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Abstract

There are several indications that the Standard Model of particle physics is not a
complete description. In this thesis we study two supersymmetric extensions of the
Standard Model and their phenomenology. In order to determine the viability of
these models, we search for regions in parameter space where we can satisfy the
experimental constraints, specifically for low energy observables such as the muon
anomalous magnetic moment (g � 2)µ and the electron electric dipole moment dEe .
We then test how fine-tuned the resulting model points are.

First, we explore the phenomenology of pMSSM spectra that are minimally fine-
tuned, result in the right ΩDMh2 and simultaneously offer an explanation for ∆aµ.

We identify interesting regimes for future LHC searches on the production of e�0
2e�±

1

pairs, and a low-mass e⌧± search without an assumed mass degeneracy between e⌧±1
and e⌧±2 . Furthermore we find that dark matter direct detection experiments that
probe �SD,p will ultimately be sensitive to all of our minimally fine-tuned spectra.

Secondly we extend the pMSSM to include CP violating phases (cpMSSM), which
allows us to study the electron electric dipole moment. For this purpose we have
adapted several existing software packages and developed our own in-house code to
supplement these packages. We also propose a measure of fine-tuning (∆φ) for this
CP violating sector and calculate it with another in-house code. We find that we
can satisfy the experimental constraints on dEe in the cpMSSM, even for phases of
O(10�2) and relatively low sparticle masses of O(100) GeV. A first study on the fine-

tuning shows that lower values of dEe correlate to higher values of ∆φ. At the same
time we find that this measure does not take all the properties of the model properly
into account. We motivate a new fine-tuning measure and propose several interesting
areas for future research.
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Abstract (Nederlands)

Er zijn verschillende aanwijzingen dat het standaardmodel geen volledige beschrijving
van de deeltjesfysica biedt. In dit proefschrift bestuderen we twee supersymmetri-
sche uitbreidingen van het standaardmodel en hun fenomenologie. Om te testen of
deze modellen levensvatbaar zijn, zoeken we naar regio’s in de parameterruimte waar
we aan alle experimentele randvoorwaarden kunnen voldoen. Specifiek bekijken we
meetbare grootheden bij lage energie, zoals het afwijkend magnetisch moment van
het muon (∆aµ) en het elektrisch dipoolmoment (EDM) van het elektron dEe . We
bekijken ook hoe finetuned deze modellen zijn.

Eerst onderzoeken we de fenomenologie van specta in het pMSSM die minimaal
gefinetuned zijn, de juiste waarde voor ΩDMh2 hebben en tegelijkertijd een verklaring
bieden voor ∆aµ. We identificeren interessante massa-intervallen waar naar gezocht

kan worden in de LHC voor de productie van e�0
2e�±

1 paren, en benadrukken het belang
van de zoektocht naar e⌧± deeltjes met lage massa, waarbij er geen aannames worden
gedaan over de ontaarding tussen e⌧±1 en e⌧±2 . Daarnaast vinden we dat de categorie
experimenten die donkere materie direct proberen waar te nemen en de observabele
�SD,p meten, uiteindelijk gevoelig zullen zijn voor al onze spectra met minimale fine-
tuning.

Ten tweede breiden we het pMSSM uit met fases die CP symmetrie schenden
(cpMSSM), waardoor we het elektrisch dipoolmoment van het elektron kunnen be-
studeren. Hiervoor hebben we verschillende software pakketten aangepast en een
eigen code ontwikkeld ter ondersteuning van de bestaande software. We stellen ook
een definitie van de mate van finetuning voor, ∆φ, die de finetuning in deze sector
kan vatten, en creëren we nieuwe code om deze maat uit te rekenen. We vinden da-
tapunten in het cpMSSM die voldoen aan de experimentele limiet op het elektrisch
dipoolmoment van het elektron, zelfs voor fases in de orde van O(10�2) en relatief
lage massa’s van de supersymmetrische deeltjes in de orde van O(100) GeV. Een eer-

ste studie naar ∆φ laat een direct verband zien tussen dEe en ∆φ: lagere waarden van

dEe correleren met hogere waarden van ∆φ. Tegelijkertijd zien we dat deze mate van
finetuning niet altijd voldoet om de eigenschappen van het model goed in kaart te
brengen. We motiveren daarom het voorstel voor een nieuwe mate van finetuning en
stellen verschillende interessante richtingen voor om het onderzoek voort te zetten.
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1.1. THE STANDARD MODEL

The field of particle physics is based on the concept that there exist fundamental build-
ing blocks, fundamental particles, that cannot be divided in smaller parts. We can
describe the behaviour of these particles with the laws of physics, using the standard
model (SM) of particle physics. With this model we can explain how atoms and mo-
lecules are formed from these building blocks, and predict the outcome of experiments.
The interplay between theory and experiment is called phenomenology: the study of
measurable quantities that depend on the theoretical model in question, which allows
for a better understanding of the physics behind those models and experiments. The
ultimate goal is to understand the laws of physics under all circumstances, such that
we can reliably predict the outcome of any experiment.

In this work we will focus on two models, in which we study several observables to
constrain these models and to better understand their phenomenology. To understand
the relevance of these models, we will start with an introduction to the SM to see
why we would be interested in new models in the first place.

1.1 The Standard Model

The SM of particle physics describes the fundamental particles and their interactions.
The free parameters of the theory are the particle properties such as their masses,
and the coupling strengths of the interactions. These have to be determined experi-
mentally. Once all the parameters are known, we can predict how particles interact
and decay according to this model. So far we have not been able to find significant
deviations from the SM predictions on any SM observables, although the SM has
been very thoroughly tested at electron-positron colliders (such as LEP and SLC)
and different Large Hadron Collider (LHC) experiments.

To study the SM we use the framework of quantum field theory (QFT), in which
particles are understood to be excitations of quantum fields. Of the four fundamental
interactions, three can be accurately modelled by gauge bosons as force carriers.1 In
Figure 1.1 we show an overview of the matter particles and force carriers.

We can describe the SM by the following gauge groups

SU(3)C ⇥ SU(2)L ⇥ U(1)Y , (1.1)

and we require that the SM is locally invariant under the corresponding gauge trans-
formations. This results in the three fundamental interactions that are mediated by
the gauge bosons.

The SU(3)C symmetry corresponds to the strong interaction, which is mediated
by massless gluons. The combination SU(2)L ⇥ U(1)Y gives rise to the electroweak
interactions. The corresponding gauge bosons are the W±- and Z0-boson for the

1Ideally we would also model the fourth interaction, gravity, with a spin-2 force carrier. However,
we do not know how to describe the theory of gravity, general relativity, in a QFT framework properly.
This is therefore a separate field of study.

3



CHAPTER 1. INTRODUCTION

weak interaction and the photon for the electromagnetic interaction.2 Of these, only
the photon is massless, which presents a challenge for the underlying theory: the
requirement that the SM has to be invariant under local gauge transformations does
not allow the gauge bosons to be massive, as we cannot describe their mass terms
in a locally gauge invariant way. The experimental observation that the W±- and
Z0-bosons have a mass of 80.4 and 91.2 GeV respectively, is therefore not straight-
forwardly compatible with the concept of local gauge invariance.

Figure 1.1 Elementary particles in the Standard Model: the quarks and leptons as the
matter particles, the gauge bosons and the Higgs boson [1].

However, the masses of the W- and Z-bosons can be generated with the Higgs
mechanism. Through the process of electroweak symmetry breaking (EWSB) the
SU(2)L⇥U(1)Y is spontaneously broken to an electromagnetic U(1)Q symmetry. As

a result of EWSB, we obtain the massive W±- and Z0-bosons, instead of the massless
gauge bosons that would be associated with an unbroken symmetry. The fact that
the symmetry is broken is represented by a non-zero vacuum expectation value for
the Higgs field. We can interpret the U(1)Q as a symmetry of the ground state, the
vacuum, whereas the SU(2)L ⇥ U(1)Y symmetry is not realised in the vacuum.

2Note that the electromagnetic interaction corresponds to the electromagnetic U(1)Q group, not
the hypercharge U(1)Y group. See the part about electroweak symmetry breaking.
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1.1. THE STANDARD MODEL

The gauge boson corresponding to the resulting U(1)Q symmetry is the photon,
which mediates the electromagnetic interaction. With the Higgs mechanism we also
obtain a massive scalar particle, the Higgs boson. The masses of the W-, Z- and Higgs
bosons have to be determined experimentally, together with the other free parameters
of the SM: the masses of the fermions and the coupling strengths of the interactions.

The Higgs boson was the last SM particle to be observed, in 2012. With this
discovery all the particles shown in Figure 1.1 have been experimentally detected,
their masses have been determined and the energy dependent gauge couplings are
known. Putting everything together, we consider the SM now complete.3

However, we do want to mention two specifics that are not included in the SM,
firstly the existence of right-handed neutrinos. We know that neutrinos cannot be
massless, since we have observed neutrino oscillations. The mechanism that generates
these masses is unknown, although many different models are available. The study
on neutrino masses and the mechanism to generate them, is considered beyond the
standard model (BSM) physics for this thesis. To describe massless neutrinos that
are compatible with the experimental data besides neutrino oscillations, we only need
left-handed neutrinos. As such, right-handed neutrinos and any neutrino mass term
will not be considered to be part of the SM for the remainder of this thesis.

Secondly there is the ΘQCD-term, which we will consider BSM as well. Typically
the Lagrangian is constructed by including all possible terms that respect the sym-
metries of the model. For the QCD sector there exists a term that does respect the
SU(3) symmetry, but is nevertheless left out. This term is

ΘQCD

g23

32⇡2 G̃
aµνGaµν , (1.2)

where the dual SU(3) field strength tensor G̃aµν is defined in terms of the SU(3) field

strength tensor Ga
µν and the Levi-Civita symbol ✏ as G̃aµν = 1

2✏
µναβGa

αβ , and ΘQCD

is the QCD vacuum angle. For the general conventions in this thesis, e.g. about the
coupling constants, see Appendix A.1.

The QCD vacuum angle is the quantity that poses the problem: one would naively
expect it to be of order O(1), as the SM provides no reason to expect otherwise.
However, experimental constraints from the neutron electric dipole moment (EDM)
put it at ΘQCD < 10�10 [3, 4]. This is known as the strong-CP problem: we cannot
explain within the SM why ΘQCD is so small. In this work we will therefore not
consider (1.2) as part of the SM.

There are more open issues that cannot be explained (properly) with the SM
alone. We have already briefly mentioned the challenge of describing gravity in a QFT
framework, but this is not the only open problem. Among these we will highlight the
problems of baryogenesis and dark matter (DM) in Section 1.2, since these are the
topics we have chosen for our study.

3A lot of details have been left out in this explanation, so we refer the interested reader to e.g. [2]
for a more detailed account on the Higgs mechanism and the SM in general.
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CHAPTER 1. INTRODUCTION

1.1.1 Charge conjugation, Parity and Time reversal

Besides gauge symmetries there are other symmetries that are relevant for the SM.
These can be categorised in two types: continuous and discrete symmetries. An
example of the first type is Lorentz symmetry, which states that the laws of physics
should be the same for any observer in any inertial frame. The discrete symmetries
charge conjugation (C), parity (P) and time reversal (T) are relevant for our study.

The C-operator transforms particles into antiparticles and vice versa. Under P
the spatial coordinates are reversed and the T-operator reverses the time coordinate.
The combination of those three operators gives a mirror image of sorts, where an anti-
particle will move in the opposite spatial and time directions. A strong requirement
for the SM is that any local QFT with a Hermitian Hamiltonian must by symmetric
under CPT, in order for it to be Lorentz invariant. Since we require Lorentz symmetry
for the SM, CPT invariance is also required.

However, the individual symmetries do not have to be respected by the SM. Since
the weak interaction couples only to left-handed particles and not to right-handed
ones, the weak interaction violates P [5]. Not much later, it was discovered that C
is violated in weak decays as well. In fact, the weak interaction also violates CP,
although this violation is much smaller. This was first shown through the decay of
neutral kaons [6].

The unitary CKM matrix contains the information on the CP violation (CPV)
through the weak interaction, as it translates between the quark gauge and mass
eigenstates. As this is a unitary 3⇥ 3 matrix in family space, it can be specified with
three mixing angles ✓12, ✓13 and ✓23, and a phase �. Using this, we can quantify the
amount of CPV with the Jarlskog invariant J , defined as J = c12c

2
13c23s12s13s23 sin(�)

for cij , sij = cos(✓ij), sin(✓ij) and � the CP violating phase [7]. In the SM, the

Jarlskog invariant is experimentally determined to be J ⇡ 3 · 10�5, portraying the
small amount of CPV observed in the SM.

1.2 Beyond the SM physics

Based on our current understanding of particle physics and cosmology there is a huge
lack of anti-matter in the observable Universe. In most cosmological models it is
assumed that the Universe was in a hot, dense state for a very brief period, after
which it rapidly expanded and cooled. During this expansion, the temperature of the
Universe ultimately dropped enough for particles to decouple from the plasma and
form stable states.

However, there appears to be an imbalance in this creation process, assuming the
laws of physics have not changed over time. Observations show that the amount of
matter outweighs the amount of antimatter significantly, although we expect that
particles and anti-particles were created pairwise. Assuming that particle physics was
ruled by the same laws we observe today, this means that there should be another

6



1.2. BEYOND THE SM PHYSICS

reason for this imbalance. Baryogenesis is the hypothetical process that takes place in
the early Universe to account for the difference in the amount of matter versus anti-
matter. Baryogenesis cannot happen unless the following conditions are satisfied:

• baryon number violation;

• C and CP violation;

• interactions out of thermal equilibrium.

These are also known as the Sakharov conditions [8].
Although there is C and CP violation in the SM, this is not enough to create the

required imbalance to account for the observed matter/antimatter ratio, as J is quite
small. We are therefore interested in BSM theories with more CPV, possibly also
with baryon number violation to satisfy the first Sakharov condition.

In addition to baryogenesis there is another reason to go BSM: the problem of
DM. There are several experimental signs for the existence of DM. The first and most
famous one is the deviation in galaxy cluster radial velocities, which was first observed
for the Coma cluster in 1933 by Fritz Zwicky [9, 10]. Based on the visible amount of
matter we expect a far lower radial velocity for the galaxies within the cluster than
the observations show. Several solutions were proposed for this mismatch, including
the presence of ‘dark’ matter: matter that does not interact directly through the
electromagnetic or strong force with SM particles, making it invisible to traditional
detection methods other than gravitational detection.

At the time, the work of Zwicky did not gather much attention. However, in
1970 the team of Vera Rubin published similar observations about the rotational
velocity of stars and gas in the Andromeda galaxy [12]. Since then several explanations
besides DM have been considered, including modifications of general relativity and
the existence of faint astrophysical objects [13].

Nowadays there is more experimental evidence for the existence of DM, besides
the rotational velocities. The seeds of the present-day structures of galaxies, galaxy
clusters and even larger structures have to be formed in the early Universe [14]. This
structure formation cannot be explained without the presence of DM, as structure
formation would not happen fast enough without DM to account for the present ob-
servable Universe. Another cosmological piece of evidence is the observed anisotropy
power spectrum of the cosmic microwave backgrond (CMB). This spectrum can be
explained with the ΛCDM model [15], which relies on the existence of DM.4 Obser-
vations of the matter and mass distributions of merging galaxy clusters, such as the
Bullet cluster, also point at the existence of DM in the form of particles [17]. Finally
there are some very recent observations of galaxies without any DM [18, 19], that
seriously challenge alternative explanations like modified gravity, since this requires
gravity to behave differently in different parts of space. Note that it is also challenging
to explain the existence of such galaxies with the ΛCDM model.

4Note that the ΛCDM model comes with its own challenges, see e.g. [16].

7



CHAPTER 1. INTRODUCTION

Figure 1.2 The observed rotation curve of galaxy NGC 6503 versus the predicted rotational
velocity for the disk and gas in the galaxy, as a function of the distance to the center of the
galaxy (radius). The predicted contribution from the dark-matter halo that surrounds the
galaxy is shown by the dashed-dotted line [11].

In this thesis we will only consider the particle explanation of DM. A suitable
DM particle, or DM candidate, must have the following properties in the ΛCDM
model. First, a DM candidate has to be meta-stable compared to the lifetime of the
Universe, dark (no direct strong or electromagnetic interactions with SM particles),
cold (non-relativistic) and interacting only weakly with other particles.5

We call this a weakly interacting massive particle (WIMP). The total amount of
DM can exist of one particle, or several different WIMPs.

The SM left-handed neutrinos are not a DM candidate because of the third re-
quirement: due to their small masses they are fast moving and hence not cold. This
means the SM does not contain a particle that is suitable as a DM candidate, so
we look to BSM theories for this as well. Right-handed neutrinos are considered a
possibility, but this depends on their properties, such as the mass and interaction
strength.

Another possibility is the axion, a particle that is related to the strong-CP problem
we discussed above. A solution to the strong-CP problem would be to introduce a new
U(1) symmetry that is then spontaneously broken, which drives the value of ΘQCD

towards zero and thereby explains its small value. This was first proposed by Peccei
and Quinn in 1977 [20, 21]. As a result of this spontaneous symmetry breaking, we

5If DM is not cold, the primordial density fluctuations in the CMB would wash out and the DM
would not be sufficiently bound to galaxies. Those two properties are in contrast with observations.

8



1.3. EXPERIMENTAL SEARCHES FOR BSM PHYSICS

obtain a Goldstone boson: the axion. Due to the chiral anomaly of the U(1) symmetry
the axion is not massless, as one would expect from a Goldstone boson, but in fact
acquires a small mass. If the axion would have a mass of ma . 10�3 eV (most likely
10�6 eV < ma < 10�4 eV ), it could be a suitable DM candidate [13]. Note that it
is difficult to match the properties of the axionic DM candidate with observations,
specifically the amount of DM that is observed today.

Also supersymmetry (SUSY) can provide a DM candidate, as well as more CPV.
A supersymmetry is a spacetime symmetry that links bosonic and fermionic degrees
of freedom. Imposing such a symmetry on the SM results in additional particles, of
which the neutralino could be a DM particle: it is charge and colour neutral, could
be heavy enough and could be weakly interacting. In addition to providing a DM
candidate, supersymmetric theories can also have more sources of CPV and thereby
satisfy the Sakharov conditions.

Moreover, SUSY can potentially solve another problem: that of fine-tuning (FT).
For any BSM theory that couples to the SM there is a potential FT problem in the
Higgs sector. This is because the SM Higgs boson mass can receive large correc-
tions from new particles at high energy scales. Depending on the mass of these new
particles, the corrections on the Higgs boson mass can become many orders of mag-
nitude larger than the mass itself. This raises the question why these large corrections
cancel each other in such a way that the measured Higgs boson mass is obtained; it
would be quite a coincidence that several large numbers add up to a very small num-
ber. As long as we lack an explanation for this coincidence, like the Peccei-Quinn
solution to the small value of ΘQCD, we consider this a FT problem that has to be
addressed.

All in all, there are several reasons to study SUSY as a BSM theory and to look
for experimental signs of SUSY.

1.3 Experimental searches for BSM physics

A very important experimental facility to study SM and BSM phsyics is the LHC at
CERN. It is the world’s largest and most powerful particle accelerator, where proton
beams6 can be collided to study the resulting particles, to gain more insight into
particle physics and the SM, but also to search for evidence of BSM physics.

There are several experiments at the LHC: Alice, ATLAS, CMS and LHCb. The
proton beams in the LHC are made to collide in each of these particle detectors. The
remnants from the collision can be observed with these detectors. By measuring the
energy, momentum and path of the particles that result from the collision, we can
determine which kind of particles were produced. We can also extract SM parameters,
such as the coupling constants, from these measurements. Currently some of the most
precise measurements on the SM parameters are based on results from the different

6The LHC is also used for lead-lead and proton-lead collisions.
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experiments at the LHC.

