794260 17432280 2.856± 0.001
2018 MagDown 59563431 20777543 2.867± 0.001
2018 MagUp 63274231 22164996 2.855± 0.001
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5.5 Trigger

The successfully reconstructed 3π3π and B0→ D−D+
s candidates are required

to pass the trigger cuts in Table 5.6, while the trigger requirements for the
3πµ candidates are shown in Table 5.7. The TOS (Triggered On Signal) con-
ditions require that the properties of the tracks composing the candidate are
enough to fire the trigger, whereas the TIS (Triggered Independent of Signal)
conditions require that the rest of the event alone is enough to fire the trigger (an
event could be TIS and TOS at the same time). The L0 lines accept events with
large energy deposits in the calorimeter or with hits in the muon system, the HLT1
lines accept events with large pT and IP χ2, while the HLT2 lines accept events in
which a 2-, 3- or 4-body decay is present.

Table 5.6: Trigger requirements applied on 3π3π and normalization channels.

Level Run 1 Run 2

L0 L0Hadron TOS || L0Global TIS L0Hadron TOS || L0Global TIS
HLT1 TrackAllL0 TOS TrackMVA TOS
HLT2 Topo[2||3||4]BodyBBDT TOS Topo[2||3||4]Body TOS

Table 5.7: Trigger requirements applied on the 3πµ channel. All the lines are TOS.

Level Run 1 Run 2

L0 L0Hadron || L0Muon L0Hadron || L0Muon
HLT1 TrackAllL0 || TrackMuon TrackMVA || TrackMuon
HLT2 Topo[2||3||4]BodyBBDT || Topo[2||3||4]Body ||

TopoMU[2||3||4]BodyBBDT TopoMU[2||3||4]Body

5.6 Cut-based selection

The cut-based phase of the offline selection is aimed at rejecting the most trivial
background while keeping a relatively high amount of signal and at cutting away
events which lie far in the tails of variable distributions.

3π3π final state

The cut-based selection for the 3π3π final state is composed of three main sets
of cuts:

• isolation-based selection;
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• refitting quality requirements;

• multiple candidates requirements.

Isolation-based selection Track isolation variables, described in Sec. 5.2, show
a particularly high discriminating power, which allows them to individually reject
around 40% of background events while retaining more than 98% of signal events.
The cuts are applied on each track in the final state, on the τ tracks and on the
K∗0 vertex5, and are the same for each data-taking year. They are:

• IsoBDTFirstValue % 100 ≤ 2,

• IsoBDTSecondValue ≥ −0.25,

• IsoBDTThirdValue ≥ −0.2.

The distributions are shown in Fig. 5.10 for the pion from the K∗0 in 2016 data
and MC. The distributions are similar for the other data-taking years and among
all the particles (and correlated).

Refitting quality requirements As described in Sec. 5.3, events for which the
refitting procedure fails are rejected in the cut-based selection.

Multiple candidates requirements In both MC and data the events are
classified into three categories:

1. Events containing only one candidate, referred to as category 1;

2. Events containing multiple candidates built with the same 8 tracks in the
final state (hence swapping two or more tracks between candidates), referred
to as category 2;

3. Events containing multiple candidates built with more than 8 tracks in the
final state, referred to as category 3.

The fraction of candidates belonging to each category is reported in Tables 5.8
and 5.9 for OS data and signal MC respectively. The amount of simulated signal
candidates in category 3 is low compared to the total amount of candidates.
Moreover, it has been observed that after the full selection the amount of candidates
falling in this category is negligible. For this reason only the much more abundant
candidates in events belonging to categories 1 and 2 are retained in order to
concentrate the discriminating power of the MVA selection on them.

5Even though the K∗0 candidate has not a track associated to it, it is still possible to compute
the values of the input variables for the track isolation BDT.
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Figure 5.10: Distribution of IsoBDTFirstValue % 100 (a), IsoBDTSecondValue (b) and
IsoBDTThirdValue (c) for the pion from the K∗0 for the 3π3π final state in
2016 data (red) and fully-matched MC (blue).

Table 5.8: Fraction of candidates belonging to each multiplicity category in 3π3π OS data
after stripping, trigger and previously reported cut-based requirements.

Year Fraction cat. 1 (%) Fraction cat. 2 (%) Fraction cat. 3 (%)

2011 2.822± 0.009 90.555± 0.021 6.620± 0.017
2012 3.000± 0.007 90.615± 0.014 6.385± 0.014
2015 1.915± 0.007 85.870± 0.021 12.220± 0.021
2016 2.135± 0.007 83.860± 0.007 14.005± 0.007
2017 1.925± 0.007 84.805± 0.007 13.270± 0.007
2018 1.935± 0.007 84.865± 0.007 13.195± 0.007
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Table 5.9: Fraction of candidates belonging to each multiplicity category in signal MC
after stripping, trigger and previously reported cut-based requirements.

Year Fraction cat. 1 (%) Fraction cat. 2 (%) Fraction cat. 3 (%)

2011 18.40± 0.84 80.22± 0.87 1.38± 0.25
2012 19.46± 0.62 78.95± 0.63 1.60± 0.19
2015 11.06± 0.75 86.22± 0.83 2.72± 0.39
2016 11.91± 0.40 84.96± 0.45 3.14± 0.22
2017 12.57± 0.28 84.41± 0.30 3.01± 0.14
2018 12.55± 0.27 83.75± 0.31 3.70± 0.16
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3πµ final state

The cut-based selection for the 3πµ final state is composed of three main sets of
cuts:

• isolation-based selection;

• additional cut-based requirements;

• multiple candidates requirements.

Isolation-based selection Similarly to what done for the 3π3π final state, the
isolation requirements are:

• IsoBDTFirstValue % 100 ≤ 2,

• IsoBDTSecondValue ≥ −0.15,

• IsoBDTThirdValue ≥ −0.2.

The distributions are shown in Fig. 5.11 for the pion from the K∗0 in 2016 data
and MC. The distributions are similar for the other data-taking years and among
all the particles (and correlated).

Additional cut-based requirements Additional requirements shown in Table
5.10 are applied in order to further reduce trivial background and to reject harmful
events which could degrade the successive MVA performances (i.e. events far in
the tails of the distributions).

Multiple candidates requirements The multiple candidates requirements are
analogous to those of the 3π3π final state. The proportions of each category are
reported in Tables 5.11 and 5.12. Candidates belonging to category 3 are rejected.
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Figure 5.11: Distribution of IsoBDTFirstValue%100 (a), IsoBDTSecondValue (b) and
IsoBDTThirdValue (c) for the pion from the K∗0 for the 3πµ final state in
2016 data (red) and fully-matched MC (blue).
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Table 5.10: Cut-based requirements applied on 3πµ final state candidates, in addition
to the isolation-based preselection. The true B0 and K∗0 vertices coincide,
therefore a non-zero K∗0 flight distance is due to resolution effects.

Candidate Requirements

B0 Visible mass ∈ [2500, 4300]MeV

τ

Visible mass ∈ [900, 1550]MeV
Mπ±1 π

∓
2
∈ [400, 1200]MeV

Mπ±3 π
∓
2
∈ [400, 1200]MeV

Mπ±1 π
±
3
< 1200MeV

Flight distance < 100mm
IP χ2 < 5000mm

τ and µ Invariant mass ∈ [1100, 2900]

K∗0 Flight distance < 100mm

K∗0 and τ DOCA < 10mm

Table 5.11: Fraction of candidates belonging to each multiplicity category in 3πµ OS data
after stripping, trigger and previously reported cut-based requirements.

Year Fraction cat. 1 (%) Fraction cat. 2 (%) Fraction cat. 3 (%)

2011 67.310± 0.070 31.630± 0.070 1.060± 0.014
2012 67.565± 0.049 31.415± 0.049 1.020± 0.007
2015 67.040± 0.110 31.800± 0.110 1.159± 0.024
2016 67.785± 0.028 30.385± 0.028 1.830± 0.007
2017 67.300± 0.028 30.990± 0.028 1.710± 0.007
2018 67.215± 0.028 31.170± 0.028 1.615± 0.007

Table 5.12: Fraction of candidates belonging to each multiplicity category in signal MC
after stripping, trigger and previously reported cut-based requirements.

Year Fraction cat. 1 (%) Fraction cat. 2 (%) Fraction cat. 3 (%)

2011 74.09± 0.62 25.61± 0.62 0.30± 0.08
2012 73.65± 0.44 26.11± 0.44 0.23± 0.05
2015 70.98± 1.00 28.87± 1.00 0.15± 0.08
2016 71.24± 0.53 28.22± 0.52 0.54± 0.09
2017 70.79± 0.36 28.72± 0.36 0.49± 0.06
2018 71.48± 0.34 27.99± 0.33 0.53± 0.05
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5.7 Multivariate selection

The second stage of the offline selection consists of a multivariate analysis based
on BDTs, aimed at rejecting most of the background. This is done using the TMVA
package [88]. The selection proceeds through two BDTs, named BDT1 and BDT2,
the second of which is trained after the selection on the first one.

Training samples

The training samples for each MVA stage are obtained applying the same selection
sequence as the real data, i.e. stripping, trigger and cut-based selection for BDT1
and stripping, trigger, cut-based and BDT1 selection for BDT2 and fitBDT. The
signal samples consist of the fully-matched signal MC’s which do not include the
neutral pions component, in order to train the BDT on the cleanest candidates,
while the background samples consist of events from the background region of the
K∗0 mass distribution defined in Sec. 3.2.
It has to be stressed that the choice of the training samples assures that no bias
due to overtraining is introduced. In fact the signal MC samples (not including
the neutral pions component) used for the training are separate and independent
from the MC samples (including the neutral pions component) used to assess the
BDT performances. Moreover, the background region of the data used to extract
the background samples for the training is independent of the control and signal
regions, used in the likelihood fit.
Prior to the training, the background region is further split into three mutually
exclusive subsamples of ∼ 1%, 47% and 52% of the total statistics, used for the
training of BDT1, BDT2 and fitBDT respectively. This choice is dictated from the
fact that the selection is applied to these samples prior to the training, hence the
samples for BDT2 need to be sufficiently large to allow enough events to survive
the cut on BDT1. Similarly, the samples for the fitBDT must be sufficiently large
such that enough events survive the cuts on BDT1 and BDT2.
The training procedure is done separately for Run 1 (obtained by merging the

2011 and 2012 signal and background samples in order to increase the available
statistics), 2016, 2017 and 2018. Because of the poor statistics for the 2015 MC, the
BDTs trained with the 2016 samples are used also on 2015 data. This choice is also
dictated from the fact that 2015 and 2016 have different data-taking conditions,
therefore the variable distributions vary between the two periods and merging the
two samples would degrade the performance of the BDT. The samples for the
simultaneous fit are kept separate for each data-taking year. The possibility of
merging some of them in the fit is investigated in Sec. 8.4, but no improvement is
found.
After the training, the BDT output is flattened with respect to the signal sample,
as explained in the following.
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Flattening of the BDT output

The output of the BDT is a non-physical variable in the range x ∈ [−1, 1]. For
conveniency the BDT output is redefined such that its distribution is flat for signal.
For each event e, its BDT output x is transformed as follows:

x→
∫ x
−1

BDT(y)dy∫ +1

−1
BDT(y)dy

, (5.8)

where BDT(y) is the BDT distribution of the training sample. As a consequence,
the BDT output falls in the range [0, 1] and its distribution for the fully-matched
signal MC candidates used for the training is flat after this transformation.

3π3π final state

In the 3π3π final state BDT1 combines variables not correlated with the K∗0
mass, in such a way to be suitable to be used as input variable for the fitBDT;
while BDT2 exploits the remaining discriminating power, coming from variables
correlated with the K∗0 mass. In order not to introduce a bias in the background
model, this last BDT will not be used as input variable for the fitBDT.
More details about the choice of the input variables are given in Sec. 9.2.

Stage 1 The variables used for the training of the first stage of the MVA selection
are:

• max(τ+ rhoMass, τ− rhoMass);

• min(τ+ refitted flight distance, τ− refitted flight distance);

• max(τ+ flight distance χ2, τ− flight distance χ2);

• max(τ+ visible mass, τ− visible mass);

• B0 visible mass;

• B0 neutral cone isolation Pasym
6;

• min(τ+ Mπ+
1 π
−
2
, τ− Mπ−1 π

+
2
);

• B0 analytically reconstructed mass using optimal solution (B_M_opt);

• min(π− from τ+ IsoBDTThirdValue, π+ from τ− IsoBDTThirdValue);

• max(τ+ max DOCA of decay products, τ− max DOCA of decay products).

6This variable is not available in Run 1.
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The specific rankings are reported in Appendix B, together with the variable
distributions. The flattened BDT distributions for signal and background samples
are reported in Fig. 5.12. Table 5.13 shows the size of the training samples used.
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Figure 5.12: Distributions of BDT1 for 3π3π signal and background training samples.
The flat transformation is applied.

Table 5.13: Number of candidates used for the training of BDT1 for the 3π3π final state.

Year Signal candidates Background candidates

Run1 5385 5478
2016 5475 17400
2017 12267 19995
2018 12251 22615

The chosen working point for the first stage of the MVA selection is:

BDT1 > 0.6. (5.9)
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The working point is chosen in order to minimize the expected upper limit in the
case where no signal is observed, following the optimization procedure described in
Chapter 9. Table 5.14 shows the efficiency of the BDT1 cut on the signal training
sample and its rejection power on OS data. More details on the selection efficiencies
are given in Chapter 7.

Table 5.14: Efficiency of BDT1 cut on 3π3π fully-matched MC events and rejection power
on OS data.

Year Efficiency (%) Rejection power (%)

Run1 40.02± 0.66 99.6514± 0.0023
2016 40.01± 0.66 99.7960± 0.0010
2017 40.01± 0.44 99.7958± 0.0010
2018 40.02± 0.44 99.8006± 0.0010

Stage 2 Before proceeding to the training of the second stage of the MVA
selection, the cut in Eq. 5.9 is applied on the training samples. The variables used
for the training are:

• Refitting procedure χ2 (B_OPT_chi2);

• max(τ+ VtxIsoDeltaChi2OneTrack, τ− VtxIsoDeltaChi2OneTrack);

• K∗0 flight distance7;

• B0 decay vertex χ2;

• min(τ+ VtxIsoDeltaChi2TwoTrack, τ− VtxIsoDeltaChi2TwoTrack);

• K∗0 IsoBDTSecondValue;

• π (from K∗0) IsoBDTSecondValue;

• K (from K∗0) IsoBDTSecondValue;

• min(τ+ VtxIsoDeltaChi2MassOneTrack, τ− VtxIsoDeltaChi2MassOneTrack);

• B0 DIRA with respect to PV;

• max(τ+ neutral cone isolation IT, τ− neutral cone isolation IT)8;

• max(τ+ decay vertex χ2, τ− decay vertex χ2);
7The true B0 and K∗0 vertices coincide, therefore a non-zero K∗0 flight distance is due to
resolution effects.

8This variable is not available in Run 1.
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• τ+ and τ− decay vertices 3D distance;

• K∗0 IP χ2 with respect to PV;

• K∗0 VtxIsoDeltaChi2OneTrack;

• K∗0 DIRA with respect to PV;

The specific rankings are reported in Appendix B, together with the variable
distributions. The BDT distributions for signal and background samples are
reported in Fig. 5.13. Table 5.15 shows the size of the training samples used.
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Figure 5.13: Distributions of BDT2 for 3π3π signal and background training samples.
The flat transformation is applied.

The chosen working point for the second stage of the MVA selection is:

BDT2 > 0.1. (5.10)

The working point is chosen in order to cut away the bin with the highest
background-signal ratio in Fig. 5.13. Details on the optimization procedure
are given in Chapter 9. Table 5.16 shows the efficiency of the BDT2 cut on the
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Table 5.15: Number of candidates used for the training of BDT2 for the 3π3π final state.

Year Signal candidates Background candidates

Run1 2087 1496
2016 2179 3069
2017 4852 3466
2018 4850 3794

signal training sample and its rejection power on OS data. More details on the
selection efficiencies are given in Chapter 7.

Table 5.16: Efficiency of BDT2 cut on 3π3π fully-matched MC events and rejection power
on OS data.

Year Efficiency (%) Rejection power (%)

Run1 90.01± 0.64 64.96± 0.32
2016 89.97± 0.64 63.80± 0.23
2017 90.00± 0.43 63.82± 0.22
2018 90.00± 0.43 63.11± 0.21

3πµ final state

In the 3πµ final state the selection and fit strategy is complicated by the presence
of a higher degree of correlation of the discriminating variables with the K∗0 mass.
However, a similar selection strategy involving two BDTs in series is adopted, none
of them is used as input variable for the fitBDT because of the aforementioned
correlations. The BDT1 variables are chosen in order to maximize its discriminating
power after the cut-based selection (even though the variables which are found to
be the most discriminating are kept for the fitBDT), while BDT2 is used in order
to recover the discriminating power of variables which are found to be correlated
with the K∗0 mass after the selection on BDT1, and therefore excluded from the
fitBDT. Moreover, BDT1 is used as input variable for BDT2. More details about
the choice of the variables can be found in Sec. 9.3.

Stage 1 The variables used for the training of the first stage of the MVA selection
are:

• π (from K∗0) pT;

• µ pT;

• B0 visible mass;
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• τ+ visible mass;

• τ+ mπ−2 π
+
3
;

• π and K (from K∗0) DOCA;

• K (from K∗0) IsoBDTSecondValue;

• K∗0 DIRA with respect to B0 decay vertex9;

• K∗0 flight distance9;

• τ+ flight distance.

The specific rankings are reported in Appendix B, together with the variable
distributions. The flattened BDT distributions for signal and background samples
are reported in Fig. 5.14. Table 5.17 shows the size of the training samples used.
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Figure 5.14: Distributions of BDT1 for 3πµ signal and background training samples. The
flat transformation is applied.

9As explained previously, the B0 decay vertex and K∗0 origin vertex are distinct because of
resolution effects.
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Table 5.17: Number of candidates used for the training of BDT1 for the 3πµ final state.

Year Signal candidates Background candidates

Run1 14008 3789
2016 6819 6342
2017 14472 6445
2018 16835 7378

The chosen working point for the first stage of the MVA selection is:

BDT1 > 0.6. (5.11)

The working point is chosen in order to minimize the expected limit in the case
where no signal is observed, following the optimization procedure described in
Chapter 9. Table 5.18 shows the efficiency of the BDT1 cut on the signal training
sample and its rejection power on OS data. More details on the selection efficiencies
are given in Chapter 7.

Table 5.18: Efficiency of BDT1 cut on 3πµ fully-matched MC events and rejection power
on OS data.

Year Efficiency (%) Rejection power (%)

Run1 40.01± 0.41 92.447± 0.022
2016 40.02± 0.59 93.339± 0.016
2017 40.00± 0.41 92.715± 0.017
2018 40.01± 0.38 93.019± 0.015

Stage 2 Before proceeding to the training of the second stage of the MVA
selection, the cut in Eq. 5.11 is applied on the training samples. The variables
used for the training are:

• BDT1;

• K∗0 flight distance10;

• K∗0 DIRA with respect to B0 decay vertex10;

• τ+ and µ DOCA;

• τ+ flight distance χ2.

10As explained previously, the B0 decay vertex and K∗0 origin vertex are distinct because of
resolution effects.

99



The specific rankings are reported in Appendix B, together with the variable
distributions. The BDT distributions for signal and background samples are
reported in Fig. 5.15. Table 5.19 shows the size of the training samples used.
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Figure 5.15: Distributions of BDT2 for 3πµ signal and background training samples. The
flat transformation is applied.

Table 5.19: Number of candidates used for the training of BDT2 for the 3πµ final state.

Year Signal candidates Background candidates

Run1 5604 7077
2016 2729 10582
2017 5789 12273
2018 6735 13383

The chosen working point for the second stage of the MVA selection is:

BDT2 > 0.3. (5.12)

The working point is chosen in order to minimize the expected limit in the case
where no signal is observed, following the optimization procedure described in
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Chapter 9. Table 5.20 shows the efficiency of the BDT2 cut on the signal training
sample and its rejection power on OS data. More details on the selection efficiencies
are given in Chapter 7.

Table 5.20: Efficiency of BDT2 cut on 3πµ fully-matched MC events and rejection power
on OS data.

Year Efficiency (%) Rejection power (%)

Run1 70.01± 0.61 51.96± 0.15
2016 70.01± 0.88 53.34± 0.13
2017 70.00± 0.60 51.72± 0.12
2018 70.00± 0.56 52.99± 0.12
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Chapter 6

Normalization channel

In this chapter, the procedure to extract the normalization yield Nobs
D−D+

s
is

presented.

6.1 Event selection
The stripping and trigger lines used to select B0→ D−D+

s candidates are given in
Tables 5.3 and 5.6 respectively. In order to reject other B → DD decays, additional
requirements on the masses of the D mesons are applied: the D− must have an
invariant mass mD ∈ [1855, 1885]MeV, while the D+

s must have an invariant mass
mDs ∈ [1955, 1985]MeV. The rate of multiple candidates per event passing the
selection requirements is negligible. The selection efficiencies are discussed in
Chapter 7.

6.2 Invariant mass fit
The fit to the invariant mass distribution of B0→ D−D+

s candidates contains
the following components:

B0→ D−D+
s signal: the signal distribution is modelled with a double-sided

Hypatia function [93]. The fit on simulated B0→ D−D+
s events is shown in

Fig. 6.1 and the results are given in Table 6.1. The parameters β and ζ are
fixed to 0. When fitting to data, the parameters describing the tails (aA, aB,
nA, nB and λ) are fixed from simulation, while the parameters describing the
width (σ) and position (µ) of the mass peak are initialized with the values
obtained from simulation and left floating;

combinatorial background: the combinatorial background is described by an
exponential function, whose rate parameter is fitted on data;

B0 → D∗−D+
s peaking background: the background from B0 → D∗−D+

s has
contributions from the decays D∗− → D−π0, which causes the double-horn
structure due to angular momentum conservation [85], and D∗− → D−γ.
The mass pdf is obtained from simulation, where truth-matched events are
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required to pass the same selection requirements as the B0→ D−D+
s signal.

