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Quantum annealing versus classical machine learning applied
to a simplified computational biology problem
Richard Y. Li1,2,3, Rosa Di Felice 2,4,5, Remo Rohs 1,2,4,6 and Daniel A. Lidar 1,3,4,7

Transcription factors regulate gene expression, but how these proteins recognize and specifically bind to their DNA targets is still
debated. Machine learning models are effective means to reveal interaction mechanisms. Here we studied the ability of a quantum
machine learning approach to classify and rank binding affinities. Using simplified data sets of a small number of DNA sequences
derived from actual binding affinity experiments, we trained a commercially available quantum annealer to classify and rank
transcription factor binding. The results were compared to state-of-the-art classical approaches for the same simplified data sets,
including simulated annealing, simulated quantum annealing, multiple linear regression, LASSO, and extreme gradient boosting.
Despite technological limitations, we find a slight advantage in classification performance and nearly equal ranking performance
using the quantum annealer for these fairly small training data sets. Thus, we propose that quantum annealing might be an
effective method to implement machine learning for certain computational biology problems.
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INTRODUCTION
Quantum computation has been the subject of intense scientific
scrutiny for its potential to solve certain fundamental problems,
such as factoring of integers1 or simulation of quantum systems,2,3

more efficiently than classical algorithms, by using unique
quantum phenomena including entanglement and tunneling.
More recently, there has been much interest in the potential of
quantum machine learning to outperform its classical counter-
parts.4–18 Although different implementations and models of
quantum computing are still in development, promising theore-
tical and experimental research indicates that quantum annealing
(QA),19 or adiabatic quantum optimization,20 may be capable of
providing advantages in solving classically-hard problems that are
of practical interest (for a review see ref. 21). QA is the only
paradigm of quantum computation that currently offers physical
implementations of a non-trivial size, namely the D-Wave (DW)
processors.22–24

The adiabatic theorem of quantum mechanics, which underlies
QA, implies that a physical system will remain in the ground state
if a given perturbation acts slowly enough and if there is a gap
between the ground state and the rest of the system’s energy
spectrum25 (Fig. 1a). To use the adiabatic theorem to solve
optimization problems, we can specify a beginning Hamiltonian,
HB, whose ground state is easy to find (typically a transverse field),
and a problem Hamiltonian, HP, that does not commute with HB

and whose ground state encodes the solution to the problem we
are seeking to optimize.26 We then interpolate from HB to HP by
defining the combined Hamiltonian H(s) = A(s)HB + B(s)HP, with
0≤ s = t/tf≤ 1, where A(s) and B(s) are, respectively, decreasing and
increasing smoothly and monotonically, t is time, and tf is the total

evolution, or annealing time. The adiabatic theorem ensures that
the ground state of the system at t = tf will give the desired
solution to the problem, provided the interpolation is sufficiently
slow, i.e., tf is large compared to the timescale set by the inverse of
the smallest ground state gap of H(s) and by dH(s)/ds27 (Fig. 1a).
When QA is implemented in a physical device, temperature and
other noise effects play an important role; thermal excitation and
relaxation cannot be neglected and affect performance.28–30

QA algorithms were implemented on the D-Wave Two X
(DW2X) processor installed at the Information Sciences Institute of
the University of Southern California. The problem Hamiltonians
that are used for DW can be described as Ising spin models with
tunable parameters.31 The Ising model assumes a graph G = (V, E)
composed of a set of vertices, V, and edges, E. Each of the N spins
is a binary variable located at a unique vertex. For the DW2X, N =
1098, the spins are represented by superconducting flux qubits,
and G is the so-called Chimera graph (see Supplementary Material,
Fig. S1). The problem, or Ising, Hamiltonian for this system can be
written as

HP ¼
X
i2V

hiσ
z
i þ

X
ði;jÞ2E

Jijσ
z
i σ

z
j ; (1)

where the local fields {hi} and couplings {Jij} define a problem
instance, and are programmable on the DW2X to within a few
percent Gaussian distributed error. The σz

i represent both binary
variables taking on values ±1, and the Pauli z-matrices. Given a
spin configuration σzi

� �
, HP is the total energy of the system. The

beginning Hamiltonian is a transverse magnetic field: HB ¼ P
i σ

x
i ,

where σx
i is the Pauli x-matrix acting on qubit i. The Ising

Hamiltonian can be easily transformed into a quadratic
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unconstrained binary optimization (QUBO) problem by applying
the following transformation: wi ¼ σzi þ1