So far we have not observed a BSM particle in any LHC experiment. In order
to understand what this means for SUSY, we have to take a look at the way the
experimental analysis works. At the experiments we can measure observables such as
the energy and momentum of the final state particles that are produced in a single
proton-proton collision (an event). Also the missing (transverse) momentum, e.g.
from neutrinos, is an important part of the event. With these observables we can
reconstruct the event and run an analysis. The physics we want to study determines
the specifics of the analysis.

First, we have to select relevant events, count them and obtain the observables
per event. Then, we simulate what we expect the number of the relevant events to
be, given a specific model. In our case, we would select a supersymmetric model and
assume a value for the masses and coupling constants in the model. With this we can
compare the expected number of events and the number of actually selected events.
Depending on the comparison between the simulated events and the actual events,
we can exclude the model with the chosen parameter values with a certain statistical
confidence, typically 95%.

In practise, this is much more complicated. The events of interest are often very
similar to other events, so one has to distinguish between signal and background.
Also the assumptions on the model play a large role in the resulting exclusion limit.
Since the masses and couplings of supersymmetric models typically depend on many
free parameters, it is hard to translate the exclusion limits to concrete regions of
parameter space that are excluded.

In order to obtain as much information about a BSM model as possible, we there-
fore aim to combine as much experimental data as possible and use data from more
experiments than those at the LHC. Beside the high-energy experimental searches at
the LHC, there are also several low-energy experiments that search for BSM physics.
Precision measurements of such low-energy observables can be used to complement
high-energy searches for new particles. Specifically we will study the muon anomalous
magnetic moment (g � 2)µ and the EDM of the electron dEe .

There are several independent experiments that try to measure the value of (g �
2)µ, such as the Brookhaven [22], Fermilab [23] and J-PARC [24] experiments. Of
these, the first two have already published results that indicate BSM physics. The
facility at J-PARC aims to publish its first results in the next few years. Currently the
deviation between experiment and theory is roughly 4 standard deviations, making it
a very interesting observable to study.

For the electron EDM (eEDM) a close comparison between SM prediction and
experimental value is still 8 orders of magnitude away. However, it is still claimed
that the current experimental limit places strong constraints on BSM theories [25,26].
Especially the parameters that violate CP can be constrained by this limit, as the
eEDM is a CP violating observable [27]. This makes it an interesting complement to
(g�2)µ, since they can be used to constrain different parameters of a model. We will

10
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therefore study both observables in this thesis.

No eEDM has been measured so far, so the maximum value is limited by the
experimental sensitivity. There are several independent groups that try to measure
the eEDM: the Hinds group at Imperial College in London [28] and the ACME col-
laboration at Yale/Harvard [29] have both improved the limit on the eEDM over the
past years. Both groups do not study the electron itself directly, but use atoms or
molecules to extract the eEDM from the total EDM. Very recently the first results
using yet another technique was published: the Cornell group measured the eEDM
through the measurement of the EDM in trapped molecular HfH+-ions [30].

The eEDM-NL collaboration in Groningen is a new initiative that was funded.
They aim to use a new technique for measuring the eEDM through laser-cooled BaF
molecules [31] and thereby to improve the eEDM limit by an order of magnitude.
They will publish their first results in the coming years (2023-2024). In the mean-
time, the results from the ACME collaboration hold the strongest limit, which we will
use for our studies on the eEDM.

Figure 1.3 Claim on exclusion bounds based on eEDM limits: A sample of constraints on the
superpartner spectrum from naturalness (NAT), dark matter (DM), collider searches (LHC),
the Higgs boson mass (HIGGS), flavor violation (FLAV), and EDM constraints (EDM). The
constraints assume a moderate value of tan� = 10. Taken from [26].

Although the eEDM value has not yet been determined and only upper exper-
imental limits exist, it is often claimed that the current results do exclude many
supersymmetric models. An example of such a claim can be found in Figure 1.3.
As is mentioned in the paper, “All of the constraints shown are merely indicative
and subject to significant loopholes and caveats.” We feel that this necessary nuance

11



CHAPTER 1. INTRODUCTION

is often lost in discussions on the exclusion power of the experimental eEDM limit.
Supersymmetric models for which the eEDM has the same value as in the SM exist
as well. Providing more insight into this nuance will be the main aim of our eEDM
study in this thesis.

Additionally, we will study the fine-tuning of supersymmetric models that do not
predict the same eEDM value as the SM. Note that fine-tuning and naturalness7 are
separate concepts and should be treated as such. Since naturalness is only properly
defined for scenarios with one symmetry-breaking parameter, we will exclusively focus
on studying the fine-tuning.

Since SUSY predicts a DM candidate, we will also use the results of experimental
searches for DM in our studies. We can distinguish three types of interactions between
a DM particle and a SM particle, see Figure 1.4, and therefore there are three different
types of experiments.

Figure 1.4 Types of DM detection: annihilation (indirect detection), scattering (direct
detection) and production. From: https://particleastro.brown.edu/dark-matter/.

The production of DM particles is studied at the LHC, resulting in limits on
supersymmetric candidates for DM.

Experiments that aim for indirect detection of DM typically search for an excess
of SM particles produced by DM annihilation, e.g. neutrinos or photons. In this cat-
egory there are many different experimental searches that study astrophysical objects
or regions with a high DM density, such as the galactic center of the Milky Way or
dwarf-galaxy satellites of the Milky Way. The biggest challenge for such experiments
is to control the background, since it is hard to fully understand all possible astro-
physical sources. We will therefore adopt a conservative approach in our work when

7In the sense of ’t Hooft [32].
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implementing these limits: we only consider the limit on h�vi stemming from the
observation of gamma rays originating from dwarf galaxies.

In DM direct detection (DMDD) one tries to observe the recoil energy from the
scattering of a DM particle on a nucleus [33]. In order to do so, it is typically
assumed that the local DM density ⇢0 and its distribution with respect to the center
of the experiment are known. One also assumes that DM consists fully of one type of
particle that saturates the relic density, and that we can reliably identify all sources
of noise. Background reduction is therefore an important part of the experimental
design. Finally the sensitivity of the experiment has to be high enough to measure
the recoil energy precisely, even if it is low. So far there has not been a confirmed
observation of a DM particle in any DMDD experiment.

Examples of DMDD experiments are the XENON1T experiment [34], LUX [35],
PandaX [36], Darkside-50 [37] and Pico-60. Upgrades of these include the LUX-
ZEPLIN collaboration [38], the XENONnT experiment and the Pico-40L and Pico-
500 upgrades [39]. We will use the results of the different experimental searches for
DM to place constraints on the models that we study.

1.4 Thesis outline

In this work we study observables in two supersymmetric models to gain more insight
into the phenomenology of these models. The goal is to combine experimental data
from different types of experiments, such that we can study the interplay of these
constraints on the models. This will allow for a more complete picture than the study
of separate observables.

In order to perform this study, a clear understanding of the underlying super-
symmetric models is necessary. Therefore we will start with a short introduction
to SUSY in Chapter 2, where we explain the general aspects of SUSY. We define
the two supersymmetric models that we will study later on: the phenomenological
MSSM (pMSSM) and the pMSSM with explicit CP violation (cpMSSM). We will
pay special attention to the Higgs sectors of these models, since there are import-
ant differences between the Higgs sectors of the SM, the pMSSM and the cpMSSM.
We will also discuss the new particle content and general properties of the two models.

Then in Chapter 3 we discuss and define the observables that will be the subject
of our studies. We also look into measures to quantify the amount of fine-tuning in
the (c)pMSSM.

The high-dimensional nature of supersymmetric models makes it difficult to study
the dependence of the observables and the amount of fine-tuning directly as a function
of the model parameters. Instead we set up a numerical analysis for each model,
which we will do at the beginning of Chapters 4 and 5. This allows us to implement
experimental observations as constraints on the models and to compute the value of
observables.
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In Chapter 4 we study the phenomenology of the pMSSM. We implement all avail-
able constraints, such as LHC results, and do a combined study of several observables.
This allows us to discuss the properties of the part of parameter space that is not
excluded by any experiment, is not too fine-tuned, but does allow for an explanation
of the value of observables such as (g � 2)µ and the DM relic density. We focus this
chapter on the question:

What is the phenomenology of the pMSSM spectra that survive all experi-
mental constraints, are minimally fine-tuned and explain the latest (g-2)µ
results?

To extend our (g-2)µ study, we extend the pMSSM to include CPV in Chapter 5.
We explain our in-house code to calculate the eEDM and how we adapt the available
software packages to study the cpMSSM. We also discuss the first results of our study
on the eEDM and FT in the cpMSSM, focussing on the question:

How does the current experimental limit on the eEDM constrain the
cpMSSM, especially the phases, and does this limit imply a fine-tuned
model?

Finally, in Chapter 6 we present our conclusions regarding this question and dis-
cuss further research possibilities. Especially for the cpMSSM we identify several
interesting directions for follow-up research.
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2.1. A SHORT INTRODUCTION TO SUPERSYMMETRY

In this thesis we will study the minimal supersymmetric standard model (MSSM) as
an extension of the SM. We will work with two slightly different sets of constraints
on the MSSM, that result in two very different models phenomenologically. We will
describe these models, their particle content and specifically their Higgs sector, before
we use these models to study the observables that will be introduced in Chapter 3.
A full account of the MSSM and related models would go beyond the purpose of this
thesis, so we refer the interested reader to e.g. [40,41]

2.1 A short introduction to supersymmetry

Modern particle physics is built on symmetries, as such the SM is as well. It therefore
logically follows that any extension of the SM should be based on a new or extended
symmetry that respects the existing gauge and spacetime symmetries. One possibility
to extend the SM is through a supersymmetry. We will study the MSSM, which is
the minimal implementation of supersymmetry in the SM.

A supersymmetry is a spacetime symmetry that connects bosonic and fermionic
states with the same quantum numbers. In a supersymmetric version of the SM
this results in an additional boson for each SM fermion and vice versa, such that all
other quantum numbers are the same for the particle and its supersymmetric partner.
These superpartners are called sparticles. Superpartners of fermions get the prefix
‘s’ (selectron, squark, etc), while superpartners of bosons get the suffix ‘ino’ (gluino,
higgsino, etc). An overview of the particles in the MSSM can be found in Table 2.1.

Note that also the degrees of freedom for each SM particle and its superpartner
have to match. SM fermions can be in a left- or right-handed chiral state because
they are spin-1/2 particles. We therefore define a similar property for their scalar
superpartners to obtain the same number of degrees of freedom. These scalar super-
partners of the left- and right-handed fermions then have different SU(2)L ⇥ U(1)Y
quantum numbers as well.

Another important observation is that the MSSM necessarily has two Higgs doublets
with opposite hypercharge. This is in order to obtain a gauge invariant supersym-
metric Lagrangian (without anomalies) and is necessary to give mass to all up-type
and down-type fermions. Both Higgs fields are listed as SM particles in Table 2.1.

There is no observed violation of lepton and baryon number in the SM, but these
conservations are accidental in the SM. They are made explicit in the MSSM by
requiring the conservation of R-partity1 in all couplings [42, 43]. This quantity is
defined as

R = (�1)2s+3B+L, (2.1)

where B and L are the baryon and lepton number, and s is the spin quantum number.
All SM particles2 have R = 1, while all superpartners have R = �1. R-parity

1R-parity is actually a remnant of a more general U(1) symmetry, see e.g. [40] for more details.
2This definition includes both the Higgs doublets.
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SM particle Spin MSSM superpartner Spin

B and W-bosons 1 Bino, Wino 1/2

Higgs 0 Higgsino 1/2

Gluon 1 Gluino 1/2

(Left, right) up-type quarks 1/2 (Left, right) up-type squarks 0

(Left, right) down-type quarks 1/2 (Left, right) down-type squarks 0

(Left, right) charged leptons 1/2 (Left, right) charged sleptons 0

Neutrinos 1/2 Sneutrinos 0

Table 2.1 The particle content of the MSSM, including two Higgs doublets.

conservation has the important consequence that supersymmetric particles are always
produced in pairs and the lightest supersymmetric particle (LSP) is stable. If this
particle is also charge and colour neutral, it is therefore a DM candidate (see also
Chapters 1 and 3 for more details on DM).

As is also mentioned in Chapter 1, the SM has a fine-tuning problem in the Higgs
sector if we assume it couples to higher energy scales. A more detailed discussion
of this subject is saved for Chapter 3. In short, the problematic scalar mass terms
are protected if they are linked to fermionic mass terms, since these are themselves
protected by a chiral symmetry. Unbroken supersymmetry offers this protection by
linking all SM bosons, including the problematic Higgs, to SUSY fermions. Because
the masses of a SM particle and its superpartner are the same, the fine-tuning problem
is then solved.

However, we have not observed superpartners with the same mass as the SM
particles. The only possibly realisation of supersymmetry is thus as a broken sym-
metry. The nature of this breaking is unknown, although several theories exist [40].
Consequently the masses of the particles and their superpartners are no longer equal
and the FT problem could return. In the MSSM a practical approach to this break-
ing mechanism is taken: if we can describe the breaking in generic terms, it does not
matter that we do not know the precise mechanism behind it. In order to save the
protection offered by the fermionic mass terms, the breaking has to be soft, meaning
that there are no reappearing quadratic divergences. This is done by adding explicit
soft-breaking terms to the fully supersymmetric SM Lagrangian. Together they form
the MSSM Lagrangian, that is described in more detail in e.g. [40, 41].

Unfortunately even this conservative implementation of SUSY results in 107 free
parameters for the MSSM. Almost all of these are due to the soft-breaking terms;
only the supersymmetry preserving Higgs mixing parameter µ is an exception. In
this thesis we will focus on two more constrained versions of the MSSM to make a
computational study of the parameter space feasible. To study these models, we will
first look at the Higgs sector.

18



2.2. THE HIGGS SECTOR AND EWSB IN THE MSSM

We start with a quick overview of the complex two Higgs doublet model, because this
is the same as the Higgs sector of the MSSM.

2.2 The Higgs sector and EWSB in the MSSM

The Higgs sector of the MSSM contains two Higgs doublets, unlike the single Higgs
doublet of the SM. In general, such a configuration would look like
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In this expression the parameters m2
12, �5, �6 and �7 can in general be complex. The

others are real to ensure the potential is Hermitian. However, in the MSSM the two
doublets necessarily have opposite hypercharge. This can be achieved by defining
H1 = i�2

�
⇤
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2 is the second Pauli matrix. This gives us
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The corresponding potential can then be rewritten to the following expression:
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The previous expressions are valid for any two Higgs doublet model. In the MSSM
we typically write the potential in a different form. It is customary to define the
two MSSM doublets with a relative phase ⌘ extracted. This way we can argue later
that the vacuum expectation values (vev’s) of both doublets can be chosen real. See
also the discussion in Appendix ?? for other options. We thus have the following
definition:

Hu = eiη
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!
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!
, (2.6)

The MSSM Higgs potential is then given by [40]
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By comparing the potential in (2.5) to the MSSM potential, we can identify the
following tree-level relations between the different parameters:
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We will use the relations for �i later as described in Chapter 5, when we switch
between the different conventions used by the software packages that we use there.
A more detailed discussion of the complex two Higgs doublet model and the MSSM,
including loop-corrected expressions, can be found in e.g. Appendix A of ref. [44].

From here on we will focus solely on the MSSM potential (2.7). We first note that
we have the freedom to use SU(2)L gauge rotations. We can use this to rotate away a
possible vev for one of the weak isospin components, allowing us to take for example
H+

u = 0 at the minimum of the potential (meaning hH+
u i = 0). The requirement
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∂V
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If the Higgs doublets acquire non-zero vev’s, a spontaneous symmetry breaking will
occur. We define hH0

ui = vu and hH0
di = vd, and the ratio of them as tan� = vu

vd
.

Note that we have explicitly taken out a phase in our expansion, such that vu and vd
are real.

For the potential to be viable, it has to be bounded from below. In general, this
means that the quartic term proportional to g2 + g02 has to be positive. For any
values |H0

u| 6= |H0
d | this requirement is trivially met, but in the special case where

|H0
u| = |H0

d | we have to impose the following additional requirement to ensure the
potential is bounded from below
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This condition must be satisfied at all energy scales.
In order to achieve EWSB through this Higgs potential we require that its min-

imum is stable and does not lie at the origin. As a result at least one of the linear
combinations of H0

u and H0
d has to have a negative squared mass term. We can write

this as an eigenvalue problem:
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Solving for the eigenvalues leads to the inequality

|b|2 > (m2
Hu

+ |µ|2)(m2
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+ |µ|2). (2.12)

Noteworthy is that we cannot satisfy both the requirements in equations (2.10) and
(2.12) simultaneously in the case that m2

Hu
= m2

Hd
. To have EWSB m2

Hu
and m2

Hd

cannot both be zero. Since m2
Hu

and m2
Hd

are SUSY breaking parameters, this means
that EWSB and SUSY breaking are intrinsically connected in the MSSM.

The SM Higgs doublet vev v is related to the masses mZ and mW of the SM Z-
and W-bosons. To keep the same values for the observed masses also in the extended
Higgs sector of the MSSM, we require that v is related to vu and vd as v2 = v2u + v2d.
This means at tree-level that [45]

v2 = v2u + v2d =
4m2

Z

g2 + g02
. (2.13)
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With these observations and definitions we now expand the Higgs doublets of
equation (2.6) around the vev’s in the following manner
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and minimize the potential by requiring
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At this minimum we have �u,d = �u,d = 0, such that vu,d really is the vev of Hu,d.
Defining b = |b| exp(i�b), we can write the equations resulting from (2.15) as

|µ|2 +m2
Hu

� |b| cot(�) cos(�b + ⌘)� 1

2
m2

Z cos(2�) +
1

vu

@V corr

@�u
= 0,

|µ|2 +m2
Hd

� |b| tan(�) cos(�b + ⌘) +
1

2
m2

Z cos(2�) +
1

vd

@V corr

@�d
= 0,

sin(�b + ⌘)|b|+
1

vd

@V corr

@�u
= sin(�b + ⌘)|b|+

1

vu

@V corr

@�d
= 0. (2.16)

These are known as the tadpole equations. Note that V corr is not the tree-level
potential as defined in (2.9), but contains the higher-order corrections.

This set of equations determines the conditions for EWSB. The two equations
on the last line are not independent, which is due to gauge symmetry. Also ⌘ and
�b are not independent, since they always appear as the combination ⌘ + �b, and
hence at tree-level we simply have ⌘ = ��b. As a result, CP violation only enters
through higher-order corrections, meaning the Higgs boson mass eigenstates are also
CP-eigenstates at tree level. We do not explicitly discuss the higher-order corrections
here and instead refer the interested reader to e.g. the appendix A of [44].

Any valid MSSM model has to satisfy these tadpole equations. For a model with
N free parameters, one often chooses only N � 3 parameters as model input and uses
the tadpole equations to fix the remaining three. This allows some freedom in which
parameters to use as input and which are left to be fixed. We will discuss this freedom
in more detail in section 2.3, and in Chapter 4 when we set up our numerical analysis.

2.2.1 Higgs boson eigenstates without CP violation

There are eight degrees of freedom associated with two complex Higgs doublets.
Three of these represent Goldstone bosons, which become the longitudinal polarisa-
tion modes of the Z0- and W±-bosons after EWSB. The five remaining Higgs scalar
mass eigenstates contain two charged scalars H+ and H�, and three neutral states.
Especially for the neutral states, the relation between mass and gauge eigenstates
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depends heavily on the presence of CPV. We will therefore start our discussion with
a model that contains no new CPV compared to the SM.

