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Abstract

One interesting property of black holes is that they obey thermodynamic laws. The entropy of

black holes is given by the area of the horizon and it is naturally expected to be understood from

the statistical mechanical viewpoint. However there has not been many things known about

black hole microstates in the gravity, even though their holographic understanding has been well-

known. In microstate geometry program which is a conjecture about black hole microstates,

typical microstates are described as smooth and entropyless (i.e., horizonless) supergravity so-

lutions which have the same mass, angular momentum, and charges as that of black holes. In

this thesis, a new class of black hole microstates are suggested and studied in addition to the

known microstate solutions and discussed in the context of microstate geometry program.
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would like to thank José J. Fernández-Melgarejo for his kind advices and instructive discussions.

Lastly, I would like to thank my family. My parents, Hyeongnam Bak and Youngsuk Oh, have

always encouraged me from a far distance. I thank them from the bottom of my heart. In

addition I have been able to do well, because of the very dedicated support from my wife

Jiyoung. I really appreciate it.

iii



Contents

Acknowledgement iii

1 Introduction 1

2 Harmonic solutions 5

2.1 Harmonic solutions in five-dimensional supergravity . . . . . . . . . . . . . . . . 5

2.2 Codimension-3 sources: multi-center solutions . . . . . . . . . . . . . . . . . . . . 10

2.3 Codimension-2 sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Codimension-2 harmonic solutions 15

3.1 Harmonic solutions as black hole microstates . . . . . . . . . . . . . . . . . . . . 15

3.2 Codimension-2 sources are inevitable . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 General remarks on codimension-2 solutions . . . . . . . . . . . . . . . . . . . . . 18

4 Abelian codimension-2 solutions 20

4.1 Examples of Abelian codimension-2 solutions . . . . . . . . . . . . . . . . . . . . 20

4.1.1 1-dipole solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.2 2-dipole solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.3 3-dipole solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Mixed configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Appendix 4.A Monodromic harmonic function . . . . . . . . . . . . . . . . . . . . . . 37

Appendix 4.B Superthread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Appendix 4.C Near-tube expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Non-Abelian codimension-2 solutions 43

5.1 Introduction and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iv



5.1.3 Implication for black hole microstates . . . . . . . . . . . . . . . . . . . . 46

5.2 Explicit construction of non-Abelian supertubes . . . . . . . . . . . . . . . . . . . 49

5.2.1 Non-Abelian supertubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.2 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.3 The near region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.4 The far region: coordinate system and boundary conditions . . . . . . . . 58

5.2.5 The far region: the solution . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Physical properties of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Geometry and charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2 Closed timelike curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.3 Bound or unbound? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.4 An argument for a bound state . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.5 A cancellation mechanism for angular momentum . . . . . . . . . . . . . 72

5.4 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Appendix 5.A Constrained configurations . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.A.1 Configurations with only one modulus . . . . . . . . . . . . . . . . . . . . 75

5.A.2 Configurations with only two moduli . . . . . . . . . . . . . . . . . . . . . 76

Appendix 5.B Supertubes in the one-modulus class . . . . . . . . . . . . . . . . . . . 78

5.B.1 Condition for a 1/4-BPS codimension-3 center . . . . . . . . . . . . . . . 78

5.B.2 Puffed-up dipole charge for general 1/4-BPS codimension-3 center . . . . 79

5.B.3 Round supertube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Appendix 5.C Matching to higher order . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Conclusions 83

A Convention 84

A.1 The type IIA uplift and Page charges . . . . . . . . . . . . . . . . . . . . . . . . . 85

B Duality transformation of harmonic functions 86

Bibliography 91

v



Chapter 1

Introduction

Black holes have been one major topic in theoretical physics since its discovery. They are in-

volved with many important concepts or puzzles in the modern theoretical physics, for example,

holography, information loss problem, etc. Black holes have entropy that is given by the area of

the horizon [1] and also obey thermodynamic laws [2]. As a thermodynamic object, black holes

are naturally supposed to have underlying microstates. Especially in string theory, it has been

able to uncover some aspects of them, e.g., [3, 4]. These understanding of black hole microstates

are basically relying on the gauge/gravity duality [5], namely the black hole entropy is accounted

for state counting of D-brane system which is the dual description of gravity. Although this

is very beautiful results of string theory, it would be really desirable if we could find a gravity

description for microstates of black holes. Once we find a such description, it would solve many

puzzles of black holes in a direct way, since we would know the exact microstructure of black

holes. Let us explain one approach in string theory to achieve this.

Because string theory is a microscopic theory of gravity, i.e., quantum gravity, black hole

microstates must be describable within string theory, at least as far as black holes that exist

in string theory are concerned. These microstates must have same charges, mass and angular

momentum as that of black holes and the scattering in the microstate must be well-defined as

a unitary process. The fuzzball conjecture1 [12, 13, 14, 15, 16] claims that typical microstates

spread over a macroscopic distance of the would-be horizon scale. More recent arguments

[17, 18] also support the view that the conventional picture of black holes must be modified at

the horizon scale and replaced by some non-trivial structure.

The microstates for generic black holes are expected to involve stringy excitations and, to

1 This was originated from the success of explaining the entropy of two-charge black holes as a smooth and

horizonless geometry [6, 7]. In the frame of D1-D5 black holes, the microstates are described as a Kaluza-Klein

monopole geometry which is smooth and horizonless. Note that the Kaluza-Klein monopole in this case is a dual

description of a supertube [8]. A similar analysis for 1/2-BPS states in AdS5×S5 was done in [9, 10, 11]. In this

thesis, we will mainly discuss three- and four-charge black holes respectively in five and four dimensions.
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describe them properly, we probably need quantum string field theory. However, for super-

symmetric black holes, the situation seems much more tractable. Many microstates for BPS

black holes have been explicitly constructed as regular, horizonless solutions of supergravity

— the massless sector of superstring theory. It is reasonable that the massless sector plays

an important role for black hole microstates because the large-distance structure expected of

the microstates can be supported by massless fields [19]. It is then natural to ask how many

microstates of BPS black holes are realized within supergravity. This has led to the so-called

“microstate geometry program” (see, e.g., [20]), which is about explicitly constructing as many

black hole microstates as possible, as smooth and horizonless solutions in supergravity.

A useful setup in which many supergravity microstates have been constructed is five-dimensional

N = 2 ungauged supergravity with vector multiplets, for which all supersymmetric solutions

have been classified [21]. This theory describes the low-energy physics of M-theory compactified

on a Calabi-Yau threefold X or, in the presence of an additional S1 [22, 23], of type IIA string

theory compactified on X. The supersymmetric solutions are completely characterized by a set

of harmonic functions on a spatial R3 base, which we collectively denote by H. We will call

these solutions harmonic solutions. If we assume that H has codimension-3 singularities, its

general form is

H(x) = h+
N∑
p=1

Γp
|x− xp|

. (1.1)

The associated supergravity solution generically represents a bound state of N black holes which

sit at x = xp (p = 1, . . . , N) and are made of D6, D4, D2, and D0-branes represented by the

charge vectors Γp. In this thesis, we take X = T 6 = T 2
45 × T 2

67 × T 2
89 and the D-branes wrap

some of the tori directions.

By appropriately choosing the parameters in the harmonic functions, the harmonic solutions

with codimension-3 centers, (1.1), can describe regular, horizonless five-dimensional geometries

that are microstates of black holes with finite horizons [24, 25]. However, although they represent

a large family of microstate geometries, it has been argued that they are not sufficient for

explaining the black hole entropy [26, 27].

In fact, physical arguments naturally motivate us to generalize the codimension-3 harmonic

solutions, which lead to more microstates and larger entropy. One possible way of generalization

is to go to six dimensions. This is based on the CFT analysis [28] which suggests that generic

black hole microstates must have traveling waves in the sixth direction and thus depend on it.

This intuition led to an ansatz for six-dimensional solutions [29], based on which a new class of

microstate geometries with traveling waves, called superstrata, was constructed [30]. For recent

developments in constructing superstratum solutions, see [31, 32, 33, 34].

The other natural way to generalize the codimension-3 harmonic solutions (1.1) is to consider
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codimension-2 sources in harmonic functions. This generalization is naturally motivated by the

supertube transition [8] which in the context of harmonic solutions implies that, when certain

combinations of codimension-3 branes are put together, they will spontaneously polarize into a

new codimension-2 brane. For example, if we bring two orthogonal D2-branes together, they

polarize into an NS5-brane along an arbitrary closed curve parametrized by λ. We represent

this process by the following diagram:

D2(45) + D2(67)→ ns5(λ4567), (1.2)

where D2(45) denotes the D2-brane wrapped on T 2
45 and “ns5” in lowercase means that it is

a dipole charge, being along a closed curve. The original D2(45) and D2(67)-branes appeared

in the harmonic functions as codimension-3 singularities, as in (1.1). The process (1.2) means

that those codimension-3 singularities can transition into a codimension-2 singularity in the

harmonic function along the curve λ. Another example of possible supertube transitions is

D2(89) + D6(456789)→ 52
2(λ4567; 89), (1.3)

where 52
2 is a non-geometric exotic brane which is obtained by two transverse T-dualities of the

NS5-brane [35, 36].

We emphasize that the supertube transition is not an option but a must; if two codimension-

3 branes that can undergo a supertube transition are put together, they will, because the

supertube is the intrinsic description of the bound state [12, Section 3.1]. This suggests that

considering only codimension-3 singularities in the harmonic solutions is simply insufficient and

we must include codimension-2 supertubes for a full description of the physics. Later we will

give another reason why we have to consider codimension-2 sources.

As we will see in explicit examples later, this does not just mean to smear the codimension-3

singularities in the harmonic function (1.1) along a curve to get a codimension-2 singularity,

but the harmonic function can also have branch-point singularities and be multi-valued in R3.

It is a generic feature of codimension-2 branes that, as one goes around their worldvolume,

the spacetime fields undergo a U-duality transformation [35, 36] and become multi-valued; the

harmonic function being multi-valued is the manifestation of this.

The purpose of the works presented in this thesis is to demonstrate how configurations

with codimension-2 sources, geometric and non-geometric, can be represented in the harmonic

solution. To our knowledge, the harmonic solution with codimension-2 sources has not been

investigated before, and represents a large unexplored area of research. For the codimension-3

case, (1.1) gives the general multi-center solution. More generally, however, the codimension-

3 centers must polarize into supertubes, thus giving a multi-center solution of codimension-3

and codimension-2 centers. It is technically challenging to explicitly construct general multi-

center solutions involving codimension-2 centers. So, in this thesis, we present some simple but
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explicit solutions which must be useful for finding the general solutions. An obvious application

of codimension-2 solutions is to generalize the studies previously done for codimension-3 sources

to include codimension-2 sources such as the black hole attractor mechanism [37, 38, 39, 40, 41,

42, 43], split attractor flows and wall-crossing [44, 45, 46, 47]. In [35, 36], it was argued that

codimension-2 solutions play an essential role in the microscopic physics of black holes and we

hope that these works will set a stage for research in that direction.
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Chapter 2

Harmonic solutions

Harmonic solutions refer to supersymmetric and stationary solutions of supergravity in four and

five dimensions which are determined by a set of harmonic functions on R3 with one constraint.

When the sources are codimension 3 in R3 (i.e., point-like), the harmonic solutions are often

called multi-center solutions. The framework we are going to use is mainly five-dimensional

N = 21 ungauged supergravity coupled to vector multiplets. This theory can be obtained as

the low-energy effective theory of M-theory compactified on a Calabi-Yau threefold X. In this

chapter, we briefly summarize some essential properties of harmonic solutions.

2.1 Harmonic solutions in five-dimensional supergravity

In this section, we will use five-dimensional N = 2 supergravity which provides a fertile model

for constructing black hole microstates to explain what harmonic solutions are. Furthermore,

we will focus on the theory with two vector multiplets and presume the theory was obtained

through a compactification of M-theory on a Calabi-Yau threefold X which we take it as T 6 =

T 2
45 × T 2

67 × T 2
89.

All supersymmetric solutions of timelike class2 in five-dimensional N = 2 supergravity cou-

pled to vector multiplets are classified in [21]. The metric, gauge fields and scalars of the

supersymmetric solutions are given by

ds2
5 = −Z−2/3(dt+ k)2 + Z1/3ds2

HK, (2.1.1a)

AI = BI − Z−1
I (dt+ k), I = 1, 2, 3, (2.1.1b)

XI = Z1/3Z−1
I , Z = Z1Z2Z3, (2.1.1c)

18 supercharges.
2Depending on whether the Killing vector constructed from the Killing spinor bilinear is timelike or null, the

solutions are classified into timelike or null classes.
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where the scalar functions ZI and the one-forms k,BI depend only on the hyper-Kähler base

space with the metric ds2
HK. It is easy to confirm that the scalars satisfy

X1X2X3 = 1, (2.1.2)

so only two of them are independent.

It will be convenient to define the magnetic field strength by

ΘI = dBI . (2.1.3)

The demand of supersymmetry leads to the following BPS equations to be satisfied by the

quantities ΘI , ZI , and k [22]:

ΘI = ∗4ΘI , (2.1.4a)

d ∗4 dZI =
1

2
CIJKΘJ ∧ΘK , (2.1.4b)

(1 + ∗4)dk = ZIΘ
I , (2.1.4c)

where ∗4 is the Hodge dual with respect to the base metric ds2
HK and CIJK are constants that

are symmetric under permutations of IJK, and in our case CIJK = |εIJK |. If we solve these

equations in the order presented, the problem is linear; namely, at each step, we have a Poisson

equation with the source given in terms of the quantities found in the previous step.

Solving the BPS equations with a Gibbons-Hawking base

It is difficult to write down solutions explicitly without any assumption. But once we assume

the presence of a U(1) isometry on the base space that preserves the hyper-Kähler structures

(namely, if the Killing vector is tri-holomorphic), the hyper-Kähler base should be a Gibbons-

Hawking space [48] and its metric take a following form [49]:

ds2
GH = V −1(dψ +A)2 + V δijdx

idxj , i, j = 1, 2, 3. (2.1.5)

The isometry direction ψ has periodicity 4π. Here, the one-form A and the scalar V depend

only on the coordinates xi of the R3 base and satisfy

dA = ∗3dV. (2.1.6)

The orientation of the Gibbons-Hawking base is given by

εψ123 = +
√
gGH = V. (2.1.7)

From (2.1.6), it is easy to see that V is a harmonic function on R3,

∆V = 0, ∆ = δij∂i∂j . (2.1.8)
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If we decompose ΘI and k according to the fiber-base decomposition of the Gibbons-Hawking

metric (2.1.5), we can solve all the BPS equations (2.1.4) in terms of harmonic functions on R3.

For later convenience, let us recall how this goes in some detail [23].

First, by self-duality (2.1.4a), the two-form ΘI can be written as

ΘI = (dψ +A) ∧ θI + V ∗3 θI , (2.1.9)

where θI is a one-form on R3. The closure dΘI = 0 (the part multiplying dψ + A) implies

dθI = 0, which means that θI = dΛI with a scalar ΛI . If we plug this equation back into

dΘI = 0, we find

∆(V ΛI) = 0. (2.1.10)

Therefore, ΛI = −V −1KI with KI harmonic, and

ΘI = −(dψ +A) ∧ d(V −1KI)− V ∗3 d(V −1KI). (2.1.11)

Next, plugging (2.1.11) into (2.1.4b), we find that ZI satisfies the following Laplace equation:

∆ZI = CIJKV ∂i(V
−1KJ) ∂i(V

−1KK) =
1

2
CIJK∆(V −1KJKK), (2.1.12)

where in the last equality we used harmonicity of V,KI . This means that

ZI = LI +
1

2
CIJKV

−1KJKK , (2.1.13)

where LI is harmonic.

Furthermore, if we decompose the one-form k as

k = µ(dψ +A) + ω, (2.1.14)

where ω is a one-form on R3, we can show that the condition (2.1.4c) leads to another Laplace

equation:

∆µ = V −1∂i[V ZI∂i(V
−1KI)] = ∆

(1

2
V −1KILI +

1

6
CIJKV

−2KIKJKK
)
. (2.1.15)

In the last equality, we used harmonicity of V,KI , LI . Therefore, µ is given in terms of another

harmonic function M as

µ = M +
1

2
V −1KILI +

1

6
CIJKV

−2KIKJKK . (2.1.16)

The one-form ω is found by solving the equation

∗3 dω = V dM −MdV +
1

2

(
KIdLI − LIdKI

)
(2.1.17)
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that also follows from (2.1.4c). We sometimes write eight harmonic functions collectively as

H = {V,KI , LI ,M}. For two such vectors H,H ′, we define the skew product 〈H,H ′〉 by

〈H,H ′〉 ≡ VM ′ −MV ′ +
1

2
(KIL′I − LIK ′I). (2.1.18)

In this notation, (2.1.17) is rewritten as

∗3 dω = 〈H, dH〉 . (2.1.19)

By taking d ∗3 of this equation, we can derive the so-called integrability equation:

0 = 〈H,∆H〉 , (2.1.20)

or more explicitly,

0 = V∆M −M∆V +
1

2

(
KI∆LI − LI∆KI

)
. (2.1.21)

This must be satisfied for the one-form ω to exist. Although we allow delta-function sources

for the Laplace equations (2.1.8), (2.1.10), (2.1.12) and (2.1.15), this equation (2.1.21) must be

imposed without allowing any delta function in order for ω to exist.

Finally, we note that the magnetic potential BI can be written as

BI = V −1KI(dψ +A) + ξI , dξI = − ∗3 dKI . (2.1.22)

In summary, under the assumption of the additional U(1) symmetry, we can solve all the

BPS equations (2.1.4) in terms of harmonic functions V,KI , LI ,M .

Eleven- and ten-dimensional uplift

The solution (2.1.1) can be thought of as coming from M-theory compactified on T 6 = T 2
45 ×

T 2
67 × T 2

89 as it was mentioned, with the following metric and the three-form potential:

ds2
11 = −Z−2/3(dt+ k)2 + Z1/3ds2

GH + Z1/3
(
Z−1

1 dx2
45 + Z−1

2 dx2
67 + Z−1

3 dx2
89

)
,

A3 = AIJI , J1 ≡ dx4 ∧ dx5, J2 ≡ dx6 ∧ dx7, J3 ≡ dx8 ∧ dx9,
(2.1.23)

where dx2
45 ≡ (dx4)2 + (dx5)2 and so on. The scalars XI = Z1/3Z−1

I correspond to the volume

of each torus. M-theory on T 6 has N = 8 supersymmetry (32 supercharges) in five dimensions,

and the model we are using is its N = 2 truncation in which only 8 supercharges are kept.

We can regard the isometry direction of the Gibbons-Hawking space as M-theory circle and

compactify along it. Then it should give a low-energy effective theory of type IIA string theory

compactified on the same Calabi-Yau threefold X. So we will obtain four-dimensional N = 2

supergravity coupled to vector multiplets. We use conventions in appendix A for M-theory to

type IIA string theory reduction.
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In the type IIA picture, the metric, dilaton, B-field and p-form potentials are

ds2
10,str = −Q−1/2(dt+ ω)2 +Q1/2δijdx

idxj

+Q1/2V −1
(
Z−1

1 dx2
45 + Z−1

2 dx2
67 + Z−1

3 dx2
89

)
, (2.1.24a)

e2Φ = Q3/2V −3Z−1, (2.1.24b)

B2 =
(
V −1KI − Z−1

I µ
)
JI , (2.1.24c)

C1 = A− V 2µQ−1(dt+ ω), (2.1.24d)

C3 =
[
(V −1KI − Z−1

I µ)A+ ξI − Z−1
I (dt+ ω)

]
∧ JI . (2.1.24e)

where Q is defined as

Q = V (Z − V µ2). (2.1.25)

In terms of harmonic functions, (2.1.25) is written as

Q = V L1L2L3 − 2MK1K2K3 −M2V 2

− 1

4

∑
I

(KILI)
2 +

1

2

∑
I<J

(KILI)(K
JLJ)−MV

∑
I

KILI

≡ J4(H), (2.1.26)

where J4 is the quartic invariant of E7,7 U-duality group; for some more discussion, see appendix

B. We also note that the complexified Kähler moduli τ1, τ2, and τ3 for the 2-tori T 2
45, T 2

67, and

T 2
89, respectively, are

τ1 =
R4R5

l2s

(
B45 + i

√
detGab

)
=
R4R5

l2s

[(
K1

V
− µ

Z1

)
+ i

√
Q

V Z1

]
, (2.1.27)

where a, b = 4, 5, and similarly for τ2, τ3. We denoted the radii of xi directions by Ri, i =

4, . . . , 9. If we compactify the theory to four dimensions, these τ I become scalar moduli

parametrizing the moduli space [SL(2,R)/SO(2)]3. It is sometimes called STU model which

was studied in [50, 51].

For other embeddings of the harmonic solutions in type IIA and IIB supergravity, see [22,

52, 53].

Conditions for the absence of closed timelike curves

(Super)gravity solutions can exhibit closed timelike curves (CTCs), signaling that the solution

is not physically allowed.3 To study their existence, let us look at the 10D metric (2.1.24).

First, for gtt, gii (i = 1, 2, 3) to be real, we need Q ≥ 0. Then, for the torus directions to give

3For over-rotating supertubes, CTCs will appear along the profile of the supertube [54, 55].
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no CTCs, we get V ZI ≥ 0, I = 1, 2, 3. So, we must impose the following conditions:

Q ≥ 0, (2.1.28a)

V ZI ≥ 0. (2.1.28b)

Next, let us focus on the R3 part of the 10D metric (2.1.24) which is

ds2
10,str ⊃ Q−1/2 (−ωi ωj +Q δij) dxidxj . (2.1.29)

It is possible that closed curve C in R3 becomes timelike under this metric, depending on the

behavior of the one-form ω. That would imply a CTC, which must be physically disallowed.

2.2 Codimension-3 sources: multi-center solutions

The harmonic solutions are characterized by a set of 8 harmonic functions. Non-trivial harmonic

functions in R3 must have singularities, which correspond to physical sources such as D-branes.

Depending on the nature of the source, the singularity can have various codimension. Here we

review some specifics about solutions with codimension-3 sources, or codimension-3 solutions

for short, which have been extensively studied in the literature. In the next subsection, we will

proceed to codimension-2 solutions, which is the main focus of the current thesis.

If one assumes that all singularities of the harmonic functions have codimension 3, the general

form of the harmonic functions is [56, 57, 23]

V = h0 +

N∑
p=1

Γ0
p

|x− xp|
, KI = hI +

N∑
p=1

ΓIp
|x− xp|

,

LI = hI +
N∑
p=1

ΓpI
|x− xp|

, M = h0 +
N∑
p=1

Γp0
|x− xp|

,

(2.2.1)

where x = (x1, x2, x3) and xp ∈ R3 (p = 1, . . . , N) specifies the location of the codimension-3

sources where the harmonic functions become singular. The charge vector Γp ≡ {Γ0
p,Γ

I
p,Γ

p
I ,Γ

p
0}

carries the charges of each source and, together with h ≡ {h0, hI , hI , h0}, fully determine the

asymptotic properties of the solution, namely mass, angular momenta and the moduli at infinity.

See figure 2.1(a) for a schematic explanation of codimension-3 solutions.

We still have to satisfy the integrability condition (2.1.20). Because the Laplacian ∆ acting

on |x − xp|−1 gives a delta function supported at x = xp, the right-hand side of (2.1.20) does

not generally vanish. Mathematically, this does not pose any problem for the existence of ω,

although it becomes multi-valued, having a Dirac-Misner string [58]. However, the presence of

a Dirac-Misner string leads to CTCs [24]. Therefore, it is physically required that the delta-

function singularities be absent on the right-hand side of (2.1.20). This condition implies the

10



(a) (b)

Figure 2.1: The harmonic solution is specified by harmonic functions on the base R3. (a) The

codimension-3 solution is specified by point-like singularities of the harmonic functions. (b)

The general solution involves point-like (codimension-3) as well as string-like (codimension-2)

singularities in the harmonic functions.

well-known constraint [44] ∑
q(6=p)

〈Γp,Γq〉
xpq

= 〈h,Γp〉 for each p, (2.2.2)

where xpq ≡ |xp − xq|.
Let us see how this argument goes [24]. Let B3 be a small ball containing x = xp, and

consider the integral ∫
B3

d2ω =

∫
B3

d3x 〈H,∆H〉 , (2.2.3)

where we used (2.1.19). The integrand on the right-hand side is the same as the one in the

integrability condition (2.1.20). If it has a delta-function source at x = xp, the integral is

nonzero. On the other hand, the left-hand side can be rewritten as∫
B3

d2ω =

∫
S2

dω =

∫
∂S2

ω, (2.2.4)

where S2 = ∂B3 and the boundary ∂S2 can be taken to be an infinitesimal circle going around

the north pole, through which a Dirac-Misner string passes. This being non-vanishing means

that the component of ω along ∂S2 is finite; if we take the Dirac-Miser string to be along the

positive z-axis, then ωϕ 6= 0 where ϕ is the azimuthal angle around the z-axis. Therefore, for

this curve C = ∂S2, the first term in (2.1.29) does not vanish while the second one vanishes

(note that Q is finite as long as we are away from x = xp). So, curve C is a CTC. Therefore,

the right-hand side of the integrability condition (2.1.20) must not even have delta-function

singularities, and this is what leads to the constraint (2.2.2).

