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Abstract

One interesting property of black holes is that they obey thermodynamic laws. The entropy of
black holes is given by the area of the horizon and it is naturally expected to be understood from
the statistical mechanical viewpoint. However there has not been many things known about
black hole microstates in the gravity, even though their holographic understanding has been well-
known. In microstate geometry program which is a conjecture about black hole microstates,
typical microstates are described as smooth and entropyless (i.e., horizonless) supergravity so-
lutions which have the same mass, angular momentum, and charges as that of black holes. In
this thesis, a new class of black hole microstates are suggested and studied in addition to the

known microstate solutions and discussed in the context of microstate geometry program.
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Chapter 1

Introduction

Black holes have been one major topic in theoretical physics since its discovery. They are in-
volved with many important concepts or puzzles in the modern theoretical physics, for example,
holography, information loss problem, etc. Black holes have entropy that is given by the area of
the horizon [1] and also obey thermodynamic laws [2]. As a thermodynamic object, black holes
are naturally supposed to have underlying microstates. Especially in string theory, it has been
able to uncover some aspects of them, e.g., [3, 4]. These understanding of black hole microstates
are basically relying on the gauge/gravity duality [5], namely the black hole entropy is accounted
for state counting of D-brane system which is the dual description of gravity. Although this
is very beautiful results of string theory, it would be really desirable if we could find a gravity
description for microstates of black holes. Once we find a such description, it would solve many
puzzles of black holes in a direct way, since we would know the exact microstructure of black
holes. Let us explain one approach in string theory to achieve this.

Because string theory is a microscopic theory of gravity, i.e., quantum gravity, black hole
microstates must be describable within string theory, at least as far as black holes that exist
in string theory are concerned. These microstates must have same charges, mass and angular
momentum as that of black holes and the scattering in the microstate must be well-defined as
a unitary process. The fuzzball conjecture! [12, 13, 14, 15, 16] claims that typical microstates
spread over a macroscopic distance of the would-be horizon scale. More recent arguments
[17, 18] also support the view that the conventional picture of black holes must be modified at
the horizon scale and replaced by some non-trivial structure.

The microstates for generic black holes are expected to involve stringy excitations and, to

! This was originated from the success of explaining the entropy of two-charge black holes as a smooth and
horizonless geometry [6, 7]. In the frame of D1-D5 black holes, the microstates are described as a Kaluza-Klein
monopole geometry which is smooth and horizonless. Note that the Kaluza-Klein monopole in this case is a dual
description of a supertube [8]. A similar analysis for 1/2-BPS states in AdSs x S® was done in [9, 10, 11]. In this

thesis, we will mainly discuss three- and four-charge black holes respectively in five and four dimensions.



describe them properly, we probably need quantum string field theory. However, for super-
symmetric black holes, the situation seems much more tractable. Many microstates for BPS
black holes have been explicitly constructed as regular, horizonless solutions of supergravity
— the massless sector of superstring theory. It is reasonable that the massless sector plays
an important role for black hole microstates because the large-distance structure expected of
the microstates can be supported by massless fields [19]. It is then natural to ask how many
microstates of BPS black holes are realized within supergravity. This has led to the so-called
“microstate geometry program” (see, e.g., [20]), which is about explicitly constructing as many
black hole microstates as possible, as smooth and horizonless solutions in supergravity.

A useful setup in which many supergravity microstates have been constructed is five-dimensional
N = 2 ungauged supergravity with vector multiplets, for which all supersymmetric solutions
have been classified [21]. This theory describes the low-energy physics of M-theory compactified
on a Calabi-Yau threefold X or, in the presence of an additional S! [22, 23], of type ITA string
theory compactified on X. The supersymmetric solutions are completely characterized by a set
of harmonic functions on a spatial R? base, which we collectively denote by H. We will call
these solutions harmonic solutions. If we assume that H has codimension-3 singularities, its
general form is

Ty
| — xp|

N
H(x)=h+)Y_ (1.1)
p=1

The associated supergravity solution generically represents a bound state of NV black holes which
sit at x =x, (p = 1,...,N) and are made of D6, D4, D2, and DO-branes represented by the
charge vectors I',. In this thesis, we take X = T® = T2 x T2, x T2 and the D-branes wrap
some of the tori directions.

By appropriately choosing the parameters in the harmonic functions, the harmonic solutions
with codimension-3 centers, (1.1), can describe regular, horizonless five-dimensional geometries
that are microstates of black holes with finite horizons [24, 25]. However, although they represent
a large family of microstate geometries, it has been argued that they are not sufficient for
explaining the black hole entropy [26, 27].

In fact, physical arguments naturally motivate us to generalize the codimension-3 harmonic
solutions, which lead to more microstates and larger entropy. One possible way of generalization
is to go to six dimensions. This is based on the CFT analysis [28] which suggests that generic
black hole microstates must have traveling waves in the sixth direction and thus depend on it.
This intuition led to an ansatz for six-dimensional solutions [29], based on which a new class of
microstate geometries with traveling waves, called superstrata, was constructed [30]. For recent
developments in constructing superstratum solutions, see [31, 32, 33, 34].

The other natural way to generalize the codimension-3 harmonic solutions (1.1) is to consider



codimension-2 sources in harmonic functions. This generalization is naturally motivated by the
supertube transition [8] which in the context of harmonic solutions implies that, when certain
combinations of codimension-3 branes are put together, they will spontaneously polarize into a
new codimension-2 brane. For example, if we bring two orthogonal D2-branes together, they
polarize into an NS5-brane along an arbitrary closed curve parametrized by A. We represent

this process by the following diagram:
D2(45) + D2(67) — ns5(A4567), (1.2)

where D2(45) denotes the D2-brane wrapped on T3 and “ns5” in lowercase means that it is
a dipole charge, being along a closed curve. The original D2(45) and D2(67)-branes appeared
in the harmonic functions as codimension-3 singularities, as in (1.1). The process (1.2) means
that those codimension-3 singularities can transition into a codimension-2 singularity in the

harmonic function along the curve A. Another example of possible supertube transitions is
D2(89) + D6(456789) — 5%()\4567; 89), (1.3)

where 53 is a non-geometric exotic brane which is obtained by two transverse T-dualities of the
NS5-brane [35, 36].

We emphasize that the supertube transition is not an option but a must; if two codimension-
3 branes that can undergo a supertube transition are put together, they will, because the
supertube is the intrinsic description of the bound state [12, Section 3.1]. This suggests that
considering only codimension-3 singularities in the harmonic solutions is simply insufficient and
we must include codimension-2 supertubes for a full description of the physics. Later we will
give another reason why we have to consider codimension-2 sources.

As we will see in explicit examples later, this does not just mean to smear the codimension-3
singularities in the harmonic function (1.1) along a curve to get a codimension-2 singularity,
but the harmonic function can also have branch-point singularities and be multi-valued in R3.
It is a generic feature of codimension-2 branes that, as one goes around their worldvolume,
the spacetime fields undergo a U-duality transformation [35, 36] and become multi-valued; the
harmonic function being multi-valued is the manifestation of this.

The purpose of the works presented in this thesis is to demonstrate how configurations
with codimension-2 sources, geometric and non-geometric, can be represented in the harmonic
solution. To our knowledge, the harmonic solution with codimension-2 sources has not been
investigated before, and represents a large unexplored area of research. For the codimension-3
case, (1.1) gives the general multi-center solution. More generally, however, the codimension-
3 centers must polarize into supertubes, thus giving a multi-center solution of codimension-3
and codimension-2 centers. It is technically challenging to explicitly construct general multi-

center solutions involving codimension-2 centers. So, in this thesis, we present some simple but



explicit solutions which must be useful for finding the general solutions. An obvious application
of codimension-2 solutions is to generalize the studies previously done for codimension-3 sources
to include codimension-2 sources such as the black hole attractor mechanism [37, 38, 39, 40, 41,
42, 43], split attractor flows and wall-crossing [44, 45, 46, 47]. In [35, 36|, it was argued that
codimension-2 solutions play an essential role in the microscopic physics of black holes and we

hope that these works will set a stage for research in that direction.



Chapter 2

Harmonic solutions

Harmonic solutions refer to supersymmetric and stationary solutions of supergravity in four and
five dimensions which are determined by a set of harmonic functions on R3 with one constraint.
When the sources are codimension 3 in R? (i.e., point-like), the harmonic solutions are often
called multi-center solutions. The framework we are going to use is mainly five-dimensional
N = 2! ungauged supergravity coupled to vector multiplets. This theory can be obtained as
the low-energy effective theory of M-theory compactified on a Calabi-Yau threefold X. In this

chapter, we briefly summarize some essential properties of harmonic solutions.

2.1 Harmonic solutions in five-dimensional supergravity

In this section, we will use five-dimensional N' = 2 supergravity which provides a fertile model
for constructing black hole microstates to explain what harmonic solutions are. Furthermore,
we will focus on the theory with two vector multiplets and presume the theory was obtained
through a compactification of M-theory on a Calabi-Yau threefold X which we take it as 76 =
Ti x Tg x T

All supersymmetric solutions of timelike class? in five-dimensional A" = 2 supergravity cou-
pled to vector multiplets are classified in [21]. The metric, gauge fields and scalars of the

supersymmetric solutions are given by

ds? = —Z723(dt + k)? + Z"3ds%y, (2.1.1a)
Al =B —z;Yat+ k), I=1,2,3, (2.1.1b)
X =28z 7 =2,2:7;, (2.1.1c)

18 supercharges.
2Depending on whether the Killing vector constructed from the Killing spinor bilinear is timelike or null, the

solutions are classified into timelike or null classes.



where the scalar functions Z; and the one-forms k, B! depend only on the hyper-Kihler base

space with the metric ds%IK. It is easy to confirm that the scalars satisfy
XIX2X3 =1, (2.1.2)

so only two of them are independent.

It will be convenient to define the magnetic field strength by
ol =dB!. (2.1.3)

The demand of supersymmetry leads to the following BPS equations to be satisfied by the
quantities ©7, Z;, and k [22]:

ol =0, (2.1.4a)

1
dx*g dZ7 = 50}]}(@‘]/\@[(, (2.1.4b)
(1+ *x4)dk = Z;07, (2.1.4¢)

where %4 is the Hodge dual with respect to the base metric ds%{K and C7ji are constants that
are symmetric under permutations of IJK, and in our case Crjx = |eryk|. If we solve these
equations in the order presented, the problem is linear; namely, at each step, we have a Poisson
equation with the source given in terms of the quantities found in the previous step.

Solving the BPS equations with a Gibbons-Hawking base

It is difficult to write down solutions explicitly without any assumption. But once we assume
the presence of a U(1) isometry on the base space that preserves the hyper-Kéahler structures
(namely, if the Killing vector is tri-holomorphic), the hyper-Kéhler base should be a Gibbons-

Hawking space [48] and its metric take a following form [49]:
dsty =V Hdy + A)? + V6;da'da, i,j=1,2,3. (2.1.5)

The isometry direction ¢ has periodicity 4w. Here, the one-form A and the scalar V depend

only on the coordinates z* of the R? base and satisfy
dA = x3dV. (2.1.6)
The orientation of the Gibbons-Hawking base is given by

€123 = ++/9GH = V. (2.1.7)

From (2.1.6), it is easy to see that V is a harmonic function on R3,

AV =0, A = §9;0;. (2.1.8)



If we decompose O and k according to the fiber-base decomposition of the Gibbons-Hawking
metric (2.1.5), we can solve all the BPS equations (2.1.4) in terms of harmonic functions on R3.
For later convenience, let us recall how this goes in some detail [23].

First, by self-duality (2.1.4a), the two-form ©! can be written as
Of = (dy+ A NG +V x5 67, (2.1.9)

where 67 is a one-form on R3. The closure dO’ = 0 (the part multiplying di¢) + A) implies
d9" = 0, which means that 8/ = dA! with a scalar A’. If we plug this equation back into
do! =0, we find

A(VAH) =o0. (2.1.10)

Therefore, A = —V~1K! with K harmonic, and
of = —(dy + A) ANd(VIKT) =V x3 d(VTIKT). (2.1.11)
Next, plugging (2.1.11) into (2.1.4b), we find that Z; satisfies the following Laplace equation:
AZy = CryV oV EY) 0, (VKK = %CUKA(V*KJKK), (2.1.12)
where in the last equality we used harmonicity of V, K. This means that
Zr =L+ %CUKV*KJKK, (2.1.13)

where L is harmonic.

Furthermore, if we decompose the one-form k as
k= p(dy+ A) +w, (2.1.14)

where w is a one-form on R3, we can show that the condition (2.1.4c) leads to another Laplace

equation:
Ap = V719,V Z10;(V KT = A(%V*lKILI + %CUKV*QKIK"KK). (2.1.15)

In the last equality, we used harmonicity of V, K!, L;. Therefore, i is given in terms of another

harmonic function M as
L 1 271 7o J 7oK
,LL:M—I-§V KL[—I—ECIJKV K'K'K"™. (2.1.16)
The one-form w is found by solving the equation

1
v dw = VAM — MdV + 7 (K'dL; — LidK") (2.1.17)



that also follows from (2.1.4c). We sometimes write eight harmonic functions collectively as
H ={V,K! L;, M}. For two such vectors H, H', we define the skew product (H, H') by

(HHY=VM - MV'+ %(KIL’I — LK. (2.1.18)
In this notation, (2.1.17) is rewritten as
x3 dw = (H,dH) . (2.1.19)
By taking d *3 of this equation, we can derive the so-called integrability equation:

0= (H,AH), (2.1.20)

or more explicitly,
1
0=VAM - MAV + 5 (K'AL; — L;AKT). (2.1.21)

This must be satisfied for the one-form w to exist. Although we allow delta-function sources
for the Laplace equations (2.1.8), (2.1.10), (2.1.12) and (2.1.15), this equation (2.1.21) must be
imposed without allowing any delta function in order for w to exist.

Finally, we note that the magnetic potential B! can be written as
Bl = VK (dyp+ Ay + ¢, del = —x3dKT. (2.1.22)

In summary, under the assumption of the additional U(1) symmetry, we can solve all the

BPS equations (2.1.4) in terms of harmonic functions V, K*, L;, M.

Eleven- and ten-dimensional uplift

The solution (2.1.1) can be thought of as coming from M-theory compactified on T¢ = T2 x

T627 X T829 as it was mentioned, with the following metric and the three-form potential:

ds?y = —Z723(dt + k)2 + ZV3dsty + 23 (27 dadks + Zy Ndad, + Z3 dady)

I 4 5 6 7 8 9 (2.1.23)
Az = A" Jj, Ji=dz* Ndx®, Jo=dx® Ndx', J3=dx® Adz?,

where da2; = (dz*)? + (dz®)? and so on. The scalars X! = Z'/3Z;! correspond to the volume
of each torus. M-theory on T% has N’ = 8 supersymmetry (32 supercharges) in five dimensions,
and the model we are using is its A/ = 2 truncation in which only 8 supercharges are kept.

We can regard the isometry direction of the Gibbons-Hawking space as M-theory circle and
compactify along it. Then it should give a low-energy effective theory of type ITA string theory
compactified on the same Calabi-Yau threefold X. So we will obtain four-dimensional N' = 2
supergravity coupled to vector multiplets. We use conventions in appendix A for M-theory to

type IIA string theory reduction.



In the type ITA picture, the metric, dilaton, B-field and p-form potentials are

ds%o,str = —Qfl/Q(dt + w)2 + Q1/25¢j dx'dz?

+ V2V (Z 7 dady + Zy tdaly + Zy M dady) (2.1.24a)
2 = @32y 3771, (2.1.24b)
By = (V'K' = Z7 ) Jy, (2.1.24c)
Ci=A-V*0uQ l(dt +w), (2.1.24d)
Cy= (V'K - Z'wA+ ¢ — Z7 (dt +w)] AL (2.1.24e)
where Q is defined as

Q=V(Z-Vi?. (2.1.25)

In terms of harmonic functions, (2.1.25) is written as

Q=VLiLyLy —2MK'K*K? — M*V?
1 1
-7 S (KTL)? + 3 S (K'L)(K7Ly) - MV Y K'L;
I I1<J I

= J,(H), (2.1.26)

where Jy is the quartic invariant of E7 7 U-duality group; for some more discussion, see appendix
B. We also note that the complexified Kahler moduli 7!, 72, and 72 for the 2-tori T425, T627, and

T829, respectively, are

R4 R5 ) R4R;5 K1 I Ve
1 _ — _ v =
P - B <B45 + 14/det Gab) i [( : +1 ik (2.1.27)

where a,b = 4,5, and similarly for 72,73. We denoted the radii of ¢ directions by R;,i =
4,...,9. If we compactify the theory to four dimensions, these 7/ become scalar moduli
parametrizing the moduli space [SL(2,R)/SO(2)]?. It is sometimes called STU model which
was studied in [50, 51].

For other embeddings of the harmonic solutions in type ITA and IIB supergravity, see [22,
52, 53].

Conditions for the absence of closed timelike curves

(Super)gravity solutions can exhibit closed timelike curves (CTCs), signaling that the solution
is not physically allowed.?> To study their existence, let us look at the 10D metric (2.1.24).
First, for g, gii (i = 1,2,3) to be real, we need Q@ > 0. Then, for the torus directions to give

3For over-rotating supertubes, CTCs will appear along the profile of the supertube [54, 55].



no CTCs, we get VZ; >0, I =1,2,3. So, we must impose the following conditions:

Q >0, (2.1.28a)
VZ; > 0. (2.1.28b)

Next, let us focus on the R? part of the 10D metric (2.1.24) which is
ds%O,str > Q72 (—uw wj + Qd;;) dx'dxl. (2.1.29)

It is possible that closed curve C in R? becomes timelike under this metric, depending on the

behavior of the one-form w. That would imply a CTC, which must be physically disallowed.

2.2 Codimension-3 sources: multi-center solutions

The harmonic solutions are characterized by a set of 8 harmonic functions. Non-trivial harmonic
functions in R? must have singularities, which correspond to physical sources such as D-branes.
Depending on the nature of the source, the singularity can have various codimension. Here we
review some specifics about solutions with codimension-3 sources, or codimension-3 solutions
for short, which have been extensively studied in the literature. In the next subsection, we will
proceed to codimension-2 solutions, which is the main focus of the current thesis.

If one assumes that all singularities of the harmonic functions have codimension 3, the general

form of the harmonic functions is [56, 57, 23]

0 - I I_ ;I SRy
V=nh P K =h L
3= P2l
p:l p:l
(2.2.1)
ZN i ZN Iy
Lr=h P M=h —
1="hr+ Ix — x,|’ o |x — x|’
p=1 p=1
where x = (z!,22,23) and x, € R3 (p = 1,..., N) specifies the location of the codimension-3

sources where the harmonic functions become singular. The charge vector I'P = {Fg, I‘II), Fﬁ’, ey
carries the charges of each source and, together with h = {h°, hl. hg, ho}, fully determine the
asymptotic properties of the solution, namely mass, angular momenta and the moduli at infinity.
See figure 2.1(a) for a schematic explanation of codimension-3 solutions.

We still have to satisfy the integrability condition (2.1.20). Because the Laplacian A acting
on |x — x,| 7! gives a delta function supported at x = x,, the right-hand side of (2.1.20) does
not generally vanish. Mathematically, this does not pose any problem for the existence of w,
although it becomes multi-valued, having a Dirac-Misner string [58]. However, the presence of
a Dirac-Misner string leads to CTCs [24]. Therefore, it is physically required that the delta-
function singularities be absent on the right-hand side of (2.1.20). This condition implies the

10



(a) (b)

Figure 2.1: The harmonic solution is specified by harmonic functions on the base R3. (a) The
codimension-3 solution is specified by point-like singularities of the harmonic functions. (b)
The general solution involves point-like (codimension-3) as well as string-like (codimension-2)

singularities in the harmonic functions.

well-known constraint [44]

r,T
Z Ty To) = (h,T}) for each p, (2.2.2)

where x4 =[x, — Xq|.
Let us see how this argument goes [24]. Let B® be a small ball containing x = Xp, and

consider the integral
/ d*w :/ d3x (H,AH), (2.2.3)
B3 B3
where we used (2.1.19). The integrand on the right-hand side is the same as the one in the

integrability condition (2.1.20). If it has a delta-function source at x = x,, the integral is

nonzero. On the other hand, the left-hand side can be rewritten as

/ d%:/ dw:/ w, (2.2.4)
B3 S2 052

where S? = B3 and the boundary 952 can be taken to be an infinitesimal circle going around
the north pole, through which a Dirac-Misner string passes. This being non-vanishing means
that the component of w along 952 is finite; if we take the Dirac-Miser string to be along the
positive z-axis, then w, # 0 where ¢ is the azimuthal angle around the z-axis. Therefore, for
this curve C = 952, the first term in (2.1.29) does not vanish while the second one vanishes
(note that Q is finite as long as we are away from x = x,). So, curve C is a CTC. Therefore,
the right-hand side of the integrability condition (2.1.20) must not even have delta-function
singularities, and this is what leads to the constraint (2.2.2).

The interpretation of the singularities in the harmonic functions (2.2.1) from a string/M-
theory point of view is the existence of extended objects in higher dimensions. In the string/M-

theory uplift, p-form potentials are expressed in terms of the harmonic functions, which allows

11



us to establish a dictionary between the harmonic functions and their corresponding brane
configurations [57]. For example, in the type IIA picture (2.1.24), the dictionary between the

singularities in the harmonic functions and the D-brane sources is

K « D4(6789) Ly +> D2(45)
V <> D6(456789), K2 <> D4(4589) ,  Lg <» D2(67) , M < DO. (2.2.5)
K3 > D4(4567) L3 +> D2(89)

The D-branes are partially wrapped on T% and appear in 4D as point-like (codimension-3)
objects sourcing the harmonic functions. When multiple sources are present, the harmonic
solution (2.2.1) represents a multi-center configuration of D-branes.

The harmonic solutions with codimension-3 sources have been extensively used to describe
various brane systems for various purposes. Examples include a 5D three-charge black hole made
of M2(45), M2(67) and M2(89)-branes, which is dual to the Strominger-Vafa black hole [3]; the
BMPYV black hole [59]; the MSW black hole [4]; the supersymmetric black ring [60, 22, 52];
multi-center black hole/ring solutions [57]; and microstate geometries [24, 25].