When there are no new sources of CPV, all MSSM parameters can be chosen real.
Then the tadpole equations of (2.16) simplify (at leading order) to

|µ|2 +m2
Hu

� b cot(�)� 1

2
m2

Z cos(2�) = 0, (2.17)

|µ|2 +m2
Hd

� b tan(�) +
1

2
m2

Z cos(2�) = 0. (2.18)

An important consequence is that neutral Higgs bosons are CP eigenstates, also at
higher orders: we obtain the CP-even states h0 and H0 (by convention m

h
0  m

H
0)

and the CP-odd pseudo-scalar A0. The gauge eigenstates can then be expressed in
terms of the mass eigenstates as follows

 
H0

u

H0
d

!
=

1p
2

 
vu
vd

!
+

1p
2
Rα

 
h0

H0

!
+

ip
2
Rβ0

 
G0

A0

!
, (2.19)

where G0 is the neutral Goldstone boson. With G± denoting the charged Goldstone
bosons, we can also write

 
H+

u

H�⇤
d

!
= Rβ±

 
G+

H+

!
, (2.20)

where we have defined G� = G+⇤ and H� = H+⇤. The rotation matrices Ri are
defined as

Rα =

 
cos↵ sin↵

� sin↵ cos↵

!
(2.21)

for the CP-even states, where for the CP-odd and charged states we have

Rβ0
=

 
sin�0 cos�0

� cos�0 sin�0

!
, Rβ±

=

 
sin�± cos�±

� cos�± sin�±

!
. (2.22)

For vev’s that minimize the tree-level potential we find �± = �0 = � and m2
G

0 =

m2

G
± = 0. This results in the following expressions for the masses of the Higgs bosons

at tree-level

m2
A

0 =
2b

sin(2�)
= 2|µ|2 +m2

Hu
+m2

Hd
, (2.23)

m2
h
0
,H

0 =
1

2

✓
m2

A
0 +m2

Z ⌥
q

(m2
A

0 �m2
Z)

2 + 4m2
Zm

2
A

0 sin2(2�)

◆
, (2.24)

m2

H
± = m2

A
0 +m2

W . (2.25)
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The tree-level mixing angle ↵ is given by

sin(2↵)

sin(2�)
=

m2
h
0 +m2

H
0

m2
h
0 �m2

H
0

,
tan(2↵)

tan(2�)
=

m2
A

0 +m2
Z

m2
A

0 �m2
Z

. (2.26)

The value of ↵ is typically chosen to be negative, with a range of �⇡/2 < ↵ < 0
for m

A
0 > mZ . The value of � is determined by the Lagrangian parameters of the

MSSM, resulting in 0 < � < ⇡/2 for real and positive vev’s.

These expressions are all tree-level results. Explicitly deriving the loop corrections
for these results goes beyond the scope of this thesis, so we refer the interested reader
to e.g. [46]. Note that these loop corrections are implemented in the software we use
in our studies (see Chapters 4 and 5).

From equation (2.24) it is possible to estimate the mass of h0 at tree level as
m

h
0  mZ , but loop corrections (see e.g. [46] for a review) change this number quite

drastically:

m
h
0 . 135GeV. (2.27)

We deduce that h0 is typically the SM Higgs boson, unless the two CP-even Higgs bo-
sons are very close in mass. This configuration is almost excluded by experiments [47].
Therefore the requirement m

h
0 ⇡ 125 GeV can be used to constrain the parameters

of the model [44, 48, 49].

The opposite situation occurs when the phenomenology of the second Higgs boson
H0 (almost) completely decouples from the SM Higgs boson h0. This happens when
the couplings of h0 to SM bosons and fermions are (almost) the same as the relevant

SM Higgs boson couplings gSM . For bosonic couplings we can express the h0 and
H0 couplings in terms of the SM Higgs boson h, and the mixing angles ↵ and � as
follows [41]

g
h
0
V V

† = gSM
hV V

† ⇥ sin(� � ↵), (2.28)

g
H

0
V V

† = gSM
hV V

† ⇥ cos(� � ↵). (2.29)

Here we use V V † to denote Z0Z0 or W+W�. We see that we can obtain the SM
coupling in the limit ↵! ��⇡/2, because then only the h0-coupling remains as gSM.

Something similar happens for the couplings to fermions, where we have the fol-

24



2.3. THE PMSSM

lowing couplings in terms of gSM

g
h
0
bb̄
, g

h
0
τ
+
τ
� / � sin(↵)

cos(�)
= sin(� � ↵)� tan(�) cos(� � ↵), (2.30)

g
h
0
tt̄
/ cos(↵)

sin(�)
= sin(� � ↵) + cot(�) cos(� � ↵), (2.31)

g
H

0
bb̄
, g

H
0
τ
+
τ
� / cos(↵)

cos(�)
= cos(� � ↵) + tan(�) sin(� � ↵), (2.32)

g
H

0
tt̄
/ sin(↵)

sin(�)
= cos(� � ↵)� cot(�) sin(� � ↵). (2.33)

If we take again the limit ↵! � � ⇡/2 we find

g
h
0
bb̄
, g

h
0
τ
+
τ
� / gSMhbb̄ ⇥ 1, gSM

hτ
+
τ
� ⇥ 1,

g
h
0
tt̄
/ gSMhtt̄ ⇥ 1,

g
H

0
bb̄
, g

H
0
τ
+
τ
� / gSMhbb̄ ⇥ tan�, gSM

hτ
+
τ
� ⇥ tan�,

g
H

0
tt̄
/ gSMhtt̄ ⇥� cot�, (2.34)

such that again the h0-couplings resemble the SM Higgs couplings very closely and the
effect of H0 differs by tan� and 1/ tan� factors for down-type and up-type fermions
respectively. Since tan� is allowed to be substantially larger than unity in the MSSM,
the hierarchy of the H0-fermion couplings can be altered drastically with respect to
the SM couplings. In a sense, the new physics that results from the second Higgs
doublet decouples from the SM-like Higgs physics. This happens when m

A
0 � mZ ,

which is called the decoupling limit, as this implies m
H

0 ,m
A

0 ,m
H

± � m
h
0 and

therefore a decoupling between the SM-like, light Higgs boson h0 and the other Higgs
bosons. We will study this scenario in more detail in Chapter 4, when we encounter
it in our ∆aµ study.

2.3 The pMSSM

Instead of exploring the full MSSM with 105 free soft-SUSY breaking parameters, we
will focus on more constrained models. The first is the pMSSM [50], which is derived
from the MSSM by adding the following requirements:

• There are no new sources of CP violation;

• The first and second generation squark and slepton masses are degenerate;

• The sfermion mass matrices are diagonal;

• All trilinear couplings of the first and second generation sfermions are set to
zero.
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These requirements limit the MSSM in such a way that there is no new CP viol-
ation beyond the SM (first requirement) and flavour violation is minimised (third
requirement) since there are strong upper bounds on this [51]. The other two con-
straints are motivated experimentally by rare decays, such as µ� ! e��, Bs ! s�
and ⌧� ! µ�

�, and minimise meson mixing effects through off-diagonal terms. They
are also necessary to limit the number of free parameters to a manageable amount.

We have now reduced the number of free soft-SUSY breaking parameters to 19,
that are shown in Table 2.2. With these constraints we obtain the Higgs sector as
described above, since there is no additional CPV. With the soft-SUSY breaking

Symbol Parameter description

m eQ1
Left-handed squark masses of the first and second generation

meuR
Right-handed up-type squark masses of the first and second generation

medR
Right-handed down-type squark masses of the first and second generation

m eQ3
Left-handed squark mass of the third generation

metR
Right-handed top-squark mass

mebR
Right-handed bottom-squark mass

meL1
Left-handed slepton masses of the first and second generation

meeR
Right-handed slepton masses of the first and second generation

meL3
Left-handed slepton mass of the third generation

meτR
Right-handed stau mass

M1,M2,M3 Masses of the bino, wino and gluino

At, Ab, Aτ Trilinear couplings for stop, sbottom and stau

tan(�) Ratio of the vacuum expectation values of the Higgs doublets

m2
Hu

,m2
Hd

Soft squared Higgs masses

Table 2.2 The free soft-SUSY breaking parameters of the pMSSM.

parameters and the tadpole equations from (2.17), one can calculate the other two
model parameters: |µ| and b. However, it is also possible to use |µ| and/or b as a free
parameter if we sacrifice one of the 19 soft-SUSY breaking parameters in Table 2.2.
In principle it is possible to take any four parameters from the set m2

Hu
, m2

Hd
, tan�,

b, |µ| and mZ as free parameters and use the tadpole equations to determine the other
two.3 Using the relation (2.23) between m

A
0 , b and tan�, one can even use m

A
0 as

input parameter of the theory, although it is not a priori a parameter of the model.
In the pMSSM a common choice is to take b and m

A
0 as the parameters that will be

fixed by the tadpole equations, as this allows us to use the resulting value of mZ as a

3Note that the sign of µ always has to be specified as input, as it cannot be determined with the
tadpole equations.
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confirmation that the spectrum converges to a sensible result when we do a numerical
analysis. We will discuss the parameters of the model in more detail in Chapter 4,
when we set up the analysis.

2.4 pMSSM with CP violation: the cpMSSM

To study CP violating observables, the pMSSM is not a suitable model as it contains
no new phenomenology compared to the SM for this sector. We will therefore look at
a pMSSM-like model, where the requirement of no additional CPV has been lifted.
The other requirements remain.

As a result, nine parameters can in principle obtain a non-zero CP violating phase:
the gaugino masses M1, M2 and M3, the trilinear couplings At, Ab and Aτ , the Higgs
mass parameter µ, the soft-breaking parameter b and finally the Higgs doublets may
gain a relative phase that we will denote by ⌘. However, only 6 of these phases are
independent.

Firstly, we observe that there are two left-over symmetries U(1) in the MSSM
Lagrangian. We can define two U(1) as

�! eiQAωA�, �! eiQBωB� (2.35)

for charges QA and QB under the U(1)A and U(1)B rotation respectively [20,21,52].
These rotations leave the Lagrangian invariant if we use the charges as listed in
Table 2.3 and at the same time perform the following parameter transformations:

µ ! e2i(ωA+ωB)µ,

b ! e4iωAb,

Mj ! e2i(ωA�ωB)Mj ,

Ak ! e2i(ωA�ωB)Ak. (2.36)

Sparticles QA QB Particles QA QB

sfermions 0 1 fermions 1 0

higgsinos -1 -1 Higgs bosons -2 0

gauginos -1 1 gauge bosons 0 0

Table 2.3 The charges of the SM and MSSM particles under the U(1)A and U(1)B trans-
formations, such that the MSSM Lagrangian (including soft-SUSY breaking terms) remains
invariant. Note that for fermionic fields and sfermionic superpartner fields the given charges
are for left-handed components, the right-handed components have opposite charges.
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This allows us to rotate away two of the phases in the cpMSSM, for example
the phases of b and µ, or the phases of b and M3 are typical choices. The tadpole
equations also fix three parameters of the cpMSSM, including one phase. Note also
the discussion in Appendix A.2, as it is important to be careful in the treatment of ⌘
and b.

Similar to the pMSSM, we have freedom to choose which parameters are treated
as free parameters and which parameters will be fixed by the tadpole equations.
An important difference is that m

A
0 cannot be used, since the Higgs sector of the

cpMSSM does not contain a particle that we can identify as A0. In Table 2.4 we show
an overview of all the cpMSSM parameters, of which 25 are free (compared to 19 in
the pMSSM).

Real parameters Phases

m eQ1
m eQ3

meL1
meL3

tan(�) |M1| |At| �M1
�At

⌘

meuR
metR

meeR
meτR

|b| |M2| |Ab| �M2
�Ab

�b

medR
mebR

m2
Hd

m2
Hu

|µ| |M3| |Aτ | �M3
�A

τ

�µ

Table 2.4 The total set of cpMSSM parameters: 21 pMSSM parameters and 9 new CP
violating phases. Note that the tadpole equations (2.16) fix three of these parameters and
we can rotate away two additional phases, so only 25 parameters are independent.

There are a lot of similarities between the pMSSM and the cpMSSM. Apart from
the Higgs sector, the supersymmetric particle content of both models is the same,
although there are relevant differences in the mixing matrices. We will therefore
describe these sparticles and their mixing in a general way, with special attention
paid to the most important differences between the pMSSM and cpMSSM. The Higgs
sector deserves a separate treatment to explain the relevant differences between the
two models.

Higgs sector

The Higgs sector changes significantly when CPV is allowed. In the pMSSM we can
identify two CP-even Higgs bosons and one CP-odd Higgs boson, which do not mix.
However, CP violation causes mixing between the CP eigenstates at higher orders.
We can therefore no longer identify a CP-odd or CP-even Higgs boson beyond tree
level. Instead, we define the three neutral Higgs bosons as H0

1 , H
0
2 and H0

3 , with
mH1

< mH2
< mH3

by definition.
A large CP violating component would impact the decay of the lightest neutral

Higgs boson H0
1 into the weak gauge bosons W± and Z0. So far there have been no

observations of Higgs boson decays that differ significantly from the SM values [47].
Therefore the mixing of the CP-even and odd states is limited; the pseudo-scalar (or
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A0) component of the SM-like Higgs boson is limited to roughly 10%, depending on
the other model parameters [53].

The gauge eigenstates can be defined as

�
0 =

⇣p
2(Re{H0

d � vd/
p
2},Re{H0

u � vu/
p
2}, Im(H0

d), Im(H0
u))

T
⌘
, (2.37)

which still includes the neutral Goldstone boson. We can then define their mixing as
follows [54]

��0TM2
φ
0�

0 = ��0TSTS⇤M2
φ
0S†S�0. (2.38)

The mixing matrix S gives the decomposition of the three physical mass eigenstates
in terms of the four interaction eigenstates, in such a way that the Goldstone boson
G0 is explicitly projected out.

We can define S in two ways, depending on the convention. One way is to
define a rotation matrix R giving the decomposition of the three physical mass
eigenstates in terms of the intermediate basis Φ̃

0 = (h0, H0, A0)Ttree of the tree-
level mass eigenstates. We can also define the matrix O that gives the decom-
position of the three physical mass eigenstates in terms of the intermediate basis
�̃
0 = (

p
2Re{H0

d � vd/
p
2},

p
2Re{H0

u � vu/
p
2}, A0

tree)
T .4 We can then write

S�0 =

0
B@R3x3

0

0

0

1
CA

0
BBB@

� sin↵ cos↵ 0 0

cos↵ sin↵ 0 0

0 0 sin� cos�

0 0 � cos� sin�

1
CCCA�

0 (2.39)

⌘

0
B@O3x3

0

0

0

1
CA

0
BBB@

1 0 0 0

0 1 0 0

0 0 sin� cos�

0 0 � cos� sin�

1
CCCA�

0, (2.40)

where the conversion between R and O is given by
0
B@O3x3

0

0

0

1
CA =

0
B@
�R11 sin↵+R12 cos↵ R11 cos↵+R12 sin↵ R13 0

�R21 sin↵+R22 cos↵ R21 cos↵+R22 sin↵ R23 0

�R31 sin↵+R32 cos↵ R31 cos↵+R32 sin↵ R33 0

1
CA . (2.41)

In this thesis we will adopt the conventions of [55] and use O = OT to relate the
gauge and mass eigenstates, since this gives consistent expressions for the eEDM
contributions in Section 3.1.2 and the given references. Note that we also use the
software package FeynHiggs, where the convention is to use R for the mixing.

4Note the difference in convention with respect to [54]: we use Hd = iσ
2
φ
∗

1 and therefore obtain
different minus sign conventions in the definition of S.
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2.4.1 Sparticle content and mixing

We have seen that the Higgs sector of the pMSSM and that of the cpMSSM are
intrinsically different. Next, we turn to the supersymmetric particle content of these
models. Here the mixing does not depend on CPV as intrinsically as in the Higgs
sector, so we describe it in terms of complex parameters, which are taken real in the
pMSSM. However, the phase ⌘ between the cpMSSM Higgs boson doublets affects the
superpartners of the Higgs bosons as well. The chosen convention for ⌘ is often not
clear in the literature. See also the discussion in Appendix A.2 on possible conventions.

We present the tree-level expressions for the sparticle mixing matrices, based
on [40]. Beyond tree level the masses are sensitive to radiative corrections from
SUSY particles. This makes it difficult to give general expressions, as the corrections
themselves depend on the sparticle spectrum. This is one of the motivations behind
spectrum generators to do analyses in a SUSY framework.

The neutral superpartners of the Higgs, the neutral higgsinos, mix together with
the bino and neutral wino to form four different neutralinos e�0

1, e�0
2, e�0

3, e�0
4. The

charged higgsinos and winos form two doubly degenerate charginos e�±
1 , e�±

2 . Finally
also the sfermions mix, but this is restricted to one generation as flavour mixing is
explicitly minimised in the pMSSM. Typically the L-R mixing occurs mainly in the
third generation sfermions, for the first and second generation we can safely assume
that efL = ef1 and efR = ef2 (or vice versa).

Neutralino mixing

In the basis of the Majorana fields ( eB,fW 0, eH0
d , eH0

u) the mass term of the neutralinos
is given by

L = �1

2
¯
 
0 M

eχ
0 PL 

0 + h.c. (2.42)

where
¯
 
0 = ( ēB, f̄W 0, ēH0

d , ēH0
u). The mass matrix is then given by

M
eχ
0 =

0
BBB@

M1 0 �g0vd/2 g0vue
�iη/2

0 M2 gvd/2 �gvue
�iη/2

�g0vd/2 gvd/2 0 �µ

g0vue
�iη/2 �gvue

�iη/2 �µ 0

1
CCCA . (2.43)

We can diagonalise the mass matrix by means of a unitary matrix N as

N⇤M
eχ
0N�1 = Mdiag

eχ
0 . (2.44)

In the pMSSM we can choose N to be a real and orthogonal matrix if we accept
negative mass terms. This is common practice in the literature, so we will adopt
the same convention. Note that one can always rotate the negative masses away
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through chiral rotations, so this does not imply negative masses for the neutralinos.
By definition we have mass ordering in this sector: m

eχ
0
1
 m

eχ
0
2
 m

eχ
0
3
 m

eχ
0
4
.

In the cpMSSM the terms proportional to M1, M2 and µ give rise to complex
entries in the mixing matrix. In our conventions, also e�iη is complex. However, note
that a typical choice is to take �b = 0, resulting in ⌘ = 0 at tree level due to the
tadpole equations. Therefore the factor e�iη is often removed in tree-level expressions.
We opt to show it here, as we will work in a general scenario in Chapter 5.

In both models all neutralinos are colour and charge neutral, which makes e�0
1

a DM candidate if it is the LSP. In particular for DM experiments, it is relev-
ant what the composition of the LSP and the other neutralinos is in terms of the
gauge eigenstates. We can determine this through the entries of N . The amount of
bino, wino and higgsino mixing of the lightest neutralino is given by |N11|, |N12| andq
|N13|

2 + |N14|
2, respectively.

In general we expect the two lightest neutralinos to be dominantly gaugino for
|µ| � |M1,2| � MZ , where the heavier neutralinos are then mostly higgsino. This
situation is reversed for |µ| ⌧ |M1,2|: then the lightest neutralinos will be mostly
higgsino and the heaviest will be dominantly gaugino. Note that this is only true for
parameters much larger than mZ . If the values are close to mZ we will see much
more mixing. The composition of the neutralinos and charginos is very important for
experimental exclusion power, as we will discuss in more detail in Chapters 4 and 5.

