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I will use my Rapporteur's prerogative to single 
out for discussion a small subset of the papers sub­
mitted; the complete list will be found elsewhere in 
these Proceedings. I will also comment on some rele­
vant progress made, since the XHIth Conference on 
High-Energy Physics, in papers not submitted here. 

Of course, the grand unsolved problem of this ses­
sion is to find a suitable framework on which to hang 
theories of elementary particles. As you well know, 
there are contending proposals for such a framework 
that centre around two main sets of ideas: S-matrix 
theory and field theory. I will spend about equal 
time on each. 

Let me begin with S-matrix theory and for the mo­
ment exclude infra-red problems; I will come back to 
them later. 

It is a standard feature of S-matrix theory that 
analyticity, crossing symmetry, and unitarity are to­
gether enormously restrictive. It is also notorious 
that their consequences are not trivial to work out. 
For example, it was nearly nine years after Mandelstam 
proposed his representation for two-particle scatter­
ing amplitudes that it was finally shown by Martin 
that the analyticity arising directly from causality, 
elastic unitarity, and crossing cannot be used to 
prove the Mandelstam representation in the equal mass 
case1). Martin's work left open the question whether 
the larger analyticity domain implied by the 
Mandelstam representation is even compatible with uni­
tarity and crossing. This kind of question is one 
which also appears in bootstrap dynamics customarily 
coupled there with special approximations. 

In an interesting paper2) (see also Ref. 3 for 
details), Atkinson has settled this question for the 
scattering amplitudes of charged and neutral pions. 
Since the method involved is relatively new and 
likely to be fruitful in the future, let me describe 
it in some detail. The idea is to use fixed-point 
theorems of non-linear functional analysis to prove 
the existence of solutions of the unitarity and cross­
ing relations. These theorems provide one of the 
few highly developed techniques of functional analy­
sis useful in proving the existence and determining 
the properties of the solutions of non-linear equa­
tions. Their use has been eloquently advocated in 
S-matrix theory by Lovelace4) and earlier, in field 
theory, by J.G. Taylor5). The simplest result of this 
kind is the so-called contraction mapping theorem. 
It says that if T is a mapping of a complete normed 
space into itself, satisfying 

| | T ( x ) - T ( y ] | | < k | | x - y | | (1) 

with k < 1, then T possesses a unique fixed point X o . 

In fact, pick any point z of the space and consider the 
sequence z, T(z), T 2(z), ... . It converges to x 0. 

[Proof: For any two points x and y, and any integers 
k, n > 0, ||Tk+n(x)-Tn(y)|| < kn|| Tk(x) - y || - 0 as n - ».] 
There is a rich variety of other theorems and devices 
for telling whether a fixed point is isolated or part 
of a continuous family. 

The general strategy of the application to the 
present problem for the case of neutral pions is as 
follows. The scattering amplitude is expressed in 
terms of the spectral weight p by 
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where v is some symmetric function. For each fixed v, 

Eqs. (3), (4), and (5) can be written symbolically 

as 

P r = T(p) . (6) 

Straightforward arguments show that if v(s,t) is 

chosen to vanish for 

then a p for which p 1 = p, i.e. a fixed point of T, 

is a solution to the problem. It remains to show 

that for a suitable choice of admissable v and p , 

T maps admissable p into themselves in such a manner 

that a fixed-point theorem is applicable. I spare 

you the technical details6-', which are long and in­

genious, but I want to emphasize the significance of 

the result, v is a kind of measure of the contribu­

tion to p from inelastic processes. For each v from 

a rich class, one gets an admissible scattering amp­

litude. Thus, crudely speaking, the ÏÏ-TT scattering 
amplitude is no more limited by Mandelstam analyti-

city, crossing symmetry, and unitarity than is the 

scattering amplitude of a potential scattering prob­

lem. In each case the possible amplitudes are para­

metrized by a real function, here v; in the poten­

tial scattering case, by the potential. Of course, 

the significance of the two real functions is com­

pletely different. 

The above deals with the case of neutral pions. 

