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I will use my Rapporteur's prerogative to single
out for discussion a small subset of the papers sub-
mitted; the complete 1list will be found elsewhere in
these Proceedings. I will also comment on some rele-
vant progress made, since the XIIIth Conference on

High-Energy Physics, in papers not submitted here.

Of course, the grand unsolved problem of this ses-

sion is to find a suitable framework on which to hang
As you well know,

there are contending proposals for such a framework

theories of elementary particles.
that centre around two main sets of ideas: S-matrix
theory and field theory. I will spend about equal

time on each.

Let me begin with S-matrix theory and for the mo-
ment exclude infra-red problems; I will come back to

them later.

It is a standard feature of S-matrix theory that
analyticity, crossing symmetry, and unitarity are to-
gether enormously restrictive. It is also notorious

that their consequences are not trivial to work out.

For example, it was nearly nine years after Mandelstam

proposed his representation for two-particle scatter-
ing amplitudes that it was finally shown by Martin
that the analyticity arising directly from causality,
elastic unitarity, and crossing cannot be used to
prove the Mandelstam representation in the equal mass
case!), Martin's work left open the question whether
the larger analyticity domain implied by the
Mandelstam representation is even compatible with uni-
tarity and crossing. This kind of question is one
which also appears in bootstrap dynamics customarily

coupled there with special approximations.

In an interesting paperz) (see also Ref. 3 for
details),
scattering amplitudes of charged and neutral pions.

Atkinson has settled this question for the

Since the method involved is relatively new and
likely to be fruitful in the future, let me describe
it in some detail. The idea is to use fixed-point
theorems of non-linear functional analysis to prove
the existence of solutions of the unitarity and cross-
ing relations. These theorems provide one of the
few highly developed techniques of functional analy-
sis useful in proving the existence and determining
the properties of the solutions of non-linear equa-
tions. Their use has been eloquently advocated in
S-matrix theory by Lovelace*) and earlier, in field
theory, by J.G. Taylor®). The simplest result of this
kind is the so-called contraction mapping theorem.

It says that if T is a mapping of a complete normed

space into itself, satisfying

IT(x) - T(y)1 < kllx=yll o)

with k < 1, then T possesses a unique fixed point Xo.
In fact, pick any point z of the space and consider the

sequence z, T(z), T%(z), ... . It converges to Xo.

[Proof: For any two points x and y, and any integers
k, n>0, [T5x)-T(y)] < KYTH) -yl >0 as n + w.]
There is a rich variety of other theorems and devices
for telling whether a fixed point is isolated or part

of a continuous family.

The general strategy of the application to the
present problem for the case of neutral pions is as
follows. The scattering amplitude is expressed in

terms of the spectral weight p by

Als,t) =% f ds' f de' p(s',t) [(s'- ) (t'-t) " + (s'- -t +s+ 1) H(-a+ste) (t'—t]_lj , (@
b dos)

where o(s) = min (4s/s-16, 16s/s-4).
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Given p one can compute also

F 1

D(s,t) = %T- f ds' pi's_,:]
oft)
the t-channel absorptive part of A, and
2 hlzzg)

os,z) = % 8(z— 2z, + 1) [s_-f} J‘
%

where k(z,z,,2,) = z®+z2}+ 2} -2z 272, -1,

2o =1+ 2t/(s - 4), and h(z,20) = z zo - (22 - 1)1/2.
Then finally one can compute a new o' by writing

D'[S:t) = pel(sst) + pel(t’s) + V[S’t) ’ (5

where v is some symmetric function. For each fixed v,
Egs. (3), (4), and (5) can be written symbolically
as

(6)
is

Straightforward arguments show that if v(s,t)
chosen to vanish for
8t

[1+ [t~16](t—4):|’

then a p for which p' = p, i.e. a fixed point of T,

16t
T t-16

<

S

is a solution to the problem. It remains to show
that for a suitable choice of admissable v and p,
T maps admissable p into themselves in such a manner
that a fixed-point tﬁeorem is applicable. I spare
you the technical details®) , which are long and in-
genious, but I want to emphasize the significance of
the result. v is a kind of measure of the contribu~
tion to p from inelastic processes. For each v from
a rich class, one gets an admissible scattering amp-
litude.

amplitude is no more limited by Mandelstam analyti-

Thus, crudely speaking, the 7-m scattering

city, crossing symmetry, and unitarity than is the
scattering amplitude of a potential scattering prob-
lem. In each case the possible amplitudes are para-
metrized by a real function, here v, in the poten-
tial scattering case, by the potential., Of course,
the significance of the two real functions is com-

pletely different.