Chargino mixing

The charginos, denoted by e�±
i with i = 1, 2, are the charged mass eigenstates of the

wino and higgsino interaction eigenstates, with e�±
1 the lightest chargino.

We define the Dirac adjoint of the charge conjugated field, ( ±)C (suppressing

the tildes for readability) as ( ±)C =
⇣
W+)C , (H+

u )C , (W�)C , (H�
d )C

⌘
such that

the mass term is given by

L = �1

2
( ±)CM eC PL 

± + h.c. (2.45)

for a 2⇥ 2 block form

M eC =

 
0 MT

eχ
±

M
eχ
± 0

!
. (2.46)

Then the chargino mass matrix at tree level reads

M
eχ
± =

 
M2 gvue

�iη/
p
2

gvd/
p
2 µ

!
. (2.47)

We can find unitary matrices U and V such that the mass matrix M
eχ
± is diagonalised

with positive real entries by U⇤M
eχ
±V �1. Note that also in these mixing matrices the
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phase ⌘ can be chosen to be 0 at tree level, although this is not our convention. The
mass eigenstates of the positively (negatively) charged charginos are related to V (U)
as  

e�+
1

e�+
2

!
= V

 
fW+

eH+
u

!
,

 
e��
1

e��
2

!
= U

 
fW�

eH�
d

!
. (2.48)

The composition of the lightest chargino is predominantly higgsino when mZ ⌧
|µ| ⌧ |M2|, predominantly wino when mZ ⌧ |M2| ⌧ |µ|, or a mixture when the two
parameters are close in value. An overview of the relative values of |M1|, |M2| and
|µ|, and the resulting composition of the neutralinos and charginos is given in Table
2.5.

Parameter hierarchy Chargino composition Neutralino composition

e�±
1 , e�±

2 e�0
1, e�0

2, e�0
3, e�0

4

|M1| < |M2| < |µ| fW, eH eB,fW, eH, eH
|M2| < |M1| < |µ| fW, eH fW, eB, eH, eH
|M2| < |µ| < |M1| fW, eH fW, eH, eH, eB
|M1| < |µ| < |M2| eH,fW eB, eH, eH,fW
|µ| < |M1| < |M2| eH,fW eH, eH, eB,fW
|µ| < |M2| < |M1| eH,fW eH, eH,fW, eB

Table 2.5 Rules of thumb for the dominant component in the chargino and neutralino
composition for different parameter hierarchies in the set |M1|, |M2| and |µ|. Note that this
is only true for parameters much larger than mZ , otherwise there is much more mixing.

Sfermion mixing

We can define a six component vector for the sfermions as

ef =
 
efL
efR

!
, (2.49)

where the sfermions f̃ can be the charged sleptons, up-type squarks or down-type
squarks. The vectors efL and efR have three components each, for the three different
generations. The mass terms can then be collected as

�Lsfermion =
X

f̃

ef†M2
f̃
ef, (2.50)

where we can recognise the following general structure in the mass matrix

M2
f̃ =

 
M2

f̃LL
M2

f̃LR

M2†

f̃LR

M2
f̃RR

!
. (2.51)
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Here we have defined M2†

f̃LR

= M2
f̃RL

. The two matrices M2
f̃LL

and M2
f̃RR

are

hermitian in generation space and the total matrix M2
f̃ is hermitian as well.

So far we have not made any assumptions regarding the sfermions. However, in
the (c)pMSSM we explicitly assume no flavour mixing. We can therefore recast these
expressions in 2 ⇥ 2 form and study each generation by itself. We can then specify
mass matrices for the different types of sfermions as follows.

The slepton mass matrix M2
el
reads in the (elL,elR) basis

M2
l̃ =

 
m2

eLi
�
⇣

1
2 � s2θW

⌘
M2

Z cos(2�) +m2
l ml(A
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l � µeiη tan�)

ml(Al � µ⇤e�iη tan�) m2
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� s2θWM2
Z cos(2�) +m2

l

!
.

(2.52)
Here m2

eLi
,m2

elR
is m2

eL1
,m2

eeR
for the first and second generation, and m2

eL3
,m2

eτR
for the

third generation.
For the third generation, the up-type squark mass matrix M2

et reads in the (etL,etR)
basis

M2
et =

 
m2

eQ3
+
⇣

1
2 � 2

3s
2
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⌘
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Z cos(2�) +m2
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t e
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3s
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M2
Z cos(2�) +m2
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!
.

(2.53)
For the squarks of the first and second generation we find a similar matrix, where
m2

eQ3
,m2

etR
is replaced with m2

eQ1
,m2

euR
and mt is replaced with either mu for the first

and mc for the second generation. As only the trilinear coupling of the third genera-
tion is non-zero in the (c)pMSSM, the corresponding matrices for the first and second
generations lack the terms proportional to Au, Ac.

Similarly, the down-type squark mass matrix M2
eb
reads in the (ebL,ebR) basis

M2
eb
=

 
m2

eQ3
�
⇣

1
2 � 1

3s
2
θW

⌘
M2

Z cos(2�) +m2
b mb(A

⇤
b � µeiη tan�)

mb(Ab � µ⇤e�iη tan�) m2
ebR

� 1
3s

2
θW

M2
Z cos(2�) +m2

b

!
.

(2.54)
For the squarks of the first and second generation we find a similar matrix, where
m2

eQ3
,m2

ebR
is replaced with m2

eQ1
,m2

edR
and mb is replaced with either md for the first

and ms for the second generation. As only the trilinear coupling of the third genera-
tion is non-zero in the (c)pMSSM, the corresponding matrices for the first and second
generations lack the terms proportional to Ab, As.

Note that for the first and second generation the masses of the SM fermions are
small compared to the SUSY parameters. They are therefore orders of magnitude
smaller than the diagonal terms, which means there is hardly any L-R mixing for
these generations. We do take the terms into account, as their relative importance can
be as big as 10�4, which makes them relevant enough for our calculations to include
them. Since there is hardly any L-R mixing for the first and second generation, we can
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define the mass eigenstates in terms of L,R eigenstates, e.g. (ee1, ee2) = (eeL, eeR), and
similarly for the other first and second generation squarks and sleptons. However, for
the third generation the masses of the SM fermions are in fact large enough to induce
significant mixing. We will always write the mass eigenstates of the third generation
as (e⌧1, e⌧2), (et1,et2) and (eb1,eb2) where the mass of the first sfermion is defined to be
smaller than the mass of the second sfermion. As a result of the large mixing in the
third generation, the et1 can in principle be the lightest sfermion.

We can diagonalise either of these sfermion mass matrices with unitary matrices

X f̃ as follows
(Mdiag

f̃
)2 = X f̃M2

f̃X
f̃†. (2.55)

The matrix X f̃ is different for the up-type squarks, down-type squarks and the
sleptons, and for the first and second generation versus the third generation. In
this context, we also note that we have defined our theory such that the trilinear
couplings Al, Au and Ad are zero for the first and second generation.

Note that it is the daggered 6 ⇥ 6 matrix W f̃†, not X, that is defined in [40] to
diagonalise the mass matrix M2

f̃ . In the equations for the couplings in Appendix A.4
we compare different conventions and rewrite this to the 2⇥ 2 matrices X.

After having defined the conventions of two supersymmetric models in this chapter,
we can take a closer look at the observables that we want to study in the pMSSM
and cpMSSM.
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3.1. ELECTRIC AND MAGNETIC MOMENTS OF LEPTONS

In this chapter we will connect the (c)pMSSM as described in Chapter 2 to measurable
observables: the anomalous magnetic moment of the muon, the electric dipole moment
of the electron and dark matter observables such as Ωh2 and h�vi. We will also study
different measures of fine-tuning to see how fine-tuned the resulting spectrum and
eEDM is for a chosen set of parameters in each model.

3.1 Electric and magnetic moments of leptons

We have chosen to focus our studies on two observables: the EDM of the electron
and the anomalous magnetic moment of the muon (aµ). We will see that they are
closely related and each of them is an important BSM observable. The muon an-
omalous magnetic moment is important mainly because there exists a long-standing
discrepancy between experiment and theory. We will investigate this discrepancy in
an elaborate study in the pMSSM, combining it with DM and LHC limits.

The experimental limit on the eEDM is currently several orders of magnitude
away from being sensitive to the SM prediction, but it can be used to constrain the
CP-violating sector of BSM theories such as the cpMSSM. A typical claim is that the
experimental lack of observing an eEDM results in either very large sparticle masses
(at least of O(TeV)) or very small phases [56–58]. However, this research is mostly
done on supersymmetric models that are much more constrained than the cpMSSM.
The same is true for the claim that the current limit constrains supersymmetric
theories enough that they can no longer be called natural [25, 26, 59].

We will investigate the constraints resulting from the eEDM limit in the cpMSSM.
We believe this is the most suitable model, as the pMSSM is the commonly accepted
phenomenological supersymmetric framework for studies without CPV. To study the
eEDM and ∆aµ we will first look into the definitions and (c)pMSSM contributions.

Both the magnetic moment and EDM represent an interaction of a particle’s spin
with the electromagnetic field (or separately the magnetic field ~B and electric field
~E). We can express this classically in terms of the Hamiltonian

H = �~µ · ~B � ~d · ~E, (3.1)

where we define the electric dipole ~d and magnetic moment ~µ for a lepton l as

~dl = dl~� = 2dl~S, (3.2)

~µl = gl
ql
2ml

~S = gl
�e

2ml

~S, (3.3)

and where ~S = ~�/2 is the spin of the particle in terms of the Pauli spin matrices. We
have expressed the magnetic moment in terms of the g-factor g [2, 45]. For a lepton
we predict that the g-factor without quantum corrections is the tree-level QED value:
gl = 2.
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We are interested in the anomalous magnetic moment, which is defined as the
deviation from the tree-level result:

al =
gl � 2

2
. (3.4)

When using a QFT framework we can rewrite the Hamiltonian of equation (3.1) to
obtain the following (effective) Lagrangian density for a lepton field  [2]

L =
1

2
 ̄�νρ

✓
ale

2ml

� i�5dl

◆
 F νρ. (3.5)

Here we have defined �µν as the commutation relation i
2 [�

µ, �ν ] of the Dirac gamma
matrices and Fµν is the electromagnetic field tensor. The factor �5 for the EDM
reflects its CPV nature and is thus absent for the magnetic moment.

Important to note is that a non-zero value for d violates both parity and time
reversal symmetry: T will flip spin and the magnetic field, while P flips the electric
field. Therefore �d(~S · ~E) ! + d(~S · ~E) under T or P. Assuming CPT invariance, the
EDM then also violates CP.1

l� p1

l�
p2

�(✏µ)

q

Figure 3.1 General structure for the electromagnetic interaction between a charged lepton

and a photon.

Looking at (3.5) we see that both the EDM and magnetic moment are interactions
between a lepton and the electromagnetic field. One may ask how to distinguish
which Feynman diagrams contribute to which observable. In fact, the same diagram
can contribute to both and we have to identify what part of the diagram contributes
to which observable. In general an interaction between the electromagnetic field and
a lepton can be described by the Feynman diagram in Figure 3.1.

1This statement is only true for dipoles of elementary particles. Molecules can also have large
EDMs, but those do not violate CP, as the vector representation of the group describing a molecule
has a reducible representation. Only when a system corresponds to an irreducible representation
does a nonzero EDM imply CPV.
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The corresponding matrix element is

iM = �ie ū(p2) Γ
µ u(p1) ✏µ(q), (3.6)

where we have defined the vertex structure Γ
µ, such that at tree level (3.6) reduces

to ie ū(p2) �
µ u(p1) ✏µ(q). Different parts of Γµ can be identified as contributing to

different observables.
We define projection operators to project on the relevant structure to find the

part of a diagram that contributes to the observable of interest. In Appendix C we
describe this in more detail. We use the results from that Appendix to obtain analytic
expressions for the contributions in the (c)pMSSM to aµ and de, which we will present
in Sections 3.1.1 and 3.1.2, respectively.

To study the BSM contributions we compare the SM prediction to experimental
results. By far the largest contribution to aSMµ is the famous Schwinger one-loop
QED correction ↵/2⇡ [60]. There are many other quantum corrections, composed
of quantum-electrodynamic, weak and hadronic contributions, that influence this ob-
servable. Especially the hadronic contributions, susceptible to QCD uncertainties,
are subject of recent discussion.

According to the Muon g-2 theory initiative, the full SM prediction reads [61–82]

aSMµ =
(g � 2)µ

2
= 116 591 810(43)⇥ 10�11, (3.7)

where the value between parentheses represents the theoretical uncertainty. There is
a long-standing discrepancy between this SM prediction and the experimental result
for aµ [22, 83, 84].

Figure 3.2 On the left: The leading-order hadronic vacuum polarisation contribution to
∆aµ in different calculational methods; taken from [85], where references for the different
values can be found as well. On the right: Comparison between different lattice results for
the so-called window observable for ∆aµ ; taken from [86].

However, another group recently published calculations based on lattice QCD
that show that the difference between SM prediction and experimental result could

39



CHAPTER 3. OBSERVABLES IN THE PMSSM AND CPMSSM

be much smaller than previously assumed [85]. In the left panel of Figure 3.2 we show
the different values for the leading-order hadronic vacuum polarisation contribution.

Even more recently new results were published [86] that focus on the consistency
of the lattice calculations for the hadronic contributions to ∆aµ , see the right panel
of Figure 3.2. Also new data-driven calculations were published recently [87]. So far
there seems to be a tension between the lattice calculations and the data-driven calcu-
lations. This shows that there is no complete consensus yet about the SM prediction
and we have to be careful when interpreting BSM contributions.

Experimentally there have also been interesting developments. Last year, new ex-
perimental data from the Fermilab experiment were published [23,88–90]. Combined
with the earlier results from Brookhaven [22,83,84] the current experimental value is

aexpµ = 116 592 061(41)⇥ 10�11, (3.8)

showing that the deviation from the SM prediction based on (3.7) is now

∆aµ = aexpµ � aSMµ = 251(59)⇥ 10�11. (3.9)

This result amounts to a 4.2� deviation between SM and experiment, although it is
important to keep the discussion about aSMµ in mind. An independent experiment
with different techniques than those employed by the Fermilab experiment is being
constructed at J-PARC [24, 91]. We will study the deviation (3.9) in more detail
in Chapter 4, where we look for pMSSM contributions that bridge the gap between
SM expectation and experimental observations, and study the phenomenology of the
corresponding pMSSM models.

There is also a deviation between the SM prediction for ae and the experimental
value. However, as this deviation is much smaller, we will focus only on the muon.
For a recent study on ae in the MSSM, see e.g. [92].

For the eEDM, the SM prediction is harder to obtain, since only at four-loop order
there is a non-zero SM contribution to the eEDM. This is because the only source of
CPV in the SM is the CKM matrix2. At one-loop order, there is no possible diagram
of the type of Figure 3.1 that contains the CKM matrix. At two loops, we can draw
diagrams of the kind shown in Figure 3.3a, which do not contribute to an EDM as
the CPV phases of the unitary CKM matrix cancel each other. Unexpectedly, the
contributing diagrams at three-loop order (Figure 3.3b) add up to zero as well [93].
Therefore the first contributing diagrams are of four-loop order, resulting in a very
small SM prediction for the eEDM [94]

dEe  10�38e cm. (3.10)

The typical unit for an EDM is [e cm], corresponding to 1/1.973269788 · 10�14 e
GeV�1 [45].

2We assume only left-handed neutrinos here. If right-handed neutrinos, and therefore neutrino
masses, are added, there is another source of CPV in the lepton sector.

40



3.1. ELECTRIC AND MAGNETIC MOMENTS OF LEPTONS
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(a) Two-loop diagram for the electron EDM,
which does not contribute to de due to the
unitary nature of the CKM matrix.
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e� ⌫e e�

ui
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dj dl

(b) Three-loop diagram for the eEDM. Sum-
ming all diagrams of third order also results
in a zero contribution.

Figure 3.3 Examples of the two- and three-loop SM diagrams that have a zero contribution
to the eEDM.

In the SM we assume that mν = 0 and as such there are no neutrino oscillations
possible. However, we have experimentally observed such oscillations, meaning that
the masses of the neutrinos in fact should be non-zero. There are many different
models to generate these masses and depending on the model, this could lead to
an additional contribution for the eEDM if there is a CP violating phase associated
with the neutrino oscillations. An example of this would be a Majorana mass term,
resulting in a possible contribution to the eEDM as shown in Figure 3.4. Depending
on the model, the expected eEDM could go up to roughly de  10�32 e cm [95]. In
this work we will mainly focus on the current experimental limit to constrain the
cpMSSM parameter space. For this we will use the SM prediction without neutrino
masses, i.e. dEe ⇡ 10�38e cm.
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Figure 3.4 An example of a two-loop diagram including Majorana neutrinos that would
give a non-zero contribution to the eEDM.

Experimental searches for the eEDM typically do not measure the eEDM directly,
but study molecules or atoms to extract the value of the eEDM. For diamagnetic and
paramagnetic systems the enhancement factor can be large enough that the eEDM
contributes significantly to the total EDM. Besides the contributions from the elec-
tron, also nuclear interactions contribute. Using an effective field theory framework,
one can calculate these interactions based on the underlying high-energy theory, such
as the cpMSSM. For paramagnetic systems such as ThO and BaF, the electron-
nucleon interactions are the dominant contribution besides the eEDM. For diamag-
netic systems such as mercury, and the neutron, it is the pion-nucleon interactions
that are relevant [96].

Currently the ACME collaboration at Yale/Harvard has the most precise meas-
urement using ThO molecules [29, 97]. However, no eEDM has been found, which
puts the experimental limit at

de  1.1⇥ 10�29e cm, (3.11)

with a 90% confidence level. In Groningen the NL-eEDM collaboration (see also
Chapter 1) aims to measure the eEDM using BaF molecules [31], which could push
the limit towards de  10�30 e cm. The first results are due in 2023-2024. In the
meantime, we take the limit of (3.11) as an experimental constraint on the cpMSSM
to restrict the parameter space.
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Figure 3.5 The magnitude of the eEDM on the horizontal axis, together with current
experimental limits and the ranges predicted by BSM models that generate the eEDM at
the one- and two-loop level. The energy scale of the new particles that are probed is indicated
in TeV. Obtained from internal communication with Steven Hoekstra.

Related to the experimental searches are exclusion predictions such as shown in
Figure 3.5. However, it is not straightforward to put a value of the eEDM to a class
of models. We will therefore investigate such claims in more detail in Chapter 5. For
example, we will see that the cpMSSM allows for dEe ⇡ 10�32 e cm, although the
eEDM is generated already at 1-loop level.

It is important to note that more experimental observables are necessary to prop-
erly constrain the parameter space of the CPV phases. Even with independent meas-
urements of several systems it is not possible to constrain all 6 free phases of the
cpMSSM, let alone additional phases of more complicated models. This is because
the observables are related and ultimately depend on three factors: the eEDM, the
pion-nucleon interactions and the electron-nucleon interactions.

3.1.1 Analytic expressions for aµ at first and second order

Typically the deviation of aµ from the SM prediction is studied in models without
CPV, partially because the available software does not always allow for CPV phases
and partially because this was historically more interesting. We will therefore study
aµ in the pMSSM to use the available state-of-the-art calculations, and do a smaller
study in the cpMSSM. In this chapter we will present the analytic expressions for the
cpMSSM contributions. These expressions can be evaluated for purely real paramet-
ers to obtain the pMSSM contributions. The additional contributions that are taken
into account by the software package GM2Calc, which we use for our pMSSM study
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in Chapter 4, are presented in [98,99].

l� l�e�0

el�

�(✏µ)

q

Figure 3.6 The 1-loop lepton-neutralino-sfermion diagram, assuming no flavour violation.