One simple example is when (2.2.1) contains only one term, namely, N = 1. For the generic
charge vector I' = I'’=!, this describes a single-center black hole in 4D which is made of D0, D2,
D4 and D6-branes. The area-entropy of this black hole can be readily computed to be

g = VD) (2.2.6)
Gy
where the 4D Newton constant is given by G4 = ¢212/8 and J4(I') is obtained by replacing
H={V,K! L;,M} in (2.1.26) by I' = {T'°, T/, T;,T}. Multi-center solutions which have the
same asymptotic moduli as this single-center solution and the same total charge Zp I?P =T
can be thought of as representing microstates/sub-ensemble of the ensemble represented by the
single-center black hole.

Let us briefly mention the relation between four- and five-dimensional multi-center solutions.
Four-dimensional multi-center solutions were studied in [44, 57]. In [61] it was shown that four-
dimensional multi-center solutions can be uplifted to five-dimensional multi-center solutions
using the relation between type ITA string theory and M-theory. See [62, 63, 64] for the related
works. This five-dimensional multi-center solutions that include black holes and black rings
were constructed in [22] and later interpreted as microstates of five-dimensional black holes and
black rings [24, 25].

2.3 Codimension-2 sources

In the previous subsection, we considered the harmonic solution which has only codimension-

3 sources of D-branes. However, recall that, in string theory, certain combinations of branes

12



can undergo a supertube transition [8], under which branes spontaneously polarize into new
dipole charge, gaining size in transverse directions. For example, as we have discussed in the
introduction, two transverse D2-branes can polarize into an NS5-brane along an arbitrary closed
curve A, as in (1.2). Because the NS5-brane is along a closed curve, it has no net NS5 charge but
only NS5 dipole charge. The original D2 charges are dissolved in the NS5 worldvolume as fluxes.
When the curve \ is inside the R3,;, which is generically the case and is assumed henceforth, the
NS5-brane appears as a codimension-2 object in the non-compact 123 directions. Therefore, if
we are to consider generic solutions describing D-brane systems, we must include codimension-2
brane sources in the harmonic solution. Even in such situations, the procedure (2.1.11)—(2.1.16)
to solve the BPS equations goes through and the solution is given by the harmonic functions
V,K' L, M. However, they are now allowed to have codimension-2 singularities in R3. See
figure 2.1(b) for a schematic explanation for solutions with codimension-2 sources.

To get some idea about solutions with codimension-2 sources, here we present the harmonic
functions for the D2 + D2 — nsb supertube (1.2) when the puffed-up nsb5-brane is an infinite

straight line along 23.4

V=1, K'=K?=0, K3?=q0,
(2.3.1)

A A 1
Li=14+Qilog—, Ly=1+Qlog—, L3=1, M:—iqe,
T T

where ¢ = 12/(27RgRy), Q1Q2 = ¢, and A is a constant.” We took the cylindrical coordinates
for the R? base,
ds2 = dr? + r2d6? + (dz3)>. (2.3.2)

We will discuss such solutions more generally in chapters 4 and 5. A novel feature is that the
harmonic function K has a branch-point singularity along the z3 axis at r = 0. So, K does
not just have a codimension-2 singularity but is multi-valued. This K3 cannot be obtained by
smearing a K* with codimension-3 singularities as in (2.2.1). As one can see from (2.1.24), this
K3 leads to the B-field

By = —2——da® A da®. (2.3.3)

Around the x3-axis, this has monodromy ABs = [2/(RgRy), which is the correct one for an
NS5-brane extending along 34567 directions and smeared along 89 directions. On the other
hand, the codimension-2 singularities in L1, Ly represent the D2-brane sources dissolved in the
NS5 and are obtained by smearing codimension-3 singularities in (2.2.1). The monodromy in M
(2.3.1) does not have direct physical significance here, because what enters in physical quantities

is pu, which is trivial in the present case: p = M + %K?’Lg = 0.

4An infinitely long NS5-brane would not have a dipole charge. The solution (2.3.1) must be regarded as a

near-brane approximation of an NS5-brane along a closed curve.
5A is the cutoff for r, beyond which the near-brane approximation mentioned in footnote 4 breaks down.
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In the lower dimensional (4D) picture, the B-field appears as the scalar moduli 71 defined

in (2.1.27). For the present case (2.3.3), we have
TV = —. (2.3.4)
As we go around r = 0, the modulus 72 has the monodromy
=41, (2.3.5)

which can be understood as an SL(2,Z) duality transformation. It was emphasized in [35, 36]
that the charge of the codimension-2 brane is measured by the duality monodromy around it.
It is possible to consider codimension-2 objects around which there is more general SL(2,7Z)
monodromy of 7!. For example, if we have an object around which there is the following

monodromy:
3

3 7—
T
—73 +1
it corresponds to an exotic brane called the 53(34567,89)-brane [35, 36]. This brane is non-

geometric since the T, metric is not single-valued but is twisted by a T-duality transformation

13

or ™ P41, B= (2.3.6)

1
=1

around it. The 53-brane is produced in the supertube transition (1.3) and must also be describ-
able within the harmonic solution in terms of multi-valued harmonic functions. We will see this

in explicit examples in chapters 4 and 5.
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Chapter 3

Codimension-2 harmonic solutions

In this chapter, we briefly discuss on the current state of microstate geometry program which is
mainly exploiting codimension-3 multi-center solutions. Then we suggest codimension-2 solu-
tions as a possible microstate of black holes with some supporting arguments. In the subsequent
chapters, we will present the main results of [65, 66] without changing many things for the com-

pleteness of the thesis.

3.1 Harmonic solutions as black hole microstates

The harmonic solutions with codimension-3 sources will be smooth and horizonless geometries
under appropriate choices of A and I' (2.2.1) when solving the integrability condition (2.2.2).
This could be understood as a geometric transition [24, 25]. The entropy of these large family of
smooth solutions are estimated in [26, 27] and it turned out that those smooth solutions are not
typical enough to explain the entropy of four- and five-dimensional black holes. In this section,
we will briefly review what was done in [26, 27] without many details. Then we suggest another
possibility of microstate solutions.

The entropy estimations in [26, 27] were based on the system suggested in [67] that a four-
dimensional four-charge black hole made of D4-D0 charges can be deconstructed into a bound
state of DO-branes with a D6-D6 pair containing worldvolume fluxes. Because of the worldvol-
ume fluxes, the deconstructed system has the same charges as the D4-D0 black hole we started
with. The deconstructed system is describing smooth and horizonless geometry only when it is
interpreted in five dimensions not in four dimensions, because D6-branes will be uplifted into
Kaluza-Klein monopoles of M-theory which are smooth and horizonless geometries.

In the regime where D0O-branes are treated as probes, it was claimed in [67] that the entropy
of the D4-D0 black hole could be obtained from the same Landau degeneracy found in [68]. A

similar discussion for black rings was done in [69]. However this analysis has not been extended
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to including backreaction of D0-branes. For a related discussion, see [70].

In the successive works of [71, 72, 26], the deconstructed D6-D6-DO0 system is directly quan-
tized in supergravity and the entropy was estimated. The conclusion of [26] was that the entropy
of D6-D6-DO0 system has the same order of the entropy of free supergraviton gas which is not
enough to explain the entropy of D4-D0 black hole.

In [27], they put supertubes on a D6-D6 background and calculated backreacted solutions
by constructing an explicit Green function. The solutions were interpreted as microstates of
five-dimensional three-charge black holes. Through the entropy enhancement mechanism [73],
they were able to obtain a large amount of entropy. However it also turned out that it is not
enough to explain the entropy of the black hole.

In conclusion, there has not been any satisfactory explanation of the entropy of the black

hole using codimension-3 harmonic solutions.

One missing possibility

The deconstruction of black holes we just mentioned can be seen as one explicit example of

more general hypothesis [74]:

Every supersymmetric four-dimensional black hole of finite area, preserving 4 super-
charges, can be split up into microstates made of primitive 1/2-BPS “atoms”, each
of which preserves 16 supercharges. In order to describe a bound state, these atoms

should consist of mutually non-local charges.

This was conjectured in the context of A/ = 8 supergravity, and it was extended to more
general situation, e.g., N’ = 2 supergravity, stating that “atoms” could include 1/4- or 1/8-BPS
horizonless states [15, Section 5.1].

One justification of including horizonless 1/4- and 1/8-BPS states into “atoms” can be
brought from [75]. According to [75], the value of the E77 invariant Q (2.1.25) determines
the amount of supersymmetry preserved by the system. For Q > 0, the system is describing
a 1/8-BPS black hole; a single-center black hole with @ < 0 is non-BPS; and if @ = 0 the
system preserves 1/8 or more supersymmetries, i.e., we could have 1/8-BPS, 1/4-BPS and 1/2-
BPS states. The supertube transition could be another justification as we explain in the next
section.

Therefore, we are able to have entropyless 1/4- and 1/8-BPS solutions and we should include
them into microstate solutions to explain the entropy correctly. In the later chapters, we will
focus on 1/4-BPS states and give some explicit realization of them in terms of supertubes which

are known to be a proper description of 1/4-BPS states.
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3.2 Codimension-2 sources are inevitable

In addition to codimension-3 sources, the harmonic solutions can also describe codimension-2
sources. Actually, codimension-2 sources are not an option but a must; codimension-3 sources are
insufficient because they can spontaneously polarize into codimension-2 sources by the supertube
transition [8]. The supertube transition is a spontaneous polarization phenomenon that a certain
pair of species of branes — specifically, any mutually local 1/4-BPS two-charge system —
undergo. In this transition, the original branes polarize into a new dipole charge, which has one
less codimension and extends along a closed curve transverse to the worldvolume of the original
branes. This new configuration represents a genuine BPS bound state of the two-charge system
[12, Section 3.1]. The supertube transition may seem similar to the Myers effect [76], but it
is different; the Myers effect takes place only in the presence of an external field, whereas the
supertube transition occurs spontaneously, by the dynamics of the system itself.

The system described by codimension-3 harmonic solutions involves various D-branes as we
saw in (2.2.5). These D-branes can undergo supertube transitions into codimension-2 branes,
which act as codimension-2 sources in the harmonic function. Therefore, codimension-2 solu-
tions are in the same moduli space of physical configurations as codimension-3 solutions, and
consequently must be considered if one wants to understand the physics of the D-brane system.

In particular, supertubes are known to be important for BPS microstate counting of black
holes because of the entropy enhancement phenomenon [73, 53, 26, 27]. So, the supertubes
realized as codimension-2 sources in the harmonic functions must play a crucial role in the
black hole microstate geometry program, as first argued in [35, 36]. The codimension-2 brane
produced by the supertube transition can generically be non-geometric, having non-geometric
U-duality twists around it.

A prototypical example of the supertube transition [8] can be represented as
DO+ F1(1) — d2(A1). (3.2.1)

This diagram means that the two-charge system of DO-branes and fundamental strings has
undergone a supertube transition and polarized into a D2-brane along an arbitrary closed curve
parametrized by A. The object on the right-hand side is written in lowercase to denote that it
is a dipole charge. In this case, as the D2 is along a closed curve, there is no net charge but
a D2 dipole charge. The original DO and F1 charges are dissolved into the D2 worldvolume as
magnetic and electric fluxes. The Poynting momentum due to the fluxes generates the centrifugal
force that prevents the arbitrary shape from collapsing.

Upon duality transformations of the process (3.2.1), other possible supertube transitions can
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be found. For example,

DO + D4(4567)  — nsH(A4567),
D4(4589) + D4(6789)  — 52(AB6T;89), (3.2
D2(45) + D2(67) —  ns5(M567),
D2(89)  + D6(456789) — 52(A56T;89).

This means that the ordinary branes on the left-hand side can polarize into codimension-2
branes, including the exotic branes such as the 52-brane.! Note in particular that the D-branes
appearing on the left-hand side are the ones that appear in the brane-harmonic function dictio-
nary (2.2.5). So, the dictionary is insufficient and must be extended to include codimension-2
branes that the codimension-3 D-branes can polarize into. Because we solved the BPS equations
and obtained harmonic solutions without specifying the co-dimensionality of the sources, the
codimension-2 supertubes on the right-hand side of (3.2.2) must be describable in terms of the
same harmonic solutions, just by allowing for codimension-2 singularities. The formulas for the

M-theory/ITA uplift also remain valid.

3.3 General remarks on codimension-2 solutions

For the codimension-3 case, we could show the direct connection between the presence of delta-
function sources on the right-hand side of (2.1.20) and the existence of CTCs. We can follow
the same line of logic for the codimension-2 case, but the conclusion is that there is no such
direct connection.

In (2.2.3), we had an integral over a small ball Bs containing a point where there is a possible
delta function. In the codimension-2 case, delta-function singularities are expected to be along
a curve on which a source lies, and there is a Dirac-Misner “sheet” ending on that curve. Let
us consider an integral over a very thin filled tube T3 containing a piece of such a curve. Now
we rewrite the integral as we did in (2.2.4). Instead of S? = 9B, we have a cylinder C? = 973,
where we can ignore the top and bottom bases for a very thin tube. As the boundary of the
cylinder, dC?, we take two lines that go along the curve in opposite directions. The Dirac-
Misner sheet goes between the two lines. Then the integral is basically equal to the jump across
the Dirac-Miner sheet in the component of w along the curve. Let us denote it by Aw). Then,
the integral is equal to [Aw), where [ is the length of the tube. On the other hand, the same
integral is equal to lo, where o is the local density of the delta-function source along the curve.
Equating the two, we obtain

Aw =o. (3.3.1)

'For a review on exotic branes and a further analysis of supertube transitions involving them, see [36]. We

also briefly discuss them in section 4.1.
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Namely, the jump in w along the curve is given by the density of delta-function sources.

However, this does not give the behavior of w itself, which is necessary for evaluating (2.1.29)
and study the presence of CTCs. So, the argument that worked for codimension 3 does not
apply to codimension 2. It must be some other singular behavior of the harmonic functions, not
just the delta-function source, that one must study to investigate the no-CTC condition. We
do not pursue that in this thesis. Instead, we will study (2.1.29) for specific explicit metrics in
the presence of codimension-2 sources.

Although we have only discussed sources with codimension 3 and 2, it is also possible to
consider sources with codimension 1. Such a source represents a domain wall that connects
spaces with different values of spacetime-filling fluxes, just like a D8-brane in 10D connects
spacetimes with different values of the RR flux 10-form. Including codimension-1 sources should
lead to a wide range of physical configurations which have been little studied. It would be very
interesting to include them in the harmonic solutions and explore the physical implications of

solutions with codimension 3, 2, and 1 sources.
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Chapter 4

Abelian codimension-2 solutions

In this chapter, we give some explicit example of Abelian codimension-2 solutions and discuss
them in the context of microstate geometry program. All the material of this chapter is based
on [65].

The plan of the chapter is as follows. In section 4.1, we present some example solutions
with codimension-2 source in the harmonic functions. The examples include supertubes with
standard and exotic dipole charges and, in the latter case, the spacetime is non-geometric. In
section 4.2, we give an example in which codimension-3 source and codimension-2 one coexist.
We conclude in section 4.3 with remarks on the fuzzball conjecture and the microstate geometry
program. The appendices explain our convention and some detail of the computations in the

main text.

4.1 Examples of Abelian codimension-2 solutions

In section 2.3, we have motivated codimension-2 solutions and presented simplest examples
of them — straight supertubes. In this section, we consider more “realistic” codimension-2

solutions that should serve as building blocks for constructing more general solutions.

4.1.1 1-dipole solutions

We begin with the case of a pair of D-branes puffing up into a supertube with one new dipole
charge, such as (1.2) and (1.3) presented in the introduction. The supergravity solution for such
1-dipole supertubes can be obtained by dualizing the known solutions describing supertubes,
such as the one in [54].! In that sense, the solutions presented here are not new. However, they
have not been discussed in the context of the harmonic solutions and harmonic functions as we

do here.

'See, e.g., [6, 36] for details of such dualization procedures.
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D2(67) 4+ D2(45) — ns5(A4567)

As just mentioned, the supergravity solution for the D2 + D2 — ns5 supertube (1.2) can be
obtained by dualizing known solutions, and we can read off from it the harmonic functions using

the relations in the previous section. Explicitly, the harmonic functions are

V=1, K'=0, K?*=0, K’=4,

(4.1.1)
Here, the harmonic functions f; and fs are given by
Qu [t Q1 [F |F(\)[2dA
fl:H/ [x —F(\)[’ f2:1+/ e (4.1.2)
L Jo [x=F() L Jo [x—FO)

where x = F()) is the profile of the supertube in R? and satisfies F(A+L) = F(\). The functions
f1 and fy represent the D2(67) and D2(45) charges, respectively, dissolved in the codimension-2
worldvolume of the ns5 supertube. @7 is the D2(67) charge, while the D2(45) charge is given
by

Q1 [F Sy (2
Qo = T dX\|F(\)]~. (4.1.3)
0
The charges 1, Q)2 are related to the quantized D-brane numbers Ny, No by
gsl3 gsl3 2mgsl3

— N — L = N . 4.1.4
O = SRR Rk 2T SRR AR R4Rs ' (4.14)
where R;, i = 4,...,9 are the radii of the z* directions. We have also written down the expression

for L, the periodicity of the profile function F()\), in terms of other quantities.?

The function v is defined via the differential equation
do = *3dy (4.1.5)

where « is a one-form in R3 given by (see appendix 4.A)

Q" E()ax
;= L/o X—FO| (4.1.6)

It is easy to see from (4.1.5) that v is harmonic: A~y = x3d %3 dy = x3d’c = 0. Note that,
even though « is single-valued, the function 7 defined via the differential equation (4.1.5) is
multi-valued and has a monodromy as we go along a closed circle ¢ that links with the profile;
see figure 4.1(a). The monodromy of v can be computed by integrating dv along ¢, which can

be homotopically deformed to a very small circle near some point on the profile, and is equal to

4
/d’y: /*3da = 7}?1. (4.1.7)
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Figure 4.1: (a) The function v has a monodromy as one goes around the cycle ¢ that links
with the profile. (b) The integral region in (4.1.9). The contribution from the top and bottom
surfaces of the tube is negligible if the tube is very thin.

The integrability condition (2.1.20) requires
1
VAM — MAV + 5 (K'AL; — LIAK") = —Ay = 0. (4.1.8)

Superficially, this is satisfied because v is harmonic. However, one must be careful because « is
singular along the profile and may have delta-function source there (as is the case for Ly ). We
can show that it actually does not even have delta-function source as follows. If we integrate

A~ over a small tubular volume V' containing the profile x = F(\), we get

/d?’x Afy:/ d*3d’}/:/ *3d’y:/ da:/ a=0, (4.1.9)
v v ov ov 92V

where the last equality holds because « is single-valued. See figure 4.1(b) for explanation of
the integral region. Therefore, Ay in (4.1.8) vanishes everywhere, even on the profile, and the
integrability condition is satisfied for any profile F(\).

From harmonic functions (4.1.1), we can read off various functions and forms that appear

in the full solution:
(Z1,22,Z5) = (far f1,1), (£4,6%,€%) =(0,0,—a), p=0, w=—a (4.1.10)

The existence of w is guaranteed by the integrability condition. Substituting this data into
(2.1.24), we obtain the type ITA fields:

dsty = —(fufo)"V2(dt — @) + (fifo)Pdatda’ + (fif2)"? (fy dads + fi gy + dag)
€2<I> — (f1f2)1/2,
By =y da® A da?,
C1 =0,
O3 = —fy Hdt — o) Adx* Ada® — f7H(dt — ) Ada® A da”,
(4.1.11)

2In the F1-P system, L corresponds to the length of the fundamental string. For the expressions of L in

different duality frames, see references in footnote 1.
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where we have dropped some total derivative terms in the RR potentials. Since fi, fo — 1 as
|x| — oo, the spacetime is asymptotically R x T6. Multi-valuedness is restricted to the B-field
and the metric is single-valued; namely, this solution is geometric.

One can show that the solution (4.1.11) has the expected monopole charge; it has monopole
charge for D2(67) and D2(45) but not for NS5 (we show this for more general solutions in the
next subsection). The dipole charge for NS5 is easier to see in the monodromy of the Kéhler

moduli, as we discussed around (2.3.3), and their values are

R4R5 | f1 ReR7 [ f2 3 RgRy _
1 _ 2 _ 3 _
T =i rx TN =i X T = 2 (fy+z\/f1f2> . (4.1.12)

S S

71 and 72 are single-valued while, as we can see from (4.1.7), 73 has the following monodromy

as we go around the supertube along cycle c:
=74, (4.1.13)

where we used (4.1.4) and (4.1.7). This is the correct monodromy around an NS5-brane. So,
this solution has the expected monopole and dipole charge.

Although we have derived the harmonic functions (4.1.1) by dualizing known solutions, we
can also derive it by requiring that they represent the charge and dipole charge expected of the
supertube (1.2) as follows. First, no D6-brane means V' = 1 and no D0-brane means p = 0.
Then (2.1.24) implies that, in order to have an NS5-brane along the profile F()), the harmonic
function K = v must have the monodromy (4.1.7). As we show in appendix 4.A, this means
that v must be given in terms of « via (4.1.5) and (4.1.6). Next, to account for the D2 charges
dissolved in the NS5 worldvolume, we need Li, Ly given in (4.1.1) and (4.1.2).

Note that, if we lift the supertube (1.2) to M-theory, we have

M2(67) + M2(45) — m5(A4567). (4.1.14)

Therefore, our solution simply corresponds to the 4D version of Bena and Warner’s solution in
[22]. The difference is that they were discussing 5D solutions with general supertube shapes,
while we are focusing on solutions which has an isometry and can be reduced to 4D. Because

of that, we can be more explicit in the solution in terms of harmonic functions.

D2(89) + D6(456789) — 52(\4567; 89)

The second example is the D2+ D6 — 52 supertube (1.3), which can be obtained by taking the
T-dual of the above solution (4.1.11) along 6789 directions. Involving the exotic 53-brane, this

is a non-geometric supertube where the metric becomes multi-valued.?