The interpretation of the singularities in the harmonic functions (2.2.1) from a string/M-

theory point of view is the existence of extended objects in higher dimensions. In the string/M-

theory uplift, p-form potentials are expressed in terms of the harmonic functions, which allows
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us to establish a dictionary between the harmonic functions and their corresponding brane

configurations [57]. For example, in the type IIA picture (2.1.24), the dictionary between the

singularities in the harmonic functions and the D-brane sources is

V ↔ D6(456789),

K1 ↔ D4(6789)

K2 ↔ D4(4589)

K3 ↔ D4(4567)

,

L1 ↔ D2(45)

L2 ↔ D2(67)

L3 ↔ D2(89)

, M ↔ D0. (2.2.5)

The D-branes are partially wrapped on T 6 and appear in 4D as point-like (codimension-3)

objects sourcing the harmonic functions. When multiple sources are present, the harmonic

solution (2.2.1) represents a multi-center configuration of D-branes.

The harmonic solutions with codimension-3 sources have been extensively used to describe

various brane systems for various purposes. Examples include a 5D three-charge black hole made

of M2(45), M2(67) and M2(89)-branes, which is dual to the Strominger-Vafa black hole [3]; the

BMPV black hole [59]; the MSW black hole [4]; the supersymmetric black ring [60, 22, 52];

multi-center black hole/ring solutions [57]; and microstate geometries [24, 25].

One simple example is when (2.2.1) contains only one term, namely, N = 1. For the generic

charge vector Γ ≡ Γp=1, this describes a single-center black hole in 4D which is made of D0, D2,

D4 and D6-branes. The area-entropy of this black hole can be readily computed to be

S =
π
√
J4(Γ)

G4
, (2.2.6)

where the 4D Newton constant is given by G4 = g2
s l

2
s/8 and J4(Γ) is obtained by replacing

H = {V,KI , LI ,M} in (2.1.26) by Γ = {Γ0,ΓI ,ΓI ,Γ0}. Multi-center solutions which have the

same asymptotic moduli as this single-center solution and the same total charge
∑

p Γp = Γ

can be thought of as representing microstates/sub-ensemble of the ensemble represented by the

single-center black hole.

Let us briefly mention the relation between four- and five-dimensional multi-center solutions.

Four-dimensional multi-center solutions were studied in [44, 57]. In [61] it was shown that four-

dimensional multi-center solutions can be uplifted to five-dimensional multi-center solutions

using the relation between type IIA string theory and M-theory. See [62, 63, 64] for the related

works. This five-dimensional multi-center solutions that include black holes and black rings

were constructed in [22] and later interpreted as microstates of five-dimensional black holes and

black rings [24, 25].

2.3 Codimension-2 sources

In the previous subsection, we considered the harmonic solution which has only codimension-

3 sources of D-branes. However, recall that, in string theory, certain combinations of branes
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can undergo a supertube transition [8], under which branes spontaneously polarize into new

dipole charge, gaining size in transverse directions. For example, as we have discussed in the

introduction, two transverse D2-branes can polarize into an NS5-brane along an arbitrary closed

curve λ, as in (1.2). Because the NS5-brane is along a closed curve, it has no net NS5 charge but

only NS5 dipole charge. The original D2 charges are dissolved in the NS5 worldvolume as fluxes.

When the curve λ is inside the R3
123, which is generically the case and is assumed henceforth, the

NS5-brane appears as a codimension-2 object in the non-compact 123 directions. Therefore, if

we are to consider generic solutions describing D-brane systems, we must include codimension-2

brane sources in the harmonic solution. Even in such situations, the procedure (2.1.11)–(2.1.16)

to solve the BPS equations goes through and the solution is given by the harmonic functions

V,KI , LI ,M . However, they are now allowed to have codimension-2 singularities in R3. See

figure 2.1(b) for a schematic explanation for solutions with codimension-2 sources.

To get some idea about solutions with codimension-2 sources, here we present the harmonic

functions for the D2 + D2 → ns5 supertube (1.2) when the puffed-up ns5-brane is an infinite

straight line along x3.4

V = 1, K1 = K2 = 0, K3 = qθ,

L1 = 1 +Q1 log
Λ

r
, L2 = 1 +Q2 log

Λ

r
, L3 = 1, M = −1

2
qθ,

(2.3.1)

where q = l2s/(2πR8R9), Q1Q2 = q2, and Λ is a constant.5 We took the cylindrical coordinates

for the R3 base,

ds2
3 = dr2 + r2dθ2 + (dx3)2. (2.3.2)

We will discuss such solutions more generally in chapters 4 and 5. A novel feature is that the

harmonic function K3 has a branch-point singularity along the x3 axis at r = 0. So, K3 does

not just have a codimension-2 singularity but is multi-valued. This K3 cannot be obtained by

smearing a K3 with codimension-3 singularities as in (2.2.1). As one can see from (2.1.24), this

K3 leads to the B-field

B2 =
l2sθ

2πR8R9
dx8 ∧ dx9. (2.3.3)

Around the x3-axis, this has monodromy ∆B2 = l2s/(R8R9), which is the correct one for an

NS5-brane extending along 34567 directions and smeared along 89 directions. On the other

hand, the codimension-2 singularities in L1, L2 represent the D2-brane sources dissolved in the

NS5 and are obtained by smearing codimension-3 singularities in (2.2.1). The monodromy in M

(2.3.1) does not have direct physical significance here, because what enters in physical quantities

is µ, which is trivial in the present case: µ = M + 1
2K

3L3 = 0.

4An infinitely long NS5-brane would not have a dipole charge. The solution (2.3.1) must be regarded as a

near-brane approximation of an NS5-brane along a closed curve.
5Λ is the cutoff for r, beyond which the near-brane approximation mentioned in footnote 4 breaks down.
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In the lower dimensional (4D) picture, the B-field appears as the scalar moduli τ I defined

in (2.1.27). For the present case (2.3.3), we have

τ3 =
θ

2π
. (2.3.4)

As we go around r = 0, the modulus τ3 has the monodromy

τ3 → τ3 + 1, (2.3.5)

which can be understood as an SL(2,Z) duality transformation. It was emphasized in [35, 36]

that the charge of the codimension-2 brane is measured by the duality monodromy around it.

It is possible to consider codimension-2 objects around which there is more general SL(2,Z)

monodromy of τ I . For example, if we have an object around which there is the following

monodromy:

τ3 → τ3

−τ3 + 1
, or τ ′3 → τ ′3 + 1, τ ′3 ≡ − 1

τ3
, (2.3.6)

it corresponds to an exotic brane called the 52
2(34567, 89)-brane [35, 36]. This brane is non-

geometric since the T 2
89 metric is not single-valued but is twisted by a T-duality transformation

around it. The 52
2-brane is produced in the supertube transition (1.3) and must also be describ-

able within the harmonic solution in terms of multi-valued harmonic functions. We will see this

in explicit examples in chapters 4 and 5.
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Chapter 3

Codimension-2 harmonic solutions

In this chapter, we briefly discuss on the current state of microstate geometry program which is

mainly exploiting codimension-3 multi-center solutions. Then we suggest codimension-2 solu-

tions as a possible microstate of black holes with some supporting arguments. In the subsequent

chapters, we will present the main results of [65, 66] without changing many things for the com-

pleteness of the thesis.

3.1 Harmonic solutions as black hole microstates

The harmonic solutions with codimension-3 sources will be smooth and horizonless geometries

under appropriate choices of h and Γ (2.2.1) when solving the integrability condition (2.2.2).

This could be understood as a geometric transition [24, 25]. The entropy of these large family of

smooth solutions are estimated in [26, 27] and it turned out that those smooth solutions are not

typical enough to explain the entropy of four- and five-dimensional black holes. In this section,

we will briefly review what was done in [26, 27] without many details. Then we suggest another

possibility of microstate solutions.

The entropy estimations in [26, 27] were based on the system suggested in [67] that a four-

dimensional four-charge black hole made of D4-D0 charges can be deconstructed into a bound

state of D0-branes with a D6-D6 pair containing worldvolume fluxes. Because of the worldvol-

ume fluxes, the deconstructed system has the same charges as the D4-D0 black hole we started

with. The deconstructed system is describing smooth and horizonless geometry only when it is

interpreted in five dimensions not in four dimensions, because D6-branes will be uplifted into

Kaluza-Klein monopoles of M-theory which are smooth and horizonless geometries.

In the regime where D0-branes are treated as probes, it was claimed in [67] that the entropy

of the D4-D0 black hole could be obtained from the same Landau degeneracy found in [68]. A

similar discussion for black rings was done in [69]. However this analysis has not been extended
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to including backreaction of D0-branes. For a related discussion, see [70].

In the successive works of [71, 72, 26], the deconstructed D6-D6-D0 system is directly quan-

tized in supergravity and the entropy was estimated. The conclusion of [26] was that the entropy

of D6-D6-D0 system has the same order of the entropy of free supergraviton gas which is not

enough to explain the entropy of D4-D0 black hole.

In [27], they put supertubes on a D6-D6 background and calculated backreacted solutions

by constructing an explicit Green function. The solutions were interpreted as microstates of

five-dimensional three-charge black holes. Through the entropy enhancement mechanism [73],

they were able to obtain a large amount of entropy. However it also turned out that it is not

enough to explain the entropy of the black hole.

In conclusion, there has not been any satisfactory explanation of the entropy of the black

hole using codimension-3 harmonic solutions.

One missing possibility

The deconstruction of black holes we just mentioned can be seen as one explicit example of

more general hypothesis [74]:

Every supersymmetric four-dimensional black hole of finite area, preserving 4 super-

charges, can be split up into microstates made of primitive 1/2-BPS “atoms”, each

of which preserves 16 supercharges. In order to describe a bound state, these atoms

should consist of mutually non-local charges.

This was conjectured in the context of N = 8 supergravity, and it was extended to more

general situation, e.g., N = 2 supergravity, stating that “atoms” could include 1/4- or 1/8-BPS

horizonless states [15, Section 5.1].

One justification of including horizonless 1/4- and 1/8-BPS states into “atoms” can be

brought from [75]. According to [75], the value of the E7,7 invariant Q (2.1.25) determines

the amount of supersymmetry preserved by the system. For Q > 0, the system is describing

a 1/8-BPS black hole; a single-center black hole with Q < 0 is non-BPS; and if Q = 0 the

system preserves 1/8 or more supersymmetries, i.e., we could have 1/8-BPS, 1/4-BPS and 1/2-

BPS states. The supertube transition could be another justification as we explain in the next

section.

Therefore, we are able to have entropyless 1/4- and 1/8-BPS solutions and we should include

them into microstate solutions to explain the entropy correctly. In the later chapters, we will

focus on 1/4-BPS states and give some explicit realization of them in terms of supertubes which

are known to be a proper description of 1/4-BPS states.
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3.2 Codimension-2 sources are inevitable

In addition to codimension-3 sources, the harmonic solutions can also describe codimension-2

sources. Actually, codimension-2 sources are not an option but a must ; codimension-3 sources are

insufficient because they can spontaneously polarize into codimension-2 sources by the supertube

transition [8]. The supertube transition is a spontaneous polarization phenomenon that a certain

pair of species of branes — specifically, any mutually local 1/4-BPS two-charge system —

undergo. In this transition, the original branes polarize into a new dipole charge, which has one

less codimension and extends along a closed curve transverse to the worldvolume of the original

branes. This new configuration represents a genuine BPS bound state of the two-charge system

[12, Section 3.1]. The supertube transition may seem similar to the Myers effect [76], but it

is different; the Myers effect takes place only in the presence of an external field, whereas the

supertube transition occurs spontaneously, by the dynamics of the system itself.

The system described by codimension-3 harmonic solutions involves various D-branes as we

saw in (2.2.5). These D-branes can undergo supertube transitions into codimension-2 branes,

which act as codimension-2 sources in the harmonic function. Therefore, codimension-2 solu-

tions are in the same moduli space of physical configurations as codimension-3 solutions, and

consequently must be considered if one wants to understand the physics of the D-brane system.

In particular, supertubes are known to be important for BPS microstate counting of black

holes because of the entropy enhancement phenomenon [73, 53, 26, 27]. So, the supertubes

realized as codimension-2 sources in the harmonic functions must play a crucial role in the

black hole microstate geometry program, as first argued in [35, 36]. The codimension-2 brane

produced by the supertube transition can generically be non-geometric, having non-geometric

U-duality twists around it.

A prototypical example of the supertube transition [8] can be represented as

D0 + F1(1)→ d2(λ1). (3.2.1)

This diagram means that the two-charge system of D0-branes and fundamental strings has

undergone a supertube transition and polarized into a D2-brane along an arbitrary closed curve

parametrized by λ. The object on the right-hand side is written in lowercase to denote that it

is a dipole charge. In this case, as the D2 is along a closed curve, there is no net charge but

a D2 dipole charge. The original D0 and F1 charges are dissolved into the D2 worldvolume as

magnetic and electric fluxes. The Poynting momentum due to the fluxes generates the centrifugal

force that prevents the arbitrary shape from collapsing.

Upon duality transformations of the process (3.2.1), other possible supertube transitions can

17



be found. For example,

D0 + D4(4567) → ns5(λ4567),

D4(4589) + D4(6789) → 52
2(λ4567; 89),

D2(45) + D2(67) → ns5(λ4567),

D2(89) + D6(456789) → 52
2(λ4567; 89).

(3.2.2)

This means that the ordinary branes on the left-hand side can polarize into codimension-2

branes, including the exotic branes such as the 52
2-brane.1 Note in particular that the D-branes

appearing on the left-hand side are the ones that appear in the brane-harmonic function dictio-

nary (2.2.5). So, the dictionary is insufficient and must be extended to include codimension-2

branes that the codimension-3 D-branes can polarize into. Because we solved the BPS equations

and obtained harmonic solutions without specifying the co-dimensionality of the sources, the

codimension-2 supertubes on the right-hand side of (3.2.2) must be describable in terms of the

same harmonic solutions, just by allowing for codimension-2 singularities. The formulas for the

M-theory/IIA uplift also remain valid.

3.3 General remarks on codimension-2 solutions

For the codimension-3 case, we could show the direct connection between the presence of delta-

function sources on the right-hand side of (2.1.20) and the existence of CTCs. We can follow

the same line of logic for the codimension-2 case, but the conclusion is that there is no such

direct connection.

In (2.2.3), we had an integral over a small ball B3 containing a point where there is a possible

delta function. In the codimension-2 case, delta-function singularities are expected to be along

a curve on which a source lies, and there is a Dirac-Misner “sheet” ending on that curve. Let

us consider an integral over a very thin filled tube T 3 containing a piece of such a curve. Now

we rewrite the integral as we did in (2.2.4). Instead of S2 = ∂B3, we have a cylinder C2 = ∂T 3,

where we can ignore the top and bottom bases for a very thin tube. As the boundary of the

cylinder, ∂C2, we take two lines that go along the curve in opposite directions. The Dirac-

Misner sheet goes between the two lines. Then the integral is basically equal to the jump across

the Dirac-Miner sheet in the component of ω along the curve. Let us denote it by ∆ω‖. Then,

the integral is equal to l∆ω‖, where l is the length of the tube. On the other hand, the same

integral is equal to lσ, where σ is the local density of the delta-function source along the curve.

Equating the two, we obtain

∆ω‖ = σ. (3.3.1)

1For a review on exotic branes and a further analysis of supertube transitions involving them, see [36]. We

also briefly discuss them in section 4.1.
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Namely, the jump in ω along the curve is given by the density of delta-function sources.

However, this does not give the behavior of ω itself, which is necessary for evaluating (2.1.29)

and study the presence of CTCs. So, the argument that worked for codimension 3 does not

apply to codimension 2. It must be some other singular behavior of the harmonic functions, not

just the delta-function source, that one must study to investigate the no-CTC condition. We

do not pursue that in this thesis. Instead, we will study (2.1.29) for specific explicit metrics in

the presence of codimension-2 sources.

Although we have only discussed sources with codimension 3 and 2, it is also possible to

consider sources with codimension 1. Such a source represents a domain wall that connects

spaces with different values of spacetime-filling fluxes, just like a D8-brane in 10D connects

spacetimes with different values of the RR flux 10-form. Including codimension-1 sources should

lead to a wide range of physical configurations which have been little studied. It would be very

interesting to include them in the harmonic solutions and explore the physical implications of

solutions with codimension 3, 2, and 1 sources.
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Chapter 4

Abelian codimension-2 solutions

In this chapter, we give some explicit example of Abelian codimension-2 solutions and discuss

them in the context of microstate geometry program. All the material of this chapter is based

on [65].

The plan of the chapter is as follows. In section 4.1, we present some example solutions

with codimension-2 source in the harmonic functions. The examples include supertubes with

standard and exotic dipole charges and, in the latter case, the spacetime is non-geometric. In

section 4.2, we give an example in which codimension-3 source and codimension-2 one coexist.

We conclude in section 4.3 with remarks on the fuzzball conjecture and the microstate geometry

program. The appendices explain our convention and some detail of the computations in the

main text.

4.1 Examples of Abelian codimension-2 solutions

In section 2.3, we have motivated codimension-2 solutions and presented simplest examples

of them — straight supertubes. In this section, we consider more “realistic” codimension-2

solutions that should serve as building blocks for constructing more general solutions.

4.1.1 1-dipole solutions

We begin with the case of a pair of D-branes puffing up into a supertube with one new dipole

charge, such as (1.2) and (1.3) presented in the introduction. The supergravity solution for such

1-dipole supertubes can be obtained by dualizing the known solutions describing supertubes,

such as the one in [54].1 In that sense, the solutions presented here are not new. However, they

have not been discussed in the context of the harmonic solutions and harmonic functions as we

do here.

1See, e.g., [6, 36] for details of such dualization procedures.
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D2(67) + D2(45) → ns5(λ4567)

As just mentioned, the supergravity solution for the D2 + D2 → ns5 supertube (1.2) can be

obtained by dualizing known solutions, and we can read off from it the harmonic functions using

the relations in the previous section. Explicitly, the harmonic functions are

V = 1, K1 = 0, K2 = 0, K3 = γ,

L1 = f2, L2 = f1, L3 = 1, M = −γ
2
.

(4.1.1)

Here, the harmonic functions f1 and f2 are given by

f1 = 1 +
Q1

L

∫ L

0

dλ

|x− F(λ)|
, f2 = 1 +

Q1

L

∫ L

0

|Ḟ(λ)|2dλ
|x− F(λ)|

, (4.1.2)

where x = F(λ) is the profile of the supertube in R3 and satisfies F(λ+L) = F(λ). The functions

f1 and f2 represent the D2(67) and D2(45) charges, respectively, dissolved in the codimension-2

worldvolume of the ns5 supertube. Q1 is the D2(67) charge, while the D2(45) charge is given

by

Q2 =
Q1

L

∫ L

0
dλ |Ḟ(λ)|2. (4.1.3)

The charges Q1, Q2 are related to the quantized D-brane numbers N1, N2 by

Q1 =
gsl

5
s

2R4R5R8R9
N1, Q2 =

gsl
5
s

2R6R7R8R9
N2, L =

2πgsl
3
s

R4R5
N1. (4.1.4)

where Ri, i = 4, . . . , 9 are the radii of the xi directions. We have also written down the expression

for L, the periodicity of the profile function F(λ), in terms of other quantities.2

The function γ is defined via the differential equation

dα = ∗3dγ (4.1.5)

where α is a one-form in R3 given by (see appendix 4.A)

αi =
Q1

L

∫ L

0

Ḟi(λ) dλ

|x− F(λ)|
. (4.1.6)

It is easy to see from (4.1.5) that γ is harmonic: ∆γ = ∗3d ∗3 dγ = ∗3d2α = 0. Note that,

even though α is single-valued, the function γ defined via the differential equation (4.1.5) is

multi-valued and has a monodromy as we go along a closed circle c that links with the profile;

see figure 4.1(a). The monodromy of γ can be computed by integrating dγ along c, which can

be homotopically deformed to a very small circle near some point on the profile, and is equal to∫
c
dγ =

∫
c
∗3dα =

4πQ1

L
. (4.1.7)
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Figure 4.1: (a) The function γ has a monodromy as one goes around the cycle c that links

with the profile. (b) The integral region in (4.1.9). The contribution from the top and bottom

surfaces of the tube is negligible if the tube is very thin.

The integrability condition (2.1.20) requires

V∆M −M∆V +
1

2

(
KI∆LI − LI∆KI

)
= −∆γ ≡ 0. (4.1.8)

Superficially, this is satisfied because γ is harmonic. However, one must be careful because γ is

singular along the profile and may have delta-function source there (as is the case for L1,2). We

can show that it actually does not even have delta-function source as follows. If we integrate

∆γ over a small tubular volume V containing the profile x = F(λ), we get∫
V
d3x ∆γ =

∫
V
d∗3dγ =

∫
∂V
∗3dγ =

∫
∂V
dα =

∫
∂2V

α = 0, (4.1.9)

where the last equality holds because α is single-valued. See figure 4.1(b) for explanation of

the integral region. Therefore, ∆γ in (4.1.8) vanishes everywhere, even on the profile, and the

integrability condition is satisfied for any profile F(λ).

From harmonic functions (4.1.1), we can read off various functions and forms that appear

in the full solution:

(Z1, Z2, Z3) = (f2, f1, 1), (ξ1, ξ2, ξ3) = (0, 0,−α), µ = 0, ω = −α. (4.1.10)

The existence of ω is guaranteed by the integrability condition. Substituting this data into

(2.1.24), we obtain the type IIA fields:

ds2
10 = −(f1f2)−1/2(dt− α)2 + (f1f2)1/2dxidxi + (f1f2)1/2

(
f−1

2 dx2
45 + f−1

1 dx2
67 + dx2

89

)
,

e2Φ = (f1f2)1/2,

B2 = γ dx8 ∧ dx9,

C1 = 0,

C3 = −f−1
2 (dt− α) ∧ dx4 ∧ dx5 − f−1

1 (dt− α) ∧ dx6 ∧ dx7,

(4.1.11)

2In the F1-P system, L corresponds to the length of the fundamental string. For the expressions of L in

different duality frames, see references in footnote 1.
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where we have dropped some total derivative terms in the RR potentials. Since f1, f2 → 1 as

|x| → ∞, the spacetime is asymptotically R1,3×T 6. Multi-valuedness is restricted to the B-field

and the metric is single-valued; namely, this solution is geometric.

One can show that the solution (4.1.11) has the expected monopole charge; it has monopole

charge for D2(67) and D2(45) but not for NS5 (we show this for more general solutions in the

next subsection). The dipole charge for NS5 is easier to see in the monodromy of the Kähler

moduli, as we discussed around (2.3.3), and their values are

τ1 = i
R4R5

l2s

√
f1

f2
, τ2 = i

R6R7

l2s

√
f2

f1
, τ3 =

R8R9

l2s

(
γ + i

√
f1f2

)
. (4.1.12)

τ1 and τ2 are single-valued while, as we can see from (4.1.7), τ3 has the following monodromy

as we go around the supertube along cycle c:

τ3 → τ3 + 1, (4.1.13)

where we used (4.1.4) and (4.1.7). This is the correct monodromy around an NS5-brane. So,

this solution has the expected monopole and dipole charge.

Although we have derived the harmonic functions (4.1.1) by dualizing known solutions, we

can also derive it by requiring that they represent the charge and dipole charge expected of the

supertube (1.2) as follows. First, no D6-brane means V = 1 and no D0-brane means µ = 0.

Then (2.1.24) implies that, in order to have an NS5-brane along the profile F(λ), the harmonic

function K3 ≡ γ must have the monodromy (4.1.7). As we show in appendix 4.A, this means

that γ must be given in terms of α via (4.1.5) and (4.1.6). Next, to account for the D2 charges

dissolved in the NS5 worldvolume, we need L1, L2 given in (4.1.1) and (4.1.2).

Note that, if we lift the supertube (1.2) to M-theory, we have

M2(67) + M2(45)→ m5(λ4567). (4.1.14)

Therefore, our solution simply corresponds to the 4D version of Bena and Warner’s solution in

[22]. The difference is that they were discussing 5D solutions with general supertube shapes,

while we are focusing on solutions which has an isometry and can be reduced to 4D. Because

of that, we can be more explicit in the solution in terms of harmonic functions.