Observables are defined in the limit q ! 0.

At first order there are two contributing diagrams: the neutralino-smuon loop
(Figure 3.6 for l = µ) and the chargino-sneutrino loop (Figure 3.7 for l = µ) [100].

Using the conventions as described in Appendix A, the expressions for these one-loop
contributions read [101]
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The loop functions F can be found in Appendix B. Note the complex conjugate and
minus sign that differ from [101] for the neutralino contribution, which is due to our

convention for GR
im.

At two loop, the numerical values of the various contributions differ considerably.
The photonic Barr-Zee diagrams are the source of the largest possible two-loop con-
tribution. Here a Higgs boson and a photon connect to either a chargino, sfermion
or fermion loop [102] 3. In Figure 3.8 we show the Barr-Zee diagrams we take into
account.

3Two-loop corrections from sfermion loops contribute with a few percent here as well, since we
assume heavy squark masses [103,104].
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Figure 3.7 The 1-loop lepton-chargino-sneutrino diagram, assuming no flavour violation.

Observables are defined in the limit q ! 0.

The neutral Higgs contributions from these Barr-Zee diagrams are as follows [105]
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(3.14)

Here ↵em is the electromagnetic fine-structure constant, ⌧xi = m2
x/M

2
Hi

and Qq is
the charge in units of e, which is 2/3 and �1/3 for up- and down-type quarks re-
spectively. Expressions for the two-loop functions F (⌧), f(⌧) and g(⌧) can be found
in Appendix B. The couplings are defined in Appendix A.4. We implement tan�
resummation for the third generation fermions, to take higher-order corrections for
large values of tan� into account. This can be found in Appendix A.5.
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Figure 3.8 Barr-Zee diagrams for a charged lepton l, where the Hi lines denote all three

neutral Higgs bosons.

It is noteworthy that the Barr-Zee contributions given in (3.14) can be as large
as the 1-loop contributions in specific models. This is because the parameters that
play a role in (3.12) and (3.13) are different and independent from those in (3.14)
Specifically two-loop diagrams with a top or tau contribute significantly to ∆aµ , see
e.g. [106,107] for a discussion in the two Higgs doublet model.

Other contributions, such as the bosonic 2-loop diagrams, are of less importance.
They are taken into account in the software package GM2Calc, which can be used to
calculate ∆aµ in BSM models without CPV. See [99] for a full account on all contribu-
tions that are taken into account in this software package. Since these contributions
are always smaller than the Barr-Zee contributions, we have decided to leave such
improvements for a future study.

Finally the charged Higgs bosons can contribute through a process similar to the
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neutral Higgs boson Barr-Zee diagrams. Again we have opted to leave this for future
extensions of our in-house code, as these have been shown to be much smaller than
the neutral Barr-Zee contributions [57, 108].

3.1.2 Analytic expressions for the eEDM

Since the eEDM violates CP, the pMSSM contribution would be explicitly zero. We
will therefore study it in the cpMSSM. The diagrams necessary to calculate the eEDM
contribution in the cpMSSM are similar to those presented for aµ, we only project
on a different structure using the EDM projection operator described in Appendix C.
This gives the following results.

At first order there are two diagrams contributing to the eEDM: the neutralino-
selectron diagram as shown in Figure 3.6, and the chargino-sneutrino diagram as
shown in Figure 3.7. These are the same diagrams as for aµ, but now for l = e.

Using the expressions for the couplings as in Appendix A.4 we can write the 1-loop
contribution to the eEDM as
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This expression agrees with [57], but instead of a general sfermion f̃ we use the
selectron ẽ in the cpMSSM, since minimal flavour violation is assumed.
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For higher orders we take the Barr-Zee diagrams as shown in Fig. 3.8 into account.
We find that the eEDM (dEe )

H is induced by CP-violating phases of third-generation
fermions and sfermions, and of charginos. The Barr-Zee contribution to the eEDM is
given by [57]
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with ⌧xi = m2
x/M

2
Hi

and Qq again the charge in units of e. Expressions for the
couplings g and loop functions F (⌧), f(⌧) and g(⌧) are again given in Appendices A.4
and B respectively. To include higher-order effects, e.g. from gluino exchange, we will
also implement tan(�) resummation, as is described in Appendix A.5. Note that this
resummation is questionably called threshold correction, e.g. in [57].

Note that for both the one-loop and two-loop contributions the phase between
the two Higgs doublets, ⌘, plays an important role, even though there is no direct
dependence. At first order the neutralino and chargino mixing matrices and masses
depend on ⌘. At second order again the chargino mixing matrices and masses are
relevant, but also the mixing matrices and masses of the neutal Higgs bosons depend
on ⌘. This makes ⌘ one of the most relevant parameters for de. We will see this in
more detail in Chapter 5.

Similar to the ∆aµ calculation, there are other two-loop and higher-order correc-
tions known that we do not take into account in our own in-house code. See e.g. [108]
for a full account of the two-loop contributions. These are part of a future extension
of our in-house code, which will allow for a more complete comparison with the code
CPsuperH, that does include the charged Higgs boson Barr-Zee contribution [109].
However, such contributions have been shown to be much smaller (at least one order
of magnitude) than the contributions we have taken into account [108,110].
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3.2 Dark matter

As discussed in Chapter 1, one of the goals of a BSM theory is to explain the obser-
vations on DM. There are several observables related to DM: the DM relic density,
the velocity-weighted annihilation cross-section for DM indirect detection and the
spin-dependent and spin-independent cross sections for DMDD. In this Section we
will discuss these observables in the (c)pMSSM. Note that we thus assume a particle
interpretation of DM.

Assuming DM particles obey the same laws of physics as SM particles, the first
DM particles were created in the early Universe when the temperature was still high
enough for pairwise creation. In the ΛCDM we assume that the early Universe is
radiation dominated and in a thermal equilibrium, such that the number density n of
DM particles at that time can be described with the Boltzmann equation [111]

dn

dt
= �3Hn� h�annvi(n2 � n2

eq), (3.18)

where H is the Hubble constant describing the expansion of the Universe and h�annvi
is the velocity-weighted annihilation cross section for DM particles annihilating into
SM particles. If not for the expanding Universe, this equation means that any n2 6=
n2
eq would drive the number density of DM particles towards an equilibrium: if the

number density exceeds the equilibrium value neq, more particles annihilate and n
decreases. Vice versa if n is smaller than the equilibrium value, there is more particle
creation. Once the particles reach the equilibrium state, n will only decrease due to
the expansion of the Universe. In other words, after some time the number density
per comoving volume stays constant. We call this a thermal freeze-out of DM. The
remaining DM, or the relic density ΩDMh2, can be calculated and is typically expressed
in terms of the scaled Hubble parameter h, as this is now a constant number. We
define h as [112]

H = 100 h km s�1Mpc�1. (3.19)

Observations from the Planck satellite on the CMB put the total observed ΩDMh2 at
a value of ΩPlanckh

2 = 0.120± 0.001 [15].
We can calculate the expected value ΩDMh2 for a certain DM candidate. If this

theoretical value exceeds ΩPlanckh
2 it is said that this DM candidate is over-abundant

and therefore disfavoured. If the calculated value stays below ΩPlanckh
2, the candidate

is under-abundant, as it cannot account for all the observed DM. We can thus use
the observed value of the relic density as a constraint on our models. However, we
have to be careful, as the annihilation mechanism can be more complicated when
co-annihilation plays a role. This is when another particle annihilates with the DM
particle as e�0 +X ! SM + SM. For N kinds of particles that can participate in the
annihilation (including the DM particle), we find [113]

dn

dt
= �3Hn� h�(co)annvi(n2 � n2

eq), (3.20)

49



CHAPTER 3. OBSERVABLES IN THE PMSSM AND CPMSSM

where the co-annihilation cross section for co-annihilation partners i and j is given
by

h�(co)annvi =
NX

i,j=1

h�ijviji
neq
i

neq

neq
j

neq , (3.21)

where vij is the relative velocity between particle i and j. This describes all annihil-
ation and co-annihilation into SM particles. However, co-annihilation is suppressed
depending on the temperature T and mass of the co-annihilation partner i as

neq
i

neq / exp

✓
�mi �mDM

T

◆
. (3.22)

Therefore only particles similar in mass to the DM particle will contribute to the co-
annihilation process. In the (c)pMSSM these are typically the gauginos and lightest
stop, but in Chapter 4 we will also see slepton co-annihilation.

Note that the observable that we use for DM indirect detection is actually the
present-day velocity-weighted annihilation cross section h�vi. On the other hand, the
h�(co)annvi in the expressions above, is calculated in the early Universe and can thus
differ from the present day value.

In most cases these two cross sections will be roughly the same, as they do not
change over time. There is an exception however, which is when the main contribution
comes from an s-channel resonance. This resonance could exist because of the higher
temperatures (and thus energies) present in the early Universe, which are not present
today. The resonance will have disappeared over time due to the reduced temperature,
resulting in a different cross section. The result for ΩDMh2 is based on the early
Universe cross section h�(co)annvi, meaning that the same value of ΩDMh2 can result
in different values of h�vi. We will see this in Chapter 4, where we study h�vi and
ΩDMh2 as part of our analyses.

Since direct evidence of a DM particle is currently lacking, one typically uses the
experimental results as a constraint on the theoretical model. The difficulty with the
MSSM is that each set of parameter values results in a different spectrum, including
a different DM candidate. This makes it challenging to use the DMDD limits directly
to exclude regions of the parameter space. Instead, we calculate the expected DMDD
rate for a given spectrum, which is represented by a given set of parameter values. We
can then compare this spectrum and its DM candidate to the current experimental
limits to check if the hypothetical detection rate exceeds the signal limit for a given
experiment. If the prediction does exceed the signal limit, the considered candidate
is excluded.

The direct detection rate for a DM particle depends on the cross section for elastic
scattering between the DM particle and a nucleus, �, which has to be calculated in the
assumed model. Because the scattering is elastic and the momentum transfer is low,
one typically uses an effective field theory (EFT) framework to determine �, where
the (heavy) mediator is integrated out. In this framework there are different types of
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contributions relevant for the cross section: scalar, axial-vector and pseudoscalar (the
tensor and vector contributions are not relevant for Majorana particles such as the
neutralino). The pseudoscalar contribution is typically not relevant for pMSSM-like
models, since it is usually strongly suppressed in the non-relativistic limit. Inter-
actions of the scalar kind will then contribute to the spin-independent (SI) cross
section, while the axial-vector contributions are relevant for the spin-dependent (SD)
cross section for the interaction between a WIMP and a nucleus. For more details on
this calculation we refer the interested reader to e.g. [114] for a pedagogical review.

We will use both the spin-dependent and spin-independent cross section for pro-
tons and neutrons in our analyses. We can then compare this to the current experi-
mental limits on �SD

p,n and �SI
p,n.

3.3 Fine-tuning

For a given SUSY model it is also possible to define a quantity called the FT of the
model. This is not an observable, but we can use it to study the validity of our
models. We will therefore define the FT measures that we use and motivate them.
But first we will define what we mean by fine-tuning.

The SM Higgs particle has an observed mass of 125 GeV. Within the SM there
is nothing special about this value. However, if there exists a BSM theory at higher
energies, the SM will couple to this new theory and the Higgs boson mass will receive
quantum corrections that can potentially become much larger than the mass itself.
These corrections depend on the mass of the BSM particles and are quadratic in
nature4. The instability of a scalar mass with respect to high scale physics was
already studied in the 80’s, e.g. in [116–119]. For a model to still result in the correct
Higgs boson mass of 125 GeV, one would need a lot of FT to obtain the correct mass
instead of a value that is close to the scale of the new theory.

In an unbroken version of SUSY, this is actually not a problem. Unbroken SUSY
links the mass of scalar particles, like the Higgs boson, to fermionic SUSY particles.
Fermions are protected by a chiral symmetry [32], which makes it natural for their
masses to be small. Linking the Higgs boson mass to a protected fermionic mass
would solve the FT problem, regardless of any other BSM theory. We can also see
this in the loop corrections that the Higgs boson mass receives: for each bosonic loop
correction in a supersymmetric theory, there is also a fermionic loop correction with
the opposite sign, and vice versa. This was originally one of the reasons to study
SUSY.

Nowadays we only study broken versions of SUSY, as we know that an unbroken
version is not realised in nature. For the MSSM we even find that EWSB and SUSY
breaking are closely related, as we cannot have the former without the latter. What
does this mean for the FT in the theory? The Higgs boson mass is no longer directly

4This is unrelated to the renormalisation that is used to compute the Higgs boson mass. See
e.g. [115] for a clear explanation on the origin of the quantum corrections.
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protected by the chiral symmetry of the fermionic masses. However, the Higgs boson
mass does depend on the free parameters of the supersymmetric theory. This results
in a different FT problem5: if the parameters are very large compared to the Higgs
boson mass, we could again need a large amount of FT to obtain the correct mass. If
the model is too fine-tuned, it is said to be unnatural and therefore not favoured.

It is often claimed that the MSSM cannot be realised in nature in a natural way,
because the masses of the relevant SUSY particles are too large (> 1 TeV). However,
recent studies have shown that this claim is too general and one should be careful of
the nuances [120, 121]. On top of that, it is unclear how much FT one should allow
before considering a model unnatural, as there is no consensus on this amount.

Different FT measures give different results. This makes the FT discussion not
only model- but also measure-dependent. One can choose for a measure that takes
the relation between the low scale SUSY parameters (such as µ, m2

Hd
and m2

Hu
) and

the high scale theory into account. For instance the Barbieri-Giudice measure [122],
that is widely used, is such a measure. However, we will use a more agnostic approach
by looking only at the low scale (c)pMSSM model.

The electroweak (EW) FT measure [123] is more suitable for this, as it only takes
the dependence of the Z-boson mass on the model parameters into account. It is
motivated by the relation between mZ and the Higgs sector in the pMSSM [see also
(2.17)], which is as follows when we include the loop corrections:6

m2
Z

2
=

(m2
Hd

+ Σ
d
d)� (m2

Hu
+ Σ

u
u) tan

2(�)

tan2(�)� 1
� |µ|2. (3.23)

Here Σ
d
d and Σ

u
u contain a sum of different contributions, that arise from the loop

corrections to the Higgs potential [124]. We now define the EW FT measure ∆EW as
follows

∆EW ⌘ max
i

����
Ci

m2
Z/2

���� , (3.24)

where the Ci are defined as

CmHd
=

m2
Hd

tan2 � � 1
, CmHu

=
m2

Hu
tan2 �

tan2 � � 1
, Cµ = �|µ|2 (3.25)

C
Σ

d
d
=

max(Σd
d)

tan2 � � 1
, C

Σ
u
u
=

max(Σu
u) tan

2
�

tan2 � � 1
. (3.26)

Note that the terms Σd
d and Σ

u
u contain contributions from parameters that are real in

the pMSSM, but can become complex in the cpMSSM. At leading order, it is sufficient

5Note that this is really different, as we have explicitly allowed only soft breaking terms in the
SUSY Lagrangian.

6Since mZ was known long before mh was measured, the FT measure is historically defined in
terms of the Z-boson mass.
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to include the absolute value of those parameters. However, for a complete study it
is necessary to also include the higher-order corrections that depend on the full, and
thus in general complex, parameters. This would go beyond the scope of this thesis,
so we have included the leading-order terms by taking the absolute values of those
parameters for a first-order calculation of ∆EW in the cpMSSM.

With these definitions we can evaluate how the mass of the Z-boson depends on the
model parameters and how fine-tuned this must be to obtain the observed mZ = 91.2
GeV [45]. For the EW FT measure a value of ∆EW = 100 corresponds to a parameter
FT of O(1%).

To study the FT in the CPV sector of the cpMSSM explicitly, the EW FT measure
is not suited. Instead, we will use the observable eEDM to determine the degree of
FT for these phases by defining

∆CPV ⌘ ∆φ = max
i

����
@ log de
@�i

���� ⌘ max
i

∆φi
, (3.27)

where de is the eEDM and �i is one of the CPV phases of the cpMSSM. By taking the
logarithmic derivative in de, we ensure that the amount of FT is an absolute number
that can be interpreted on its own. For a linear derivative we would have to compare
the resulting value to the value of de. In Chapter 5 we will study this definition of FT
in more detail and discuss whether this choice is indeed suitable for the cpMSSM, or
if other definitions should be considered.

We do not take a double logarithmic derivative to avoid an artificial transition
between �i = 0 and �i ⇡ 0. A phase that is truly 0 would have a FT of 0 as well in
a double logarithmic definition, which means that the FT of that point would only
depend on non-zero phases. We believe this is more difficult to interpret and thus opt
for a linear derivative in the phases. See e.g. [125] for a more thorough discussion on
the different definitions on FT in BSM models.

We will implement ∆CPV as a numerical derivative that is normalised to the
eEDM. Using x = �i, for phases �i > 10�6 we compute this as

@de
@x

=
de(x+ x✏)� de(x� x✏)

2x✏
, (3.28)

and in other case we use

@de
@x

=
de(x+ h)� de(x� h)

2h
. (3.29)

for h = 1⇥ 10�6, to ensure numerical stability.
To find a value of ✏ for which the numerical derivative of (3.28) is stable, we have

run several tests. We compare the two-point derivative with the five-point derivative,
defined as

@de
@�i

=
�de(x+ 2x✏) + 8de(x+ x✏)� 8de(x� x✏) + de(x� 2x✏)

12x✏
. (3.30)
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When both methods give the same result, we consider the calculation stable. We have
tested this for several values of ✏, in Figure 3.9 the results are shown. After these
tests we have implemented the two-point derivative of (3.28) and (3.29) in our code
for the value ✏ = 10�2.

Figure 3.9 The ratio of the the two-point and five-point derivative for calculating @de/@�i.
When both methods give the same result, we consider the numerical derivative stable, as is
the case for ✏ ⇡ 10

−2
.

A high value of FT corresponds to a region of the parameter space where the
eEDM is not stable in terms of the CPV phases. Note that FT and naturalness
are different concepts and thus a point with low or high FT can still be unnatural.
We refer to [32] for a discussion on the concept of naturalness in the case of a one-
parameter problem. It is not immediately clear how one could extend this definition
of naturalness to a model such as the cpMSSM, where several parameters can violate
CP symmetry. We will therefore only focus on studying the FT of our models.

We will study the EW FT in the pMSSM in Chapter 4 and the FT in the CPV
sector in Chapter 5. Since any FT measure can be defined up to a constant, it is not
a priori clear how to combine both FT measures to a single value. We will therefore
focus on ∆CPV for the CP violating sector of the cpMSSM.

Note that ∆CPV is inherently different than ∆EW, as it is only suitable for certain
models. While the contributions to ∆EW may vary for different models, the general
definition is the same. On the other hand, ∆CPV is undefined for supersymmetric
models without CPV. Furthermore, the EW FT is related to a general observable,
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the mass of the Z-boson, while ∆CPV is related to a specific observable of our choice
and any other CPV observable could have been chosen instead. Additionally, only
an upper bound for |dEe | is known, contrary to observables as mZ and ΩDMh2. It is
important to keep this in mind for the discussion in Chapters 4 and 5.
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Dark Matter, fine-tuning and

(g − 2)µ
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As we have seen in Chapter 3, the anomalous magnetic moment of the muon is an
interesting observable to study, as there is currently a discrepancy between theory
and experiment of roughly 4�. In this Chapter we will study the pMSSM contribu-
tion to (g � 2)µ to explain this difference. Additionally, we will study DM observ-
ables and fine-tuning, such that we can look into the phenomenology of the regions of
the pMSSM parameter space that account for the DM relic abundance, the observed
(g� 2)µ discrepancy and are minimally fine-tuned. The contents in this Chapter are
based on [126].