The shape is modelled using three Gaussian functions, two of them describing
the π0 component and the broader one describing the γ component. The fit
on MC is shown in Fig. 6.2 and the parameters are given in Table 6.2. The
fit is performed on 2012 MC. To improve the quality of the fit, the parameter
µR describing the position of the right Gaussian is left floating when fitting
to data, while the other parameters are fixed to the values obtained from the
fit to simulation;

B0 → D−D∗+s peaking background: the B0 → D−D∗+s mass shape is taken
from simulation using the decay B0

s → D−s D
∗+
s and correcting for the B0-B0

s

mass difference. The fit is performed on 2012 MC. Truth-matched events are
required to pass the same stripping and trigger lines as the B0→ D−D+

s signal
(the PID requirements are the same for the D±(∗)

s mesons) and D±(∗)
s mesons

are required to decay intoK+K−π+ with invariant massm = [1955, 1985]MeV.
The fit model is composed of three Gaussian functions, and the fit to simulated
data is shown in Fig. 6.3, while the results are given in Table 6.3. When
fitting to data, the mean of each gaussian is shifted by the known B0-B0

s mass
difference, and the mean of the left Gaussian is left floating, while the other
parameters are fixed to the values obtained from the fit to simulation.
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Figure 6.1: Fit to the invariant mass of simulated B0→ D−D+
s events with a double-sided

Hypatia function for each year of data-taking.
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Table 6.1: Results of the fit to the invariant mass of simulated B0→ D−D+
s events for

each year of data-taking. The parameters β and ζ are fixed to 0, the parameters
ai and ni (with i = 1, 2) describe the left and right tails, the parameter µ and
σ describe the value and width of the mass peak, while the parameter λ is an
additional parameter required by the distribution.

(a) 2011

Name Fit value

aA 2.94± 0.42
aB 2.38± 0.55
λ −8± 2
µ 5281.00± 0.27
nA 2± 1
nB 25± 14
σ 12.76± 0.26

(b) 2012

Name Fit value

aA 3.59± 0.22
aB 5± 2
λ −6± 2
µ 5280.90± 0.20
nA 0.75± 0.23
nB 0± 18
σ 13.00± 0.19

(c) 2015

Name Fit value

aA 2.90± 0.54
aB 2.70± 0.91
λ −5± 1
µ 5281.80± 0.30
nA 2± 1
nB 25± 22
σ 13.20± 0.33

(d) 2016

Name Fit value

aA 4.10± 0.28
aB 4.44± 0.89
λ −5± 1
µ 5281.30± 0.17
nA 0.75± 0.37
nB 1± 1
σ 13.21± 0.15

(e) 2017

Name Fit value

aA 2.50± 0.25
aB 2.06± 0.18
λ −10± 8
µ 5281.60± 0.17
nA 4± 1
nB 25± 20
σ 12.89± 0.18

(f) 2018

Name Fit value

aA 3.96± 0.24
aB 3.55± 0.38
λ −7± 1
µ 5281.30± 0.15
nA 0.75± 0.24
nB 1.23± 0.83
σ 12.91± 0.13

The nominal model used to perform the fit to data is the sum of the aforementioned
components. The fit is shown in Fig. 6.4 and the results are reported in Table 6.4.
Table 6.5 highlights the normalization yield Nobs

D−D+
s
for each year of data-taking.
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Figure 6.2: Fit to the invariant mass distribution of simulated B0 → D∗−D+
s events with

2012 data-taking conditions. The red line corresponds to the contribution from
the D∗− → D−γ component, while the black and green lines correspond to the
contribution from the D∗− → D−π0 component which causes the double-horn
structure. The sum of the three components is shown in blue.

Table 6.2: Results of the fit to the invariant mass of simulated B0 → D∗−D+
s events with

2012 data-taking conditions. fL and fR indicate the fraction of events in the
left and right gaussians respectively. The parameters µi and σi, with i = L,
M and R standing for left, medium and right, refer to the mean and width of
the i-th gaussian.

Name Fit value

fL 0.486± 0.016
fR 0.446± 0.015
µL 5068.10± 0.57
µM 5104± 8
µR 5120.50± 0.56
σL 13.80± 0.53
σM 50± 9
σR 12.79± 0.49
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Figure 6.3: Fit to the invariant mass distribution of simulated B0
s → D−s D

∗+
s with 2012

data-taking conditions. The black, green and red components are gaussian
functions, while the sum of the three components is shown in blue.

Table 6.3: Results of the fit to the invariant mass of simulated B0
s → D−s D

∗+
s events with

2012 data-taking conditions. fL and fM indicate respectively the fraction of
events in the left and medium gaussians, the sum of the three being normalized
to 1. The parameters µi and σi, with i = L,M and R standing for left, medium
and right, refer to the mean and width of the i-th gaussian.

Name Fit value

fL 0.31± 0.08
fM 0.60± 0.10
µL 5124± 7
µM 5202± 12
µR 5263± 12
σL 28± 3
σM 37± 5
σR 20± 8
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(b) 2012
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(c) 2015
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(d) 2016

)2 c
C

an
di

da
te

s 
/ (

5 
M

eV
/

1

10

210

310

Data
+
sD−D →0B
+
sD

−*
D →0B

*+
sD−D →0B

Comb. bkg.

]2c[MeV/ +
sD−Dm

5000 5200 5400 5600

Pu
ll

5−

0

5

(e) 2017
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(f) 2018

Figure 6.4: Fit to the D−D+
s invariant mass for each year of data-taking.
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Table 6.4: Results of the fit to the B0 invariant mass. µR(L) is the mean of the right (left)
gaussian of the partially reconstructed background, λ is the rate parameter of
the combinatorial background and µ and σ are the position and width of the
signal mass peak. The other parameters are the yields of the four components.

(a) 2011

Name Fit value

D∗−D+
s µR 5125± 2

D−D∗+s µL 5031± 3
λ −0.00241± 0.00021
µ 5283.40± 0.27
σ 13.89± 0.26

Part. D∗−D+
s 1074± 113

Part. D−D∗+s 2786± 175
Combinatorial 3268± 162

Signal 3308± 64

(b) 2012

Name Fit value

D∗−D+
s µR 5124± 1

D−D∗+s µL 5029± 2
λ −0.00263± 0.00013
µ 5283.70± 0.17
σ 13.74± 0.17

Part. D∗−D+
s 2500± 170

Part. D−D∗+s 6513± 269
Combinatorial 7949± 247

Signal 7445± 96

(c) 2015

Name Fit value

D∗−D+
s µR 5118± 2

D−D∗+s µL 5030± 4
λ −0.00325± 0.00031
µ 5280.70± 0.33
σ 14.08± 0.33

Part. D∗−D+
s 731± 81

Part. D−D∗+s 1481± 137
Combinatorial 1704± 133

Signal 2066± 50

(d) 2016

Name Fit value

D∗−D+
s µR 5119± 1

D−D∗+s µL 5030± 2
λ −0.00303± 0.00014
µ 5280.10± 0.14
σ 14.32± 0.13

Part. D∗−D+
s 4371± 207

Part. D−D∗+s 10363± 326
Combinatorial 9008± 304

Signal 12652± 123

(e) 2017

Name Fit value

D∗−D+
s µR 5121± 1

D−D∗+s µL 5026± 1
λ −0.00295± 0.00013
µ 5280.20± 0.12
σ 13.40± 0.11

Part. D∗−D+
s 5206± 204

Part. D−D∗+s 11092± 337
Combinatorial 9944± 306

Signal 13971± 128

(f) 2018

Name Fit value

D∗−D+
s µR 5120± 1

D−D∗+s µL 5029± 1
λ −0.00294± 0.00012
µ 5280.60± 0.12
σ 13.69± 0.11

Part. D∗−D+
s 5442± 230

Part. D−D∗+s 13486± 372
Combinatorial 12065± 342

Signal 16328± 139
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Table 6.5: Recap of the fit results for the normalization yield for each year of data-taking.
The uncertainty is statistical only.

Year Nobs
D−D+

s

2011 3308± 64
2012 7445± 96
2015 2066± 50
2016 12652± 123
2017 13971± 128
2018 16328± 139
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Chapter 7

Selection efficiencies

The selection efficiency for signal εSig and normalization εNorm can be written as
the product of the intermediate efficiencies:

εSig = εGen × εRecoStrip × εPID × εTrigger × εCutBased × εBDT × εRegion, (7.1)
εNorm = εGen × εRecoStrip × εPID × εTrigger × εCutBased. (7.2)

The intermediate efficiencies are primarily determined from simulation. However,
since the simulation is not perfect, corrections and/or systematic uncertainties need
to be evaluated. The various terms are:

εGen: it is due to the requirements applied during the generation phase, in par-
ticular the geometrical acceptance of the LHCb detector, i.e. requiring that
all the final state particles fly through the detector. This efficiency is deter-
mined during the generation of the simulated MC events, and no systematic
uncertainties or corrections are assigned;

εRecoStrip: it takes into account the track reconstruction efficiency and the stripping
efficiency. It is obtained from simulations without further corrections;

εPID: it takes into account the PID efficiency. Corrections to the efficiency extracted
from simulations are computed with a data-driven method in Sec. 7.2;

εTrigger: it is the efficiency of the trigger selection. It can be further decomposed
into the efficiencies of L0, HLT1 and HLT2 trigger levels. The efficiencies are
obtained from simulations, however corrections to the L0 and HLT1 efficiencies
are computed using a data-driven method, and are not discussed in this thesis.
No corrections are assigned to the HLT2 efficiency;

εCutBased: it is the efficiency of the cut-based stage of the offline selection. For the
rare mode, it can be further decomposed into an IsoCut part, which includes
kinematic and isolation cuts, a DTFCut part, which includes the requirement
on the refitting procedure described in Sec. 5.3 (only for the 3π3π final state),
and a MultCut part, which includes the requirement on the event multiplicity.
The efficiencies are obtained from simulations without further corrections;

111



εBDT: it is the efficiency of the BDT selection, and it is further split into BDT1
and BDT2 parts. No counterpart for the normalization channel exists since no
BDT is used. The efficiencies are obtained from simulations without further
corrections;

εRegion: after the full selection, one candidate per event is randomly chosen in the
full K∗0 mass spectrum. This term represents the efficiency for the selected
candidate to fall inside the K∗0 mass signal region. The efficiencies are
obtained from simulations without further corrections. No counterpart for
the normalization channel exists.

The cut-and-count efficiencies, obtained directly from simulations without apply-
ing any correction, are presented in Sec. 7.1. Since the evaluation of the corrections
is still in progress, for the time being these are the efficiencies used for the final fit.

7.1 Cut-and-count efficiency
The uncertainties on the selection efficiencies are calculated in the following way:

ε = ε̄± σε =
p

n
±
√
p/n · (1− p/n)

n
, (7.3)

where p is the number of events containing at least one matched candidate passing
the selection requirement, while n is the number of events containing at least
one matched candidate before the cut. The only exception is represented by the
acceptance efficiency εGen, which is provided by the MC generator statistics. The
samples used to compute the efficiency for the rare modes include the neutral pions
component. The truth-matching condition for the rare mode is the logical OR of
the loose-matched and swapped-pions criteria (defined in Sec. 4.3). On the other
hand, since the rate of multiple candidates is negligible for the normalization mode,
the efficiency is computed directly on the truth-matched candidates.

As explained earlier, for each year of data-taking, two separate samples are used
to perform the evaluation of the cut-and-count efficiencies for the rare mode: the
one used up to the PID step is produced in flagged mode in order to disentangle
the contribution of the PID from the stripping, while from the L0 step on, a filtered
sample is used in order to increase the available statistics. For the normalization
mode instead, the same flagged sample is used throughout the whole process.

3π3π final state

Tables 7.1, 7.2, 7.3, 7.4, 7.5, 7.6 summarize the results of the cut-and-count
estimation of the efficiency for the 3π3π final state.
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Table 7.1: Number of accepted events on MC and efficiency for each selection step for the
2011 3π3π final state. The line between PID and L0 efficiency separates the
filtered from the flagged samples.

Step Accepted events Efficiency

Generator 223968 0.020 671± 0.000 034
RecoStrip 12071 0.053 89± 0.000 48

TruthMatching 8144 0.6747± 0.0043
PID 2591 0.3181± 0.0052

L0 15045 0.4663± 0.0028
HLT1 11534 0.7666± 0.0034
HLT2 5996 0.5199± 0.0047
IsoCut 5343 0.8910± 0.0040
DTFCut 5253 0.9832± 0.0018
MultCut 5199 0.9897± 0.0014
BDT1 1475 0.2837± 0.0063
BDT2 1207 0.820± 0.010
Region 831 0.688± 0.013

Total (6.16± 0.24) · 10−6

Table 7.2: Number of accepted events on MC and efficiency for each selection step for the
2012 3π3π final state. The line between PID and L0 efficiency separates the
filtered from the flagged samples.

Step Accepted events Efficiency

Generator 419105 0.021 645± 0.000 038
RecoStrip 20941 0.049 96± 0.000 34

TruthMatching 14454 0.6902± 0.0032
PID 4172 0.2886± 0.0038

L0 23048 0.4275± 0.0021
HLT1 18672 0.8101± 0.0026
HLT2 9877 0.5290± 0.0037
IsoCut 8528 0.8634± 0.0035
DTFCut 8356 0.9798± 0.0015
MultCut 8241 0.9862± 0.0013
BDT1 2330 0.2830± 0.0050
BDT2 1869 0.8021± 0.0083
Region 1278 0.684± 0.011

Total (5.11± 0.16) · 10−6
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Table 7.3: Number of accepted events on MC and efficiency for each selection step for the
2015 3π3π final state. The line between PID and L0 efficiency separates the
filtered from the flagged samples.

Step Accepted events Efficiency

Generator 112131 0.025 590± 0.000 052
RecoStrip 5361 0.047 81± 0.000 64

TruthMatching 3473 0.6479± 0.0065
PID 1203 0.3464± 0.0081

L0 6772 0.4518± 0.0041
HLT1 5962 0.8804± 0.0039
HLT2 3964 0.6649± 0.0061
IsoCut 3648 0.9203± 0.0043
DTFCut 3597 0.9860± 0.0019
MultCut 3505 0.9744± 0.0026
BDT1 821 0.2342± 0.0072
BDT2 657 0.800± 0.014
Region 412 0.627± 0.019

Total (7.55± 0.43) · 10−6

Table 7.4: Number of accepted events on MC and efficiency for each selection step for the
2016 3π3π final state. The line between PID and L0 efficiency separates the
filtered from the flagged samples.

Step Accepted events Efficiency

Generator 414703 0.025 674± 0.000 053
RecoStrip 21713 0.052 36± 0.000 35

TruthMatching 14028 0.6461± 0.0032
PID 5235 0.3732± 0.0041

L0 28184 0.4837± 0.0021
HLT1 24514 0.8700± 0.0020
HLT2 17295 0.7055± 0.0029
IsoCut 15793 0.9132± 0.0021
DTFCut 15578 0.986 39± 0.000 92
MultCut 15118 0.9705± 0.0014
BDT1 3708 0.2453± 0.0035
BDT2 3043 0.8207± 0.0063
Region 1958 0.6434± 0.0087

Total (1.089± 0.029) · 10−5
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Table 7.5: Number of accepted events on MC and efficiency for each selection step for the
2017 3π3π final state. The line between PID and L0 efficiency separates the
filtered from the flagged samples.

Step Accepted events Efficiency

Generator 871470 0.025 669± 0.000 054
RecoStrip 45729 0.052 47± 0.000 24

TruthMatching 29805 0.6518± 0.0022
PID 10858 0.3643± 0.0028

L0 58319 0.5174± 0.0015
HLT1 50578 0.8673± 0.0014
HLT2 35762 0.7070± 0.0020
IsoCut 32724 0.9150± 0.0015
DTFCut 32313 0.987 44± 0.000 62
MultCut 31300 0.968 65± 0.000 97
BDT1 7857 0.2510± 0.0025
BDT2 6585 0.8381± 0.0042
Region 4214 0.6399± 0.0059

Total (1.196± 0.022) · 10−5

Table 7.6: Number of accepted events on MC and efficiency for each selection step for the
2018 3π3π final state. The line between PID and L0 efficiency separates the
filtered from the flagged samples.

Step Accepted events Efficiency

Generator 1111655 0.025 587± 0.000 053
RecoStrip 58340 0.052 48± 0.000 21

TruthMatching 37728 0.6470± 0.0020
PID 13879 0.3679± 0.0025

L0 61465 0.4325± 0.0013
HLT1 53620 0.8724± 0.0013
HLT2 38041 0.7090± 0.0020
IsoCut 34725 0.9128± 0.0014
DTFCut 34227 0.985 66± 0.000 64
MultCut 33245 0.9713± 0.0009
BDT1 8325 0.2504± 0.0024
BDT2 6923 0.8316± 0.0041
Region 4468 0.6454± 0.0057

Total (1.004± 0.017) · 10−5

115



3πµ final state

Tables 7.7, 7.8, 7.9, 7.10, 7.11, 7.12 summarize the results of the cut-and-count
estimation of the efficiency for the 3πµ final state.

Table 7.7: Number of accepted events on MC and efficiency for each selection step for the
2011 3πµ final state. The line between PID and L0 efficiency separates the
filtered from the flagged samples.

Step Accepted events Efficiency

Generator 108977 0.040 473± 0.000 061
RecoStrip 13520 0.124± 0.001

TruthMatching 7020 0.5192± 0.0043
PID 1992 0.2838± 0.0054

L0 15375 0.7017± 0.0031
HLT1 13801 0.8976± 0.0024
HLT2 8907 0.6454± 0.0041
IsoCut 5715 0.6416± 0.0051
MultCut 5701 0.997 55± 0.000 65
BDT1 1963 0.3443± 0.0063
BDT2 1274 0.649± 0.011
Region 882 0.692± 0.013

Total (2.98± 0.12) · 10−5
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Table 7.8: Number of accepted events on MC and efficiency for each selection step for the
2012 3πµ final state. The line between PID and L0 efficiency separates the
filtered from the flagged samples.

Step Accepted events Efficiency

Generator 213445 0.042 080± 0.000 061
RecoStrip 26356 0.123 48± 0.000 71

TruthMatching 14361 0.5449± 0.0031
PID 3457 0.2407± 0.0036

L0 26875 0.6218± 0.0023
HLT1 25012 0.9307± 0.0015
HLT2 17273 0.6906± 0.0029
IsoCut 10719 0.6206± 0.0037
MultCut 10679 0.996 27± 0.000 59
BDT1 3746 0.3508± 0.0046
BDT2 2430 0.6487± 0.0078
Region 1715 0.7058± 0.0092

Total (2.704± 0.079) · 10−5

Table 7.9: Number of accepted events on MC and efficiency for each selection step for the
2015 3πµ final state. The line between PID and L0 efficiency separates the
filtered from the flagged samples.

Step Accepted events Efficiency

Generator 74491 0.047 645± 0.000 092
RecoStrip 9583 0.1286± 0.0012

TruthMatching 4453 0.4647± 0.0051
PID 1407 0.316± 0.007

L0 4350 0.4078± 0.0048
HLT1 4203 0.9662± 0.0027
HLT2 2932 0.6976± 0.0071
IsoCut 1849 0.6306± 0.0089
MultCut 1846 0.998 38± 0.000 94
BDT1 692 0.375± 0.011
BDT2 472 0.682± 0.018
Region 320 0.678± 0.022

Total (2.70± 0.16) · 10−5

117



Table 7.10: Number of accepted events on MC and efficiency for each selection step for
the 2016 3πµ final state. The line between PID and L0 efficiency separates
the filtered from the flagged samples.

Step Accepted events Efficiency

Generator 227170 0.047 670± 0.000 092
RecoStrip 30741 0.135 32± 0.000 72

TruthMatching 14304 0.4653± 0.0028
PID 4987 0.349± 0.004

L0 22388 0.5874± 0.0025
HLT1 21163 0.9453± 0.0015
HLT2 15983 0.755± 0.003
IsoCut 10319 0.6456± 0.0038
MultCut 10270 0.995 25± 0.000 68
BDT1 3580 0.3486± 0.0047
BDT2 2337 0.653± 0.008
Region 1599 0.6842± 0.0096

Total (4.39± 0.12) · 10−5

Table 7.11: Number of accepted events on MC and efficiency for each selection step for
the 2017 3πµ final state. The line between PID and L0 efficiency separates
the filtered from the flagged samples.

Step Accepted events Efficiency

Generator 601964 0.047 530± 0.000 092
RecoStrip 80745 0.134 13± 0.000 44

TruthMatching 37296 0.4619± 0.0018
PID 12739 0.3416± 0.0025

L0 56124 0.6766± 0.0016
HLT1 52886 0.942 31± 0.000 98
HLT2 39205 0.7413± 0.0019
IsoCut 24962 0.6367± 0.0024
MultCut 24856 0.995 75± 0.000 41
BDT1 8844 0.356± 0.003
BDT2 5790 0.6547± 0.0051
Region 3997 0.6903± 0.0061

Total (4.847± 0.087) · 10−5
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Table 7.12: Number of accepted events on MC and efficiency for each selection step for
the 2018 3πµ final state. The line between PID and L0 efficiency separates
the filtered from the flagged samples.

Step Accepted events Efficiency

Generator 759371 0.047 622± 0.000 088
RecoStrip 102077 0.134 42± 0.000 39

TruthMatching 47293 0.4633± 0.0016
PID 16294 0.3445± 0.0022

L0 62818 0.5924± 0.0015
HLT1 59280 0.943 68± 0.000 92
HLT2 44807 0.7559± 0.0018
IsoCut 28749 0.6416± 0.0023
MultCut 28625 0.995 69± 0.000 39
BDT1 9989 0.3490± 0.0028
BDT2 6574 0.6581± 0.0047
Region 4488 0.6827± 0.0057

Total (4.324± 0.072) · 10−5
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Normalization

Tables 7.13, 7.14, 7.15, 7.16, 7.17, 7.18 summarize the results of the cut-and-count
estimation of the efficiency for the normalization mode.