Atkinson has obtained similar results for charged and 

neutral pions taken together, again assuming no sub­

traction in the Mandelstam representation. 

Whilst this work settles a long-standing question 

of principle, it leaves open another of considerable 

practical importance. Can the results be extended 

to the case in which subtractions are necessary? Here 

Atkinson reported that he has been able to carry the 

argument through, except for the proof that there are 

solutions satisfying inelastic unitarity. If this 

difficulty could be overcome, the theory would become 

a practical tool for the description of pions as we 

see them in Nature. 

In three interesting papers7"9^, Wanders and co­

workers have shown that known exact information on 

the structure of the TT-TT scattering amplitude has sig­
nificant practical consequences. In Ref. 7, Wanders 

derives four sum rules for the amplitudes A^(s,t) un­

der four assumptions as to their high-energy behav­

iour. For example, from 

where the are known positive functions. When one 

inserts the observed p , f, and G resonances and a 

reasonable estimate for A§, one gets a violation of 

this sum rule. 
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Conclusion: the fixed t-dispersion relation for the 
isospin 0 T-matrix element T^°)(s,t,u) requires a 
subtraction. The remaining three sum rules are more 
difficult to check and, on first investigation, gave 
no clear-cut discrepancy with experiment. 

In Ref. 9, the objective is somewhat different. 
There the authors develop various parametrizations 
of S-wave TT-IT scattering amplitudes and ask whether 
the imposition of known exact inequalities yields 
practical restrictions on the parameters. The answer 
is that they do. Reference 8 is devoted to the prob­
lem of parametrizing partial wave TT-TT scattering am­
plitudes satisfying analyticity, unitarity, and a 
simple mathematical assumption about the form of the 
discontinuity on the left-hand cut. The problem is 
reduced to the solutions of a set of difference equa­
tions for the N and D functions of the N/D method; 
these are solved for some simple cases. The variety 
of solutions reflects the presence of CDD poles. 

Several papers on the structure of form factors 
were submitted to this session1 0" 1 2). Of these, I 
will discuss first that of Nagel10) which describes 
generalizations of results of Balachandran and 
Loeffel13). Nagel considers a function F analytic 
in the complex t-plane with the exception of the cut 
0 < b < t < °°, and satisfying f real for -°° < t < b 
and for each s > 0 i 

|F(t)| < [l+(Atr] M ee e l t' 5 , (11) 

where At is the distance from t to the cut. Various 
assumptions are made about how F(t) approaches zero 
as t -> -°° along the real axis. In all cases, F has 
a unique boundary value on the cut in the sense of 
distribution theory, and satisfies a generalized un-
subtracted dispersion relation 

If N > 2, then also 
00 

lim f c(T,ô)in Im F ( T) di = 0 

n = 0, 1, N-2 . (14) 

These are generalized superconvergence relations. 

In addition to these very general and precise 
results on form factors, there were several others 
submitted to the Conference where the purpose is to 
derive relations suitable for parametrizing the data 
on the pion form factor. An example is the work of 
Truong and Vinh-Mau12). Here the existence of ex­
perimental data on the cross-section e + + e" + TT++ IT" 
suggests an attempt to write a dispersion relation 
which contains |F(t)|. The trick is to consider 
In F(t)//t - 4u 2 . If F is analytic in the plane cut 
from 4y 2 to +™ and sufficiently bounded, one gets, 
for t < 0, 

from the zeros of F. 
(15) 

The integral in Eq. (15) is directly computable from 
experiment. Expérimental information can also be used 
to estimate the remaining terms, and then Eq. (15) 
can be used to obtain upper and lower bounds on the 
form factor for t < 0, and for the pion electromag­
netic radius which is given by 1/6 (r2) = F'(0)/F(0). 

Before leaving the subject of S-matrix theory, I 
would like to list some outstanding developments of 
the last year and comment on their significance. 

1. Hepp's proof14) that the collision states 
are complete in non-relativistic n-body Schrôdinger 
theory. 

Here is something taken completely for granted 
in relativistic S-matrix theory, but which for years 
resisted all attempts at proof in non-relativistic 
Schrôdinger theory. The key was the n-body genera­
lization by Yakubovsky15) of the Faddeev equations. 