2 2 f0; 1g. Problems sub-
mitted to DW are automatically scaled so that all hi and Jij values
lie between −1 and 1, and DW returns a set of spin values
σz
i ¼ ± 1

� �
that attempts to minimize the energy given by Eq. (1)

(a lower energy indicates better optimization). Much attention has
been paid to whether the DW devices are capable of delivering
quantum speedups.32–36 Here we sidestep this question and
instead use the DW2X as a physical device that implements QA for
the purpose of solving a problem in machine learning, while
focusing on performance measures other than speedup.
In order to probe the potential of a machine learning approach

that is based on QA, we have used the DW2X processor to solve
the simplified formulation of a biologically relevant problem:
transcription factor (TF)-DNA binding (see Fig. 1b). TFs are a key
component in the regulation of gene expression, yet the
mechanisms by which they recognize their functional binding
sites in a cell and thereby activate or repress transcription of target
genes are incompletely understood. Nucleotide sequence, flex-
ibility of both TFs and binding sites, the presence of cofactors,
cooperativity, and chromatin accessibility are all hallmarks that
affect the binding specificity of TFs in vivo.37,38 As a first step to
gaining insight into TF binding, it is valuable to understand the
intrinsic binding specificity of the TFs for DNA, which is optimally
gained from in vitro data. Widely used methods to gain such an
understanding and represent the DNA sequence preferences of
TFs are based on position weight matrices (PWM) or PWM-like
models.39 In the simplest of these models, the binding preference
of a TF for each of the four nucleotides of the DNA alphabet {A, C,
G, T} of a sequence of length L is represented as a 4 × L matrix.
Such models implicitly treat each position in the DNA sequence as

being independent, so that each element of the matrix can be
thought of as the contribution of a nucleotide at the correspond-
ing position to the overall binding affinity. Since the indepen-
dence of the nucleotide positions is in many cases a valid
approximation and also because of current restrictions on the size
of the DW processors, in this work we have used a model
consisting of single-nucleotide sequence features to show a proof
of principle of the use of machine learning via QA in biology.
Despite technological limitations of emerging quantum technol-
ogy, we concurrently demonstrate cases in which this form of
machine learning using QA outperforms classical machine
learning when training with small data sets. This is among the
very first successful applications of quantum hardware to a
realistic, though simplified problem in computational biology.

RESULTS
Experimental data sets on TF-DNA binding for a specific TF consist
of N sequences of fixed length L and N values that express a
measure of the binding affinity of the chosen TF to each sequence:
~xn; ynð Þf gNn¼1. In other words, the nth sequence is represented by

the vector ~xn ¼ xn;1; xn;2; ¼ ; xn;L
� �

with xn,j∈ {A, C, G, T}, for j = 1,
…, L, and yn is the corresponding measure of binding affinity. For
instance, ~xn may be ACAACTAA, with yn = 4.95. In this work we
used binding from three genomic-context protein binding
microarray (gcPBM) experiments, which use fluorescence intensity
as a measure of binding affinity,40 and two high-throughput
systematic evolution of ligands by exponential enrichment (HT-
SELEX)41–43 experiments, which report relative binding affinity.
After preprocessing, the three gcPBM data sets consisted of N ≈
1600 sequences of L = 10 base-pairs. The two HT-SELEX data sets

Fig. 1 Illustration of the principles and purpose of this work. a Top: Quantum versus classical adiabatic annealing processes. With quantum
annealing there is the possibility for the system state (red) to tunnel through a changing barrier (black) and arrive at the ground state; for
classical annealing, the system must rely on thermal fluctuations (temperature T> 0) to overcome any energy barriers. Bottom: Typical
spectrum of instantaneous energy eigenvalues during adiabatic quantum optimization. The ground state energy at s= 0 has a significant gap
to the next energy level. The speed at which the optimization can take place depends on the size of the minimum gap. b Using simplified data
sets of a small number of sequences derived from actual binding affinity experiments, we use D-Wave, a commercially available quantum
annealer, to classify and rank binding affinity preferences of a TF to DNA
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consisted of N ≈ 3200 and 1800 sequences of length L = 12 after
preprocessing (see Methods for a brief descrption of the
preprocessing procedure). We used the following one-hot
encoding to represent the sequence as a vector of binary
variables: A = 1000, C = 0100, G = 0010, T = 0001, and thus

transformed ~xn into a feature vector ~ϕn � ϕn;1; ¼ ;ϕn;4L

� �T
. This

encoding scheme44 was used so that all combinations of inclusion
and exclusion of the four nucleotides may be identified. Similar to
previous studies44–47 the goal of the present work is to identify
patterns within the data to qualitatively assess whether the
strength of a TF binding to a particular unseen sequence is above
a certain threshold (classification) or to rank sequences in terms of
binding affinity (ranking).
To identify conditions in which machine learning with existing