Table 7.13: Number of accepted events on MC and efficiency for each selection step for
the 2011 normalization channel.

Step Accepted events Efficiency

Generator 512704 0.112 88± 0.000 21
RecoStrip 8812 0.017 19± 0.000 18

TruthMatching 8165 0.9266± 0.0028
PID 6280 0.7693± 0.0047
L0 3390 0.5398± 0.0063

HLT1 3158 0.9322± 0.0043
HLT2 2719 0.8611± 0.0062

CutBased 2293 0.8430± 0.0070

Total (5.05± 0.11) · 10−4

Table 7.14: Number of accepted events on MC and efficiency for each selection step for
the 2012 normalization channel.

Step Accepted events Efficiency

Generator 1004845 0.115 62± 0.000 21
RecoStrip 15724 0.015 65± 0.000 12

TruthMatching 14647 0.9320± 0.0020
PID 11413 0.7792± 0.0034
L0 5633 0.4936± 0.0047

HLT1 5290 0.9395± 0.0032
HLT2 4846 0.9163± 0.0038

CutBased 4165 0.8590± 0.0050

Total (4.796± 0.075) · 10−4

120



Table 7.15: Number of accepted events on MC and efficiency for each selection step for
the 2015 normalization channel.

Step Accepted events Efficiency

Generator 378804 0.125 10± 0.000 30
RecoStrip 7187 0.018 97± 0.000 22

TruthMatching 6762 0.9409± 0.0028
PID 5225 0.7727± 0.0051
L0 2710 0.5187± 0.0069

HLT1 2688 0.9919± 0.0017
HLT2 2371 0.8827± 0.0062

CutBased 2032 0.8573± 0.0072

Total (6.71± 0.15) · 10−4

Table 7.16: Number of accepted events on MC and efficiency for each selection step for
the 2016 normalization channel.

Step Accepted events Efficiency

Generator 1011373 0.125 44± 0.000 22
RecoStrip 19585 0.019 36± 0.000 14

TruthMatching 18158 0.9271± 0.0019
PID 14204 0.7823± 0.0031
L0 7548 0.5314± 0.0042

HLT1 7497 0.993 25± 0.000 94
HLT2 6971 0.9301± 0.0029

CutBased 5908 0.8475± 0.0043

Total (7.330± 0.096) · 10−4
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Table 7.17: Number of accepted events on MC and efficiency for each selection step for
the 2017 normalization channel.

Step Accepted events Efficiency

Generator 1006343 0.125 47± 0.000 31
RecoStrip 19396 0.019 27± 0.000 14

TruthMatching 18182 0.9376± 0.0017
PID 14139 0.7776± 0.0031
L0 8184 0.5788± 0.0042

HLT1 8124 0.992 68± 0.000 94
HLT2 7486 0.9210± 0.0030

CutBased 6341 0.8471± 0.0042

Total (7.90± 0.10) · 10−4

Table 7.18: Number of accepted events on MC and efficiency for each selection step for
the 2018 normalization channel.

Step Accepted events Efficiency

Generator 1010676 0.126 42± 0.000 61
RecoStrip 20089 0.019 88± 0.000 14

TruthMatching 18828 0.9374± 0.0017
PID 14859 0.7890± 0.0030
L0 8942 0.6020± 0.0040

HLT1 8863 0.991 56± 0.000 97
HLT2 8237 0.9294± 0.0027

CutBased 6985 0.8480± 0.0040

Total (8.74± 0.11) · 10−4
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7.2 PID efficiency
The particle identification requirements applied at the stripping level are sum-

marized in Table 7.191.

Table 7.19: Summary of the PID requirements used in the analysis.

Decay channel Particle PID requirements

3π3π
π’s from τ ProbNNπ > 0.55
π from K∗0 ProbNNπ > 0.55
K from K∗0 ProbNNK > 0.2

3πµ

π’s from τ ProbNNπ > 0.55
π from K∗0 ProbNNπ > 0.5
K from K∗0 ProbNNK > 0.2

µ PIDµ > −3 and IsMuon = True

Normalization π ProbNNπ > 0.55
K PIDK > −5

PID variables are known to be not well reproduced by the MC, hence the selection
efficiencies of these cuts might differ between data and simulation. A data-driven
method [94] is therefore used to determine the efficiency of the PID selection cuts
and the systematic uncertainties on it.
An efficiency map is built using large calibration samples, consisting of D∗+ →
D0(→ K−π+)π+, D+

s → φ(→ K+K−)π+, K0
S → π+π−, B+ → J/ψ(→ µ+µ−)K+

and J/ψ → µ+µ− decays identified in data [95]. This map is a function of the
particle’s momentum (p) and its pseudorapidity (η), and is built separately for
the two magnet polarities. The binning schemes vary for signal and normalization
modes and depending on the mass hypothesis of the final state particles, spanning
the ranges p ∈ [0, 200]GeV and η ∈ [1.5, 5]. The map is used to assign an efficiency
value to each track of a reference sample (the sample whose efficiency is being
computed) according to the momentum and pseudorapidity bin the track belongs
to. The PID efficiency is then computed as:

εPID =
1

N

∑
i

∏
j

εij, (7.4)

where εij is the efficiency assigned to the j-th track of the i-th event and N is the
total number of events in the reference sample.
The reference samples are obtained with a modified version of the stripping selection

1The cut ProbNNπ > 0.5 applied on the π from the K∗0 for the 3πµ final state is tightened to
ProbNNπ > 0.55 in the final version of the analysis, in order to have a homogeneous set of
cuts on the pions in the final state.
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in which the PID requirements are removed in order not to introduce biases in the
procedure. They include the neutral pion component for the rare mode, and the
logical OR of loose-matched and swapped-pions requirements is applied. Since the
event multiplicity is greater than unity on the rare mode, one candidate per event
is randomly chosen. For the normalization mode, truth-matched candidates are
used.
In order to assess a systematic uncertainty on the choice of the binning scheme,
the procedure is repeated using maps in which the number of momentum and
pseudorapidity bins is doubled or halved with respect to the standard configuration.
The uncertainty is chosen to be half the difference between the highest and lowest
efficiency values obtained with the three versions of the binning schemes. The
uncertainty on the size of the calibration samples is neglected since the samples are
much larger than the MC used as reference samples, while the uncertainty on the
size of the reference samples is taken into account in the estimation of the stripping
efficiency, and is not double-counted. The results are reported in Tables 7.20, 7.21,
7.22.

Table 7.20: PID efficiency for the 3π3π final state obtained from the data-driven method.
The results are shown for the default εPID, the doubled εPIDdouble and the halved
εPIDhalf binning schemes. The uncertainty includes only the binning systematics.

Year Polarity εPID εPIDdouble εPIDhalf Uncertainty

2011 Up 0.533 0.519 0.549 0.015
2012 Up 0.5305 0.535 0.5452 0.0074
2015 Up 0.6216 0.61151 0.6281 0.0065
2016 Up 0.640 0.630 0.650 0.010
2017 Up 0.6696 0.6619 0.6786 0.0083
2018 Up 0.6569 0.6501 0.6647 0.0073
2011 Down 0.533 0.519 0.548 0.015
2012 Down 0.542 0.524 0.559 0.017
2015 Down 0.6375 0.6319 0.6434 0.0057
2016 Down 0.6440 0.6370 0.6530 0.0080
2017 Down 0.6833 0.6766 0.6919 0.0077
2018 Down 0.6574 0.6504 0.6656 0.0076

Comparing the efficiencies with the ones obtained from simulations (Sec. 7.1),
large discrepancies are observed for the rare 3π3π and 3πµ channels. To understand
the nature of the differences, a preliminary study has been performed using the
2016 MagUp 3π3π MC simulation (without neutral pions component). The PID
efficiencies obtained with the data-driven method and the cut-and-count procedure
are compared for three different categories of candidates:

fully-matched OR swapped-pions (category A): candidates which contain
only tracks matched to a true MC particle;
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Table 7.21: PID efficiency for the 3πµ final state obtained from the data-driven method.
The results are shown for the default εPID, the doubled εPIDdouble and the halved
εPIDhalf binning schemes. The uncertainty includes only the binning systematics.

Year Polarity εPID εPIDdouble εPIDhalf Uncertainty

2011 Up 0.683 0.670 0.691 0.011
2012 Up 0.6883 0.6768 0.6924 0.0078
2015 Up 0.7368 0.7322 0.7377 0.0027
2016 Up 0.7626 0.7578 0.7648 0.0035
2017 Up 0.7845 0.7815 0.7858 0.0022
2018 Up 0.7790 0.7760 0.7800 0.0020
2011 Down 0.6883 0.6778 0.6944 0.0083
2012 Down 0.6942 0.6811 0.7010 0.0099
2015 Down 0.7459 0.7411 0.7469 0.0029
2016 Down 0.7680 0.7646 0.7713 0.0034
2017 Down 0.7920 0.7900 0.7940 0.0020
2018 Down 0.7797 0.7772 0.7809 0.0018

loose-matched OR swapped-pions (category B): candidates selected with
the same truth-matching requirement as the reference sample;

“ghosts” (category C): candidates fulfilling the requirement of belonging to
category B AND NOT A, therefore containing at least one track not matched
to any MC true track.

The results are summarized in Table 7.23. The study shows that the two methods
are in good agreement for category A, while significant differences are found for
categories B and C. Since the differences arise only when tracks not matched to
any MC true particle are present and appear too large to be caused by genuine
mismodelling of the PID efficiency in the simulation, they are most probably due
to the fact that the calibration samples are not representative of the reference
sample when pion decaying in-flight are present (producing tracks not matched to
any MC true particle). Therefore the results of this study suggest to compute the
corrections to the PID efficiencies using only candidates matched to a true MC
particle, and to apply them to the PID efficiency of the whole reference sample.
This strategy is adopted in the final version of the analysis.
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Table 7.22: PID efficiency for the normalization mode obtained from the data-driven
method. The results are shown for the default εPID, the doubled εPIDdouble and
the halved εPIDhalf binning schemes. The uncertainty includes only the binning
systematics.

Year Polarity εPID εPIDdouble εPIDhalf Uncertainty

2011 Up 0.7719 0.7659 0.7741 0.0041
2012 Up 0.7631 0.7572 0.7645 0.0037
2015 Up 0.7691 0.7673 0.7719 0.0023
2016 Up 0.7892 0.7861 0.7926 0.0032
2017 Up 0.8048 0.8023 0.8071 0.0024
2018 Up 0.8030 0.8009 0.8044 0.0018
2011 Down 0.7732 0.7676 0.7759 0.0042
2012 Down 0.7694 0.7632 0.7710 0.0039
2015 Down 0.7978 0.7960 0.7990 0.0015
2016 Down 0.7950 0.7930 0.7970 0.0020
2017 Down 0.8143 0.8122 0.8159 0.0019
2018 Down 0.8019 0.8009 0.8031 0.0011

Table 7.23: PID efficiency computed with the data-driven and the standard cut-and-count
methods for candidates classified in category A, B and C of the 2016 MagUp
3π3π MC simulation.

Computation method Category A Category B Category C

Cut-and-count 68.23± 0.82 51.68± 0.71 20.43± 0.90
Data-driven 68.55± 0.55 66.52± 0.72 62.80± 1.11

7.3 Systematic uncertainty from data-MC
comparison

Iterative reweighting

The differences between data and MC simulation are checked using the B0→
D−D+

s control channel for the 3π3π and 3πµ final states. The drawback consists
in the lack of an analogous for the K∗0 decay and for the muon. The variable
distributions in data are weighted using the sPlot technique [96] in order to obtain
background-subtracted data. The comparison for the variables used in the cut-
based and MVA stages of the selection is shown in Appendix C.
For a given variable, data-MC agreement is quantified using a reduced χ2 variable:

χ2/Ndof =
1

nbins

nbins∑
i=1

(fMC
i − fdatai )2

δfMC
i

2
+ δfdatai

2 , (7.5)
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where
fxi ± δfxi ≡ Nx

i /N
x ±

√
Nx
i /N

x (7.6)

is the fraction of events in bin i, x refers to either normalization MC or data, nbins
is the total number of bins, Nx

i is the number of events in bin i passing the selection
requirements and Nx is the total number of events after selection. The fractions of
events in each bin of data and MC are used to compute a set of weights:

wi ± δwi ≡
fdatai

fMC
i

±

√√√√(δfdatai

fMC
i

)2

+

(
fdatai

fMC
i

2 δf
MC
i

)2

. (7.7)

The signal MC samples of the rare modes can then be reweighted on an event-by-
event basis by assigning each event a weight depending on the bin it belongs to. A
corrected selection efficiency is defined as

ε± δε ≡
∑

iwini∑
iwiNi

±
∑

i[w
2
i (1− 2ε)δn2

i + w2
i ε

2δN2
i + (ni −Niε)

2δw2
i ]∑

i(wiNi)2
, (7.8)

where ni is the number of events in bin i after the full selection and the other terms
have been already defined.
Due to correlations between the variables, the data-MC agreement of a sample

reweighted with a given variable can impact the data-MC agreement of other
variables. Therefore, an iterative procedure is used in order to compute the
corrected efficiency:

1. the variable showing the worst χ2/Ndof for each data-taking year is considered
and weights are computed using the control channel;

2. the weights are applied to the signal sample and the corrected efficiency is
computed;

3. the χ2/Ndof is recomputed on the reweighted sample;

4. steps 1–3 are iterated. The weights for a given iteration are computed as the
product of the weights at each step.

If multiple candidates per event are present in the dataset, Eq. 7.8 is ill-defined.
In fact, if on one hand the weights to be assigned to the event after the selection
are uniquely identified (because one candidate per event is randomly chosen after
the full selection), the weights to be assigned to the events before the selection
can not be determined, since multiple choices are possible, one for each candidate
belonging to the event. To be able to apply the iterative procedure described
above, the MC samples are divided in three subsamples: fully-matched candidates,
swapped-pions candidates and candidates containing at least one track not matched
to any MC true particle (“ghosts”). Moreover one candidate per event is randomly
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chosen in each subsample before the selection, in order to be able to use Eq. 7.8
for the efficiency computation. The iterative procedure is applied separately to
each subsample: three iterations are performed and the value of the efficiency after
the third one is compared to the default value. The difference is used in the final
version of the analysis to assign a systematic uncertainty on the signal efficiency
for a given subsample2.

Corrections to the 3π3π final state

The χ2/Ndof distributions of the variables used for the 3π3π final state are shown
in Fig. 7.1 for each data-taking year, while the variables with the highest χ2/Ndof

are reported in Table 7.24.

Table 7.24: 3π3π final state variables with the highest χ2/Ndof for each data-taking years
before any correction.

Year Variable χ2/Ndof

2011 τ−IsoBDTFirstValue%100 4.23
2012 τ+π+

1 IsoBDTThirdValue 3.94
2015 B_OPT_TauP_decayLength 4.32
2016 τ−IsoBDTFirstValue%100 3.53
2017 τ−π−1 IsoBDTFirstValue%100 5.20
2018 τ+π−IsoBDTFirstValue%100 4.47

The χ2/Ndof distributions are shown in Figs. 7.2, 7.3 and 7.4 after the first,
second and third iteration respectively, while the variables showing the worst
χ2/Ndof are reported in Tables 7.25, 7.26 and 7.27.

Table 7.25: 3π3π final state variables with the highest χ2/Ndof for each data-taking years
after the first iteration.

Year Variable χ2/Ndof

2011 τ−π+IsoBDTFirstValue%100 3.84
2012 τ+IsoBDTFirstValue%100 7.75
2015 B_OPT_TauM_decayLength 4.40
2016 τ+π−IsoBDTFirstValue%100 4.14
2017 B_OPT_chi2 3.69
2018 B_OPT_chi2 3.98

2In the latest version of the analysis the uncertainties on the subsamples are combined in
a weighted average to obtain a global systematic uncertainty. In addition to assigning a
systematic uncertainty on the efficiencies, the weights obtained with this procedure are used
to compute a systematic uncertainty on the shape of the fitBDT.
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Table 7.26: 3π3π final state variables with the highest χ2/Ndof for each data-taking years
after the second iteration.

Year Variable χ2/Ndof

2011 τ− IsoBDTThirdValue 2.57
2012 τ−π−1 IsoBDTFirstValue%100 3.97
2015 τ+π+

2 IsoBDTFirstValue%100 3.20
2016 B_IP_OWNPV 3.17
2017 B_BPVVDRHO 3.09
2018 τ+ DOCAMAX 2.66

Table 7.27: 3π3π final state variables with the highest χ2/Ndof for each data-taking years
after the third iteration.

Year Variable χ2/Ndof

2011 τ+π+
1 IsoBDTFirstValue%100 3.46

2012 τ−IsoBDTFirstValue%100 4.84
2015 τ−π+IsoBDTFirstValue%100 3.34
2016 τ−π−2 IsoBDTFirstValue%100 3.15
2017 τ+π+

1 IsoBDTFirstValue%100 2.97
2018 B_BPVVDRHO 3.14

The corrected efficiencies are shown in Figs. 7.5, 7.6 and 7.7 for the three
subsamples defined above. Table 7.28 shows the absolute difference between the
default efficiency value and the corrected one after the third iteration for each
subsample and year of data-taking.
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Table 7.28: Absolute difference between the default and the corrected efficiency value
after the third iteration. The results are shown for each data-taking year and
each subsample of the 3π3π final state.

Year Fully-matched Swapped-pions ghosts

2011 0.0131 0.0021 0.0182
2012 0.0033 0.0013 0.0020
2015 0.0195 0.0047 0.0177
2016 0.0035 0.0007 0.0032
2017 0.0110 0.0031 0.0145
2018 0.0021 0.0 0.0063
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Figure 7.1: χ2/Ndof distributions of the variables used for the 3π3π final state before any
correction. The mean and standard deviation of the distributions are reported
and visualized with a black solid line and two blue dashed lines (referring
respectively to the mean and ±1σ interval).
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Figure 7.2: χ2/Ndof distributions of the variables used for the 3π3π final state after the
first iteration. The mean and standard deviation of the distributions are
reported and visualized with a black solid line and two blue dashed lines
(referring respectively to the mean and ±1σ interval).
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Figure 7.3: χ2/Ndof distributions of the variables used for the 3π3π final state after the
second iteration. The mean and standard deviation of the distributions are
reported and visualized with a black solid line and two blue dashed lines
(referring respectively to the mean and ±1σ interval). The rightmost variable
in the 2018 dataset has been already corrected in the previous iteration and
its relatively high χ2/Ndof is due to differences between data and MC in low-
statistics bins in the tail of the distribution that can not be further corrected.
Therefore it is ignored and the variable with the second highest χ2/Ndof is
used to compute the weight.
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Figure 7.4: χ2/Ndof distributions of the variables used for the 3π3π final state after the
third iteration. The mean and standard deviation of the distributions are
reported and visualized with a black solid line and two blue dashed lines
(referring respectively to the mean and ±1σ interval). The rightmost variables
in the 2017 and 2018 datasets have been already corrected in the first iteration
and their relatively high χ2/Ndof are due to differences between data and MC
in low-statistics bins in the tail of the distributions that can not be further
corrected. Therefore they are ignored and the variables with the second
highest χ2/Ndof are considered.
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Figure 7.5: Evolution of the selection efficiency for the fully-matched candidates of the
3π3π final state as a function of the correction iterations. The red lines
correspond to the±1σ interval around the central value of the default efficiency.
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Figure 7.6: Evolution of the selection efficiency for the swapped-pions candidates of
the 3π3π final state as a function of the correction iterations. The red
lines correspond to the ±1σ interval around the central value of the default
efficiency.

136



D
ef

au
lt

It
er

at
io

n 
1

It
er

at
io

n 
2

It
er

at
io

n 
3

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E
ff

ic
ie

nc
y

(a) 2011
D

ef
au

lt

It
er

at
io

n 
1

It
er

at
io

n 
2

It
er

at
io

n 
3

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E
ff

ic
ie

nc
y

(b) 2012

D
ef

au
lt

It
er

at
io

n 
1

It
er

at
io

n 
2

It
er

at
io

n 
3

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E
ff

ic
ie

nc
y

(c) 2015

D
ef

au
lt

It
er

at
io

n 
1

It
er

at
io

n 
2

It
er

at
io

n 
3

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E
ff

ic
ie

nc
y

(d) 2016

D
ef

au
lt

It
er

at
io

n 
1

It
er

at
io

n 
2

It
er

at
io

n 
3

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E
ff

ic
ie

nc
y

(e) 2017

D
ef

au
lt

It
er

at
io

n 
1

It
er

at
io

n 
2

It
er

at
io

n 
3

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E
ff

ic
ie

nc
y

(f) 2018

Figure 7.7: Evolution of the selection efficiency for the “ghosts” candidates of the 3π3π final
state as a function of the correction iterations. The red lines correspond to
the ±1σ interval around the central value of the default efficiency.

137



Corrections to the 3πµ final state

The χ2/Ndof distributions of the variables used for the 3πµ final state are shown
in Fig. 7.8 for each data-taking year, while the variables with the highest χ2/Ndof

are reported in Table 7.29.

Table 7.29: 3πµ final state variables with the highest χ2/Ndof for each data-taking years
before any correction.

Year Variable χ2/Ndof

2011 τ+IsoBDTFirstValue%100 2.96
2012 τ+π+

1 IsoBDTThirdValue 3.94
2015 τ+π+

1 IsoBDTFirstValue%100 2.80
2016 τ+π−IsoBDTFirstValue%100 2.91
2017 τ+π+

1 IsoBDTFirstValue%100 3.95
2018 τ+π−IsoBDTFirstValue%100 4.47

The χ2/Ndof distributions are shown in Figs. 7.9, 7.10 and 7.11 after the first,
second and third iteration respectively, while the variables showing the worst
χ2/Ndof are reported in Tables 7.30, 7.31 and 7.32.