2. The proof of superconvergence relations by 
Mahoux and Martin16). The practical importance of 
such relations is notorious. What is remarkable is 
the generality of the conditions under which they 
were proved. 
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3. The proof by Iagolnitzer and Stapp17) of 
the analyticity of collision amplitudes from assump­
tions on their dependence on impact parameters. 

It is good to have phenomenological S-matrix con­
ditions which guarantee some of the properties nor­
mally derived from field theory. 

4. Martin1 s counter-example18 ) showing the impos­
sibility of passing to the second sheet of a partial 
wave amplitude. 

Here is a puzzle found by Martin. He asks what 
general principle is there to prevent a partial wave 
amplitude from having a set of zeros at the points 
(p/N) + (i/N), p = 1, ... , N; N = 1, 2, ... ? 
These zeros cluster in such a way as to produce a 
natural boundary on the elastic cut [0,l], The boun­
dary value of such an amplitude is a rather nasty 
beast since it has a dense set of discontinuities. 
Of course, Freund and Karplus contemplated the possi­
bility of such a natural boundary some time ago, but 
it lay inside the second sheet. The practical impor­
tance of the phenomenon described here is that it 
would block Martin's use of unitarity to enlarge the 
analyticity domain of the full scattering amplitude. 
The only general principle I know of, that Martin's 
counter-example would violate, is Goldberger's Prin­
ciple: it is absurd that Nature could be so unkind. 

5. The work of H. Epstein and V. Glaser on the 
five-point function19). 

The authors start from the observation that, for 
the inelastic amplitude (2 particles 3 particles), 
the mass shell does not, in general, lie inside the 
analyticity domain of any single generalized retard­
ed function. To obtain the existence of scattering 
amplitudes as the restriction of such a retarded func­
tion to the mass shell, they propose a decomposition 
(non-unique and only valid locally) of the p-space 
analytic functions into functions with better analy­
tic properties. The existence of such decompositions 
has been established for the five-point function, and 
appears to be provable for the n-point function. 

Now I turn to the second general area of discus­
sion: model quantum field theories. Before reviewing 
the papers submitted to the Conference, let me com­
ment on the state of the problem of proving the exis­

tence of solutions in model field theories. It was 
reported at Berkeley two years ago that it had been 
possible to prove the existence of Green's functions 
for two cases : the neutral scalar field with quartic 
self-coupling2 °); and the theory of a spinor field 
coupled to a scalar field by a Yukawa interaction21). 
In both cases the theory was butchered by the intro­
duction of an ultra-violet cut-off and a box cut-off. 
The ultra-violet cut-off was more drastic in the ^ 
theory since only a finite number of modes were al­
lowed to be coupled. It has turned out that these 
results can be generalized in two ways. First, one 
can now couple an infinite number of Bose modes; and 
secondly, one can handle all derivative-free coup-
lings of a set of Bose fields to a set of Fermi fields, 
provided there are present formally positive Bose self-
couplings which dominate the rest of the couplings in 
which bosons appear22) (see also Ref. 23) . 

[Example: U^x) = g $ty<t> + \<j)3 + \ ^ with \ > o]. 

Thus, one has available a large class of cut-off mo­
dels, and attention has turned to the problem of re­
moving the cut-offs. Here very interesting progress 
has been made. 

Let me recall that the reason for the box cut­
off is that one wants to start by giving meaning to 
the Hamiltonian of a model by using the $0K repre­
sentation of the commutation and anticommutation re­
lations. When the box is removed so that the theory 
becomes Euclidian-invariant, strange representations 
of the CCR and CAR have to be used (Haag's theorem), 
and we find it difficult to specify which ones. On 
the other hand, the reason for the introduction of 
the ultra-violet cut-off is ultra-violet divergences, 
and the traditional remedy for that is renormaliza-
tion. The customary first step is therefore to try 
to define a renormalized Hamiltonian in a box. From 
it one computes the unitary operator describing the 
time development of the theory; and from it, in turn, 
one computes the vacuum and vacuum expectation values ; 
the hope then is that these will have a limit as the 
box becomes large. They will then define a theory 
that is free from cut-offs. Let me try to summarize 
the situation, as it now stands, in Table 1. 
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TABLE 1 

Status of existence theorems for model field theories. 