D2(89) + D6(456789) → 522(λ4567; 89)

The second example is the D2 + D6→ 52
2 supertube (1.3), which can be obtained by taking the

T-dual of the above solution (4.1.11) along 6789 directions. Involving the exotic 52
2-brane, this

is a non-geometric supertube where the metric becomes multi-valued.3

3The metric for an exotic non-geometric supertube (D4 + D4→ 52
2) was first discussed in [35, 36].
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Harmonic functions which describe this supertube (1.3) are

V = f2, K1 = γ, K2 = γ, K3 = 0,

L1 = 1, L2 = 1, L3 = f1, M = 0.
(4.1.15)

The charges appearing in harmonic functions are related to brane numbers by

Q1 =
gsl

5
s

2R4R5R6R7
N1, Q2 =

gsls
2
N2, L =

2πgsl
7
s

R4R5R6R7R8R9
N1. (4.1.16)

As we can easily check, the integrability condition (2.1.20) is trivially satisfied. The various

functions and forms are

(Z1, Z2, Z3) = (1, 1, f1F ), (ξ1, ξ2, ξ3) = (−α,−α, 0), µ = f−1
2 γ, ω = −α. (4.1.17)

The IIA fields are given by

ds2
10 = −(f1f2)−1/2(dt− α)2 + (f1f2)1/2dxidxi + (f1/f2)1/2

(
dx2

4567 + f−1
1 F−1dx2

89

)
,

e2Φ = f
1/2
1 f

−3/2
2 F−1,

B2 = − γ

f1f2F
dx8 ∧ dx9,

C1 = β2 − f−1
1 γ (dt− α),

C3 = − 1

f1F
(dt− α) ∧ dx8 ∧ dx9 − γ

f1f2F
β2 ∧ dx8 ∧ dx9,

(4.1.18)

where we defined

F ≡ 1 +
γ2

f1f2
. (4.1.19)

We have dropped some total derivative terms in the RR potentials. Since f1, f2 → 1 as |x| → ∞,

the spacetime is asymptotically R1,3×T 6. However, because the multi-valued function γ enters

the metric, this spacetime is non-geometric. Every time one goes through the supertube, one

goes to different spacetime with different radii for T 2
89, although it is related to the original one

by T-duality.

It is not difficult to show that the solution (4.1.18) carries the expected monopole charge for

D2(89) and D6(456789), and not for other charges. To see the 52
2 dipole charge, let us look at

the Kähler moduli which are

τ1 = i
R4R5

l2s

√
f1

f2
, τ2 = i

R6R7

l2s

√
f1

f2
, τ3 =

R8R9

l2s

(
− γ

f1f2F
+ i

1√
f1f2F

)
. (4.1.20)

If we define

τ ′3 ≡ − 1

τ3
=

l2s
R8R9

(
γ + i

√
f1f2

)
, (4.1.21)

the monodromy around the supertube is simply

τ ′3 → τ ′3 + 1, (4.1.22)
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where we used (4.1.7) and (4.1.16). This is the correct monodromy for the 52
2-brane.

Although one sees that the RR potentials are also multi-valued in (4.1.18), this does not

mean that we have further monopole or dipole charges. We will see this in a different example

in subsection 4.1.2.

Other duality frames

One can also consider supertube transitions in other duality frames, such as

D0 + D4(4567)→ ns5(λ4567) (4.1.23)

or

D4(6789) + D4(4589)→ 52
2(λ4567, 89). (4.1.24)

The latter transition (4.1.24) was studied in [35, 36]. The configuration on the left-hand side of

(4.1.23) and (4.1.24) are not in the timelike class but in the null class [77, 21], and their analysis

requires a different 5D ansatz from the one we used above.

4.1.2 2-dipole solutions

A naive attempt

In the above, we demonstrated how the codimension-2 solution with one dipole charge fits into

the harmonic solution. The next step is to combine two such solutions so that there are two

different types of dipole charge. For example, can we construct a solution in which the supertube

transition (1.2) happens simultaneously for two different D2-D2 pairs? For example, consider

D2(45) + D2(89) → ns5(λ4589)

D2(67) + D2(89) → ns5(λ6789)
. (4.1.25)

How can we construct harmonic functions corresponding to this configuration? For codimen-

sion-3 solutions (2.2.1), having multiple centers was achieved just by summing the harmonic

functions for each individual center. So, a naive guess is to simply sum the harmonic functions

for each individual supertube, as follows:4

V = 1, K1 = γ′, K2 = γ, K3 = 0,

L1 = f1, L2 = f ′1, L3 = f2 + f ′2, M = −γ
2
− γ′

2
.

(4.1.26)

However, this does not work; as one can easily check, the integrability condition (2.1.20) is not

generally satisfied for this ansatz (4.1.26). The two dipoles talk to each other and we must

appropriately modify the harmonic functions to construct a genuine solution.

4This was obtained by permuting KI , LI of (4.1.1) and also by a suitable reparametrization of λ in f ′1, f
′
2.
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A non-trivial 2-dipole solution

So, the above naive attempt does not work and we must take a different route to find a 2-dipole

solution. Here, we use the superthread (or supersheet) solution of [78] to construct one. The

superthread solution describes a system of D1 and D5-branes with traveling waves on them, and

corresponds to the following simultaneous supertube transitions:

D1(5) + P(5) → d1(λ)

D5(56789) + P(5) → d5(λ6789)
. (4.1.27)

The left-hand side of (4.1.27) can be thought of as the constituents of the three-charge black hole.

This is not just a trivial superposition of D1-P and D5-P supertubes, since the two supertubes

interact with each other.

The superthread solution was originally obtained as a BPS solution in 6D supergravity. The

BPS equations in 6D have a linear structure [29] which descends to that of the 5D equations

(2.1.4) and facilitates the construction of explicit solutions. The 6D BPS equations involve a

lightlike coordinate v and a 4-dimensional base space which is flat R4 for the superthreads. We

use x = (x1, x2, x3, x4) for the coordinates of R4. The superthread solution is characterized by

profile functions Fp(v), which describe the fluctuation of the D1 and D5-brane worldvolume. The

index p = 1, · · · , n labels different threads of the D1-D5 supertubes. We review the superthread

solution in appendix 4.B.

If we smear the superthread solution along x4 and v directions, it describes the D1-D5-P

supertube (4.1.27) extending along the R3
123 directions and can be connected to the harmonic

solutions discussed in section 2.1. After duality transformations,5 the resulting solution can be

regarded as describing precisely the 2-dipole configuration (4.1.25). More precisely, the final

configuration is as follows. We have n supertubes labeled by p = 1, . . . , n and the p-th tube

has the profile x = Fp(λp) ∈ R3, where λp parametrizes the profile and the function Fp has the

periodicity Fp(λp + Lp) = Fp(λp). The p-th tube carries the D2(45), D2(67), D2(89) monopole

charges Qp1, Qp2, Qp3 respectively, as well as ns5 dipole charges displayed in (4.1.25).

5Specifically, to go from (4.1.27) to (4.1.25), we can take T4567, S, then T4 duality transformations and rename

coordinates as 456789 → 894567, so that D1(5), D5(56789), P(5) charges map into D2(45), D2(67), D2(89)

charges, respectively.
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Explicitly, the harmonic functions describing the 2-dipole configuration (4.1.25) are

V = 1, K1 = γ2, K2 = γ1, K3 = 0, (4.1.28a)

LI = 1 +
∑
p

QpI

∫
p

1

Rp
= ZI , I = 1, 2, (4.1.28b)

L3 = 1 +
∑
p

∫
p

ρp
Rp

+
∑
p,q

Qpq

∫∫
p,q

[
Ḟp · Ḟq
2RpRq

− ḞpiḞqj(RpiRqj −RpjRqi)
FpqRpRq(Fpq +Rp +Rq)

]
−K1K2, (4.1.28c)

M =
1

2

∑
p,q

Qpq

∫∫
p,q

εijkḞpqiRpjRqk
FpqRpRq(Fpq +Rp +Rq)

− 1

2
(K1L1 +K2L2) (4.1.28d)

where we defined

Rp(λp) ≡ x− Fp(λp), Fpq(λp, λq) ≡ Fp(λp)− Fq(λq),

Rp ≡ |Rp|, Fpq ≡ |Fpq|, Qpq ≡ Qp1Qq2 +Qp2Qq1.
(4.1.29)

Also, for integrals along the supertubes, we defined∫
p
≡ 1

Lp

∫ Lp

0
dλp,

∫∫
p,q
≡ 1

LpLq

∫ Lp

0
dλp

∫ Lq

0
dλq (4.1.30)

and the dependence on the parameter λp in (4.1.28) has been suppressed.6 The quantity ρp(λp)

in (4.1.28c) is an arbitrary function corresponding to the D2(89) density along the p-th tube. A

similar density could be introduced for M in (4.1.28d), but it had been ruled out by a no-CTC

(closed timelike curve) analysis in [78] and was not included here. The scalars γI satisfy

dγI = ∗3dαI , αI =
∑
p

QpI

∫
p

Ḟp · dx
Rp

, I = 1, 2, (4.1.31)

generalizing (4.1.5), (4.1.6). Furthermore, the one-form ω is given by

ω = ω0 + ω1 + ω2, (4.1.32a)

ω0 =
∑
p

(Qp1 +Qp2)

∫
p

Ḟp · dx
Rp

, ω1 =
1

2

∑
p,q

Qpq

∫∫
p,q

Ḟp · dx
RpRq

, (4.1.32b)

ω2 =
1

4

∑
p,q

Qpq

∫∫
p,q

Ḟpqi
Fpq

[(
1

Rp
− 1

Rq

)
dxi − 2

RpiRqj −RpjRqi
RpRq(Fpq +Rp +Rq)

dxj

]
. (4.1.32c)

6For example, the first term in the second line of (4.1.28c) means
∑n
p,q=1

Qpq

LpLq

∫ Lp

0
dλp

∫ Lq

0
dλq

Ḟp(λp)·Ḟq(λq)

2Rp(λp)Rq(λq)
.

Note that, even for p = q, the integral is two-dimensional; namely, the summand for p = q is
Qpp

L2
p

∫ Lp

0
dλp

∫ Lp

0
dλ′p

Ḟp(λp)·Ḟp(λ′
p)

2Rp(λp)Rp(λ′
p)
.

27



The charges QpI , Qp3 and the profile length Lp are related to quantized numbers by7

Qp1 =
gsl

5
s

2R6R7R8R9
Np, Qp2 =

gsl
5
s

2R4R5R8R9
Np,

Qp3 =
gsl

5
s

2R4R5R6R7
Np3, Lp =

2πgsl
3
s

R4R5
Np.

(4.1.33)

It is interesting to compare the above harmonic functions (4.1.28) with the naive guess

(4.1.26). The naive V,K1,K2,K3, L1, L2 were correct, but L3,M needed correction terms pro-

portional to Qpq to be a genuine solution. Since Qpq involves the product of two types of charge

(D2(45) and D2(67)) and represents interaction between two different dipoles.

It is not immediately obvious that L3 and M in (4.1.28) are harmonic on R3. One can show

that their Laplacian is given by

∆L3 = −4π
∑
p

∫
p
ρp δ

3(x− Fp)− 4π
∑
p,q

Qpq

∫∫
p,q

Ḟp · Ḟq
Fpq

δ3(x− Fp), (4.1.34)

∆M = −1

2
KI∆LI = 2π

∑
p

QpI

∫
p
KI(Fp) δ

3(x− Fp). (4.1.35)

Namely, L3 and M are harmonic up to delta-function source along the profile. In deriving these,

we used the following relations:

∆

[
RpiRqj −RpjRqi

FpqRpRq(Fpq +Rp +Rq)

]
= −RpiRqj −RpjRqi

R3
pR

3
q

, (4.1.36)∫
p

Rp · Ḟp
R3
p

=

∫
p
∂λp

(
1

Rp

)
= 0, ∆

(
1

|x|

)
= −4πδ3(x). (4.1.37)

With the relations (4.1.34) and (4.1.35), it is straightforward to show that the integrability

condition (2.1.20) is identically satisfied for any profile.

The harmonic functions L3,M in (4.1.28) are multi-valued, because K1,K2 are. However,

the quantities that actually enter the 10D metric (2.1.24) are single-valued. Indeed,

Z3 = 1 +
∑
p

∫
p

ρp
Rp

+
∑
p,q

Qpq

∫∫
p,q

[
Ḟp · Ḟq
2RpRq

− ḞpiḞqj(RpiRqj −RpjRqi)
FpqRpRq(Fpq +Rp +Rq)

]
, (4.1.38a)

µ =
1

2

∑
p,q

Qpq

∫∫
p,q

εijkḞpqiRpjRqk
FpqRpRq(Fpq +Rp +Rq)

. (4.1.38b)

So, the metric is single-valued and the spacetime is geometric. This is as it should be because

the configuration (4.1.25) does not contain any non-geometric exotic branes.

7The p-th tube has equal D2(45) and D2(67) numbers by construction. It is also possible for the p-th tube to

carry only the D2(45) (or D2(67)) charge. In that case, Qp2 = 0 (resp. Qp1 = 0) and Qp1 (Qp2) is still given by

(4.1.33).
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Single/multi-valuedness and physical condition

It is instructive to see how these multi-valued harmonic functions come about in solving the

BPS equations as reviewed in section 2.1. Assume that we are given V,KI of (4.1.28a) (which

corresponds to having specific ns5-brane dipole charges and no D6-brane), and consider finding

LI ,M or equivalently ZI , µ from the BPS equations. To find ZI , we must solve (2.1.12). For

I = 1, 2, this gives a simple Laplace equation for L1, L2, whose solution is (4.1.28b). On the

other hand, the equation (2.1.12) for Z3 reads

∆Z3 = ∆(K1K2) = 2∂iK
1∂iK

2 = 2(∂iα1j∂iα2j − ∂iα1j∂jα2i). (4.1.39)

Although K1,2 are multi-valued, the last expression in (4.1.39) is a single-valued. Therefore, it

is possible to solve this Poisson equation for Z3 using the standard Green function − 1
4π

1
|x−x′| ,

and the result will be automatically single-valued. The above solution (4.1.38a) corresponds

to this solution. This is physically the correct solution in the current situation where we only

have standard (D2 and NS5) branes and the metric must be single-valued. Alternatively, we

can solve (4.1.39) in terms of a multi-valued function. If we rewrite (4.1.39) as ∆L3 = 0

with L3 = Z3 − K1K2, then L3 = 1 +
∑

p

∫
p(ρp/Rp) ≡ Lalt

3 is a possible solution. This is

the direct analogue of what we did for the codimension-3 solution. This gives a multi-valued

Z3 = L3 +K1K2 ≡ Zalt
3 and hence a multi-valued metric, which is physically unacceptable.

One may find it strange that there are two different solutions, Z3 of (4.1.38a) and Zalt
3 , to

the same Poisson equation (4.1.39). However, the solution to the Poisson equation is unique

given the boundary condition at infinity. The two solutions have different boundary conditions

(a single-valued one for the Z3 of (4.1.38a) and a multi-valued one for Zalt
3 ) and there is no

contradiction that they are both solutions to the same Poisson equation. The BPS equations

such as (4.1.39) must be solved taking into account the physical situation one is considering.

The µ equation (2.1.15) is

∆µ =
1

2
∆(KILI) = ∂iK

I∂iZI = εijk|εIJ |∂jαJk∂iZI . (4.1.40)

Again, we have two options. The first one is to use the standard single-valued Green function

to the last expression to obtain the single-valued µ as given in (4.1.38b). The second one is to

rewrite the above as ∆M = 0, M = µ− (1/2)KILI and say that M is single-valued. This gives

multi-valued µ and is inappropriate for the current situation.

Closed timelike curves

It is known that near an over-rotating supertube there can be closed timelike curves (CTCs)

which must be avoided in physically acceptable solutions [54, 78]. The dangerous direction for
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the CTCs is known to be along the supertube, which is inside R3. By setting dt = dψ = 0 in

the metric (2.1.1), the line element inside R3 is

dl2 = −Z−2/3(µA+ ω)2 + Z1/3(V −1A2 + V dx2). (4.1.41)

In the present case, we have V = 1 and A = 0, and therefore the line element becomes

dl2 = Z−2/3(−ω2 + Zdx2), (4.1.42)

where ω is given by (4.1.32).

In the near-tube limit in which we approach a particular point Fp(λ
0
p) on the p-th curve,

where λ0
p is the value of the parameter corresponding to that point, the functions Z1,2,3 can be

expanded as

ZI = QpIR+ 1 + cI +O(r⊥), I = 1, 2, (4.1.43a)

Z3 =
(
Qp1ḞpR+ d1 +O(r⊥)

)(
Qp2ḞpR+ d2 +O(r⊥)

)
+ ρp(λ

0
p)R+ c3 + 1 +O(r⊥)

= Qp1Qp2|Ḟp|2R2 +
[
ρp(λ

0
p) + (Qp1d2 +Qp2d1) · Ḟp

]
R+ const. +O(r⊥). (4.1.43b)

Here, Ḟp = Ḟp(λ
0
p) and R is defined as

R ≡ 2

|Ḟp|
ln

2|Ḟp|
r⊥

(4.1.44)

where r⊥ is the transverse distance in R3 from the point Fp(λ
0
p) on the tube. The constants

cI=1,2,3 and dI=1,2 are defined in appendix 4.C. Similarly, ω0,1,2 are expanded as

ω0 = (Qp1 +Qp2)
(
Ḟp · dx

)
R+ (d1 + d2) · dx +O(r⊥), (4.1.45a)

ω1 = Qp1Qp2

(
Ḟp · dx

)
R2 +

R
2

[
Qp1

(
d2 + c2Ḟp

)
+Qp2

(
d1 + c1Ḟp

)]
· dx +O(r⊥),

(4.1.45b)

ω2 =
R
2

∑
q(6=p)

Qpq

∫
dλp

(
Ḟp(λ

0
p)− Ḟq(λp)

)
· dx

|Fp(λ0
p)− Fq(λp)|

+O(r⊥). (4.1.45c)

By plugging in the above expressions, the line element (4.1.42) becomes

Z2/3dl2 = (Qp1Qp2)2R4|Ḟp|2
(
dx2 − |Ḟp · dx|

2

|Ḟp|2

)

+ (Qp1Qp2)R3

[
ρp(λ

0
p)dx

2 +
(
|Ḟp|2dx2 − 2|Ḟp · dx|2

)
(Qp1 (1 + c2) +Qp2 (1 + c1))

+ Ḟp · (Qp1d2 +Qp2d1) dx2

]
+O(R2). (4.1.46)
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For displacement along the tube, dx ∝ Ḟp, the leading O(R4) term vanishes and the O(R3)

term gives the leading contribution. If the coefficient of the O(R3) term is negative for all

λ0
p ∈ [0, Lp], the cycle along the tube will be a CTC. Conversely, for the absence of CTCs, there

must be some value of λ0
p for which the following inequality is satisfied:

ρp(λ
0
p) ≥ Qp1

(
|Ḟp|2(1 + c2)− Ḟp · d2

)
+Qp2

(
|Ḟp|2(1 + c1)− Ḟp · d1

)
. (4.1.47)

This can be written more explicitly, using (4.C.11) and (4.C.15), as

ρp(λ
0
p) ≥ |Ḟp(λ0

p)|2 (Qp1 +Qp2) +
∑
q(6=p)

Qpq

∫
dλp

Ḟp(λ
0
p) ·
(
Ḟp(λ

0
p)− Ḟq(λp)

)
|Fp(λ0

p)− Fq(λp)|
. (4.1.48)

This is analogous to the no-CTC condition for the superthread solution ((2.34) in [78]).

Charge and angular momentum

Let us study if the solution above has the expected monopole and dipole charges. In the

presence of Chern-Simons interaction, there are multiple notions of charge [79], and here we

choose Page charge, which is conserved, localized, quantized, and gauge-invariant under small

gauge transformations. Specifically, the Dp-brane Page charge is defined as [79, 36] (see also

appendices A and A.1)

QPage
Dp =

1

(2πls)7−pgs

∫
M8−p

e−B2G =
1

(2πls)7−pgs

∫
∂M8−p

e−B2C. (4.1.49)

Here, M8−p is an (8− p)-manifold enclosing the Dp-brane, and G =
∑

pGp+1, C =
∑

pCp with

p odd (even) for type IIA (IIB). In the integrand, we must take the part with the appropriate

rank from the polyforms e−B2G, e−B2C. In the second equality, we used the relation (A.4)

between G and C.

Using the definition above, we can readily calculate Page charges for this 2-dipole solution.

For example, the D4(6789)-brane charge, which is expected to vanish, is given by

QPage
D4(6789) =

1

(2πls)3gs

∫
S2×T 2

45

e−B2G =
1

(2πls)3gs

∫
∂S2×T 2

45

e−B2C

=
R4R5

2πl3sgs

∫
∂S2

{[
− 1

Z1
+

V µ

Z − V µ2

(
K1

V
− µ

Z1

)]
ω + ξ1

}
, (4.1.50)

where in the last equality we used (A.4). If the surface S2 is at infinity enclosing the entire

profile, then the function in the [· · · ] above is single-valued. Also, the requirement of integrability

(2.1.20) guarantees that ω is also single-valued. Therefore, the entire first term in the integrand

is single-valued and does not contribute to the integral on ∂S2. The only contribution comes

from the second term, ξ1. Thus we find

QPage
D4(6789) =

R4R5

2πl3sgs

∫
∂S2

ξ1 =
R4R5

2πl3sgs

∫
S2

dξ1 = − R4R5

2πl3sgs

∫
S2

∗3dK1. (4.1.51)
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The integral is equal to −4π times the coefficient of 1/r in the large r expansion of K1. However,

α2 = O(1/r2) and hence K1 = γ2 = O(1/r2) and the coefficient of the 1/r term vanishes. So,

we conclude that QPage
D4(6789) = 0, as expected. Similarly, other Page charges are related to

the coefficient of the 1/r in the large r expansion of the corresponding harmonic function (see

appendix A.1 for the expressions for necessary RR potentials to compute the Page charge). We

find that the non-vanishing charges are

QPage
D2(45) = QPage

D2(67) =
∑
p

Np, (4.1.52)

QPage
D2(89) =

∑
p

Np3, Qp3 =

∫
p
ρp, (4.1.53)

where we used (4.1.33).

It is easy to check that we have appropriate monodromy for ns5(λ4567) and ns5(λ6780).

The real part of τ1,2 contain K1,2 (2.1.27) and others are all single-valued. Then we can apply

same argument as (4.1.7). So we obtain

τ1 → τ1 + 1, τ2 → τ2 + 1 (4.1.54)

as we go around each tubes. This is proper monodromy for our system.

The angular momentum can be read off from the ADM formula [80]

gti = − 1√
V (Z − V µ2)

ωi = −2G4
xjJ ji

|x|3
+ · · · (4.1.55)

where G4 is 4-dimensional Newton constant. By expanding gti to the leading order, we obtain

− gti =
xj

|x|3

(∑
p

(Qp1 +Qp2)

∫
p
ḞpiFpj +

1

4

∑
p,q

Qpq

∫∫
p,q

ḞpqiFpqj − ḞpqjFpqi
Fpq

)
+O

(
1

|x|3

)
(4.1.56)

where we used
1

Rp
=

1

|x|
+

x · Fp
|x|3

+O
(

1

|x|3

)
. (4.1.57)

Therefore the angular momentum of the 2-dipole solution is

J ji =
1

4G4

(∑
p

(Qp1 +Qp2)

∫
p
(ḞpiFpj − ḞpjFpi) +

1

2

∑
p,q

Qpq

∫∫
p,q

ḞpqiFpqj − ḞpqjFpqi
Fpq

)
.

(4.1.58)

The second term represents the contribution from the interaction between supertubes.
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4.1.3 3-dipole solutions

We can also consider a 3-dipole configuration as an extension of the 2-dipole configuration

(4.1.25) such as

D2(45) + D2(89) → ns5(λ4589)

D2(67) + D2(89) → ns5(λ6789)

D2(45) + D2(67) → ns5(λ4567)

. (4.1.59)

Because there is no D6-brane, we have V = 1. How can we find the rest of harmonic functions

for this 3-dipole configuration, generalizing the 2-dipole solution?

First, it is natural to guess that the 3-dipole solution has the dipole sources in all KI=1,2,3,

generalizing the 2-dipole case where KI=1,2 had dipole sources. Namely,

αI =
∑
p

QpI

∫
p

Ḟp · dx
Rp

, dKI = ∗3dαI , I = 1, 2, 3. (4.1.60)

Note that the next layer of equation (2.1.12) to determine ZI is quadratic in KI and therefore

knows only about 2-dipole interactions. So, we can construct ZI the same way as in the 2-dipole

case, as follows:

ZI = 1 +
∑
p

QpI

∫
p

ρpI
Rp

+ CIJK
∑
p,q

QpJQqK

∫∫
p,q

[
Ḟp · Ḟq
2RpRq

− ḞpiḞqj(RpiRqj −RpjRqi)
FpqRpRq(Fpq +Rp +Rq)

]
,

(4.1.61)

where I = 1, 2, 3 and the same shorthand notation (4.1.29) is used. Finally, the last layer of

equation (2.1.15) to determine µ is

∆µ = ∂iZI∂iK
I = εijk∂iZI∂jα

I
k. (4.1.62)

Because ZI involves 2-dipole interactions, µ involves 3-dipole interactions. Although we have

not been able to solve this in terms of integrals along the tubes as in the 2-dipole case (cf.

(4.1.38b)), we know physically that the solution must be single-valued and therefore we can

solve it by using the standard single-valued Green function. Namely, the solution is

µ(x) = − 1

4π

∫
d3x′

∂iZI∂iK
I(x′)

|x− x′|
. (4.1.63)

In order to satisfy the integrability condition (2.1.20), we have no option of adding to this a

term like
∑

p

∫
p σp/Rp with an arbitrary function σp, as we did in the second term of (4.1.38a).