The above deals with the case of neutral pions.
Atkinson has obtained similar results for charged and
neutral pions taken together, again assuming no sub-
traction in the Mandelstam representation.
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1 f ' p(sl’t]
o1 e )
oft)
h(z,z)) 1
dz dz, k™ %(z,2,,2,) D¥(s,z,) D(s,z,) (4)

]

Whilst this work settles a long-standing question
of principle, it leaves open another of considerable
practical importance. Can the results be extended
to the case in which subtractions are necessary? Here
Atkinson reported that he has been able to carry the
argument through, except for the proof that there are
If this

difficulty could be overcome, the theory would become

solutions satisfying inelastic unitarity.

a practical tool for the description of pions as we

see them in Nature.

In three interesting papers7'9) , Wanders and co-
workers have shown that known exact information on
the structure of the m-m scattering amplitude has sig-
In Ref. 7, Wanders
derives four sum rules for the amplitudes AI(s,t) un-

nificant practical consequences.

der four assumptions as to their high-energy behav-
iour. For example, from

Ids—i—A°(s,t)<w 0<t<t, (N
he gets
2Xx=4 03 oo 1o
J’ | T w Ax0) = = A%x0)
4 - —2—2 A'(x0) | =0.
(X"4] (8)

Expansion in partial waves then yields a sum rule
containing only observables

LI

= [ s €9 416),

L

il

with

I

(10)

where the f$IL are known positive functions. When one
inserts the observed p, £, and G resonances and a
reasonable estimate for A}, one gets a violation of

this sum rule.
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Conclusion: the fixed t-dispersion relation for the
isospin 0 T-matrix element T(O)(s,t,u) requires a
subtraction. The remaining three sum rules are more
difficult to check and, on first investigation, gave

no clear-cut discrepancy with experiment.

In Ref, 9, the objective is somewhat different.
There the authors develop various parametrizations
of S-wave m-m scattering amplitudes and ask whether
the imposition of known exact inequalities yields
practical restrictions on the parameters. The answer
is that they do. Reference 8 is devoted to the prob-
lem of parametrizing partial wave m-m scattering am-
plitudes satisfying analyticity, unitarity, and a
simple mathematical assumption about the form of the
discontinuity on the left-hand cut. The problem is
reduced to the solutions of a set of difference equa-
tions for the N and D functions of the N/D method;
these are solved for some simple cases. The variety

of solutions reflects the presence of CDD poles.

Several papers on the structure of form factors
19712} Of these, I
will discuss first that of Nagell°) which describes

were submitted to this session

generalizations of results- of Balachandran and
Loeffell?), Nagel considers a function F analytic
in the complex t-plane with the exception of the cut
0 <b<t<w and satisfying £ real for ~-» < t <b
and for each ¢ > 0

[Fe)| < [14+ ()" ] M & (1)

where At is the distance from t to the cut. Various
assumptions are made about how F(t) approaches zero
as t ~ -» along the real axis. In all cases, F has
a unique boundary value on the cut in the sense of

distribution theory, and satisfies a generalized un-

subtracted dispersion relation

,6) Im F
ft) = 1in 1 c(t,6) Im F(t) dt . ()
I t -1
6

where
- .
c(r,9) =[1+6T] exp —6t.

It

lim [tNF[t]—KJ =0

t+—

for some integer N =z 1, then
lim f [, Im F(r) dt = -1k . (13)

§+0
6

If N > 2, then also

©

lim f c(t,6)t" Im F1) d1=0

§+0

n=01, w:, N—2, (14)
These are generalized superconvergence relations.

In addition to these very general and precise
results on form factors, there were several others
submitted to the Conference where the purpose is to
derive relations suitable for parametrizing the data
on the pion form factor. An example is the work of
Truong and Vinh-Mau'2). Here the existence of ex-
perimental data on the cross-section e +e » 7 41
suggests an attempt to write a dispersion relation
which contains |F(t)|. The trick is to consider
In F(t)//t - 4u%. If T is analytic in the plane cut
from 4u? to +» and sufficiently bounded, one gets,
for t <0,

InFt) 1 In|g(t")] dt' o
/—T— == m + tems arising
et ! 2 b from the zeros of F.