Table 7.30: 3πµ final state variables with the highest χ2/Ndof for each data-taking years
after the first iteration.

Year Variable χ2/Ndof

2011 τ+π+
2 IsoBDTThirdValue 2.36

2012 τ+IsoBDTFirstValue%100 7.75
2015 τ+ IsoBDTSecondValue 1.85
2016 τ+IsoBDTFirstValue%100 1.94
2017 B_ENDVERTEX_CHI2 1.89
2018 τ+ IsoBDTSecondValue 2.16

The corrected efficiencies are shown in Figs. 7.12, 7.13 and 7.14 for each of the
three subsamples defined above. Table 7.33 shows the absolute difference between
the default efficiency value and the corrected one after the third iteration for each
subsample and year of data-taking.
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Table 7.31: 3πµ final state variables with the highest χ2/Ndof for each data-taking years
after the second iteration.

Year Variable χ2/Ndof

2011 τ+IsoBDTThirdValue 2.26
2012 τ+IsoBDTThirdValue 3.30
2015 τ+Mπ1π3 1.48
2016 τ+π+

1IsoBDTFirstValue%100 1.69
2017 τ+IsoBDTThirdValue 1.86
2018 B0 neutral isolation Pasym 2.17

Table 7.32: 3πµ final state variables with the highest χ2/Ndof for each data-taking years
after the third iteration.

Year Variable χ2/Ndof

2011 τ+π+
1IsoBDTFirstValue%100 2.67

2012 τ+π−IsoBDTFirstValue%100 4.10
2015 τ+Mπ1π2 1.44
2016 τ+IsoBDTSecondValue 1.68
2017 τ+π+

2 IsoBDTSecondValue 1.96
2018 τ+π+

1 IsoBDTFirstValue%100 2.16

Table 7.33: Absolute difference between the default and the corrected efficiency value
after the third iteration. The results are shown for each data-taking year and
each subsample of the 3πµ final state.

Year Fully-matched Swapped-pions ghosts

2011 0.0061 0.0008 0.0218
2012 0.0038 0.0009 0.0113
2015 0.0168 0.0035 0.0067
2016 0.0024 0.0005 0.0056
2017 0.0074 0.0019 0.0168
2018 0.0021 0.0004 0.0107
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Figure 7.8: χ2/Ndof distributions of the variables used for the 3πµ final state before any
correction. The mean and standard deviation of the distributions are reported
and visualized with a black solid line and two blue dashed lines (referring
respectively to the mean and ±1σ interval).
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Figure 7.9: χ2/Ndof distributions of the variables used for the 3πµ final state after the first
iteration. The mean and standard deviation of the distributions are reported
and visualized with a black solid line and two blue dashed lines (referring
respectively to the mean and ±1σ interval). The rightmost variables in the
2017 and 2018 datasets have been already corrected in the first iteration and
their relatively high χ2/Ndof are due to differences between data and MC
in low-statistics bins in the tail of the distributions that can not be further
corrected. Therefore they are ignored and the variables with the second
highest χ2/Ndof are considered.
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Figure 7.10: χ2/Ndof distributions of the variables used for the 3πµ final state after the
second iteration. The mean and standard deviation of the distributions
are reported and visualized with a black solid line and two blue dashed
lines (referring respectively to the mean and ±1σ interval). The rightmost
variables in the 2011, 2017 and 2018 datasets have been already corrected
in the first iteration and their relatively high χ2/Ndof are due to differences
between data and MC in low-statistic bins in the tail of the distributions that
can not be further corrected. Therefore they are ignored and the variables
with the second highest χ2/Ndof are considered.
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Figure 7.11: χ2/Ndof distributions of the variables used for the 3πµ final state after
the third iteration. The mean and standard deviation of the distributions
are reported and visualized with a black solid line and two blue dashed
lines (referring respectively to the mean and ±1σ interval). The rightmost
variables in the 2017 and 2018 datasets have been already corrected in the
first iteration and their relatively high χ2/Ndof are due to differences between
data and MC in low-statistics bins in the tail of the distributions that can
not be further corrected. Therefore they are ignored and the variables with
the second highest χ2/Ndof are considered.
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Figure 7.12: Evolution of the selection efficiency for the fully-matched candidates of the
3πµ final state as a function of the correction iterations. The red lines
correspond to the ±1σ interval around the central value of the default
efficiency.
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Figure 7.13: Evolution of the selection efficiency for the swapped-pion candidates of
thes 3πµ final state as a function of the correction iterations. The red
lines correspond to the ±1σ interval around the central value of the default
efficiency.
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Figure 7.14: Evolution of the selection efficiency for the “ghosts” candidates of the 3πµ final
state as a function of the correction iterations. The red lines correspond to
the ±1σ interval around the central value of the default efficiency.
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Chapter 8

Signal fit
After the full selection one candidate is randomly chosen between those belonging

to the same event (therefore the terms “event” and “candidate” assume the same
meaning in the context of the likelihood fit).
A binned maximum likelihood fit is then performed to the output of the fitBDT, in
order to determine the number of signal decays in the data. After the training of
the BDT, the signal template is extracted from MC events in the K∗0 signal region,
while the background template is extracted from data in the control region. In
order for the latter to correctly describe the background distribution in the signal
region, the fitBDT must be uncorrelated with the K∗0 mass.
The HistFactory package [97] in RooFit [98], which implements various utilities
to handle binned PDFs in a simple way, is used to perform the binned fit. The
likelihood minimization and the limit calculation, using the CLs method [99], is
done using the RooStats package [100].

8.1 Fit BDT
The fitBDT is trained on fully-matched signal MC events (from the samples

without the neutral pions component) and data from the background region, after
applying the full selection on the training samples.

3π3π final state

The variables used for the training of the fitBDT are:

• BDT1;

• max(longitudinal distance between τ+ decay vertex and PV, longitudinal
distance between τ− decay vertex and PV);

• B0 flight distance χ2;

• B0 flight distance projection along z;

• min(τ+ analytically reconstructed momentum from optimal solution, τ−
analytically reconstructed momentum from optimal solution);
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• min(τ+ analytically reconstructed momentum from “+” solution, τ− analyti-
cally reconstructed momentum from “+” solution);

• min(τ+ visible mass, τ− visible mass);

• min(τ+ rhoMass, τ− rhoMass);

• min(τ+ resMass, τ− resMass);

• min(τ+ flight distance, τ− flight distance);

• max(τ+ flight distance, τ− flight distance);

• B0 IP with respect to PV;

• min(τ+ neutral cone isolation sPT, τ− neutral cone isolation sPT)1;

• min(π+
1 (from τ+) IsoBDTThirdValue, π−1 (from τ−) IsoBDTThirdValue);

• max(π+
1 (from τ+) IsoBDTSecondValue, π−1 (from τ−) IsoBDTSecondValue);

• max(τ+ IsoBDTSecondValue, τ− IsoBDTSecondValue).

The specific rankings are reported in Appendix B, together with the variable
distributions. The flattened BDT distributions for signal and background samples
are reported in Fig. 8.1. Table 8.1 shows the size of the training samples used.

Table 8.1: Number of candidates used for the training of the fitBDT for the 3π3π final
state.

Year Signal candidates Background candidates

Run1 1965 529
2016 1980 1102
2017 4449 1237
2018 4449 1383

3πµ final state

The variables used for the training of the fit BDT are:

• τ+ IsoBDTSecondValue;

• µ associated PV χ2;

• B0 corrected mass;
1This variable is not available in Run 1
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Figure 8.1: Distributions of fitBDT for 3π3π signal and abckground training samples.
The flat transformation is applied.

• τ+ maximum DOCA of decay products;

• τ+ mπ+
1 π
−
2
;

• B0 decay vertex χ2;

• B0 neutral cone isolation Pasym
2;

• K∗0 DIRA with respect to PV;

• τ+ minimum IP χ2 with respect to all PVs in the event;

• τ+ and K∗0 DOCA;

• τ+ DIRA with respect to B0 decay vertex.

The specific rankings are reported in Appendix B, together with the variable
distributions. The flattened BDT distributions for signal and background samples
are reported in Fig. 8.2. Table 8.2 shows the size of the training samples used.

2This variable is not available in Run 1.
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Figure 8.2: Distributions of fitBDT for 3πµ signal and abckground training samples. The
flat transformation is applied.

8.2 Fit model

The fit is performed simultaneously over the six data-taking years and the two
final states, for a total of 12 samples. The value of the signal branching ratio is
shared between the samples. For the sake of completeness, also the results for the
separate fits over the two final states are shown. For each sample, the template
consists of a histogram of ten equal size bins in the range [0, 1].
The signal template is extracted from the full MC samples including the neutral
pion component. Because of the presence of the neutral pion component and of
pion in-flight decays, the fitBDT distribution for the signal is not totally flat, with
a higher concentration of events at low BDT values. A small contamination from
badly reconstructed events is present, but its effect on the signal shape is negligible
(only ∼1% of MC events are neither truth-matched or swapped pions after the full
selection).
The background template is extracted from data in the K∗0 mass control region. In
order to check that the template extracted from the control region is representative
of the background in the signal region, the fitBDT distribution is compared for
events in the two regions. However, in order to blind the most sensitive bins, the
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Table 8.2: Number of candidates used for the training of the fitBDT for the 3πµ final
state.

Year Signal candidates Background candidates

Run1 3921 3430
2016 1907 5009
2017 4051 5977
2018 4711 6476

cut fitBDT < 0.7 is applied on events in the signal region of the OS data.
The comparison of the 3π3π and 3πµ fitBDT distributions in signal and control

region is shown in Figs. 8.3 and 8.4 respectively. The comparison shows a good
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Figure 8.3: Comparison of the 3π3π fitBDT distribution in signal and control regions in
logarithmic scale. The distribution in the signal region is shown for values of
fitBDT < 0.7. The dashed lines in the pull correspond to the ±3σ difference.

agreement between the two regions, which validates the use of the control region
as proxy for background distribution in the signal region.

151



3−10

2−10

1−10

1

N
or

m
al

iz
ed

 c
an

di
da

te
s

OS 2011 Signal region

OS 2011 Control region

0 0.2 0.4 0.6 0.8 1
fitBDT

5−
0

5

Pu
ll

(a) 2011

3−10

2−10

1−10

1

N
or

m
al

iz
ed

 c
an

di
da

te
s

OS 2012 Signal region

OS 2012 Control region

0 0.2 0.4 0.6 0.8 1
fitBDT

5−
0

5

Pu
ll

(b) 2012

3−10

2−10

1−10

1

N
or

m
al

iz
ed

 c
an

di
da

te
s

OS 2015 Signal region

OS 2015 Control region

0 0.2 0.4 0.6 0.8 1
fitBDT

5−
0

5

Pu
ll

(c) 2015

3−10

2−10

1−10

1

N
or

m
al

iz
ed

 c
an

di
da

te
s

OS 2016 Signal region

OS 2016 Control region

0 0.2 0.4 0.6 0.8 1
fitBDT

5−
0

5

Pu
ll

(d) 2016

3−10

2−10

1−10

1

N
or

m
al

iz
ed

 c
an

di
da

te
s

OS 2017 Signal region

OS 2017 Control region

0 0.2 0.4 0.6 0.8 1
fitBDT

5−
0

5

Pu
ll

(e) 2017

3−10

2−10

1−10

1

N
or

m
al

iz
ed

 c
an

di
da

te
s

OS 2018 Signal region

OS 2018 Control region

0 0.2 0.4 0.6 0.8 1
fitBDT

5−
0

5

Pu
ll

(f) 2018

Figure 8.4: Comparison of the 3πµ fitBDT distribution in signal and control regions in
logarithmic scale. The distribution in the signal region is shown for values of
fitBDT < 0.7. The dashed lines in the pull correspond to the ±3σ difference.

In order to derive an analytical expression for the fit model, let us consider two
subsamples of a dataset, labelled 1 and 2, each containing a certain number of
events n1(2) = s1(2) + b1(2), where s stands for signal and b stands for background.
The distributions of events in the two regions can be written as:

H1 = n1 · H1 = s1 · S1 + b1 · B,
H2 = n2 · H2 = s2 · S2 + b2 · B,

(8.1)

where S, B and H represent respectively the signal, background and total PDFs
(i.e. normalized to unity). It has to be noticed that by hypothesis the background
distribution B is identical for the two subsamples. The latter can be written as:

B =
1

b2
(n2 · H2 − s2 · S2). (8.2)

Using the relation s2/ε2 = s1/ε1, where ε indicates the signal efficiency in a given
subsample, the distribution of events in the subsample 1 can be written as:

H1 = s1 · S1 +
b1
b2
n2 · H2 −

b1
b2
s1
ε2
ε1
· S2. (8.3)

By interpreting the subsamples 1 and 2 as the signal and control regions respectively,
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the fit model assumes the form:

Datay = fyµ · Sigy +
sy
cy
nctly ·Ctly −

sy
cy
fyµ

εctly

εsigy
·Conty, (8.4)

where the subscript y refers to one specific year of data-taking of a given final state
and for the sake of clarity normalized PDFs are highlighted in blue while fitted
parameters are highlighted in red. The various terms are:

Datay : histogram representing the total number of signal and background events;

Sigy : fitBDT PDF extracted from events in the signal region of the full MC;

Ctly : fitBDT PDF extracted from events in the control region of data;

Conty : fitBDT PDF extracted from events in the control region of the full MC to
take into account the “contamination” of signal in the background template;

µ : B0→ K∗0τ+τ− branching ratio, the parameter of interest of the fit which is
shared between the years of data-taking and the two final states;

sy
cy

: ratio of the (unknown) number of background events in signal and control
region, a scaling factor treated as a nuisance parameter of the fit;

fy : defined as fy ≡ 1
αy
, where αy is the normalization factor introduced in Chapter

6. The uncertainty on these parameters is taken into account with a gaussian
constraint. Its values are shown in Tables 8.3 and 8.4;

εctly

ε
sig
y

: ratio of efficiencies in control and signal region, whose uncertainty is taken
into account with a gaussian constraint. Its values are shown in Tables 8.3
and 8.4;

nctl
y : number of events in the data control region, a fixed parameter. Its values

are shown in Tables 8.3 and 8.4.

The distributions of the fitBDT for data in the control region (Ctly), MC in the
signal region (Sigy) and MC in the control region (Conty) are shown in Figs. 8.5
and 8.6 for the 3π3π and 3πµ final states respectively.
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Table 8.3: Values of the input parameters for the likelihood fit for the 3π3π final state.
Shown are the normalization factor αy, its inverse fy, the ratio of efficiencies
in control and signal region εctly /ε

sig
y and the number of events in data control

region. Moreover, reported are also the number of events in the data signal
region with fitBDT < 0.7 nblindy and the number of events in the data control
region with fitBDT < 0.7 nctl, blindy .

Year αy (10−5) fy εctly /ε
sig
y nctly nblindy nctl, blindy

2011 7.10± 0.89 14083± 1761 0.396± 0.026 1176 612 1105
2012 3.59± 0.44 27865± 3386 0.416± 0.021 2646 1285 2519
2015 12.4± 1.6 8094± 1060 0.496± 0.042 724 352 694
2016 1.48± 0.18 67517± 8094 0.481± 0.019 6992 3594 6677
2017 1.31± 0.16 76550± 9084 0.487± 0.013 8209 4043 7854
2018 1.48± 0.17 67796± 8042 0.478± 0.013 9246 4564 8845

Table 8.4: Values of the input parameters for the likelihood fit for the 3πµ final state.
Shown are the normalization factor αy, its inverse fy, the ratio of efficiencies
in control and signal region εctly /ε

sig
y and the number of events in data control

region. Moreover, reported are also the number of events in the data signal
region with fitBDT < 0.7 nblindy and the number of events in the data control
region with fitBDT < 0.7 nctl, blindy .

Year αy (10−6) fy εctly /ε
sig
y nctly nblindy nctl, blindy

2011 5.95± 0.73 168160± 20781 0.398± 0.025 8043 4335 7276
2012 2.60± 0.31 385336± 46000 0.370± 0.017 18749 10022 16925
2015 13.6± 1.8 73568± 9706 0.435± 0.044 3630 1951 3450
2016 1.52± 0.18 658345± 78319 0.410± 0.019 38607 21008 36645
2017 1.31± 0.15 762637± 89401 0.394± 0.012 44797 23304 41340
2018 1.41± 0.16 711235± 83252 0.405± 0.011 47702 24683 44645
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Figure 8.5: Distribution of the fitBDT in the 3π3π channel for data in the control region
(red), MC in the signal region (blue) and MC in the control region (green) for
each year of data-taking.
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Figure 8.6: Distribution of the fitBDT in the 3πµ channel for data in the control region
(red), MC in the signal region (blue) and MC in the control region (green) for
each year of data-taking.
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8.3 Toy studies

The fit strategy is validated using toy simulations. In order to generate pseudo-
data, it is necessary to know the distribution of the fitBDT for signal events in
the signal region (Sigy) and, ideally, the “true” (i.e. signal-free) distribution of
background events in the signal region. Of course, the latter is unknown and an
approximated distribution must be used. The best possible assumption is to use the
fitBDT distribution of data in the control region (Ctly), in the hypothesis that the
effect of the possible presence of signal events on the distribution is negligible, since
the signal-to-background ratio is much lower than in the signal region. Therefore,
the model used to generate the pseudo-data for a given final state and data-taking
year y is defined as:

GenDatay = fyµ0 · Sigy +
(
nOS
y − fyµ0

)
·Ctly, (8.5)

where µ0 is the signal branching ratio defined by the analyst and nOS
y is the number

of events in the signal region of the OS data. However, the value of nOS
y is unknown

due to the blinding procedure, and is estimated as

nOS
y ≈ nblindy · nctly

nctl, blindy

, (8.6)

where nblindy is the number of events in the fitBDT range [0, 0.7] in the signal region
of the OS data, nctly is the number of events in the full fitBDT range in the OS
control region and nctl, blindy is the number of events in the fitBDT range [0, 0.7] in
the OS control region. The values of nctly , nblindy and nctl, blindy are shown in Tables
8.3 and 8.4.
The signal (Sigy) and background (Ctly) PDFs are extended PDFs, therefore the
number of generated signal and background events vary for each toy and fluctuate
following a poissonian distribution around the central values fyµ0 and nOS

y − fyµ0.
The central value for the number of generated background events is chosen in such
a way to keep the (central) total amount of generated events equal to the number
of observed events in the signal region nOS

y .
In order to take into account the presence of signal events in the model used to
describe the background, the toys are fitted with the model

PseudoDatay = fyµ · Sigy +
sy
cy
nctly ·Ctl′y − fyµ

sy
cy

εctly

εsigy
·Conty, (8.7)

where

Ctl′y =
1

nctly

[(
nctly − fyµ0

εctly

εsigy

)
·Ctly + fyµ0

εctly

εsigy
·Conty

]
. (8.8)
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The validation of the fit model is based on 1000 toys, and only the statistical
uncertainty is considered. In the following, toy studies are shown for the 3π3π and
3πµ final states separately and for the simultaneous fit over the two final states.

3π3π final state

As an example, the results of the likelihood fit on a single toy generated with
initial branching ratio set to 0 are shown in Fig. 8.7.

2−10

1−10

1

10

210

310

410

510

E
ve

nt
s

Branching ratio = 0.00003 +/- 0.00051

Bkg ratio 2011 = 0.555 +/- 0.022

0 0.2 0.4 0.6 0.8 1

Fit BDT

5−

0

5

Pu
ll

(a) 2011

2−10

1−10

1

10

210

310

410

510
E

ve
nt

s
Branching ratio = 0.00003 +/- 0.00051

Bkg ratio 2012 = 0.503 +/- 0.014

0 0.2 0.4 0.6 0.8 1

Fit BDT

5−

0

5

Pu
ll

(b) 2012

2−10

1−10

1

10

210

310

410

510

E
ve

nt
s

Branching ratio = 0.00003 +/- 0.00051

Bkg ratio 2015 = 0.482 +/- 0.026

0 0.2 0.4 0.6 0.8 1

Fit BDT

5−

0

5

Pu
ll

(c) 2015

2−10

1−10

1

10

210

310

410

510

E
ve

nt
s

Branching ratio = 0.00003 +/- 0.00051

Bkg ratio 2016 = 0.531 +/- 0.009

0 0.2 0.4 0.6 0.8 1

Fit BDT

5−

0

5

Pu
ll

(d) 2016

2−10

1−10

1

10

210

310

410

510

E
ve

nt
s

Branching ratio = 0.00003 +/- 0.00051

Bkg ratio 2017 = 0.518 +/- 0.009

0 0.2 0.4 0.6 0.8 1

Fit BDT

5−

0

5

Pu
ll

(e) 2017

2−10

1−10

1

10

210

310

410

510

E
ve

nt
s

Branching ratio = 0.00003 +/- 0.00051

Bkg ratio 2018 = 0.510 +/- 0.008

0 0.2 0.4 0.6 0.8 1

Fit BDT

5−

0

5

Pu
ll

(f) 2018

Figure 8.7: Result of the likelihood fit on a single toy experiment generated with initial
signal branching ratio set to 0 for the 3π3π final state. Shown are the generated
data (black points), the signal (green), the background (red) and the total
PDF (blue). The dashed lines in the pull correspond to the ±3σ difference.

The distributions of the fit results, the errors and the pulls are shown in Fig. 8.8
for the signal branching ratio, while the pull distributions are shown in Fig. 8.9 for
the nuisance parameters ( sy

cy
), in the case of initial branching ratio µ0 = 0. Table

8.5 summarizes the results.
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Figure 8.8: signal branching ratio fit results for toys generated with µ0 = 0 for the
3π3π final state. The fit with a standard gaussian is shown in blue.