In the present case, with V = 1, ∆KI = 0, the integrability condition (2.1.20) becomes

0 = V∆M −M∆V +
1

2

(
KI∆LI − LI∆KI

)
= ∆M +

1

2
KI∆LI = ∆µ− ∂iZI∂iKI , (4.1.64)
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where in the last equality we used (2.1.13), (2.1.16). This is nothing but (4.1.62). If we added

the term
∑

p

∫
p σp/Rp to the µ in (4.1.63), then the integrability condition would be violated

by a delta-function term. This is why we do not have an option of adding such a term. This

also explains as a corollary why we do not have a term like
∑

p

∫
p σp/Rp in the 2-dipole µ in

(4.1.38b).8

Although it is not as explicit as the 2-dipole case, (4.1.63) gives the interacting 3-dipole

solution in principle.

4.2 Mixed configurations

Thus far, we have studied the harmonic solution with codimension-2 centers. In this section,

we present a simple example in which codimension-3 and codimension-2 centers coexist.

As the simplest codimension-2 center, let us consider the 1-dipole configuration with the

harmonic functions (4.1.1),

V = 1, K1 = 0, K2 = 0, K3 = γ,

L1 = 1 + f2, L2 = 1 + f1, L3 = 1, M = −γ
2
,

(4.2.1)

where we have extracted “1” as compared from (4.1.2) and

f1 =
Q1

L

∫ L

0

dλ

|x− F(λ)|
, f2 =

Q1

L

∫ L

0

|Ḟ(λ)|2dλ
|x− F(λ)|

, (4.2.2)

while γ is still given by (4.1.5) and (4.1.6).

We would like to add to this a codimension-3 source of the type (2.2.1). Here, let us simply

add a codimension-3 singularity to (4.2.1) as follows:

V = n0 +
n

r
,

K1 = k1
0 +

k1

r
, K2 = k2

0 +
k2

r
, K3 = k3

0 + γ +
k3

r
,

L1 = l01 + f2 +
l1
r
, L2 = l02 + f1 +

l2
r
, L3 = l03 +

l3
r
,

M = m0 −
γ

2
+
m

r
.

(4.2.3)

For these harmonic functions, the integrability condition (2.1.20) becomes

0 = −4πδ(x)

[
n0m−m0n+

1

2
(kI0lI − l0IkI)−

1

2

(
k1f2(x = 0) + k2f1(x = 0)

)]
− 2πγ δ(x)(n+ l3)

+
1

2

[(
k2

0 +
k2

r

)
∆f1 +

(
k1

0 +
k1

r

)
∆f2

]
. (4.2.4)

8In the context of the supersheet solution [78], (the 6D version of) this was explained from the no-CTC

condition.
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The three lines on the right-hand side are of different nature and must vanish separately. So,

0 = n0m−m0n+
1

2
(kI0lI − l0IkI)−

1

2

Q

L

∫ L

0
dλ
k1|Ḟ(λ)|2 + k2

|F(λ)|
, (4.2.5a)

0 = n+ l3, (4.2.5b)

0 = k2
0 +

k2

|F(λ)|
+ |Ḟ(λ)|2

(
k1

0 +
k1

|F(λ)|

)
for each value of λ. (4.2.5c)

The first equation (4.2.5a) says that the total force exerted by the tube on the r = 0 brane

must vanish. This is a single equation and easy to satisfy. The second equation is also easy to

satisfy. On the other hand, the third equation (4.2.5c) says that the force exerted by the r = 0

brane on every point of the tube must vanish, and gives the most stringent condition. Let us

investigate this last condition in detail.

Note that, if the asymptotic moduli k1
0, k

2
0 vanished, then the distance between the tube and

the codimension-3 brane, |F(λ)|, would disappear from the condition (4.2.5c), and we have

0 = k2 + |Ḟ(λ)|2k1. (4.2.6)

Because |Ḟ(λ)|2 is the ratio of the D2(67) and D2(45) charge densities carried by the tube while

k1, k2 are the D4(6789), D4(4589) charges of the r = 0 brane, (4.2.6) would mean that the tube

must have, at every point along it, charge density that would be mutually supersymmetric with

the r = 0 brane in flat space. This can of course happen only if the total charge of the tube

is mutually supersymmetric with the r = 0 brane. In this case, the distance between the two

objects is arbitrary, implying that they are not bound.

On the other hand, if the asymptotic moduli k1
0, k

2
0 are non-vanishing, the tube does not

have charge density that would be mutually BPS with the r = 0 brane in flat space, and the

configuration represents a true bound state. The condition (4.2.5c) gives

|Ḟ(λ)|2 = −k
2
0|F(λ)|+ k2

k1
0|F(λ)|+ k1

. (4.2.7)

Because F(λ) is a vector with three components, this differential equation leaves the orientation

of Ḟ(λ) undetermined. Therefore, the tube profile can wiggle depending on two functions of

one variable. We expect that this remains true for more general configurations with both

codimension-2 and codimension-3 centers: each codimension-2 center has a profile depending

on two functions of one variable, so that the force from other centers vanishes at each point

along the tube.

4.3 Discussion

In this chapter, we studied the BPS configurations of the brane system in string theory in the

framework of 5D supergravity. In the literature, multi-center configurations of codimension-
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3 branes have been extensively studied. However, we pointed out that these codimension-3

branes can polarize into codimension-2 ones by the supertube effect and hence multi-center

configurations involving codimension-2 branes along arbitrary curves must also be included if

we want to capture the full configuration space of the system. Codimension-2 branes can be

exotic, and the solution containing them can represent non-geometric spacetime.

Therefore, the most general configuration is a multi-center configuration including both

codimension-3 branes and codimension-2 ones. In the framework of the harmonic solution,

such configurations are described by harmonic functions with codimension-3 and codimension-2

singularities in R3. In this chapter, we provided some simple examples of such solutions, hoping

that they serve as a guide for constructing general solutions.

The solutions with codimension-2 centers have various possible applications and implications,

some of them already mentioned in the introduction. Here let us discuss their relevance to the

fuzzball proposal for black holes [12, 13, 14, 15, 16] and the microstate geometry program.

Smooth harmonic solutions with codimension-3 centers have been put forward as possible

microstates for the three- and four-charge black holes [24, 25]. However, the entropy represented

by these solutions have been estimated [26, 27] to be parametrically smaller than the entropy

of the corresponding black hole. In particular, for the three-charge black hole, [27] considered

placing a probe supertube in the scaling geometry [81, 82] and estimated the associated entropy

to be ∼ Q5/4 whereas the desired black hole entropy is ∼ Q3/2, where Q ∼ Q1,2,3 is the charge of

the black hole. In our setup, a supertube in a scaling geometry corresponds to a configuration

with codimension-3 centers as well as a codimension-2 one. It may be possible to make their

estimate more precise by including backreaction using our setup.

Another issue with identifying smooth harmonic solutions with codimension-3 centers with

black hole microstates concerns the pure Higgs branch. Ref. [83] (see also [84]) studied quiver

quantum mechanics describing 3-center solutions and showed that most entropy of the system

comes from zero-angular momentum states in what they call the pure Higgs branch. On the other

hand, the multi-center solutions with codimension-3 centers are naturally identified with states

in the Coulomb branch of the quiver quantum mechanics. This is because the codimension-3

solutions are characterized by the position of the centers, which corresponds to the adjoint vev

in the quiver quantum mechanics. Therefore, these solutions do not seem to correspond to

typical microstates of the system. In contrast, a codimension-2 center has a finite-sized profile,

as a result of two branes getting bound together and puffing up by the supertube effect. In the

quiver quantum mechanics, this has a natural interpretation as a Higgs branch state, with a

finite vev for the bifundamental matter connecting two centers or nodes. Therefore, it is very

interesting to understand the relation between the codimension-2 configurations in gravity and

states in quiver quantum mechanics to elucidate the role of codimension-2 centers in black hole
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microphysics.

We have focused on codimension-2 centers in this chapter but, of course, we could con-

sider objects with still lower codimensions, namely one and zero. A codimension-1 center is a

membrane in R3 and is a harmonic-solution realization of the “superstrata” recently proposed as

possible microstates [35, 36, 85, 28]. It is interesting to study if the setup of the harmonic solution

sheds new light on superstrata or makes their construction and analysis easier. Codimension-

1 and codimension-0 branes are generally more non-geometric than the codimension-2 ones

[86, 87], and studying them in the context of the harmonic solution is an interesting subject.

Explicit construction of a solution with codimension-2 centers with general charge, position

and profile is technically a challenging problem. In subsection 4.1.2, we discussed how to solve

the BPS equations of section 2.1 for a 2-dipole supertube. As mentioned there, when solving the

BPS equations, there are multiple solutions differing in the monodromy properties. We must

construct them and choose from them the physically appropriate one expected from the dipole

charges produced by supertube transitions. This is in some sense similar to (but more com-

plicated than) the problem of finding solutions of F-theory with various monodromies around

7-branes [88, 89, 90] and is a non-trivial task. In particular, in the presence of non-trivial har-

monic function V , which corresponds to having D6-branes, solving (2.1.12) is itself a challenging

problem. We leave this for future research.

To conclude, the solutions involving codimension-2 provide interesting new directions of

research, and studying them is bound to reveal richer physics of brane systems than was found

in codimension-3 solutions. We hope to report on the progress in such research in near future.

Appendix 4.A Monodromic harmonic function

Here, we show that if the harmonic function γ has the monodromy (4.1.7) independent of the

cycle c, then it is given in terms of the one-form α by (4.1.5) and (4.1.6).

Harmonicity of γ means that d(∗3dγ) = 0, which implies that ∗3dγ is closed and can be

written in terms of a one-form α as ∗3dγ = dα at least locally. Because α has the gauge

ambiguity α→ α+ dΛ where Λ is a scalar, we can impose the “Lorenz gauge” ∂iαi = 0. In this

gauge, the monodromy of γ can be expressed as

∆γ =

∫
c
dγ =

∫
c
∗3dα =

∫
D
d ∗3 dα = −

∫
D

∆αi
1

2
εijkdx

j ∧ dxk = −
∫
D

∆αi ni d
2A, (4.A.1)

where D is a 2-surface with ∂D = c, ni is the unit normal to D, and d2A is the area element of

D. In order for the monodromy ∆γ not to change even if we homotopically deform the cycle c,

the quantity ∆α can only have delta-function source along the profile x = F(λ). Therefore, it

37



must be that

αi(x) =
1

L

∫ L

0

vi(λ)

|x− F(λ)|
dλ (4.A.2)

where vi(λ) are some functions. This gives

∆αi(x) = −4π

L

∫ L

0
vi(λ) δ2(x− F(λ)) dλ. (4.A.3)

Namely, αi has delta-function source distributed along the profile with (vectorial) density vi.

Then (4.A.1) is proportional to

vini ×
1

cos θ
× 1

|Ḟ|
, (4.A.4)

where θ is the angle between ni and the unit tangent to the profile, ti. The second factor takes

into account the fact that the curve does not necessarily perpendicularly intersect with D, and

the third factor takes into account the “speed” of the parametrization λ. Because cos θ = tjnj

and tj = Ḟj/|Ḟ|, the quantity (4.A.4) is equal to

vini
tjnj

. (4.A.5)

Given c, there are infinitely many choices for D which can intersect the profile at any point at

any angle. So, if (4.A.5) is to be independent of the choice of D, the only possibility is vi ∝ Ḟi.
This means that α is given by (4.1.6).

Appendix 4.B Superthread

In this appendix, we briefly review the superthread solution which was used in subsection 4.1.2

to derive the 2-dipole solution. The superthread solution was originally obtained in [78] as a

BPS solution in 6D supergravity [29].

The metric for the superthread is

ds2
6 = 2(Z1Z2)−1/2dv

(
du+ k +

1

2
F dv

)
− (Z1Z2)1/2ds2

4 (4.B.1)

where the base space is flat R4 with metric ds2
4 = δijdx

idxj (i = 1, · · · , 4). We denote the

coordinates of the R4 by ~x = (x1, x2, x3, x4). All quantities that appear in the metric are

independent of the coordinate u. The scalars ZI , I = 1, 2 are harmonic functions in R4 and are

given by

ZI = 1 +
∑
p

QpI
R2
p

, (4.B.2)

where

Rp ≡ |~x− ~F (p)(v)| (4.B.3)
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and ~F (p)(v) ∈ R4 is the profile of the supertube. Note that we use this R4 version of Rp only

in this appendix (Rp in the main text is defined for R3 as in (4.1.29)). The 6D solution also

involve self-dual field strengths

ΘI = ∗4ΘI , I = 1, 2, (4.B.4)

which are related to ZI by the following equation:

dΘI = |εIJ | ∗4dŻJ . (4.B.5)

Here ˙ means the v-derivative and d is the exterior derivative with respect to the R4. For ZI

given in (4.B.2), this equation can be solved by

ΘI = (1 + ∗4)d

(
|εIJ |

∑
p

QpJ
~̇F (p) · d~x
R2
p

)
. (4.B.6)

The one-form k appearing in the metric (4.B.1) satisfies the relation

(1 + ∗4)dk = ZIΘ
I . (4.B.7)

The solution to this equation is

k = k0 + k1 + k2, (4.B.8a)

k0 =
∑
I=1,2

∑
p

QpI ~̇F
(p) · d~x
R2
p

, (4.B.8b)

k1 =
1

2

∑
p,q

Qpq
~̇F (q) · d~x
R2
pR

2
q

=
1

4

∑
p,q

Qpq
( ~̇F (p) + ~̇F (q)) · d~x

R2
pR

2
q

, (4.B.8c)

k2 =
1

4

∑
p,q

Qpq
Ḟ

(p)
i − Ḟ (q)

i

|~F (p) − ~F (q)|2

[(
1

R2
p

− 1

R2
q

)
dxi − 2

R2
pR

2
q

A(p,q)
ij dxj

]
, (4.B.8d)

where we defined

Qpq ≡ Qp1Qq2 +Qq1Qp2. (4.B.9)

With this k, the scalar field F can be obtained by solving the equation

− ∗4d ∗4 dF = ∗4(Θ1 ∧Θ2) + 2Ż1Ż2. (4.B.10)

This can be solved by

F = −1−
∑
p

ρp
R2
p

−
∑
p,q

Qpq

[
~̇F (p) · ~̇F (q)

2R2
pR

2
q

−
Ḟ

(p)
i Ḟ

(q)
j A

(p,q)
ij

R2
pR

2
q |~F (p) − ~F (q)|2

]
, (4.B.11)

where

A(p,q)
ij ≡ R(p)

i R
(q)
j −R

(p)
j R

(q)
i − ε

ijklR
(p)
k R

(q)
l . (4.B.12)
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After smearing out the above solution along x4 and v directions9 and identifying quantities

as stated in [91], we can reinterpret the quantities above (ZI ,Θ
I , k,F) in terms of the harmonic

functions appearing in the harmonic solution. Specifically, we obtain V = 1, K3 = Θ3 = 0,

F = −Z3. All other quantities can be read off from the relations (2.1.13), (2.1.14), (2.1.16), and

(2.1.17).

Appendix 4.C Near-tube expansions

In this appendix, we carry out the near-tube expansions of quantities that are used in the no-

CTC analysis in the main text. To avoid clutter, we suppress the subscript p from the quantities

such as Fp and λp associated with the p-th tube.

We want to evaluate the near-tube limit of quantities such as

I(x) ≡
∫

dλ

|x− F(λ)|
. (4.C.1)

Consider a point x very close to the tube. Near the point x, the tube can be thought of as a

straight line. Let us take a cylindrical coordinate system (r⊥, θ, z) in which the point x is at

θ = z = 0. Also, let the point r⊥ = z = 0 on the curve (which is now a line) be F(λ0) where λ0

is the value of the parameter corresponding to that point. Both the points x and F(λ0) are in

the z = 0 plane. Then, by approximating the curve by a straight line there,

|x− F(λ)| ≈
√
r2
⊥ + |Ḟ(λ0)|2(λ− λ0)2 (4.C.2)

where r⊥ is the radial distance from the curve. For very small r⊥, most contribution to the

integral (4.C.1) comes from very small |λ − λ0|. So, let us introduce a small cutoff ε > 0 and

divide the integral as ∫
dλ =

∫ λ0+ε

λ0−ε
dλ+

∫ λ0−ε
dλ+

∫
λ0+ε

dλ (4.C.3)

≡
∫ λ0+ε

λ0−ε
dλ+ Pε

∫
dλ (4.C.4)

where Pε
∫

means to exclude the interval [λ0− ε, λ0 + ε] from the integral. We take the following

limit:

r⊥ → 0, ε→ 0, with
r⊥
ε
→ 0. (4.C.5)

We take ε → 0 so that the curve for λ ∈ [λ0 − ε, λ0 + ε] can be regarded as a straight line.

Because we are very close to the straight line, we must take r⊥ → 0, r⊥
ε → 0.

9The smearing along v is similar to that in [6].
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In this limit, the first term in (4.C.5) is evaluated as∫ λ0+ε

λ0−ε

dλ

|x− F(λ)|
≈
∫ λ0+ε

λ0−ε

dλ√
r2
⊥ + |Ḟ|2(λ− λ0)2

≈ 1

|Ḟ|

∫ |Ḟ|ε
−|Ḟ|ε

dλ′√
r2
⊥ + λ′2

≈ 2

|Ḟ|
log

(
2ε|Ḟ|
r⊥

)
(4.C.6)

where Ḟ ≡ Ḟ(λ0) and |Ḟ|(λ − λ0) ≡ λ′. This diverges as ε/r⊥ → ∞ because the contribution

from an infinite straight line is infinite. However, of course, the actual curve is finite and closed,

and the integral must be finite. In other words, in the full integral (4.C.4), ε-dependence must

cancel out. Therefore, we must be able to split I(x) as follows:

I(x) =
2

|Ḟ|
ln

2|Ḟ|
r⊥

+ lim
ε→0

[
Pε

∫
dλ

|F(λ)− F(λ0)|
+

2

|Ḟ|
ln ε

]
+O(r⊥), (4.C.7)

where [. . . ] is finite in the ε→ 0 limit. Indeed, the second term in (4.C.3) is∫ λ0−ε dλ

|x− F(λ)|
≈
∫ λ0−ε dλ

|F(λ0)− F(λ)|
(4.C.8)

and includes a divergent contribution from near the upper bound of the integral, λ = λ0 − ε.
The diverging contribution can be evaluated as

(4.C.8) ≈ 1

|Ḟ|

∫ −ε dλ′
|λ′|
≈ − 1

|Ḟ|
ln ε. (4.C.9)

We get an identical contribution from the third term in (4.C.3). These divergences precisely

cancel the second term in [. . . ] of (4.C.7).

So, for example, as we approach the point Fp(λ
0
p) on the p-th tube, the behavior of the

integral appearing in ZI=1,2 of (4.1.28b) is∑
q

QqI

∫
q

1

Rq
=
∑
q

QqI
Lq

∫
dλq

|x− Fq(λq)|
=
QpI
Lp
R+ cI +O(r⊥) (4.C.10)

(see (4.1.30) for the first equality) where cI=1,2 is defined by

cI ≡
QpI
Lp

lim
ε→0

[
Pε

∫
dλp

|Fp(λ0
p)− Fp(λp)|

+
2

|Ḟp|
ln ε

]
+
∑
q(6=p)

QqI
Lq

∫
dλq

|Fp(λ0
p)− Fq(λq)|

(4.C.11)

and is independent of r⊥. We also defined

R ≡ 2

|Ḟp|
ln

2|Ḟp|
r⊥

. (4.C.12)
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Using the same argument, we can also derive the behavior of the integrals appearing in ω

and Z3 as follows:

∑
q

QqI

∫
q

Ḟq(λq)

Rq(λq)
=
∑
q

QqI
Lq

∫
Ḟq(λq) dλq
|x− Fq(λq)|

=
QpI
Lp

Ḟp(λ
0
p)R+ dI +O(r⊥), (4.C.13)

∑
q

∫
q

ρq
Rq

=
∑
q

1

Lq

∫
ρq(λq) dλq
|x− Fq(λq)|

=
1

Lp
ρp(λ

0
p)R+ c3 +O(r⊥), (4.C.14)

where

dI ≡
QpI
Lp

lim
ε→0

[
Pε

∫
Ḟp(λp) dλp

|Fp(λ0
p)− Fp(λp)|

+
2Ḟp(λ

0
p)

|Ḟp|
ln ε

]
+
∑
q(6=p)

QqI
Lq

∫
Ḟq(λq) dλq

|Fp(λ0
p)− Fq(λq)|

,

(4.C.15)

c3 ≡
1

Lp
lim
ε→0

[
Pε

∫
ρp(λp) dλp

|Fp(λ0
p)− Fp(λp)|

+
2ρp(λ

0
p)

|Ḟp|
ln ε

]
+
∑
q(6=p)

1

Lq

∫
ρq(λq) dλq

|Fp(λ0
p)− Fq(λq)|

.

(4.C.16)
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Chapter 5

Non-Abelian codimension-2 solutions

In this chapter, we give an explicit example of non-Abelian codimension-2 solutions and discuss

its meaning in the context of microstate geometry program. All the material of this chapter is

based on [66].

The plan of the chapter is as follows. In section 5.1, we explain some backgrounds and

summarize the results we obtained. We also discuss some implications of the solution in the

context of microstate geometry program. In section 5.2, we explicitly construct an example

of non-Abelian supertubes. We first introduce the colliding limit and the matching expansion

which allow us to construct the solution order by order by connecting the far-region and near-

region solutions. We then use it to perturbatively construct the solution. As the near-region

solution, we use an ansatz inspired by the SU(2) Seiberg-Witten theory. In section 5.3, we

study the physical properties of the solution. We work out the brane charge content, the

asymptotic geometry and the angular momentum, and discuss the condition for the absence

of closed timelike curves (CTCs). Based on the results, we argue that the solution is a bound

state and thus represent a black hole microstate. We also discuss the cancellation mechanism

responsible for the vanishing of the angular momentum. The appendices include some details

of the computations carried out in the main text and some topics tangential to the content of

the main text.

5.1 Introduction and summary

5.1.1 Background

In the presence of codimension-2 branes, the harmonic functions H in general become multi-

valued as we have seen in chapter 4. This is because codimension-2 branes generally have

a non-trivial U-duality monodromy around them [35, 36], and H transforms in a non-trivial

representation under it. For a multi-center configuration, if the i-th codimension-2 brane has
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U-duality monodromy represented by a matrix Mi around it, the harmonic functions will have

the monodromy

H →MiH. (5.1.1)

When the matrices Mi,Mj do not commute for some i, j, we say that the configuration is

non-Abelian.1

In the previous chapter, we wrote down first examples of codimension-2 harmonic solutions.

They involve multiple species of codimension-2 supertubes and can have the same asymptotic

charges as a four-dimensional (4D) black hole with a finite horizon area. However, the con-

stituent branes were unbound ; namely, by tuning parameters of the solution, we can separate

the constituents of the solution infinitely far apart. This implies that the solution does not

actually represent a microstate of a BPS black hole, for the following reason [12, Section 3.1]:

Classically, it is possible to consider a configuration in which constituents are separated by

a finite fixed distance from each other. However, quantum mechanically, by the uncertainty

principle, fixing the relative position of the constituents increases kinetic energy and the config-

uration would not exactly saturate the BPS bound. Namely, it cannot be a microstate of a BPS

black hole. So, the solution constructed in the previous chapter is not a black hole microstate.

Relatedly, the solution in chapter 4 had Abelian monodromies. There is some kind of linearity

for codimension-2 branes with commuting monodromies, and we can construct solutions with

multiple codimension-2 centers basically by adding harmonic functions for each center.2 This

suggests that codimension-2 branes with Abelian monodromies do not talk to each other and

are not bound.

Then the natural question is: does a configuration of supertubes with non-Abelian mon-

odromies exist? If so, is it a bound state, and does it represent a black hole microstate? These

are precisely the questions that we address in this chapter.

5.1.2 Main results

In this chapter, we will construct a configuration of codimension-2 supertubes with non-Abelian

monodromies within the framework of harmonic solutions, in a certain perturbative expansion.

We will give evidences that, as expected, it represents a bound state, and that it corresponds

to a microstate of a 4D black hole with a finite horizon.

Our configuration is made of two circular supertubes which share their axis. The two tubes

are separated by distance 2|L| and the radii of both rings are approximately R. See figure

1This is totally different from making the gauge group non-Abelian, namely generalizing Einstein-Maxwell to

Einstein-Yang-Mills. For some recent work on non-Abelian generalizations in that sense, see [92, 93].
2More precisely, one should include certain interaction terms as well as we saw in chapter 4. However, it is

still true in this case that one can in principle construct solutions with multiple codimension-2 centers located

wherever we want.
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5.2 on page 51. The harmonic functions H will have a non-trivial monodromy around each of

the two tubes. The monodromies for the two supertubes do not commute, namely, they are

non-Abelian. Because it is technically difficult to find the solution for general R and |L|, we

consider the “colliding limit”, |L| � R, in which we can construct the harmonic functions order

by order in a perturbative expansion.