QA devices may be of use for studying a simplified biological
problem, we report results obtained by solving a learning protocol
with six different strategies: (i) an adiabatic quantum machine
learning approach formulated in refs. 4,5 (DW), (ii) simulated
annealing48 (SA) (using the implementation given in ref. 49), (iii)
simulated QA50 (SQA), a classical algorithm that can represent the
potential of a noiseless thermal quantum annealer, (iv) L2
regularized multiple linear regression (MLR), (v) Lasso51 and (vi)
a scalable machine learning tool known as XGBoost (XGB).52 DW,
SA and SQA are probabilistic approaches. SQA is a (classical) path
integral Monte Carlo method that has performed very similarly to
QA and captures some of its main advantages.53 MLR is a
deterministic method with a closed-form solution that returns the
weights that best minimize the objective function (defined below).
Lasso is a method for linear regression that uses an L1 norm (see
description of objective function below for more details). XGB uses
boosted trees and has been applied to a variety of machine
learning tasks in physics, natural language processing and ad-click
prediction (e.g., ref. 54).
Given a transformed feature vector ~ϕn that represents a DNA

sequence, the goal of each method is to compute a predicted

binding score f ~ϕn

� �
that best matches the actual binding score.

To carry out the task, an objective function must be optimized. The

objective function consists of two parts: a training loss function
and a regularization term that helps avoid overfitting. We may
write the objective function as

Objð~wÞ ¼ Rð~wÞ þ Ωð~wÞ; (2)

where R is the training loss, Ω is the regularization term, and ~w is
the set of feature weights to be determined by the six learning
algorithms: DW, SA, SQA, MLR, Lasso and XGB. The mean squared
error was used as the loss function for all six methods; namely,

Rð~wÞ ¼ P
n yn � f~w ~ϕn

� �� �2
, where yn is the actual binding score

of the nth sequence, and f~w ~ϕn

� �
is the predicted binding score.

The regularization term was Ωð~wÞ ¼ λ ~wk k1 for DW, SA, SQA and
Lasso, Ωð~wÞ ¼ λ ~wk k22 for MLR, and Ωð~wÞ ¼ γSþ 1

2 λ
PS

j¼1 w
2
j for

XGB, where the �k k1 norm is the number of 1’s (Hamming weight),
the �k k22 norm is the square of the Euclidean norm, and S is the
number of leaves.52 The calibration of the hyper-parameters λ, γ
and S is discussed below. The loss function should be minimized
and the regularization term generally controls model complexity
by penalizing complicated models; the strength of the regulariza-
tion was determined using a 100-fold Monte Carlo cross-
validation. All six methods assume a linear model for the predicted

binding affinity, i.e., f~w ~ϕn

� �
¼ ~wT~ϕn ¼

P
j wjϕn;j . DW, SA and SQA

return binary weights and are probabilistic methods, that is, they
return a distribution of weights with different energies [values of
the Hamiltonian in Eq. (1)]. In order to utilize the distribution of
weights returned, while not sacrificing the discrete nature of the
QUBO approach, up to twenty of the best weights were averaged
(see Supplementary Material, Sec. SID for a description of how
excited-state solutions were included and Fig. S2 for an example
of the decrease in the objective function).
Our computational procedure consisted of three main phases:

(1) calibration of hyper-parameters, (2) training, and (3) testing
(Fig. 2). About 10% of the data were held out for testing during the
testing phase ('test data' or DTEST); these test data were not seen
during calibration and training stages. Calibration and training

Fig. 2 Schematic overview of the data handling procedure. About 10% of the data were held out for testing (DTEST) and were unseen during
the calibration and training phases. The remaining 90% of the data were used as calibration and training (DTRAIN). For DW, SA, and MLR, in the
calibration step, hyper-parameter λ was tuned using a 100-fold Monte Carlo cross-validation. For XGB, several other hyper-parameters were
tuned (see Methods for a list). During the training step, a procedure similar to bagging (bootstrap aggregating) was used by randomly
sampling a 2% and 10% replacement of the data 50 times to give 50 training instances. In the testing step, the area under the precision-recall
curve (AUPRC) of the best performing weights for each of the 50 training instances was evaluated on DTEST, which was unseen during training
and calibration, to evaluate generalization of classification performance. The calibration, training, and testing procedure was identical for
ranking tasks, with the exception that Kendall’s τ was used as the metric of performance instead of the AUPRC
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were carried out using the remaining 90% of the data ('training
data' or DTRAIN). Due to the discrete nature of the weights returned
in the QUBO approach, as well as technological limitations of the
DW2X device, calibration of hyper-parameter λ was carried out by
repeatedly sampling a small number of sequences, about 2% and
10% of DTRAIN, corresponding to about 30 and 150 sequences,
respectively. In particular, in the calibration phase we determined
the hyper-parameters by using 100-fold Monte Carlo (or split and
shuffle) cross-validation with training splits of 2% and 10% of the
training data, varying λ from 2−3 to 26. Monte Carlo cross-
validation was used so that hyper-parameters would be tuned on
a similar number of sequences as used in the training phase (in
contrast, n-fold cross-validation trains on n�1