H r e n is the renormalized Hamiltonian 
CCR = Canonical Commutation Relations 
CAR = Canonical Anticommutation Relations 
Haag Fields = exp i cf>(f,t) and exp i ïï(f,t), where <f> and TT 

are the ordinary canonical fields smeared in 
space with test functions f and g, respec­
tively. Good vacuum means it is the limit 
of the cut-off ground states and is the 
ground state. 

The first point to be made is that all the re­

sults are for super-renormalizable theories. The 

step to the renormalizable case looks difficult with 

present techniques, so the attempt of the authors to 

push the super-renormalizable case through to the end 

before worrying about the renormalizable but not 

super-normalizable theories seems sensible. The 

second point is that to define H r e n as a bilinear 

form is not enough to show that it is an operator. 

However, if one can show H r e n £ B, one can use 

Friedrich1 s extension to define an operator and a 

unitary propagator exp i H r e n t. The trouble with 

this procedure is that one does not have very much 

control over the spectrum of ̂ Y e n * It is much more 

satisfactory when one can show that H r e n is essen­

tially self-adjoint on a suitable domain. That has 

so far been done only for the theory in two-dimen­

sional space-time. What has been done in the other 

cases is to prove the existence of a dressing trans­

formation T , which maps the domain of the unperturb­

ed Hamiltonian on the domain of the renormalized 

Hamiltonian. Here there arises a significant tech­

nical distinction between those cases in which the 

cut-off Hamiltonian H R converges strongly to H r e n as 

the cut-off K + 0 0 : 

lim H KT K $ = H r e n T w # (16) 
K -+00 

for $ in a dense domain, and those for which the 

convergence is weak: 

lim ( T K *, H K T K y) = ( T . *, H r e n T. ¥). (17) 
K + co 

Strong convergence has been established for the Yukawa 
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interaction in two-dimensional space-time, and even 
for the interaction i j j # 2 ($ a fermion field and <f> a 
boson field)32), but it does not hold for the <f>4 

theory in three-dimensional space-time. In fact, in 
this latter theory the range of the dressing transfor­
mation is not in cf>0K space, but rather in a Hilbert 
space with an altered scalar product. 

It is out of the question to attempt to summarize 
the methods by which these results have been achieved, 
but it is probably worth while to note that one basic 
tool is just the kind of canonical transformation 
used by Schwinger in 1946-1947 to display the self-
energy divergences. The book of Friedrichs33) based 
on his Boulder Lectures of 1960 has also been a source 
of inspiration. Whatever one may regard as the his­
torical sources of inspiration, the theory includes a 
new and deep singular perturbation theory directly 
adapted to the problems of field theory3k\ 

The significance of the ( ) in the last two rows 
of the table is this. In Paper I, Glimm and Jaffe 
(Ref. 34) have announced that their Paper II will 
deal with the existence of the vacuum and the vacuum 
expectation values. They have written Paper II, but 
are still checking details and do not wish to make a 
statement at this time. There is a reasonable expec­
tation that we will soon have what we have been itch­
ing to get our hands on for two decades: a non-trivial 
relativistically invariant theory on which to test the 
heuristic core of our subject: perturbation theory as 
a guide to the structure of the S-matrix . 

In my opinion these developments are exceedingly 
promising. You can try to catch up with them by work­
ing through the Varenna Courses of Jaffe and Glimm 
(August 1968) which should be published shortly. 

I will now turn to papers in this field submit­
ted to this meeting. 