The distributions of the fit results, the errors and the pulls are shown in Fig. 8.10
for the signal branching ratio, while the pull distributions are shown in Fig. 8.11
for the nuisance parameters ( sy

cy
), in the case of initial branching ratio µ0 = 0.0005.

Table 8.6 summarizes the results.
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Table 8.5: Results of the fit validation study for the 3π3π final state, based on 1000 toys
generated with signal branching ratio µ0 = 0. Shown are the initial values, the
average outcome of the fit, the pull mean and the pull variance of the signal
branching ratio µ and nuisance parameters sy

cy
(indicated as py in the table).

Parameter Initial value Average fit value Pull mean Pull Std

µ 0.0 0.00001± 0.00051 0.013± 0.031 0.985± 0.022
p11;3π3π 0.554 0.554± 0.022 −0.028± 0.032 1.005± 0.022
p12;3π3π 0.510 0.509± 0.014 −0.054± 0.032 0.997± 0.022
p15;3π3π 0.507 0.508± 0.027 −0.009± 0.032 1.012± 0.023
p16;3π3π 0.5383 0.5382± 0.0095 −0.008± 0.031 0.989± 0.022
p17;3π3π 0.5148 0.5147± 0.0087 −0.015± 0.032 1.017± 0.023
p18;3π3π 0.5160 0.5150± 0.0080 −0.068± 0.032 1.004± 0.022

Table 8.6: Results of the fit validation study for the 3π3π final state, based on 1000 toys
generated with signal branching ratio µ0 = 0.0005. Shown are the initial values,
the average outcome of the fit, the pull mean and the pull variance of the signal
branching ratio µ and nuisance parameters sy

cy
(indicated as py in the table).

Parameter Initial value Average fit value Pull mean Pull Std

µ 0.0005 0.00051± 0.00052 0.008± 0.031 0.976± 0.022
p11;3π3π 0.549 0.549± 0.022 −0.008± 0.032 1.006± 0.022
p12;3π3π 0.506 0.505± 0.015 −0.041± 0.032 1.000± 0.022
p15;3π3π 0.503 0.504± 0.027 0.009± 0.032 1.000± 0.022
p16;3π3π 0.5347 0.5349± 0.0095 0.02± 0.031 0.976± 0.022
p17;3π3π 0.5113 0.5114± 0.0087 0.014± 0.032 1.001± 0.022
p18;3π3π 0.5130 0.5130± 0.0080 −0.036± 0.032 1.001± 0.022
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Figure 8.9: Nuisance parameters pulls for toys generated with µ0 = 0 for the 3π3π final
state. The fit with a standard gaussian is shown in blue.
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Figure 8.10: signal branching ratio fit results for toys generated with µ0 = 0.0005 for the
3π3π final state. The fit with a standard gaussian is shown in blue.
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Figure 8.11: Nuisance parameters pulls for toys generated with µ0 = 0.0005 for the
3π3π final state. The fit with a standard gaussian is shown in blue.
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3πµ final state

As an example, the results of the likelihood fit on a single toy generated with
initial branching ratio set to 0 are shown in Fig. 8.12.
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Figure 8.12: Result of the likelihood fit on a single toy experiment generated with initial
signal branching ratio set to 0 for the 3πµ final state. Shown are the generated
data (black points), the signal (green), the background (red) and the total
PDF (blue).

The distributions of the fit results, the errors and the pulls are shown in Fig.
8.13 for the signal branching ratio, while the pull distributions are shown in Fig.
8.14 for the nuisance parameters ( sy

cy
), in the case of initial branching ratio µ0 = 0.

Table 8.7 summarizes the results.
The distributions of the fit results, the errors and the pulls are shown in Fig. 8.15

for the signal branching ratio, while the pull distributions are shown in Fig. 8.16
for the nuisance parameters ( sy

cy
), in the case of initial branching ratio µ0 = 0.0005.

Table 8.8 summarizes the results.
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Figure 8.13: signal branching ratio fit results for toys generated with µ0 = 0 for the
3πµ final state. The fit with a standard gaussian is shown in blue.

Table 8.7: Results of the fit validation study for the 3πµ final state, based on 1000 toys
generated with signal branching ratio µ0 = 0. Shown are the initial values, the
average outcome of the fit, the pull mean and the pull variance of the signal
branching ratio µ and nuisance parameters sy

cy
(indicated as py in the table).

Parameter Initial value Average fit value Pull mean Pull Std

µ 0.0 0.00000± 0.00013 0.016± 0.031 0.984± 0.022
p11;3πµ 0.5958 0.5955± 0.0089 −0.042± 0.032 1.010± 0.023
p12;3πµ 0.5920 0.5920± 0.0060 −0.032± 0.032 1.019± 0.023
p15;3πµ 0.566 0.566± 0.013 −0.014± 0.032 0.996± 0.022
p16;3πµ 0.5733 0.5733± 0.0042 0.003± 0.032 1.012± 0.023
p17;3πµ 0.5640 0.5640± 0.0040 0.006± 0.031 0.984± 0.022
p18;3πµ 0.5529 0.5530± 0.0037 0.028± 0.031 0.986± 0.022
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Figure 8.14: Nuisance parameters pulls for toys generated with µ0 = 0 for the 3πµ final
state. The fit with a standard gaussian is shown in blue.
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Figure 8.15: signal branching ratio fit results for toys generated with µ0 = 0.0005 for the
3πµ final state. The fit with a standard gaussian is shown in blue.

Table 8.8: Results of the fit validation study for the 3πµ final state, based on 1000 toys
generated with signal branching ratio µ0 = 0.0005. Shown are the initial values,
the average outcome of the fit, the pull mean and the pull variance of the signal
branching ratio µ and nuisance parameters sy

cy
(indicated as py in the table).

Parameter Initial value Average fit value Pull mean Pull Std

µ 0.0005 0.00050± 0.00013 0.023± 0.032 0.999± 0.022
p11;3πµ 0.5878 0.5874± 0.0089 −0.051± 0.033 1.042± 0.023
p12;3πµ 0.5840 0.5840± 0.0060 −0.032± 0.032 1.012± 0.023
p15;3πµ 0.558 0.558± 0.013 −0.009± 0.031 0.975± 0.022
p16;3πµ 0.5667 0.5667± 0.0042 −0.002± 0.032 1.024± 0.023
p17;3πµ 0.5570 0.5570± 0.0040 −0.008± 0.033 1.028± 0.023
p18;3πµ 0.5471 0.5471± 0.0037 0.018± 0.031 0.975± 0.022
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Figure 8.16: Nuisance parameters pulls for toys generated with µ0 = 0.0005 for the
3πµ final state. The fit with a standard gaussian is shown in blue.
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Combined final states

The distributions of the fit results, the errors and the pulls are shown in Fig.
8.17 for the signal branching ratio, while the pull distributions are shown in Fig.
8.18 for the nuisance parameters ( sy

cy
), in the case of initial branching ratio µ0 = 0.

Table 8.9 summarizes the results.
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Figure 8.17: signal branching ratio fit results for toys generated with µ0 = 0 for the
simultaneous fit over both modes. The fit with a standard gaussian is shown
in blue.

The distributions of the fit results, the errors and the pulls are shown in Fig. 8.19
for the signal branching ratio, while the pull distributions are shown in Fig. 8.20
for the nuisance parameters ( sy

cy
), in the case of initial branching ratio µ0 = 0.0005.

Table 8.10 summarizes the results.
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Table 8.9: Results of the fit validation study for both final state, based on 1000 toys
generated with signal branching ratio µ0 = 0. Shown are the initial values, the
average outcome of the fit, the pull mean and the pull variance of the signal
branching ratio µ and nuisance parameters sy

cy
(indicated as py in the table).

Parameter Initial value Average fit value Pull mean Pull Std

µ 0.0 0.00000± 0.00013 −0.030± 0.032 1.016± 0.023
p11;3π3π 0.554 0.554± 0.022 −0.026± 0.033 1.038± 0.023
p12;3π3π 0.510 0.510± 0.014 −0.01± 0.03 0.956± 0.021
p15;3π3π 0.507 0.508± 0.026 0.012± 0.032 1.025± 0.023
p16;3π3π 0.5383 0.5384± 0.0088 0.008± 0.032 1.016± 0.023
p17;3π3π 0.515 0.515± 0.008 0.003± 0.031 0.994± 0.022
p18;3π3π 0.516 0.5160± 0.0075 −0.012± 0.031 0.981± 0.022
p11;3πµ 0.5958 0.5956± 0.0088 −0.023± 0.033 1.047± 0.023
p12;3πµ 0.5920 0.5920± 0.0060 0.023± 0.031 0.989± 0.022
p15;3πµ 0.566 0.566± 0.013 0.039± 0.032 1.025± 0.023
p16;3πµ 0.5733 0.5735± 0.0042 0.041± 0.032 1.026± 0.023
p17;3πµ 0.5637 0.5638± 0.0039 0.015± 0.032 1.003± 0.022
p18;3πµ 0.5529 0.5531± 0.0037 0.052± 0.032 1.018± 0.023

Table 8.10: Results of the fit validation study for both final state, based on 1000 toys
generated with signal branching ratio µ0 = 0. Shown are the initial values,
the average outcome of the fit, the pull mean and the pull variance of the
signal branching ratio µ and nuisance parameters sy

cy
(indicated as py in the

table).

Parameter Initial value Average fit value Pull mean Pull Std

µ 0.0005 0.00049± 0.00013 −0.043± 0.032 1.018± 0.023
p11;3π3π 0.549 0.549± 0.022 −0.039± 0.034 1.061± 0.024
p12;3π3π 0.506 0.506± 0.014 −0.030± 0.030 0.964± 0.022
p15;3π3π 0.503 0.504± 0.026 0.011± 0.033 1.039± 0.023
p16;3π3π 0.5347 0.5347± 0.0088 −0.004± 0.032 1.012± 0.023
p17;3π3π 0.5110 0.5110± 0.0080 −0.008± 0.031 0.973± 0.022
p18;3π3π 0.5132 0.5131± 0.0075 −0.019± 0.031 0.988± 0.022
p11;3πµ 0.5878 0.5875± 0.0089 −0.035± 0.034 1.064± 0.024
p12;3πµ 0.5840 0.5840± 0.0060 0.004± 0.031 0.991± 0.022
p15;3πµ 0.558 0.558± 0.013 0.032± 0.032 1.003± 0.022
p16;3πµ 0.5667 0.5668± 0.0042 0.019± 0.032 1.00± 0.022
p17;3πµ 0.5571 0.5571± 0.0039 −0.008± 0.032 1.023± 0.023
p18;3πµ 0.5471 0.5472± 0.0037 0.041± 0.032 1.021± 0.023
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Figure 8.18: Nuisance parameters pulls for toys generated with µ0 = 0 for the simultaneous
fit over both modes. The fit with a standard gaussian is shown in blue.
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Figure 8.19: signal branching ratio fit results for toys generated with µ0 = 0.0005 for the
simultaneous fit over both modes. The fit with a standard gaussian is shown
in blue.
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Figure 8.20: Nuisance parameters pulls for toys generated with µ0 = 0.0005 for the
simultaneous fit over both modes. The fit with a standard gaussian is shown
in blue.
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8.4 Expected limit with the CLs method
The B0→ K∗0τ+τ− signal yield obtained from the fit is translated into a one-

sided upper limit on its branching ratio, in case the result is compatible with
the background hypothesis, using the CLs method [17]. To calculate the upper
limit, the distribution of the profile likelihood ratio test statistics is computed
for the “background only” and the “signal + background” hypotheses using the
asymptotic formulae [101] for different values of the signal branching ratio. The
upper limit corresponds to the branching ratio which gives a p-value for the signal
+ background hypothesis divided by the p-value of the background only hypothesis
of 5%. In the case of the expected upper limit, the median value of the distribution
for the background only hypothesis is used in order to compute the p-values.
For each configuration (3π3π only, 3πµ only and combined fit), the expected

upper limit at 95% CL is computed considering first the statistical uncertainty only
and then combining the statistical and systematic uncertainties in the fit. The
systematic uncertainties taken into account are:

fit parameters: it consists of the uncertainties on the fit parameters (fy,
εctly

εsigy
)

which are taken into account as gaussian constraints. The uncertainty on fy
incorporates the uncertainties on the selection efficiencies, on the normalization
yield and on the input branching ratios;

signal template: it consists of the statistical uncertainties on the signal templates
(Sigy and Conty) which are taken into account using gaussian constraints.
This is done using the Beeston-Barlow light technique [102], consisting in
applying a gaussian constraint on the total yield of each bin, depending on
the relative uncertainty on that bin;

background template: it consists of the statistical uncertainty on the back-
ground template (Ctly) which is again taken into account using the Beeston-
Barlow light technique.

3π3π final state

The scan of the branching ratio for the 3π3π final state is done for 30 points
in the range B ∈ [0, 0.0025]. The results are summarized in Table 8.11, while Fig.
8.21 shows the exclusion plot of the expected limit when considering all sources of
uncertainties.
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Table 8.11: Expected limit at 95% CL computed with the CLs method for the 3π3π final
state only. The central value is reported, as well as the the boundaries of the
±1σ confidence interval. The last column provides the relative increase of the
expected limit when the corresponding systematic uncertainty is included,
with respect to the limit obtained considering only the statistical uncertainty.

Uncertainty Expected limit +1σ −1σ Increase (%)

Statistical only 0.001 019 0.001 431 0.000 732 0.0
Fit parameters 0.001 028 0.001 458 0.000 736 0.9
Signal template 0.001 021 0.001 435 0.000 733 0.2

Background template 0.001 230 0.001 712 0.000 886 20.7
Sig + Bkg template 0.001 279 0.001 807 0.000 913 25.5

Total 0.001 291 0.001 844 0.000 918 26.7

0

0.2

0.4

0.6

0.8

1

p 
va

lu
e

Expected CLs - Median

σ 1 ±Expected CLs 

σ 2 ±Expected CLs 

0 0.0005 0.001 0.0015 0.002 0.0025

)-τ+τ*0 K→0BR(B

Figure 8.21: Exclusion plot of the expected limit computed for the 3π3π final state only.
The total statistical and systematic uncertainties are included.

3πµ final state

The scan of the branching ratio for the 3πµ final state is done for 30 points
in the range B ∈ [0, 0.001]. The results are summarized in Table 8.12, while Fig.
8.22 shows the exclusion plot of the expected limit when considering all sources of
uncertainties.
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Table 8.12: Expected limit at 95% CL computed with the CLs method for the 3πµ final
state only. The central value is reported, as well as the the boundaries of the
±1σ confidence interval. The last column provides the relative increase of the
expected limit when the corresponding systematic uncertainty is included,
with respect to the limit obtained considering only the statistical uncertainty.

Uncertainty Expected limit +1σ −1σ Increase (%)

Statistical only 0.000 262 0.000 365 0.000 190 0.0
Fit parameters 0.000 265 0.000 371 0.000 191 1.1
Signal template 0.000 263 0.000 365 0.000 190 0.4

Background template 0.000 326 0.000 451 0.000 235 24.4
Sig + Bkg template 0.000 329 0.000 457 0.000 236 25.6

Total 0.000 332 0.000 466 0.000 237 26.7
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Figure 8.22: Exclusion plot of the expected limit computed for the 3πµ final state only.
The total statistical and systematic uncertainties are included.

Combined fit over the two modes

The scan of the branching ratio for the simultaneous fit over the two modes
is done for 30 points in the range B ∈ [0, 0.001]. The results are summarized in
Table 8.13, while Fig. 8.23 shows the exclusion plot of the expected limit when
considering all sources of uncertainties. The expected upper limit is computed to
be 3.2(2.7) · 10−4 at 95(90)% CL, which represents an improvement of one order of
magnitude with respect to the current experimental limit.
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Table 8.13: Expected limit at 95% CL computed with the CLs method for the combined
fit over the two final states. The central value is reported, as well as the
the boundaries of the ±1σ confidence interval. The last column provides the
relative increase of the expected limit when the corresponding systematic
uncertainty is included, with respect to the limit obtained considering only
the statistical uncertainty.

Uncertainty Expected limit +1σ −1σ Increase (%)

Statistical only 0.000 254 0.000 352 0.000 183 0.0
Fit parameters 0.000 256 0.000 358 0.000 184 0.8
Signal template 0.000 254 0.000 353 0.000 184 0.0

Background template 0.000 314 0.000 437 0.000 228 23.6
Sig + Bkg template 0.000 317 0.000 442 0.000 229 24.8

Total 0.000 320 0.000 448 0.000 230 26.0
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Figure 8.23: Exclusion plot of the expected limit computed for the fit on both modes.
The total statistical and systematic uncertainties are included.
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Fit on merged data-taking years

Tables 8.11, 8.12 and 8.13 show that the major contribution to the systematic
uncertainty on the upper limit comes from the uncertainty on the background shape.
In order to mitigate this uncertainty the possibility of merging data-taking years in
the final fit is investigated. The expected upper limit is computed on the dataset
obtained by merging years with similar data-taking conditions, corresponding to
the periods 2011-2012, 2015-2016 and 2017-2018. The results are shown in Tables
8.14, 8.15, 8.16 for the 3π3π, 3πµ and combined final states respectively. The
results show no improvements with respect to the case in which all the data-taking
years are kept separate.

Table 8.14: Expected limit at 95% CL computed with the CLs method for the 3π3π final
state only. The data-taking years corresponding to the periods 2011-2012,
2015-2016 and 2017-2018 are merged.

Uncertainty Expected limit +1σ −1σ Increase (%)

Statistical only 0.001 046 0.001 466 0.000 751 0.0
Fit parameters 0.001 065 0.001 518 0.000 757 1.8
Signal template 0.001 047 0.001 471 0.000 751 0.1

Background template 0.001 263 0.001 760 0.000 911 20.7
Sig + Bkg template 0.001 314 0.001 856 0.000 936 25.6

Total 0.001 336 0.001 917 0.000 943 27.7

Table 8.15: Expected limit at 95% CL computed with the CLs method for the 3πµ final
state only. The data-taking years corresponding to the periods 2011-2012,
2015-2016 and 2017-2018 are merged.

Uncertainty Expected limit +1σ −1σ Increase (%)

Statistical only 0.000 266 0.000 369 0.000 193 0.0
Fit parameters 0.000 269 0.000 379 0.000 194 1.1
Signal template 0.000 266 0.000 370 0.000 193 0.0

Background template 0.000 330 0.000 458 0.000 238 24.1
Sig + Bkg template 0.000 333 0.000 464 0.000 239 25.2

Total 0.000 338 0.000 478 0.000 241 27.1
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Table 8.16: Expected limit at 95% CL computed with the CLs method for the combined
fit over the two final states. The data-taking years corresponding to the
periods 2011-2012, 2015-2016 and 2017-2018 are merged.

Uncertainty Expected limit +1σ −1σ Increase (%)

Statistical only 0.000 258 0.000 358 0.000 186 0.0
Fit parameters 0.000 261 0.000 368 0.000 188 1.2
Signal template 0.000 258 0.000 358 0.000 187 0.0

Background template 0.000 319 0.000 443 0.000 231 23.6
Sig + Bkg template 0.000 322 0.000 448 0.000 232 24.8

Total 0.000 327 0.000 461 0.000 234 26.7
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Chapter 9

Selection optimization

In this chapter the optimization procedure used to choose the BDT input variables,
the BDT hyper-parameters and the cuts on the BDT output is presented1. The
procedure aims at minimizing the expected limit in the case where no signal is
observed. The parameters that are taken into account for the optimization of the
MVA selection are:

1. the BDT1 input variables;

2. the cut on the flattened output of BDT1;

3. the BDT2 input variables;

4. the cut on the flattened output of BDT2;

5. the fitBDT input variables;

6. the hyper-parameters of the fitBDT: the number of trees in each decision
tree (NTrees), the minimum size of each node (MinSize, as fraction of the
total number of events), the maximum depth of each tree (MaxDepth), the
learning rate (LR).

The hyper-parameters of BDT1 and BDT2 have not been optimized and their
values are the TMVA default ones:

NTrees = 300,

MinSize = 3,

MaxDepth = 2,

LR = 0.5.

(9.1)

The hyper-parameters are the same for the different data-taking periods.

1The optimization has been performed in a previous version of the analysis, using signal MC
samples without the neutral pions component. Since the procedure has not been repeated on
the new MC samples including the neutral pions component, some of the results look oddly
better than the ones quoted in Sec. 8.4.
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9.1 The variable finding procedure
The optimization makes use of an iterative procedure in order to choose the input

variables for a given stage of the MVA selection [103]. The iterative procedure aims
at finding the set of variables maximizing the weighted area under the receiver
operating characteristic (ROC) curve:

FoM =

∑
iwiFi∑
iwiAi

, (9.2)

where the subscript i runs over the signal efficiency bins whose boundaries are
[0, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1] (chosen in such a way not
to have empty bins at low efficiency), Ai = εsupi − εinfi , with εsup (inf)

i being the upper
(lower) boundary of the i-th bin, Fi is the area under ROC curve in the i-th bin,
and wi is a weight defined using the Punzi figure of merit [104] in such a way to
give more importance to low efficiency (hence high purity) bins:

wi =
Ai

5
2

+
√
Bi

, (9.3)

where Bi = B · (ζsupi − ζ infi ), with ζ
sup (inf)
i being the corresponding background

rejection for efficiency εinf (sup)i and B the number of background events in the K∗0
mass signal region after the selection (estimated by rescaling the number of events
in the control region after a preliminary selection).
The variable finding procedure works as follows:

1. a list of usable variables Lusable is considered;

2. an empty list of final BDT variables Lfinal is defined;

3. a BDT is trained using the variables in the list Ltemp built with the variables
in Lfinal and a variable v ∈ Lusable, for each element of Lusable;

4. the variable v ∈ Lusable corresponding to the BDT with the maximum FoM is
added to Lfinal;

5. points 3 and 4 are repeated until the FoM reaches a plateau.