Despite that the colliding limit allows us to construct the solution explicitly, it also has

a drawback: we cannot determine the value of R and |L| separately. If we knew the exact

solution, not a perturbative one, then we would be able to constrain them by imposing physical

conditions (the absence of closed timelike curves) on the explicit solution. In this chapter we

will not be able to do that. Instead, we will make use of supertube physics to argue that R and

|L| are fixed (section 5.3.4). Although the argument physically well motivated and convincing,

it is not a proof; we hope to revisit this point in future work.

Because the physical parameters R and |L| are fixed, it is not possible to separate apart

the two supertubes and therefore the configuration represents a bound state. Moreover, it has

asymptotic charges of a 4D black hole with a finite horizon. Therefore, the non-Abelian 2-

supertube configuration is arguably a black hole microstate. The geometry is not regular near

the supertubes, but the singular behavior is an allowed one in string theory, just as the geometry

near a 1/2-BPS brane is metrically singular but is allowed. In this sense, our solution is not a

microstate geometry but a microstate solution as defined in [20]. Our solution simultaneously

involves the two types of supertube, (1.2) and (1.3), and therefore is non-geometric in that the

internal torus is twisted by T-duality transformations around the supertubes.

We find that the asymptotic geometry of the perturbative solution is AdS2×S2, namely the

attractor geometry [37] of the black hole with the same charge. Furthermore, we find that the 4D

angular momentum of the solution is zero, J = 0. We will argue that this is due to cancellation

between the angular momentum that the individual supertubes carry and the one coming from

the electromagnetic crossing between the monopole charges carried by the supertubes.

On a more technical note, in the colliding limit |L| � R, we can split the problem of finding

harmonic functions with desired monodromies into two parts. If one is at a distance d ∼ R� |L|
away from the supertubes (the “far region”), the configuration is effectively considered as made

of a single tube whose monodromy is the product of two individual monodromies. On the other

hand, if one is at a distance d ∼ |L| � R away from the tubes (the “near region”), we can

regard the tubes as infinitely long and the problem reduces to that of finding 2D harmonic

functions with desired monodromies. Once we find harmonic functions in both regions, we can

match them order by order in a perturbative expansion to construct the harmonic function

in the entire space. This is the sense in which our solution is perturbative in nature. In the

near region, the problem is to find a pair of holomorphic functions with non-trivial SL(2,Z)
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monodromies around two singular points on the complex z-plane. Mathematically, this problem

is the same as the one encountered in the SU(2) Seiberg-Witten theory [94] and we borrow their

results to construct the harmonic functions.

The solution thus constructed is perfectly consistent at the perturbative level, but it is

possible that unexpected new features are encountered in the exact, full-order solution. However,

constructing such an exact solution is beyond the techniques developed in this chapter and left

for future research.

In terms of the harmonic solutions H = {V,KI , LI ,M}, our configuration is given by

V = ReG, K1 = K2 = − ImG, K3 = ReF,

L1 = L2 = ImF, L3 = ReG, M = −1

2
ReF,

(5.1.2)

where F and G are complex functions and carry the information of the monodromies. This class

of solutions describes the general configuration in which the complexified Kähler moduli of T 2
45

and T 2
67 are set to τ1,2 = i whereas the one associated with T 2

89 is given by τ3 = F
G . This class

is a type IIA realization of the so-called SWIP solution [95]. It is the particular choice of the

pair ( FG ) that fixes the monodromies of the configuration. In our solution, F and G are related

to the defining functions of the Seiberg-Witten solution.

5.1.3 Implication for black hole microstates

In the above, we argued that our codimension-2 configuration represents a black hole microstate.

Our perturbative solution is quite different from the supergravity microstates based on codimen-

sion-3 harmonic solutions [24, 25, 13] that have been extensively studied in the literature. In

particular, its 4D asymptotics is the AdS2×S2 attractor geometry of the black hole with the same

asymptotic charges, because the harmonic functions cannot have constant terms. Furthermore,

the 4D angular momentum of our solution vanishes, J = 0, because of a cancellation mechanism

between the tube and crossing contributions. To better understand the possible implications of

these properties, let us recall some known facts and conjectures about black hole microstates.

For codimension-3 harmonic solutions, a well-known family of microstate geometries whose

4D asymptotics can be made arbitrarily close to AdS2 × S2 and whose angular 4D momentum

J can be made arbitrarily small is the so-called scaling solutions [96, 81, 82].3 Scaling solutions

are made of three or more codimension-3 centers and exist for any value of the asymptotic

3Note that the angular momentum here is the 4D one. In the scaling solution, the 4D angular momentum can

be made arbitrarily small. If one goes to 5D, there are two angular momenta, and the 4D angular momentum

is one of the two. The other 5D angular momentum, which is nothing but the D0-brane charge from the 4D

viewpoint, has been quite difficult to make smaller than a certain lower limit, for the geometry to correspond to

a microstate in the D1-D5 system [81, 82, 97, 98]. This problem can be overcome by generalizing the harmonic

solution to the superstratum in 6D [32]. This issue is not relevant to the current discussion.
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moduli, provided that certain triangle inequalities are satisfied by the skew products of the

charges of the centers. The defining property of the scaling solutions is that we can scale down

the distance between centers in the R3 base so that they appear to collide. However, the actual

geometry does not collapse; what is happening in this scaling process is that an AdS throat

gets deeper and deeper, at the bottom of which the non-trivial 2-cycles represented by the

centers sit. At the same time, the angular momentum J becomes smaller and smaller. In the

infinite scaling limit where all the centers collide in the R3 base, the geometry becomes precisely

AdS and the angular momentum J vanishes. It has been argued [99, 100] that the majority

of the black hole microstates live in this infinite scaling limit, where the branes wrapping the

2-cycles [67], called “W-branes”, become massless and condense. In the IIA picture, W-branes

are fundamental strings stretching between D-brane centers. In the language of quiver quantum

mechanics [96] dual to scaling solutions, the configurations with a finite throat correspond to

Coulomb branch states, while the configurations with W-brane condensate would correspond to

pure-Higgs branch states [83]. However, the gravity description of such condensate is unclear.4

It cannot simply be the infinite throat limit of the scaling solution, because in that limit the

non-trivial 2-cycles disappear in the infinite depth and the entire geometry becomes just AdS,

indistinguishable from the black hole geometry. Furthermore, quantization of the solution space

of the scaling solutions [72] says that the depth of the throat cannot be made arbitrarily large

but is limited by quantum effects. So, it appears that, although the scaling solution is an

important clue for the W-brane condensate and pure-Higgs branch states, it is not the answer

itself.

Relatedly, Sen and his collaborators argued [104, 105, 106] that the contribution to black

hole microstates can be split into the “hair” part which lives away from the horizon and the

“horizon” part which gives the main contribution to black hole entropy. The horizon part has

asymptotically AdS2 geometry and vanishing angular momentum, J = 0. This is based on the

fact that, in 4D, only J = 0 black holes are BPS and all extremal black holes with J 6= 0

are non-supersymmetric [104]. The analysis of the quiver quantum mechanics describing the

worldvolume theory of a D-brane black hole system [106] also supports the claim that all black

hole microstates in 4D have J = 0.

In summary, both the analysis of the scaling solutions and the arguments of Sen et al. suggest

that the majority of the black hole microstates have AdS asymptotics and vanishing angular

momentum, J = 0. They are states with a condensate of W-branes, or equivalently fundamental

strings stretching between D-branes, and correspond to the pure-Higgs branch states of the dual

quiver quantum mechanics.

Now if we look at our perturbative solution, it seems to have all the above properties expected

4For recent attempts to construct the gravity description of W-branes, see [70, 101, 102, 103].
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of a typical microstate of a 4D black hole. First, it has AdS2 asymptotics. This was not done by

fine-tuning of parameters but is a consequence of the non-trivial monodromy of the supertubes.

Second, its angular momentum vanishes, J = 0. This did not require fine-tuning either, and

it was due to the cancellation mechanism mentioned before between different contributions to

angular momentum. Moreover, our solutions are made of supertubes generated by the supertube

transition which is nothing but condensation of the strings stretching between the original D-

branes. Therefore, it is natural to conjecture that our solution is giving a gravity description of

the W-brane condensate and represents a state in the pure-Higgs branch. At least, it is expected

to provide a clue for the gravity description of pure-Higgs branch states.

Of course, to make such a strong claim we need strong evidence, including the demonstration

that non-Abelian supertube configurations do exist beyond the perturbative level, and the proof

they have a huge entropy to account for the black hole microstates. Such studies would require

more sophisticated tools and techniques than developed in the current thesis. At this point,

we just state that it is quite non-trivial and intriguing that the perturbative non-Abelian 2-

supertube solution has the properties expected of black hole microstates, and leave further

investigation as an extremely interesting direction of future research.

In [107] (see also [108]), an interesting set of solutions with AdS2 × S2 asymptotics were

constructed. They belong to the so-called IWP family of solutions [109, 110] and are charac-

terized by one complex harmonic function in three dimensions. The main differences between

the solutions in [107] and ours are as follows. First, because the solutions in [107] are based on

one complex harmonic function, their possible monodromies are Abelian. On the other hand,

our solution has two complex harmonic functions and thus the monodromies are in general

non-Abelian. Second, the solutions in [107] have two distinct AdS2×S2 asymptotic regions. In

contrast, the multiple asymptotic regions in our solutions are related by U-duality and regarded

as one asymptotic region in different U-duality frames. Therefore, our solution has only one

physical asymptotic region.

Let us end this section by mentioning one other difference between microstates with codimension-

3 centers and ones with codimension-2 centers. One issue about the existing construction of

black hole microstates based on codimension-3 harmonic solutions is that, multi-center configu-

rations (except for the case where there are two centers and one of them is a 1/2-BPS center) are

expected to lift and disappear from the BPS spectrum once generic moduli are turned on [111].

The physical origin of this is that, if there are multiple centers, when one continuously changes

the moduli to arbitrary values, the discreteness of quantized charges is incompatible with the

BPS condition [112]. This is certainly an issue for codimension-3 centers but, codimension-2 su-

pertubes may be able to avoid it by continuously deforming the tube shapes and re-distributing

the monopole charge density along its worldvolume, so that the BPS condition is met even if
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one changes the moduli continuously. Therefore, it may be that codimension-2 solutions provide

a loophole for the no-go result of [111] and represent microstates that remain supersymmetric

everywhere in the moduli space.

5.2 Explicit construction of non-Abelian supertubes

5.2.1 Non-Abelian supertubes

In the previous chapter, we saw that harmonic solutions can describe BPS configurations of

codimension-2 supertubes. A codimension-2 supertube has a non-trivial U-duality monodromy

around it, which can be represented by a monodromy matrix M . If multiple codimension-2

supertubes are present and the i-th supertube has a monodromy matrix Mi then, in general,

the monodromies of different supertubes do not commute, [Mi,Mj ] 6= 0 for some pair (i, j),

namely, the monodromies are non-Abelian. In this section, we show, for the first time, that such

a non-Abelian configuration of supertubes is indeed possible.

We will focus on configurations in which only one modulus τ3 ≡ τ is non-trivial and has

SL(2,Z) monodromies. As discussed in section 5.A.1, in this situation, only four harmonic

functions are independent (5.A.2), which can be combined into two complex harmonic functions

F,G. In terms of them, the modulus τ can be written as

τ =
F

G
. (5.2.1)

The simplest non-Abelian configuration is one with two supertubes. As we go around the i-th

supertube, the harmonic functions transform as(
F

G

)
→Mi

(
F

G

)
, Mi ∈ SL(2,Z), i = 1, 2. (5.2.2)

We require that the monodromies be non-Abelian,

[M1,M2] 6= 0. (5.2.3)

See figure 5.1 for a pictorial description of such a 2-supertube configuration.

Specifically, we will consider a two-supertube configuration with the following monodromies:

M1 =

(
1 0

−2 1

)
, M2 =

(
3 2

−2 −1

)
. (5.2.4)

These clearly give a non-Abelian pair of monodromies satisfying (5.2.3). As we will discuss

later in this section, this choice is motivated by the solution to a similar monodromy problem
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Figure 5.1: A non-Abelian configuration of two supertubes. The monodromy matrices M1,M2

of the two supertubes do not commute, [M1,M2] 6= 0.

discussed in the SU(2) Seiberg-Witten theory [94]. If we go around the two supertubes, the

total monodromy is

M = M2M1 =

(
−1 2

0 −1

)
. (5.2.5)

If one is far away from the supertubes, none of the monodromies of the supertubes are

visible and the configuration looks like that of a single-center codimension-3 solution. From the

|x| → ∞ behavior of the harmonic functions, we can read off the charges of the single-center

solution. We will find that the charges are those of a four-charge black hole in four dimensions

with a finite horizon. In other words, seen from a large distance, our configuration looks like an

ordinary four-charge black hole without any monodromic structure. However, as one approaches

it, the topology of the supertubes becomes distinguishable and discovers that the spacetime has

non-trivial non-Abelian monodromies.

5.2.2 Strategy

The problem that we should attack in principle is the following. We first specify two closed

curves C1, C2 in R3 along which the two supertubes lie, such as the ones in figure 5.1. Then we

must find a pair of harmonic functions (F,G) which, as we go around curve Ci, undergoes the

monodromy transformation (5.2.2) with the monodromy matrix Mi given in (5.2.4). If we can

find such pair (F,G), then the configuration exists.

Although this is a mathematically well-posed problem, explicitly carrying it out for general

shapes of supertubes is technically challenging. Instead, our strategy here is to take a particu-

larly simple configuration for the two supertubes and further take a limit in which the problem

of finding the solution becomes simple and tractable but is still non-trivial. This is sufficient for

the purpose of proving the existence of a configuration of non-Abelian supertubes.

Specifically, we assume that the two tubes are circular and share the axis (so that the

configuration is axisymmetric). The two tubes have almost identical radius R > 0 and are very
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Figure 5.2: (a) A configuration of two circular supertubes sharing the axis. (b) The configuration

in the colliding limit, |L| � R. In this limit, we can study the problem in two different regimes,

the near and far regions. In the near region, the system becomes 2-dimensional but we must

consider two separate monodromies M1,M2 of two supertubes. In the far region, the system

remains 3-dimensional but there is only one tube with monodromy M = M2M1.

close to each other, separated by distance 2|L|; see figure 5.2(a). More precisely, in equations,

the location of supertubes 1 and 2 is specified as follows:

Supertube 1: (x1)2 + (x2)2 = (R+ |L| cos l)2, x3 = +|L| sin l,

Supertube 2: (x1)2 + (x2)2 = (R− |L| cos l)2, x3 = −|L| sin l,
(5.2.6)

where l is the angle between the two tubes relative to the x1-x2 plane; for example, l = 0 if they

are concentric. We study this system in the colliding limit,

|L| � R. (5.2.7)

In this limit, we can break down the problem into two regimes, depending on the distance d

from an observer to the supertubes, as follows:

(i) The near region, d ∼ |L| � R.

In this region, the two supertubes can be regarded as infinite straight lines and we can

forget the direction along them. Therefore, the system can effectively be treated as 2-

dimensional. By symmetry, we can zoom in onto the region near the point (x1, x2, x3) =

(R, 0, 0) without loss of generality, and identify the z-plane with a small piece of the x1-x3

plane near that point with the relation

z = (x1 −R) + ix3, |x1 −R|, |x3| ∼ |L| � R. (5.2.8)

On the z-plane, the two supertubes are located at z = L and z = −L, where we defined

L = |L|eil. (5.2.9)
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So, the problem reduces to that of finding on the z-plane a pair of 2D harmonic functions

(F,G) that has non-trivial monodromies M1,M2 given in (5.2.4) around z = ±L. See

figure 5.2(b).

(ii) The far region, |L| � R ∼ d.

In this region, the two supertubes cannot be resolved and we effectively have only one

supertube sitting at

(x1)2 + (x2)2 = R2, x3 = 0, (5.2.10)

with the combined monodromy M = M2M1 given in (5.2.5). So, the problem reduces to

that of finding 3D harmonic functions (F,G) with the monodromy M around one circular

supertube.

After finding the expressions for the harmonic functions (F,G) in regions (i) and (ii), we

must connect them in the intermediate region, |L| � d � R, in order to show the existence

of (F,G) defined in the entire space. Namely, we must match the large-|z| behavior of the

near-region solution smoothly onto the near-ring (i.e., (x1, x2, x3) → (R, 0, 0)) behavior of the

far-region solution.

This matching can be done order by order and the harmonic function in the entire space

can be reconstructed to any order in perturbative expansion. To see exactly how this works in

practice, let us study a toy example in which we can work out the matching procedure in detail.

A toy model for the matching procedure

As a simpler physical problem in which there are two very different scales |L| and R with

|L| � R, let us consider the following problem. In three dimensions, we would like to find the

field configuration sourced by two point-like charges at x = ±L ≡ (0, 0,±|L|) with charge Q±.

Assume that the field H is governed by the Helmholtz equation(
∆− 1

R2

)
H = 0. (5.2.11)

Of course, for this problem, we know the exact answer:

H =
Q+e

− |x−L|
R

|x− L|
+
Q−e

− |x+L|
R

|x + L|
. (5.2.12)

However, let us try here to recover this expression by working in the “near region” |x| ∼ |L| � R

and in the “far region” |L| � R ∼ |x| separately, and finally matching the expressions in the

intermediate region connecting the two.
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In the near region |x| ∼ |L| � R, we can ignore the R dependence in (5.2.11). Therefore,

the expression in the near region is

H =
Q+

|x− L|
+

Q−
|x + L|

. (5.2.13)

Let (r, θ, ϕ) be the spherical polar coordinates for R3. If we increase r, still staying inside the

near region, we can do a small |L|r expansion of this and obtain

H =
Q+ +Q−

r
+

(Q+ −Q−)|L| cos θ

r2
+O

(
|L|2

r3

)
, (5.2.14)

which corresponds to the standard multipole expansion. We would like to find how this multipole

expansion matches onto the one in the far region.

To be able to do the matching, there must be an intermediate region where the expan-

sion (5.2.14) is correct. To understand what this means, let us make the scaling for the inter-

mediate region, |L| � r � R, more precise by setting

r

R
∼ ε, |L|

r
∼ δ, (5.2.15)

where ε, δ � 1. If we are to keep r finite, the replacement

R→ Rε−1, |L| → |L|δ, (5.2.16)

will keep track of the order of expansion. If we do this replacement in the exact expres-

sion (5.2.12) and expand it in powers of ε and δ, we obtain

H =

[
Q+ +Q−

r
+

(Q+ −Q−)|L| cos θ

r2
δ +O(δ2)

]
− (Q+ +Q−)ε

R

+

[
(Q+ +Q−)r

2R2
− (Q+ −Q−)|L| cos θ

2R2
δ +O(δ2)

]
ε2 +O(ε3). (5.2.17)

If we make ε small enough so that only the O(ε0) terms remain, then this reproduces the near-

region expansion (5.2.14). Therefore, the correct procedure is: take ε→ 0 first, and then match

the δ expansion. In other words, take R→∞ first, and then match the small |L|r expansion.

With this mind, let us go to the far region. Here, the two charges cannot be resolved and

the function H can be singular only at r = 0. The instruction is: find solutions of the Helmholtz

equation such that their R → 0 limit reproduces (5.2.14), term by term in the |L|r expansion.

First,

(Q+ +Q−)
e−

r
R

r
(5.2.18)

is clearly an exact solution with a singularity at r = 0. If we take R→∞, this gives r−1, which

reproduces the first term in (5.2.14). Next,

(Q+ −Q−) |L| e−
r
R

(
1

r2
+

1

Rr

)
cos θ (5.2.19)
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is an exact solution and its R→∞ limit reproduces the second term in (5.2.14). So, up to this

order, the far-region solution which reproduces (5.2.14) is

H =
(Q+ +Q−) e−

r
R

r
+ (Q+ −Q−) |L| e−

r
R

(
1

r2
+

1

Rr

)
cos θ +O

(
|L|2

r3

)
. (5.2.20)

It is clear that we can keep going with this procedure to find the far-region solution that repro-

duces the expansion (5.2.14) to an arbitrarily high order, upon taking the R→∞ limit. In prin-

ciple, if we can sum this expansion to all orders, we can recover the exact expression (5.2.12) with

singular sources at x = ±L. However, at any finite order, the perturbative expression (5.2.20)

has a singularity only at r = 0; namely, some features of the exact solution can be seen only

after carrying out the infinite sum, which is a limitation of the method of matching expansion.

Below, we will use the exactly same matching procedure to find the harmonic functions

describing a configuration of non-Abelian supertubes.

5.2.3 The near region

Now with the colliding limit and the matching procedure understood, let us construct the

solution starting from the near-region side.

Some general statements

As we mentioned before, in the near region, we can regard the round supertubes as parallel,

infinite straight lines. Forgetting about the direction along the tubes, the problem reduces to

the one on the z-plane defined in (5.2.8). A harmonic function in 2D can be written as the sum

of holomorphic and anti-holomorphic functions. In the present case, this means that F,G are

both written as a sum of holomorphic and anti-holomorphic functions.

Let us further assume that F and G are purely holomorphic:

F = F (z), G = G(z). (5.2.21)

This is equivalent to assuming that τ = F/G is holomorphic. In this case, we can solve (5.A.8)

to find ω explicitly. If we set

ω = ω2dx
2 + ωzdz + ωz̄dz̄, (5.2.22)

where ωz, ωz̄ and ω2 are independent of x2, then

ω2 = − Im(FḠ) + C, ∂ωz̄ − ∂̄ωz = 0 (5.2.23)

where C is a constant.

The above ω2 is SL(2,Z) invariant because(
α β

γ δ

)
: Im(FḠ)→ Im[(αF + βG)(γF̄ + δḠ)] = Im[(αδ − βγ)FḠ] = Im(FḠ), (5.2.24)
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for αδ − βγ = 1. Therefore, even if there is a singularity around which there is an SL(2,Z)

monodromy and (F,G) are multi-valued, ω2 is always single-valued. By (3.3.1), this means

that the integrability condition (2.1.20) is satisfied without delta-function singularities along

the supertube.

The constant C and functions ωz, ωz̄ must ultimately be fixed by extending the near-region

solution to the far-region solution and requiring that ω be regular everywhere and vanish at 3D

infinity. In the present case, we will find that ω in the far region has a non-vanishing component

only in the direction along the supertube. Therefore, we set ωz = ωz̄ = 0. On the other hand,

the constant C cannot be fixed unless we have an exact solution (we only have a perturbative

solution in the present thesis).

When there is a supertube, the direction along its profile is a dangerous direction where

there can be CTCs [54, 55]. This is the x2 direction in the present case and the 22 component

of the metric which is, e.g., from (2.1.24),

g22 ∝ −ω2
2 +Q = −[− Im(FḠ) + C]2 + [Im(FḠ)]2 = C[2 Im(FḠ)− C]. (5.2.25)

From (5.A.9), Im(FḠ) ≥ 0. So, for (5.2.25) not to be negative, the constant C must be in the

following range:

0 ≤ C ≤ 2 min[Im(FḠ)]. (5.2.26)

This does not have to hold up to z =∞. It only has to hold up to some value of |z| above which

the 2D approximation breaks down.

The solution

On the z-plane, we would like to construct a pair of harmonic functions (F,G) that has non-

trivial non-Abelian monodromy (5.2.2) around some singular points. In doing that, we must

require that the imaginary part of τ = F/G be always positive, because of the condition (5.A.9).

There are many such possibilities, but in this chapter we will take the pair of holomorphic

functions that appeared in the solution of d = 4,N = 2 supersymmetric gauge theory by

Seiberg and Witten [94], because it is a fundamental example of configurations with non-Abelian

monodromies.

The original work of Seiberg and Witten was about the exact determination of the low-

energy effective theory of N = 2 pure SU(2) gauge theory. At low energy, the theory has a

Coulomb moduli space parametrized by the vacuum expectation value of the vector multiplet

scalar, z = 〈trφ2〉 ∈ C. At point z on the moduli space, one has a pair of holomorphic functions

(aD(z), a(z)) which represent the mass of the magnetic monopole and the electron at that point.

In terms of them, the low-energy coupling constant, τ(z), is expressed as

τ(z) =
daD
da

=
a′D(z)

a′(z)
. (5.2.27)
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Figure 5.3: The monodromy structure in the near region. At z = ±L we have singularities

corresponding to the position of the supertubes. When going around one of them, (F,G)

gets transformed by Mi. Going around both of them induces a monodromy transformation

M = M2M1.

The theory has an SL(2,Z) duality group which changes the coupling constant τ and acts

non-trivially on the spectrum of dyons. More specifically, under SL(2,Z), the pair (aD, a)

transforms as a doublet and τ undergoes linear fractional transformation. The moduli space

has three singularities at z = ±L,∞ around which there are non-trivial monodromies of the

SL(2,Z) duality. The one at z = L is due to the magnetic monopole becoming massless and the

monodromy around it is given by M1 in (5.2.4). On the other hand, the one at z = −L is due

to the (1, 1) dyon getting massless and the monodromy is given by M2 in (5.2.4). Finally, the

one at z = ∞ is due to asymptotic freedom and the monodromy is given by M in (5.2.5). See

figure 5.3 for the monodromy structure of the moduli space.