n ´ 100% of the data).
The same calibration procedure was applied to tune λ for SA, SQA,
MLR and Lasso: the resulting values of λ are listed in the
Supplementary Material, Tables S1 and S2. In order to demon-
strate good performance for XGB, γ, S, and several additional
parameters needed to be tuned (see Methods). In the training
phase we used a bagging (bootstrap aggregating) procedure,55

randomly sampling with replacement 2% and 10% of the training
data, namely about 30 and 150 sequences for the gcPBM data
sets. Each subset of about 30 or 150 sequences formed a training
'instance', and the mapping of a subset of data to the hi and Jij
seen by DW and SA is given in the Methods. Each learning

approach (DW, SA, SQA, MLR, Lasso and XGB) was trained on the
same set of instances. To collect statistics, 50 instances were
randomly selected with replacement, for each training size. In the
testing phase, the predictive power was assessed in terms of
classification performance (the mean area under the precision-
recall curve or AUPRC) and ranking performance (the median
Kendall’s τ) on the test data unseen during calibration and training
phases. AUPRC is a measure of classification performance that may
help discern between similar algorithms when there is a high
degree of class imbalance; i.e., when the data set contains many
more false labels than true labels.56 Kendall’s τ is a rank correlation
coefficient that counts all mismatches equally.57 Additional
methodological details are given in Methods and in the
Supplementary Material, Sec. SI.

Performance on gcPBM Data
To quantify the relative performance of the algorithms in
capturing DNA–protein binding preferences, we first present
results for high-quality gcPBM40 data of three TFs from the basic
helix-loop-helix (bHLH) family: the Mad1/Max heterodimer (‘Mad’),
the Max homodimer (‘Max’), and the c-Myc/Max heterodimer
(‘Myc’).44 bHLH proteins typically recognize and bind as dimers to
the enhancer box (E-box), which is of the form CANNTG, where N
denotes any of the four nucleotides (A, C, G, or T). Mad, Max, and

Fig. 3 Quantitative performance on held-out experimental test data set of two different types of tasks for three high-quality gcPBM data sets.
a The mean AUPRC for Mad, Max, and Myc plotted versus threshold at certain threshold percentiles of the data, when training with 2% of the
data (left) and 10% of the data (right). In both cases 50 instances were randomly selected for training and performance of the 50 trained
weights is evaluated on the same held-out test set. Error bars are the standard deviations. b Boxplot of Kendall’s τ on held-out test data set.
Red ‘+’ indicate outliers, gray line represents the median. The bottom and top edges of the box represent the 25th and 75th percentiles,
respectively

Quantum annealing versus classical machine learning applied...
RY Li et al.

4

npj Quantum Information (2018)  14 Published in partnership with The University of New South Wales



Myc are part of a gene network that controls transcription in cells;
a mutation of Myc has been associated with many forms of
cancer.58 For the work here, these three data sets were modified
to consist of about 1600 sequences of ten base pairs (bp) in length
with the E-box located at the central 6 bp.
In Fig. 3 we present the AUPRC and Kendall’s τ obtained with

the different algorithms when training with about 30 (2%) and 150
(10%) sequences. To compute the AUPRC, a threshold of the data
was introduced: for a threshold at the pth percentile of the data, p
% of the total number of sequences have binding affinities below
the threshold and were set as negatives ('false'), and the (1 − p)%
of the sequences that have binding affinities above the threshold
were set as positive ('true'); see Supplementary Material, Sec. SID
for a more detailed explanation of the procedure to threshold the
data and to generate and calculate the AUPRC. During the
calibration phase, we tuned hyper-parameters with a single
threshold at the 80th percentile of the data, and during the
testing phase we evaluated performance between the 70th and
the 99th percentiles of the data. Kendall’s τ was evaluated
between the predicted and measured binding affinity. A higher
AUPRC indicates a better ability to correctly classify sequences
that would be strongly bound by a TF, and a higher τ indicates a
better ability to accurately rank the binding affinities for different
sequences.
For the AUPRC, when training on instances with 2% of the data