I have emphasized that because of Haag's theorem 
the 4>0K representation of the CCR and CAR cannot be 
used in Euclidian-invariant theories with vacuum po­
larization. Last year saw the emergence of a proof 
that a large class of strange representations, the 
so-called product representations, are not usuable 
either35^* Since product representations are at 
present the largest, easily accessible, class of 

strange representations, it is of interest to know 
what kinds of Hamiltonians can be made meaningful by 

3 

using them. Reed has shown 
for the Hamiltonian 

^ 3 6) that this is the case 

k = 1 

dk£mn Qk % • (18 ) 
k,£,m,n=i 

Here it is assumed that > 0, d^ = > 0, and 
the off-diagonal (L -, are small in the sense that & klmn 
they satisfy 

(The double prime means omit diagonal terms in both 
summations.) One has to choose the x^'s so as to 
subtract the vacuum energy o£ the Hamiltonian omit­
ting off-diagonal terms. H then has a pure discrete 
spectrum with a non-degenerate ground state (vacuum). 
The techniques used in proving this result (Kato 
perturbation theory) are closely related to those in 
Ref. 22 although the two investigations were carried 
out independently. The conditions [Eq. (19)] are 
not satisfied in the usual ̂  theory. 

Simon37) has taken a half-step forward in a 
perennial unsolved problem of field theory: the con­
vergence of renormalized perturbation expansions for 
Green's functions in a theory of a spinor and scalar 
field interacting through the Yukawa interactions. 
There have been questions raised whether the behav­
iour of the renormalized series might be completely 
different from that of the regularized unrenormalized 
series. [See Guerra and Marinaro38) where that seems 
to be the case for a butchered model] Simon does 
not answer that question for the theory he considers, 
but rather shows that the regularized renormalized 
series has a non-zero radius of convergence. The 
theory is that of the Yukawa interaction in two-
dimensional space-time in which the only primitively 
divergent diagrams are 
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th 
Now the usual expression for the n order contribu­
tion to a Green's function is 

Q1 f f j 1» • • •> H j x 

n! J J [ l , n y ^ - . y j 
x [l, n z p zj d 1 4 d n , (20) 

where the first factor of the integrand is a deter­
minant of fermion propagators and the second is a 
hafnian of boson propagators. Simon rearranges this 

•f"L> 

series to obtain a sum in which the n term is the 
same, except that the determinant is replaced by a 
bubblessian and the bosons propagators in the hafnian 
must become aerated propagators which are the re-
normalized sums of bubbles 

A bubblessian is a determinant where the terms in its 
expansion that contain two cycles are deleted. Re­
markably enough, the bubblessian satisfies an ana­
logue of the Hadamard inequality for determinants, 
so that if the propagators are now regularized and 
the integrations are taken over a finite space-time 
box, the standard proof of convergence of the series 
works. This proves absolutely nothing about the re-
normalized series itself. 

39*) 

Now I turn to the paper submitted by Ruijgrok ;, 
which treats a nice old problem: the fixed-source 
charge-symmetric scalar meson theory. Here the 
Hamiltonian is 

3 3 

i = i i = i 

where the a^ and a^ are annihilation and creation 
operators for S-wave mesons of isospin index i, and 
T 1 are the Pauli matrices acting on the isospin of a 
fixed nucléon. By a shrewd choice of basis, Ruijgrok 
reduces the problem of calculating the bound-state 
energies numerically to a convenient form. Numerical 
results are then compared with weak and strong coup­
ling expansions. It is very instructive for those 
who like to see how strong, intermediate, and weak 
couplings compare in a concrete non-trivial case. 

The third and last part of my report is devoted 
to general field theory. From among the numerous 
contributions I have chosen four, not only because 
what they do is interesting, but because the ques­
tions they raise are likely to be interesting in the 
future. 

Mandelstam's communication4 °), which is based on 
two thick preprints, solves the problem: derive the 
Feynman-de Witt rules for the evaluation of the per­
turbation series of Green's functions of the quantum 
theory of gravitation and extend them to the Yang-
Mills theory. Mandelstam's derivation uses a gauge-
invariant formalism which he developed some years ago 
for the treatment of quantum electrodynamics and grav­
itation. The basic field variables in this formal­
ism depend not only on a point x but on a path to x. 
The procedure is to define path-dependent Green's 
functions in terms of these fields, to define path-
independent Green's functions in terms of the path-
dependent ones, and finally to develop a perturbation 
theory for the path-independent Green's functions. 
In this process the mysterious closed loops of auxi­
liary scalar particles, introduced by Feynman and 
de Witt to save unitarity, automatically appear. 