9.2 Optimization for the 3π3π final state
For the 3π3π final state, BDT1 and fitBDT use variables uncorrelated with the

K∗0 mass, in order to be able to build the background model from the output of
the fitBDT on events in the K∗0 mass sidebands. Because of that, the output of
BDT1 for events that survive the selection can be used as input variable for the
fitBDT. For this reason, and since the BDTs are trained in sequence, it is difficult
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to define a unique strategy in order to tune in the best possible way all parameters
without overcomplicating the optimization. Therefore, some simplifications are
implemented in order to cope with the complexity of the procedure. In the first
part of the optimization the BDT2 is removed, in such a way to obtain a simpler
selection involving only BDT1 before the training of the fitBDT.

BDT1 variables The variables of BDT1, listed in Sec. 5.7, are chosen using the
variable finding procedure among variables uncorrelated with the K∗0 mass.

BDT1 cut and fitBDT variables Since the fitBDT is trained after the cut on
BDT1, different cuts will lead to different sets of variables which maximize the FoM
in Eq. 9.2. Therefore, five different cuts are applied to the training samples of the
2016 fitBDT and for each of them the variable finding procedure is used to extract
a different set of variables, as shown in Table 9.1. For each set of fitBDT variables,

Table 9.1: Variable sets obtained using the variable finding procedure on the training
samples of the fitBDT after different cuts on BDT1 for the 3π3π final state.
The colors match the ones in Fig. 9.1.

Cut on training samples Variable set

BDT1 > 0.1 A
BDT1 > 0.2 B
BDT1 > 0.3 C
BDT1 > 0.4 D
BDT1 > 0.5 E

the expected limit at 95% CL is computed as a function of the cut on BDT1, where
only the statistical uncertainty is considered. The results are reported in Table
9.2 and Fig. 9.1. The variables in set B give the best expected limit, and are
therefore chosen as input variables for the fitBDT. They are reported in Sec. 8.1.
The discarded sets of variables are reported in Tables 9.3, 9.4, 9.5, 9.6. Moreover,
the cut at BDT1 > 0.6 gives the best limit estimation, and is therefore chosen as
BDT1 cut.
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Table 9.2: Expected limit in units of 10−4 for the 3π3π final state as a function of the
cut on BDT1 for different sets of fitBDT variables. The colors match the ones
in Fig. 9.1.

Set A Set B Set C Set D E

BDT1 > 0.2 17.7 15.0 17.0 17.0 17.9
BDT1 > 0.3 16.5 14.0 16.0 16.2 16.5
BDT1 > 0.4 16.2 13.4 15.4 15.8 16.4
BDT1 > 0.5 16.2 13.4 15.4 15.6 16.2
BDT1 > 0.6 15.9 12.8 14.9 14.7 16.2
BDT1 > 0.7 15.8 13.2 15.3 15.5 16.7
BDT1 > 0.8 16.7 13.2 15.7 14.7 17.1
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Figure 9.1: Evolution of the expected limit as a function of the cut on BDT1 for different
sets of fitBDT variables.
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Table 9.3: FitBDT variables: discarded set A.

min(π+
3 IsoBDTSecondValue, π−3 IsoBDTSecondValue)

max(τ+ IsoBDTSecondValue, τ− IsoBDTSecondValue)
max(τ+ decay vertex and PV distance, τ− decay vertex and PV distance)

max(τ+ DIRA wrt B0 decay vertex, τ− DIRA wrt B0 decay vertex)
min(tauP_P_opt, tauM_P_opt)
max(tauP_P_opt, tauM_P_opt)

min(Mπ−2 π
+
3
, Mπ+

2 π
−
3
)

max(Mπ+
1 π
−
2
, Mπ−1 π

+
2
)

max(τ+ pT, τ− pT)
B0 analytically reconstructed mass from optimal solution

B0 corrected mass
B_DIRA_aa

B0 IP
max(π+

1 IP χ2 wrt PV, π−1 IP χ2 wrt PV)
BDT1

Table 9.4: FitBDT variables: discarded set C.

max(τ+ IsoBDTSecondValue, τ− IsoBDTSecondValue)
B0 DeltaChi2MassOneTrack

max(π+
1 IP wrt PV, π−1 IP wrt PV)

max(τ+ DIRA wrt B0 decay vertex, τ− DIRA wrt B0 decay vertex)
max(τ+ decay vertex and PV distance, τ− decay vertex and PV distance)

max(τ+ flight distance χ2, τ− flight distance χ2)
min(τ+ max DOCA of decay products, τ− max DOCA of decay products)

min(DOCA of π−2 and π+
3 , DOCA of π+

2 and π−3 )
max(τ+ IP, τ− IP)

min(τ+ resMass, τ− resMass)
min(τ+ visible mass, τ− visible mass)

max(Mπ−2 π
+
3
, Mπ+

2 π
−
3
)

max(tauP_PZ_a, tauM_PZ_a)
max(τ+ pT, τ− pT)

B0 IP
B_OPT_decayLength

PV χ2

BDT1
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Table 9.5: FitBDT variables: discarded set D.

min(τ+ IsoBDTSecondValue, τ− IsoBDTSecondValue)
max(τ+ IsoBDTSecondValue, τ− IsoBDTSecondValue)
max(τ+ IsoBDTThirdValue, τ− IsoBDTThirdValue)
min(π+

3 IsoBDTThirdValue, π−3 IsoBDTThirdValue)
min(τ+ neutral cone isolation vPT, τ− neutral cone isolation vPT)

B0 CDFIso
B0 visible mass
B0 corrected mass

Mτ+τ−

min(τ+ resMass, τ− resMass)
min(τ+ visible mass, τ− visible mass)

min(τ+ DOCA of decay products, τ− DOCA of decay products)
min(τ+ flight distance χ2, τ− flight distance χ2)

max(τ+ flight distance, τ− flight distance)
min(τ+ IP χ2 wrt PV, τ− IP χ2 wrt PV)

PV χ2

max(tauP_P_opt, tauM_P_opt)
B0 pT

BDT1

Table 9.6: FitBDT variables: discarded set E.

min(τ+ IsoBDTSecondValue, τ− IsoBDTSecondValue)
B0 neutral cone isolation DELTAETA

B0 corrected mass
max(τ+ flight distance χ2, τ− flight distance χ2)

max(τ+ flight distance, τ− flight distance)
min(τ+ DIRA wrt PV, τ− DIRA wrt PV)

max(τ+ DIRA wrt B0 decay vertex, τ− DIRA wrt B0 decay vertex)
min(tauP_P_opt, tauM_P_opt)
max(tauP_PZ_a, tauM_PZ_a)

min(τ+ visible mass, τ− visible mass)
max(π+

3 IP wrt PV, π−3 IP wrt PV)
PV χ2

min(π−2 IP χ2 wrt PV, π+
2 IP χ2 wrt PV)
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BDT2 variables and cut After the choice of the variables for BDT1 and fitBDT,
and the cut on BDT1 chosen, the BDT2 is added to the selection procedure. The
variables are chosen using the iterative procedure after applying the cut BDT1 > 0.6
on the BDT2 training samples and are reported in Sec. 5.7. The cut is chosen in
such a way to discard the bin with the lowest signal/background ratio in Fig. 8.1,
corresponding to a cut on BDT2 > 0.1.

fitBDT hyper-parameters In order to find the best set of hyper-parameters
for the fitBDT, a first rough scan of the expected limit at 95% CL is performed by
varying the values of the hyper parameters. Once the starting point is defined, a
more precise scan in the following subsets is performed:

• NTrees ∈ [100, 150, 200, 250],

• MinSize (%) ∈ [2, 2.5, 3, 3.5],

• MaxDepth ∈ [2, 3, 4],

• LR ∈ [0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28],

for a total of 432 iterations. Moreover, an additional scan of NTrees in the range
[220, 240, 260, 280, 300] is performed fixing the values of the other hyper parameters
to the ones that give the best expected limit. The final set of parameters giving
the best limit estimation is:

NTrees = 240,

MinSize = 3,

MaxDepth = 3,

LR = 0.2.

(9.4)

9.3 Optimization for the 3πµ final state

The optimization of the 3πµ final state is complicated by a high degree of
correlations of the BDT variables with the K∗0 mass. Therefore, the output of
BDT1 and BDT2 is not used as input variable for the fitBDT. Similarly to what
done for the 3π3π final state, the BDT2 is initially removed in order to simplify
the procedure.

BDT1 variables The variables of BDT1, listed in Sec. 5.7, are chosen using
the variable finding procedure. The three best-ranking variables are removed from
BDT1 in order to save discriminating power for the fitBDT.
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BDT2 and fitBDT variables The fitBDT variables are chosen using the vari-
able finding procedure after applying on the training samples the preliminary cut
BDT1 > 0.5. The correlations between the K∗0 mass and the variables obtained
from the procedure are checked. The variables which show a high degree of correla-
tion with the K∗0 mass are removed from the fitBDT. Moreover, the correlation
between the output of the fitBDT and the K∗0 mass is checked by removing one by
one the input variables from the fitBDT. The variables which introduce correlations
between the fitBDT and the K∗0 mass are removed, in such a way to obtain the
final list of fitBDT variables presented in Sec. 8.1. All variables discarded from the
fitBDT are used to train BDT2. Moreover, the output of BDT1 is used as input
variable for BDT2. The final list of variables for BDT2 is shown in Sec. 5.7.

BDT1 and BDT2 cuts The cut on BDT2 is chosen by making a scan of the
average fit error from toys with 0 generated signal events and the expected limit at
95% CL in the case where no signal is observed as a function of the cut on BDT2.
The preliminary cut BDT1 > 0.5 is applied. The results are shown in Table 9.7.
The cut BDT2 > 0.3 gives the smallest average fit error and expected limit, and is

Table 9.7: Average fit error and expected limit at 95% CL with the CLs method for
the 3πµ final state as a function of the cut on BDT2. The preliminary cut
BDT1 > 0.5 is applied.

BDT2 cut Average fit error (10−5) Expected limit (10−5)

BDT2 > 0 14.64 28.5
BDT2 > 0.1 14.63 28.5
BDT2 > 0.2 14.51 28.5
BDT2 > 0.3 14.40 28.5
BDT2 > 0.4 14.43 28.5
BDT2 > 0.5 15.26 28.5
BDT2 > 0.6 15.42 30.0
BDT2 > 0.7 17.48 33.0
BDT2 > 0.8 19.62 37.5
BDT2 > 0.9 20.25 51.0

therefore chosen as cut for BDT2.
Similarly, the cut on BDT1 is chosen with a scan of the average fit error from toys
with 0 generated signal events (and the expected limit at 95% CL in the case where
no signal is observed) as a function of the cut on BDT2. The cut BDT2 > 0.3
is applied. The results are shown in Table 9.8. The cut BDT1 > 0.6 gives the
smallest average fit error (and expected limit), and is therefore chosen as cut for
BDT1.
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Table 9.8: Average fit error and expected limit at 95% CL with the CLs method for the
3πµ final state as a function of the cut on BDT1. The cut BDT2 > 0.3 is
applied.

BDT1 cut Average fit error (10−5) Expected limit (10−5)

BDT1 > 0.5 14.64 28.5
BDT1 > 0.6 14.40 28.5
BDT1 > 0.7 15.21 28.5

fitBDT hyper-parameters Similarly to the 3π3π final state, after performing a
rough scan of the expected limit at 95% CL in order to find a good starting point, a
more precise optimization is performed varying the values of the hyper-parameters
of the fitBDT in the following subsets:

• NTrees ∈ [100, 150, 200, 250],

• MinSize (%) ∈ [0.5, 1, 1.5, 2],

• MaxDepth ∈ [4, 5, 6],

• LR ∈ [0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18],

for a total of 432 iterations. Moreover, an additional scan of NTrees in the range
[220, 240, 260, 280, 300] is performed fixing the values of the other hyper parameters
to the ones that give the best expected limit. The final set of parameters giving
the best limit estimation is:

NTrees = 280,

MinSize = 1,

MaxDepth = 5,

LR = 0.1.

(9.5)
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Chapter 10

Cross-checks

This chapter describes the cross-checks performed in order to validate the analysis
strategy.

10.1 Fit to the Same-Sign data
As described in Sec. 4.1, SS data are selected requiring both τ lepton candidates

to have the same charge. In order to validate the analysis strategy, the selection
and fit procedures are applied to the SS data. Since no signal is present in such
a dataset, there is no need to blind the most sensitive bins of the fitBDT, which
allows to check the fit procedure in the full BDT spectrum. Moreover, the fitted
signal branching ratio must be compatible with 0.

3π3π final state

The comparison of the 3π3π fitBDT distribution in signal and control region for
SS data after the full selection is shown in Fig. 10.1. The comparison shows good
agreement between the two regions.
The result of the simultaneous fit over the data-taking years is reported in

Table 10.1 and in Fig. 10.2, taking into account the statistical and systematic
uncertainties.
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Figure 10.1: Comparison of the 3π3π fitBDT distribution in signal and control regions
for SS data in logarithmic scale.

Table 10.1: Result of the simultaneous fit over the data-taking years of 3π3π SS data.
Shown are the fitted values of the signal branching ratio µ and nuisance
parameters sy

cy
(indicated as py in the table).

Parameter Fit result

µ 0.000 09± 0.000 25
p11;3πµ 0.458± 0.058
p12;3πµ 0.476± 0.041
p15;3πµ 0.620± 0.082
p16;3πµ 0.528± 0.024
p17;3πµ 0.516± 0.022
p18;3πµ 0.542± 0.022
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Figure 10.2: Result of the simultaneous fit over the data-taking years of 3π3π SS data.
Shown are the data (black points), the signal (green), the background (red)
and the total PDF (blue).
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3πµ final state

The comparison of the 3πµ fitBDT distribution in signal and control region for
SS data after the full selection is shown in Fig. 10.3. The comparison shows good
agreement between the two regions.
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Figure 10.3: Comparison of the 3πµ fitBDT distribution in signal and control regions for
SS data in logarithmic scale.

The result of the simultaneous fit over the data-taking years is reported in
Table 10.2 and in Fig. 10.4, taking into account the statistical and systematic
uncertainties. The fit result is compatible with 0 at the level of ∼ 2.8σ. To
better understand the nature of the difference with respect to the background only
hypothesis, the fit is performed separately for each data-taking years. The results
are summarized in Table 10.3. A ∼ 2σ difference with respect to the null hypothesis
is obtained for the 2016 and 2017 datasets, while for the remaining data-taking
years the values of the branching ratio are compatible with 0 within one standard
deviation. This suggests that the results of the simultaneous fit are most probably
driven by fluctuations on the most sensitive bins of the aforementioned datasets1.

1In the latest version of the analysis the result is indeed compatible with 0 within one standard
deviation.
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Table 10.2: Result of the simultaneous fit over the data-taking years of 3πµ SS data.
Shown are the fitted values of the signal branching ratio µ and nuisance
parameters sy

cy
(indicated as py in the table).

Parameter Fit result

µ 0.000 085± 0.000 030
p11;3πµ 0.548± 0.042
p12;3πµ 0.561± 0.028
p15;3πµ 0.638± 0.067
p16;3πµ 0.574± 0.019
p17;3πµ 0.550± 0.017
p18;3πµ 0.565± 0.017

Table 10.3: Results of the fit on SS data for the 3πµ final state separately for each
data-taking year.

Year µ py;3πµ

2011 0.00006± 0.00011 0.554± 0.049
2012 0.000053± 0.000082 0.568± 0.033
2015 0.00018± 0.00025 0.617± 0.082
2016 0.000126± 0.000062 0.568± 0.020
2017 0.000126± 0.000066 0.543± 0.019
2018 −0.000026± 0.000064 0.580± 0.019
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Figure 10.4: Result of the simultaneous fit over the data-taking years of 3πµ SS data.
Shown are the data (black points), the signal (green), the background (red)
and the total PDF (blue).
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10.2 bb inclusive MC
In order to investigate the presence of possible sources of background, the

selection procedure is applied on a bb inclusive MC. Since large inclusive MC’s
are not available in LHCb for the time being, an alternative strategy is used to
select B decays among already available MC samples. The stripping selection
is applied on a large number of MC samples of B meson decays. The samples
having a stripping selection efficiency significantly higher than the average value are
removed, since this is an indication of the fact that those particular decay modes
are being selected by the stripping requirements. On the other hand, selection
efficiencies around or below an approximately constant value are indicative of the
fact that the stripping is randomly selecting the other B meson produced in the
event. Only these samples are retained, and merged together in order to obtain a
generic bb MC. Fig. 10.5 shows the 3π3π and 3πµ stripping selection efficiencies on
the subsamples used to obtain the bb MC. For the 3πµ stripping line, samples with
stripping efficiency greater than 15% are removed. The full selection procedure
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Figure 10.5: 3π3π (a) and 3πµ (b) stripping selection efficiencies for the subsamples used
to obtain the generic bb MC. The dashed line in the 3πµ case indicates the
value of the efficiency above which samples are discarded.

is applied on the remaining events and a summary of the selection efficiencies is
reported in Table 10.4. The distribution of the fitBDT after the full selection is
shown in Fig 10.6. The remaining statistics is not sufficiently large to come to a
clear conclusion, however, as it is expected, the majority of the surviving events
are concentrated in the first bin of the BDT spectrum. Moreover, the fitBDT
distributions in the signal and control region are in good agreement.
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Table 10.4: Statistics and selection efficiencies for the generic bb MC.

Generic bb MC 3π3π 3πµ

Events after stripping 36577 43289
Events after selection in signal region 5 18

Selection efficiency in signal region (10−4) 1.37± 0.61 4.16± 0.98
Events after selection in control region 13 22

Selection efficiency in control region (10−4) 3.55± 0.99 5.08± 1.08
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Figure 10.6: FitBDT distribution for the generic bb MC after full 3π3π (a) and 3πµ (b)
selections.
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Conclusions and prospects
The search for the rare B0→ K∗0τ+τ− decay described in this thesis is performed

on 9 fb−1 of data collected at the LHCb experiment. The decay is reconstructed
either in the hadronic final state, in which the two τ leptons decay into pions, or in
the mixed hadronic-leptonic final state, in which one τ decays into pions and the
other into a muon. Several selection steps are performed, some of them making
use of BDTs, in order to reduce the amount of background. The efficiency of the
selection is evaluated using MC simulations, and systematic uncertainties and/or
corrections due to effects not well reproduced by simulations are being evaluated.
Since the reconstructed mass offers poor discriminating power, a binned maximum
likelihood fit on the output of a BDT classifier is performed to extract the number
of signal events in data. The data distribution is still blind, however an expected
upper limit in the case where no signal is observed is computed to be 3.2(2.7) · 10−4

at 95(90)% CL, which represents an improvement of one order of magnitude with
respect to the current experimental limit.
Fig. 10.7 shows the expected evolution of the upper limit as a function of the
increase in recorded luminosity at LHCb in the next years of data-taking. Two
scenarios are considered: the first is a conservative one in which the upper limit
obtained with the current dataset is scaled by the expected increase in luminosity,
while the second is a more optimistic one in which, in addition to the increase in
luminosity, a few improvements are considered. The following hypotheses are made
in order to obtain the second scenario:

• from Run 3 (2022-2025) an additional 40% increase in the available statistics
is assumed since the L0 trigger will be removed;

• from Run 3 the available statistics is increased of a factor 2, due to improve-
ments in analysis techniques (e.g. more sophisticated MVA algorithms);

• from Run 5 (2032-2035) an additional 40% increase in the available statistics
is assumed since tracking chambers inside the magnet will be installed and
will contribute to the detection of slow pions.

Over the long term the upper limit is expected to be reduced by another order of
magnitude, which could help discarding more new physics models predicting LFU
violation. However, the sensitivity of the present machine is far too low to observe
a branching ratio of the order of the SM prediction, hence more powerful particles
accelerators (FCC [105], CLIC [106], ...) would be needed to reach the necessary
sensitivity (in the case where no new physics contribution is present).
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Figure 10.7: Expected evolution of the upper limit in the case where no signal is observed as a function of the data-taking years. The
red solid dot indicates the expected upper limit obtained with the present dataset, while the red and blue lines represent
the evolution of the limit in the conservative and optimistic scenarios, respectively. The violet line indicates the present
experimental upper limit while the green line represents the SM prediction. The upper limit is computed at 90% CL in
order to compare it to the present experimental result.
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Appendix A

Dalitz plane strategy

The τ 3-prong decay proceeds predominantly through the intermediate ρ0(770)
resonance, therefore τ± → π±π∓π±ντ events form a “plus” shape in the Dalitz
plane, as illustrated in Fig. A.1. Using two cuts on the two invariant masses, the
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Figure A.1: Dalitz plane for simulated B0→ K∗0τ+τ− 3π3π events (a), 2016 3π3π data
(b), simulated B0→ K∗0τ+τ− 3πµ events (c), 2016 3πµ data (d) after the
stripping selection. The MC samples used to produce these plots do not
include the neutral pion component.

Dalitz plot is divided into nine boxes. To simplify the notation, these boxes are
referred to by their position on a classic dial pad. As an example, box “5” is defined
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as

box 5 =
(
mlow ≤ mπ+

1 π
−
2
≤ mhigh

)
and

(
mlow ≤ mπ−2 π

+
3
≤ mhigh

)
, (A.1)

for suitably defined values of mlow and mhigh. The data is then split into four
mutually exclusive subsamples1:

signal region (τ± in box 5) [τ∓ in box 5]:
the τ candidates are required to lie inside the middle box, denoted as “5” in
the figure. These events are the most signal-like;

background region (τ± in boxes 1, 3, 7 or 9):
at least one τ candidate must end up in one of the four corners of the Dalitz
plot. These events are the least signal-like, and hence can be used as a proxy
for the background;

control region (τ± in boxes 2 or 6) [τ∓ in boxes 2, 4, 5, 6 or 8]:
the events in this region are also used to represent the background inside the
signal region;

leftover region (τ± in boxes 4 or 8) [τ∓ in boxes 4, 5 or 8]:
these events make up the remainder of the full data sample. They are
considered as an alternative to the control region.