(15)
The integral in Eq. (15) is directly computable from
experiment. Experimental information can also be used
to estimate the remaining terms, and then Eq. (15)
can be used to obtain upper and lower bounds on the
form factor for t < 0, and for the pion electromag-
netic radius which is given by 1/6 (r?) = F'(0)/F(0).

Before leaving the subject of S-matrix theory, I
would like to list some outstanding developments of
the last year and comment on their significance.

1. Hepp's prooflk) that the collision states
are complete in non-relativistic n-body Schrddinger

theory,

Here is something taken completely for granted
in relativistic S-matrix theory, but which for years
resisted all attempts at proof in non-relativistic
Schridinger theory. The key was the n-body genera-
lization by Yakubovskyls) of the Faddeev equations.

2. The proof of superconvergence relations by
Mahoux and Martin'®). The practical importance of
such relations is notorious. What is remarkable is
the generality of the conditions under which they

were proved.
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3. The proof by lagolnitzer and Stapp17) of
the analyticity of collision amplitudes from assump-

tions on their dependence on impact parameters.

It is good to have phenomenological S-matrix con-
ditions which guarantee some of the properties nor-
mally derived from field theory.

18) showing the impos-

4, Martin's counter-example
sibility of passing to the second sheet of a partial

wave amplitude.

Here is a puzzle found by Martin. He asks what
general principle is there to prevent a partial wave
amplitude from having a set of zeros at the points
(p/N) + i/N),p=1, ... ,N; N=1,2,...°7
These zeros cluster in such a way as to produce a
natural boundary on the elastic cut [0,1]. The boun-
dary value of such an amplitude is a rather nasty
beast since it has a dense set of discontimuities.

Of course, Freund and Karplus contemplated the possi-
bility of such a natural boundary some time ago, but
it lay inside the second sheet. The practical impor-
tance of the phenomenon described here is that it
would block Martin's use of unitarity to enlarge the
analyticity domain of the full scattering amplitude.
The only general principle I know of, that Martin's
counter-example would violate, is Goldberger's Prin-
ciple: it is absurd that Nature could be so unkind.

5. The work of H. Epstein and V. Glaser on the
five-point function!®).

The authors start from the observation that, for
the inelastic amplitude (2 particles -+ 3 particles),
the mass shell does not, in general, lie inside the
analyticity domain of any single generalized retard-
ed function. To obtain the existence of scattering
amplitudes as the restriction of such a retarded func-
tion to the mass shell, they propose a decomposition
{(non-unique and only valid locally) of the p-space
analytic functions into functions with better analy-
tic properties. The existence of such decompositions
has been established for the five-point function, and

appears to be provable for the n-point function,

Now I turn to the second general area of discus-
sion: model quantum field theories. Before reviewing
the papers submitted to the Conference, let me com-

ment on the state of the problem of proving the exis-

tence of solutions in model field theories. It was
reported at Berkeley two years ago that it had been
possible to prove the existence of Green's functions
for two cases: the neutral scalar field with quartic
self—coupling2°); and the theory of a spinor field
coupled to a scalar field by a Yukawa interaction?!).
In both cases the theory was butchered by the intro-
duction of an ultra-violet cut-off and a box cut-off.
The ultra-violet cut-off was more drastic in the ¢*
theory since only a finite mumber of modes were al-
It has turned out that these
results can be generalized in two ways.

lowed to be coupled.
First, one
can now couple an infinite number of Bose modes; and
secondly, one can handle all derivative-free coup-
lings of a set of Bose fields io a set of Fermi fields,
provided there are present formally positive Bose self-
couplings which dominate the rest of the couplings in
which bosons appearzz) (see also Ref. 23).

[kxanple: #4(x)=g Fpo -+ A6* + A6° with ), > 0.

Thus, one has available a large class of cut-off mo-
dels, and attention has turned to the problem of re-
moving the cut-offs. Here very interesting progress

has been made.