(left column in Fig. 3a), DW, SA and SQA perform very similarly,
with DW slightly outperforming SA on the Myc data, and are
somewhat better than MLR at the 70th and 80th percentiles. MLR
tends to do better at the higher thresholds: this behavior could be
affected by the fact that, during the calibration phase, we selected
the λ that gave the best performance at the 80th percentile. Lasso,
which uses the same L1 norm as DW, SA, and SQA, performs better
than XGB but worse than the other methods. XGB, which has been
successfully applied to a growing number of learning tasks, does
poorly with small training sizes. When training with 10% of the
data (right column in Fig. 3a), the trends of relative classification
performance are quite different. XGB and MLR perform very
similarly, though XGB does slightly better for the Max data set. DW
tends to perform better than SA and SQA, especially at higher
thresholds. DW’s mean AUPRC is normally worse than MLR and
XGB’s, though there is overlap between the error bars. SA and SQA
generally perform worse than the other methods, but not
conspicuously so. A more thorough analysis of DW’s classification
performance in comparison to SA and SQA with the same
problem parameters is reported in the Supplementary Material,
Figs. S3–S6 and related text in Sec. SIIA. Lasso’s performance is in
general comparable to DW, SA, and SQA and generally seems to
perform the worst with 10% of training data.
For Kendall’s τ (Fig. 3b), Lasso and XGB’s performance are the

least favorable when training with 2% of the data. SQA generally
performs the best over the three TFs, though MLR’s median τ is
marginally greater than SQA’s for Mad. SA’s performance is very
close to SQA’s and DW’s performance is slightly worse than the
other two annealing schemes, though generally better than the
typical machine learning algorithms. With 10% of the data, DW
performs the worst; SA and SQA perform very similarly, with SQA
being slightly better on two of the three data sets; MLR and Lasso
perform very similarly, though MLR looks slightly better; and XGB
performs the best.
The fact that for Mad and Max with 2% of the training data

there is very little variation in Kendall’s τ for SA and SQA (and to a
lesser extent, DW), is a consequence of the choice of hyper-
parameters. The specific values of the hyper-parameters that gave
optimal value of Kendall’s τ during the calibration phase are
shown in Supplementary Material, Table S2, but we note here that
the value of λ is quite high. λ controls the model complexity and is
closely related to the bias-variance tradeoff, which states that it is
impossible to simultaneously minimize errors from both bias and

variance. A large value of λ introduces a large bias;59 consequently,
for the cases where there is no or little variance, SA and SQA are
essentially extracting the same pattern from all the training data.
For the ranking tasks shown here with training on about
30 sequences, this gives the best performance for SA and SQA.
It may be unsurprising, however, that a large value of λ be
appropriate for small data sets; over-fitting may be a greater
concern with smaller amounts of data.
The results presented in Fig. 3 suggest a precise case where

current quantum technology may offer slight performance
advantages relative to classical computational approaches; that
is, when there is only a small amount of experimental training data
available (about 30 sequences in our specific cases). In both
classification and ranking tasks, DW performs comparably to SA
and SQA and better than Lasso and XGB. MLR performs
comparably with the annealing methods, but its error bars are
much larger, indicating that its performance is less stable and
more dependent on the training data. Moreover, the similarity
between DW and SQA suggests that for small training sizes DW is
functioning very nearly like a noiseless quantum annealer as
captured by quantum Monte Carlo simulations. On a larger size of
the training data DW’s performance decreases relative to the
classical approaches for all three TFs, though results are still
competitive. The decrease in the performance of all annealing
methods (DW, SA, and SQA) seems to indicate a limitation on
using methods with discrete weights, which enforce simpler
models. Such models may be more advantageous with a small
number of training samples because they prevent overfitting.
However, with larger amounts of training data, a simpler model
may not adequately learn the variation within the data and hence
suffer worse performance. Nevertheless, the fact that Lasso uses
the same L1 norm as the annealing methods (i.e., DW, SA and
SQA), yet does not perform as well, indicates an advantage of such
annealing methods when training with a small number of
sequences. This is consistent with the finding reported in ref. 18.