The trigger, stripping and cut-based steps of the selection are the same as those
of the default analysis strategy involving the K∗0 mass. Moreover, a BDT-based
selection is implemented in order to suppress most of the background, in this
case involving only one BDT (the possibility of adding a second BDT is not
investigated). The BDT is trained on simulated MC signal events (without neutral
pion component) and on data from the background region of the Dalitz plane. After
the full selection, the fitBDT is trained exploiting the remaining discriminating
power. The leftover region is used to extract the background model for the fit,
since it is the most similar to the signal region, and the sensitivity is estimated
using the CLs method.

A.1 3π3π final state

The variables used to train the selection BDT are chosen using the iterative
procedure presented in Sec. 9.1. Moreover the variables related to τ candidates are
symmetrized using the minimum and maximum functions. They are:

• K∗0 mass;

1The conditions in square brackets apply for the 3π3π final state only.
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• min(τ+ flight distance from refitting procedure, τ− flight distance from refit-
ting procedure);

• max(τ+ flight distance from refitting procedure, τ− flight distance from
refitting procedure;

• min(τ+ error on flight distance from refitting procedure, τ− error on flight
distance from refitting procedure);

• max(τ+ error on flight distance from refitting procedure, τ− error on flight
distance from refitting procedure);

• B0 visible mass;

• B0 analytically reconstructed mass using τ “+” solutions (B_M_aa);

• invariant mass of π’s from τ ;

• B0 neutral cone isolation vPT;

• min(τ+ DeltaChi2MassOneTrack, τ− DeltaChi2MassOneTrack);

• max(τ+ DeltaChi2MassOneTrack, τ− DeltaChi2MassOneTrack);

• B0 maximum DOCA of decay products;

• min(τ+ y component of analytically reconstructed momentum from “+” so-
lution, τ− y component of analytically reconstructed momentum from “+”
solution);

• max(τ+ y component of analytically reconstructed momentum from “+” so-
lution, τ− y component of analytically reconstructed momentum from “+”
solution).

The variable rankings are similar among the data-taking years, therefore only the
one for 2016 MC and background data is shown in Table A.1. Figure A.2 shows
the 2016 variable distributions, while the flattened BDT distributions for signal
and background samples are reported in Fig. A.3.
The chosen working point for the MVA selection is:

selection BDT > 0.4. (A.2)

The working point is not optimized.
The total selection efficiencies are reported in Table A.2. Table A.3 gathers the

input parameters for the fit and the statistics after the full selection.
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Table A.1: Selection BDT variables ranking for the 2016 3π3π final state, using the Dalitz
plane strategy.

Rank Name Separation

1 B_OPT_tau_decayLengthMax 0.393
2 B_OPT_tau_decayLengthMin 0.3216
3 Kst_M 0.278
4 B_M 0.2059
5 tau_DeltaChi2MassOneTrackMin 0.1823
6 B_NC_VPTTAUMin 0.1501
7 B_NC_VPTTAUMax 0.1407
8 B_Mtautau 0.1401
9 B_M_aa 0.08985
10 tau_PY_aMax 0.06313
11 tau_DeltaChi2MassOneTrackMax 0.06286
12 tau_PY_aMin 0.06239
13 B_DOCAMAX 0.02707
14 B_OPT_nIter 0.02071
15 B_OPT_tau_decayLengthErrMin 0.01868
16 B_OPT_tau_decayLengthErrMax 0.01011

Table A.2: Selection efficiency for the 3π3π final state, for strategy involving the Dalitz
plane.

Year Efficiency (×10−6)

2011 1.40± 0.10
2012 1.21± 0.10
2015 2.10± 0.20
2016 2.63± 0.12
2017 2.88± 0.10
2018 2.29± 0.10
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Figure A.2: Selection BDT variable distributions for the 2016 3π3π final state, using the
Dalitz plane strategy.
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Figure A.3: Selection BDT distribution for 3π3π signal and background training samples,
using the Dalitz plane strategy. The flat transformation is applied.

Table A.3: Values of the input parameters for the likelihood fit for the 3π3π final state,
using the Dalitz plane strategy. Shown are the normalization factor αy, its
inverse fy, the ratio of efficiencies in leftover and signal region εlfvy /ε

sig
y and

the number of events in data leftover region. Moreover, reported are also the
number of events in the data signal region with fitBDT < 0.7 nblindy and the
number of events in the data leftover region with fitBDT < 0.7 nlfv, blindy .

Year αy (10−5) fy εlfvy /ε
sig
y nlfvy nblindy nlfv, blindy

2011 30.8± 4.3 3241± 453 6.13± 0.48 4632 462 4571
2012 15.0± 2.0 6637± 874 5.92± 0.37 9902 997 9765
2015 43.8± 6.7 2284± 352 5.89± 0.59 3501 379 3464
2016 6.23± 0.79 16040± 2025 6.16± 0.31 31609 3364 31280
2017 5.56± 0.68 17997± 2190 5.90± 0.20 35485 3770 35129
2018 6.60± 0.80 15117± 1836 6.32± 0.21 41132 4268 40711
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The variables used to train the fitBDT are chosen using the iterative procedure
after applying the full selection on the training samples, and are symmetrized for
the two τ candidates using the minimum and maximum functions. They are:

• min(τ+ DeltaChi2OneTrack, τ− DeltaChi2OneTrack);

• max(τ+ DeltaChi2OneTrack, τ− DeltaChi2OneTrack);

• min(τ+ DeltaChi2TwoTrack, τ− DeltaChi2TwoTrack);

• max(τ+ DeltaChi2TwoTrack, τ− DeltaChi2TwoTrack);

• K∗0 DeltaChi2MassTwoTrack;

• min(τ+ IsoBDTSecondValue, τ− IsoBDTSecondValue);

• max(τ+ IsoBDTSecondValue, τ− IsoBDTSecondValue);

• K (from K∗0) IsoBDTSecondValue;

• min(τ+ VtxIsoNumVtx, τ− VtxIsoNumVtx);

• max(τ+ VtxIsoNumVtx, τ− VtxIsoNumVtx);

• min(τ+ decay vertex χ2, τ− decay vertex χ2);

• max(τ+ decay vertex χ2, τ− decay vertex χ2);

• K∗0 mass;

• B0 analytically reconstructed mass using “+” solutions (B_M_aa);

• B0 analytically reconstructed mass using “optimal” solution (B_M_opt);

• B0 neutral cone isolation Pasym;

• B0 maximum DOCA of decay products;

• DOCA of π and K (from K∗0);

• min(τ+ y component of analytically reconstructed momentum from “-” solution
(tauP_PY_b), τ− y component of analytically reconstructed momentum from
“-” solution (tauM_PY_b));

• max(τ+ y component of analytically reconstructed momentum from “-” solu-
tion (tauP_PY_b), τ− y component of analytically reconstructed momentum
from “-” solution (tauM_PY_b));

• abs(τ+ decay vertex z - τ− decay vertex z);

209



• selection BDT.

Similarly to the selection BDT, only the variable ranking for 2016 MC and back-
ground data is shown in Table A.4. Figures A.4 and A.5 show the 2016 variable
distributions, while the flattened BDT distributions for signal and background
samples are reported in Fig. A.6.

Table A.4: FitBDT variables ranking for the 2016 3π3π final state, using the Dalitz plane
strategy.

Rank Name Separation

1 flat_First3piBDT 0.2004
2 tau_DeltaChi2OneTrackMax 0.1421
3 tau_DeltaChi2TwoTrackMax 0.1207
4 tau_DeltaChi2TwoTrackMin 0.09695
5 tau_DeltaChi2OneTrackMin 0.08275
6 tau_IsoBDTSecondValueMin 0.07906
7 K_IsoBDTSecondValue 0.07403
8 tau_ENDVERTEX_CHI2Max 0.07117
9 tau_IsoBDTSecondValueMax 0.0699
10 tau_ENDVERTEX_CHI2Min 0.05351
11 tau_P_bMin 0.03447
12 Kst_DeltaChi2MassTwoTrack 0.03153
13 tau_VtxIsoNumVtxMax 0.03026
14 tau_P_bMax 0.02444
15 Kst_DOCAKpi 0.02329
16 B_M_opt 0.02241
17 tau_VtxIsoNumVtxMin 0.02136
18 B_NC_PASYM 0.02118
19 tau_VertexDeltaZ 0.01538
20 B_M_aa 0.01273
21 Kst_M 0.009676
22 B_DOCAMAX 0.008236

The comparison between the fitBDT distribution in the signal and leftover regions
is shown in Fig. A.7. For all but one data-taking years, a trend is present in the
pull of the distributions, which suggests the presence of a correlation between the
fitBDT and the invariant masses used to define the Dalitz plane.
The expected upper limit in the case where no signal is observed is computed

using the CLs method:

B(B0→ K∗0τ+τ−) < 2.62 · 10−3 at 95% CL, (A.3)
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Figure A.4: FitBDT variable distributions for the 2016 3π3π final state, using the Dalitz
plane strategy (part 1).

where the above result takes into account only the statistical uncertainty. The
upper limit is ∼ 2.5 times higher than the one obtained with the default K∗0 mass
strategy shown in Table 8.11. For this reason, and because of the fact that the
fitBDT background distribution is not well described by the events in the leftover
region, the Dalitz plane strategy is discarded.
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Figure A.5: FitBDT variable distributions for the 2016 3π3π final state, using the Dalitz
plane strategy (part 2).
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Figure A.6: FitBDT distribution for 3π3π signal and background training samples, using
the Dalitz plane strategy. The flat transformation is applied.
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Figure A.7: Comparison of the 3π3π fitBDT distribution in signal and leftover regions
in logarithmic scale, using the Dalitz plane strategy. The distribution in the
signal region is shown for values of fitBDT < 0.7. The dashed lines in the
pull correspond to the ±3σ difference.
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A.2 3πµ final state
The variables used to train the selection BDT are chosen using the iterative

procedure presented in Sec. 9.1. They are:

• τ+ (→ πππ) analytically reconstructed momentum using “-” solution (tauP_-
P_b);

• µ neutral cone isolation PTasym;

• K∗0 DeltaChi2MassTwoTrack;

• K∗0 DeltaChi2MassOneTrack;

• τ+ DeltaChi2OneTrack;

• µ pT;

• K∗0 flight distance2;

• K∗0 IsoBDTThirdValue;

• π (from K∗0) IsoBDTThirdValue;

• K (from K∗0) IsoBDTThirdValue;

• τ+ decay vertex χ2;

• τ− (→µνν) analytically reconstructed transverse momentum using “+” solu-
tion (tauM_PT_a).

The variable rankings are similar among the data-taking years, therefore only the
one for 2016 MC and background data is shown in Table A.5. Figure A.8 shows
the 2016 variable distributions, while the flattened BDT distributions for signal
and background samples are reported in Fig. A.9.
The chosen working point for the MVA selection is:

selection BDT > 0.5. (A.4)

The working point is not optimized.
The total selection efficiencies are reported in Table A.6. Table A.7 gathers the

input parameters for the fit and the statistics after the full selection.

2The B0 and K∗0 decay vertices are distinct because of resolution effects.
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Table A.5: Selection BDT variables ranking for the 2016 3π3π final state, using the Dalitz
plane strategy.

Rank Name Separation

1 tauP_P_b 0.1335
2 B_NC_PTASYMMUON 0.1001
3 Kst_DeltaChi2MassTwoTrack 0.09145
4 Kst_DeltaChi2MassOneTrack 0.08535
5 tauP_DeltaChi2OneTrack 0.08444
6 mu_PT 0.05847
7 Kst_FD_ORIVX 0.05474
8 Kst_IsoBDTThirdValue 0.03228
9 pi_IsoBDTThirdValue 0.02705
10 K_IsoBDTThirdValue 0.0256
11 tauP_ENDVERTEX_CHI2 0.02425
12 tauM_P_tr_a 0.01079
13 B_BKSTTAUTAUCDFISO 0.01033

Table A.6: Selection efficiency for the 3πµ final state, for strategy involving the Dalitz
plane.

Year Efficiency (×10−5)

2011 3.39± 0.11
2012 3.12± 0.10
2015 2.79± 0.16
2016 4.70± 0.11
2017 5.37± 0.10
2018 4.82± 0.10
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Figure A.8: 2016 3πµ final state BDT1 variable distributions using the Dalitz plane
strategy.
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Figure A.9: Selection BDT distribution for 3πµ signal and background training samples,
using the Dalitz plane strategy. The flat transformation is applied.

Table A.7: Values of the input parameters for the likelihood fit for the 3πµ final state,
using the Dalitz plane strategy. Shown are the normalization factor αy, its
inverse fy, the ratio of efficiencies in leftover and signal region εlfvy /ε

sig
y and

the number of events in data leftover region. Moreover, reported are also the
number of events in the data signal region with fitBDT < 0.7 nblindy and the
number of events in the data leftover region with fitBDT < 0.7 nlfv, blindy .

Year αy (10−6) fy εlfvy /ε
sig
y nlfvy nblindy nlfv, blindy

2011 5.09± 0.63 196574± 24184 0.953± 0.042 12592 8606 11720
2012 2.33± 0.28 429158± 51125 0.970± 0.032 28665 19794 26756
2015 13.2± 1.7 76020± 10088 0.952± 0.075 5526 3700 5355
2016 1.39± 0.17 717917± 85093 1.012± 0.034 60126 41672 57962
2017 1.19± 0.14 840889± 98488 0.962± 0.021 63273 44265 60427
2018 1.25± 0.15 796874± 93193 0.974± 0.019 71139 50383 68013
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The variables used to train the fitBDT are chosen using the iterative procedure
after applying the full selection on the training samples. They are:

• τ+ DealtaChi2OneTrack;

• τ+ decay vertex z −B0 decay vertex z;

• τ+ neutral cone isolation IT;

• τ+ neutral cone isolation Pasym;

• π and K (from K∗0) DOCA;

• K∗0 flight distance3 χ2;

• B0 decay vertex χ2;

• µ IsoBDTSecondValue;

• τ− (→µνν) z component of analytically reconstructed momentum using “+”
solution (tauM_PZ_a);

• selection BDT.

Similarly to the selection BDT, only the variable ranking for 2016 MC and back-
ground data is shown in Table A.8. Figure A.10 shows the 2016 variable distribu-
tions, while the flattened BDT distributions for signal and background samples are
reported in Fig. A.11.

Table A.8: FitBDT variables ranking for the 2016 3πµ final state, using the Dalitz plane
strategy.

Rank Name Separation

1 flat_FirstmuBDT 0.1572
2 tauP_DeltaChi2OneTrack 0.07944
3 B_tauP_DistZ 0.05873
4 B_NC_ITTAUP 0.05151
5 B_NC_PASYMTAUP 0.05139
6 Kst_DOCAKpi 0.03413
7 Kst_FDCHI2_ORIVX 0.02108
8 B_ENDVERTEX_CHI2 0.01415
9 mu_IsoBDTSecondValue 0.008815
10 tauM_PZ_a 0.002582

3The B0 and K∗0 decay vertices are distinct because of resolution effects.
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Figure A.10: FitBDT variable distributions for the 2016 3πµ final state, using the Dalitz
plane strategy.

The comparison between the fitBDT distribution in the signal and leftover
regions is shown in Fig. A.12. Also in this case a trend is present in the pull of the
distributions, which suggests the presence of a correlation between the fitBDT and
the invariant masses used to define the Dalitz plane.
The expected upper limit in the case where no signal is observed is computed

using the CLs method:

B(B0→ K∗0τ+τ−) < 4.77 · 10−4 at 95% CL, (A.5)

where the above result takes into account only the statistical uncertainty. The
upper limit is ∼ 1.8 times higher than the one obtained with the default K∗0 mass
strategy shown in Table 8.12. For this reason, and because of the fact that the
fitBDT background distribution is not well described by the events in the leftover
region, the Dalitz plane strategy is discarded.
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Figure A.11: FitBDT distribution for 3πµ signal and background training samples, using
the Dalitz plane strategy. The flat transformation is applied.
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Figure A.12: Comparison of the 3πµ fitBDT distribution in signal and leftover regions in
logarithmic scale, using the Dalitz plane strategy. The distribution in the
signal region is shown for values of fitBDT < 0.7. The dashed lines in the
pull correspond to the ±3σ difference.
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Appendix B

BDT complementary information

In this Appendix complementary information on the BDTs used in the analysis
is reported.

B.1 3π3π final state

BDT1

The BDT1 variable rankings are reported in Tables B.1, B.2, B.3, B.4 for each
data-taking period.
The BDT1 variable distributions are reported in Figs. B.1, B.2, B.3, B.4 for each
data-taking period.

Table B.1: Run 1 BDT1 variables ranking for the 3π3π final state.

Rank Name Separation

1 B_OPT_tau_decayLengthMin 0.3249
2 tau_FDCHI2_ORIVXMax 0.3141
3 rhoMassMax 0.3118
4 tau_MMax 0.2249
5 B_M 0.1351
6 tau_M12Min 0.06809
7 B_M_opt 0.06603
8 piM_IsoBDTThirdValueMin 0.05827
9 tau_DOCAMAXMax 0.02455
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Table B.2: 2016 BDT1 variables ranking for the 3π3π final state.

Rank Name Separation

1 rhoMassMax 0.3473
2 B_OPT_tau_decayLengthMin 0.3113
3 tau_FDCHI2_ORIVXMax 0.2636
4 tau_MMax 0.224
5 B_M 0.1777
6 B_NC_PASYM 0.1718
7 tau_M12Min 0.08475
8 B_M_opt 0.06619
9 piM_IsoBDTThirdValueMin 0.06602
10 tau_DOCAMAXMax 0.03923

Table B.3: 2017 BDT1 variables ranking for the 3π3π final state.

Rank Name Separation

1 rhoMassMax 0.3455
2 B_OPT_tau_decayLengthMin 0.3163
3 tau_FDCHI2_ORIVXMax 0.2633
4 tau_MMax 0.2294
5 B_M 0.179
6 B_NC_PASYM 0.1748
7 tau_M12Min 0.08621
8 piM_IsoBDTThirdValueMin 0.06196
9 B_M_opt 0.05781
10 tau_DOCAMAXMax 0.02171

Table B.4: 2018 BDT1 variables ranking for the 3π3π final state.

Rank Name Separation

1 rhoMassMax 0.3484
2 B_OPT_tau_decayLengthMin 0.2984
3 tau_FDCHI2_ORIVXMax 0.263
4 tau_MMax 0.2178
5 B_M 0.1872
6 B_NC_PASYM 0.1839
7 tau_M12Min 0.09561
8 piM_IsoBDTThirdValueMin 0.06609
9 B_M_opt 0.05201
10 tau_DOCAMAXMax 0.0254
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Figure B.1: Run 1 BDT1 variable distributions for the 3π3π final state.
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Figure B.2: 2016 BDT1 variable distributions for the 3π3π final state.
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Figure B.3: 2017 BDT1 variable distributions for the 3π3π final state.
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Figure B.4: 2018 BDT1 variable distributions for the 3π3π final state.
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BDT2

The BDT2 variable rankings are reported in Tables B.5, B.6, B.7, B.8 for each
data-taking period.
The BDT2 variable distributions are reported in Figs. B.5, B.6, B.7, B.8 for each
data-taking period.

Table B.5: Run 1 BDT2 variables ranking for the 3π3π final state.

Rank Name Separation

1 B_OPT_chi2 0.1747
2 tau_DeltaChi2OneTrackMax 0.1623
3 tau_DeltaChi2TwoTrackMin 0.09527
4 Kst_FD_ORIVX 0.06397
5 tau_ENDVERTEX_CHI2Max 0.04972
6 B_ENDVERTEX_CHI2 0.04075
7 B_DIRA_OWNPV 0.0374
8 K_IsoBDTSecondValue 0.02786
9 pi_IsoBDTSecondValue 0.02669
10 Kst_IsoBDTSecondValue 0.02628
11 tau_DeltaChi2MassOneTrackMin 0.02593
12 Kst_MINIPCHI2 0.02158
13 B_OPT_tau_decayLengthErrMin 0.02043
14 Kst_DeltaChi2OneTrack 0.01829
15 tau_ENDVERTEX_dist3D 0.01349
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Table B.6: 2016 BDT2 variables ranking for the 3π3π final state.

Rank Name Separation

1 B_OPT_chi2 0.1668
2 tau_DeltaChi2OneTrackMax 0.122
3 tau_DeltaChi2TwoTrackMin 0.07155
4 Kst_FD_ORIVX 0.0679
5 tau_ENDVERTEX_CHI2Max 0.04859
6 B_ENDVERTEX_CHI2 0.04412
7 K_IsoBDTSecondValue 0.03804
8 Kst_IsoBDTSecondValue 0.03387
9 B_NC_ITTAUMax 0.03357
10 tau_DeltaChi2MassOneTrackMin 0.02576
11 pi_IsoBDTSecondValue 0.02425
12 B_DIRA_OWNPV 0.02277
13 B_OPT_tau_decayLengthErrMin 0.01902
14 tau_ENDVERTEX_dist3D 0.009936
15 Kst_MINIPCHI2 0.009417
16 Kst_DeltaChi2OneTrack 0.008241

Table B.7: 2017 BDT2 variables ranking for the 3π3π final state.

Rank Name Separation

1 B_OPT_chi2 0.1599
2 tau_DeltaChi2OneTrackMax 0.1314
3 Kst_FD_ORIVX 0.08463
4 tau_DeltaChi2TwoTrackMin 0.07398
5 B_ENDVERTEX_CHI2 0.04206
6 tau_ENDVERTEX_CHI2Max 0.03822
7 pi_IsoBDTSecondValue 0.03599
8 B_DIRA_OWNPV 0.03582
9 Kst_IsoBDTSecondValue 0.03553
10 K_IsoBDTSecondValue 0.03274
11 tau_DeltaChi2MassOneTrackMin 0.0235
12 B_NC_ITTAUMax 0.01928
13 tau_ENDVERTEX_dist3D 0.012
14 Kst_DeltaChi2OneTrack 0.01186
15 Kst_MINIPCHI2 0.01166
16 B_OPT_tau_decayLengthErrMin 0.01101
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Table B.8: 2018 BDT2 variables ranking for the 3π3π final state.