Let me recall that the reason for the box cut-
off is that one wants to start by giving meaning to
the Hamiltonian of a model by using the ¢OK repre-
sentation of the commtation and anticommutation re-
lations. When the box is removed so that the theory
becomes Fuclidian-invariant, strange representations
of the CCR and CAR have to be used (Haag's theorem),
and we find it difficult to specify which ones. On
the other hand, the reason for the introduction of
the ultra-violet cut-off is ultra-violet divergences,
and the traditional remedy for that is renormaliza-
tion. The customary first step is therefore to try
to define a renormalized Hamiltonian in a box. From
it one computes the unitary operator describing the
time development of the theory; and from it, in turn,
one computes the vacum and vacuum expectation values;
the hope then is that these will have a limit as the
box becomes large. They will then define a theory
that is free from cut-offs. Let me try to summarize

the situation, as it now stands, in Table 1.
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TABLE 1

Status of existence theorems for model field theories.

2-dim, 3-dim.
space-time | space-time
6% | Yukawa [ ¢ | Yukawa
Existence of H yes | yes yes yes
ren (24 (25) | (29) |(23) (28)
Box, H >-B yes | yes
cut-off (28] (26)
Existence of vacuum | yes
(30)
uv Existence of rep. of | yes yes
cut-off, CCR and CAR (27 (27)
Nobox Existence of fields | yes
(28)
Existence of Haag yes
fields (30)
No Existence of good ()
cut-offs | vacuum (3D
Existence of vacuum | ()
expectation values (3D

Hyen is the renormalized Hamiltonian

CCR = Canonical Commutation Relations

CAR = Canonical Anticommutation Relations

Haag Fields = exp i ¢(f,t) and exp i n(f,t), where ¢ and =
are the ordinary canonical fields smeared in
space with test functions f and g, respec-

tively.

Good vacuum means it is the limit

of the cut-off ground states and is the
ground state.

The first point to be made is that all the re-
sults are for super-renormalizable theories. The
step to the renormalizable case looks difficult with
present techniques, so the attempt of the authors to
push the super-renormalizable case through to the end
before worrying about the renormalizable but not
super-normalizable theories seems sensible. The
second point is that to define Hee 3 2 bilinear
form is not enough to show that it is an operator.
However, if one can show Hren.z B, one can use
Friedrich's extension to define an operator and a
The trouble with
this procedure is that one does not have very much

unitary propagator exp i Hren t.

control over the spectrum of Hr It is much more

en’
satisfactory when one can show that Hren is essen-

tially self-adjoint on a suitable domain. That has

so far been done only for the ¢* theory in two-dimen-
sional space-time. What has been done in the other
cases is to prove the existence of a dressing trans-
formation T_, which maps the domain of the unperturb-
ed Hamiltonian on the domain of the renormalized
Hamiltonian.

nical distinction between those cases in which the

Here there arises a significant tech-

cut-off Hamiltonian HK converges strongly to Hren as
the cut-off K - o

lim HyTg ¢ = Hpe T, 0 (16)

K+oo
for ¢® in a dense domain, and those for which the
convergence is weak:
Lim (Tg &, Hy Ty ¥) = (T, &, Hpen T.. V). (17)

K+o0

Strong convergence has been established for the Yukawa
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interaction in two-dimensional space-time, and even
for the interaction yy¢? (¥ a fermion field and ¢ a
boson field)32), but it does not hold for the ¢*
theory in three-dimensional space-time. In fact, in
this latter theory the range of the dressing transfor-
mation is not in ¢OK space, but rather in a Hilbert

space with an altered scalar product.

It is out of the question to attempt to summarize
the methods by which these results have been achieved,
but it is probably worth while to note that one basic
tool is just the kind of canonical transformation
used by Schwinger in 1946-1947 to display the self-
energy divergences. The book of Friedrichs®®) based
on his Boulder Lectures of 1960 has also been a source
of inspiration. Whatever one may regard as the his-
torical sources of inspiration, the theory includes a
new and deep singular perturbation theory directly

adapted to the problems of field theory3“).

The significance of the ( ) in the last two rows
of the table is this.
(Ref. 34) have announced that their Paper IT will

In Paper I, Glimm and Jaffe

deal with the existence of the vacuum and the vacuum
expectation values. They have written Paper II, but
are still checking details and do not wish to make a
statement at this time. There is a reasonable expec-
tation that we will soon have what we have been itch-
ing to get ocur hands on for two decades: a non-trivial
relativistically invariant theory on which to test the
heuristic core of our subject: perturbation theory as

a guide to the structure of the S-matrix .