Weight logos from feature weights
Since the one-hot encoding was used with a linear model to
represent DNA sequence, the weights returned by DW, SA, and
MLR reflect the relative importance of the corresponding
nucleotide at a position in the sequence for the binding score.
The magnitude of these feature weights for DW, SA, and MLR can
be visualized as a 'weight logo' and are presented in Fig. 4 for the
Mad, Max, and Myc gcPBM data sets. XGB, which finds an
ensemble of trees, does not assign weights to individual
nucleotides and hence does not easily lend itself to visualization.
Similar plots for SQA and Lasso are shown in the Supplementary
Material Sec. SIIB and Fig. S7. The weight logos show the
contribution of nucleotides at particular positions to the strength
of binding. The contribution of a nucleotide at a particular position
in the sequence is represented by its height; nucleotides with the
smallest weights are at the bottom and those with the largest
weights are at the top. These weight logos in Fig. 4 were obtained
by averaging the weights from the 50 training instances of the
same number of sequences with the AUPRC as the objective. In
other words, the logo represents the average of the weights that
give the AUPRCs shown in Fig. 3a. DW, SA, and MLR all perform
very similarly and give weight logos that are in good agreement
with the expected consensus sequence, CANNTG. This demon-
strates that all methods are able to capture biologically relevant
information.

Performance on HT-SELEX Data
HT-SELEX41,43 is a method for investigating the relative binding
affinity of a TF for a particular sequence of DNA, an in vitro
technique complementary to PBM. We present results for the Max
homodimer and TCF4, another member of the bHLH family with
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consensus sequence CANNTG, using data from HT-SELEX experi-
ments.47 The Max data set consisted of 3200 sequences of 12 bp in
length, and the TCF4 data set was modified to contain
1800 sequences of 12 bp in length.
The procedure for splitting each data set into test and training

data was similar to that described earlier for the gcPBM data sets
(see Fig. 2). There was no overlap between training and testing
data. The quantitative results for classification and ranking
performance of the six different machine learning approaches
are summarized in Fig. 5a,b, and the weight logos for DW, SA, and
MLR in Fig. 5c. As with the gcPBM data, when training with about
30 sequences (1% of training data for Max and 2% of the training
data for TCF4), DW, SA and SQA exhibit the best performance on
the test data set. MLR matches the annealing protocols with a
threshold at the 70th and 80th percentile of the data, but does
worse at the higher percentiles of the data (left column in Fig. 5a,
b). Lasso and XGB have the poorest performance. When training
with about 150 (5% of training data for Max and 10% of the
training data for TCF4) sequences, XGB performs very well, as on
the gcPBM data sets with more training data, and MLR does well
on the Max data set but rather poorly on the TCF4 data set; Lasso
is comparable to MLR. DW’s performance is worse than the best
performing method (XGB), but comparable to the other methods
(right column in Fig. 5,b). XGB’s performance on the TCF4 data set
is much better than the other methods, except when thresholding
at the 99th percentile.
In terms of Kendall’s τ (Fig. 5a,b, bottom), all methods have

similar performance when training with about 30 sequences, with
the exception of XGB which does not do as well on the Max data
set. When training with about 150 sequences, XGB gives the best
ranking performance, as it did with the gcPBM data, and the other
methods all perform similarly. Finally, the weight logos in Fig. 5c
indicate that DW, SA, and MLR capture patterns in the data that
give good agreement with the expected consensus sequence. The
weight logos for the Max and TCF4 HT-SELEX data sets from SQA
and Lasso are reported in Supplementary Material Fig. S8.

DISCUSSION
In this work we have explored the possibility of using a machine
learning algorithm based on QA to solve a simplified but actual

biological problem, the classification and ranking of TF-DNA
binding events. This is the first application of QA to real biological
data.
We have shown that DW performs comparably or slightly better

than classical counterparts for classification when the training size
is small, and competitively for ranking tasks. This trend is
consistent with results on older sets of gcPBM and HT-SELEX
data for various TFs, which are reported in Supplementary
Material, Sec. SIII, Figs. S9–S14. Moreover, these results are
consistent with a similar approach for the Higgs particle
classification problem,18 where DW and SA both outperformed
XGB with small training sizes, with a slight occasional advantage
for DW over SA. This robustness across completely different
application domains suggests that these findings represent real
present-day advantages of annealing approaches over traditional
machine learning in the setting of small-size training data. In areas
of research where data sets with a small number of relevant
samples may be more common, a QUBO approach such as QA
realized via DW may be the algorithm of choice. On the other
hand, when data is plentiful, some of the other state-of-the-art
classical algorithms may be a better choice.
We have also demonstrated that the feature weights obtained