One sees that this theory has everything we need. We identify the SL(2,Z) duality group on

the gauge theory side with the SL(2,Z)3 U-duality group on the supertube side, the modulus

z with the z coordinate of the near region, the mass parameters (aD, a) with the harmonic

functions (F,G), and τ with the torus modulus τ3 = τ . Furthermore, the position z = ±L of

the singularities on the moduli space is identified with the position of the supertubes in the near

region. The precise identification between (F,G) and (aD, a) is(
F

G

)
= c

(
a′D(z)

a′(z)

)
(5.2.28)

where c ∈ C is a constant of dimension [c] = (length)1/2.5 Now figure 5.3 is understood as the

monodromy structure of the harmonic functions (F,G) in the near region.

5At this stage, c can actually be an arbitrary single-valued holomorphic function in z. However, one can show

that, in order that the fields near each of the two supertube at z = ±L behave the same way as they do near

ordinary supertubes, such as the D2 + D2 → ns5 supertube or the D2 + D6 → 52
2 supertube, we must take c to

be constant. It must be possible to derive the behavior of c near supertubes by properly taking account of its

backreaction of the brane worldvolume. See [90] for a discussion of such backreaction in F-theory configurations

of 7-branes.
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One may wonder about the meaning, in the supertube context, of the singularity at z =∞
of the Seiberg-Witten solution. Recall that the near-region description in terms of the z-plane

is only an approximation near the tubes. In reality, the infinity of the near-region z-plane is

connected to the 3D space, where the tube is not infinitely long but is finite and closed. In the

context of the original Seiberg-Witten theory, which is defined in the z-plane, the monodromy

at z = ±L must be canceled by the monodromy at z =∞. On the other hand, in the supertube

context, the z-plane is connected to a larger space, R3 and the monodromy is canceled by the

other side of the supertube in R3.

The explicit expression for a(z) and aD(z) is

a(z) =

√
2

π

∫ L

−L
dx

√
z − x

(L− x)(L+ x)
=
√

2(z + L) 2F1

(
−1

2
,
1

2
; 1;

2L

z + L

)
,

aD(z) =

√
2 i

π

∫ z

L
dx

√
z − x

(x− L)(x+ L)
=
L− z
2i
√
L

2F1

(
1

2
,
1

2
; 2;

L− z
2L

)
.

(5.2.29)

Here 2F1(a, b; c; z) is the hypergeometric function. Note that L is a complex number (see (5.2.9)).

The sign of the square root in the integral expression is defined to be positive for 0 < L < z

and, for complex L, z, it is defined by analytic continuation. Taking derivatives, we have

a′(z) =
1√
2π

∫ L

−L

dx√
(z − x)(L− x)(L+ x)

=

√
2

π
√
z + L

K

(
2L

z + L

)
,

a′D(z) =
i√
2π

∫ z

L

dx√
(z − x)(x− L)(x+ L)

=
i

π
√
L
K

(
L− z

2L

)
,

(5.2.30)

where K(z) = π
2 2F1(1

2 ,
1
2 ; 1; z) is the complete elliptic integral of the first kind. As mentioned

above, as we go around the singular points z = L,−L and z = ∞, the pair (aD, a) and hence

(a′D, a
′) undergoes SL(2,Z) transformations given by the monodromy matrices M1,M2 in (5.2.4)

and M in (5.2.5), respectively.

Now we have (F,G) in the near region, which is related via (5.2.28) to (a′D, a
′) given

in (5.2.30). To match this with the far-region solution, we will later need the |z| → ∞ be-

havior of (a′D, a
′). It is given by

a′(z) =
1√
2z

+
3L2

4(2z)5/2
+

105L4

64(2z)9/2
+ · · · , (5.2.31a)

a′D(z) =
i

π

[
1√
2z

ln
8z

L
+

3L2

4(2z)5/2

(
ln

8z

L
− 5

3

)
+

105L4

64(2z)9/2

(
ln

8z

L
− 389

210

)
+ · · ·

]
. (5.2.31b)

Just from the leading terms, it is easy to check that we have the monodromy(
a′D

a′

)
→

(
−1 2

0 −1

)(
a′D

a′

)
= M

(
a′D

a′

)
. (5.2.32)
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Figure 5.4: Toroidal coordinates (η, σ, φ). η is a “radial” coordinate that decreases as one goes

away from the ring, σ is the angular variable around the ring and φ is an angular variable along

the ring.

For later convenience, let us also write down the behavior near the singularities z = ±L.

Near z = L,

a′(z) = − 1

2π
√
L

[
ln
z − L
32L

− 1

8L

(
ln
z − L
32L

+ 2

)
(z − L) + · · ·

]
. (5.2.33a)

a′D(z) =
i

2
√
L

[
1− 1

8L
(z − L) + · · ·

]
=

i

2
√
L

∞∑
n=0

(
(2n)!

22nn!2

)2(−1

2L

)n
(z − L)n. (5.2.33b)

Near z = −L,

a′(z) =
i

2π
√
L

[
ln
z + L

−32L
+

1

8L

(
ln
z + L

−32L
+ 2

)
(z + L) + · · ·

]
. (5.2.34a)

a′D(z) = − i

2π
√
L

[
ln
z + L

32L
+

1

8L

(
ln
z + L

32L
+ 2

)
(z + L) + · · ·

]
. (5.2.34b)

From these, it is easy to check the monodromy M1,M2.

5.2.4 The far region: coordinate system and boundary conditions

Having fixed the near-region solution, the next task is to find the far-region solution that matches

onto it. For that, as preparation, let us introduce the coordinate system appropriate for our

purpose and discuss the boundary conditions that the far-region solution must satisfy.

Toroidal coordinate system

As we explained, in the far region, we effectively have one supertube. To describe this config-

uration, we introduce the toroidal coordinate system (η, σ, φ) [113]; see figures 5.4 and 5.5. In

terms of Cartesian coordinates (x1, x2, x3), the toroidal coordinates are given by

x1 = R

√
η2 − 1

η − cosσ
cosφ, x2 = R

√
η2 − 1

η − cosσ
sinφ, x3 = R

sinσ

η − cosσ
, (5.2.35)

where R is the radius of the ring, σ is the angular variable around the ring and φ is the angular

variable along the ring. The inverse relations are given by

η =
x2 +R2

Σ
, cosσ =

x2 −R2

Σ
, tanφ =

x2

x1
, (5.2.36)
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Figure 5.5: Toroidal coordinates in the x2 = 0 section. Solid lines represent constant-η surfaces

and dotted lines represent constant-σ surfaces. As η → 1, the constant-η surface approaches

the vertical (x3) axis , while the position of the ring corresponds to the η →∞ limit.

with

Σ2 = (x2 −R2)2 + 4R2(x3)2. (5.2.37)

The domain of the coordinates is 1 ≤ η < ∞, −π ≤ σ < π, 0 ≤ φ < 2π. Then, the flat 3D

metric in the toroidal coordinates is given by

ds2 =
R2

(η − cosσ)2

(
dη2

η2 − 1
+ dσ2 + (η2 − 1)dφ2

)
. (5.2.38)

To connect the far- and near-region solutions, we have to relate the near-region (2D) and

the far-region (3D) coordinates. In the near-region limit η →∞, the Cartesian coordinates are

given, to leading order, by

x1 ' R+
R cosσ

η
, x2 = 0, x3 ' R sinσ

η
. (5.2.39)

Then we can relate the z coordinate defined in (5.2.8) to the toroidal coordinates (η, σ) as

z = (x1 −R) + ix3 =
R

η
eiσ. (5.2.40)

This is the fundamental relation to connect the near- and far-region solutions.

Boundary conditions

On the far-region solution, we have to impose boundary conditions at infinity (η → 1 and σ → 0

simultaneously) and near the supertube (η →∞).
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First, let us discuss the boundary condition at infinity. We require the harmonic functions

to go as

H = h+
Γ

r
+O

(
1

r2

)
as r →∞, (5.2.41)

where r =
√

(x1)2 + (x2)2 + (x3)2. This is the same r → ∞ behavior as the codimension-

3 solution, (2.2.1) (or (5.A.10)). This is because we are interested in codimension-2 branes

(supertubes) which have been produced by the supertube transition out of codimension-3 branes.

Very far from it, the codimension-2 brane must look like a codimension-3 object with the original

monopole charge. Therefore, the harmonic function must have the 1/r term whose coefficient

Γ is the same as the total monopole charge of the original brane configuration.

The boundary condition near the tube (η →∞) comes from the matching condition discussed

at the end of section 5.2.2. Let us write the large-|z| expansion of a′(z) and a′D(z) as6

a′(z) =

∞∑
n=0

a′n(z), a′D(z) =

∞∑
n=0

a′Dn(z), (5.2.42)

where a′n, a
′
Dn = O(z−2n−1/2) (here it is understood that O(z−2n−1/2) includes z−2n−1/2 log z).

The first three terms of each expansion are given in (5.2.31a) and (5.2.31b). As we discussed

earlier in section 5.2.2, we must be able to find a far-region solution that matches onto this

expansion, order by order. Concretely, let us do a near-ring (η → ∞) expansion of the far-

region harmonic functions F and G and let the n-th term be Fn and Gn where their behavior

as η →∞7 is Fn, Gn = O(η2n+1/2).8 Then, upon using the dictionary (5.2.40), we must have

Fn = ca′Dn +O(η2n−1/2), Gn = ca′n +O(η2n−1/2), η →∞. (5.2.43)

Note that the lesson of the toy model in section 5.2.2 was that we have to take the limit r � R

first, and then match the small |L|r expansion. In the present case, the former corresponds to

matching only the leading O(η2n+1/2) term in (5.2.43), while the latter corresponds to doing

this for each value of n.

For example, for the first (n = 0) term, we have

F0 =
ic

π
√

2z
ln

8z

L
+O(η−1/2), G0 =

c√
2z

+O(η−1/2). (5.2.44)

In principle, we can find Fn and Gn satisfying (5.2.43) for n arbitrarily large. If we could

carry out the infinite sum F =
∑

n Fn and G =
∑

nGn, it would correspond to the exact

two-supertube solution defined in the entire R3.

6This expansion corresponds to (5.2.14) of the toy model in section 5.2.2.
7The behavior will be determined in the next section 5.2.5 and appendix 5.C.
8These n-th terms correspond to (5.2.20) of the toy model in section 5.2.2.
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5.2.5 The far region: the solution

In the far region, there is only one supertube (see figure 5.4) and we are instructed to find a

pair of harmonic functions (F,G) that has the monodromy(
F

G

)
→M

(
F

G

)
=

(
−1 2

0 −1

)(
F

G

)
(5.2.45)

as σ → σ + 2π. In other words,

F → −F + 2G, (5.2.46a)

G→ −G, (5.2.46b)

Harmonic functions in toroidal coordinates

Let us explain now how to construct F and G. We start with the ansatz for G since its

monodromy (5.2.46b) is simpler. If we assume the following separated form,

G(η, σ, φ) =
√
η − cosσ T (η)S(σ)V (φ), (5.2.47)

the Laplace equation becomes

∆G =
(η − cosσ)5/2

R2
T (η)S(σ)V (φ)

×
[

1

η2 − 1

V ′′(φ)

V (φ)
+
S′′(σ)

S(σ)
+

1

T (η)

(
1

4
T (η) + 2ηT ′(η) + (η2 − 1)T ′′(η)

)]
= 0. (5.2.48)

This can be reduced to the following three ordinary differential equations:

0 = V ′′(φ) +m2V (φ), (5.2.49a)

0 = S′′(σ) + k2S(σ), (5.2.49b)

0 = (η2 − 1)T ′′(η) + 2ηT ′(η) +

(
1

4
− k2 − m2

η2 − 1

)
T (η), (5.2.49c)

with arbitrary constants m and k. The general solutions for these equations are given by

V (φ) = eimφ, (5.2.50a)

S(σ) = eikσ, (5.2.50b)

T (η) = P
|m|
|k|−1/2(η) and Q

|m|
|k|−1/2(η), (5.2.50c)

where Pmk (η) and Qmk (η) are the associated Legendre functions of the first and second kind,

respectively, with degree k and order m. If we require 2π periodicity along the φ (respectively
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σ) direction, the constant m (respectively k) will take integer values. Because our configuration

is symmetric along φ (see figure 5.4), we should take m = 0. Then as we can easily see from

the form of the solutions (5.2.50), we have to choose k ∈ Z + 1/2 in order for G to have the

monodromy (5.2.46b). So the solution for G is written as

G =
√
η − cosσ eikσ

(
A|k|−1/2P|k|−1/2(η) +B|k|−1/2Q|k|−1/2(η)

)
, (5.2.51)

where k ∈ Z + 1/2 and A|k|−1/2, B|k|−1/2 are constants.

Let us turn to F . The monodromy (5.2.46a) motivates the following ansatz:

F (η, σ, φ) =
√
η − cosσ

(
U(η)− σ

π
T (η)

)
S(σ)V (φ). (5.2.52)

Plugging this into the Laplace equation, we obtain

0 = U(η)

[
1

η2 − 1

V ′′(φ)

V (φ)
+
S′′(σ)

S(σ)
+

1

U(η)

(
1

4
U(η) + 2ηU ′(η) + (η2 − 1)U ′′(η)

)
− 2

π

T (η)

U(η)

S′(σ)

S(σ)

]
− σ

π
T (η)

[
1

η2 − 1

V ′′(φ)

V (φ)
+
S′′(σ)

S(σ)
+

1

T (η)

(
1

4
T (η) + 2ηT ′(η) + (η2 − 1)T ′′(η)

)]
. (5.2.53)

If we take T, S and V to be the solutions of (5.2.48) given by (5.2.50), then the second line of

(5.2.53) vanishes and we are left with

(η2 − 1)U ′′(η) + 2ηU ′(η) +

(
1

4
− k2 − m2

η2 − 1

)
U(η) =

2

π
T (η)

S′(σ)

S(σ)
. (5.2.54)

This differential equation differs from (5.2.49c) in its inhomogeneous term. The solution of

(5.2.54) for a specific choice of T (η) and S(σ) can be easily found. We gave a few examples in

appendix 5.C.

Even though we have to solve (5.2.54) to get explicit harmonic functions, the monodromy

can be easily seen without solving it. Let us assume k ∈ Z+ 1/2 as in (5.2.51) to get an overall

sign flip after going around the supertube (σ → σ + 2π). We also set m = 0 because of the

symmetry of our configuration. Then the monodromy is exactly what we want (5.2.46a):

F → −F + 2G as σ → σ + 2π. (5.2.55)

If we choose a particular term in (5.2.42) with a specific value of n that we want to reproduce,

the value of k can be determined and the equation (5.2.54) can be solved. Here we will focus

on the first (n = 0) term in (5.2.43). The leading term in the large-|z| expansion of a′(z) is

a′0 =
1√
2z

=

√
η

2R
e−iσ/2, (5.2.56)

where we have used the dictionary (5.2.40). Then we have to take k = −1/2 to reproduce this

as a limit of the 3D harmonic function G. We can easily show that this is also correct choice for
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a′D0 and F . With this choice, T (η) is also fixed and is given by a linear combination of P0(η)

and Q0(η).

The resulting harmonic functions can be written as

F (η, σ, φ) =
√
η − cosσ e−iσ/2U(η)− σ

π
G, (5.2.57)

G(η, σ, φ) =
√
η − cosσ e−iσ/2T (η), (5.2.58)

where

T (η) = A0P0(η) +B0Q0(η) (5.2.59)

and U(η) is a solution of

(η2 − 1)U ′′(η) + 2ηU ′(η) = − i
π
T (η). (5.2.60)

A0 and B0 are constant of integration which should be chosen from the boundary conditions.

It is easy to write down solutions explicitly if we impose boundary conditions at infinity,

(5.2.41), before solving (5.2.60). The boundary condition at infinity, (5.2.41), leads to the

condition

B0 = 0, (5.2.61)

since Q0(η) diverges at 3D infinity.9 Then (5.2.60) is easily solved to give

U(η) = C0P0(η) +D0Q0(η)− i

π
A0 ln

η + 1

2
. (5.2.62)

By imposing the same boundary condition at infinity on U(η), (5.2.41), we conclude that

D0 = 0. (5.2.63)

The final expression for the harmonic functions is

F (η, σ, φ) =
√
η − cosσ e−iσ/2

i

π
A0

(
π

i

C0

A0
− ln

η + 1

2
+ iσ

)
, (5.2.64)

G(η, σ, φ) =
√
η − cosσ e−iσ/2A0, (5.2.65)

where we used P0(η) = 1.

9 More precisely, B0 6= 0 would lead to divergence at 3D infinity and on the x3-axis. If σ 6= 0, as we can see

from (5.2.35), η = 1 corresponds to the points on the x3-axis, (x1, x2, x3) = (0, 0, R cot σ
2

). As η → 1, Q|k|−1/2

diverges as log(η−1) while the prefactor is finite:
√
η − cosσ =

√
2 |sin σ

2
|. Therefore, B0 6= 0 makes the harmonic

function diverge on the x3-axis and should be avoided.
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Matching

We have obtained the solutions in the near and far regions. Let us fix the coefficients A0 and

C0 by matching the two solutions in the intermediate region. This amounts to imposing the

conditions (5.2.44). The near-ring (η →∞) expressions for F and G are

F ' √η e−iσ/2 i
π
A0

(
π

i

C0

A0
− ln

η

2
+ iσ

)
, G ' √η e−iσ/2A0. (5.2.66)

Therefore, the conditions (5.2.44) read

i

π

√
η e−iσ/2A0

(
π

i

C0

A0
− ln

η

2
+ iσ

)
=
i

π
c

√
η

2R
e−iσ/2

(
ln

4R

L
− ln

η

2
+ iσ

)
,

√
η e−iσ/2A0 = c

√
η

2R
e−iσ/2.

(5.2.67)

These determine the constants to be

A0 =
c√
2R

, C0 =
i

π

c√
2R

ln
4R

L
. (5.2.68)

The final expression for the far-region solution is

F (η, σ, φ) =
ic

π
√

2R

√
η − cosσ e−iσ/2

[
− ln

L(η + 1)

8R
+ iσ

]
, (5.2.69a)

G(η, σ, φ) =
c√
2R

√
η − cosσ e−iσ/2. (5.2.69b)

5.3 Physical properties of the solution

In the previous section, we obtained the explicit expression for the harmonic functions (F,G) in

(5.2.69) which describes the far-region behavior of a non-Abelian two-supertube configuration,

at the leading order in a perturbative expansion. In terms of these complex harmonic functions,

the real harmonic functions {V,KI , LI ,M} can be expressed via (5.A.5). Here we discuss some

physical properties of this solution.

5.3.1 Geometry and charges

First, let us study the asymptotic form of the harmonic functions near 3D infinity, r =∞, which

corresponds to η = 1, σ = 0 in the toroidal coordinates. Using the relation (5.2.36), we find that

F = hF +
QF
r

+O
(

1

r2

)
, G = hG +

QG
r

+O
(

1

r2

)
, (5.3.1)

where

hF = hG = 0, (5.3.2)

QF = ic
√
Rν, QG = c

√
R (5.3.3)
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with

ν ≡ 1

π
log

4R

L
. (5.3.4)

The asymptotic form (5.3.1) is the same as that of the general codimension-3 harmonic func-

tion, (5.A.10). Note that, under our assumption (5.2.7),

Re ν =
1

π
log

4R

|L|
� 1. (5.3.5)

The asymptotic monopole charges of the solution can be read off from the coefficients

of the 1/r terms in the harmonic functions, (5.3.3). The corresponding D-brane numbers

N0, N I , NI , N0 can be determined from the relation (5.A.12). Explicitly,

N3 + iN1 =
2ic
√
Rν

gsls
, N0 − iN1 =

2c
√
R

gsls
. (5.3.6)

The entropy of the single-center black hole with charges (5.3.3) can be computed using (5.A.13):

S =
8π |Im(QF Q̄G)|

g2
s l

2
s

=
8π|c|2R
g2
s l

2
s

Re ν. (5.3.7)

This is non-vanishing because of (5.3.5) and therefore our solution has the same asymptotic

charges as a black hole with a finite horizon area.

One peculiar thing about the harmonic functions (5.3.1) is that the constant terms always

vanish, hF = hG = 0. This fact came from the harmonic analysis in the toroidal coordinates.

For example, in the ansatz for G, (5.2.51), the prefactor goes as
√
η − cosσ ∼

√
2R/r in the 3D

infinity limit η → 1, σ → 0. On the other hand, P|k|−1/2(η = 1) = 1 and therefore G ∼ 1/r and

does not have a constant term. We do not have the option of turning on Q|k|−1/2(η), because it

diverges on the x3-axis and should not be present (see footnote 9).

This means that this solution cannot have flat asymptotics. Instead, the asymptotic geom-

etry is always the attractor geometry [37] of a single-center black hole with D6, D4, D2 and

D0 charges in the near-horizon limit. Indeed, the asymptotic form of the type IIA geometry is

easily seen from (2.1.24) to be

ds2
10,str = − 1

Im(FḠ)
(dt+ ω)2 + Im(FḠ)

(
dr2 + r2dΩ2

2

)
+ dx2

4567 + Im

(
F

G

)
dx2

89

∼ − r2

Im(QF Q̄G)
dt2 + Im(QF Q̄G)

(
dr2

r2
+ dΩ2

2

)
+ dx2

4567 + Im

(
QF
QG

)
dx2

89, (5.3.8a)

e2Φ = Im

(
F

G

)
∼ Im

(
QF
QG

)
. (5.3.8b)

We see that this is AdS2 × S2 × T 6 with radius RAdS2 = RS2 =
√

Im(QF Q̄G).
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Asymptotic charge versus local charge

It is interesting to compare the asymptotic charges (5.3.3) with the one that we would obtain

from the behavior of fields near the supertubes. From (5.2.33) and (5.2.34), we find that the

behavior of the harmonic functions F,G near the supertubes is

z ∼ +L : F ∼ const., G ∼ − c

2π
√
L

log(z − L),

z ∼ −L : F ∼ − ic

2π
√
L

log(z + L), G ∼ ic

2π
√
L

log(z + L).
(5.3.9)

If a codimension-2 source at |z| = 0 has D-brane number densities n0, n1, n3 and n1 per unit

length for D6(456789), D4(6789), D4(4567), and D2(45) branes, respectively, then the harmonic

functions will have the following logarithmic behavior:10

V ∼ −gslsn0 log |z|, K1 ∼ −gslsn1 log |z|,

K3 ∼ −gslsn3 log |z|, L1 ∼ −gslsn1 log |z|.
(5.3.11)

Or, in terms of the complex harmonic functions F,G,

F ∼ −gsls(n3 + in1) log |z|, G ∼ −gsls(n0 − in1) log |z|. (5.3.12)

Comparing this with (5.3.9), we see that the D-brane number densities are

z = +L : n3 + in1 = 0, n0 − in1 =
c

2πgsls
√
L
,

z = −L : n3 + in1 =
ic

2πgsls
√
L
, n0 − in1 = − ic

2πgsls
√
L
.

(5.3.13)

Because these charges are distributed over rings of radius approximately R, the total D-brane

numbers would be

N3 + iN1
?
=

icR

gsls
√
L
, N0 − iN1 ?

=
(1− i)cR
gsls
√
L
. (5.3.14)

These are completely different from the charge we observe at infinity, (5.3.6).

The reason why we obtained incorrect total charges (5.3.14) is that our solution is multi-

valued. In normal situations, the Gaussian surface on which we integrate fluxes to obtain

charges can be continuously deformed from asymptotic infinity to small surfaces enclosing local

charges. However, in the present case, the fields in our solution are multi-valued because of the

monodromies around the supertubes, and so are the fluxes. Another way of saying this is that

10For example, if we array D6-branes at intervals of distance a, from (5.A.11)

V ∼ gsls
2

∑
n∈Z

1√
|z|2 + na

∼ gsls
2a

∫ Λ

−Λ

dx√
|z|2 + x2

∼ −gsls
a

log
|z|
2Λ

+O(Λ−2) (5.3.10)

where Λ is a cutoff. By replacing a with 1/n0, we obtain (5.3.11).
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there is a branch cut (or disk) inside each of the two tubes, and the fluxes are discontinuous

across it. When we deform the Gaussian surface at infinity, we cannot shrink them to enclose

just the supertubes; all we can do is to deform it into two surfaces, each of which encloses one

entire branch disk with the supertube on its circumference. When we evaluate the flux integral

on the Gaussian surfaces, there will be contributions not just from the supertubes but also from

(the discontinuity in) the fluxes on the disks. The difference between (5.3.6) and (5.3.14) is due

to the contribution from the fluxes on the disks.

This situation of branch cuts carrying charge by the discontinuity in the fluxes across it

is an example of the so-called Cheshire charge that appears in the presence of vortices with

non-trivial monodromies called Alice strings [114, 115, 116]. For discussions on the realizations

of Alice strings in string theory, see [117, 118].

When integrating fluxes on Gaussian surfaces to compute charges in the presence of Chern-

Simons interactions (such as supergravity in 11, 10, and 5 dimensions), one must be careful

about different definitions of charges [79]. The relevant one here is the Page charge, which is

conserved, localized, quantized, and gauge-invariant under small gauge transformations. For

Page charge, we can freely deform a Gaussian surface unless they cross a charge source or a

branch cut for the fluxes. The discussion of charges in the paragraphs above is understood to

be using the Page charge. For the explicit form of the Page fluxes for D-brane charges, see, e.g.,

appendix A.1 and [36, Appendix D].