3The metric for an exotic non-geometric supertube (D4 + D4 — 53) was first discussed in [35, 36].
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Harmonic functions which describe this supertube (1.3) are

V:f27 K1:77 K2:,Y7 KB:O:

(4.1.15)
Li=1, Ly=1, Ls=fi, M =0.
The charges appearing in harmonic functions are related to brane numbers by
gslg gsls 27Tgslz
=——2 Ny, = No, L= Ni. 4.1.16
O RiRsReR, 2Ty R4RsRR7RsRy ' (4.1.16)

As we can easily check, the integrability condition (2.1.20) is trivially satisfied. The various

functions and forms are
(ZlaZZaZ3) — (1717f1F)7 (51552353) = (—a,—a,O), M:f§17a w = —a. (4117)
The ITA fields are given by

sty = —(fifo) " V2(dt — a)* + (frfo)2da’da’ + (fi) f2)'/? (dalsgr + fr F~ldady)
2% — f11/2f2—3/2F—1’

Y 8 9
By = — dz® Nd
2T T R N (4.1.18)
C1 = Ba — fi 'y (dt — ),
1 g
Cy = ———(dt — a) Ndz® A dz® — —— By A daz® A da?,
’ le( ) JifoF &
where we defined )
~y
F=14+—. 4.1.19
fifo ( )

We have dropped some total derivative terms in the RR potentials. Since fi, fo — 1 as |x| — oo,
the spacetime is asymptotically R'3 x T6. However, because the multi-valued function + enters
the metric, this spacetime is non-geometric. Every time one goes through the supertube, one
goes to different spacetime with different radii for T35, although it is related to the original one
by T-duality.

It is not difficult to show that the solution (4.1.18) carries the expected monopole charge for
D2(89) and D6(456789), and not for other charges. To see the 53 dipole charge, let us look at
the Kahler moduli which are

R4R5 | f1 Re¢R7 | f1 RgRy Y 1
=i —, 2= —, = — +1 . 4.1.20
12 p) 12 f2 12 fifoF /fifoF ( )

If we define

2

13— i _ ls :
R R (’y—l—z\/flfg), (4.1.21)

the monodromy around the supertube is simply

P, (4.1.22)
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where we used (4.1.7) and (4.1.16). This is the correct monodromy for the 53-brane.
Although one sees that the RR potentials are also multi-valued in (4.1.18), this does not
mean that we have further monopole or dipole charges. We will see this in a different example

in subsection 4.1.2.

Other duality frames

One can also consider supertube transitions in other duality frames, such as
D0 4 D4(4567) — ns5(A\4567) (4.1.23)

or

D4(6789) + D4(4589) — 53(\4567,89). (4.1.24)

The latter transition (4.1.24) was studied in [35, 36]. The configuration on the left-hand side of
(4.1.23) and (4.1.24) are not in the timelike class but in the null class [77, 21|, and their analysis

requires a different 5D ansatz from the one we used above.

4.1.2 2-dipole solutions
A naive attempt

In the above, we demonstrated how the codimension-2 solution with one dipole charge fits into
the harmonic solution. The next step is to combine two such solutions so that there are two
different types of dipole charge. For example, can we construct a solution in which the supertube

transition (1.2) happens simultaneously for two different D2-D2 pairs? For example, consider

D2(45) + D2(89) — ns5(M\4589)

. (4.1.25)
D2(67) + D2(89) — ns5(\6789)

How can we construct harmonic functions corresponding to this configuration? For codimen-
sion-3 solutions (2.2.1), having multiple centers was achieved just by summing the harmonic
functions for each individual center. So, a naive guess is to simply sum the harmonic functions
for each individual supertube, as follows:*

V=1 K'=+, K*=vy, K’=0,

N (4.1.26)

Li=fi, La=f, Ls=f+f =Ty

However, this does not work; as one can easily check, the integrability condition (2.1.20) is not
generally satisfied for this ansatz (4.1.26). The two dipoles talk to each other and we must

appropriately modify the harmonic functions to construct a genuine solution.

“This was obtained by permuting K, L; of (4.1.1) and also by a suitable reparametrization of A in f{, f3.

25



A non-trivial 2-dipole solution

So, the above naive attempt does not work and we must take a different route to find a 2-dipole
solution. Here, we use the superthread (or supersheet) solution of [78] to construct one. The
superthread solution describes a system of D1 and D5-branes with traveling waves on them, and

corresponds to the following simultaneous supertube transitions:

D1(5) + P(B) — di())

. (4.1.27)
D5(56789) + P(5) — d5(\6789)

The left-hand side of (4.1.27) can be thought of as the constituents of the three-charge black hole.
This is not just a trivial superposition of D1-P and D5-P supertubes, since the two supertubes
interact with each other.

The superthread solution was originally obtained as a BPS solution in 6D supergravity. The
BPS equations in 6D have a linear structure [29] which descends to that of the 5D equations
(2.1.4) and facilitates the construction of explicit solutions. The 6D BPS equations involve a
lightlike coordinate v and a 4-dimensional base space which is flat R* for the superthreads. We
use x = (z!, 22,23, 2%) for the coordinates of R*. The superthread solution is characterized by
profile functions F,(v), which describe the fluctuation of the D1 and D5-brane worldvolume. The
index p=1,--- ,n labels different threads of the D1-D5 supertubes. We review the superthread
solution in appendix 4.B.

If we smear the superthread solution along z* and v directions, it describes the D1-D5-P
supertube (4.1.27) extending along the R3,, directions and can be connected to the harmonic
solutions discussed in section 2.1. After duality transformations,® the resulting solution can be
regarded as describing precisely the 2-dipole configuration (4.1.25). More precisely, the final
configuration is as follows. We have n supertubes labeled by p = 1,...,n and the p-th tube
has the profile x = F,()\,) € R3, where Ap parametrizes the profile and the function F, has the
periodicity Fp,(\p + L) = F,(),). The p-th tube carries the D2(45), D2(67), D2(89) monopole
charges Qp1, @p2, Qp3 respectively, as well as ns5 dipole charges displayed in (4.1.25).

5Specifically, to go from (4.1.27) to (4.1.25), we can take Tise7, S, then Ty duality transformations and rename
coordinates as 456789 — 894567, so that D1(5), D5(56789), P(5) charges map into D2(45), D2(67), D2(89)

charges, respectively.
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Explicitly, the harmonic functions describing the 2-dipole configuration (4.1.25) are
V=1, Kl=ry K?’=v, K3=0, (4.1.28a)

1
LI=1+ZQM/R:ZI, I=1,2, (4.1.28D)
P PP
_ Pp
L3—1+Z/
PRP

+§3qu//

Eka paiBpj Rak | 2
E —(K"L K*L 4.1.28d
qu// FpqRyRy(Fpy + Ry + Ry) — (B L1+ K7Ly ( )

Fpinj(RpiR(Ij — Ry Ryi)
o, R FogRpRy(Fpg + Ry + Ry)

- K'K?, (4.1.28¢)

where we defined

Ry(Ap) =x = Fy(Ny), Fpg(Ap: Ag) = Fp(Ap) — Fy(Ag),

(4.1.29)
Ry = Ry, Fpq = [Fpgl, Qpg = Qp1Qq2 + @p2Qq1-
Also, for integrals along the supertubes, we defined
/ -1 / ", / / _ [ (4.1.30)
p LpJo pa  Lolq Jo

and the dependence on the parameter A, in (4.1.28) has been suppressed. The quantity p,(),)
in (4.1.28¢) is an arbitrary function corresponding to the D2(89) density along the p-th tube. A
similar density could be introduced for M in (4.1.28d), but it had been ruled out by a no-CTC

(closed timelike curve) analysis in [78] and was not included here. The scalars 7y satisfy

F -d
d’}/] = *3d04[, ay = ZQpI/ x I= 1; 27 (4131)

generalizing (4.1.5), (4.1.6). Furthermore, the one-form w is given by

w = wo + w1 + wa, (4.1.32&)
F, - dx 1 F, - dx
p p

wo = + w1 = = 4.1.32b
0 Z(Qpl sz)/ R, 1 2%{}:@@1 //pg R,R, ( )

1 , RyiRyi — RpiRy; ;
Zqu// pa! <—> da’ — 2P0 TPITA i | (4.1.32¢)

Rq RPR(](FPQ + Rp + RQ)

5For example, the first term in the second line of (4.1.28c) means > pa=1 LQ’E‘Q fOLp dX\p fL“ d)\q%
Note that, even for p = ¢, the integral is two-dimensional; namely, the summand for p = ¢ is

Q L L ; FpOp) Fp(Ay)
Lp2p o dAp f pd’\ngp(:p)R;(A/y
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The charges Qpr, @p3 and the profile length L, are related to quantized numbers by’

15 15
@p1 = 9R¢R7RsRo @p2 = 9R,RsRsRo (4.1.33)
1 2mgsl3 o
_ 9 N L N,.
Qs R RsReR, ™% P~ RuRs

It is interesting to compare the above harmonic functions (4.1.28) with the naive guess
(4.1.26). The naive V, K', K2, K3, Ly, Ly were correct, but L3, M needed correction terms pro-
portional to @, to be a genuine solution. Since )},4 involves the product of two types of charge
(D2(45) and D2(67)) and represents interaction between two different dipoles.

It is not immediately obvious that Lz and M in (4.1.28) are harmonic on R3. One can show

that their Laplacian is given by

AL3z = —47TZ/pp 53(X —Fp) - 47TZQP!1 // % 53(X —Fp), (4.1.34)
p 7P P pg P

AM =~ KIAL =27 Qu [ K'(F,) 8(x~ F,). (4.1.35)
p p

Namely, L3 and M are harmonic up to delta-function source along the profile. In deriving these,

we used the following relations:

A [ RpquJ RPJ qu ] _ Rpquj - Rpj qu
FpqRyRy(Fpq + Ry + Ry) R3R3 ’

/pRi}a;ng = /p%(;p) =0, A<|i|> = —4m5*(x). (4.1.37)

With the relations (4.1.34) and (4.1.35), it is straightforward to show that the integrability

(4.1.36)

condition (2.1.20) is identically satisfied for any profile.
The harmonic functions L3, M in (4.1.28) are multi-valued, because K', K? are. However,

the quantities that actually enter the 10D metric (2.1.24) are single-valued. Indeed,
E piF ai (BpiRgj — Rpj Ryi)

p
Z3—1+Z/p+Zqu// 2RR " FypgRyRy(Fpy + Ry + Ry)

EleF pgiLtpj Rak
4.1.38b
Zqu// PRy By(Fpg + By + Ry) (4.1.35b)

So, the metric is single-valued and the spacetime is geometric. This is as it should be because

(4.1.38a)

the configuration (4.1.25) does not contain any non-geometric exotic branes.

"The p-th tube has equal D2(45) and D2(67) numbers by construction. It is also possible for the p-th tube to
carry only the D2(45) (or D2(67)) charge. In that case, Qp2 = 0 (resp. Qp1 = 0) and Qp1 (Qp2) is still given by
(4.1.33).
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Single/multi-valuedness and physical condition

It is instructive to see how these multi-valued harmonic functions come about in solving the
BPS equations as reviewed in section 2.1. Assume that we are given V, K' of (4.1.28a) (which
corresponds to having specific ns5-brane dipole charges and no D6-brane), and consider finding
L;, M or equivalently Z;, u from the BPS equations. To find Z7, we must solve (2.1.12). For
I = 1,2, this gives a simple Laplace equation for L, Ly, whose solution is (4.1.28b). On the
other hand, the equation (2.1.12) for Z3 reads

AZg = A(KlKQ) = 20,;[(18@}(2 = 2(61'041]'8@'0423‘ — 810&1]'(%0621). (4.1.39)

Although K12 are multi-valued, the last expression in (4.1.39) is a single-valued. Therefore, it

11
4 |x—x'|’

is possible to solve this Poisson equation for Z3 using the standard Green function —
and the result will be automatically single-valued. The above solution (4.1.38a) corresponds
to this solution. This is physically the correct solution in the current situation where we only
have standard (D2 and NS5) branes and the metric must be single-valued. Alternatively, we
can solve (4.1.39) in terms of a multi-valued function. If we rewrite (4.1.39) as ALz = 0
with Ly = Z3 — K'K?, then Ly = 1+ Jo(ow/Ry) = L3 is a possible solution. This is
the direct analogue of what we did for the codimension-3 solution. This gives a multi-valued
Zs=L3+ K\ K? = Z§1t and hence a multi-valued metric, which is physically unacceptable.
One may find it strange that there are two different solutions, Z3 of (4.1.38a) and Z&'t, to
the same Poisson equation (4.1.39). However, the solution to the Poisson equation is unique
given the boundary condition at infinity. The two solutions have different boundary conditions
(a single-valued one for the Z3 of (4.1.38a) and a multi-valued one for Zi!') and there is no
contradiction that they are both solutions to the same Poisson equation. The BPS equations

such as (4.1.39) must be solved taking into account the physical situation one is considering.

The p equation (2.1.15) is
1
Ap=SAK Ly) = 0K 0,21 = eisplers|0500k0: 21 (4.1.40)

Again, we have two options. The first one is to use the standard single-valued Green function
to the last expression to obtain the single-valued p as given in (4.1.38b). The second one is to
rewrite the above as AM =0, M = j— (1/2)K'L; and say that M is single-valued. This gives

multi-valued p and is inappropriate for the current situation.

Closed timelike curves

It is known that near an over-rotating supertube there can be closed timelike curves (CTCs)

which must be avoided in physically acceptable solutions [54, 78]. The dangerous direction for
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the CTCs is known to be along the supertube, which is inside R®. By setting dt = d¢) = 0 in

the metric (2.1.1), the line element inside R? is
di? = —Z72B(uA +w)? + ZV3 (V1A% 4 Vdx?). (4.1.41)
In the present case, we have V =1 and A = 0, and therefore the line element becomes
di? = 27283 (—w? + zdx?), (4.1.42)

where w is given by (4.1.32).
In the near-tube limit in which we approach a particular point Fp()\g) on the p-th curve,
where )\g is the value of the parameter corresponding to that point, the functions Z; 23 can be

expanded as
Zr=QpuR+1+c1+0(ry), I=1,2, (4.1.43a)
s = (QpleR +d; + O(rl)) (QPQFPR +dy + O(u)) + op(ADR +c34+1+O(ry)
= QpQulE,'R? + [ pp(A) + (Qprddz + Qpad) - Fyp| R+ const. + O(r1).  (4.1.43b)
Here, F, = Fp()\g) and R is defined as

2 2IF
R=—In | p|
1% rL

(4.1.44)

where 7 is the transverse distance in R? from the point Fp(/\g) on the tube. The constants

cr=1,2,3 and dr—1 2 are defined in appendix 4.C. Similarly, wp 12 are expanded as

wo = (Qp1 + Qp2) (Fp ) dx) R+ (dy +d2) - dx +O(rp), (4.1.45a)
w1 = Qp1Qp2 (Fp : dX) R* + % |:Qp1 (dz + Csz) + Qp2 (d1 + Cle):| ~dx 4+ O(rp),
(4.1.45Db)
R F,(\) —F,(\,)) -dx
wa = 5 Z qu/d)\p ( prf)\O) _qu?)\ZH + O(TL). (4145(3)
y

q(#p)

By plugging in the above expressions, the line element (4.1.42) becomes

. ' . 2
Z*PBd? = (QplQp2)2R4|Fp’2 (dX2 - |F|pF c\i;d )
p

+ (QnQp)R? | pp(Ny)dx” + (|Fp‘2dx2 —2/F, - dXIQ) (Qp1 (1 +c2) + Qpz2 (1 +¢1))

+Fp - (Qpuda + Qpedy) dx*| + O(R?). (4.1.46)
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For displacement along the tube, dx o< F,, the leading O(R*) term vanishes and the O(R?)
term gives the leading contribution. If the coefficient of the O(R?) term is negative for all
)\g € [0, L], the cycle along the tube will be a CTC. Conversely, for the absence of CTCs, there

must be some value of )\2 for which the following inequality is satisfied:
pp(AD) = Qpr (B, 21+ c2) = By da) + Qpz ([P (1 4+ c1) ~ By - ). (4.1.47)
This can be written more explicitly, using (4.C.11) and (4.C.15), as

. Fp(09) - (Fp(AD) = Fql(Ap)
pp(Ap) > Fp(Ag)IZ(Qleerz)Jrq(%) Q,,q/dAp ! |Fp(<AgZ))—Fq(>\p()I| ! ) (4.1.48)

This is analogous to the no-CTC condition for the superthread solution ((2.34) in [78]).

Charge and angular momentum

Let us study if the solution above has the expected monopole and dipole charges. In the
presence of Chern-Simons interaction, there are multiple notions of charge [79], and here we
choose Page charge, which is conserved, localized, quantized, and gauge-invariant under small
gauge transformations. Specifically, the Dp-brane Page charge is defined as [79, 36] (see also
appendices A and A.1)

1 1
e T — ~Ba2 (0, 41.4
QDp (27715)7_]398 /MS—P ¢ ¢ (277l5)7_pgs /6M8—p ¢ ¢ ( 9)

Here, M®~P is an (8 — p)-manifold enclosing the Dp-brane, and G = > Gp+1, C =3, Cp with
p odd (even) for type ITA (IIB). In the integrand, we must take the part with the appropriate
rank from the polyforms e=52G, e~ P2C. In the second equality, we used the relation (A.4)
between G and C.

Using the definition above, we can readily calculate Page charges for this 2-dipole solution.

For example, the D4(6789)-brane charge, which is expected to vanish, is given by
1 1
Page _ —B2y — —B2
Cpaiers0) = @l )0 /52><T425 ° (2711)395 /852@, ¢

RyRs / 1 Ve (K' p )
_ _ (B 4.1.50
2113gs Jos2 { [ 2 zove\v T z)|ete g (4.1.50)

where in the last equality we used (A.4). If the surface S? is at infinity enclosing the entire

profile, then the function in the [- - - | above is single-valued. Also, the requirement of integrability
(2.1.20) guarantees that w is also single-valued. Therefore, the entire first term in the integrand
is single-valued and does not contribute to the integral on 52. The only contribution comes

from the second term, &;. Thus we find

RuR RiR R4R
Page _ TuRs 1 _ ftalts del — _ 1t dK*. 4.1.51
D4(6789) — 97[34, /8525 2713 g /Sz ¢ 2ml3g, /52 " ( )
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The integral is equal to —47 times the coefficient of 1/r in the large r expansion of K*. However,

= O(1/r?) and hence K! = 75 = O(1/r?) and the coefficient of the 1/r term vanishes. So,

Page
D4(6789

the coefficient of the 1/r in the large r expansion of the corresponding harmonic function (see

we conclude that @ )y = 0, as expected. Similarly, other Page charges are related to

appendix A.1 for the expressions for necessary RR potentials to compute the Page charge). We

find that the non-vanishing charges are
Page Page
D2(45) — %D2(67) Z (4.1.52)
P
ng§9) ZNP37 Qps = /Ppa (4.1.53)
p

where we used (4.1.33).
It is easy to check that we have appropriate monodromy for ns5(A4567) and ns5(A6780).
The real part of 712 contain K12 (2.1.27) and others are all single-valued. Then we can apply

same argument as (4.1.7). So we obtain
e N (4.1.54)
as we go around each tubes. This is proper monodromy for our system.

The angular momentum can be read off from the ADM formula [80)]

1 2 J7
P = ey = 2G4 4155
o V(Z-V2) HxP? (:1:59)

where G4 is 4-dimensional Newton constant. By expanding g4 to the leading order, we obtain

.’E] . 1 F i F i 1
— gt = =P (;(Qpl + Qzﬂ)/p i T ZQM // - p‘” e ) o (‘X’?’>

(4.1.56)

where we used
1 1 x-F,

1
=++O<). 4.1.57
RN P PR (4.1.57)

Therefore the angular momentum of the 2-dipole solution is

i EouiFogi — FogiFogi
Jit — 42}4 (Z(Qpl +Qp2)/( iFyi — EyiF Zqu/ pq qu pajt'pq ) ‘

(4.1.58)

The second term represents the contribution from the interaction between supertubes.
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4.1.3 3-dipole solutions

We can also consider a 3-dipole configuration as an extension of the 2-dipole configuration
(4.1.25) such as
D2(45) + D2(89) — nsbH(A4589)
D2(67) + D2(89) — mns5(A\6789) . (4.1.59)
D2(45) + D2(67) — nsb(A4567)
Because there is no D6-brane, we have V' = 1. How can we find the rest of harmonic functions
for this 3-dipole configuration, generalizing the 2-dipole solution?
First, it is natural to guess that the 3-dipole solution has the dipole sources in all K =123

generalizing the 2-dipole case where K/=12 had dipole sources. Namely,

¥, d
ol = Zsz/ X dK! =ssda!,  T1=1,23. (4.1.60)

Note that the next layer of equation (2.1.12) to determine Z; is quadratic in XK' and therefore
knows only about 2-dipole interactions. So, we can construct Z; the same way as in the 2-dipole

case, as follows:

Zz—l—I—ZQpI//;Z
‘i‘CIJKZQpJQqK //

where I = 1,2,3 and the same shorthand notation (4.1.29) is used. Finally, the last layer of

.. (4.1.61)
F piF qJ (Rm'qu - Rpj qu)

2R R FPQRPR(I(FPQ + RP + Rq)

equation (2.1.15) to determine p is
A,u = @ZjalKI = €ijk8iZ]aj0[£. (4162)

Because Z; involves 2-dipole interactions, p involves 3-dipole interactions. Although we have
not been able to solve this in terms of integrals along the tubes as in the 2-dipole case (cf.
(4.1.38b)), we know physically that the solution must be single-valued and therefore we can
solve it by using the standard single-valued Green function. Namely, the solution is

- —/d3  DiZ10KT () (4.1.63)

|x — x|

In order to satisfy the integrability condition (2.1.20), we have no option of adding to this a
term like ), fp op/ R, with an arbitrary function oy, as we did in the second term of (4.1.38a).
In the present case, with V = 1, AKT = 0, the integrability condition (2.1.20) becomes

0=VAM — MAV + (KIALI — LiAKT)

=AM + %KIALI = Ap— 0;Z19; K, (4.1.64)
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where in the last equality we used (2.1.13), (2.1.16). This is nothing but (4.1.62). If we added
the term fp op/Rp to the p in (4.1.63), then the integrability condition would be violated
by a delta-function term. This is why we do not have an option of adding such a term. This
also explains as a corollary why we do not have a term like Zp fp op/Rp in the 2-dipole p in
(4.1.38b).%

Although it is not as explicit as the 2-dipole case, (4.1.63) gives the interacting 3-dipole

solution in principle.