Mandelstam1s work raises a number of problems of 
principle which, in my opinion, display some of the 
most serious gaps in the existing general theory of 
fields : 

1. How is operator-gauge invariance to be formulated 
in a precise mathematical way? 

2. How does one express the fact that some fields 
are local functions of others? 

3. How can the unique role of mass-zero fields be 
explained in this operator language? 

4. What is the substitute for the S-matrix in the 
presence of infra-red problems? 

5 . Does the occurrence of such expressions as 
exp [i e fx dÇuA (Ç)] ̂ (x) in operator gauge transfor­
mations mean that the Green's functions of the theory 
will in general be non-tempered? 

If we are ever to reach the stage in which we 
can appreciate what Weinberg was saying yesterday 
about chiral invariance as a dynamical symmetry, 
some answers will be needed to the above questions. 
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There was one paper submitted to this Conference 
which goes in the right direction to increase our 
comprehension of the above situation. That is the 
paper of iopuszanski1* ̂ . In it he shows that for a 
field theory of a single kind of massive particle, 
there exists no one parameter symmetry group whose 
generator is the integral of the fourth component of 
a conserved vector field. Whilst the proof offered 
is incomplete, the theorem deserves careful study. 

Now I come to the work of Efimov42-' (and earlier 
papers). To explain it, let me recall that in the 
definition of a field the requirements on the test 
function space are not unequivocal. The use of test 
functions in A (the infinitely differentiable func­
tions of fast decrease) leads to tempered fields. 
On the other hand, using the spaces of test functions 
introduced by Jaffe, one can admit worse than polyno­
mial boundedness in momentum space and still formu­
late a notion of strict localizability. The first 
important idea in Efimov* s work is to introduce a 
definition of the notion of support of a functional 
which works when the test functions are entire func­
tions: a linear functional F defined on a set of en­
tire functions has a region G as support if it is 
continuous in the test functions when the test func­
tions converge uniformly on G. (Since a sequence of 
entire functions can converge uniformly on G whilst 
going wild outside G, it is clear that if F has G 
as support it cannot depend on what is going on out­
side G.) 

Using this notion of support, it is possible to 
define local commutativity of fields : A and B are 
relatively local if the functional 

(».[A(f), B(g)» 

has support in or on the light cone in the difference 
variable - x^. Much remains to be done to work 
out the properties of this interesting definition. 
It is a candidate for the formalism to deal with 
Green's functions which increase exponentially or 
worse in momentum space. 

In the work of Efimov, cleverly chosen entire 
functions are also used in quite a different way. 
They appear as form factors in a non-local interac­
tion Lagrangian. Efimov has found a set of rules for 
evaluating the perturbation series in such a theory, 
and finds it compatible with the usual unitarity 
relativistic invariance and analyticity requirements. 
This is a remarkable result, and the problem deserves 
careful study to be sure that no hidden troubles have 
been overlooked. 

My last remark in this report directs your atten­
tion to the work of Oksak and Todorov1*3), who have 
given a free field transforming according to an in­
finite-dimensional representation of SL(2,C) satis­
fying the spectral condition and violating the PCT 
theorem. This simple example makes clear the desir­
ability of further study of the relationships be­
tween local observables, local fields, and symmetries. 
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D I S C U S S I O N 

WEINBERG: I have a comment and a question. 

Does the failure of Wandersf sum rule depend on 
the use only of the p, f, and g resonances in the 
numerical analysis? With only these resonances con­
tributing, all other sum rules also fail. 

In the case where a subtraction appears in the 
Mandelstam representation, can the contraction-map­
ping theorem be used for all values of the subtrac­
tion constants, or only for sufficiently small 
values? 