In my opinion these developments are exceedingly
promising. You can try to catch up with them by work-
ing through the Varenna Courses of Jaffe and Glimm
(August 1968) which should be published shortly.

T will now turn to papers in this field submit-
ted to this meeting.

I have emphasized that because of Haag's theorem
the ¢0K representation of the CCR and CAR cannot be
used in Euclidian-invariant theories with vacuum po-
larization. Last year saw the emergence of a proof
that a large class of strange representations, the
so-called product representations, are not usuable
eitherzs) Since product representations are at

present the largest, easily accessible, class of

strange representations, it is of interest to know

what kinds of Hamiltonians can be made meaningful by

using them. Reed has shownse) that this is the case

for the Hamiltonian

©

H=Z wlpe+ qf —wl+
)

+ E: diemn Gk 92 9n Gn + (18)

k,4,m,n=1
Here it is assumed that W > 0, dk = dkkkk > 0, and
the off-diagonal dklmn are small in the sense that

" Wi [}
bl +[2) (2] -
IRl 1 1 1
EZ]dkﬂmn (d_ﬁ+gj‘lf+"'d—§)$a<l.

(19)

(The double prime means omit diagonal terms in both

they satisfy

dI‘StU

drstu

summations.) One has to choose the T 'S s0 as to
subtract the vacuum energy of the Hamiltonian omit-
ting off-diagonal terms. H then has a pure discrete
spectrum with a non-degenerate ground state (vacuum).
The techniques used in proving this result (Kato
perturbation theory) are closely related to those in
Ref. 22 although the two investigations were carried
out independently. The conditions [Eq. (19)] are

not satisfied in the usual ¢* theory.

Simon®”) has taken a half-step forward in a
perennial unsolved problem of field theory: the con-
vergence of renormalized perturbation expansions for
Green's functions in a theory of a spinor and scalar
field interacting through the Yukawa interactions.
There have been questions raised whether the behav-
iour of the renormalized series might be completely
different from that of the regularized unrenormalized
series. [See Guerra and Marinaro®®) where that seems
to be the case for a butchered model]]
not answer that question for the theory he considers,

Simon does

but rather shows that the regularized renormalized
series has a non-zero radius of convergence. The
theory is that of the Yukawa interaction in two-
dimensional space-time in which the only primitively
divergent diagrams are

& O
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Now the usual expression for the nth order contribu-

tion to a Green's function is
et j' j' [1,.",11 xp.",er y
n! Lwuyn y,eay,
X [1 sous I Zyy nes 2 | djy eees 4y (20)

where the first factor of the integrand is a deter-
minant of fermion propagators and the second is a

hafnian of boson propagators. Simon rearranges this

th term is the

series to obtain a sum in which the n
‘same, except that the determinant is replaced by a
bubblessian and the bosons propagators in the hafnian
must become aerated propagators which are the re-

normalized sums of bubbles

o onQO + oo en e

A bubblessian is a determinant where the terms in its
expansion that contain two cycles are deleted. Re-
markably enough, the bubblessian satisfies an ana-
logue of the Hadamard inequality for determinants,

so that if the propagators are now regularized and
the integrations are taken over a finite space-time
box, the standard proof of convergence of the series
works. This proves absolutely nothing about the re-

normalized series itself.

Now I turn to the paper submitted by Ruijgroksg).
which treats a nice old problem: the fixed-source
charge-symmetric scalar meson theory. Here the

Hamiltonian is

3
H=Zai*ai+giflai ,
i i=1

1=1

where the a; and a; are annihilation and creation

operators for S-wave mesons of isospin index i, and

' are the Pauli matrices acting on the isospin of a
fixed nucleon. By a shrewd choice of basis, Ruijgrok
reduces the problem of calculating the bound-state
energies numerically to a convenient form. Mumerical
results are then compared with weak and strong coup-
ling expansions. It is very instructive for those
who 1ike to see how strong, intermediate, and weak

couplings compare in a concrete non-trivial case.