4.2 Mixed configurations

Thus far, we have studied the harmonic solution with codimension-2 centers. In this section,
we present a simple example in which codimension-3 and codimension-2 centers coexist.
As the simplest codimension-2 center, let us consider the 1-dipole configuration with the

harmonic functions (4.1.1),

V:L K1:07 K2:O7 K3:77
~ (4.2.1)
Li=1+fy Ly=1+f, Ly=1, M=-5,
where we have extracted “1” as compared from (4.1.2) and
L L T, 2

dA F(\)[2dA
fl 2621/ T o/ f?zczl/ %7 (422)

L Jo x—=FQ) L Jo x—=FQ)

while 7 is still given by (4.1.5) and (4.1.6).
We would like to add to this a codimension-3 source of the type (2.2.1). Here, let us simply

add a codimension-3 singularity to (4.2.1) as follows:

V= no + ;7
k! k2 K3
K'=kj+—, K? =ki+—, K3 =k +~+—,
r ; r ; ; r (4.2.3)
Li=R+fot— Le=B+h+2 Ls=B+,
M = mo — l + m
2 r
For these harmonic functions, the integrability condition (2.1.20) becomes
1 1
0= —4n6(x) [nom — mon + §(k{)l[ — 19T — 5 (klfg(x =0)+Ek*fi(x = 0))]
=21y d(x)(n+13)
1 k? k!
+3 [(kg + T) Afy + (k:}, + 7«> Afg} . (4.2.4)

8In the context of the supersheet solution [78], (the 6D version of) this was explained from the no-CTC

condition.
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The three lines on the right-hand side are of different nature and must vanish separately. So,

F\) 2+ k2

o—nm—mn+1(kfz —z%f)—lQ/LdAkl| (4.2.5a)
- 0T o 2L Jq FO) -
2 § v 2 1 kl
0=Fki+ + |F(N)| (k + ) for each value of \. (4.2.5¢)
"R C RO

The first equation (4.2.5a) says that the total force exerted by the tube on the r = 0 brane
must vanish. This is a single equation and easy to satisfy. The second equation is also easy to
satisfy. On the other hand, the third equation (4.2.5¢) says that the force exerted by the r =0
brane on every point of the tube must vanish, and gives the most stringent condition. Let us
investigate this last condition in detail.

Note that, if the asymptotic moduli k:(l), k(Q) vanished, then the distance between the tube and

the codimension-3 brane, |F()\)|, would disappear from the condition (4.2.5¢), and we have
0=Fk>+ [FO\) kL (4.2.6)

Because |[F())|? is the ratio of the D2(67) and D2(45) charge densities carried by the tube while
k', k% are the D4(6789), D4(4589) charges of the r = 0 brane, (4.2.6) would mean that the tube
must have, at every point along it, charge density that would be mutually supersymmetric with
the 7 = 0 brane in flat space. This can of course happen only if the total charge of the tube
is mutually supersymmetric with the » = 0 brane. In this case, the distance between the two
objects is arbitrary, implying that they are not bound.

On the other hand, if the asymptotic moduli k}, k3 are non-vanishing, the tube does not
have charge density that would be mutually BPS with the r = 0 brane in flat space, and the
configuration represents a true bound state. The condition (4.2.5¢) gives
K3F(N)| + k2

FOR = Ry

(4.2.7)

Because F()\) is a vector with three components, this differential equation leaves the orientation
of F()\) undetermined. Therefore, the tube profile can wiggle depending on two functions of
one variable. We expect that this remains true for more general configurations with both
codimension-2 and codimension-3 centers: each codimension-2 center has a profile depending
on two functions of one variable, so that the force from other centers vanishes at each point

along the tube.

4.3 Discussion

In this chapter, we studied the BPS configurations of the brane system in string theory in the

framework of 5D supergravity. In the literature, multi-center configurations of codimension-
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3 branes have been extensively studied. However, we pointed out that these codimension-3
branes can polarize into codimension-2 ones by the supertube effect and hence multi-center
configurations involving codimension-2 branes along arbitrary curves must also be included if
we want to capture the full configuration space of the system. Codimension-2 branes can be
exotic, and the solution containing them can represent non-geometric spacetime.

Therefore, the most general configuration is a multi-center configuration including both
codimension-3 branes and codimension-2 ones. In the framework of the harmonic solution,
such configurations are described by harmonic functions with codimension-3 and codimension-2
singularities in R3. In this chapter, we provided some simple examples of such solutions, hoping
that they serve as a guide for constructing general solutions.

The solutions with codimension-2 centers have various possible applications and implications,
some of them already mentioned in the introduction. Here let us discuss their relevance to the
fuzzball proposal for black holes [12, 13, 14, 15, 16] and the microstate geometry program.

Smooth harmonic solutions with codimension-3 centers have been put forward as possible
microstates for the three- and four-charge black holes [24, 25]. However, the entropy represented
by these solutions have been estimated [26, 27] to be parametrically smaller than the entropy
of the corresponding black hole. In particular, for the three-charge black hole, [27] considered
placing a probe supertube in the scaling geometry [81, 82] and estimated the associated entropy
to be ~ Q°/* whereas the desired black hole entropy is ~ Q3/2, where Q ~ Q1,23 is the charge of
the black hole. In our setup, a supertube in a scaling geometry corresponds to a configuration
with codimension-3 centers as well as a codimension-2 one. It may be possible to make their
estimate more precise by including backreaction using our setup.

Another issue with identifying smooth harmonic solutions with codimension-3 centers with
black hole microstates concerns the pure Higgs branch. Ref. [83] (see also [84]) studied quiver
quantum mechanics describing 3-center solutions and showed that most entropy of the system
comes from zero-angular momentum states in what they call the pure Higgs branch. On the other
hand, the multi-center solutions with codimension-3 centers are naturally identified with states
in the Coulomb branch of the quiver quantum mechanics. This is because the codimension-3
solutions are characterized by the position of the centers, which corresponds to the adjoint vev
in the quiver quantum mechanics. Therefore, these solutions do not seem to correspond to
typical microstates of the system. In contrast, a codimension-2 center has a finite-sized profile,
as a result of two branes getting bound together and puffing up by the supertube effect. In the
quiver quantum mechanics, this has a natural interpretation as a Higgs branch state, with a
finite vev for the bifundamental matter connecting two centers or nodes. Therefore, it is very
interesting to understand the relation between the codimension-2 configurations in gravity and

states in quiver quantum mechanics to elucidate the role of codimension-2 centers in black hole
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microphysics.

We have focused on codimension-2 centers in this chapter but, of course, we could con-
sider objects with still lower codimensions, namely one and zero. A codimension-1 center is a
membrane in R? and is a harmonic-solution realization of the “superstrata” recently proposed as
possible microstates [35, 36, 85, 28]. It is interesting to study if the setup of the harmonic solution
sheds new light on superstrata or makes their construction and analysis easier. Codimension-
1 and codimension-0 branes are generally more non-geometric than the codimension-2 ones
[86, 87], and studying them in the context of the harmonic solution is an interesting subject.

Explicit construction of a solution with codimension-2 centers with general charge, position
and profile is technically a challenging problem. In subsection 4.1.2, we discussed how to solve
the BPS equations of section 2.1 for a 2-dipole supertube. As mentioned there, when solving the
BPS equations, there are multiple solutions differing in the monodromy properties. We must
construct them and choose from them the physically appropriate one expected from the dipole
charges produced by supertube transitions. This is in some sense similar to (but more com-
plicated than) the problem of finding solutions of F-theory with various monodromies around
7-branes [88, 89, 90] and is a non-trivial task. In particular, in the presence of non-trivial har-
monic function V', which corresponds to having D6-branes, solving (2.1.12) is itself a challenging
problem. We leave this for future research.

To conclude, the solutions involving codimension-2 provide interesting new directions of
research, and studying them is bound to reveal richer physics of brane systems than was found

in codimension-3 solutions. We hope to report on the progress in such research in near future.

Appendix 4.A Monodromic harmonic function

Here, we show that if the harmonic function v has the monodromy (4.1.7) independent of the
cycle ¢, then it is given in terms of the one-form « by (4.1.5) and (4.1.6).

Harmonicity of v means that d(x3dy) = 0, which implies that x3dvy is closed and can be
written in terms of a one-form « as #3dy = da at least locally. Because a has the gauge
ambiguity @ — a4+ dA where A is a scalar, we can impose the “Lorenz gauge” 0;a; = 0. In this

gauge, the monodromy of v can be expressed as

1 .
Ay = /dfy: /*3d0¢ :/ d *3 do = —/ A« -ejpda’ A dz® = —/ Aa;n; d*A, (4.A.1)
c c D D 2 D

where D is a 2-surface with 0D = ¢, n; is the unit normal to D, and d?A4 is the area element of
D. In order for the monodromy A~ not to change even if we homotopically deform the cycle ¢,

the quantity A« can only have delta-function source along the profile x = F(\). Therefore, it
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must be that

PR Y ()
a;(x) = L/o |X—F()\)\d)\ (4.A.2)

where v;(\) are some functions. This gives

L
Aa;(x) = —4% i vi(\) 6%(x — F(\)) dA. (4.A.3)

Namely, a; has delta-function source distributed along the profile with (vectorial) density v;.
Then (4.A.1) is proportional to
1 1

Vi X X ﬁ’ (4.A.4)
where 0 is the angle between n; and the unit tangent to the profile, ¢;. The second factor takes
into account the fact that the curve does not necessarily perpendicularly intersect with D, and
the third factor takes into account the “speed” of the parametrization A. Because cosf = t;n;

and t; = F}/|F|, the quantity (4.A.4) is equal to

Gt (4.A.5)
tin;

Given ¢, there are infinitely many choices for D which can intersect the profile at any point at

any angle. So, if (4.A.5) is to be independent of the choice of D, the only possibility is v; F;.
This means that « is given by (4.1.6).

Appendix 4.B Superthread

In this appendix, we briefly review the superthread solution which was used in subsection 4.1.2
to derive the 2-dipole solution. The superthread solution was originally obtained in [78] as a
BPS solution in 6D supergravity [29].

The metric for the superthread is
1
ds? = 2(2,Zy) " dv <du +k+ 2]—"dv> — (21 25)Y?ds? (4.B.1)

where the base space is flat R* with metric ds? = 5ijdacid3:j (1t =1,---,4). We denote the
coordinates of the R* by ¥ = (2!, 22,23, 2%). All quantities that appear in the metric are

independent of the coordinate w. The scalars Z;, I = 1,2 are harmonic functions in R* and are

given by 0
I
Zr = HZ}TPW (4.B.2)
P P
where
R, =|% — FP)(v)| (4.B.3)
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and ﬁ(p)(v) € R* is the profile of the supertube. Note that we use this R? version of R, only
in this appendix (R, in the main text is defined for R? as in (4.1.29)). The 6D solution also

involve self-dual field strengths
ol =«xe!, 1=1,2 (4.B.4)

which are related to Z; by the following equation:
de! = || x4dZ;. (4.B.5)

Here * means the v-derivative and d is the exterior derivative with respect to the R*. For Z;

given in (4.B.2), this equation can be solved by

f(p) .dz
O = (1 + *4)d (|61J‘ Z QPJ_RIQ)> . (4.B.6)
P
The one-form k appearing in the metric (4.B.1) satisfies the relation
(1 + *4)dk = Z;0". (4.B.7)
The solution to this equation is
k = k‘o —+ k‘l + k‘g, (4B8a)
F
=3y Yy e pr (4.B.8D)
=12 p
Fa) .z P 4+ F@).dz
Z pq R2R2 - Z pq R2R2 ) (4.B.8c¢)
pq L
(r) _ (9
F — F; 1 1 i 2 ®:a) 7
Zqu T [(Rg — R3> da’ — R2R2A da? | | (4.B.8d)
where we defined
qu Qpqu2 + quQp2 (4-B-9)
With this k, the scalar field F can be obtained by solving the equation
— x4d %4 dF = %4(© A O?) 4 22, Zo. (4.B.10)
This can be solved by
(q) ) @ AP q)
:_1—2% Z v 2F2 LJ T , (4.B.11)
p 2RR RQRQ\F Fq)\2
where
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After smearing out the above solution along x* and v directions” and identifying quantities
as stated in [91], we can reinterpret the quantities above (Z7, 1, k, F) in terms of the harmonic
functions appearing in the harmonic solution. Specifically, we obtain V = 1, K3 = 03 = 0,
F = —Z3. All other quantities can be read off from the relations (2.1.13), (2.1.14), (2.1.16), and
(2.1.17).

Appendix 4.C Near-tube expansions

In this appendix, we carry out the near-tube expansions of quantities that are used in the no-
CTC analysis in the main text. To avoid clutter, we suppress the subscript p from the quantities
such as F,, and A, associated with the p-th tube.

We want to evaluate the near-tube limit of quantities such as

I(x) = / yx_d]?(m (4.C.1)

Consider a point x very close to the tube. Near the point x, the tube can be thought of as a
straight line. Let us take a cylindrical coordinate system (r,0,z) in which the point x is at
0 = z = 0. Also, let the point r; = z = 0 on the curve (which is now a line) be F(\?) where \°
is the value of the parameter corresponding to that point. Both the points x and F(A°) are in

the z = 0 plane. Then, by approximating the curve by a straight line there,

x—F(V)| & y/r2 + [FQO)R(A = A)? (4.C.2)

where 7| is the radial distance from the curve. For very small r |, most contribution to the

integral (4.C.1) comes from very small |A — A°|. So, let us introduce a small cutoff ¢ > 0 and

A04e A0 —¢
/dA:/ d)\+/ d>\+/ A (4.C.3)
A0 —¢ A0te

A0t
E/ d)\+PE/d>\ (4.C.4)
A

0—¢

divide the integral as

where P. [ means to exclude the interval [A\® — ¢, A\ + €] from the integral. We take the following
limit:

r. 0, e—0, with 0. (4.C.5)
€

We take € — 0 so that the curve for A € [\’ — €, A% + ¢] can be regarded as a straight line.

Because we are very close to the straight line, we must take v, — 0, == — 0.

9The smearing along v is similar to that in [6].
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In this limit, the first term in (4.C.5) is evaluated as

//\0-‘,-5 />\O+6 d\
A0—¢ ‘X_ A0 —¢ \/7" +’F‘ ()\ )\O)

|Fe 2| F
/ = 1o ( i |) (4.C.6)
" E e r +x2 IFI TL

where F = F(\°) and |F|(A — A\°) = \. This diverges as ¢/, — oo because the contribution

from an infinite straight line is infinite. However, of course, the actual curve is finite and closed,
and the integral must be finite. In other words, in the full integral (4.C.4), e-dependence must

cancel out. Therefore, we must be able to split I(x) as follows:

2|F| [ dA\ 2
Ix)=—Inn—+1lm|P.| ——————— + —1Ine| + O(r}), 4.C.7
(x) ‘ | L 0 F(A) —FO)|  |F| (rs) ( )
where [...] is finite in the € — 0 limit. Indeed, the second term in (4.C.3) is
A0 ¢ pR—
/ L z/ OL (4.C.8)
x —F()| [F(A%) = F(V)

and includes a divergent contribution from near the upper bound of the integral, A = \? — e.
The diverging contribution can be evaluated as
e d)\’ 1
“#/ i e
We get an identical contribution from the third term in (4.C.3). These divergences precisely
cancel the second term in [...] of (4.C.7).

So, for example, as we approach the point Fp()\g) on the p-th tube, the behavior of the
integral appearing in Zr—; 2 of (4.1.28b) is

1 Qqr X QI
§Q /:§ q/ — 1 PR 4+ 0(r 4.C.10
q a q Bq 7 L,y x — Fy(Ag)] Ly ! rs) ( )

(see (4.1.30) for the first equality) where c;—; 2 is defined by

Qat 02 4.C.11
P | oo e 40

cy = = hm
I e—0

2
/ 5 + —1Ine
[Fp(Ap) M)l Ry

and is independent of ;. We also defined

Rziln2’Fp|

T (4.C.12)
p
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Using the same argument, we can also derive the behavior of the integrals appearing in w

and Z3 as follows:

ZQqI/R ZQ‘”/‘X dA _ Qg Fp(A))R +d; + O(ry), (4.C.13)

Ly
Pq 1 / q()‘q)d/\q 1 0
fa_ — = —pp(M)R +c3+0O(rL), 4.C.14
Z/R 21, | om0 T ( e
where
F,(\,) dX Qqr
d; = 221 lim P, LA i + + i / ,
Ly 0 Fp(AD) — Fp(Ap)] \Fp! % [Fp(A )\
(4.C.15)
LT Pp(Ap) dXp pr()‘) 1 Pq(Ag) dAq
c3 = — lim e/ + Ine / .
Ly =0 ’Fp(Ag) —Fp(\)] ’ p| (2)) Lq ’Fp()‘g) —Fy(A\)]
(4.C.16)
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Chapter 5

Non-Abelian codimension-2 solutions

In this chapter, we give an explicit example of non-Abelian codimension-2 solutions and discuss
its meaning in the context of microstate geometry program. All the material of this chapter is
based on [66].

The plan of the chapter is as follows. In section 5.1, we explain some backgrounds and
summarize the results we obtained. We also discuss some implications of the solution in the
context of microstate geometry program. In section 5.2, we explicitly construct an example
of non-Abelian supertubes. We first introduce the colliding limit and the matching expansion
which allow us to construct the solution order by order by connecting the far-region and near-
region solutions. We then use it to perturbatively construct the solution. As the near-region
solution, we use an ansatz inspired by the SU(2) Seiberg-Witten theory. In section 5.3, we
study the physical properties of the solution. We work out the brane charge content, the
asymptotic geometry and the angular momentum, and discuss the condition for the absence
of closed timelike curves (CTCs). Based on the results, we argue that the solution is a bound
state and thus represent a black hole microstate. We also discuss the cancellation mechanism
responsible for the vanishing of the angular momentum. The appendices include some details
of the computations carried out in the main text and some topics tangential to the content of

the main text.

5.1 Introduction and summary

5.1.1 Background

In the presence of codimension-2 branes, the harmonic functions H in general become multi-
valued as we have seen in chapter 4. This is because codimension-2 branes generally have
a non-trivial U-duality monodromy around them [35, 36], and H transforms in a non-trivial

representation under it. For a multi-center configuration, if the i-th codimension-2 brane has
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U-duality monodromy represented by a matrix M; around it, the harmonic functions will have
the monodromy
H — M;H. (5.1.1)

When the matrices M;, M; do not commute for some i,j, we say that the configuration is
non-Abelian.*

In the previous chapter, we wrote down first examples of codimension-2 harmonic solutions.
They involve multiple species of codimension-2 supertubes and can have the same asymptotic
charges as a four-dimensional (4D) black hole with a finite horizon area. However, the con-
stituent branes were unbound; namely, by tuning parameters of the solution, we can separate
the constituents of the solution infinitely far apart. This implies that the solution does not
actually represent a microstate of a BPS black hole, for the following reason [12, Section 3.1]:
Classically, it is possible to consider a configuration in which constituents are separated by
a finite fixed distance from each other. However, quantum mechanically, by the uncertainty
principle, fixing the relative position of the constituents increases kinetic energy and the config-
uration would not exactly saturate the BPS bound. Namely, it cannot be a microstate of a BPS
black hole. So, the solution constructed in the previous chapter is not a black hole microstate.
Relatedly, the solution in chapter 4 had Abelian monodromies. There is some kind of linearity
for codimension-2 branes with commuting monodromies, and we can construct solutions with
multiple codimension-2 centers basically by adding harmonic functions for each center.? This
suggests that codimension-2 branes with Abelian monodromies do not talk to each other and
are not bound.

Then the natural question is: does a configuration of supertubes with non-Abelian mon-
odromies exist? If so, is it a bound state, and does it represent a black hole microstate? These

are precisely the questions that we address in this chapter.

5.1.2 Main results

In this chapter, we will construct a configuration of codimension-2 supertubes with non-Abelian
monodromies within the framework of harmonic solutions, in a certain perturbative expansion.
We will give evidences that, as expected, it represents a bound state, and that it corresponds
to a microstate of a 4D black hole with a finite horizon.

Our configuration is made of two circular supertubes which share their axis. The two tubes

are separated by distance 2|L| and the radii of both rings are approximately R. See figure

'This is totally different from making the gauge group non-Abelian, namely generalizing Einstein-Maxwell to

Einstein-Yang-Mills. For some recent work on non-Abelian generalizations in that sense, see [92, 93].
2More precisely, one should include certain interaction terms as well as we saw in chapter 4. However, it is

still true in this case that one can in principle construct solutions with multiple codimension-2 centers located

wherever we want.
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5.2 on page 51. The harmonic functions H will have a non-trivial monodromy around each of
the two tubes. The monodromies for the two supertubes do not commute, namely, they are
non-Abelian. Because it is technically difficult to find the solution for general R and |L|, we
consider the “colliding limit”, |L| < R, in which we can construct the harmonic functions order
by order in a perturbative expansion.

Despite that the colliding limit allows us to construct the solution explicitly, it also has
a drawback: we cannot determine the value of R and |L| separately. If we knew the exact
solution, not a perturbative one, then we would be able to constrain them by imposing physical
conditions (the absence of closed timelike curves) on the explicit solution. In this chapter we
will not be able to do that. Instead, we will make use of supertube physics to argue that R and
|L| are fixed (section 5.3.4). Although the argument physically well motivated and convincing,
it is not a proof; we hope to revisit this point in future work.

Because the physical parameters R and |L| are fixed, it is not possible to separate apart
the two supertubes and therefore the configuration represents a bound state. Moreover, it has
asymptotic charges of a 4D black hole with a finite horizon. Therefore, the non-Abelian 2-
supertube configuration is arguably a black hole microstate. The geometry is not regular near
the supertubes, but the singular behavior is an allowed one in string theory, just as the geometry
near a 1/2-BPS brane is metrically singular but is allowed. In this sense, our solution is not a
microstate geometry but a microstate solution as defined in [20]. Our solution simultaneously
involves the two types of supertube, (1.2) and (1.3), and therefore is non-geometric in that the
internal torus is twisted by T-duality transformations around the supertubes.

We find that the asymptotic geometry of the perturbative solution is AdSy x S?, namely the
attractor geometry [37] of the black hole with the same charge. Furthermore, we find that the 4D
angular momentum of the solution is zero, J = 0. We will argue that this is due to cancellation
between the angular momentum that the individual supertubes carry and the one coming from
the electromagnetic crossing between the monopole charges carried by the supertubes.

On a more technical note, in the colliding limit |L| < R, we can split the problem of finding
harmonic functions with desired monodromies into two parts. If one is at a distance d ~ R > |L|
away from the supertubes (the “far region”), the configuration is effectively considered as made
of a single tube whose monodromy is the product of two individual monodromies. On the other
hand, if one is at a distance d ~ |L| < R away from the tubes (the “near region”), we can
regard the tubes as infinitely long and the problem reduces to that of finding 2D harmonic
functions with desired monodromies. Once we find harmonic functions in both regions, we can
match them order by order in a perturbative expansion to construct the harmonic function
in the entire space. This is the sense in which our solution is perturbative in nature. In the

near region, the problem is to find a pair of holomorphic functions with non-trivial SL(2,7Z)
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monodromies around two singular points on the complex z-plane. Mathematically, this problem
is the same as the one encountered in the SU(2) Seiberg-Witten theory [94] and we borrow their
results to construct the harmonic functions.