by DW reflect biological knowledge; the weight logos for the TF-
DNA binding data from gcPBM and HT-SELEX are consistent with
the consensus binding site. This gives some confidence that QA is
learning relevant biological patterns from the data. Yet, the
approach is not without limitations. One limitation comes from
the use of a single-nucleotide model to encode the DNA binding
sites. In fact, we implicitly used a simple model that assumes
independence between positions in the sequence. This is not
always a valid approximation; higher-order 'k-mer' features or
other 'shape' features that account for interdependencies
between nucleotide positions may enhance model preci-
sion.44,45,47,60,61 We are limited to this simple model because of
major technological constraints on the number of available qubits,
which limits the number of features that can be used and thus the
length of sequences that can be examined. The DW2X processor
used for this study has 1098 functional qubits, but because of a
sparse connectivity between qubits, only 40 or so features can
actually be implemented on the device and in our study (see
Supplementary Material, Sec. SIA for more details). Another serious

Fig. 4 Comparison of feature weights visualized as weight logos for DW, SA, and MLR. Weights represent the relative importance of a
nucleotide at each position for the binding affinity. These weight logos were obtained using the Mad, Max, and Myc gcPBM data sets when
training with the AUPRC as the objective
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limitation is the use of discrete weights. Discrete weights seem to
be advantageous with a small number of training samples, as they
enforce simpler models and are less prone to overfitting. However,
as the amount of training data increases, these simpler models do
not fare as well as some of the classical methods, which allow for
greater numerical precision in the weights.

Despite these limitations, it is encouraging to see competitive
performance for the simplified problem we have studied here.
Although the performance advantage from annealing-type
optimizers makes it difficult to solely attribute the performance
to quantumness, this work may inspire future investigations into
the power of QA devices. As quantum technology continues to

Fig. 5 Summary of results for HT-SELEX data. a Comparison of the AUPRC (top) and Kendall’s τ (bottom) when training with 1% of the data
(left) and 5% of the data (right) for Max. Error bars are standard deviations over 50 instances. b Comparison of the AUPRC (top) and Kendall’s τ
(bottom) when training with 2% of the data (left) and 5% of the data (right) for TCF4. c Weight logos for Max and TCF4 from training with the
AUPRC as the objective
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develop and advance, it is possible that some of the practical
limitations will be addressed and the range of problems that can
be explored will be expanded.

METHODS
QUBO mapping of TF–DNA binding problem
After processing the experimental data sets of N sequences of fixed length
L and a measure of the binding affinity, we obtained the restricted data
sets to which we applied six different machine learning strategies. Data

sets were formulated as ~ϕn; yn
� �n oN

n¼1
, where ~ϕn � ϕn;1; ¼ ;ϕn;4L

� �T
is

the transformed feature vector, and yn is the binding affinity. Solving for
the simplest model is equivalent to finding a vector of binary weights
~w ¼ w1; ¼ ;w4Lð Þ, where wi∈ {0, 1}, such that the quantity

δ ¼
XN
n¼1

yn � ~wT~ϕn

� �2
(3)

is minimized. The problem can then be specified as finding a ~wopt such
that

~wopt ¼ argmin
w

XN
n¼1

yn � ~wT~ϕn

� �2
þλ ~wk k1; (4)

where λ is a regularization (penalty) term included to prevent overfitting
and ~wk k1¼

P
m wm is the number of non-zero weights. To represent the

above as an Ising problem, note that we can rewrite Eq. (4) as follows:

~wopt ¼ argmin
~w

PN
n¼1

yn � ~wT~ϕn

� �2
þλ

P4L
m¼1

wm

¼ argmin
~w

P
n

y2n � 2yn~wT~ϕn þ ~wT~ϕn
~ϕT
n~w

� �
þ λ

P4L
m¼1

wm

¼ argmin
~w

~wTQ~w þ ~wTk;

(5)

where

Q ¼ P
n

~ϕn
~ϕT
n ;Qi;j ¼

P
n
ϕn;iϕn;j

k ¼ λ1� 2
P
n
yn~ϕn; ki ¼ λ� 2

P
n
ynϕn;i :

(6)

Constants that do not affect the optimization are dropped in the latter
step. This procedure demonstrates that the problem of TF-DNA binding
can be formulated as a QUBO problem, which in turn can easily be
transformed into an Ising Hamiltonian of the form in Eq. (1) and passed to
DW. The data normalization procedure is described in Supplementary
Material, Sec. SIC.