The third and last part of my report is devoted
to general field theory. From among the numerous
contributions I have chosen four, not only because
what they do is interesting, but because the ques-
tions they raise are likely to be interesting in the

future.

Mandelstam's communication“°), which is based on
two thick preprints, solves the problem: derive the
Feynman-de Witt rules for the evaluation of the per-
turbation series of Green's functions of the quantum
theory of gravitation and extend them to the Yang-
Mills theory. Mandelstam's derivation uses a gauge-
invariant formalism which he developed some years ago
for the treatment of quantum electrodynamics and grav-
itation. The basic field variables in this formal-
ism depend not only on a point x but on a path to x.
The procedure is to define path-dependent Green's
functions in terms of these fields, to define path-
independent Green's functions in terms of the path-
dependent ones, and finally to develop a perturbation
theory for the path-independent Green's functions.

In this process the mysterious closed loops of auxi-
liary scalar particles, introduced by Feynman and
de Witt to save unitarity, automatically appear.

Mandelstam's work raises a number of problems of
principle which, in my opinion, display some of the
most serious gaps in the existing general theory of
fields:

1. How is operator-gauge invariance to be formulated

in a precise mathematical way?

2. How does one express the fact that some fields

are local functions of others?

3. How can the unique role of mass-zero fields be

explained in this operator language?

4. What is the substitute for the S-matrix in the

presence of infra-red problems?

5. Does the occurrence of such expressions as
exp[ie X dEUAu(g)] Y(x) in operator gauge transfor-
mations mean that the Green's functions of the theory
will in general be non-tempered?

If we are ever to reach the stage in which we
can appreciate what Weinberg was saying yesterday
about chiral invariance as a dynamical symmetry,
some answers will be needed to the above questions.
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There was one paper submitted to this Conference
which goes in the right direction to increase our
comprehension of the above situation. That is the
paper of Lopuszaﬁski“l). In it he shows that for a
field theory of a single kind of massive particle,
there exists no one parameter symmetry group whose
generator is the integral of the fourth component of
a conserved vector field. Whilst the proof offered
is incomplete, the theorem deserves careful study.

Now T come to the work of Efimov*?) (and earlier
papers). To explain it, let me recall that in the
definition of a field the requirements on the test
function space are not unequivocal. The use of test
functions in 4 (the infinitely differentiable func-
tions of fast decrease) leads to tempered fields.

On the other hand, using the spaces of test functions
introduced by Jaffe, one can admit worse than polyno-
mial boundedness in momentum space and still formu-
late a notion of strict localizability. The first
important idea in Efimov's work is to introduce a
definition of the notion of support of a functional
which works when the test functions are entire func-
tions: a linear functional F defined on a set of en-
tire functions has a region G as support if it is
continuous in the test functions when the test func-
tions converge uniformly on G. (Since a sequence of
entire functions can converge uniformly on G whilst
going wild outside G, it is clear that if F has G

as support it camnot depend on what is going on out-
side G.)

Using this notion of support, it is possible to
define local commutativity of fields: A and B are
relatively local if the functional

(0, A(£), Ble]}¥)

has support in or on the light cone in the difference
variable X\ = Xpe Much remains to be done to work
out the properties of this interesting definition.

It is a candidate for the formalism to deal with
Green's functions which increase exponentially or
worse in momentum space.

In the work of Efimov, cleverly chosen entire
functions are also used in quite a different way.
They appear as form factors in a non-local interac-
tion Lagrangian. Efimov has found a set of rules for
evaluating the perturbation series in such a theory,
and finds it compatible with the usual unitarity
relativistic invariance and analyticity requirements.
This is a remarkable result, and the problem deserves
careful study to be sure that no hidden troubles have
been overlooked.

My last remark in this report directs your atten-
tion to the work of Oksak and Todorov“3), who have
given a free field transforming according to an in-
finite-dimensional representation of SL(2,C) satis-
fying the spectral condition and violating the PCT
theorem. This simple example makes clear the desir-
ability of further study of the relationships be-
tween local observables, local fields, and symmetries.
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DISCUSSION

WEINBERG: 1 have a comment and a question.

Does the failure of Wanders' sum rule depend on
the use only of the p, f, and g resonances in the
numerical analysis? With only these resonances con-

tributing, all other sum rules also fail.