The solution thus constructed is perfectly consistent at the perturbative level, but it is
possible that unexpected new features are encountered in the exact, full-order solution. However,
constructing such an exact solution is beyond the techniques developed in this chapter and left
for future research.

In terms of the harmonic solutions H = {V, K!  L;, M}, our configuration is given by

V =ReG, K'=K?=-ImG, K?=ReF,
1 (5.1.2)
Li=Ly=ImF, Ls = ReG, M:—iReF,
where F' and G are complex functions and carry the information of the monodromies. This class
of solutions describes the general configuration in which the complexified Kéhler moduli of T

and T627 are set to 712

= ¢ whereas the one associated with T829 is given by 73 = g This class
is a type IIA realization of the so-called SWIP solution [95]. It is the particular choice of the
pair () that fixes the monodromies of the configuration. In our solution, F' and G are related

to the defining functions of the Seiberg-Witten solution.

5.1.3 Implication for black hole microstates

In the above, we argued that our codimension-2 configuration represents a black hole microstate.
Our perturbative solution is quite different from the supergravity microstates based on codimen-
sion-3 harmonic solutions [24, 25, 13] that have been extensively studied in the literature. In
particular, its 4D asymptotics is the AdS, x S? attractor geometry of the black hole with the same
asymptotic charges, because the harmonic functions cannot have constant terms. Furthermore,
the 4D angular momentum of our solution vanishes, J = 0, because of a cancellation mechanism
between the tube and crossing contributions. To better understand the possible implications of
these properties, let us recall some known facts and conjectures about black hole microstates.
For codimension-3 harmonic solutions, a well-known family of microstate geometries whose
4D asymptotics can be made arbitrarily close to AdSy x S? and whose angular 4D momentum
J can be made arbitrarily small is the so-called scaling solutions [96, 81, 82].3 Scaling solutions

are made of three or more codimension-3 centers and exist for any value of the asymptotic

3Note that the angular momentum here is the 4D one. In the scaling solution, the 4D angular momentum can
be made arbitrarily small. If one goes to 5D, there are two angular momenta, and the 4D angular momentum
is one of the two. The other 5D angular momentum, which is nothing but the DO-brane charge from the 4D
viewpoint, has been quite difficult to make smaller than a certain lower limit, for the geometry to correspond to
a microstate in the D1-D5 system [81, 82, 97, 98]. This problem can be overcome by generalizing the harmonic

solution to the superstratum in 6D [32]. This issue is not relevant to the current discussion.
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moduli, provided that certain triangle inequalities are satisfied by the skew products of the
charges of the centers. The defining property of the scaling solutions is that we can scale down
the distance between centers in the R3 base so that they appear to collide. However, the actual
geometry does not collapse; what is happening in this scaling process is that an AdS throat
gets deeper and deeper, at the bottom of which the non-trivial 2-cycles represented by the
centers sit. At the same time, the angular momentum J becomes smaller and smaller. In the
infinite scaling limit where all the centers collide in the R? base, the geometry becomes precisely
AdS and the angular momentum J vanishes. It has been argued [99, 100] that the majority
of the black hole microstates live in this infinite scaling limit, where the branes wrapping the
2-cycles [67], called “W-branes”, become massless and condense. In the ITA picture, W-branes
are fundamental strings stretching between D-brane centers. In the language of quiver quantum
mechanics [96] dual to scaling solutions, the configurations with a finite throat correspond to
Coulomb branch states, while the configurations with W-brane condensate would correspond to
pure-Higgs branch states [83]. However, the gravity description of such condensate is unclear.*
It cannot simply be the infinite throat limit of the scaling solution, because in that limit the
non-trivial 2-cycles disappear in the infinite depth and the entire geometry becomes just AdS,
indistinguishable from the black hole geometry. Furthermore, quantization of the solution space
of the scaling solutions [72] says that the depth of the throat cannot be made arbitrarily large
but is limited by quantum effects. So, it appears that, although the scaling solution is an
important clue for the W-brane condensate and pure-Higgs branch states, it is not the answer
itself.

Relatedly, Sen and his collaborators argued [104, 105, 106] that the contribution to black
hole microstates can be split into the “hair” part which lives away from the horizon and the
“horizon” part which gives the main contribution to black hole entropy. The horizon part has
asymptotically AdSs geometry and vanishing angular momentum, J = 0. This is based on the
fact that, in 4D, only J = 0 black holes are BPS and all extremal black holes with J # 0
are non-supersymmetric [104]. The analysis of the quiver quantum mechanics describing the
worldvolume theory of a D-brane black hole system [106] also supports the claim that all black
hole microstates in 4D have J = 0.

In summary, both the analysis of the scaling solutions and the arguments of Sen et al. suggest
that the majority of the black hole microstates have AdS asymptotics and vanishing angular
momentum, J = 0. They are states with a condensate of W-branes, or equivalently fundamental
strings stretching between D-branes, and correspond to the pure-Higgs branch states of the dual
quiver quantum mechanics.

Now if we look at our perturbative solution, it seems to have all the above properties expected

“For recent attempts to construct the gravity description of W-branes, see [70, 101, 102, 103].
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of a typical microstate of a 4D black hole. First, it has AdSs asymptotics. This was not done by
fine-tuning of parameters but is a consequence of the non-trivial monodromy of the supertubes.
Second, its angular momentum vanishes, J = 0. This did not require fine-tuning either, and
it was due to the cancellation mechanism mentioned before between different contributions to
angular momentum. Moreover, our solutions are made of supertubes generated by the supertube
transition which is nothing but condensation of the strings stretching between the original D-
branes. Therefore, it is natural to conjecture that our solution is giving a gravity description of
the W-brane condensate and represents a state in the pure-Higgs branch. At least, it is expected
to provide a clue for the gravity description of pure-Higgs branch states.

Of course, to make such a strong claim we need strong evidence, including the demonstration
that non-Abelian supertube configurations do exist beyond the perturbative level, and the proof
they have a huge entropy to account for the black hole microstates. Such studies would require
more sophisticated tools and techniques than developed in the current thesis. At this point,
we just state that it is quite non-trivial and intriguing that the perturbative non-Abelian 2-
supertube solution has the properties expected of black hole microstates, and leave further
investigation as an extremely interesting direction of future research.

In [107] (see also [108]), an interesting set of solutions with AdSy x S? asymptotics were
constructed. They belong to the so-called IWP family of solutions [109, 110] and are charac-
terized by one complex harmonic function in three dimensions. The main differences between
the solutions in [107] and ours are as follows. First, because the solutions in [107] are based on
one complex harmonic function, their possible monodromies are Abelian. On the other hand,
our solution has two complex harmonic functions and thus the monodromies are in general
non-Abelian. Second, the solutions in [107] have two distinct AdSs x S? asymptotic regions. In
contrast, the multiple asymptotic regions in our solutions are related by U-duality and regarded
as one asymptotic region in different U-duality frames. Therefore, our solution has only one
physical asymptotic region.

Let us end this section by mentioning one other difference between microstates with codimension-
3 centers and ones with codimension-2 centers. One issue about the existing construction of
black hole microstates based on codimension-3 harmonic solutions is that, multi-center configu-
rations (except for the case where there are two centers and one of them is a 1/2-BPS center) are
expected to lift and disappear from the BPS spectrum once generic moduli are turned on [111].
The physical origin of this is that, if there are multiple centers, when one continuously changes
the moduli to arbitrary values, the discreteness of quantized charges is incompatible with the
BPS condition [112]. This is certainly an issue for codimension-3 centers but, codimension-2 su-
pertubes may be able to avoid it by continuously deforming the tube shapes and re-distributing

the monopole charge density along its worldvolume, so that the BPS condition is met even if
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one changes the moduli continuously. Therefore, it may be that codimension-2 solutions provide
a loophole for the no-go result of [111] and represent microstates that remain supersymmetric

everywhere in the moduli space.

5.2 Explicit construction of non-Abelian supertubes

5.2.1 Non-Abelian supertubes

In the previous chapter, we saw that harmonic solutions can describe BPS configurations of
codimension-2 supertubes. A codimension-2 supertube has a non-trivial U-duality monodromy
around it, which can be represented by a monodromy matrix M. If multiple codimension-2
supertubes are present and the ¢-th supertube has a monodromy matrix M; then, in general,
the monodromies of different supertubes do not commute, [M;, M;] # 0 for some pair (i, ),
namely, the monodromies are non-Abelian. In this section, we show, for the first time, that such
a non-Abelian configuration of supertubes is indeed possible.

3 = 7 is non-trivial and has

We will focus on configurations in which only one modulus 7
SL(2,Z) monodromies. As discussed in section 5.A.1, in this situation, only four harmonic
functions are independent (5.A.2), which can be combined into two complex harmonic functions

F,G. In terms of them, the modulus 7 can be written as

F
= . 2.1
TG (5.2.1)

The simplest non-Abelian configuration is one with two supertubes. As we go around the i-th

supertube, the harmonic functions transform as

F F ,
— M; . M;eSL(2,Z), i=1,2 (5.2.2)
G G

We require that the monodromies be non-Abelian,
[M1, M) # 0. (5.2.3)

See figure 5.1 for a pictorial description of such a 2-supertube configuration.

Specifically, we will consider a two-supertube configuration with the following monodromies:

( 1 0) < 3 2)
M, = . My = . (5.2.4)
2 1 2 1

These clearly give a non-Abelian pair of monodromies satisfying (5.2.3). As we will discuss

later in this section, this choice is motivated by the solution to a similar monodromy problem
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Figure 5.1: A non-Abelian configuration of two supertubes. The monodromy matrices My, Mo

of the two supertubes do not commute, [M;, Ms] # 0.

discussed in the SU(2) Seiberg-Witten theory [94]. If we go around the two supertubes, the

total monodromy is

M = MyM; = <_1 2) . (5.2.5)
0 -1

If one is far away from the supertubes, none of the monodromies of the supertubes are
visible and the configuration looks like that of a single-center codimension-3 solution. From the
|x| — oo behavior of the harmonic functions, we can read off the charges of the single-center
solution. We will find that the charges are those of a four-charge black hole in four dimensions
with a finite horizon. In other words, seen from a large distance, our configuration looks like an
ordinary four-charge black hole without any monodromic structure. However, as one approaches

it, the topology of the supertubes becomes distinguishable and discovers that the spacetime has

non-trivial non-Abelian monodromies.

5.2.2 Strategy

The problem that we should attack in principle is the following. We first specify two closed
curves C1,Co in R? along which the two supertubes lie, such as the ones in figure 5.1. Then we
must find a pair of harmonic functions (F,G) which, as we go around curve C;, undergoes the
monodromy transformation (5.2.2) with the monodromy matrix M; given in (5.2.4). If we can
find such pair (F, G), then the configuration exists.

Although this is a mathematically well-posed problem, explicitly carrying it out for general
shapes of supertubes is technically challenging. Instead, our strategy here is to take a particu-
larly simple configuration for the two supertubes and further take a limit in which the problem
of finding the solution becomes simple and tractable but is still non-trivial. This is sufficient for
the purpose of proving the existence of a configuration of non-Abelian supertubes.

Specifically, we assume that the two tubes are circular and share the axis (so that the

configuration is axisymmetric). The two tubes have almost identical radius R > 0 and are very
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Figure 5.2: (a) A configuration of two circular supertubes sharing the axis. (b) The configuration
in the colliding limit, |L| < R. In this limit, we can study the problem in two different regimes,
the near and far regions. In the near region, the system becomes 2-dimensional but we must
consider two separate monodromies Mj, My of two supertubes. In the far region, the system

remains 3-dimensional but there is only one tube with monodromy M = MyM;.

close to each other, separated by distance 2|L|; see figure 5.2(a). More precisely, in equations,

the location of supertubes 1 and 2 is specified as follows:

Supertube 1: ()2 + (2%)* = (R +|L|cosl)?, = +|L|sinl,

(5.2.6)
Supertube 2: ()% 4 (%)% = (R — |L| cosl)?, 2% = —|L|sinl,

where [ is the angle between the two tubes relative to the z!'-22 plane; for example, [ = 0 if they

are concentric. We study this system in the colliding limit,
IL| < R. (5.2.7)

In this limit, we can break down the problem into two regimes, depending on the distance d

from an observer to the supertubes, as follows:

(i) The near region, d ~ |L| < R.

In this region, the two supertubes can be regarded as infinite straight lines and we can
forget the direction along them. Therefore, the system can effectively be treated as 2-
dimensional. By symmetry, we can zoom in onto the region near the point (z!, 2% 23) =
(R,0,0) without loss of generality, and identify the z-plane with a small piece of the z!-23

plane near that point with the relation

z= (2! = R) +iz?, lz! — R|,|2*| ~ |L| < R. (5.2.8)
On the z-plane, the two supertubes are located at z = L and z = —L, where we defined
L=|L|e". (5.2.9)
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So, the problem reduces to that of finding on the z-plane a pair of 2D harmonic functions
(F,G) that has non-trivial monodromies Mj, Ms given in (5.2.4) around z = +L. See
figure 5.2(b).

(ii) The far region, |L| < R ~ d.

In this region, the two supertubes cannot be resolved and we effectively have only one
supertube sitting at
(") + (*)*=R?,  2* =0, (5.2.10)

with the combined monodromy M = MsM; given in (5.2.5). So, the problem reduces to
that of finding 3D harmonic functions (F, G) with the monodromy M around one circular

supertube.

After finding the expressions for the harmonic functions (F,G) in regions (i) and (ii), we
must connect them in the intermediate region, |L| < d < R, in order to show the existence
of (F,G) defined in the entire space. Namely, we must match the large-|z| behavior of the
near-region solution smoothly onto the near-ring (i.e., (x', 2%, 23) — (R,0,0)) behavior of the
far-region solution.

This matching can be done order by order and the harmonic function in the entire space
can be reconstructed to any order in perturbative expansion. To see exactly how this works in

practice, let us study a toy example in which we can work out the matching procedure in detail.

A toy model for the matching procedure

As a simpler physical problem in which there are two very different scales |L| and R with
|L| < R, let us consider the following problem. In three dimensions, we would like to find the
field configuration sourced by two point-like charges at x = £L = (0,0, £|L|) with charge Q4.
Assume that the field H is governed by the Helmholtz equation

(A - ;) H=0. (5.2.11)

Of course, for this problem, we know the exact answer:

_\fo\ _\x+L\
Qie” Qe R
|x — L |x + Lj

H:

(5.2.12)

However, let us try here to recover this expression by working in the “near region” |x| ~ |L| < R
and in the “far region” |L| < R ~ |x| separately, and finally matching the expressions in the

intermediate region connecting the two.
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In the near region |x| ~ |L| < R, we can ignore the R dependence in (5.2.11). Therefore,
the expression in the near region is

Qs Q-

H= + .
x—L| ' |[x+L]

(5.2.13)

Let (7,0, ¢) be the spherical polar coordinates for R3. If we increase r, still staying inside the

. L . . .
near region, we can do a small |7| expansion of this and obtain

o Qe @eoQlbient g (ILFY,
T

- = (5.2.14)

which corresponds to the standard multipole expansion. We would like to find how this multipole
expansion matches onto the one in the far region.

To be able to do the matching, there must be an intermediate region where the expan-
sion (5.2.14) is correct. To understand what this means, let us make the scaling for the inter-

mediate region, |L| < r < R, more precise by setting
— ~ €, — ~ 0, (5.2.15)
where €, < 1. If we are to keep r finite, the replacement
R — Re 1, |L| — |LJ6, (5.2.16)

will keep track of the order of expansion. If we do this replacement in the exact expres-
sion (5.2.12) and expand it in powers of € and §, we obtain
_ —Q_)|L 0 _
H:[Q++Q +(Q+ Q2)| | cos 5+O(52)]_(Q++Q )€
r r R
n |:(Q+ +Q-)r  (Qy —Q-)|L|cosb

T T 5+ 0(52)] e +0(e). (5.2.17)

If we make € small enough so that only the O(e") terms remain, then this reproduces the near-
region expansion (5.2.14). Therefore, the correct procedure is: take e — 0 first, and then match
the § expansion. In other words, take R — oo first, and then match the small @ expansion.

With this mind, let us go to the far region. Here, the two charges cannot be resolved and
the function H can be singular only at » = 0. The instruction is: find solutions of the Helmholtz
equation such that their R — 0 limit reproduces (5.2.14), term by term in the @ expansion.
First,

_r

€ R

(Q+ +Q-)

is clearly an exact solution with a singularity at r» = 0. If we take R — oo, this gives r~!, which

reproduces the first term in (5.2.14). Next,

(5.2.18)

r

r (1 1
(Qy —Q-)|L|e™® (7’2 + Rr) cos 0 (5.2.19)
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is an exact solution and its R — oo limit reproduces the second term in (5.2.14). So, up to this

order, the far-region solution which reproduces (5.2.14) is

H— (Q+ + Q-
,

-% . 2
Je +(Q+ —Q-)|Lle ® (7,12 + ]1%7’) cos + 0O <|7I:?"> . (5.2.20)

It is clear that we can keep going with this procedure to find the far-region solution that repro-
duces the expansion (5.2.14) to an arbitrarily high order, upon taking the R — oo limit. In prin-
ciple, if we can sum this expansion to all orders, we can recover the exact expression (5.2.12) with
singular sources at x = +L. However, at any finite order, the perturbative expression (5.2.20)
has a singularity only at » = 0; namely, some features of the exact solution can be seen only
after carrying out the infinite sum, which is a limitation of the method of matching expansion.

Below, we will use the exactly same matching procedure to find the harmonic functions

describing a configuration of non-Abelian supertubes.

5.2.3 The near region

Now with the colliding limit and the matching procedure understood, let us construct the

solution starting from the near-region side.

Some general statements

As we mentioned before, in the near region, we can regard the round supertubes as parallel,
infinite straight lines. Forgetting about the direction along the tubes, the problem reduces to
the one on the z-plane defined in (5.2.8). A harmonic function in 2D can be written as the sum
of holomorphic and anti-holomorphic functions. In the present case, this means that F,G are
both written as a sum of holomorphic and anti-holomorphic functions.

Let us further assume that F' and G are purely holomorphic:
F =F(z), G =G(z). (5.2.21)

This is equivalent to assuming that 7 = F//G is holomorphic. In this case, we can solve (5.A.8)
to find w explicitly. If we set
w = wodr? + w,dz + wsdz, (5.2.22)

where w,, ws and wy are independent of z2, then
wy = —Im(FG) + C, Ows — 0w, =0 (5.2.23)

where C is a constant.

The above wq is SL(2,Z) invariant because

(O‘ f) : Im(FG) — Im[(aF + BG)(vF + 6G)] = Im[(ad — Bv)FG] = Im(FG), (5.2.24)
v
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for ad — By = 1. Therefore, even if there is a singularity around which there is an SL(2,7Z)
monodromy and (F,G) are multi-valued, wy is always single-valued. By (3.3.1), this means
that the integrability condition (2.1.20) is satisfied without delta-function singularities along
the supertube.

The constant C' and functions w,,ws must ultimately be fixed by extending the near-region
solution to the far-region solution and requiring that w be regular everywhere and vanish at 3D
infinity. In the present case, we will find that w in the far region has a non-vanishing component
only in the direction along the supertube. Therefore, we set w, = wz = 0. On the other hand,
the constant C' cannot be fixed unless we have an exact solution (we only have a perturbative
solution in the present thesis).

When there is a supertube, the direction along its profile is a dangerous direction where
there can be CTCs [54, 55]. This is the 22 direction in the present case and the 22 component
of the metric which is, e.g., from (2.1.24),

g2o X —ws + Q@ = —[~Im(FG) + C]* + [Im(FG))? = C2Im(FG) — C]. (5.2.25)

From (5.A.9), Im(FG) > 0. So, for (5.2.25) not to be negative, the constant C' must be in the
following range:
0 < C < 2min[Im(FG)). (5.2.26)

This does not have to hold up to z = co. It only has to hold up to some value of |z| above which

the 2D approximation breaks down.

The solution

On the z-plane, we would like to construct a pair of harmonic functions (F, G) that has non-
trivial non-Abelian monodromy (5.2.2) around some singular points. In doing that, we must
require that the imaginary part of 7 = F//G be always positive, because of the condition (5.A.9).
There are many such possibilities, but in this chapter we will take the pair of holomorphic
functions that appeared in the solution of d = 4,N = 2 supersymmetric gauge theory by
Seiberg and Witten [94], because it is a fundamental example of configurations with non-Abelian
monodromies.

The original work of Seiberg and Witten was about the exact determination of the low-
energy effective theory of N' = 2 pure SU(2) gauge theory. At low energy, the theory has a
Coulomb moduli space parametrized by the vacuum expectation value of the vector multiplet
scalar, z = (tr ¢?) € C. At point z on the moduli space, one has a pair of holomorphic functions
(ap(2),a(z)) which represent the mass of the magnetic monopole and the electron at that point.
In terms of them, the low-energy coupling constant, 7(z), is expressed as

(2) = dc%? _ CZ[')(%)' (5.2.27)
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Figure 5.3: The monodromy structure in the near region. At z = +L we have singularities
corresponding to the position of the supertubes. When going around one of them, (F,QG)
gets transformed by M;. Going around both of them induces a monodromy transformation
M = MyM;.

The theory has an SL(2,7Z) duality group which changes the coupling constant 7 and acts
non-trivially on the spectrum of dyons. More specifically, under SL(2,Z), the pair (ap,a)
transforms as a doublet and 7 undergoes linear fractional transformation. The moduli space
has three singularities at z = +L, 00 around which there are non-trivial monodromies of the
SL(2,Z) duality. The one at z = L is due to the magnetic monopole becoming massless and the
monodromy around it is given by M in (5.2.4). On the other hand, the one at z = —L is due
to the (1,1) dyon getting massless and the monodromy is given by M in (5.2.4). Finally, the
one at z = oo is due to asymptotic freedom and the monodromy is given by M in (5.2.5). See
figure 5.3 for the monodromy structure of the moduli space.

One sees that this theory has everything we need. We identify the SL(2,Z) duality group on
the gauge theory side with the SL(2,Z)s U-duality group on the supertube side, the modulus
z with the z coordinate of the near region, the mass parameters (ap,a) with the harmonic
functions (F,G), and 7 with the torus modulus 73 = 7. Furthermore, the position z = +L of
the singularities on the moduli space is identified with the position of the supertubes in the near

region. The precise identification between (F,G) and (ap,a) is

<F> —c (alD(Z)> (5.2.28)
G a'(z)

where ¢ € C is a constant of dimension [¢] = (length)'/2.> Now figure 5.3 is understood as the

monodromy structure of the harmonic functions (£, G) in the near region.