Angular momentum

By solving equation (5.A.8) for the harmonic functions given in (5.2.69), we find

ω =
|c|2

2π

(
η + 1) ln

|L|(η + 1)

8R
+ 2 ln

4R

|L|

)
dφ, (5.3.15)

where the integration constant was fixed by requiring that ω vanish at η = 1 (3D infinity). In

spherical polar coordinates (r, θ, ϕ), the asymptotic behavior of (5.3.15) as r →∞ is

ω ' |c|
2R2

π

(
1 + ln

|L|
4R

)
sin2 θ

r2
dϕ = O

(
1

r2

)
. (5.3.16)

In four dimensions, the angular momentum is given by the O
(

1
r

)
term in the (t, i) components

of the metric, which is nothing but the one-form ω in our case. Therefore, we conclude that the

4D angular momentum J of our configuration vanishes:

J = 0. (5.3.17)

Note that (5.3.16) means that the entire angular momentum vector vanishes, not just its x3

component.
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5.3.2 Closed timelike curves

No-CTC conditions for the one-modulus class solutions with τ1 = τ2 = i were briefly discussed

in section 5.A.1. For the explicit harmonic functions of the far-region solution (5.2.69), the

condition (5.A.9) gives

Im(FḠ) =
|c|2(η − cosσ)

2πR
ln

8R

|L|(η + 1)
' |c|

2η

2πR
ln

8R

|L|η
≥ 0 (5.3.18)

for large η (near the supertube). This means that, in order not to have CTCs, we must restrict

the range of the variable η to be

η .
8R

|L|
. (5.3.19)

Namely, the far-region solution has CTCs very near the tube.

Next, let us consider the positivity of the metric (2.1.29) along the supertube direction, φ.

This gives

− ω2

Q
+

R2(η2 − 1)

(η − cosσ)2
dφ2 ≥ 0. (5.3.20)

After plugging the explicit expression for ω (5.3.15), we can rewrite (5.3.20) as

R2dφ2

(η − cosσ)2
[
ln |L|(η+1)

8R

]2

×

(
(η2 − 1)

[
ln
|L|(η + 1)

8R

]2

−
[
(η + 1) ln

|L|(η + 1)

8R
+ 2 ln

4R

|L|

]2
)
≥ 0. (5.3.21)

Near the ring (η →∞), the no-CTC condition (5.3.21) gives

− 2η ln

(
2Rη

|L|

)
ln

(
|L|η
8R

)
≥ 0, (5.3.22)

which is satisfied for
|L|
2R

< 1 ≤ η ≤ 8R

|L|
. (5.3.23)

The lower bound does not impose any condition on η because η ≥ 1 by definition, and the upper

bound is the same as (5.3.19).

So, we found that there are CTCs in the far-region solution very near the ring, η ∼ 8R
|L| .

However, this does not represent a problem with our solution. It only indicates that, too much

near the ring, the description in terms of the far-region solution with a single ring breaks down

and we must instead switch to the near-region solution with two rings. Indeed, by the relation

(5.2.40), η ∼ R
|L| corresponds to |z| ∼ |L| in the near region, which is the distance scale at which

the single “effective” supertube must be resolved into two supertubes. This is exactly parallel to

the familiar story in the context of F-theory [119, 120]. In type IIB perturbative string theory,

the O7-plane has negative tension and its backreacted metric has a wrong signature very near
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its worldvolume. However, in F-theory, non-perturbative effects resolve the O7-plane into two

(p, q) 7-branes and replace the wrong-signature metric by a new metric with the correct signature

everywhere. The two (p, q) 7-branes have non-commuting monodromies of the SL(2,Z) duality

of type IIB string. We are seeing exactly the same phenomenon in a more involved situation

with circular supertubes.

To rigirously show that our solution is completely free from CTCs, we must construct the

exact solution by summing up the infinite perturbative series, because the perturbative solution

to any finite order will have CTCs (this is related to the limitation of the matching expansion

discussed below (5.2.20)). However, that is beyond the scope of the present thesis and we will

leave it as future research.

5.3.3 Bound or unbound?

Our 2-supertube configuration has three parameters: c ∈ C determines the overall amplitude of

the harmonic functions, L ∈ C parametrizes the distance and the angle between two supertubes,

and R > 0 is the average radius of the two supertubes. The crucial question is: does this

represent a bound state or not?

In the case of codimension-3 solutions, allowed multi-center configurations are determined

by imposing equation (2.2.2). How this works is as follows. One first fixes the value of moduli

(the constant terms in H), the number of centers (say N), and the charges of each center

(Γp, p = 1, . . . , N). By plugging these data into (2.2.2), we can fix the inter-center distances

xpq. After this, some parameters will remain unfixed. They parametrize the internal degrees

of freedom of the multi-center configuration, similar to the internal atomic motion inside a

molecule. When it is a bound state, it is not possible to take some centers infinitely far away

from the rest of the centers by tuning the parameters.

In our solution, the asymptotic moduli have already been fixed to the attractor value [37].

We have two codimension-2 supertube centers, and we know that the total monopole charges

are given by (QF , QG). Actually, as we will discuss below, the monopole charges of each of the

two supertubes can be also determined if we fix the complex charges QF , QG. So, the question is

whether there is some free parameter left by tuning which we can make the two tubes infinitely

far apart. If so, then the configuration is unbound. Otherwise, it is bound.

Our solution contains five real parameters (R ∈ R; c, L ∈ C) and four of them can be

determined by fixing QF,G ∈ C. So, we seem to be left with one free real parameter. For

example, we can take it to be |L|, the absolute value of the inter-tube distance parameter L. If

|L| could take an arbitrarily large value, the two tubes could be separated infinitely far away

from each other and thus the solution would be unbound. Physically, however, we expect that

we can constrain this parameter by requiring the absence of CTCs [54, 55], and that the tubes
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cannot be infinitely separated. Such no-CTC analysis would be possible if we knew the exact

solution. The problem is that we only have a perturbative solution in the matching expansion.

As we saw in the previous section, perturbative solutions have apparent CTCs and are not

suitable for such analysis.

To work around this problem, we will instead make use of supertube physics to argue that

all the parameters are constrained and thus our non-Abelian solution represents a bound state.

Actually, we can fix all the parameters from this argument. It is not a rigorous argument, but

is robust enough to give convincing evidence that the solution represents a bound state.

5.3.4 An argument for a bound state

We know that the monodromy matrices of the two supertubes sitting at z = ±L are

ML =

(
1 0

−2 1

)
, M−L =

(
3 2

−2 −1

)
. (5.3.24)

In appendix 5.B.2, we derived the monodromy matrix of the supertube produced by the su-

pertube transition of a general 1/4-BPS codimension-3 center. In the one-modulus class that

we are working in (τ1 = τ2 = i, τ3: any), a general 1/4-BPS codimension-3 center has charge

Γ = gsls
2 (a, (b, b, c), (d, d, a),− c

2), where a, b, c, d ∈ Z, ad+ bc = 0 and not all of a, b, c, d simulta-

neously vanish. Using the formulas (5.B.17) and (5.B.18), it is easy to see that the unique sets

of charges that lead to supertubes with monodromy M±L are the ones with

ML : c = d = 0, M−L : a = −c, b = d, (5.3.25)

with the dipole charge q = 2 for both cases. In terms of complex charges (cf. (5.A.12)),

QF =
gsls
2

(c+ id), QG =
gsls
2

(a− ib), (5.3.26)

the condition (5.3.25) can be written as:

ML : QF = 0, M−L : QF = −QG. (5.3.27)

The supertubes at z = ±L must have come from two codimension-3 centers with charges

satisfying this condition, respectively.11

From (5.3.3), the total charges of our two-supertube configuration is(
QF

QG

)
total

= c
√
R

(
iν

1

)
. (5.3.28)

11To be precise, by charges here, we mean Page charges discussed in section 5.3.1.
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Let us split this total charge into the ones for the z = +L supertube and the ones for the z = −L
supertube as (

QF

QG

)
total

=

(
QF

QG

)
L

+

(
QF

QG

)
−L

, (5.3.29)

and require that the individual charges satisfy the condition (5.3.27), namely,

QF,L = 0, QF,−L = −QG,−L. (5.3.30)

We immediately find(
QF

QG

)
L

= c
√
R

(
0

1 + iν

)
,

(
QF

QG

)
−L

= c
√
R

(
iν

−iν

)
. (5.3.31)

In our solution we have two codimension-2 supertubes, instead of codimension-3 centers. How-

ever, these supertubes must still carry the original monopole charges (5.3.31) dissolved into their

worldvolume. Using the relation (5.A.5), we can express (5.3.31) in terms of charges vectors as

Γ±L =

(
ReQG, (− ImQG,− ImQG,ReQF ), (ImQF , ImQF ,ReQG),−1

2
ReQF

)
±L

. (5.3.32)

The radii and angular momentum of the configuration are determined by the charges of

the centers. Then, we can study what the radii of the circular supertubes generated by the

supertube transition of codimension-3 centers with charges (5.3.31) are. This has been worked

out in appendix 5.B.3 and, using the formula (5.B.21), it is not difficult to show that the radii

of the supertubes at z = ±L are given by

R2
L = R|c(1 + iν)|2 = R|c|2

[
1 +

2l

π
+

1

π2

((
log

4R

|L|

)2

+ l2

)]
,

R2
−L = R|c|2|ν|2 =

R|c|2

π2

((
log

4R

|L|

)2

+ l2

)
.

(5.3.33)

In deriving this, each supertube was assumed to be in isolation; the actual radii must be corrected

by the interaction between the two tubes. On the other hand, the radii squared of the two tubes

in our actual solution are

(R± ReL)2 = (R± |L| cos l)2. (5.3.34)

As a preliminary, zeroth-order approximation, let us equate (5.3.33) and (5.3.34). It is not

difficult to show that, unless l = −π
2 , there is no solution that is consistent with the colliding

limit, R
|L| � 1. If l = −π

2 , the two supertubes have the same radius and the condition that

(5.3.33) equals (5.3.34) gives

|c| =
√
R

|ν|
=

π
√
R√(

log 4R
|L|
)2

+ π2

4

. (5.3.35)
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The total charges (5.3.3) are, if we set c = |c|eiγ ,

(QF , QG) = c
√
R (iν, 1) =

eiγR√(
log 4R

|L|
)2

+ π2

4

(
i log

4R

|L|
− π

2
, π

)
. (5.3.36)

Fixing these charges will fix γ,R, |L|. So, everything is fixed.

In summary, consideration of supertube physics suggests that the configurational parameters

of our two-supertube solution are all fixed if we fix the asymptotic charges. In particular, it is

impossible to take the two tubes infinitely far apart. This is strong evidence that our solution

is a bound state. Having the same asymptotic charges as a black hole with a finite horizon,

it should represent a microstate of a genuine black hole. Our argument is not rigorous in the

sense that, in computing the supertube radii (5.3.33), we ignored the interaction between the

tubes. Therefore, precise values such as l = −π
2 may not be reliable. However, we expect

that it captures the essential physics and the conclusion remains valid even for more accurate

treatments.

5.3.5 A cancellation mechanism for angular momentum

In the last section, we pointed out the puzzling fact that the total angular momentum of

our solution vanishes, even though the two constituent supertubes are expected to carry non-

vanishing angular momentum. Here, we argue that this is due to cancellation between the

angular momentum J±L carried by the two individual tubes and the angular momentum Jcross

that comes from the electromagnetic crossing between the two tubes; namely,

Jtotal = JL + J−L + Jcross ≈ 0. (5.3.37)

Just as in section 5.3.4, our argument will not be rigorous; we will see that (5.3.37) holds only

to the leading order in |L|R . We expect that, in an exact treatment, (5.3.37) will hold as a precise

equality. However, this study is beyond the scope of this thesis.

In our solution, we have two round supertubes which were produced by the supertube

effect of codimension-3 centers with charges (5.3.31). In appendix 5.B.3, we computed the

angular momentum carried by a round supertube created from a general 1/4-BPS codimension-

3 center. Applying the formula (5.B.21) to the charges (5.3.31), it is not difficult to show that

the component of angular momentum along the axis of the tubes (x3-axis) is12

JL = −R|c|
2(1 + |ν|2 − 2 Im ν)

4G4
, J−L = −R|c|

2|ν|2

4G4
. (5.3.38)

Now let us turn to Jcross. For multi-center codimension-3 solutions with charge vectors

Γp, there is non-vanishing angular momentum coming from the crossing between electric and

12The sign was determined from the sign of ω2 = ωφ/R in (5.2.23) near z = ±L using (5.2.33) and (5.2.34).
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magnetic fields given by [44]

Jcross =
1

2G4

∑
p<q

〈Γp,Γq〉 xpq
|xpq|

, xpq ≡ xp − xq. (5.3.39)

In the present case, we have supertubes with codimension 2, not 3. However, let us still apply

this formula using the tubes’ monopole charges (5.3.31) (or (5.3.32)) . This is not precise, but

must give a rough approximation of the crossing angular momentum for our solution. Using

(5.3.31) and (5.3.32), the component of the angular momentum along the tube axis is13

Jcross =
1

2G4
〈Γ−L,ΓL〉 = −R|c|

2(Im ν − |ν|2)

2G4
. (5.3.40)

If we add (5.3.40) and (5.3.39), we get

JL + J−L + Jcross = −R|c|
2

4G4
. (5.3.41)

This is much smaller than the individual terms:

JL, J−L, Jcross ∼
R|c|2|ν|2

G4
∼
R|c|2(log R

|L|)
2

G4
(5.3.42)

because we are taking the limit R
|L| � 1. Therefore, we conclude that (5.3.37) holds to the

leading order in |L|R .

This is an interesting observation, suggesting that the vanishing of angular momentum in

our configuration is indeed due to cancellation between the “tube” angular momentum and the

“cross” angular momentum. Presumably, the nonzero reminder (5.3.41) gets canceled if we take

into account the contribution to the angular momentum arising from the interaction between

the two tubes (recall that we computed the angular momentum of supertubes as if they were in

isolation).

5.4 Future directions

We constructed our solution by taking the configuration that appeared in the SU(2) Seiberg-

Witten theory as the near-region solution. More specifically, it was a holomorphic fibration of a

genus-1 Riemann surface on a base of complex dimension 1. However, this is just an example,

so any other such holomorphic fibration will work. In particular, any F-theory solution can

be used for the near-region solution. In the standard F-theory background, the metric only

knows about the torus modulus τ , but in our case we also need the periods (aD, a) and richer

structure is expected. We can generalize this structure by replacing the torus fiber by a higher-

genus Riemann surface. For example, if one considers compactification of type IIA on T 2×K3,

13In section 5.3.4, we argued that the physically allowed configuration in the limit R
|L| � 1 has l = −π

2
, which

means that the center of the z = ±L tubes are at x3 = ∓|L|. This determines the sign of (5.3.40).
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the U-duality group becomes O(22, 6;Z), which contains the genus-2 modular group Sp(4,R).

Therefore, one can construct configuration of more general supertubes using a fibration of a

genus-2 Riemann surface over a base [121]. One can also consider generalizing the base. In the

near region the base is complex 1-dimensional, while in the far region it is real 3-dimensional. By

including an internal S1 direction, one can extend the base to a complex 2-dimensional space,

where a supertube must appear as a complex curve around which there is a monodromy of the

fiber. In such a setup, one can use the power of complex analysis and it might help to construct

solutions on a real 3-dimensional base as the one we encountered in the current thesis.

It is known that the geometry of the Seiberg-Witten theory has a string theory realization

[119, 122, 123]. If one realizes the Seiberg-Witten curve as a configuration of F-theory 7-branes,

then the worldvolume theory of a probe D3-brane in that geometry is exactly the d = 4,N = 2

theory. One may wonder if our solution also represents a moduli space of some gauge theory

on a probe D-brane. However, such interpretation does not seem straightforward. The near-

region geometry looks very similar to F-theory configurations, but the 7-brane in the current

setup is not just a pure 7-brane but it has some worldvolume fluxes turned on to carry 5-brane

and 1-brane charges. Therefore, it is not immediately obvious what probe brane one should

take. Furthermore, although the near-region configuration preserves 16 supersymmetries, only

4 supersymmetries are preserved in the far region, as a four-charge black hole microstate. A

brane probe will most likely halve the supersymmetries in each region. So, the relevant theory

seems to be d = 3,N = 1 (or d = 2,N = 2) theory whose moduli space has a special locus, which

corresponds to the near region, at which supersymmetry is enhanced to N = 4 (or N = 8). It

is interesting to investigate what the theory can be.

We developed techniques to construct solutions in the far and near regions separately and

connect them by a matching expansion. We worked out only first terms in the expansion, but

one can in principle carry out this to any order. In some situations one may be able to carry out

the infinite sum and obtain the exact solution in entire R3. Such exact solutions are important

because, as discussed below (5.2.20), there are features of the exact solution that are not visible

at any finite order. Such features include the precise structure of the monodromy and the metric

near the supertubes. They are crucial to analyze the no-CTC condition near the supertubes

and fix parameters of the solution, such as L and R. We hope to be able to report development

in that direction in near future.

In this chapter, we mainly considered the case where two of the three moduli are frozen.

It is interesting to investigate possible solutions in the case where this assumption is relaxed.

In appendix 5.A.2, we discussed the case where two moduli are dynamical. For example, it is

interesting to study how the solutions studied in the previous chapter fit in the formulation

developed in appendix 5.A.2. Relatedly, we assumed that in the near region the modulus τ3
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is holomorphic. However, as far as supersymmetry is concerned, this is not necessary; the

only requirement is that the harmonic functions be written as a sum of holomorphic and anti-

holomorphic functions. It would be interesting to see if there are physically allowed solutions

for which τ3 is not holomorphic.

Our configuration has the same asymptotic charge as a 4D black hole. 4D black holes are

often discussed in the context of the AdS3/CFT2 duality where the boundary CFT is the so-

called MSW CFT [4]. However, this CFT is not as well-understood as the D1-D5 CFT which

appears as the dual of black hole systems in 5D. It is interesting to see if our solutions can be

generalized to construct a microstate for 5D black holes; for recent work to relate microstates

of the MSW CFT and those of the D1-D5 CFT, see [34].

Appendix 5.A Constrained configurations

5.A.1 Configurations with only one modulus

In chapters 2 and 4, we have been discussing configurations for which all moduli τ I , I = 1, 2, 3

can in principle be all non-trivial. Now let us focus on configurations with

τ1 = τ2 = i, τ3 = arbitrary. (5.A.1)

Although being particular instances of the general solution, they can still describe a wide range

of physical configurations, such as ones with multiple centers with codimension 3 and 2. This

class of solutions provides a particularly nice setup for our purpose of constructing codimension-

2 solutions with non-Abelian monodromies. This class is nothing but a type IIA realization of

the solution called the SWIP solution in the literature [95]. Here we discuss some generalities

about this class.

Using the expression (2.1.27) for τ I in terms of harmonic functions, we see that the condition

(5.A.1) implies the following relations:14

K1 = K2, L1 = L2, L3 = V, M = −K
3

2
, (5.A.2)

leaving four independent harmonic functions. If we plug these expressions into (2.1.27), we

obtain

τ3 =
K3 + iL1

V − iK1
=
F

G
, (5.A.3)

where we defined complex combinations

F ≡ K3 + iL1, G ≡ V − iK1. (5.A.4)

14For simplicity, we set Ri = ls for i = 4, . . . , 9.
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As we can see from (B.4), the pair ( FG ) transforms as a (complex) doublet under SL(2,Z)3.

From the expression (5.A.3), it is obvious that τ3 undergoes linear fractional transformation

under SL(2,Z)3 (although we already said this in (B.5) in general). The harmonic functions are

written in terms of them as

V = ReG, K1 = K2 = − ImG, K3 = ReF,

L1 = L2 = ImF, L3 = ReG, M = −1

2
ReF.

(5.A.5)

In terms of the complex quantities F,G, some previous formulas become

〈H,H ′〉 = Re(FḠ′ −GF̄ ′), (5.A.6)

Q = (ImFḠ)2. (5.A.7)

The equation for ω, (2.1.19), reads

∗3 dω = Re
(
FdḠ−GdF̄

)
. (5.A.8)

Let us consider the general no-CTC conditions. Under the constraint (5.A.2), the condition

(2.1.28a) is automatically satisfied becauseQ = (ImFḠ)2 ≥ 0. On the other hand, the condition

(2.1.28b) gives

Im(FḠ) = |G|2 Im τ3 ≥ 0. (5.A.9)

Here we have seen that switching off two moduli τ1 and τ2 leads to a substantial simplifica-

tion. In appendix 5.A.2, we discuss switching off one modulus τ1, which also leads to interesting

simplification.

In the one-modulus class we are discussing, the harmonic functions (2.2.1) can be rewritten

in terms of the complex harmonic function (5.A.4) as

F = hF +

N∑
p=1

QpF
|x− xp|

, G = hG +

N∑
p=1

QpG
|x− xp|

, (5.A.10)

where the complex quantities (hF , hG) and (QpF , Q
p
G) are related to the real quantities h and Γp,

respectively, just as (F,G) are related to H via (5.A.5). We will refer to (QF , QG) as complex

charges.

Note that the components of the charge vector Γ = {Γ0,ΓI ,ΓI ,Γ0} are related to the quan-

tized D-brane numbers by

Γ0 =
gsls
2
N0, ΓI =

gsls
2
N I , ΓI =

gsls
2
NI , Γ0 =

gsls
4
N0, (5.A.11)

where N0, N I , NI , N0 ∈ Z (here we set the radii of the internal torus directions to ls =
√
α′).

Then using (5.A.5) and (5.A.11), we can see that they are related to quantized charges by

QF =
gsls
2

(N3 + iN1), QG =
gsls
2

(N0 − iN1),

N1 = N2, N1 = N2, N0 = N3, N3 = −N0.

(5.A.12)
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The black hole entropy (2.2.6) can be written as

S =
8π |Im(QF Q̄G)|

g2
s l

2
s

= 2π |N3N1 +N1N
0|. (5.A.13)

5.A.2 Configurations with only two moduli

Let us consider configurations with one modulus set to a trivial value. Specifically, we set

τ1 = i, τ2, τ3 : arbitrary. (5.A.14)

This choice fixes two harmonic functions; from (2.1.27), we find

− L1 − 2iM =
(K2 + iL3)(K3 + iL2)

V − iK1
. (5.A.15)

Only six harmonic functions are independent. In this case, the expression for the other moduli

τ2,3 simplifies to

τ2 =
K2 + iL3

V − iK1
, τ3 =

K3 + iL2

V − iK1
. (5.A.16)

Because τ2 undergoes linear fractional transformation under SL(2,Z)2, we can set15

K2 + iL3 = H2F2, V − iK1 = H2G2, (5.A.17)

where under SL(2,Z)2 the pair
(
F2
G2

)
transforms as a doublet while H2 is invariant. The quan-

tities F2, G2, H2 are complex. With this choice (5.A.17), τ2 is invariant under SL(2,Z)3 as it

should be. Similarly, because τ3 undergoes linear fractional transformation under SL(2,Z)3, we

can set

K3 + iL2 = H3F3, V − iK1 = H3G3, (5.A.18)

where under SL(2,Z)3 the pair
(
F3
G3

)
transforms as a doublet while H3 is invariant. F3, G3, H3

are complex. Combining (5.A.17) and (5.A.18), we find that H2 = G3 and H3 = G2 and

therefore

K2 + iL3 = F2G3, V − iK1 = G2G3, K3 + iL2 = G2F3, (5.A.19)

with which (5.A.15) becomes

− L1 − 2iM = F2F3. (5.A.20)

The moduli (5.A.16) can now be written as

τ2 =
F2

G2
, τ3 =

F3

G3
. (5.A.21)

15Actually, one could more generally set K2 + iL3 =
∑
iH

(i)
2 F

(i)
2 , V − iK1 =

∑
iH

(i)
2 G

(i)
2 where

(
F

(i)
2

G
(i)
2

)
transforms as a doublet under SL(2,Z)2 for all i. However, τ1 would not be invariant under SL(2,Z)3, unless the

i summation contains only one term. For a different argument for (5.A.19), (5.A.20), see appendix B.
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In terms of F2,3, G2,3, the harmonic functions are

V = ReG2G3, K1 = − ImG2G3, K2 = ReF2G3, K3 = ReG2F3,

L1 = −ReF2F3, L2 = ImG2F3, L3 = ImF2G3, M = −1

2
ImF2F3.

(5.A.22)

Because we are parametrizing 6 real harmonic functions using 4 complex functions F2,3, G2,3,

there is redundancy: the transformation
(
F2
G2

)
→ H

(
F2
G2

)
,
(
F3
G3

)
→ H−1

(
F3
G3

)
, where H is a

complex function, leaves the harmonic functions invariant.