In the case where a subtraction appears in the
Mandelstam representation, can the contraction-map-
ping theorem be used for all values of the subtrac-
tion constants, or only for sufficiently small

values?

WIGHIMAN:
point, but it is characteristic of the applications

I will let Wanders answer to the first

of the fixed-point theorem that you form your space
of admissible solutions with some restrictions, so
it would be unlikely if there were restrictions on
the subtraction constant. You are looking for a
fixed point in some neighbourhood, and if you move
away you will be in another neighbourhood in which
you can carry on the discussion. If somebody would
give you a suggestion of what the amplitude would
look like, you would adapt your norms to that and
repeat the proof for it. It is not a local theory
but a kind of semi-local theory. Typically you
would have neighbourhoods and do different things in

different neighbourhoods.

ATKINSON: My point is that the fixed-point theorem
works without subtraction constant or if the subtrac-
tion constant is sufficiently small. It is a possi-
bility that you can go away to some other region but
not using the contraction-mapping but perhaps other
methods.

WANDERS:

our result. We assume dispersion relations without

I think Professor Weinberg misunderstood

subtractions for nm scattering and derive a sum rule
from this assumption. This sum rule is violated,
and we conclude that subtractions are needed. Of
course this is not surprising because everyone gues-
ses that one needs subtractions, because everybody
believes that one should have constant cross-sec-

tions at infinity.

CHEW: It was suggested by Professor Wightman that
the Atkinson result seems to undermine the bootstrap

idea. However, it has been recognized for some time
by bootstrappers that with ordinary methods of analy-
sis, one needs a postulate usually described as ''sec-
ond-degree analyticity". This assumptions sometimes
is expressed in terms of asymptotic behaviour and
sometimes in terms of Regge poles. In either case,
second-degree analyticity is a condition not required

by Atkinson.

One reason that axiomatists have not considered
second-degree analyticity is that it still lacks a
precise definition. I should like to emphasize the
possible relevance here of the type of integral equa-
tion described yesterday in Frazer's report--an idea
discovered by Amati, Stanghellini and Fubini, and re-
cently generalized by Low and Goldberger. This type
of equation gives an unambiguous meaning to Regge
asymptotic behaviour, and rests only on the existence
of recursive relations between physical region multi-
particle unitarity integrals. As emphasized by Low,
it is conceivable that this type of equation can be
given a rigorous basis. If so, it may then be un-
necessary to add a postulate of second-degree analy-
ticity--the latter being a consequence of multi-par-

ticle unitarity.

Note that Atkinson included in his considerations
only a small part of inelastic umitarity. He ignored
the detailed connection between production amplitudes
and the two-particle imaginary part that constitutes
the basis for Regge behaviour in the above-described

equation.

FEINBERG: Does the work of Oksok and Todorov on the
possibility of non-TCP invariance for infinite compo-
nent fields imply that if the infinite component
fields interact with finite component fields, then
TCP invariance will also not be satisfied for the
particles described by the finite component fields?

WIGHIMAN: T do not think that has been worked out,
It might be that you
I do not know.
Of course, the paper in question is academic in that

but I suppose it would be true.

could not make them interact at all.

it treats free fields and does not ask what happens
to interactions.
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LEE: Referring to the work of Glimm and Jaffe, does
"no cut-off" imply relativistic invariance automati-
cally?

WIGHTMAN: It is not yet proved., The construction
goes at a fixed time, and therefore in a given Lorentz
frame, constructing the temporal development in that
frame, and then a vacuum and Green's functions. That
part guarantees to you that space-time translations
are represented by unitary operators, but does not
gurantee that there is a unitary operator for Lorentz
transformations. However, it seems very unlikely
that Lorentz invariance would fail, because you prove
local commutativity and therefore one has the light
cone. I am also surprised that it has not been

proved yet.

KRLLEN: Concerning the results of Jaffe et al., what
is the difference with the old field-theoretical
ideas of the fifties, say, the work of Kristensen?
They gave up because of problems of convergence, I
believe, What is the new ingredient that makes

things work now?

WIGHIMAN: I think that the difference is that now
we do not impose anything on the point limit that en-
I think these
This 1s

forced conditions on the form factors.
form factors would violate that condition,
an impression, I have not looked at the matter care-
fully,