5 At this stage, ¢ can actually be an arbitrary single-valued holomorphic function in z. However, one can show
that, in order that the fields near each of the two supertube at z = +L behave the same way as they do near
ordinary supertubes, such as the D2 4+ D2 — ns5 supertube or the D2 + D6 — 53 supertube, we must take ¢ to
be constant. It must be possible to derive the behavior of ¢ near supertubes by properly taking account of its
backreaction of the brane worldvolume. See [90] for a discussion of such backreaction in F-theory configurations

of 7-branes.
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One may wonder about the meaning, in the supertube context, of the singularity at z = oo
of the Seiberg-Witten solution. Recall that the near-region description in terms of the z-plane
is only an approximation near the tubes. In reality, the infinity of the near-region z-plane is
connected to the 3D space, where the tube is not infinitely long but is finite and closed. In the
context of the original Seiberg-Witten theory, which is defined in the z-plane, the monodromy
at z = +L must be canceled by the monodromy at z = co. On the other hand, in the supertube
context, the z-plane is connected to a larger space, R? and the monodromy is canceled by the
other side of the supertube in R3.

The explicit expression for a(z) and ap(z) is

\f/ d:z:\/ Z—x :\/WQF1<—;,;;1; 2L )

z)(L + x) z+ L

2@/ zZ—x _L—=z 7 1 1_2_L—z
(x—L)x+L) 2vL> '\2°277 2L )

Here o F (a, b; ¢; z) is the hypergeometric function. Note that L is a complex number (see (5.2.9)).

(5.2.29)

The sign of the square root in the integral expression is defined to be positive for 0 < L < z

and, for complex L, z, it is defined by analytic continuation. Taking derivatives, we have

a'(z) = - /LL\/Z_:E dx_ )(L+;p):7r?/\z/iLK<Z2+LL>7

(2 = L VG2 xde)(:v+L) W\ZFK(L_Z>’

where K(z) = % 9F1(3,3;1;2) is the complete elliptic integral of the first kind. As mentioned

above, as we go around the singular points z = L, —L and z = oo, the pair (ap,a) and hence

(5.2.30)

(a, ') undergoes SL(2, Z) transformations given by the monodromy matrices M;, Ms in (5.2.4)
and M in (5.2.5), respectively.

Now we have (F,G) in the near region, which is related via (5.2.28) to (a/p,a’) given
n (5.2.30). To match this with the far-region solution, we will later need the |z| — oo be-

havior of (a/,,a’). It is given by

1 312 105L*
T V2 a2 Teaepr T
R NG S (-
V2z L 4(22)5/2 L 3] 64(22)%2 L 210

Just from the leading terms, it is easy to check that we have the monodromy
/ 1 92 / /
“) D) (TP, (5.2.32)
a 0 —1 a’ a

o7

(5.2.31a)

> +} . (5.2.31b)



Figure 5.4: Toroidal coordinates (1,0, ¢). n is a “radial” coordinate that decreases as one goes
away from the ring, o is the angular variable around the ring and ¢ is an angular variable along

the ring.

For later convenience, let us also write down the behavior near the singularities z = £L.
Near z = L,

d(z) = —%i/z [m 23;LL - 8% (m % + 2> (z—L)+-- } . (5.2.33a)

dp(z) = 2\% [1 - SLL(Z L)+ ] _ 23@2 (2(22717;)!!2>2 <;L1>n (— L)".  (5.2.33b)
Near z = —L,

a(z) = 27ri@ [n i;’;ﬁ + 8LL <1n Z_;_Qi + 2> (z4+L)+-- } . (5.2.34a)

dh(z) = —%i@ [m 23‘; + 8% <ln ZB;LL + 2) (24 L) +-- } . (5.2.34b)

From these, it is easy to check the monodromy M7, Ms.

5.2.4 The far region: coordinate system and boundary conditions

Having fixed the near-region solution, the next task is to find the far-region solution that matches
onto it. For that, as preparation, let us introduce the coordinate system appropriate for our

purpose and discuss the boundary conditions that the far-region solution must satisfy.

Toroidal coordinate system

As we explained, in the far region, we effectively have one supertube. To describe this config-
uration, we introduce the toroidal coordinate system (n, o, ¢) [113]; see figures 5.4 and 5.5. In

terms of Cartesian coordinates (x!, 2, 23), the toroidal coordinates are given by

2_1 /m2 — 1 i
zl = RE cos¢, %= Rni sin @, = RSli, (5.2.35)
1N — coso 1N — coso n —coso
where R is the radius of the ring, ¢ is the angular variable around the ring and ¢ is the angular

variable along the ring. The inverse relations are given by

x? + R? x> — R’ z’
= ———, COsOo = tan ¢ =

5.2.36
DN DN ( )

zl’
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—— 1 = constant
....... o = constant

e position of the ring
(z!' = £R)

Figure 5.5: Toroidal coordinates in the 2 = 0 section. Solid lines represent constant-n surfaces
and dotted lines represent constant-o surfaces. As n — 1, the constant-n surface approaches

the vertical (22) axis , while the position of the ring corresponds to the 7 — oo limit.
with
2 = (x* — R?)? + 4R*(2%)*. (5.2.37)

The domain of the coordinates is 1 < n < oo, —m < o0 < 7, 0 < ¢ < 2mw. Then, the flat 3D

metric in the toroidal coordinates is given by

R? dn?
2 _ 2 2 2
ds® = (7= coso)? (172 — t do* + (n* — 1)d¢ > . (5.2.38)

To connect the far- and near-region solutions, we have to relate the near-region (2D) and
the far-region (3D) coordinates. In the near-region limit n — oo, the Cartesian coordinates are

given, to leading order, by

R Rsi
'~ R+ COSU, 2 =0, 3 T (5.2.39)
n n
Then we can relate the z coordinate defined in (5.2.8) to the toroidal coordinates (1, o) as
R .
z=(z' = R) +ix® = —¢. (5.2.40)
n

This is the fundamental relation to connect the near- and far-region solutions.

Boundary conditions

On the far-region solution, we have to impose boundary conditions at infinity (n — 1 and o — 0

simultaneously) and near the supertube (n — 00).
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First, let us discuss the boundary condition at infinity. We require the harmonic functions
to go as

r 1
H:h++(9< ) as r — 0o, (5.2.41)
T

r2

where 7 = /(21)2 + (22)2 + (23)2. This is the same r — oo behavior as the codimension-
3 solution, (2.2.1) (or (5.A.10)). This is because we are interested in codimension-2 branes
(supertubes) which have been produced by the supertube transition out of codimension-3 branes.
Very far from it, the codimension-2 brane must look like a codimension-3 object with the original
monopole charge. Therefore, the harmonic function must have the 1/r term whose coefficient
I" is the same as the total monopole charge of the original brane configuration.

The boundary condition near the tube (n — 00) comes from the matching condition discussed

at the end of section 5.2.2. Let us write the large-|z| expansion of a’(z) and a,(z) as®

a(z) = Z a, (2), ap(z) = Zabn(z), (5.2.42)
n=0 n=0

where a,,a’, = O(z72""1/2) (here it is understood that O(z~2"~1/2) includes z~2""1/2log z).
The first three terms of each expansion are given in (5.2.31a) and (5.2.31b). As we discussed
earlier in section 5.2.2, we must be able to find a far-region solution that matches onto this
expansion, order by order. Concretely, let us do a near-ring (n — oo) expansion of the far-
region harmonic functions F' and G and let the n-th term be F,, and G,, where their behavior

as n — oo is F, G, = O(n?"+1/2).8 Then, upon using the dictionary (5.2.40), we must have
E, = cdlp, + O/, Gp = cd, + O(n*1/?), 7 — 00. (5.2.43)

Note that the lesson of the toy model in section 5.2.2 was that we have to take the limit r < R
first, and then match the small ‘rﬂ expansion. In the present case, the former corresponds to
matching only the leading O(n***t1/2) term in (5.2.43), while the latter corresponds to doing
this for each value of n.

For example, for the first (n = 0) term, we have

i 8z c
Fy= In—+0nY?), Go=—=
=R (n=7%) 0= 5

In principle, we can find F, and G, satisfying (5.2.43) for n arbitrarily large. If we could

+O(n1?). (5.2.44)

carry out the infinite sum F' = ) F, and G = ) G,, it would correspond to the exact

two-supertube solution defined in the entire R3.

5This expansion corresponds to (5.2.14) of the toy model in section 5.2.2.
"The behavior will be determined in the next section 5.2.5 and appendix 5.C.
8These n-th terms correspond to (5.2.20) of the toy model in section 5.2.2.
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5.2.5 The far region: the solution

In the far region, there is only one supertube (see figure 5.4) and we are instructed to find a

pair of harmonic functions (F, G) that has the monodromy

F F -1 2\ (F
- M = (5.2.45)
G G 0 -1 G
as 0 — o + 2m. In other words,

F — —F +2G, (5.2.46a)
G — -G, (5.2.46b)

Harmonic functions in toroidal coordinates

Let us explain now how to construct F' and G. We start with the ansatz for G since its

monodromy (5.2.46b) is simpler. If we assume the following separated form,

G(na g, ¢) = V17 — COos UT(H)S(U)V@% (5247)
the Laplace equation becomes
_ /2
86 = U= ) 50 (0
1 V') S"(0) 1

_ ! 2 "
P-1V(6) S T <4T(n)+2nT (n)+ (> —1)T (n))]

= 0. (5.2.48)

This can be reduced to the following three ordinary differential equations:

0=V"(¢) + m*V(¢), (5.2.49a)

0=5"(c) +k*S(0), (5.2.49b)
m2

0=(n*—=1T"(n)+2nT"(n) + <i — k2 - . 1) T(n), (5.2.49c¢)

with arbitrary constants m and k. The general solutions for these equations are given by

V(g) = e, (5.2.50a)
S(o) = e, (5.2.50b)
T(n) = Iﬂml/g(n) and QIZT',W(U), (5.2.50c)

where P/"(n) and Q}'(n) are the associated Legendre functions of the first and second kind,

respectively, with degree k and order m. If we require 27 periodicity along the ¢ (respectively
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o) direction, the constant m (respectively k) will take integer values. Because our configuration
is symmetric along ¢ (see figure 5.4), we should take m = 0. Then as we can easily see from
the form of the solutions (5.2.50), we have to choose k € Z + 1/2 in order for G to have the

monodromy (5.2.46b). So the solution for G is written as

= Vi —coso ™ (Ap—1/2Pi-1/2(n) + Bij—1/2Q-12(n)) , (5.2.51)

where k € Z +1/2 and Ajy_1/2, Bjg—1/2 are constants.

Let us turn to F. The monodromy (5.2.46a) motivates the following ansatz:

F(,0,6) = Vi —cosa (Un) = ZT()) S(@)V(9). (5.2.52)

Plugging this into the Laplace equation, we obtain
1 v ( ¢) S//

0=U(77)[

(1U + U () + (n® — 1)U”(17)> _ 2T(77)S’(0)]

P 1V 7 U(n) (o)
— g 1 V”(d)) S”( ) 1 / 2 "
21 | S +T(n)( 7o) + 207 + (7 = D)) | (5259

If we take T,.S and V to be the solutions of (5.2.48) given by (5.2.50), then the second line of
(5.2.53) vanishes and we are left with

0 =007 + 200" )+ (5~ 8 = S U = 2T (5.2.54)

This differential equation differs from (5.2.49c) in its inhomogeneous term. The solution of
(5.2.54) for a specific choice of T'(n) and S(o) can be easily found. We gave a few examples in
appendix 5.C.

Even though we have to solve (5.2.54) to get explicit harmonic functions, the monodromy
can be easily seen without solving it. Let us assume k € Z+1/2 as in (5.2.51) to get an overall
sign flip after going around the supertube (o — o + 2mw). We also set m = 0 because of the

symmetry of our configuration. Then the monodromy is exactly what we want (5.2.46a):
F——-F+2G as o0 — o+ 2m. (5.2.55)

If we choose a particular term in (5.2.42) with a specific value of n that we want to reproduce,
the value of k can be determined and the equation (5.2.54) can be solved. Here we will focus

on the first (n = 0) term in (5.2.43). The leading term in the large-|z| expansion of a'(2) is

1 n .
a) = ——= = | ——e /2, 5.2.56

where we have used the dictionary (5.2.40). Then we have to take k = —1/2 to reproduce this

as a limit of the 3D harmonic function G. We can easily show that this is also correct choice for
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apo and F. With this choice, T'(n) is also fixed and is given by a linear combination of Py(n)
and Qo(n).

The resulting harmonic functions can be written as

F(n.0.9) = i —cosae U ) - 26, (5.2.57)
G(n,0,¢) = n—cosae /*T(n), (5.2.58)
where
T(n) = AoPo(n) + BoQo(n) (5.2.59)
and U(n) is a solution of
(0 = DU" (n) + 20U () = =~ T(0). (5.2.60)

Ap and By are constant of integration which should be chosen from the boundary conditions.

It is easy to write down solutions explicitly if we impose boundary conditions at infinity,
(5.2.41), before solving (5.2.60). The boundary condition at infinity, (5.2.41), leads to the
condition

By =0, (5.2.61)
since Qo(n) diverges at 3D infinity.” Then (5.2.60) is easily solved to give

n+t

U(n) = CoPoln) + DoQo(n) — — Aot "

(5.2.62)
By imposing the same boundary condition at infinity on U(n), (5.2.41), we conclude that
Dy = 0. (5.2.63)

The final expression for the harmonic functions is

) C 1
F(n,o,¢) =+/n—coso e_w/Qle <7erO —1In % + io) , (5.2.64)
™ 0

G(n,0,¢) = /1 —cosoe /2 Ay, (5.2.65)

where we used Py(n) = 1.

9 More precisely, By # 0 would lead to divergence at 3D infinity and on the z3-axis. If ¢ # 0, as we can see
from (5.2.35), n = 1 corresponds to the points on the 2*-axis, (z', 2% 2*) = (0,0, Rcot ) Asn =1, Qrj-1/2
diverges as log(n — 1) while the prefactor is finite: /5 — cosa = v/2 [sin Z|. Therefore, Bo # 0 makes the harmonic

function diverge on the z3-axis and should be avoided.
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Matching

We have obtained the solutions in the near and far regions. Let us fix the coefficients Ag and
Cp by matching the two solutions in the intermediate region. This amounts to imposing the

conditions (5.2.44). The near-ring (7 — 00) expressions for F' and G are

Fo e o2l 4, (700 ~m 2y ia) . G e 24, (5.2.66)
T 1 Ag 2

Therefore, the conditions (5.2.44) read

bopemioz, (TC0 1My i) = B [ ez (1 AR
—Vine Ap T A ln2+zo —c 2R€ lnL ln2+za ,

(5.2.67)
—io/2 4 _ [ M —ic/2
Vne 0=2¢ R e .
These determine the constants to be
c i c 4R
Ag = ) Co=— In —. 5.2.68
= TRVt I (5:2:05)
The final expression for the far-region solution is
j < L 1
F(n,o,0) = v Vi —cosoe /% | —1n Lin+1) +io|, (5.2.69a)
T™V2R SR
G(n,o,0) = ¢ Vi —cosoe /2, (5.2.69b)

V2R
5.3 Physical properties of the solution

In the previous section, we obtained the explicit expression for the harmonic functions (F, G) in
(5.2.69) which describes the far-region behavior of a non-Abelian two-supertube configuration,
at the leading order in a perturbative expansion. In terms of these complex harmonic functions,
the real harmonic functions {V, K!, L;, M} can be expressed via (5.A.5). Here we discuss some

physical properties of this solution.

5.3.1 Geometry and charges

First, let us study the asymptotic form of the harmonic functions near 3D infinity, r = oo, which

corresponds to 7 = 1,0 = 0 in the toroidal coordinates. Using the relation (5.2.36), we find that

1 1
F:hF+QF+(9(2), G:hG+QG+O(2), (5.3.1)
T T T T
where
hp = hg =0, (5.3.2)
Qr =icvVRv, Qg=cVR (5.3.3)
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with
log —. (5.3.4)

The asymptotic form (5.3.1) is the same as that of the general codimension-3 harmonic func-
tion, (5.A.10). Note that, under our assumption (5.2.7),

1 4R
Rev = = logm > 1. (5.3.5)

The asymptotic monopole charges of the solution can be read off from the coefficients
of the 1/r terms in the harmonic functions, (5.3.3). The corresponding D-brane numbers
NO NT N, Ng can be determined from the relation (5.A.12). Explicitly,
2icv/Rv 2¢vVR

NO —iN' = . (5.3.6)

N3 +iN; =
gsls gSlS

The entropy of the single-center black hole with charges (5.3.3) can be computed using (5.A.13):

_ 87 |Im(QrQq)| _ 8lc[’R
9313 9313

S Rew. (5.3.7)

This is non-vanishing because of (5.3.5) and therefore our solution has the same asymptotic
charges as a black hole with a finite horizon area.

One peculiar thing about the harmonic functions (5.3.1) is that the constant terms always
vanish, hyr = hg = 0. This fact came from the harmonic analysis in the toroidal coordinates.
For example, in the ansatz for G, (5.2.51), the prefactor goes as /i — cos o ~ v/2R/r in the 3D
infinity limit 7 — 1,0 — 0. On the other hand, P _;/2(n = 1) = 1 and therefore G ~ 1/r and
does not have a constant term. We do not have the option of turning on Q;—1/2(n), because it
diverges on the z3-axis and should not be present (see footnote 9).

This means that this solution cannot have flat asymptotics. Instead, the asymptotic geom-
etry is always the attractor geometry [37] of a single-center black hole with D6, D4, D2 and
DO charges in the near-horizon limit. Indeed, the asymptotic form of the type IIA geometry is
easily seen from (2.1.24) to be

1 . F
dso str = *m(dt +w)? + Im(FG) (dr” 4 1°dQ3) + dzse; + Im (G> dzgy
r’ 5 o Qr
~——— 4t + Im < + d92> +dz2-r + Im <) dz2,, (5.3.8a
m(QrQg) (@rQc) (3 2 1567 g ) 175 ( )
F Qr

e2® — Im <) ~ Im <) . 5.3.8b
I Oc ( )

We see that this is AdSy x S? x T6 with radius Raqs, = Rg2 = VIm(QrQg).
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Asymptotic charge versus local charge

It is interesting to compare the asymptotic charges (5.3.3) with the one that we would obtain
from the behavior of fields near the supertubes. From (5.2.33) and (5.2.34), we find that the

behavior of the harmonic functions F, G near the supertubes is

zr~+L: F ~ const., G~ — log(z — L),

W\f
Wf 7T\Flog(z—i-L)

If a codimension-2 source at |z| = 0 has D-brane number densities n
length for D6(456789), D4(6789), D4(4567), and D2(45) branes, respectively, then the harmonic

(5.3.9)
z~—L: F~—

log(#+ L), G~

0 n' n? and ng per unit

functions will have the following logarithmic behavior:'"
V ~ —gslsn®log|z|, K' ~ —gglsntlog|z|,
° 1 ° & (5.3.11)
K3 ~ —g4ln3log|z|, Ly ~ —gslsnylog |z].
Or, in terms of the complex harmonic functions F, G,
F ~ —gsls(n® +ing) log |2], G ~ —gsls(n® —in') log |2|. (5.3.12)
Comparing this with (5.3.9), we see that the D-brane number densities are
c
z=+L": n®+ing =0, n® —in! = ,
27gslsV' L
Jals (5.3.13)
T S S B
27rgsls\/f 27Tgsls\/f

Because these charges are distributed over rings of radius approximately R, the total D-brane

numbers would be
icR ?
gsls\/z’ gsls\/E ‘

These are completely different from the charge we observe at infinity, (5.3.6).

N3 4+iN; = (5.3.14)

The reason why we obtained incorrect total charges (5.3.14) is that our solution is multi-
valued. In normal situations, the Gaussian surface on which we integrate fluxes to obtain
charges can be continuously deformed from asymptotic infinity to small surfaces enclosing local
charges. However, in the present case, the fields in our solution are multi-valued because of the

monodromies around the supertubes, and so are the fluxes. Another way of saying this is that

OFor example, if we array D6-branes at intervals of distance a, from (5.A.11)

95 : gsl 9l 100 121 L 0(a2) (5.3.10)

ven V z|2+na / 2V z|2+x2 a 2A

where A is a cutoff. By replacing a with 1/n°, we obtain (5.3.11).
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there is a branch cut (or disk) inside each of the two tubes, and the fluxes are discontinuous
across it. When we deform the Gaussian surface at infinity, we cannot shrink them to enclose
just the supertubes; all we can do is to deform it into two surfaces, each of which encloses one
entire branch disk with the supertube on its circumference. When we evaluate the flux integral
on the Gaussian surfaces, there will be contributions not just from the supertubes but also from
(the discontinuity in) the fluxes on the disks. The difference between (5.3.6) and (5.3.14) is due
to the contribution from the fluxes on the disks.

This situation of branch cuts carrying charge by the discontinuity in the fluxes across it
is an example of the so-called Cheshire charge that appears in the presence of vortices with
non-trivial monodromies called Alice strings [114, 115, 116]. For discussions on the realizations
of Alice strings in string theory, see [117, 118].

When integrating fluxes on Gaussian surfaces to compute charges in the presence of Chern-
Simons interactions (such as supergravity in 11, 10, and 5 dimensions), one must be careful
about different definitions of charges [79]. The relevant one here is the Page charge, which is
conserved, localized, quantized, and gauge-invariant under small gauge transformations. For
Page charge, we can freely deform a Gaussian surface unless they cross a charge source or a
branch cut for the fluxes. The discussion of charges in the paragraphs above is understood to
be using the Page charge. For the explicit form of the Page fluxes for D-brane charges, see, e.g.,
appendix A.1 and [36, Appendix D].