The LHC has been searching for over a decade for signs of physics that originate
from BSM scenarios, including searches for signals that originate from SUSY particle
production. These high-energy searches are complemented by low-energy experiments
such as DM experiments, or experiments that search for small deviations in known
SM processes from their SM prediction. In the former category, the XENON1T [127,
128], PandaX-II [129, 130] and PICO [131–133] experiments provide limits on the
DM-nucleus scattering cross section, whereas the Planck collaboration provides a
precise measurement of the DM relic abundance [15]. In the latter category, the
anomalous magnetic moment of the muon (g � 2)µ plays an important role. There is
a long-standing discrepancy between the experimental result [22, 83, 84] and the SM
prediction for the muon anomalous magnetic moment. Note that there is still some
discussion on the calculation of the SM prediction, as mentioned in Section 3.1. In
this Chapter we will focus on our work from [126]. Keeping this in mind, the deviation
from the SM predication based on (3.7) is

∆aµ = aexpµ � aSMµ = 251(59)⇥ 10�11. (4.1)

The pMSSM predicts a DM candidate and can simultaneously provide an explan-
ation for the (g � 2)µ discrepancy 1. Furthermore, the MSSM provides a solution
to the FT problem in the Higgs sector that any BSM model introduces, even after
taking into account the constraints on colored sparticles originating from the LHC.
It is clear that for a rich model such as the pMSSM, the interplay between the vari-
ous experimental results is of crucial importance. In this context, several studies
have been performed to study a subset of these constraints. For instance, the in-
terplay between the LHC limits and the (g � 2)µ discrepancy has been studied in
e.g. Ref. [134–141]. DMDD searches are complementary in regions of the pMSSM
parameter space where the LHC has little sensitivity, for example in compressed re-
gions.2 Papers that explore the DM implications of spectra that explain the (g� 2)µ
discrepancy include Refs. [140–145], where the relic density requirement is not always
taken into account. Likelihood analyses or global fits, where all experimental data

1A simultaneous explanation of the muon and electron anomalous magnetic moments in the
MSSM context is provided in Ref. [92].

2In compressed regions some sparticles are nearly degenerate in mass, e.g. mt̃1
≈ mt̃2

.
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that constrain the pMSSM parameter space are taken into account, have been per-
formed in e.g. Ref. [145–151]. The degree of FT in constrained models that explain
the (g � 2)µ discrepancy is studied in [152, 153], whereas the role of FT in spectra
with the right DM properties is studied in Ref. [120,121,154–156].

In this work we perform for the first time a study of the phenomenology of the
pMSSM that simultaneously accounts for the DM relic abundance and the observed
discrepancy of (g�2)µ, that includes all DMDD and LHC limits, and that constrains
the model-parameter space to models that are minimally fine-tuned. The resulting
spectra may be obtained from [157]. First, we will explain the analysis setup for this
study.

4.1 Analysis setup

We study model points in the pMSSM as defined in Section 2.3, which has 19 free
parameters. In modern particle physics it is customary to use computational tech-
niques to support more traditional methods of calculations. This is especially the case
for supersymmetric models such as the pMSSM, because of the many free parameters
of the model. Ultimately we aim to find model points that satisfy all available con-
straints on the observables defined in Chapter 3. In order to do so, one has to find the
masses and couplings, or the spectrum, for a chosen set of values of the Lagrangian
parameters. This is not a simple task. The pMSSM parameters are defined at the
energy scale of the model, or SUSY scale, which is typically taken to be

mSUSY =
p
mt̃1

mt̃2
(4.2)

in terms of the two top squark masses. On the other hand, the model has to satisfy
constraints that are defined at the electroweak scale. This includes LEP and LHC
limits on the masses and couplings, but also successful EWSB is a requirement, so the
spectrum has to satisfy the tadpole equations (2.17). To make sure that the model
point satisfies the constraints at both energy scales, we use a spectrum generator.

A spectrum generator is designed to solve the renormalisation group equations
(RGEs) that describe the energy dependence of the model parameters. The user can
define properties of the model, e.g. unification of certain parameters at a defined
energy scale, or the requirement that there is no flavour violation. Also the boundary
conditions at the low (electroweak) and high energy scale are defined in the spectrum
generator. For a chosen set of input parameters, the spectrum generator will then
try to find a consistent solution of the RGEs at both energy scales. If such a solution
indeed exists, the masses, mixing matrices and couplings are calculated as well.

There are several public spectrum generators available, each with its own benefits
and downsides. For instance the codes CPsuperH, FeynHiggs, ISAJET, SoftSUSY,
SPheno and SUSPECT can all be used as a spectrum generator. Most codes take
roughly the same approach and differ only in higher-order corrections (see e.g. [158]
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for a nice overview). The exception is CPsuperH: most codes include running to sat-
isfy the boundary conditions at both energy scales, but CPsuperH uses an effective
potential approach [159] to calculate the resulting spectrum. Depending on the values
of the input parameters, this can lead to significant differences between the resulting
spectra from CPsuperH and other spectrum generators (see Appendix D for a com-
parison between the results of several spectrum generators). Consequently, we have
to pick a spectrum generator that suits the model and region of parameter space that
we want to study.

For the pMSSM there are several spectrum generators available and their dif-
ferences are well-known [158]. We choose SoftSUSY for the general spectrum and
FeynHiggs to calculate the Higgs masses, as this gives the best result for the region
of parameter space that we are interested in. Once the masses and couplings are all
calculated, we can use them to calculate other observables. In Table 4.1 we show an
overview of the software that we have used3. Not all of the software packages are
suited for the cpMSSM, which is indicated by a star for suitable software.

Our analysis setup for the (g � 2)µ study is as follows. We use the Gaussian
particle filter [200] to search the pMSSM parameter space for interesting areas. First,
we use random sampling to search the parameter space for spectra that do not result
in nonphysical results (e.g. when no converging spectrum can be found for a correct
Z-boson mass). Next, we sample around these points to search for points that satisfy
one or more experimental constraints. Using the Gaussian particle filter, we can then
search for areas where all constraints are satisfied.

The particle filter allows to zoom in on regions of parameter space that look prom-
ising after generating a first set of data points. Once the spectrum and observables are
calculated for each point, we search for points that meet some or all criteria and use
these as seeds for a new iteration. With the Gaussian particle filter we can smartly
search the parameter space for more points that allow the criteria, or for points that
meet more criteria. Note that the width of the Gaussians can be chosen by hand: for
a small width the new data points will likely be very similar to the seeds. Although
this allows for the fast generation of many data points, it is easy to then overlook
regions of parameter space. A balance between iterations that use a larger width to
find new regions and iterations with a small width for in-depth study, is therefore
necessary.

To create the SUSY spectra we use SoftSUSY 4.0 , the Higgs mass is calcu-
lated using FeynHiggs 2.14.2 , and SUSYHIT is used to calculate the decay of the
SUSY and Higgs particles. Vevacious is used to check that the models have at least
a meta-stable minimum state that has a lifetime that exceeds that of our universe
and that this state is not color/charge breaking 4. We use SUSY-AI and SModelS

to determine the LHC exclusion of a model point. LHC cross sections for sparticle
production at NLO accuracy are calculated using Prospino. HiggsBounds 5.1.1 is

3This includes software for the eEDM study, that we present in Chapter 5
4These scenarios appear in the (g − 2)µ context for large |µ| tanβ, see e.g. Ref. [201].
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Name References Purpose

CPsuperH(⇤) [55, 109,160] Benchmark check

DDCalc⇤ [161,162] Future DMDD constraints

FeynHiggs⇤ [163,164] Improved Higgs mass

GM2Calc [98, 99] muon anomalous magnetic moment

HiggsBounds⇤ [165–171] LEP, Tevatron and LHC constraints on Higgs

HiggsSignals⇤ [172,173] Higgs constraints

Lilith⇤ [174,175] Higgs likelihood analysis

MicrOMEGAS(⇤) [176–182] DM observables

Prospino [183] LHC cross sections NLO

SARAH⇤ [184] Generator CPV version of SPheno

SModelS⇤ [185–189] LHC exclusion limits

SPheno(⇤) [190,191] Spectrum generator (CPV)

SUSY-AI [192] LHC exclusion limits

SUSYHIT [193] Decay of SUSY and Higgs particles

SoftSUSY 4.0 [194] Spectrum generator

SuperIso [195,196] Flavour observables

Vevacious [197–199] Stable minimum of the Higgs potential

Table 4.1 An overview of the software we have used in this work. Software that can be
used for the cpMSSM is shown with a ⇤. If modifications are necessary, the star is between
brackets.

used to determine whether the SUSY models satisfy the LEP, Tevatron and LHC
Higgs constraints . MicrOMEGAs 5.2.1 is used to compute the DM relic density
(ΩDMh2), the present-day velocity-weighted annihilation cross section (h�vi) and the
spin-dependent and spin-independent dark-matter – nucleon scattering cross sections
(�SD,p and �SI,p). For DM indirect detection we only consider the limit on h�vi stem-
ming from the observation of gamma rays originating from dwarf galaxies, which we
implement as a hard cut on each of the channels reported on the last page of Ref. [202].
The current constraints on the dark-matter – nucleon scattering cross sections origin-
ating from various DMDD experiments are determined via MicrOMEGAs, while
future projections of constraints are determined via DDCalc 2.0.0.

Flavour observables are computed with SuperIso 4.1. The muon anomalous mag-
netic moment and its theoretical uncertainty is determined including two-loop correc-
tions and tan� resummation with GM2Calc. We use an in-house code (see Ref. [120])
to calculate the EW finetuning measure as defined in (3.24).

Note that it is inherent to such studies that some areas of parameter space will
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be sampled more often than others, due to the random nature of the data sampling.
Using the Gaussian particle filter we then focus on interesting areas. As a result, some
regions can seem more important than others as there are more model points. This is
however a result of the sampling algorithm and has no physical interpretation. It is
always possible to generate more points in a certain area, by sampling closely around
an existing point. Hence we stress that for any result we show here, the density of
points cannot be interpreted in terms of physics directly.

4.1.1 Constraints

We will use an upper bound of ∆EW < 100 (implying no worse than O(1%) fine-
tuning on the mass of the Z-boson) to determine whether a given set of pMSSM
parameters is fine-tuned. Using this measure, one generically finds that minimally
fine-tuned scenarios have low values for |µ|, where ∆EW = 100 is reached at |µ| '
800 GeV [120,156,203–208]. The masses of the gluino, sbottom, stop and squarks are
allowed to get large for models with low ∆EW [121, 209, 210]. Therefore, we assume
that the masses of these sparticles are above 2.5 TeV (for the gluino), above 1.2 TeV
(for the stops and sbottoms) and above 2 TeV (for the squarks), such that they evade
the ATLAS and CMS limits 5.

As one can see in the expressions in (3.12) and (3.13), the neutralino-smuon and
chargino-sneutrino contributions are controlled by |M1|, |M2|, tan� and |µ| (through
m

eχ
0
i
and m

eχ
±
k
), as well as meL1

and meeR
(through meµm

and meνµ
). They are en-

hanced when tan� grows large and when simultaneously light (O(100) GeV) neut-
ralinos/charginos and smuons/sneutrinos exist in the sparticle spectrum. The Barr-
Zee contributions from (3.14) are enhanced by large values of tan�, small values of
mA and large Higgs-sfermion couplings. In general, the one-loop chargino-sneutrino
contribution dominates over the neutralino-slepton contribution [101], unless there is
a large smuon left-right mixing induced by a sizable value for |µ| [201]. These latter
spectra will however result in slightly higher FT values, which is a direct consequence
of a higher value of |µ|.

The lightest SM-like Higgs boson is required to be in the mass range of 122 GeV
 mh  128 GeV to take the calculational uncertainties into account. Spectra that do
not satisfy the LHC bounds on sparticle masses, branching fractions of B/D-meson
decays, the DMDD, or DM indirect detection bounds are removed. Our spectra are
furthermore required to satisfy the LEP limits on the masses of the charginos, light
sleptons and staus (m

eχ
±
1
> 103.5 GeV, mel

± > 90 GeV and m
eτ
± > 85 GeV) [211,212],

and the constraints on the invisible and total width of the Z-boson (ΓZ,inv = 499.0±
1.5 MeV and ΓZ = 2.4952± 0.0023 GeV) [213]. We assume that the DM abundance
is determined by thermal freeze-out and require that the lightest neutralino saturates
ΩDMh2 with the observed value of 0.12 [15] within 0.03 to allow for a theoretical

5Note that those limits are shown to be significantly less stringent for pMSSM spectra with rich
sparticle decays, see e.g. Ref. [151].
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uncertainty on the relic-density calculation.

The spectra surviving all these constraints are available via [157] 6.

4.2 Phenomenology of the surviving model points

The main experimental constraints on our models that explain the (g�2)µ discrepancy
∆aµ come from DMDD experiments and the LHC. To understand which spectra
are still viable it is crucial to understand the phenomenology of them, since the
experimental exclusion power varies depending on the composition of the neutralinos
and charginos.
In this section, we therefore take a look at the different scenarios and contributing
compositions, and describe in detail the properties of these spectra. Knowing these
properties is also relevant for considering future experimental setups, e.g. for LHC
studies where the exclusion power heavily depends on the assumed model.

We first discuss the DM phenomenology of the lightest supersymmetric particle
(LSP). As explained in Chapter 2, the mass eigenstate of the DM particle is a mixture
of bino, wino and higgsino interaction eigenstates. To obtain the correct relic density
in the pMSSM with a pure state, one can either have a higgsino with a mass of
m

eχ
0
1
' 800 GeV or a wino with m

eχ
0
1
' 2.5 TeV. Spectra that saturate the relic

density with lower DM masses necessarily are predominantly bino-like, mixed with
higgsino/wino components. Negligible higgsino/wino components are found in so-
called funnel regions [214, 215], i.e. regions where the mass of the DM particle is
roughly half of the mass of the Z boson, SM-like Higgs boson or heavy Higgs boson.
In such a scenario, the mass of the neutralino can even get below 100 GeV with
M1 < 100 GeV, and in particular the early-universe DM annihilation cross section is
enhanced for m

eχ
0
1
' m

h
0/2 and mZ/2. Moreover, spectra with another particle close

in mass to the LSP can satisfy the relic density constraint without having a large
wino/higgsino component too, due to the co-annihilation mechanism [216].

Requiring that our spectra are simultaneous minimally fine-tuned and satisfy the
∆aµ constraint removes two types of solutions where the DM relic density constraint
is satisfied. Firstly, the case where the lightest neutralino is predominantly wino-like
results in a fine-tuned spectrum: to obtain the right relic density M2 ' 2.5 TeV for
a pure wino, so |µ| > 2.5 TeV in that scenario. Secondly, the pure-higgsino solutions
with the right Ωh2 do result in ∆EW < 100, but do not allow for an explanation of
∆aµ, which will explicitly be shown in Section 4.2.4. Therefore we will see that our
solutions feature predominantly bino-like LSPs. Due to the combined ∆aµ constraint

6This repository contains both the raw data and a single CSV file that summarizes the SUSY
parameters, masses, and the phenomenology explained in Section 4.1 of all the surviving spectra.
Each line in the CSV file corresponds to one particular spectrum, whose name is uniquely specified
and corresponds to the names of the directories of the raw data. The contents of the CSV file is
further explained in [157].

64



4.2. PHENOMENOLOGY OF THE SURVIVING MODEL POINTS

Figure 4.1 The mass of the DM particle (m
eχ
0
1
) vs the velocity-weighted annihilation cross

section (h�vi). The value of ∆EW is shown as a color code on the left, where the points
are ordered such that spectra with lower values of ∆EW lie on top of those with higher
values of ∆EW. On the right we show the dominant early-universe annihilation process
that contributes to the value of ΩDMh

2
. In both plots, we only show points that satisfy

all experimental constraints, and have 133 ⇥ 10
−11

< ∆aµ < 369 ⇥ 10
−11

, allowing for a
2� uncertainty.

(requiring high tan�), DMDD limits and the FT requirement, the composition has a
small higgsino component (< 20%) and a negligible wino component.

On the left-hand side of Fig. 4.1 we show the spectra that survive all constraints and
have ∆EW < 100. Lower values for ∆EW are generally found for lower DM masses.
The mass of the DM particle does not exceed 500 GeV, which is a direct result of
the combined requirements of having ∆EW < 100 and a sufficiently high contribution
to ∆aµ. The lowest-obtained value is ∆EW = 12.3. From the right-hand side of
Fig. 4.1, we can distinguish three different types of DM early-universe annihilation
mechanisms: the funnel regions, the coannihilation regions and the bino-higgsino
solution (indicated with bb̄ and tt̄). For clarity we show in Fig. 4.2 the same plot split
out per annihilation channel, where it clearly can be seen that for example the tt̄ and
bb̄ annihilation regimes overlap.

Before discussing the phenomenology of each of these regions in more detail, we
first discuss the compositions of the LSP, the second-to-lightest neutralino and the
lightest chargino. As anticipated in the previous section, and as shown in Fig. 4.3,
we find that the LSP is predominantly bino-like and has a small higgsino component.
Larger higgsino components are generally found for spectra that show larger values
of h�vi. The second-to-lightest neutralino and the lightest chargino are either wino-
like, higgsino-like, or mixed wino-higgsino states. It might be surprising to read that
spectra with bino-higgsino LSPs are allowed to have wino-like e�0

2/e�±
1 , as one would
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Figure 4.2 The mass of the DM particle (m
eχ
0
1
) vs the velocity-weighted annihilation cross

section (h�vi). The same points as in Fig. 4.1 are shown, but split out individually for each
early-universe annihilation process.

expect that in general these sparticles would be predominantly higgsino-like. This is
shown in Figure 4.4 for the second neutralino e�0

2.
Such configurations can however be found in spectra for which |M1|, |M2| and |µ|

are all of O(100) GeV withM2 being smaller than |µ|, and that have moderate to large
values of tan� (10 . tan� . 20). From Eq. (2.43) one may infer that for such spectra,
little mixing can take place between the bino and wino. This results in negligible
wino components of the LSP, whereas e�±

1 and e�0
2 can be predominantly wino-like.

Moreover, decreasing |µ| for such models will not only result in a higher higgsino-
component of the LSP, but counter-intuitively also in a higher wino component, while
the wino component of e�±

1 and e�0
2 then decreases. The composition of the e�±

1 and
e�0
2 sparticles is relevant for the LHC phenomenology, as those spectra where these

are predominantly higgsino-like are typically difficult to probe at the LHC due to low
production cross sections compared to the pure wino e�±

1 /e�0
2 case.

In what follows, we will explore the DM phenomenology of each of these regimes
in some more detail (Section 4.2.1-4.2.3). We also discuss their LHC phenomenology,
and explain why our solutions elude the LHC constraints. This allows us to identify
gaps in the LHC search program for supersymmetric particles. We end our discussion
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Figure 4.3 The mass of the DM particle (m
eχ
0
1
) vs the velocity-weighted annihilation cross

section (h�vi). The composition of the LSP is shown as a color code, with the bino compon-
ent |N11| indicated on the left, the wino component |N12| in the middle, and the higgsino

component
q

|N13|
2
+ |N14|

2
on the right.

on the phenomenology of the found solutions by discussing the sensitivity of DMDD
experiments in Section 4.2.4.