WIGHTMAN: I will let Wanders answer to the first 
point, but it is characteristic of the applications 
of the fixed-point theorem that you form your space 
of admissible solutions with some restrictions, so 
it would be unlikely if there were restrictions on 
the subtraction constant. You are looking for a 
fixed point in some neighbourhood, and if you move 
away you will be in another neighbourhood in which 
you can carry on the discussion. If somebody would 
give you a suggestion of what the amplitude would 
look like, you would adapt your norms to that and 
repeat the proof for it. It is not a local theory 
but a kind of semi-local theory. Typically you 
would have neighbourhoods and do different things in 
different neighbourhoods. 
ATKINSON: My point is that the fixed-point theorem 
works without subtraction constant or if the subtrac­
tion constant is sufficiently small. It is a possi­
bility that you can go away to some other region but 
not using the contraction-mapping but perhaps other 
methods. 

WANDERS: I think Professor Weinberg misunderstood 
our result. We assume dispersion relations without 
subtractions for TTTT scattering and derive a sum rule 
from this assumption. This sum rule is violated, 
and we conclude that subtractions are needed. Of 
course this is not surprising because everyone gues­
ses that one needs subtractions, because everybody 
believes that one should have constant cross-sec­
tions at infinity. 

CHEW: It was suggested by Professor Wightman that 
the Atkinson result seems to undermine the bootstrap 

idea. However, it has been recognized for some time 
by bootstrappers that with ordinary methods of analy­
sis, one needs a postulate usually described as "sec­
ond-degree analyticity". This assumptions sometimes 
is expressed in terms of asymptotic behaviour and 
sometimes in terms of Regge poles. In either case, 
second-degree analyticity is a condition not required 
by Atkinson. 

One reason that axiomatists have not considered 
second-degree analyticity is that it still lacks a 
precise definition. I should like to emphasize the 
possible relevance here of the type of integral equa­
tion described yesterday in FrazerTs report—an idea 
discovered by Amati, Stanghellini and Fubini, and re­
cently generalized by Low and Goldberger. This type 
of equation gives an unambiguous meaning to Regge 
asymptotic behaviour, and rests only on the existence 
of recursive relations between physical region multi-
particle unitarity integrals. As emphasized by Low, 
it is conceivable that this type of equation can be 
given a rigorous basis. If so, it may then be un­
necessary to add a postulate of second-degree analy­
ticity—the latter being a consequence of multi-par­
ticle unitarity. 

Note that Atkinson included in his considerations 
only a small part of inelastic unitarity. He ignored 
the detailed connection between production amplitudes 
and the two-particle imaginary part that constitutes 
the basis for Regge behaviour in the above-described 
equation. 

FEINBERG: Does the work of Oksok and Todorov on the 
possibility of non-TCP invariance for infinite compo­
nent fields imply that if the infinite component 
fields interact with finite component fields, then 
TCP invariance will also not be satisfied for the 
particles described by the finite component fields? 

WIGHTMAN: I do not think that has been worked out, 
but I suppose it would be true. It might be that you 
could not make them interact at all. I do not know. 
Of course, the paper in question is academic in that 
it treats free fields and does not ask what happens 
to interactions. 
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LEE; Referring to the work of Glimm and Jaffe, does 

"no cut-off 1 imply re lat iv is t ic invariance automati­

cally? 

WIGHTMAN: I t is not yet proved. The construction 

goes at a fixed time, and therefore in a given Lorentz 

frame, constructing the temporal development in that 

frame, and then a vacuum and GreenTs functions. That 

part guarantees to you that space-time translations 

are represented by unitary operators, but does not 

gurantee that there is a unitary operator for Lorentz 

transformations. However, i t seems very unlikely 

that Lorentz invariance would f a i l , because you prove 

local commutativity and therefore one has the l ight 

cone. I am also surprised that i t has not been 

proved yet. 

KftLLEN: Concerning the results of Jaffe et a l . , what 

is the difference with the old field-theoretical 

ideas of the f i f t i e s , say, the work of Kristensen? 

They gave up because of problems of convergence, I 

believe. What is the new ingredient that makes 

things work now? 

WIGHIMAN: I think that the difference is that now 

we do not impose anything on the point l imit that en­

forced conditions on the form factors, I think these 

form factors would violate that condition. This is 

an impression; I have not looked at the matter care­

fu l ly . 