Angular momentum

By solving equation (5.A.8) for the harmonic functions given in (5.2.69), we find

|cf? [L|(n+1) AR
= — DIn———— +2In — 3.1
W= n+1)Iln SR + n‘L’ do, (5.3.15)

where the integration constant was fixed by requiring that w vanish at 7 = 1 (3D infinity). In

spherical polar coordinates (r,8, ), the asymptotic behavior of (5.3.15) as r — oo is

|c|? R? IL|\ sin®6 , 1

In four dimensions, the angular momentum is given by the (’)(%) term in the (¢,4) components
of the metric, which is nothing but the one-form w in our case. Therefore, we conclude that the

4D angular momentum J of our configuration vanishes:
J =0. (5.3.17)

Note that (5.3.16) means that the entire angular momentum vector vanishes, not just its z°

component.
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5.3.2 Closed timelike curves

2 = | were briefly discussed

No-CTC conditions for the one-modulus class solutions with 7 = 7
in section 5.A.1. For the explicit harmonic functions of the far-region solution (5.2.69), the

condition (5.A.9) gives

- |c|2(n — cos o) 8R lc|?n. S8R
Im(FG) = 1 ~ 1 > 3.1
m(FG) xR ML)~ 2rR MLy = (5:3.18)

for large n (near the supertube). This means that, in order not to have CTCs, we must restrict
the range of the variable 1 to be
8R
ns —. (5.3.19)
L]
Namely, the far-region solution has CTCs very near the tube.
Next, let us consider the positivity of the metric (2.1.29) along the supertube direction, ¢.
This gives
2 20,2
w? Rt 1)
——+ ———5d¢p” > 0. 5.3.20
Q—i_(n—cosa)2 ¢ = ( )

After plugging the explicit expression for w (5.3.15), we can rewrite (5.3.20) as
R?d¢?

2
(n — coso)? [ln 7|L‘g}%+l)}

x ((nQ _1) [m w“)r - [(n o HOHD oy ‘“%r) >0. (5321

8R 8R L |~

Near the ring (n — o0), the no-CTC condition (5.3.21) gives

2Rn |LIn
—2nln| — | In{ — | > .3.22
nD(]L\>n<8R >0, (5.3.22)

which is satisfied for
IZ] <1l<n< %.
2R |L|
The lower bound does not impose any condition on 7 because 7 > 1 by definition, and the upper
bound is the same as (5.3.19).
8R

So, we found that there are CTCs in the far-region solution very near the ring, n ~ 1ol

(5.3.23)

However, this does not represent a problem with our solution. It only indicates that, too much
near the ring, the description in terms of the far-region solution with a single ring breaks down
and we must instead switch to the near-region solution with two rings. Indeed, by the relation
(5.2.40), n ~ % corresponds to |z| ~ |L| in the near region, which is the distance scale at which
the single “effective” supertube must be resolved into two supertubes. This is exactly parallel to
the familiar story in the context of F-theory [119, 120]. In type IIB perturbative string theory,

the O7-plane has negative tension and its backreacted metric has a wrong signature very near
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its worldvolume. However, in F-theory, non-perturbative effects resolve the O7-plane into two
(p, q) 7-branes and replace the wrong-signature metric by a new metric with the correct signature
everywhere. The two (p, q) 7-branes have non-commuting monodromies of the SL(2,Z) duality
of type IIB string. We are seeing exactly the same phenomenon in a more involved situation
with circular supertubes.

To rigirously show that our solution is completely free from CTCs, we must construct the
exact solution by summing up the infinite perturbative series, because the perturbative solution
to any finite order will have CTCs (this is related to the limitation of the matching expansion
discussed below (5.2.20)). However, that is beyond the scope of the present thesis and we will

leave it as future research.

5.3.3 Bound or unbound?

Our 2-supertube configuration has three parameters: ¢ € C determines the overall amplitude of
the harmonic functions, L € C parametrizes the distance and the angle between two supertubes,
and R > 0 is the average radius of the two supertubes. The crucial question is: does this
represent a bound state or not?

In the case of codimension-3 solutions, allowed multi-center configurations are determined
by imposing equation (2.2.2). How this works is as follows. One first fixes the value of moduli
(the constant terms in H), the number of centers (say N), and the charges of each center
(TP, p=1,...,N). By plugging these data into (2.2.2), we can fix the inter-center distances
Zpq. After this, some parameters will remain unfixed. They parametrize the internal degrees
of freedom of the multi-center configuration, similar to the internal atomic motion inside a
molecule. When it is a bound state, it is not possible to take some centers infinitely far away
from the rest of the centers by tuning the parameters.

In our solution, the asymptotic moduli have already been fixed to the attractor value [37].
We have two codimension-2 supertube centers, and we know that the total monopole charges
are given by (Qr, Q¢). Actually, as we will discuss below, the monopole charges of each of the
two supertubes can be also determined if we fix the complex charges Qr, Qg. So, the question is
whether there is some free parameter left by tuning which we can make the two tubes infinitely
far apart. If so, then the configuration is unbound. Otherwise, it is bound.

Our solution contains five real parameters (R € R; ¢,L € C) and four of them can be
determined by fixing Qrg € C. So, we seem to be left with one free real parameter. For
example, we can take it to be |L|, the absolute value of the inter-tube distance parameter L. If
|L| could take an arbitrarily large value, the two tubes could be separated infinitely far away
from each other and thus the solution would be unbound. Physically, however, we expect that

we can constrain this parameter by requiring the absence of CTCs [54, 55|, and that the tubes
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cannot be infinitely separated. Such no-CTC analysis would be possible if we knew the exact
solution. The problem is that we only have a perturbative solution in the matching expansion.
As we saw in the previous section, perturbative solutions have apparent CTCs and are not
suitable for such analysis.

To work around this problem, we will instead make use of supertube physics to argue that
all the parameters are constrained and thus our non-Abelian solution represents a bound state.
Actually, we can fix all the parameters from this argument. It is not a rigorous argument, but

is robust enough to give convincing evidence that the solution represents a bound state.

5.3.4 An argument for a bound state

We know that the monodromy matrices of the two supertubes sitting at z = L are

( 1 0) ( 3 2>
M; = . M= . (5.3.24)
21 2 1

In appendix 5.B.2, we derived the monodromy matrix of the supertube produced by the su-
pertube transition of a general 1/4-BPS codimension-3 center. In the one-modulus class that
we are working in (7! = 72 =4, 73
I'= %(a, (b,b,¢),(d,d,a),—5), where a,b,c,d € Z, ad + bc = 0 and not all of a, b, ¢, d simulta-

neously vanish. Using the formulas (5.B.17) and (5.B.18), it is easy to see that the unique sets

any), a general 1/4-BPS codimension-3 center has charge

of charges that lead to supertubes with monodromy My are the ones with
My : c=d=0, M_;: a=—c, b=d, (5.3.25)

with the dipole charge ¢ = 2 for both cases. In terms of complex charges (cf. (5.A.12)),

Qr = 95;5 (c+id), Qa= 98255 (a—ib), (5.3.26)

the condition (5.3.25) can be written as:
My : Qrp =0, M_;,: QF = —Qg¢. (5.3.27)
The supertubes at z = £L must have come from two codimension-3 centers with charges

satisfying this condition, respectively.!!

From (5.3.3), the total charges of our two-supertube configuration is

(QF> = VR (ZV> . (5.3.28)
QG total 1

To be precise, by charges here, we mean Page charges discussed in section 5.3.1.
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Let us split this total charge into the ones for the z = +L supertube and the ones for the z = —L

(QF> _ (QF> +<QF> | (5.3.29)
6/ ota Qa/, Qo)

and require that the individual charges satisfy the condition (5.3.27), namely,

supertube as

Qrr =0, Qr-L=—Q¢-L- (5.3.30)

We immediately find

(QF> =c R( 0 ) (QF> :c\/?z< iy). (5.3.31)
Qa I 14w Qa . —iv

In our solution we have two codimension-2 supertubes, instead of codimension-3 centers. How-
ever, these supertubes must still carry the original monopole charges (5.3.31) dissolved into their

worldvolume. Using the relation (5.A.5), we can express (5.3.31) in terms of charges vectors as

1
Iyp = <Re QGa <_ Im QGa - ImQG: Re QF)? (Im QFa ImQF7 Re QG)v _5 Re QF) . (5332)
+L
The radii and angular momentum of the configuration are determined by the charges of
the centers. Then, we can study what the radii of the circular supertubes generated by the

supertube transition of codimension-3 centers with charges (5.3.31) are. This has been worked

out in appendix 5.B.3 and, using the formula (5.B.21), it is not difficult to show that the radii

20 1 4R\ 2
1+ =+ = (log— 12
*w*w?(("gm) i )

R|c|? 4R\?
2 _ 2 2 _ 2
RZ; = R|c|*|v|” = 2 <<10g |L|> +17 .

In deriving this, each supertube was assumed to be in isolation; the actual radii must be corrected

of the supertubes at z = £L are given by

R3? = Rlc(1 +iv)|* = R|c|?

)

(5.3.33)

by the interaction between the two tubes. On the other hand, the radii squared of the two tubes
in our actual solution are

(R+ReL)? = (R=+|L|cosl)?. (5.3.34)

As a preliminary, zeroth-order approximation, let us equate (5.3.33) and (5.3.34). It is not
difficult to show that, unless [ = —7, there is no solution that is consistent with the colliding
limit, % > 1. If | = -3, the two supertubes have the same radius and the condition that
(5.3.33) equals (5.3.34) gives

le| = VE_ VR : (5.3.35)

v (log%)2+%2
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The total charges (5.3.3) are, if we set ¢ = |c|e!?,

(Qr,Qc) = VR (iv,1) = R <z log A1t _ ”,w) . (5.3.36)
(log%)QwL%z 1Ll 2
Fixing these charges will fix v, R, |L|. So, everything is fixed.

In summary, consideration of supertube physics suggests that the configurational parameters
of our two-supertube solution are all fixed if we fix the asymptotic charges. In particular, it is
impossible to take the two tubes infinitely far apart. This is strong evidence that our solution
is a bound state. Having the same asymptotic charges as a black hole with a finite horizon,
it should represent a microstate of a genuine black hole. Our argument is not rigorous in the
sense that, in computing the supertube radii (5.3.33), we ignored the interaction between the
tubes. Therefore, precise values such as | = —7 may not be reliable. However, we expect
that it captures the essential physics and the conclusion remains valid even for more accurate

treatments.

5.3.5 A cancellation mechanism for angular momentum

In the last section, we pointed out the puzzling fact that the total angular momentum of
our solution vanishes, even though the two constituent supertubes are expected to carry non-
vanishing angular momentum. Here, we argue that this is due to cancellation between the
angular momentum J.j, carried by the two individual tubes and the angular momentum Jc,ogs

that comes from the electromagnetic crossing between the two tubes; namely,
Jiotal = JL + J_1 + Jeross = 0. (5337)

Just as in section 5.3.4, our argument will not be rigorous; we will see that (5.3.37) holds only
to the leading order in %. We expect that, in an exact treatment, (5.3.37) will hold as a precise
equality. However, this study is beyond the scope of this thesis.

In our solution, we have two round supertubes which were produced by the supertube
effect of codimension-3 centers with charges (5.3.31). In appendix 5.B.3, we computed the
angular momentum carried by a round supertube created from a general 1/4-BPS codimension-

3 center. Applying the formula (5.B.21) to the charges (5.3.31), it is not difficult to show that

the component of angular momentum along the axis of the tubes (z3-axis) is'?
R|c|?(1 + |v|> — 2Imv) R|c]?|v|?
Jp = — Jp=——"7—. 5.3.38
B 4G, ’ g 4Gy (5.3.38)

Now let us turn to Jeoss- For multi-center codimension-3 solutions with charge vectors

I'P, there is non-vanishing angular momentum coming from the crossing between electric and

2The sign was determined from the sign of ws = wy/R in (5.2.23) near z = +L using (5.2.33) and (5.2.34).
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magnetic fields given by [44]

1 X
Jcross = f E <Fp7 Pq> |qu|, Xpg = Xp — Xq- (5339)
4 h<g Pq

In the present case, we have supertubes with codimension 2, not 3. However, let us still apply
this formula using the tubes’ monopole charges (5.3.31) (or (5.3.32)) . This is not precise, but

must give a rough approximation of the crossing angular momentum for our solution. Using

(5.3.31) and (5.3.32), the component of the angular momentum along the tube axis is'?
1 R|c*(Imv — |v]?)
J =— (I, T')=— . 5.3.40
Ccross 2G4 < Ly L> 2G4 ( )
If we add (5.3.40) and (5.3.39), we get
R|c|?
Jp +J_p + Jeross = — 4|(;,‘4 . (5341)
This is much smaller than the individual terms:
Rlc)?p|?  Rlel*(log fy)?
T T 1 Jerone ~ T IZ] (5.3.42)

Gy Gy

because we are taking the limit ITR\ > 1. Therefore, we conclude that (5.3.37) holds to the
leading order in %l.

This is an interesting observation, suggesting that the vanishing of angular momentum in
our configuration is indeed due to cancellation between the “tube” angular momentum and the
“cross” angular momentum. Presumably, the nonzero reminder (5.3.41) gets canceled if we take
into account the contribution to the angular momentum arising from the interaction between
the two tubes (recall that we computed the angular momentum of supertubes as if they were in

isolation).

5.4 Future directions

We constructed our solution by taking the configuration that appeared in the SU(2) Seiberg-
Witten theory as the near-region solution. More specifically, it was a holomorphic fibration of a
genus-1 Riemann surface on a base of complex dimension 1. However, this is just an example,
so any other such holomorphic fibration will work. In particular, any F-theory solution can
be used for the near-region solution. In the standard F-theory background, the metric only
knows about the torus modulus 7, but in our case we also need the periods (ap,a) and richer
structure is expected. We can generalize this structure by replacing the torus fiber by a higher-

genus Riemann surface. For example, if one considers compactification of type IIA on T2 x K3,

1311 section 5.3.4, we argued that the physically allowed configuration in the limit \TR| > 1 has [ = — 7, which
means that the center of the z = £+ tubes are at x> = F|L|. This determines the sign of (5.3.40).
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the U-duality group becomes O(22,6;7Z), which contains the genus-2 modular group Sp(4,R).
Therefore, one can construct configuration of more general supertubes using a fibration of a
genus-2 Riemann surface over a base [121]. One can also consider generalizing the base. In the
near region the base is complex 1-dimensional, while in the far region it is real 3-dimensional. By
including an internal S' direction, one can extend the base to a complex 2-dimensional space,
where a supertube must appear as a complex curve around which there is a monodromy of the
fiber. In such a setup, one can use the power of complex analysis and it might help to construct
solutions on a real 3-dimensional base as the one we encountered in the current thesis.

It is known that the geometry of the Seiberg-Witten theory has a string theory realization
[119, 122, 123]. If one realizes the Seiberg-Witten curve as a configuration of F-theory 7-branes,
then the worldvolume theory of a probe D3-brane in that geometry is exactly the d = 4, N = 2
theory. One may wonder if our solution also represents a moduli space of some gauge theory
on a probe D-brane. However, such interpretation does not seem straightforward. The near-
region geometry looks very similar to F-theory configurations, but the 7-brane in the current
setup is not just a pure 7-brane but it has some worldvolume fluxes turned on to carry 5-brane
and 1-brane charges. Therefore, it is not immediately obvious what probe brane one should
take. Furthermore, although the near-region configuration preserves 16 supersymmetries, only
4 supersymmetries are preserved in the far region, as a four-charge black hole microstate. A
brane probe will most likely halve the supersymmetries in each region. So, the relevant theory
seems tobe d =3, N =1 (or d = 2, N' = 2) theory whose moduli space has a special locus, which
corresponds to the near region, at which supersymmetry is enhanced to N'=4 (or N' = 8). It
is interesting to investigate what the theory can be.

We developed techniques to construct solutions in the far and near regions separately and
connect them by a matching expansion. We worked out only first terms in the expansion, but
one can in principle carry out this to any order. In some situations one may be able to carry out
the infinite sum and obtain the exact solution in entire R3. Such exact solutions are important
because, as discussed below (5.2.20), there are features of the exact solution that are not visible
at any finite order. Such features include the precise structure of the monodromy and the metric
near the supertubes. They are crucial to analyze the no-CTC condition near the supertubes
and fix parameters of the solution, such as L and R. We hope to be able to report development
in that direction in near future.

In this chapter, we mainly considered the case where two of the three moduli are frozen.
It is interesting to investigate possible solutions in the case where this assumption is relaxed.
In appendix 5.A.2, we discussed the case where two moduli are dynamical. For example, it is
interesting to study how the solutions studied in the previous chapter fit in the formulation

developed in appendix 5.A.2. Relatedly, we assumed that in the near region the modulus 73
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is holomorphic. However, as far as supersymmetry is concerned, this is not necessary; the
only requirement is that the harmonic functions be written as a sum of holomorphic and anti-
holomorphic functions. It would be interesting to see if there are physically allowed solutions
for which 73 is not holomorphic.

Our configuration has the same asymptotic charge as a 4D black hole. 4D black holes are
often discussed in the context of the AdS3/CFT5y duality where the boundary CFT is the so-
called MSW CFT [4]. However, this CFT is not as well-understood as the D1-D5 CFT which
appears as the dual of black hole systems in 5D. It is interesting to see if our solutions can be
generalized to construct a microstate for 5D black holes; for recent work to relate microstates
of the MSW CFT and those of the D1-D5 CFT, see [34].

Appendix 5.A Constrained configurations

5.A.1 Configurations with only one modulus

In chapters 2 and 4, we have been discussing configurations for which all moduli 7/, I =1,2,3

can in principle be all non-trivial. Now let us focus on configurations with

=12 =4, 73 = arbitrary. (5.A.1)
Although being particular instances of the general solution, they can still describe a wide range
of physical configurations, such as ones with multiple centers with codimension 3 and 2. This
class of solutions provides a particularly nice setup for our purpose of constructing codimension-
2 solutions with non-Abelian monodromies. This class is nothing but a type IIA realization of
the solution called the SWIP solution in the literature [95]. Here we discuss some generalities
about this class.
Using the expression (2.1.27) for 7! in terms of harmonic functions, we see that the condition

(5.A.1) implies the following relations:'*

K3

K'=K?, Ly = Lo, Ly =V, M= 2’

(5.A.2)

leaving four independent harmonic functions. If we plug these expressions into (2.1.27), we

obtain ,
K°+ily F
3
=== 5.A.3
V_ikl G (5.A.3)
where we defined complex combinations
F=K3+iLy, G=V—iK" (5.A.4)

MFor simplicity, we set R; = I, fori =4,...,9.
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As we can see from (B.4), the pair (£) transforms as a (complex) doublet under SL(2,Z)s.
From the expression (5.A.3), it is obvious that 73 undergoes linear fractional transformation
under SL(2,Z)3 (although we already said this in (B.5) in general). The harmonic functions are

written in terms of them as

V=ReG, K'=K?=-ImG, K?=ReF,

1 (5.A.5)
Ly =Ly =1ImF, L3 = Re(, M:—iReF.
In terms of the complex quantities F, G, some previous formulas become
(H,H') = Re(FG' — GF"), (5.A.6)
Q = (Im FG)>. (5.A.7)
The equation for w, (2.1.19), reads
3 dw = Re (FdG — GdF) . (5.A.8)

Let us consider the general no-CTC conditions. Under the constraint (5.A.2), the condition
(2.1.28a) is automatically satisfied because Q@ = (Im F'G)? > 0. On the other hand, the condition
(2.1.28b) gives

m(FG) = |G*Tm 7 > 0. (5.A.9)

Here we have seen that switching off two moduli 7! and 72 leads to a substantial simplifica-
tion. In appendix 5.A.2, we discuss switching off one modulus 7!, which also leads to interesting
simplification.

In the one-modulus class we are discussing, the harmonic functions (2.2.1) can be rewritten
in terms of the complex harmonic function (5.A.4) as

P

F= hF‘i‘Z’x -t G = hG+Z\x—xpy (5.A.10)

where the complex quantities (hr, hg) and (Q%, QF,) are related to the real quantities k and T,
respectively, just as (F,G) are related to H via (5.A.5). We will refer to (Qr,Q¢g) as complex
charges.

Note that the components of the charge vector I' = {T'°, T/, T';,I'g} are related to the quan-
tized D-brane numbers by

FO — %NO l—J — gslsN] FI — gsls FO — gsls
2 ’ 2 ’ 2 4

where NO, N/, N;, Ny € Z (here we set the radii of the internal torus directions to Iy = v/ al).

(5.A.11)

Then using (5.A.5) and (5.A.11), we can see that they are related to quantized charges by

gsls ;03 Isls ,n0 . ar1
Qr = N° +iN Qg = NY —iNY),
P ER 2 2 ) (5.A.12)

N' = N2, Ni = Ny, NO = N, N3 = —Nj.

76



The black hole entropy (2.2.6) can be written as

g KL \Im(QFQg)\
B 9212

=27 N3Nt + Ny NY|. (5.A.13)

5.A.2 Configurations with only two moduli

Let us consider configurations with one modulus set to a trivial value. Specifically, we set
T =1, 72,73 : arbitrary. (5.A.14)

This choice fixes two harmonic functions; from (2.1.27), we find

(K2 +iL3)(K? +iLy)

Ly —2iM =
L= V _iK!

(5.A.15)

Only six harmonic functions are independent. In this case, the expression for the other moduli

723 simplifies to

K% +iL K3 +iL
2 3 3 2
= = —. 5.A.16
T O e (5.4.16)
Because 72 undergoes linear fractional transformation under SL(2,Z)2, we can set'®

K% +iL3 = HyFy, V — iK' = HyGy, (5.A.17)

where under SL(2,Z), the pair ( 522) transforms as a doublet while Hj is invariant. The quan-
tities Fy, Go, Ho are complex. With this choice (5.A.17), 72 is invariant under SL(2,Z)3 as it
should be. Similarly, because 73 undergoes linear fractional transformation under SL(2,Z)3, we
can set

K3 +iLy = H3F3, V — iK' = H3G3, (5.A.18)

where under SL(2,7Z)3 the pair ( g‘; ) transforms as a doublet while Hj is invariant. F3, G3, H3
are complex. Combining (5.A.17) and (5.A.18), we find that Ho = G35 and Hs = G2 and

therefore
K?4iLs=FGs, V—iK!'=GyGs,  K3+ily=GyF;, (5.A.19)
with which (5.A.15) becomes
— Ly — 2iM = F,Fj. (5.A.20)

The moduli (5.A.16) can now be written as

2 Fy 3_F3

S =2, A21

15 Actually, one could more generally set K2 + ils = > HFED, v — iK' = > HPGY) where 7"
Y, g y 3 i 12 Loy i 2 U2 Ggi)

! would not be invariant under SL(2,Z)s, unless the

transforms as a doublet under SL(2,Z), for all i. However, T

¢ summation contains only one term. For a different argument for (5.A.19), (5.A.20), see appendix B.
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In terms of Fy 3, G2 3, the harmonic functions are

V =ReGyG3, K!'=—-ImGyGs3, K?=ReF,G3, K?>=ReGyF3,
1 (5.A.22)
L1 = —Re F2F3, LQ = ImGQFg, L3 = ImFQGg, M = —5 ImF2F3.