4.2.1 LHC phenomenology for the funnel regimes

We start with discussing the DM phenomenology of the funnel regions, of which there
are two in our spectra 7. The first one centers around m

eχ
0
1
' 40 GeV, which is

slightly less than mZ/2. This can be explained as follows. The velocities of the DM
particles were much higher in the early universe than what they are in the present-
day universe. This means that DM annihilations via s-channel Z exchanges could
happen on-resonance in the early universe, whereas in the present-day universe these
exchanges only happen off-resonance. This also explains the fact that the value for
h�vi is allowed to get orders of magnitude smaller than the value that one usually ex-
pects for a thermal relic (around h�vi = 3 · 10�26 cm3s�1 for a DM mass of 100 GeV).
These models are characterized by small wino/higgsino components of the LSP - oth-
erwise the early-universe annihilation would be too efficient, resulting in a too-low
value of ΩDMh2. The second funnel region is centered around m

eχ
0
1
' 60 GeV, slightly

less than mh/2. These DM particles annihilated in the early universe predominantly
via s-channel SM-like Higgs exchanges. No solutions are found for spectra with DM
masses in-between the two funnel regions. Here, the wino/higgsino component ne-

7The heavy Higgs funnel is not identified here, and will be left for future study.
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Figure 4.4 The mass difference between the DM particle and the lightest chargino. The
composition of the first (second) neutralino is shown as a color code on the top (bottom)
row, with the bino component |N11| indicated on the left, the wino component |N12| in the

middle, and the higgsino component
q

|N13|
2
+ |N14|

2
on the right.

cessarily needs to increase to satisfy the ΩDMh2 requirement, and these spectra are
excluded by DMDD experiments. The minimal value of ∆EW for these spectra is
13.2.

We now consider the compositions of e�0
1, e�0

2 and e�±
1 , and identify the mass

difference between the LSP and the next-to-lightest SUSY particles in the funnel
regimes, as this is important to understand the LHC phenomenology of these re-
gions. The two funnel regimes are characterized by light (m

eχ
0
1
< 100 GeV) bino-like

LSPs. The e�±
1 and e�0

2 are degenerate in mass. They are wino mixtures for masses
around 100 � 200 GeV, while they become higgsino-like for heavier e�±

1 / e�0
2 (up to

m
eχ
±
1 /eχ

0
2
' 500 GeV). The mass gap between e�0

1 and e�0
2 or e�±

1 (∆(m
eχ
0
2
,m

eχ
0
1
) or

∆(m
eχ
±
1
,m

eχ
0
1
)) is at least around 50 GeV, and exceeds 100 GeV for m

eχ
±
1
& 150 GeV

(see Fig. 4.5, left panel).
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Figure 4.5 The mass difference between the DM particle and the lightest chargino (left),
lightest smuon (middle) and lightest stau (right) versus the mass of the heavier particle. The
color code represents the dominant early-universe annihilation channel.

The masses of the first and second generation sleptons are heavier than (at least) the
masses of e�0

2 and e�±
1 . Three different sorts of decays for e�0

2 can be identified that are
relevant final-state topologies for LHC searches:

1. e�0
2 ! h0e�0

1 when ∆(m
eχ
0
2
,m

eχ
0
1
) > m

h
0 ,

2. e�0
2 ! Ze�0

1 when ∆(m
eχ
0
2
,m

eχ
0
1
) > mZ ,

3. off-shell decays when ∆(m
eχ
0
2
,m

eχ
0
1
) < mZ .

For e�±
1 , there are only two sorts of decays

1. e�±
1 ! W±e�0

1 when ∆(m
eχ
±
1
,m

eχ
0
1
) > mW ,

2. off-shell decays when ∆(m
eχ
±
1
,m

eχ
0
1
) < mW .

We now determine why our points in the funnel region survive the LHC constraints.
Given that the first and second generation sleptons in these spectra are heavier than
e�0
2 and e�±

1 , searches for e�0
2e�±

1 production with on-shell decays of e�0
2 ! Ze�0

1, such
as those in Ref. [217–220], are most sensitive to our spectra. However, whenever
∆(m

eχ
0
2
,m

eχ
0
1
) > m

h
0 , we find that in our models there exists a mixture between

e�0
2 ! h0e�0

1 and e�0
2 ! Ze�0

1 decays. This is part of the reason why our models evade
the LHC limits: the sensitivity of the experiments drops when e�0

2 can decay into the
SM-like Higgs boson [218, 221]. A second reason why these spectra evade the LHC
limits is that the simplified limits of the searches mentioned above assume a wino-like
e�0
2e�±

1 pair, whereas we deal with mixed wino-higgsino pairs.
To interpret the above-mentioned analyses, we show in the left panel of Fig. 4.6

the average cross section per 10 by 10 GeV bin for e�0
2e�±

1 production. We de-
termined whether a given model point is excluded by parameterizing the upper
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Figure 4.6 The mass of the DM particle versus the mass of the lightest chargino (left) and
smuon (right), combined in 10 by 10 GeV bins. The average production cross section of
�
pp→eχ

0
2 eχ

±
1

(left) and �
pp→el

±
1
el
⌥

1
(right) is shown in color code for each bin. The dashed black

line in the plot on the left-hand side shows the limit where m
eχ
0
1
= m

eχ
±
1
, whereas the gray

dashed (dotted) lines show m
eχ
±
1

= m
eχ
0
1
+mZ (m

eχ
±
1

= m
eχ
0
1
+m

h
0). The dashed black line

in the plot on the right-hand side shows m
eχ
0
1
= mel

±
1
.

bounds on the cross sections as shown in Ref. [219], Fig. 7 and 8, Ref. [218], Fig. 11
and Ref. [220], Fig. 5 and 6. We find that our cross sections in the regime where
mZ < ∆(m

eχ
0
2
,m

eχ
0
1
) < m

h
0 do no not exceed the 95% confidence level (CL) limits.

We expect this situation to change if more LHC data is collected, making the LHC
sensitive to this part of the funnel parameter space. The models with off-shell de-
cays are slightly more constrained by the current results of the LHC experiments.
Particularly Ref. [220] excludes some of our spectra in this regime that have m

eχ
±
1

up to 210 GeV and ∆(m
eχ
0
2
,m

eχ
0
1
) < 55 GeV. These spectra are explicitly removed

from the plots. The LHC shows limited sensitivity to the models in the mass range
of 55 GeV < ∆(m

eχ
±
1
,m

eχ
0
1
) < mZ . To gain full sensitivity to the funnel regions, this

mass range is an important domain to cover in the LHC searches.

4.2.2 LHC phenomenology for the coannihilation regimes

The second regime is the coannihilation regime, whose DM phenomenology we now
discuss. It starts to open up at DM masses of roughly 70 GeV, as no charged sparticles
(and therefore no coannihilation partners other than the sneutrino) can exist with
masses below 85 GeV due to the LEP/LHC bounds. Three different types of coan-
nihilation partners are identified: first-/second-generation sleptons, third-generation
sleptons, and charginos or heavier neutralinos. Interestingly, only with the help of
slepton coannihilations the DM particle can have a mass between O(70 � 150) GeV
and still give the right ΩDMh2. To obtain the right relic density in this regime without
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a slepton-coannihilation partner, one generally needs high higgsino fractions, which
increases the value of �SI,p beyond the exclusion limit of the DMDD experiments.
The lowest values of ∆EW are found in the stau-coannihilation regime (∆EW = 12.3),
while the first-/second-generation slepton and chargino/neutralino regimes result in
lowest values ∆EW = 14.4 and ∆EW = 16.4 respectively. The coannihilation regimes
are all characterized by small mass differences between the LSP and its coannihilation
partner(s).

The first type of coannihilation is that of first-/second-generation sleptons (el±1 ).
The compression between mel

±
1
and m

eχ
0
1
is increased for higher LSP masses such that

the right ΩDMh2 can still be obtained, see Figure 4.5. By computing the production
cross sections �

pp!eχ
0
2eχ

±
1

and �
pp!el

±
1
el
⌥

1
(see Fig. 4.6), and comparing these to the

results of Fig. 20 of Ref. [221], we see that spectra with ∆(m
eχ
0
2
,m

eχ
0
1
) > mZ are

under strong constraints from searches for e�0
2e�±

1 ! elell⌫l. We explicitly remove those
points from our data, leaving only models with ∆(m

eχ
0
2
,m

eχ
0
1
) < mZ . The e�±

1 and

e�0
2 sparticles of the surviving models are typically higgsino-like with a small wino

component, and have masses between 180 and 500 GeV.

The second coannihilation regime is characterized by low e⌧±1 masses. The masses
of e�±

1 /e�0
2 can still be as light as 105 GeV in this regime, where they are predom-

inantly wino-like. The higgsino component of these particles increases when their
masses increase, up to m

eχ
±
1 /eχ

0
2
' 500 GeV. Although we have a large production

cross section for the wino-like e�±
1 /e�0

2 pair, these models are not constrained by the
LHC experiments due to the presence of the light staus. The staus are often lighter
than e�±

1 and e�0
2, and the searches for e⌧±1 -mediated decays of e�+

1 e��
1 /e�±

1 e�0
2 production

have no sensitivity when ∆(m
eχ
0
1
,m

eτ
±
1
) < 100 GeV [222,223]. The latter holds for our

spectra in the second coannihilation regime, since the mass differences between the
LSP and e⌧±1 are between 5 � 50 GeV in that case (see also Figure 4.5, right panel).
Additionally, relatively few LHC searches for low-mass e⌧± particles exist. Small e⌧+e⌧�
production cross sections and low signal acceptances make these searches difficult, so
the experiments have no constraining power in the compressed regime [224,225].

We suggest a dedicated low mass e⌧± search without an assumed mass degeneracy
between e⌧±1 and e⌧±2 to probe the sensitivity of the LHC to these scenarios.

The last coannihilation regime has a e�±
1 or e�0

2 that is close in mass to the LSP.
Interestingly, although the mass compression for the slepton coannihilation regimes
needs to increase to obtain the right relic density for higher DM masses, for the
gaugino-coannihilation regime it needs to decrease instead (see Figure 4.5, left panel).
Regarding the LHC phenomenology, note that although the slepton masses in these
regions can be O(200) GeV, the results from the el+R,L

el�R,L searches with el± = ee±, eµ±

or e⌧± (e.g. [225–227]) are not directly applicable here, as often one or more of the
chargino/heavier neutralino states is lighter than the sleptons. Therefore, the slepton
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will not decay with a 100% branching ratio to e�0
1l

±, although this is assumed in
the above-mentioned searches. Instead, in this regime, only the e�±

1 e�0
2 searches are

of relevance, similar to the case in the funnel region discussed above. The mass
compression between the LSP and wino-higgsino like e�±

1 /e�0
2 sparticles is generally

around 15-20 GeV, and Ref. [220] excludes our solutions with m
eχ
±
1

up to 140 �
180 GeV.

4.2.3 LHC phenomenology for the bino-higgsino LSP

The last regime we identify consists of bino-higgsino LSPs and is labeled with bb̄ and
tt̄. These early-universe annihilation channels are mediated by either s-channel Z or
h0/H0 exchanges. The tt̄ annihilation channel opens up when m

eχ
0
1
becomes larger

than the mass of the top quark mt, as then the invariant mass of the two LSPs is
enough to create a tt̄ pair 8. For the Z-exchange channel this annihilation becomes
favored over the annihilation into a lighter fermion pair, since any Z-mediated anni-
hilation of two Majorana fermions is helicity suppressed at tree level [228]. This is
explained as follows. The two identical LSPs form a Majorana pair. Such a pair is
even under the operation of charge-conjugation C = (�1)L+S with S the total spin
and L the total orbital angular momentum, so L and S must either both be even,
or both be odd. Taking the limit of zero velocity, as the present-day velocity of DM
particles is non-relativistic, we may assume L = 0 and even S. The final-state fer-
mion pair can have a total spin of S = 1 or S = 0, but only the latter is allowed for
the Majorana-pair annihilation in the non-relativistic limit. For a Dirac-field pair, an
S = 0 configuration is obtained if the fermion and anti-fermion are from different Weyl
spinors: a left- and right-handed one. In the SM, a coupling with this combination
only arises (at tree level) by a mass insertion. Therefore, the transition amplitude is
proportional to the mass of the final-state fermions, and a decay to a heavier pair of
fermions is generally preferred. In spectra where tan� is large we also see the heavy-
Higgs-mediated decays to bb̄, as the bottom-Yukawa coupling is enhanced. As can be
seen in Fig. 4.5, in the regime of m

eχ
0
1
& mt, the masses of e�±

1 and e�0
2 are relatively

close to that of the LSP, so due to the coannihilation mechanism these spectra tend
to show slightly lower values of h�vi than naively would be expected.

The minimal value of ∆EW is around 14.2 for these models. The e�0
2 and e�±

1

are predominantly higgsino-like with masses from 180 to 500 GeV. Due to their small
production cross section, the LHC searches do not have exclusion power in this regime.

8The annihilation to a W
+
W

−

pair is possible when m
eχ
0
1
> mW . However, this is constrained

by DMDD due to the high wino/higgsino fraction that is necessary for this channel.
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4.2.4 Dark-matter direct detection experiments

In the previous subsections we discussed the phenomenology of the viable spectra
at the LHC. We now comment on the sensitivity of DMDD experiments. We have
seen that the LSP in our spectra is always bino-like with a small higgsino component
(Fig. 4.3). We find that the relative size of the wino component of the LSP is con-
strained by DMDD experiments: higher wino components result in larger values of
�SI,p and �SD,p. Surprisingly, this indirectly also places a lower bound on |µ|: decreas-
ing |µ| for our models will not only result in a higher higgsino-component, but also
in a higher wino component of the LSP, as more mixing between the wino and bino
components is then allowed. Therefore, decreasing |µ| for these scenarios is limited
by the constraints imposed by the DMDD experiments.

The resulting values for �SI,p and �SD,p of the surviving models may be seen in
Fig. 4.7. While the value of �SI,p varies by over 7 orders of magnitude, �SD,p is relat-
ively constrained. We moreover observe that �SD,p is directly correlated with ∆EW:
lower values of �SD,p result in higher values of ∆EW. The value of �SD,p decreases
with smaller higgsino fractions in the LSP, while for a given fixed LSP mass ∆EW

increases since |µ| needs to increase in order to lower the higgsino fraction in the LSP.
In this figure we also indicate the projected limit of the PICO-40L and the PICO-500
experiments [39]. We observe that the latter one is sensitive to all of our solutions
with ∆EW < 62. The LUX-ZEPLIN experiment [38, 229] (whose projected limit is
not shown in Fig. 4.7) will ultimately probe all of our solutions with ∆EW < 100 once
it reaches its full potential.

This shows an important message, namely that

future DMDD experiments that probe �SD,p will be sensitive to all our solutions, ir-
respective of the masses and compositions of the rest of the sparticle spectrum.

That the ∆aµ requirement is crucial to obtain this conclusion is shown in the bottom
panel of Fig. 4.7, where we show both the spectra from this work and those from
Ref. [120] without imposing the ∆aµ constraint. One may observe that in this case
spectra survive with m

eχ
0
1
> 500 GeV that show very small values of �SD,p. These

pure higgsino solutions have vanishing couplings to the Z-boson and therefore evade
detection at future DMDD experiments, but do not satisfy the ∆aµ requirement.
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Figure 4.7 Top right (left): The mass of the DM particle versus the spin-(in)dependent
cross section �SD,p (�SI,p). The value of ∆EW is shown in color code. We also show the
projected PICO-40L and PICO-500 central limits on �SD,p [39]. The points are ordered such
that those with lower values of ∆EW lie on top of those with higher values. Bottom: The
mass of the DM particle versus �SD,p for spectra satisfying all constraints listed in Section 4.1
except the ∆aµ requirement. This plot contains the data of the present study combined with
that from Ref. [120], where the requirement on aµ was not taken into account.
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4.3 Conclusion

In this study we have analyzed for the first time the spectra in the pMSSM that are
minimally fine-tuned, result in the right ΩDMh2 and simultaneously offer an explan-
ation for ∆aµ. We have made these spectra publicly available under [157].
In terms of DM phenomenology, we have distinguished three interesting branches of
solutions: the funnel regimes, three types of coannihilation regimes, and the generic
bino-higgsino solution. All these solutions have in common that the LSP is predom-
inantly bino-like with a small higgsino component. The mass of the DM particle
ranges between 39� 495 GeV. We discussed the phenomenology at the LHC for each
of the regimes. The first and second regime are relatively more constrained by e�0

2e�±
1

searches at the LHC than the last regime, which is due to the lower wino-components
and higher masses of the e�0

2/e�±
1 sparticles that are typical in the last regime. On the

other hand, in particular when the coannihilation partner of the LSP is a light stau,
the LHC searches show little to no sensitivity to our found solutions. Our solutions
motivate further the ongoing efforts at the LHC to probe pMSSM spectra that fea-
ture (compressed) higgsino-like production of e�0

2e�±
1 pairs. In addition, to increase the

sensitivity of the LHC to our found solutions, we find that a dedicated low-mass e⌧±
search without an assumed mass degeneracy between e⌧±1 and e⌧±2 would be needed,
but also that the mass-gap region of 55 GeV < ∆(m

eχ
0
2
,m

eχ
0
1
) < mZ is not probed at

the LHC. Proposing a the details of a dedicated search for these regimes, however,
lies beyond the scope of this work.

We find that DMDD experiments such as the LUX-ZEPLIN [38, 229] that probe
�SD,p will ultimately be sensitive to all of our minimally fine-tuned spectra. The
requirement of satisfying ∆aµ is crucial to arrive at this conclusion. This requirement
excludes models with a higher-mass higgsino with m

eχ
0
1
= 550� 650 GeV as the LSP,

and these spectra would evade detection by future DMDD experiments.
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5.1. ANALYSIS SETUP

In this Chapter we will expand our previous (g � 2)µ study to the cpMSSM, allowing
us to study the eEDM. Our aim is to study the degree of fine-tuning in the cpMSSM,
specifically for model points that agree with the experimental limit on the eEDM. The
central question is: how are the eEDM and the degree of fine-tuning correlated?

Many studies have been done on the eEDM in supersymmetric models [56–58,94,110].
However, such studies typically assume many constraints on the MSSM in order to
limit the number of free parameters that are involved. Nowadays it is possible to run
computations with more free parameters, allowing for more complicated models such
as the cpMSSM. This also allows for a more nuanced study of the eEDM in relation
to LHC and DM observables. Previous studies claim that the experimental limit on
the eEDM can only be satisfied when the sparticle masses are at least of O(1 TeV),
or the phases are at most of O(10�5) (see e.g. [58]). We will test this claim in the
cpMSSM, as we expect the additional free parameters to allow for a more complicated
phenomenology.

5.1 Analysis setup

As we have already generated many data points in the pMSSM for our study in
Chapter 4, we will use these as a start for the eEDM study in the cpMSSM. The
general set-up is similar: we generate data points, compute the spectrum for each
data point, calculate the observables and remove all points that do not satisfy the
constraints. To generate the data points, we sample around the points from the
(g � 2)µ data set and extend the new points to the cpMSSM by adding phases.

However, the available software to study the cpMSSM is not as extensive as for the
pMSSM. We have therefore written our own code to calculate the value of the eEDM
for a model point and to calculate the degree of FT as defined in (3.27). To generate a
spectrum in the cpMSSM we use an adapted version of SPheno: SPheno-CPV, which
we will explain in more detail in Section 5.1.2.