Technical details of algorithms
In order to solve practical problems of interest on DW, an embedding
procedure must be used (see Supplementary Material, Sec. SIA). Some
additional preprocessing was also performed for DW and SA to ensure that
all response values were feasible (see Supplementary Material, Sec. SIC).
DW, SA, SQA, MLR, Lasso and XGB were run on the same set of instances
for assessment of the quantum annealer on the chosen problem. The
experimental quantum processor, DW2X, was designed and built by D-
Wave Systems, Inc. For each instance a total of 10,000 anneals ('runs') were
collected from the processor, run with an annealing time of 20 μs. SA and
SQA are classical analogs of QA that perform annealing on a classical and
path integral Monte Carlo simulation of the Ising spin glass, respectively.
SA and SQA were run with 10,000 sweeps (each sweep is an update of all
spins) per repetition (or 'anneals') with an initial inverse temperature of 0.1
and a final inverse temperature of 3, for a total of 10,000 repetitions. The
SA code was adapted from ref. 49, and an in-house version of SQA was
used. MLR is a widely used technique to minimize the loss function shown
in Eq. (4), with the convex penalty term λ ~wk k22 instead of the linear penalty
term. Lasso has the linear penalty term;51 XGB uses boosted trees.52 The
weights ~w returned by MLR, Lasso and XGB are real-valued, whereas the
weights returned by DW, SA and SQA (which solve a QUBO/Ising problem)
are binary. In addition, DW, SA and SQA are probabilistic, meaning that a
distribution of weights with different energies [the value of HP in Eq. (1)]
are returned. Up to 20 of the lowest energy weights were included for both
DW, SA and SQA (see Supplementary Material, Sec. SID for more details).
The lower the energy, the better the particular solution is at minimizing Eq. (4).

In contrast, MLR, Lasso and XGB are deterministic and return a single
solution.
In the calibration phase, only one hyper-parameter, λ was tuned for DW,

SA, SQA, MLR and Lasso. All five methods were tuned separately for both
classification and ranking tasks, resulting in different optimal λ for each
method (see Supplementary Material Tables S2 and S3 for final values of λ).
With an older data set we varied both the number of sweeps for SA and
the value of λ but results were not significantly different; hence, here we
only vary λ for SA. SA also has various other parameters that are related to
the algorithm itself, including number of runs, initial and final temperature,
and the cooling schedule, all of which affect the optimization performance.
These parameters were not tuned. Similar additional parameters for DW,
including annealing time and number of runs, were not tuned either. XGB’s
performance depends on several hyper-parameters, and more careful
tuning was necessary in order to give competitive performance. XGB
parameters52 that were considered include γ, the max_depth, and
min_child_weight (all of which control model complexity), subsample,
colsample_bytree, (which add randomness to make training robust to
noise), as well as learning rate, η. Rather than doing a full grid search over
all these parameters, parameters were tuned sequentially; i.e., one value of
η was fixed, then the best value of max_depth and min_child_weight were
found. The optimal γ for those values was then found; and finally
subsample and colsample_bytree tuned. η was then varied and the
process repeated. η was varied from 0.05 to 0.3, max_depth from 3 to 20,
min_child_weight from 1 to 20, γ from 0 to 1, and subsample and
colsample_bytree both from 0.6 to 1.
In the testing phase, we evaluated performance based on two metrics:

the AUPRC for classification performance and Kendall’s τ for ranking
performance. For the AUPRC, we reported mean values with standard
deviations as error bars, whereas for Kendall’s τ the median value was
presented.

Data processing and availability
Original probes for the gcPBM40 data contained 16,000–18,000 sequences
of 36 bp in length with the fluorescence intensity as a measure of binding
affinity. The same data is used in44 and may be downloaded from GEO
(https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE59845.
Because of current limitations of the architecture of the DW device that
limit the number of features that may be used, the data was truncated to
the central 10 bp. For each sequence of 10 bp, we calculated its average
gcPBM signal. In other words, all sequences in the data sets were unique.
The final Mad, Max, and Myc data sets consisted of 1655, 1642, and
1584 sequences, respectively, of length 10 bp, and the logarithm base 2
with fluorescence intensities was used. The HT-SELEX data came from
mammalian TFs42 that was re-sequenced with on average 10-fold increase
in sequencing depth.47 The sequencing data is available at the European
Nucleotide Archive (ENA—https://www.ebi.ac.uk/ena; study identifier
PRJEB14744) and was pre-processed following the protocol in ref. 47 After
this first step of pre-processing, the Max and TCF4 data sets consisted of
3209 and 15,556 sequences of length 12 and 14 bp, respectively. The Max
data set did not require further truncation, but one bp on the left and right
flanks were trimmed for the TCF4 data set, giving a modified data set of
1826 sequences of length 12 bp. As with the gcPBM data, the relative
affinity was averaged for each truncated sequence.
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