Because we are parametrizing 6 real harmonic functions using 4 complex functions F» 3, G2 3,
there is redundancy: the transformation (522) — H(gb2 ), (gi) — H‘l(gz ), where H is a
complex function, leaves the harmonic functions invariant.

Let us consider the no-CTC conditions (2.1.28). The condition (2.1.28a) is automatically
satisfied because Q = (K'K3 + LoV)?(K'K? + L3V)?/((K')?2 +V?%)? > 0. The conditions
VZ; >0, (2.1.28b), become

VZy = K'K3 + LyV = |Go|* Im(F3G3) = |G2G3[* Tm 7 > 0,

i} (5.A.23)
VZ3 = K'K? + L3V = |G3* Im(F»,Gy) = |G2Gs[* Im 72 > 0.

Appendix 5.B Supertubes in the one-modulus class

In section 5.A.1, we discussed a class of harmonic solutions for which only one modulus, 7% = 7,
is turned on. (This class is nothing but a type IIA realization of the solution called the SWIP
solution in the literature [95].) Here let us study some properties of supertubes described in

this class.

5.B.1 Condition for a 1/4-BPS codimension-3 center

Let us consider a codimension-3 center in the harmonic solution and let the charge vector of the

center be I'. In terms of quantized charges, I' can be written as

SZS
- 92 (a, (b,b,¢), (d, d, a), —g) , (5.B.1)

r

where a,b,c,d € Z. Here, we took into account the constraint (5.A.2) and charge quantiza-
tion (5.A.11). In general, this center represents a 1/8-BPS center preserving 4 supercharges,
with entropy (see (5.A.13))

S =2n\/ju(T),  ju(T) = (ad + be)>. (5.B.2)

We would like to find the condition for the charge vector I' to represent a 1/4-BPS center

preserving 8 supercharges, which can undergo a supertube transition into a codimension-2 center.
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According to [75], a center with charge vector I' represents

four-charge 1/8-BPS center < j4(T") > 0.

i
three-charge 1/8-BPS center < j4(I') =0, 8—]4 #0
Zi
dj 0% 5.B.3
two-charge 1/4-BPS center < jy(I') = 8‘;; =0, 8xig4mj #0 ( )

. 2 . 3 .
_Oja _ 0%a 0,  O%a 20,
Ox;  Ox;0x; 0x;0x;0x),

1-charge 1/2-BPS center < j4(T")

where x; represents charges of D-branes which, in the present case, are a, b, ¢, d. Applying this

to the present case, we find that

four-charge 1/8-BPS center < ad + be # 0, (5.B.4a)
two-charge 1/4-BPS center < ad+bc=0, butnota=b=c=d=0 (5.B.4b)

In the present class of configurations satisfying (5.B.1), we cannot have a three-charge 1/8-BPS
center or a l-charge 1/2-BPS center. For the latter, for example, even if a = b = ¢ = 0 and
d # 0, it still represents a D2(45)-D2(67) system which is a two-charge 1/4-BPS system.

5.B.2 Puffed-up dipole charge for general 1/4-BPS codimension-3 center

If the 1/4-BPS system with charges satisfying (5.B.4b) polarizes into a supertube, what is its
dipole charge, or more precisely, the monodromy matrix around it? From (B.4), we see that the

combinations of charges that transform as doublets are
K3 —2M —L —L —d
= o [ € , " = ) (5.B.5)
% L a K? K! b
with ad + bc = 0. If we act with a general SL(2,Z) matrix, the first doublet transforms as
4 +
c . ) _ [« I} ¢\ _ [ac Ba 7 (5.B.6)
a a v 6) \a ~ve + da

where «,3,7,0 € Z and ad — By = 1. The second one transforms in the same way. Let us
require that the lower component of the first doublet in (5.B.5) vanishes in the transformed

frame, namely, o’ = vc + da = 0. If we write
a = xa, c = x¢, x = ged(a, c), (5.B.7)
so that a and ¢ are relatively prime, then it is clear that a’ = 0 for the following choice:

v =a, d=—c. (5.B.8)
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Note that the lower component of the second doublet in (5.B.5) also vanishes in the transformed

frame:

1
V= —yd +0b = —~ad — &b = ——(ad + bc) = 0 (5.B.9)

by the assumption of 1/4-BPSness, (5.B.4b). For the matrix (: ?) to be an SL(2,Z) matrix,
we must satisfy
ad — pBy=—ac—pa=1, (5.B.10)

but there always exist «, 8 € Z satisfying this, for a, ¢ are coprime.

In the frame dualized by the SL(2,7Z)3 matrix

U= (a B) (5.B.11)

satisfying (5.B.10), it is easy to show that the charges are
()= ()6 (o) ()= C) oe
To derive this, we used the fact that, if we write b, d as
b = yb, d = yd, y = ged(b, d), (5.B.13)
then the condition ad + bc = 0 implies that
(b,d) = +(a, —¢). (5.B.14)
(5.B.12) correspond to the following charges:

x units of D4(4567)+D0, y units of D2(45)+D2(67). (5.B.15)

As we can see from (3.2.2), both of these pairs must puff out into ns5(A4567), where A parametrizes

a closed curve in transverse directions. The SL(2,Z)s monodromy matrix for ns5(A4567) is

1 ¢
Ms5(0a567) = (0 1) (5.B.16)

where ¢ € Z is the dipole charge number (the number of NS5-branes). If we dualize this back,

the monodromy of the supertube in the original frame is

-~ 1 —qaé qé?
M = U™ Mygsasony)U = < M) (5.B.17)
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where we used (5.B.10). This result is symmetric under the exchange of (¢) and (_bd) as it

should be because, using (5.B.14), we can write this as
M= (1'+'?bd quA{> . (5.B.18)
—qb®> 1—gbd
Even in cases where some of a,b, ¢, d vanish, we can use the formulas (5.B.17) or (5.B.18).
If a =c=0, we can use (5.B.18). If b = d = 0, we can use (5.B.17). If a or ¢ vanishes, we
can use the rule ged(k,0) = k for k € Zp in (5.B.7). For example, if ¢ = 0, then = a and

a=1¢=0.

5.B.3 Round supertube

Let us compute the radius and the angular momentum of the round supertube that is created
from a 1/4-BPS center with general a, b, ¢, d satisfying ad + bc = 0.

If we T-dualize (5.B.15) along 7, S-dualize, T-dualize along 4567, and then finally S-dualize,
we obtain

x units of F1(7)+P(7), y units of F1(6)+P(6). (5.B.19)

This is the so-called FP system which is well-studied, rotated in the 67 plane. In the FP system
with F1(7) and P(7) with quantized charges Ng1, Np € Z, the radius R and angular momentum

J of a circular configuration are given by (see, e.g., [54]):

VNN Npi N,
R:ls$, J = F; L (5.B.20)

where ¢ € Z is the dipole charge number. For the rotated system (5.B.19), this becomes

2 2 2 .2

VR VAt S e (5.B.21)
q q

Following the duality chain back, we find this expression is again valid for the original frame

with general a,b,c,d € Z, ad + bc = 0.

Appendix 5.C Matching to higher order

In the main text, we worked out the matching between the far- and near-region solutions to the
leading order. In this appendix, we carry out the matching to higher order.
From the large-|z| expansion of the near-region solution (5.2.31), we find that the far-region

solution must have the following expansion:

4n+1

F=yi=cosa > e 5 (fu(m) = Zgaln)) (5.C.1a)
n=0

-4n+1

G =+\/n—coso Z e "7z %g,(n). (5.C.1b)
n=0
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The Laplace equations for F' and G lead to

(L=n*)fr = 2nfp +2n(2n +1) fn = %(4” + 1)gn, (5.C.2)

(1 —1°)gy — 2ng,, +2n(2n + 1)g, = 0.
The equation for g, is the standard Legendre differential equation while the one for f, is an
inhomogeneous Legendre differential equation of resonant type [124].

The general solution for g,(n) is given by

gn(n) = AQnPQn(n) + BQnQQn(n)a (503)

where Py, (n) is the Legendre polynomial and Q9,(n) is the Legendre function of the second
kind. As Qo,(n) diverges at 3D infinity and on the 23-axis (see footnote 9), we require B, = 0.

The expression for P,,(n) for some small values of n is

Po(n) =1, (5.C.4a)
Py(n) = %(3772 - 1), (5.C.4b)
Py(n) = %(35774 — 30n% + 3). (5.C.4c)

P, (n) are normalized so that Py, (1) = 1.
Having found g,, we can plug it into (5.C.2) to find f,. We have not been able to find a

simple explicit expression for f, that works for general n. We give the following integral form:
fn(n) = ConPan(n) + D2nQ2n(n)

i n n
= Ln(an+ 1) (Poalo) [ s Pon(6)Qn(s) — Qualo) [ s [Pu02) . 6.C5)
1 1
We have chosen the particular solution (the last term) to vanish at 3D infinity (n = 1). As
before, we require Da, = 0 so that f,, is finite at infinity. For given n, it is easy to carry out the

integral and the explicit expression for a few small values of n is

fo(n) =Co — Lo 1L (5.C.6a)
T ' 2

fi(n) = C2Pa(n) — %A2 <P2(n) In ’7; L, i(n —1)(7Tn + 1)) , (5.C.6b)

fa(n) = CyPy(n) — %A4 <P4(77) In 77‘; L + 9—16(77 — 1)(533n> + 113n* — 241y — 21)> . (5.C.6¢)

The undetermined coefficients Ag, and Cy, are fixed by matching the expansion (5.C.1)
order by order with the large-|z| expansion of the near-region solution given in (5.2.31). This
has been done for the leading n = 0 term in the main text in section 5.2.5; see (5.2.68). For
n = 1, this determines the coefficients to be

cL? i cL? 4R 1
Ay = ——— Co=———+ ———). 5.C.7
27 9(2R)52’ 27 T2(2R)2 (n L 2) (5.C.7)
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Chapter 6

Conclusions

In this thesis, we have shown that the codimension-2 harmonic solutions indeed exist and can
be regarded as microstates of black holes in some cases. On the other hand, we have not been
able to find a systematic prescription of constructing such codimension-2 solutions and typical
enough codimension-2 harmonic solutions which is able to explain the entropy of black holes.
However, this work can be thought of as a rudimentary, but important, step for searching
general codimension-2 harmonic solutions in the sense that their existence and implications are
explicitly confirmed for the first time in the context of black hole micro-physics.

We have mainly used supergravity in studying codimension-2 microstate solutions, but as we
mentioned typical microstates are expected to be involved with exotic branes in general. Since
supergravity can only capture behaviors of exotic branes locally, we need to extend our tool to,
e.g., double field theory [125, 126]. We hope we could pursue this direction in the future.

It would be also interesting to study whether the phenomena such as wall-crossing, split at-
tractor flow, etc. occurring for codimension-3 multi-center solutions will happen to codimension-
2 solutions we found. Another active direction of research is constructing general superstrata
solutions [30, 31, 32, 33, 34]. This is currently regarded as most promising candidate of mi-
crostates for three-charge black holes.

What would correspond to codimension-2 solutions in a dual gauge theory side? This is an
interesting question to ask, since we could possibly obtain some useful information of typical
codimension-2 solutions by studying the dual gauge theory.

We hope the works on codimension-2 solutions we have initiated could shed some light on

the understanding of microstructures of black holes.
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Appendix A

Convention

The reduction formulas for the 11D metric and three-form potential to type ITA supergravity

in 10D are
d2__§¢’d2 %(I’dll 02
S11 = € 8107Str +e ( T+ ]_) 5 (A 1)
As = C3 + By A dz'h.

The relation between the gauge-invariant RR field strength G, 12 and the RR potential C)41
is
Gp+2 = de+1 — H3 A Cpfl, (AQ)

where H3 = dB>. The higher forms Gg, Gg are related to Gy, G2 by
G6 = *G4, Gg = — %k GQ. (A3)

If we define the polyforms G =3 Gpi1, C =3 C), with p odd (even) for type IIA (IIB), the

relation (A.2) can be written more concisely as
G =dC — H3 A C = eP2d(e P20). (A.4)

We define the Hodge dual of a p-form w in d dimensions as

1

(*W)iyoig_, = ol €iremig_y’ TP Wiy (A.5)

#(dxt A - A dadr) = dz't A A dxidfpeil...id_pjl"'jp, (A.6)

1
(d—p)!
with

€01...(d—1) = —V 9, Ol = 4 (A.7)

-

84



A.1 The type ITA uplift and Page charges
The type ITA uplift of the harmonic solution is, including higher RR potentials (cf. (2.1.24)),
dS%IA,IO = —Q_I/QC%Q + QY2 datyg + QY2V ! (2 dags + Z5 'dagy + Zg ' dagy)

2 — Q32371

By = AJy,

Cy=-V20uQ ' dt + A,

Cy = (—Z;léz”t FAA Y gf) AL,

Cs = (uZ;lZglgt + AZABA+ A28 + A3 + Cl) A Ja A J3 + (cyclic),

Cy = (Qz—lv—%it FATAZABA + AVA2E3 £ AZABE £ ABALE? ¢ AT + W> ANJLA T A Js,

(A.1)
where
dt = dt + w, Q=V(Z-Vy?), AN =VvIK -7, (A.2)
and the one-forms (A, &!, 7, W) are related to the harmonic functions (V, K!, Ly, M) by
dA = x3dV, del = — x5 dK7, d¢; = — %3 dLy, dW = —2 %3 dM. (A.3)
The expressions for forms that are useful for computing the Page charge (4.1.49) are
e_BQC"1 = —VQ,uQ_lgt + A,
éﬂ%ﬂ3:_VQ*(MK[—ZZ;w&f+€]AJb
67320‘5 =0t (Z1 (K222 + K375 — ,uV) — NK2K3) dt + C1] A Ja A J3 + (cyclic),
1 1 ~
e 0| = |5 | Q- > (K'Z)(K7Z)) = pV (VM — SK'Ly | | dt+ W | AL A T2 A T,
Vo 2
L 1>J
(A4)

where X ‘p means the p-form part of the polyform X.
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Appendix B

Duality transformation of harmonic

functions

Because we will consider codimension-2 configurations with non-trivial U-duality monodromies,
it is useful to recall some facts about the U-duality group in the STU model, which is SL(2,Z); x
SL(2,Z)9 x SL(2,Z)3 [51].

In particular, it is important to understand how the U-duality acts on the harmonic functions.
Let us take SL(2,7Z);. This group is generated by (i) simultaneous T-duality transformations
on the 45 directions and (ii) the shift symmetry Bys — Bys + 1. Because we know the T-duality
action on 10D fields from the Buscher rule and their expression (2.1.24) in terms of harmonic
functions, it is easy to read off how the harmonic functions transform under (i). The same is

true for the B-shift symmetry (ii). The result is that (i) and (ii) are realized by the SL(2,Z);

0 -1 1 1
Mr_guality = ; Mp_gnitt = ; (B.1)
1 0 01

and that the eight harmonic functions transform as a direct sum of four doublets,

(V) ) () (o)

Since (i) and (ii) generate SL(2,Z)1, we conclude that, even for general transformations SL(2,Z);,

matrices

the harmonic functions transform as a collection of doublets (B.2).
Because all three SL(2,Z)’s are on the same footing, we can infer the transformation of
harmonic functions under general SL(2,R); transformation for I = 1,2,3. Under SL(2,R);, the

eight harmonic functions transform as a direct sum of four doublets:

(“) My (“) . M= (O‘I BI) € SL(2,R);, (B.3)
v v Y1 01
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where the vector () represents any of the pairs

K! 2M —L, —Lg
() (0 G (2) oemes o

One can show that the transformations (B.3) for different values of I commute, as they should
because they are associated with different tori.
It is not difficult to show that the transformation (B.3) of the harmonic functions means the

standard linear fractional transformation of the complexified Kahler moduli as:

I
_ — J#I), B.5
! yrml 4677 ’ ™ (A (B.5)

where there is no summation over I.
In the main text, we introduced vectors such as H = {V, K 'Ly, M }. To see the group

theory structure, it is more convenient to introduce the Sp(8,R) vector [127]

1
H=(HY Ha) = (MO, H Ho, Hy) = ﬁ(—v, —K' 2M, L) (B.6)

which transforms in the standard way under the four-dimensional electromagnetic Sp(8,R)
duality transformation of N' = 2 supergravity.
The skew product (H, H') defined in (2.1.18) can be written as

(H,H') = =H "My + HAH™ (B.7)

For a generic Sp(8,R) symplectic vector V = (VA Va) = (V°, V!, Vy, Vy), the quartic invariant
Ju(V) is given by

Ja(V) = =(VAVa)? +4> VIV IV, — VW + 4V vV, (B.8)
I<J

Using this, the quantity Q defined in (2.1.25) and rewritten in (2.1.26) can be expressed as
Q= Jy(H) = Ju(H). (B.9)

In this language, the most general U-duality transformation can be written as an 8 x 8 matrix
S € [SU(1,1)]2 = [SL(2,R)]? € Sp(8,R) [50, 127]

S =38TU, (B.10)
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where

0 m
f1 a1
01 Y1
S= & n , (B.11a)
ar —B
-7 0
B ay
B aq
02 72
09 Y2
B2 2
T= & i , (B.11b)
Q2 —P2
B2 a2
—-M d2
B2 az
d3 V3
d3 V3
d3 V3
u— | s . (B.11c)
as —Ps
B3 as
B3 as
—3 93

with ajér — Bryr = 1, I = 1,2,3. It is straightforward to show that the action of the matrix
(B.10) on the symplectic vector (H*,H,) reproduces the transformation law (B.3).
The transformation law (B.3) means that the eight harmonic functions transform under the

2 ® 2 ® 2 representation of [SL(2,7Z)]? as follows:
1

(HO, 1! Ho, Hr) = —=(—V,—K',2M, L)
V2 (B.12)

_ (H222; 7_‘122’7_‘212’7_[221; 77_[111; 7‘[211,7{121,7‘[112)

where H®¢ (a,b,c = 1,2) transforms as H®¢ — Za,7b/7c,(M1)a“,(Mg)bb/(Mg)Cc/”Ha/blcl. In terms
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of fHabc’

— (H,H'Y = H M), — HAH™ = €0,ay€b160€cr e HUPICH 2022 (B.13)

1
J4(H) = j4(H) = §€a1a26a3a46b1b26b3b4€clc365204Ha1b161Ha2b2627-[a3b363%a4b404. (B14)

A matrix M cannot be written as a product of two vectors u®, v in general but it can be
written as a sum of multiple vectors, M = =), ul Z Similarly, we must be able to decompose
the tensor H%¢ as

e = Zu“ P, (B.15)

a b
where uf, v;,

SL(2,Z)s, respectively.

and w{ are real functions transforming as doublets of SL(2,Z);, SL(2,Z)2, and

Let us consider the situation considered in appendix 5.A.2 where we set one of the moduli to

a trivial value: 71

= 4. Here we will give an alternative proof that the harmonic functions in this
case are given by (5.A.19), (5.A.20). As we can see in (5.A.16), the combinations of harmonic
functions that transform nicely under the remaining SL(2, Z)2 x SL(2, Z)3 are V —iK*, K?>+iLs,

K3 +iLy and —L; — 2iM. In terms of H®¢, they are

V— iK' = V2 (-1 + i1 = 1P,
K? +ily = V2 (= H" +iH'"?) = 12 (B.16)
K3 4 iLy = 2 (—H2! 1 12 = 42,

CLy - 2iM = V2 (—HE ) = 1,

The components of the tensor #* defined here are complex functions transforming as a 2 ® 2
of SL(2,Z)2 x SL(2,Z)3. Just as in (B.15), we can decompose it as

be _ Zvibmc7 (B].?)

where VP, W¢ are complex. However, this is inconsistent with the constraint (5.A.15), which
reads in terms of H% as

22 — 1292 (B.18)
unless the summation over ¢ in (B.17) has only one term. In that case,
ViK' =H? =VW? = K’+4ily=H"=V'W? (B.19)
K3 4ily=H2 = VW, —L; —2iM = H = VWL, '

. e F 1 F
This is the same as (5.A.19), (5.A.20) with the identification (VQ) = (G22 ) (%2) (G‘";)
It is interesting to see how the transformations of the harmonic functions known in the liter-

ature are embedded in the general [SL(2,Z)]3 transformation (B.3). We will consider the “gauge
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transformation” [64] and the “spectral flow transformation” [128] as such transformations. To
our knowledge, explicit [SL(2,Z)]® matrices for these transformations have not been explicitly
written down in the literature. For a discussion on how these transformations are embedded in
the U-duality group of the STU model from a different perspective, see [127].

The so-called “gauge transformation” [64] is defined as the following transformation of har-

monic functions:
V-V, KoK+,
1
L[ — L[ — C[JKCJKK — §C]JKCJCKV, (B.QO)
1 1 1
M — M — §CIL] + EC’UKCICJKK + EC[JKCICJCKV

It is easy to see that this transformation is a special case of general [SL(2,Z)]? transformations
(B.3) with

1
M = . I=1,2,3. (B.21)
0 1
This transformation shifts the B-field as
cta ca Aa
By — B J J. J3. B.22
2 2+R4R5 1+R6R7 2+R8R9 3 ( )

If one likes, the shift in By, (B.22), can be always undone by subtracting %Jl + %Jg +

il Js from By by hand, because subtracting from By the closed form J; affects none of the

RgRo
equations of motion or supersymmetry conditions. This is relevant especially in 5D solutions

(for which h® = 0) because, changing the asymptotic value of By as in (B.22) would mean to
change the asymptotic value of the Wilson loop along ¢ for a 5D gauge field that descends
from the M-theory three-form A,;;. Such a gauge transformation would not vanish at infinity
in 5D and is not allowed. So, one must always undo the shift (B.22) after doing the gauge
transformation (B.20). After this procedure, no gauge-invariant fields are changed under the
transformation (B.20) and it is just re-parametrization of harmonic functions {V, K', Ly, M}.

The “spectral flow transformation” is defined as [128]
1 1
Vo V4yK - §CIJK’YI'YJLK + gCUKW’YJ’YKM7
KT = KT — OVEy Ly + O K~y e M, (B.23)
L[—)L]—Q’UM, M—)M,

where C!/% = C; k. This transformation has been used extensively to generate new solutions

from known ones. It is easy to see that this transformation is a special case of general SL(2,7Z)

1 0
M; = . I=1,2,3 (B.24)
ol

transformations with
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