Rank Name Separation

1 B_OPT_chi2 0.1841
2 tau_DeltaChi2OneTrackMax 0.1223
3 tau_DeltaChi2TwoTrackMin 0.0822
4 Kst_FD_ORIVX 0.07556
5 tau_ENDVERTEX_CHI2Max 0.05581
6 B_ENDVERTEX_CHI2 0.05237
7 B_DIRA_OWNPV 0.02918
8 Kst_IsoBDTSecondValue 0.02897
9 K_IsoBDTSecondValue 0.02798
10 pi_IsoBDTSecondValue 0.02725
11 tau_DeltaChi2MassOneTrackMin 0.02196
12 B_NC_ITTAUMax 0.02191
13 Kst_DeltaChi2OneTrack 0.01388
14 tau_ENDVERTEX_dist3D 0.01298
15 B_OPT_tau_decayLengthErrMin 0.01167
16 Kst_MINIPCHI2 0.008038
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Figure B.5: Run 1 BDT2 variable distributions for the 3π3π final state.
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Figure B.6: 2016 BDT2 variable distributions for the 3π3π final state.
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Figure B.7: 2017 BDT2 variable distributions for the 3π3π final state.
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Figure B.8: 2018 BDT2 variable distributions for the 3π3π final state.
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FitBDT

The fitBDT variable rankings are reported in Tables B.9, B.10, B.11, B.12 for
each data-taking period.
The fitBDT variable distributions are reported in Figs. B.9, B.10, B.11, B.12 for
each data-taking period.

Table B.9: Run 1 fitBDT variables ranking for the 3π3π final state.

Rank Name Separation

1 flat_First3piBDT 0.128
2 B_OPT_tau_decayLengthMin 0.1004
3 resMassMin 0.05291
4 tau_P_optMin 0.05248
5 rhoMassMin 0.04714
6 tau_MMin 0.03564
7 tau_P_aMax 0.0331
8 B_OPT_tau_decayLengthMax 0.02932
9 B_IP_OWNPV 0.02786
10 piP1_IsoBDTThirdValueMax 0.02195
11 B_BPVVDRHO 0.02194
12 B_FDCHI2_OWNPV 0.02065
13 piP1_IsoBDTSecondValueMin 0.02038
14 tau_BPVVDZMax 0.01768
15 tau_IsoBDTSecondValueMax 0.01161

236



Table B.10: 2016 fitBDT variables ranking for the 3π3π final state.

Rank Name Separation

1 flat_First3piBDT 0.1063
2 B_OPT_tau_decayLengthMin 0.07326
3 B_OPT_tau_decayLengthMax 0.04968
4 tau_MMin 0.04711
5 resMassMin 0.03536
6 tau_P_aMax 0.03256
7 rhoMassMin 0.03207
8 tau_P_optMin 0.02815
9 B_BPVVDRHO 0.01637
10 B_IP_OWNPV 0.01608
11 piP1_IsoBDTSecondValueMin 0.0143
12 B_NC_SPTTAUMin 0.01277
13 tau_IsoBDTSecondValueMax 0.01198
14 tau_BPVVDZMax 0.01179
15 B_FDCHI2_OWNPV 0.0106
16 piP1_IsoBDTThirdValueMax 0.01039

Table B.11: 2017 fitBDT variables ranking for the 3π3π final state.

Rank Name Separation

1 flat_First3piBDT 0.1361
2 B_OPT_tau_decayLengthMin 0.0802
3 B_OPT_tau_decayLengthMax 0.0452
4 tau_MMin 0.03285
5 rhoMassMin 0.03056
6 tau_P_optMin 0.03043
7 tau_P_aMax 0.02588
8 resMassMin 0.02183
9 B_IP_OWNPV 0.01829
10 piP1_IsoBDTThirdValueMax 0.01727
11 B_BPVVDRHO 0.01307
12 B_FDCHI2_OWNPV 0.01126
13 tau_BPVVDZMax 0.01107
14 piP1_IsoBDTSecondValueMin 0.009764
15 B_NC_SPTTAUMin 0.007229
16 tau_IsoBDTSecondValueMax 0.007175
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Table B.12: 2018 fitBDT variables ranking for the 3π3π final state.

Rank Name Separation

1 flat_First3piBDT 0.1145
2 B_OPT_tau_decayLengthMin 0.0674
3 B_OPT_tau_decayLengthMax 0.04162
4 tau_MMin 0.03079
5 tau_P_optMin 0.02779
6 tau_P_aMax 0.02749
7 rhoMassMin 0.02086
8 resMassMin 0.01967
9 piP1_IsoBDTSecondValueMin 0.01613
10 B_IP_OWNPV 0.01441
11 piP1_IsoBDTThirdValueMax 0.01133
12 tau_BPVVDZMax 0.01078
13 B_BPVVDRHO 0.0107
14 B_FDCHI2_OWNPV 0.009125
15 B_NC_SPTTAUMin 0.009122
16 tau_IsoBDTSecondValueMax 0.007391
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Figure B.9: Run 1 fitBDT variable distributions for the 3π3π final state.
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Figure B.10: 2016 fitBDT variable distributions for the 3π3π final state.
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Figure B.11: 2017 fitBDT variable distributions for the 3π3π final state.
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Figure B.12: 2018 fitBDT variable distributions for the 3π3π final state.
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B.2 3πµ final state

BDT1

The BDT1 variable rankings are reported in Tables B.13, B.14, B.15, B.16 for
each data-taking period.
The BDT1 variable distributions are reported in Figs. B.13, B.14, B.15, B.16 for
each data-taking period.

Table B.13: Run 1 BDT1 variables ranking for the 3πµ final state.

Rank Name Separation

1 Kst_DIRA_ORIVX 0.07935
2 Kst_FD_ORIVX 0.07318
3 tauP_M 0.05278
4 pi_PT 0.04167
5 B_M 0.03697
6 Kst_DOCAKpi 0.03308
7 tauP_M23 0.02841
8 tauP_FD_ORIVX 0.02528
9 K_IsoBDTSecondValue 0.01952
10 mu_PT 0.009725

Table B.14: 2016 BDT1 variables ranking for the 3πµ final state.

Rank Name Separation

1 Kst_FD_ORIVX 0.07009
2 pi_PT 0.05982
3 Kst_DIRA_ORIVX 0.05976
4 tauP_M 0.05178
5 Kst_DOCAKpi 0.05028
6 B_M 0.04118
7 mu_PT 0.0411
8 tauP_M23 0.03284
9 K_IsoBDTSecondValue 0.02676
10 tauP_FD_ORIVX 0.02549
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Figure B.13: Run 1 BDT1 variable distributions for the 3πµ final state.

Table B.15: 2017 BDT1 variables ranking for the 3πµ final state.

Rank Name Separation

1 Kst_DIRA_ORIVX 0.0735
2 Kst_FD_ORIVX 0.06666
3 pi_PT 0.04991
4 tauP_M 0.04634
5 Kst_DOCAKpi 0.03523
6 B_M 0.03462
7 tauP_M23 0.03236
8 tauP_FD_ORIVX 0.0242
9 K_IsoBDTSecondValue 0.01894
10 mu_PT 0.01412
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Table B.16: 2018 BDT1 variables ranking for the 3πµ final state.

Rank Name Separation

1 Kst_DIRA_ORIVX 0.0744
2 Kst_FD_ORIVX 0.06132
3 pi_PT 0.04816
4 tauP_M 0.0456
5 B_M 0.03871
6 Kst_DOCAKpi 0.03611
7 tauP_M23 0.03592
8 tauP_FD_ORIVX 0.02369
9 K_IsoBDTSecondValue 0.02052
10 mu_PT 0.01438
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Figure B.14: 2016 BDT1 variable distributions for the 3πµ final state.
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Figure B.15: 2017 BDT1 variable distributions for the 3πµ final state.
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Figure B.16: 2018 BDT1 variable distributions for the 3πµ final state.
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BDT2

The BDT2 variable rankings are reported in Tables B.17, B.18, B.19, B.20 for
each data-taking period.
The BDT2 variable distributions are reported in Figs. B.17, B.18, B.19, B.20 for
each data-taking period.

Table B.17: Run 1 BDT2 variables ranking for the 3πµ final state.

Rank Name Separation

1 flat_FirstmuBDT 0.06876
2 tauP_FDCHI2_ORIVX 0.02402
3 B_DOCAtauPtauM 0.009868
4 Kst_DIRA_ORIVX 0.003898
5 Kst_FD_ORIVX 0.003715

Table B.18: 2016 BDT2 variables ranking for the 3πµ final state.

Rank Name Separation

1 flat_FirstmuBDT 0.07082
2 tauP_FDCHI2_ORIVX 0.02067
3 B_DOCAtauPtauM 0.007188
4 Kst_FD_ORIVX 0.006785
5 Kst_DIRA_ORIVX 0.004946

Table B.19: 2017 BDT2 variables ranking for the 3πµ final state.

Rank Name Separation

1 flat_FirstmuBDT 0.06685
2 tauP_FDCHI2_ORIVX 0.01426
3 B_DOCAtauPtauM 0.007371
4 Kst_FD_ORIVX 0.004982
5 Kst_DIRA_ORIVX 0.002519
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Figure B.17: Run 1 BDT2 variable distributions for the 3πµ final state.

Table B.20: 2018 BDT2 variables ranking for the 3πµ final state.

Rank Name Separation

1 flat_FirstmuBDT 0.06823
2 tauP_FDCHI2_ORIVX 0.01325
3 B_DOCAtauPtauM 0.00999
4 Kst_FD_ORIVX 0.00357
5 Kst_DIRA_ORIVX 0.00349
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Figure B.18: 2016 BDT2 variable distributions for the 3πµ final state.
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Figure B.19: 2017 BDT2 variable distributions for the 3πµ final state.
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Figure B.20: 2018 BDT2 variable distributions for the 3πµ final state.
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FitBDT

The fitBDT variable rankings are reported in Tables B.21, B.22, B.23, B.24 for
each data-taking period.
The fitBDT variable distributions are reported in Figs. B.21, B.22, B.23, B.24 for
each data-taking period.

Table B.21: Run1 fitBDT variables ranking for the 3πµ final state.

Rank Name Separation

1 tauP_DIRA_ORIVX 0.1574
2 tauP_DOCAMAX 0.02661
3 tauP_M12 0.02156
4 B_Mcor 0.02117
5 Kst_DIRA_OWNPV 0.01619
6 tauP_MINIPCHI2 0.01589
7 B_DOCAKsttauP 0.0137
8 B_ENDVERTEX_CHI2 0.01331
9 tauP_IsoBDTSecondValue 0.0123
10 mu_OWNPV_CHI2 0.008332

Table B.22: 2016 fitBDT variables ranking for the 3πµ final state.

Rank Name Separation

1 tauP_DIRA_ORIVX 0.1423
2 B_NC_PASYM 0.105
3 tauP_DOCAMAX 0.03273
4 tauP_M12 0.02605
5 Kst_DIRA_OWNPV 0.02393
6 B_DOCAKsttauP 0.01835
7 B_Mcor 0.01772
8 tauP_MINIPCHI2 0.01668
9 B_ENDVERTEX_CHI2 0.01263
10 tauP_IsoBDTSecondValue 0.01227
11 mu_OWNPV_CHI2 0.01059
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Table B.23: 2017 fitBDT variables ranking for the 3πµ final state.

Rank Name Separation

1 tauP_DIRA_ORIVX 0.1499
2 B_NC_PASYM 0.1023
3 B_ENDVERTEX_CHI2 0.02458
4 tauP_DOCAMAX 0.02123
5 B_DOCAKsttauP 0.01804
6 B_Mcor 0.01739
7 tauP_M12 0.01658
8 Kst_DIRA_OWNPV 0.01184
9 tauP_IsoBDTSecondValue 0.01043
10 mu_OWNPV_CHI2 0.01007
11 tauP_MINIPCHI2 0.007632

Table B.24: 2018 fitBDT variables ranking for the 3πµ final state.

Rank Name Separation

1 tauP_DIRA_ORIVX 0.1372
2 B_NC_PASYM 0.1
3 tauP_M12 0.02474
4 tauP_DOCAMAX 0.02206
5 B_Mcor 0.01742
6 B_ENDVERTEX_CHI2 0.01742
7 B_DOCAKsttauP 0.01673
8 tauP_IsoBDTSecondValue 0.0101
9 mu_OWNPV_CHI2 0.009681
10 Kst_DIRA_OWNPV 0.008193
11 tauP_MINIPCHI2 0.006073
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Figure B.21: Run 1 fitBDT variable distributions for the 3πµ final state.
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Figure B.22: 2016 fitBDT variable distributions for the 3πµ final state.
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Figure B.23: 2017 fitBDT variable distributions for the 3πµ final state.
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Figure B.24: 2018 fitBDT variable distributions for the 3πµ final state.
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Appendix C

Data-MC comparison

In this Appendix the comparison plots between data and MC are shown. The
variables labelled as τ variables refer to the D mesons.

The data-MC comparison for the 2011 dataset is shown in Figs. C.1, C.2, C.3,
C.4, C.5 and C.6.
The data-MC comparison for the 2012 dataset is shown in Figs. C.7, C.8, C.9,
C.10, C.11 and C.12.
The data-MC comparison for the 2015 dataset is shown in Figs. C.13, C.14, C.15,
C.16, C.17 and C.18.
The data-MC comparison for the 2016 dataset is shown in Figs. C.19, C.20, C.21,
C.22, C.23 and C.24.
The data-MC comparison for the 2017 dataset is shown in Figs. C.25, C.26, C.27,
C.28, C.29 and C.30.
The data-MC comparison for the 2018 dataset is shown in Figs. C.31, C.32, C.33,
C.34, C.35 and C.36.
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Figure C.1: Data-MC comparison for the 2011 dataset using the B0→ D−D+
s channel

(part 1).
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Figure C.2: Data-MC comparison for the 2011 dataset using the B0→ D−D+
s channel

(part 2).

259



N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.3608702χ

 Momentum [MeV/c]-τ
0 100 200 300 400 500

310×

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.1551092χ

 SmallestDeltaChi2MassOneTrack-τ
2000 4000 6000 8000 10000

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 0.9955452χ

 SmallestDeltaChi2OneTrack-τ
0 100 200 300 400 500

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 0.6842542χ

 SmallestDeltaChi2TwoTracks-τ
0 500 1000 1500 2000

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 0.8051982χ

 Iso BDT 11
-π -τ

0 5 10 15

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.1334622χ

 Iso BDT 21
-π -τ

1− 0.5− 0

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.5281932χ

 Iso BDT 31
-π -τ

1− 0.5− 0 0.5

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.0229032χ

 Iso BDT 12
-π -τ

0 5 10 15

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.0589622χ

 Iso BDT 22
-π -τ

1− 0.5− 0

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.5882312χ

 Iso BDT 32
-π -τ

1− 0.5− 0 0.5

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.3532732χ

 Iso BDT 1+π -τ
0 5 10 15

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.8322052χ

 Iso BDT 2+π -τ
1− 0.5− 0

Pu
ll

5−
3−
1−
1
3
5

Figure C.3: Data-MC comparison for the 2011 dataset using the B0→ D−D+
s channel

(part 3).
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Figure C.4: Data-MC comparison for the 2011 dataset using the B0→ D−D+
s channel

(part 4).
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Figure C.5: Data-MC comparison for the 2011 dataset using the B0→ D−D+
s channel

(part 5).
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Figure C.6: Data-MC comparison for the 2011 dataset using the B0→ D−D+
s channel

(part 6).

263



N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1

sWeighted Data

Monte Carlo

/ndof = 0.8055862χ

B BPVVDRHO [mm]
0 2 4 6

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.1789032χ

B DIRA OWNPV
0.9999 0.99992 0.99994 0.99996 0.99998 1

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.1404132χ

2χB Endvertex 
0 5 10 15

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.3946942χ

2χB Flight distance 
0 20000 40000 60000

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.6680982χ

B impact parameter [mm]
0 0.05 0.1 0.15 0.2

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.3328682χ

 refitted decay length error [mm] mm-τ
0 1 2 3

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 3.2725472χ

 refitted decay length [mm]-τ
0 20 40 60 80

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.2608342χ

 refitted decay length error [mm] mm+τ
0 1 2 3

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.6836512χ

 refitted decay length [mm]+τ
0 50

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.1390832χ

2χDecayTreeFitter 
0 10 20 30 40 50

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 3.8722602χ

 Iso BDT 1-τ
0 5 10 15

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.8189822χ

 Iso BDT 2-τ
1− 0.5− 0

Pu
ll

5−
3−
1−
1
3
5

Figure C.7: Data-MC comparison for the 2012 dataset using the B0→ D−D+
s channel

(part 1).
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Figure C.8: Data-MC comparison for the 2012 dataset using the B0→ D−D+
s channel
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Figure C.9: Data-MC comparison for the 2012 dataset using the B0→ D−D+
s channel
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Figure C.10: Data-MC comparison for the 2012 dataset using the B0→ D−D+
s channel

(part 4).

267



N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 0.7549582χ

 Flight distance [mm]+τ
0 20 40 60

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1

sWeighted Data

Monte Carlo

/ndof = 1.4395722χ

TauP M12
1000 1500

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1

sWeighted Data

Monte Carlo

/ndof = 1.0652522χ

TauP M13
500 1000 1500

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1

sWeighted Data

Monte Carlo

/ndof = 0.9724612χ

TauP M23
1000 1500

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.0991472χ

2χ IP +τ
0 2000 4000 6000 8000

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.1298122χ

 Momentum [MeV/c]+τ
0 100 200 300 400 500

310×

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.1663272χ

 SmallestDeltaChi2MassOneTrack+τ
2000 4000 6000 8000 10000

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.1059632χ

 SmallestDeltaChi2OneTrack+τ
0 100 200 300 400 500

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 0.9740112χ

 SmallestDeltaChi2TwoTracks+τ
0 500 1000 1500 2000

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 2.4759262χ

 Iso BDT 1-π +τ
0 5 10 15

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.5736932χ

 Iso BDT 2-π +τ
1− 0.5− 0

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 2.6329232χ

 Iso BDT 3-π +τ
1− 0.5− 0 0.5

Pu
ll

5−
3−
1−
1
3
5

Figure C.11: Data-MC comparison for the 2012 dataset using the B0→ D−D+
s channel
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Figure C.12: Data-MC comparison for the 2012 dataset using the B0→ D−D+
s channel

(part 6).
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Figure C.13: Data-MC comparison for the 2015 dataset using the B0→ D−D+
s channel

(part 1).
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Figure C.14: Data-MC comparison for the 2015 dataset using the B0→ D−D+
s channel

(part 2).
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Figure C.15: Data-MC comparison for the 2015 dataset using the B0→ D−D+
s channel

(part 3).
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Figure C.16: Data-MC comparison for the 2015 dataset using the B0→ D−D+
s channel

(part 4).
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Figure C.17: Data-MC comparison for the 2015 dataset using the B0→ D−D+
s channel

(part 5).
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Figure C.18: Data-MC comparison for the 2015 dataset using the B0→ D−D+
s channel

(part 6).
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Figure C.19: Data-MC comparison for the 2016 dataset using the B0→ D−D+
s channel
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Figure C.20: Data-MC comparison for the 2016 dataset using the B0→ D−D+
s channel
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Figure C.21: Data-MC comparison for the 2016 dataset using the B0→ D−D+
s channel

(part 3).

278



N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 2.0022692χ

 Iso BDT 32
-π -τ

1− 0.5− 0 0.5

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.5925302χ

 Iso BDT 1+π -τ
0 5 10 15

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 2.1228552χ

 Iso BDT 2+π -τ
1− 0.5− 0

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.4221332χ

 Iso BDT 3+π -τ
1− 0.5− 0 0.5

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.6286272χ

 NC IT+τ
0 0.2 0.4 0.6 0.8 1

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.2828832χ

 NC SPT+τ
0 2000 4000 6000 8000

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 2.6688012χ

 Iso BDT 1+τ
0 5 10 15

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.7357782χ

 Iso BDT 2+τ
1− 0.5− 0

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.6612042χ

 Iso BDT 3+τ
1− 0.5− 0 0.5

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1

sWeighted Data

Monte Carlo

/ndof = 1.3210032χ

 BPVVDZ [mm]+τ
0 20 40 60 80 100

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 0.8140592χ

 DIRA ORIVX+τ
1− 0.5− 0 0.5 1

Pu
ll

5−
3−
1−
1
3
5

N
or

m
al

iz
ed

 c
an

di
da

te
s

5−10

4−10

3−10

2−10

1−10

1
sWeighted Data

Monte Carlo

/ndof = 1.3926562χ

 DOCAMAX [mm]+τ
0 0.05 0.1 0.15 0.2

Pu
ll

5−
3−
1−
1
3
5

Figure C.22: Data-MC comparison for the 2016 dataset using the B0→ D−D+
s channel
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s channel

(part 5).
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Figure C.24: Data-MC comparison for the 2016 dataset using the B0→ D−D+
s channel
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Figure C.25: Data-MC comparison for the 2017 dataset using the B0→ D−D+
s channel
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Figure C.26: Data-MC comparison for the 2017 dataset using the B0→ D−D+
s channel
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Figure C.27: Data-MC comparison for the 2017 dataset using the B0→ D−D+
s channel
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Figure C.28: Data-MC comparison for the 2017 dataset using the B0→ D−D+
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Figure C.29: Data-MC comparison for the 2017 dataset using the B0→ D−D+
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Figure C.30: Data-MC comparison for the 2017 dataset using the B0→ D−D+
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Figure C.31: Data-MC comparison for the 2018 dataset using the B0→ D−D+
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Figure C.35: Data-MC comparison for the 2018 dataset using the B0→ D−D+
s channel
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