Let us consider the no-CTC conditions (2.1.28). The condition (2.1.28a) is automatically

satisfied because Q = (K1K3 + L2V )2(K1K2 + L3V )2/((K1)2 + V 2)2 ≥ 0. The conditions

V ZI ≥ 0, (2.1.28b), become

V Z2 = K1K3 + L2V = |G2|2 Im(F3Ḡ3) = |G2G3|2 Im τ3 ≥ 0,

V Z3 = K1K2 + L3V = |G3|2 Im(F2Ḡ2) = |G2G3|2 Im τ2 ≥ 0.
(5.A.23)

Appendix 5.B Supertubes in the one-modulus class

In section 5.A.1, we discussed a class of harmonic solutions for which only one modulus, τ3 = τ ,

is turned on. (This class is nothing but a type IIA realization of the solution called the SWIP

solution in the literature [95].) Here let us study some properties of supertubes described in

this class.

5.B.1 Condition for a 1/4-BPS codimension-3 center

Let us consider a codimension-3 center in the harmonic solution and let the charge vector of the

center be Γ. In terms of quantized charges, Γ can be written as

Γ =
gsls
2

(
a, (b, b, c), (d, d, a),− c

2

)
, (5.B.1)

where a, b, c, d ∈ Z. Here, we took into account the constraint (5.A.2) and charge quantiza-

tion (5.A.11). In general, this center represents a 1/8-BPS center preserving 4 supercharges,

with entropy (see (5.A.13))

S = 2π
√
j4(Γ), j4(Γ) ≡ (ad+ bc)2. (5.B.2)

We would like to find the condition for the charge vector Γ to represent a 1/4-BPS center

preserving 8 supercharges, which can undergo a supertube transition into a codimension-2 center.
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According to [75], a center with charge vector Γ represents

four-charge 1/8-BPS center ⇔ j4(Γ) > 0.

three-charge 1/8-BPS center ⇔ j4(Γ) = 0,
∂j4
∂xi
6= 0

two-charge 1/4-BPS center ⇔ j4(Γ) =
∂j4
∂xi

= 0,
∂2j4
∂xi∂xj

6= 0

1-charge 1/2-BPS center ⇔ j4(Γ) =
∂j4
∂xi

=
∂2j4
∂xi∂xj

= 0,
∂3j4

∂xi∂xj∂xk
6= 0,

(5.B.3)

where xi represents charges of D-branes which, in the present case, are a, b, c, d. Applying this

to the present case, we find that

four-charge 1/8-BPS center ⇔ ad+ bc 6= 0, (5.B.4a)

two-charge 1/4-BPS center ⇔ ad+ bc = 0, but not a = b = c = d = 0 (5.B.4b)

In the present class of configurations satisfying (5.B.1), we cannot have a three-charge 1/8-BPS

center or a 1-charge 1/2-BPS center. For the latter, for example, even if a = b = c = 0 and

d 6= 0, it still represents a D2(45)-D2(67) system which is a two-charge 1/4-BPS system.

5.B.2 Puffed-up dipole charge for general 1/4-BPS codimension-3 center

If the 1/4-BPS system with charges satisfying (5.B.4b) polarizes into a supertube, what is its

dipole charge, or more precisely, the monodromy matrix around it? From (B.4), we see that the

combinations of charges that transform as doublets are(
K3

V

)
=

(
−2M

L3

)
∝

(
c

a

)
,

(
−L1

K2

)
=

(
−L2

K1

)
∝

(
−d
b

)
(5.B.5)

with ad+ bc = 0. If we act with a general SL(2,Z) matrix, the first doublet transforms as(
c

a

)
→

(
c′

a′

)
=

(
α β

γ δ

)(
c

a

)
=

(
αc+ βa

γc+ δa

)
, (5.B.6)

where α, β, γ, δ ∈ Z and αδ − βγ = 1. The second one transforms in the same way. Let us

require that the lower component of the first doublet in (5.B.5) vanishes in the transformed

frame, namely, a′ = γc+ δa = 0. If we write

a = xâ, c = xĉ, x = gcd(a, c), (5.B.7)

so that â and ĉ are relatively prime, then it is clear that a′ = 0 for the following choice:

γ = â, δ = −ĉ. (5.B.8)
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Note that the lower component of the second doublet in (5.B.5) also vanishes in the transformed

frame:

b′ = −γd+ δb = −âd− ĉb = −1

x
(ad+ bc) = 0 (5.B.9)

by the assumption of 1/4-BPSness, (5.B.4b). For the matrix
( α β
γ δ

)
to be an SL(2,Z) matrix,

we must satisfy

αδ − βγ = −αĉ− βâ = 1, (5.B.10)

but there always exist α, β ∈ Z satisfying this, for â, ĉ are coprime.

In the frame dualized by the SL(2,Z)3 matrix

U =

(
α β

â −ĉ

)
(5.B.11)

satisfying (5.B.10), it is easy to show that the charges are(
K3

V

)
=

(
−2M

L3

)
∝

(
x

0

)
,

(
−L1

K2

)
=

(
−L2

K1

)
∝

(
y

0

)
. (5.B.12)

To derive this, we used the fact that, if we write b, d as

b = yb̂, d = yd̂, y = gcd(b, d), (5.B.13)

then the condition ad+ bc = 0 implies that

(b̂, d̂) = ±(â,−ĉ). (5.B.14)

(5.B.12) correspond to the following charges:

x units of D4(4567)+D0, y units of D2(45)+D2(67). (5.B.15)

As we can see from (3.2.2), both of these pairs must puff out into ns5(λ4567), where λ parametrizes

a closed curve in transverse directions. The SL(2,Z)3 monodromy matrix for ns5(λ4567) is

Mns5(λ4567) =

(
1 q

0 1

)
(5.B.16)

where q ∈ Z is the dipole charge number (the number of NS5-branes). If we dualize this back,

the monodromy of the supertube in the original frame is

M = U−1Mns5(λ4567)U =

(
1− qâĉ qĉ2

−qâ2 1 + qâĉ

)
(5.B.17)
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where we used (5.B.10). This result is symmetric under the exchange of
(
c
a

)
and

(−d
b

)
as it

should be because, using (5.B.14), we can write this as

M =

(
1 + qb̂d̂ qd̂2

−qb̂2 1− qb̂d̂

)
. (5.B.18)

Even in cases where some of a, b, c, d vanish, we can use the formulas (5.B.17) or (5.B.18).

If a = c = 0, we can use (5.B.18). If b = d = 0, we can use (5.B.17). If a or c vanishes, we

can use the rule gcd(k, 0) = k for k ∈ Z6=0 in (5.B.7). For example, if c = 0, then x = a and

â = 1, ĉ = 0.

5.B.3 Round supertube

Let us compute the radius and the angular momentum of the round supertube that is created

from a 1/4-BPS center with general a, b, c, d satisfying ad+ bc = 0.

If we T-dualize (5.B.15) along 7, S-dualize, T-dualize along 4567, and then finally S-dualize,

we obtain

x units of F1(7)+P(7), y units of F1(6)+P(6). (5.B.19)

This is the so-called FP system which is well-studied, rotated in the 67 plane. In the FP system

with F1(7) and P(7) with quantized charges NF1, NP ∈ Z, the radius R and angular momentum

J of a circular configuration are given by (see, e.g., [54]):

R = ls

√
NF1NP

q
, J =

NF1NP

q
, (5.B.20)

where q ∈ Z is the dipole charge number. For the rotated system (5.B.19), this becomes

R = ls

√
x2 + y2

q
, J =

x2 + y2

q
. (5.B.21)

Following the duality chain back, we find this expression is again valid for the original frame

with general a, b, c, d ∈ Z, ad+ bc = 0.

Appendix 5.C Matching to higher order

In the main text, we worked out the matching between the far- and near-region solutions to the

leading order. In this appendix, we carry out the matching to higher order.

From the large-|z| expansion of the near-region solution (5.2.31), we find that the far-region

solution must have the following expansion:

F =
√
η − cosσ

∞∑
n=0

e−i
4n+1

2
σ
(
fn(η)− σ

π
gn(η)

)
, (5.C.1a)

G =
√
η − cosσ

∞∑
n=0

e−i
4n+1

2
σgn(η). (5.C.1b)
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The Laplace equations for F and G lead to

(1− η2)f ′′n − 2ηf ′n + 2n(2n+ 1)fn =
i

π
(4n+ 1)gn,

(1− η2)g′′n − 2ηg′n + 2n(2n+ 1)gn = 0.

(5.C.2)

The equation for gn is the standard Legendre differential equation while the one for fn is an

inhomogeneous Legendre differential equation of resonant type [124].

The general solution for gn(η) is given by

gn(η) = A2nP2n(η) +B2nQ2n(η), (5.C.3)

where P2n(η) is the Legendre polynomial and Q2n(η) is the Legendre function of the second

kind. As Q2n(η) diverges at 3D infinity and on the x3-axis (see footnote 9), we require B2n = 0.

The expression for P2n(η) for some small values of n is

P0(η) = 1, (5.C.4a)

P2(η) =
1

2
(3η2 − 1), (5.C.4b)

P4(η) =
1

8
(35η4 − 30η2 + 3). (5.C.4c)

P2n(η) are normalized so that P2n(1) = 1.

Having found gn, we can plug it into (5.C.2) to find fn. We have not been able to find a

simple explicit expression for fn that works for general n. We give the following integral form:

fn(η) = C2nP2n(η) +D2nQ2n(η)

− i

π
A2n(4n+ 1)

(
P2n(η)

∫ η

1
dsP2n(s)Q2n(s)−Q2n(η)

∫ η

1
ds [P2n(s)]2

)
. (5.C.5)

We have chosen the particular solution (the last term) to vanish at 3D infinity (η = 1). As

before, we require D2n = 0 so that fn is finite at infinity. For given n, it is easy to carry out the

integral and the explicit expression for a few small values of n is

f0(η) = C0 −
i

π
A0 ln

η + 1

2
, (5.C.6a)

f1(η) = C2P2(η)− i

π
A2

(
P2(η) ln

η + 1

2
+

1

4
(η − 1)(7η + 1)

)
, (5.C.6b)

f2(η) = C4P4(η)− i

π
A4

(
P4(η) ln

η + 1

2
+

1

96
(η − 1)(533η3 + 113η2 − 241η − 21)

)
. (5.C.6c)

The undetermined coefficients A2n and C2n are fixed by matching the expansion (5.C.1)

order by order with the large-|z| expansion of the near-region solution given in (5.2.31). This

has been done for the leading n = 0 term in the main text in section 5.2.5; see (5.2.68). For

n = 1, this determines the coefficients to be

A2 =
cL2

2(2R)5/2
, C2 =

i

π

cL2

2(2R)5/2

(
ln

4R

L
− 1

2

)
. (5.C.7)
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Chapter 6

Conclusions

In this thesis, we have shown that the codimension-2 harmonic solutions indeed exist and can

be regarded as microstates of black holes in some cases. On the other hand, we have not been

able to find a systematic prescription of constructing such codimension-2 solutions and typical

enough codimension-2 harmonic solutions which is able to explain the entropy of black holes.

However, this work can be thought of as a rudimentary, but important, step for searching

general codimension-2 harmonic solutions in the sense that their existence and implications are

explicitly confirmed for the first time in the context of black hole micro-physics.

We have mainly used supergravity in studying codimension-2 microstate solutions, but as we

mentioned typical microstates are expected to be involved with exotic branes in general. Since

supergravity can only capture behaviors of exotic branes locally, we need to extend our tool to,

e.g., double field theory [125, 126]. We hope we could pursue this direction in the future.

It would be also interesting to study whether the phenomena such as wall-crossing, split at-

tractor flow, etc. occurring for codimension-3 multi-center solutions will happen to codimension-

2 solutions we found. Another active direction of research is constructing general superstrata

solutions [30, 31, 32, 33, 34]. This is currently regarded as most promising candidate of mi-

crostates for three-charge black holes.

What would correspond to codimension-2 solutions in a dual gauge theory side? This is an

interesting question to ask, since we could possibly obtain some useful information of typical

codimension-2 solutions by studying the dual gauge theory.

We hope the works on codimension-2 solutions we have initiated could shed some light on

the understanding of microstructures of black holes.
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Appendix A

Convention

The reduction formulas for the 11D metric and three-form potential to type IIA supergravity

in 10D are

ds2
11 = e−

2
3

Φds2
10,str + e

4
3

Φ
(
dx11 + C1

)2
,

A3 = C3 +B2 ∧ dx11.
(A.1)

The relation between the gauge-invariant RR field strength Gp+2 and the RR potential Cp+1

is

Gp+2 = dCp+1 −H3 ∧ Cp−1, (A.2)

where H3 = dB2. The higher forms G6, G8 are related to G4, G2 by

G6 = ∗G4, G8 = − ∗G2. (A.3)

If we define the polyforms G =
∑

pGp+1, C =
∑

pCp with p odd (even) for type IIA (IIB), the

relation (A.2) can be written more concisely as

G = dC −H3 ∧ C = eB2d(e−B2C). (A.4)

We define the Hodge dual of a p-form ω in d dimensions as

(∗ω)i1···id−p =
1

p!
εi1···id−p

j1···jpωj1···jp , (A.5)

∗(dxj1 ∧ · · · ∧ dxjp) =
1

(d− p)!
dxi1 ∧ · · · ∧ dxid−pεi1···id−p

j1···jp , (A.6)

with

ε01...(d−1) = −
√
−g, ε01...(d−1) = +

1√
−g

. (A.7)
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A.1 The type IIA uplift and Page charges

The type IIA uplift of the harmonic solution is, including higher RR potentials (cf. (2.1.24)),

ds2
IIA,10 = −Q−1/2 d̃t

2
+Q1/2 dx2

123 +Q1/2V −1
(
Z−1

1 dx2
45 + Z−1

2 dx2
67 + Z−1

3 dx2
89

)
,

e2Φ = Q3/2V −3Z−1,

B2 = ΛIJI ,

C1 = −V 2µQ−1 d̃t+A,

C3 =
(
−Z−1

I d̃t+ ΛIA+ ξI
)
∧ JI ,

C5 =
(
µZ−1

2 Z−1
3 d̃t+ Λ2Λ3A+ Λ2ξ3 + Λ3ξ2 + ζ1

)
∧ J2 ∧ J3 + (cyclic),

C7 =
(
QZ−1V −2 d̃t+ Λ1Λ2Λ3A+ Λ1Λ2ξ3 + Λ2Λ3ξ1 + Λ3Λ1ξ2 + ΛIζI +W

)
∧ J1 ∧ J2 ∧ J3,

(A.1)

where

d̃t ≡ dt+ ω, Q ≡ V (Z − V µ2), ΛI ≡ V −1KI − Z−1
I µ, (A.2)

and the one-forms (A, ξI , ζI ,W ) are related to the harmonic functions (V,KI , LI ,M) by

dA = ∗3dV, dξI = − ∗3 dKI , dζI = − ∗3 dLI , dW = −2 ∗3 dM. (A.3)

The expressions for forms that are useful for computing the Page charge (4.1.49) are

e−B2C
∣∣
1

= −V 2µQ−1 d̃t+A,

e−B2C
∣∣
3

=
[
VQ−1

(
µKI − ZZ−1

I

)
d̃t+ ξI

]
∧ JI ,

e−B2C
∣∣
5

=
[
Q−1

(
Z1

(
K2Z2 +K3Z3 − µV

)
− µK2K3

)
d̃t+ ζ1

]
∧ J2 ∧ J3 + (cyclic),

e−B2C
∣∣
7

=

[
1

VQ

(
Q−

∑
I>J

(KIZI)(K
JZJ)− µV

(
VM − 1

2
KILI

))
d̃t+W

]
∧ J1 ∧ J2 ∧ J3,

(A.4)

where X
∣∣
p

means the p-form part of the polyform X.
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Appendix B

Duality transformation of harmonic

functions

Because we will consider codimension-2 configurations with non-trivial U-duality monodromies,

it is useful to recall some facts about the U-duality group in the STU model, which is SL(2,Z)1×
SL(2,Z)2 × SL(2,Z)3 [51].

In particular, it is important to understand how the U-duality acts on the harmonic functions.

Let us take SL(2,Z)1. This group is generated by (i) simultaneous T-duality transformations

on the 45 directions and (ii) the shift symmetry B45 → B45 + 1. Because we know the T-duality

action on 10D fields from the Buscher rule and their expression (2.1.24) in terms of harmonic

functions, it is easy to read off how the harmonic functions transform under (i). The same is

true for the B-shift symmetry (ii). The result is that (i) and (ii) are realized by the SL(2,Z)1

matrices

MT-duality =

(
0 −1

1 0

)
, MB-shift =

(
1 1

0 1

)
, (B.1)

and that the eight harmonic functions transform as a direct sum of four doublets,(
K1

V

)
,

(
2M

−L1

)
,

(
−L2

K3

)
,

(
−L3

K2

)
. (B.2)

Since (i) and (ii) generate SL(2,Z)1, we conclude that, even for general transformations SL(2,Z)1,

the harmonic functions transform as a collection of doublets (B.2).

Because all three SL(2,Z)’s are on the same footing, we can infer the transformation of

harmonic functions under general SL(2,R)I transformation for I = 1, 2, 3. Under SL(2,R)I , the

eight harmonic functions transform as a direct sum of four doublets:(
u

v

)
→MI

(
u

v

)
, MI ≡

(
αI βI

γI δI

)
∈ SL(2,R)I , (B.3)
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where the vector ( uv ) represents any of the pairs(
KI

V

)
,

(
2M

−LI

)
,

(
−LJ
KK

)
,

(
−LK
KJ

)
, J 6= K 6= I. (B.4)

One can show that the transformations (B.3) for different values of I commute, as they should

because they are associated with different tori.

It is not difficult to show that the transformation (B.3) of the harmonic functions means the

standard linear fractional transformation of the complexified Kähler moduli as:

τ I → αI τ
I + βI

γI τ I + δI
, τJ → τJ (J 6= I), (B.5)

where there is no summation over I.

In the main text, we introduced vectors such as H = {V,KI , LI ,M}. To see the group

theory structure, it is more convenient to introduce the Sp(8,R) vector [127]

H = (HΛ,HΛ) = (H0,HI ,H0,HI) =
1√
2

(−V,−KI , 2M,LI) (B.6)

which transforms in the standard way under the four-dimensional electromagnetic Sp(8,R)

duality transformation of N = 2 supergravity.

The skew product 〈H,H ′〉 defined in (2.1.18) can be written as

〈H,H ′〉 = −HΛH′Λ +HΛH′Λ (B.7)

For a generic Sp(8,R) symplectic vector V = (VΛ,VΛ) = (V0,VI ,V0,VI), the quartic invariant

J4(V) is given by

J4(V) = −(VΛVΛ)2 + 4
∑
I<J

VIVIVJVJ − 4V0V1V2V3 + 4V0V1V2V3. (B.8)

Using this, the quantity Q defined in (2.1.25) and rewritten in (2.1.26) can be expressed as

Q = J4(H) = J4(H). (B.9)

In this language, the most general U-duality transformation can be written as an 8×8 matrix

S ∈ [SU(1, 1)]3 ∼= [SL(2,R)]3 ⊂ Sp(8,R) [50, 127]

S = ST U , (B.10)
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where

S =



δ1 γ1

β1 α1

δ1 γ1

δ1 γ1

α1 −β1

−γ1 δ1

β1 α1

β1 α1


, (B.11a)

T =



δ2 γ2

δ2 γ2

β2 α2

δ2 γ2

α2 −β2

β2 α2

−γ1 δ2

β2 α2


, (B.11b)

U =



δ3 γ3

δ3 γ3

δ3 γ3

β3 α3

α3 −β3

β3 α3

β3 α3

−γ3 δ3


. (B.11c)

with αIδI − βIγI = 1, I = 1, 2, 3. It is straightforward to show that the action of the matrix

(B.10) on the symplectic vector (HΛ,HΛ) reproduces the transformation law (B.3).

The transformation law (B.3) means that the eight harmonic functions transform under the

2⊗ 2⊗ 2 representation of [SL(2,Z)]3 as follows:

(H0,HI ,H0,HI) =
1√
2

(−V,−KI , 2M,LI)

= (H222; H122,H212,H221; −H111; H211,H121,H112)

(B.12)

where Habc (a, b, c = 1, 2) transforms as Habc →
∑

a′,b′,c′(M1)aa
′
(M2)bb

′
(M3)cc

′Ha′b′c′ . In terms
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of Habc,

−〈H,H ′〉 = HΛH′Λ −HΛH′Λ = εa1a2εb1b2εc1c2Ha1b1c1Ha2b2c2 , (B.13)

J4(H) = J4(H) =
1

2
εa1a2εa3a4εb1b2εb3b4εc1c3εc2c4Ha1b1c1Ha2b2c2Ha3b3c3Ha4b4c4 . (B.14)

A matrix Mab cannot be written as a product of two vectors ua, vb in general but it can be

written as a sum of multiple vectors, Mab =
∑

i u
a
i v
b
i . Similarly, we must be able to decompose

the tensor Habc as

Habc =
∑
i

uai v
b
iw

c
i , (B.15)

where uai , v
b
i , and wci are real functions transforming as doublets of SL(2,Z)1, SL(2,Z)2, and

SL(2,Z)3, respectively.

Let us consider the situation considered in appendix 5.A.2 where we set one of the moduli to

a trivial value: τ1 = i. Here we will give an alternative proof that the harmonic functions in this

case are given by (5.A.19), (5.A.20). As we can see in (5.A.16), the combinations of harmonic

functions that transform nicely under the remaining SL(2,Z)2×SL(2,Z)3 are V −iK1, K2 +iL3,

K3 + iL2 and −L1 − 2iM . In terms of Habc, they are

V − iK1 =
√

2 (−H222 + iH122) ≡ H22,

K2 + iL3 =
√

2 (−H212 + iH112) ≡ H12,

K3 + iL2 =
√

2 (−H221 + iH121) ≡ H21,

−L1 − 2iM =
√

2 (−H211 + iH111) ≡ H11.

(B.16)

The components of the tensor Hbc defined here are complex functions transforming as a 2 ⊗ 2

of SL(2,Z)2 × SL(2,Z)3. Just as in (B.15), we can decompose it as

Hbc =
∑
i

V b
i W

c
i , (B.17)

where V b
i ,W

c
i are complex. However, this is inconsistent with the constraint (5.A.15), which

reads in terms of Hbc as

H11H22 = H12H21, (B.18)

unless the summation over i in (B.17) has only one term. In that case,

V − iK1 = H22 = V 2W 2, K2 + iL3 = H12 = V 1W 2,

K3 + iL2 = H21 = V 2W 1, −L1 − 2iM = H11 = V 1W 1.
(B.19)

This is the same as (5.A.19), (5.A.20) with the identification
(
V 1

V 2

)
=
(
F2
G2

)
,
(
W 1

W 2

)
=
(
F3
G3

)
.

It is interesting to see how the transformations of the harmonic functions known in the liter-

ature are embedded in the general [SL(2,Z)]3 transformation (B.3). We will consider the “gauge
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transformation” [64] and the “spectral flow transformation” [128] as such transformations. To

our knowledge, explicit [SL(2,Z)]3 matrices for these transformations have not been explicitly

written down in the literature. For a discussion on how these transformations are embedded in

the U-duality group of the STU model from a different perspective, see [127].

The so-called “gauge transformation” [64] is defined as the following transformation of har-

monic functions:

V → V, KI → KI + cIV,

LI → LI − CIJKcJKK − 1

2
CIJKc

JcKV,

M →M − 1

2
cILI +

1

4
CIJKc

IcJKK +
1

12
CIJKc

IcJcKV.

(B.20)

It is easy to see that this transformation is a special case of general [SL(2,Z)]3 transformations

(B.3) with

MI =

(
1 cI

0 1

)
, I = 1, 2, 3. (B.21)

This transformation shifts the B-field as

B2 → B2 +
c1α

R4R5
J1 +

c2α

R6R7
J2 +

c3α

R8R9
J3. (B.22)

If one likes, the shift in B2, (B.22), can be always undone by subtracting c1α
R4R5

J1 + c2α
R6R7

J2 +
c3α
R8R9

J3 from B2 by hand, because subtracting from B2 the closed form JI affects none of the

equations of motion or supersymmetry conditions. This is relevant especially in 5D solutions

(for which h0 = 0) because, changing the asymptotic value of B2 as in (B.22) would mean to

change the asymptotic value of the Wilson loop along ψ for a 5D gauge field that descends

from the M-theory three-form Aµij . Such a gauge transformation would not vanish at infinity

in 5D and is not allowed. So, one must always undo the shift (B.22) after doing the gauge

transformation (B.20). After this procedure, no gauge-invariant fields are changed under the

transformation (B.20) and it is just re-parametrization of harmonic functions {V,KI , LI ,M}.
The “spectral flow transformation” is defined as [128]

V → V + γIK
I − 1

2
CIJKγIγJLK +

1

3
CIJKγIγJγKM,

KI → KI − CIJKγJLK + CIJKγJγKM,

LI → LI − 2γIM, M →M,

(B.23)

where CIJK = CIJK . This transformation has been used extensively to generate new solutions

from known ones. It is easy to see that this transformation is a special case of general SL(2,Z)

transformations with

MI =

(
1 0

γI 1

)
, I = 1, 2, 3. (B.24)
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