5.1.1 Obtaining input

We start with the model points from the (g � 2)µ study that survive all constraints
listed in Section 4.1.1 and extend these to the cpMSSM. We extract the pMSSM
input parameters from the (g�2)µ output data and use SPheno-CPV to generate the
cpMSSM spectra. In Table 2.4 we present an overview of the cpMSSM parameters,
of which Re b, Im b and |µ| are determined by the tadpole equations. Note that this
implies that m2

Hu
and m2

Hd
are input parameters for this study, in contrast to our

analysis in the pMSSM.
We want to avoid duplication of the (g � 2)µ data. Therefore, we also slightly

vary the absolute values of the pMSSM parameters, instead of only extending the
data points with phases. Per data point, we use a Gaussian distribution around each
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parameter and sample from this distribution to obtain a new value for the pMSSM
parameter. Then we extend the data point with a value for each phase.

• First we translate the pMSSM parameters to absolute values and phases. Then
we use for each pMSSM parameter Pi a Gaussian distribution of the form

p(x) =
1q
2⇡�2

i

e
�

(x�µi)
2

2σ
2
i , (5.1)

where we choose µi = Pi and �i = wiPi. The width wi is a manual setting that
can be chosen for each parameter individually, where a typical value is of order
O(0.1� 0.01). We choose such a small width to avoid a large deviation from the
original (g�2)µ values, as the original parameters resulted in a correct spectrum.

• Next we extend the obtained data to the cpMSSM by adding the phases ⌘,�µ,�At
,�Ab

,
�A

τ

,�M1
,�M2

and �M3
. We do this by generating a random value for each phase,

such that the sign of the pMSSM parameter remains the same. We generate a
number P 0

i from the probability distribution 5.1 for each pMSSM parameter Pi.
For parameters that are still real in the cpMSSM, we obtain the new parameter
Ci as follows

C 0
i = sign(Pi)|P

0
i |, (5.2)

while for parameters that do obtain a phase, we multiply P 0
i with a randomly

generated phase to obtain

C 0
i = sign(Pi)|P

0
i |e

iφi . (5.3)

The phases �i and ⌘ are taken from a logarithmic distribution that is bound to

10�6 < |�i|, |⌘| < Bi, (5.4)

where one can choose the value of Bi. We choose 10�6 to avoid problems with
numerical stability, which show up for lower values. The default setting is to use

Bη, Bµ = ⇡, (5.5)

Bi = ⇡/2 for i 6= µ, (5.6)

as this fully covers the parameter space of the cpMSSM. For specific studies we
limit the phases, e.g. in Section 5.4 we use a data set with 10�6 < |�µ, ⌘| < 10�2.

Note that we sample ⌘ and �µ in a larger range than the other phases. For ⌘ this
is because the parameter does not occur in the pMSSM at all and we thus have to
sample the entire range here. For µ we solve for |µ| in the tadpole equations, meaning
we have to sample �µ in such a way that we complement this. We therefore do not
take sign(µ) from the pMSSM data, but sample it with �µ.

In Figure 5.1 we show an overview of the process to create cpMSSM input data
from the (g � 2)µ data points that survive all constraints. Next, we will generate the
spectrum and calculate the observables for each data point.
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Figure 5.1 Flow chart to show the process of creating input for SPheno-CPV from the
(g � 2)µ data.
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5.1.2 Generating spectra and calculating observables

To generate a spectrum for the cpMSSM points, we need a spectrum generator that
can take the complex parameters fully into account. Our previous choice in Chapter 4,
SoftSUSY, is not suitable to deal with complex input parameters. Similarly ISAJET,
SPheno and SUSPECT are not compatible. Although FeynHiggs has the option to
study complex input, it only generates the spectrum of the Higgs bosons instead of a
full spectrum that includes all supersymmetric masses and couplings.

This leaves CPsuperH, which was specifically designed to study supersymmetry
with CPV and hence seems to be a good choice. However, it was never meant to be
used for the parameter values that we would like to study in the cpMSSM. At the time
that this software was designed, it was not known what the mass of the SM Higgs
boson would be, and it was generally expected to be much lighter than 125 GeV.
Combined with the effective potential approach that is implemented for the spectrum
calculation, this can lead to significant deviations from the results of other spectrum
generators. A comparative study can be found in Appendix D, where we use the same
input and generate a spectrum with CPsuperH and SPheno in the pMSSM. Since the
differences between the spectra are significant for the sparticle masses and mixing
matrices, also for the regions of parameter space that we want to study, we conclude
that CPsuperH is not suited for our study of the cpMSSM.

Instead we have opted to use the SARAH package to generate a new version of the
SPheno code that is specifically designed for the cpMSSM. In Appendix E we show
the model files that we have defined to generate this code. We have compared the
results of this new CPV version of SPheno (SPheno-CPV) with the original SPheno
for real values of the parameters and find only small differences. These differences are
to be expected in the pMSSM, as SPheno-CPV does not include the same loop-level
calculations as SPheno itself. For details, see [190,191] for SPheno and [184,230–232]
for SPheno-CPV as generated by SARAH.

Furthermore we have compared the results of CPsuperH and SPheno-CPV. We do
this for a set of input parameters for which we would expect similar results, namely for
a set with minimal mass splitting between the two sfermions of the same generation.
The pMSSM spectra are similar (O(10%) differences between the two spectra) for
these parameter sets. We find that indeed also the cpMSSM spectra are within a 10%
uncertainty. All in all we conclude that SPheno-CPV is reliable enough for our study
of the eEDM in the cpMSSM.

With the spectra from SPheno-CPV we set up the rest of our analysis. See Fig-
ure 5.2 for an overview. We use FeynHiggs 2.18 to lower the uncertainty on the Higgs
boson masses. As it is an implicit assumption in FeynHiggs that the parameter b is
real, we rotate the phases of the spectrum before running FeynHiggs. See Section 2.4
for a discussion about this rotation.

We use Micromegas 5.2.13 to calculate the DM observables and DMDD exclusion
limits. However, it was necessary to make some changes in order to use our own
generated spectrum as input for the Micromegas calculations. Without these changes,
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Micromegas uses an integrated version of CPsuperH to generate its own spectrum for
the DM observables. As we explicitly want to avoid using CPsuperH, we have made
it possible to use input from an SLHA formatted file instead of using input from
CPsuperH.

For the calculation of dEe we have written a Python code, which includes the 1-
loop contributions and 2-loop Barr-Zee contributions. Also the tan� resummation
(or threshold corrections) are taken into account [55]. We have verified that our code

gives the same results as CPsuperH if we calculate dEe directly from the masses, mixing
matrices and couplings as in Section 3.1.2. Finally we calculate the FT as defined in
Section 3.3, both ∆EW and ∆φ, with two in-house scripts.

As explained in 4.1, sampling can leave artefacts in the data. We stress again that
for any result we show, the density of points cannot be interpreted in terms of physics
directly.

5.1.3 Constraints

Some of the resulting spectra are excluded, now that phases have been added to the
original pMSSM parameters. Therefore we apply the following constraints (again) on
the spectra:

• 122 GeV < m
h
0
1
< 128 GeV;

• LEP and LHC constraints as explained in Section 4.1.1;

• DMDD and DM indirect detection constraints: Xenon, DarkSide;

• Lilith Higgs constraints with a 2� uncertainty;

• HiggsBounds limits with a 2� uncertainty.

All the spectra that we discuss in the remainder of this chapter survive these con-
straints.

Note that, contrary to the analysis in Chapter 4, we do not include the constraints
on the DM relic density. Due to the nature of our data set, we generate very few
points ( O(103) ) that satisfy ΩDMh2 = 0.12 ± 0.03. In hindsight this is due to our
usage of the (g � 2)µ data set as starting point for the cpMSSM data points. As is
explained in Chapter 4, we have searched very specifically for points that satisfy the
DM constraints in the (g � 2)µstudy. Satisfying this constraint depends profoundly
on the interplay of the pMSSM parameters, due to the involved funnel structures
and co-annihilation mechanisms. As a result, those points are very sensitive to a
small change in the parameter values, effectively creating a kind of fine-tuning. Small
changes in the pMSSM parameters therefore have a vast effect on the value of ΩDMh2.

All in all, a full study in the cpMSSM parameter space is necessary to properly
probe solutions that satisfy both the eEDM and DM constraints. We will discuss this
further in Section 6.3, as we are currently working on an extension of our study.
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Figure 5.2 Flow chart of the different software packages and necessary adaptations of
their output to be suitable as input for the next package. Note that the conventions for
SPheno-CPV, FeynHiggs and MicrOMEGAs are different. The packages LowEnergy.py and
Finetuning.py are in-house codes to calculate the low energy observables and the FT, re-
spectively.
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5.1.4 Set-up for the different runs

In order to study the effect of the different phases on the eEDM, we have created
several data sets with slightly different properties by sampling the phases in specific
domains. This allows us to study the properties of the cpMSSM in specific scenarios.
The runs have the same general properties, as described above. In Table 5.1 we show
the specific properties of the different runs.

Name of the run Properties

Iter10 10�6 < |⌘|, |�µ| < 10�2

Iter11 10�6 < |⌘|, |�µ|, |�M2
| < 10�2

Iter12 10�6 < |�i| < ⇡/2, 10�6 < |⌘|, |�µ| < ⇡

Iter13 10�6 < |⌘|, |�µ|, |�M2
|, |�M1

| < 10�2

Table 5.1 The additional constraints that have been used to generate the data for different
runs, allowing us to study the eEDM in specific scenarios.

5.2 Studying the individual phases

First we want to gain some basic understanding of the cpMSSM and the relation
between the parameters and the eEDM. This will also help us understand the rela-
tionship between the FT and the eEDM better, as we use a definition that contains
the derivative of dEe with respect to the phases. In order to do so, we have studied
the influence of the individual phases on the eEDM.

For the first part of this study we have selected two data points, of which the
parameter values are given in Appendix G. Note that the data points are chosen for
their low values of dEe , namely 9.0054 · 10�33 e cm (point 1) and 6.2557 · 10�34 e cm
(point 2). Only the phase �M3

or �Ab
was given a small but nonzero value, for point

1 and point 2 respectively. This allows us to study the impact of an individual phase,
as the other phases do not contribute, or hardly contribute, to dEe .

For each data point we have generated new data sets by varying one single phase
between 0 and 2⇡. Each set thus has the parameters as listed in Tables G.1 and G.2,
except the phase we are studying in that set. We have also generated sets where the
phase was varied between 10�8 and 10�2 to study the behaviour for small values of
the phases.

We note that some phases have a much larger influence on dEe than others. In
Figure 5.3 we show the results of the data sets where �At

and �µ were varied between
0 and 2⇡. We clearly see that �µ has a much larger effect, as the value of the eEDM

in this dataset is dEe ⇡ 10�24 e cm, regardless of the original data point.
For �At

this is only dEe ⇡ 10�28 e cm and the original data point has a bigger effect
on the resulting dependence.
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Figure 5.3 The dependence of the eEDM d
E
e on the phase �µ (�At

) is shown on the left
(right), where all other parameters have been kept constant. The value of the eEDM shown
in the legend, is the value of the original data point.

If we zoom in to small values of the phases, between 10�2 and 10�8, we also see
that �µ has more impact. This is shown in Figure 5.4. Only for very small values of
�µ do we see that the two lines slightly diverge, as the blue line shows some saturation

of dEe . We can conclude that �µ has a larger impact on dEe than �M3
for the entire

range of �µ that is scanned. On the other hand, we see that �At
only affects dEe for

values �At
> 10�4 (blue line) or �At

> 10�6 (raspberry pink line). For lower values
of the phase �At

, it is the value of �M3
(blue line) or �Ab

(raspberry pink line) that

determines dEe . Also note that dEe changes sign for �At
⇡ 5 · 10�6, resulting in a

sudden drop in |dEe | in the pink line.

Note that the FT for the complex parameters is defined as a derivative with respect
to the phases. Based on these first studies, we expect that parameters like �µ will
impact the FT much more than e.g. �At

. To show the relevance of the different
parameters we have added the full study of each parameter in Appendix G, both for
large and small values of each phase.

For the second part of the study on the impact of individual phases, we have
generated new input as described in Section 5.1.1, but with only one phase. The other
phases are set to 0. This means we vary the absolute values of the pMSSM parameters
slightly, as we take a different random value from the Gaussian distribution (5.1) each
time. Doing so allows us to eliminate the impact of the specific pMSSM parameter
values that were used in the study described above. The results for �µ,�At

and ⌘ are
shown in Figure 5.5 and the full results can be found in Appendix G.

Similar to the first part of the study, we see that ⌘ and �µ influence dEe much

more: the spread in the values of dEe is much lower for these phases. A wide spread in
dEe for the same value of the phase, means that dEe is mostly determined by the real
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Figure 5.4 The dependence of the eEDM |d
E
e | on the phase �µ (�At

) is shown in the left
(right) panel, where all other parameters have been kept constant; this time for small values
of �µ (�At

). The value of the eEDM shown in the legend, is the value of the original data

point. Note that d
E
e changes sign for �At

⇡ 5 · 10
−6

, resulting in a sudden drop in |d
E
e |

(raspberry pink line).

pMSSM parameters. On the other hand, a small spread such as we see for ⌘ and �µ
means that the phases have the biggest influence and dominate the behaviour of dEe .

From this first study we can already conclude that there is a hierarchy in the
phases: ⌘ and �µ dominate the behaviour of dEe , followed by �M2

and then �M1
. The

phases �M3
, �Ab

, �At
and �A

τ

have the least impact. This makes sense if we consider
the expressions for the 1-loop and 2-loop contributions in (3.15) and (3.16), and (3.17)

respectively. The parameters from the 1-loop contributions influence dEe much more,
as expected.

5.3 1-loop versus 2-loop contributions

For the supersymmetric contributions to ∆aµ it is well known that the two-loop con-
tributions can grow to be as large as the one-loop contributions [106,107]. Depending

on the model, this is also true for the supersymmetric contributions to dEe .
In Figure 5.6 we show the results from one of our scans in the cpMSSM. Each

point represents one set of input parameters, as described in Section 2.4. We observe
that the total two-loop contribution can grow as large as the one-loop contribution.
Moreover, since these contributions can have an opposite sign, we see that significant
cancellations can occur. We recognise this in the bright diagonal band starting at
|dEe |

one loop ⇡ 10�27 e cm and continuing down to |dEe |
one loop ⇡ 10�31 e cm. Remark-

ably, the resulting total value of |dEe | can be two to three orders of magnitude smaller
than the individual contributions.

So far, we have not found specific properties of these cancellation spectra. They
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Figure 5.5 The dependence of the eEDM |d
E
e | on the phases �µ,�At

and ⌘, for different
values of the real pMSSM parameters. Only the phase that is shown has a non-zero value.
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Figure 5.6 The absolute values of the one-loop and two-loop contributions to the eEDM,
with the absolute value of the total eEDM as colour coding. Points with low values of |d

E
e |

(total) are put on top of those with large values of |d
E
e | (total).

occur nevertheless due to our random sampling algorithm: given enough data points,
one will always find spectra for which the one-loop and two-loop contributions have
opposite signs. We are currently working on a more thorough understanding of these
spectra.

5.4 Fine-tuning and the electron EDM

We have seen that the value of dEe directly depends on each of the phases, although
not every phase has the same impact. We study this through the FT ∆φ, which is
defined as a derivative with respect to the individual phases in (3.27).

As shown in Figure 5.7, a first study on the impact of the phases and the eEDM
on the FT shows that lower values of ∆φ seem to occur mostly for larger values of

|dEe |. We also confirm our earlier impression that some phases are of much more

significance to |dEe |: only for small values of ⌘ and �µ do we obtain small values of

|dEe | (or around |⌘|, |�µ| ⇡ ⇡). Note that some regions have a lower density of points,
e.g. �⇡/2 < �At

< ⇡/2. This is due to the nature of the sampling, in this case not as
many points with Re(At) > 0 are computed successfully and survive the constraints.
This could be resolved by sampling more points in the areas with low density, given
enough time. Important is that the points exist, which means it is always possible to
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Figure 5.7 The dependence of the eEDM |d
E
e | on the phases ⌘, �µ, �At

and �M2
for a data

set where the phases are randomly sampled as 10
−6

< |⌘|, |�µ| < ⇡ and 10
−6

< |�i| < ⇡/2.
The amount of fine-tuning is shown as colour coding, with the data points ordered such that
lower values of ∆φ are put on top of those with higher values of ∆φ.

generate more in this area.

If we look at the FT as shown in Figure 5.8, left panel, we find a direct relationship
between ∆φ and |dEe |: for smaller values of the eEDM we only find solutions with a
large degree of FT. Note that we remove points where we run into the computational
limits and obtain one or more NaN values in ∆φi

.

Since we find low values of |dEe | for small values of ⌘ and �µ, we have also generated

a data set where these two phases are sampled in a smaller domain: 10�6 < |⌘|, |�µ| <

10�2. We can clearly see in Figure 5.9 that the values of the eEDM are no longer
dominated by these phases for this study and �M2

takes over this role of dominant
phase. However, we still find that low values of ∆φ seem to be correlated to high
values of |dee|, which we can confirm by looking at Figure 5.8, right panel.
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Figure 5.8 On the left: the FT of the CPV sector as a function of |d
E
e | for a data set where

phases where sampled randomly as 10
−6

< |⌘|, |�µ| < ⇡ and 10
−6

< |�i| < ⇡/2 (iter12). On

the right, the same but for a data set where we take 10
−6

< |⌘|, |�µ|, |�M1
|, |�M2

| < 10
−2

.

All other phases are randomly sampled as 10
−6

< |�i| < ⇡/2. (iter13).

We repeat this process twice more: with a study in which 10�6 < |⌘|, |�µ|, |�M2
| <

10�2 and then with a study in which 10�6 < |⌘|, |�µ|, |�M1
|, |�M2

| < 10�2, which are
iterations 11 and 13. The results are shown in Figures 5.10 and 5.11 respectively.

Name of the run min (∆φ) min (∆φ) with constraint max(∆φ)

Iter10 4.66 · 10�13 4.81 · 10�1 6.38 · 1010

Iter11 1.00 · 10�5 1.53 · 103 9.44 · 109

Iter12 3.44 · 10�7 4.53 · 103 3.01 · 109

Iter13 4.88 · 10�4 1.83 · 103 8.00 · 109

Table 5.2 The minimum and maximum values of ∆φ for each data set, compared to the

minimum value of ∆φ when the experimental constraint on d
E
e is satisfied.

Important to note is that the eEDM does not go further down as we restrict more
phases. However, we have obtained values |dEe | < 10�33 in our study of individual
phases. By restricting ourselves to phases of at least �i > 10�6, we do not find such
results here. Allowing some zero-valued phases would be an interesting follow-up
study.

In our current study we observe that |dEe | is determined mostly by the other, real
pMSSM parameters at this point. Since we started with a data set that satisfies
1.33 · 10�9 < ∆aµ < 3.69 · 10�9 and the contributions to ∆aµ and |dEe | are very
similar, we can explain this behaviour. The same parameters that allow us to obtain
the correct value of ∆aµ in the pMSSM, prevent us from finding lower values of |dEe |
in the cpMSSM. Larger sparticle masses result in a too low value of ∆aµ and are
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therefore not a part of the (g�2)µ data set. This does not allow us to check the claim

that larger sparticle masses result in a smaller value for dEe , although we do expect
this based on the expressions in equations (3.15), (3.16) and (3.17).

For a more general result, we are therefore currently setting up two new studies:
one where we only satisfy the upper bound ∆aµ < 3.69 · 10�9 and add phases in the
same way, and one where we sample the cpMSSM as generally as possible. As such
studies take a lot of computer time, we have chosen to focus on the combined (g�2)µ
and eEDM study first as core topic of this thesis.

The choice to start with the (g � 2)µ data set also impacts ∆φ. Typically this
FT due to the phases is lower for higher sparticle masses. However, such values are
not allowed for 1.33 · 10�9 < ∆aµ < 3.69 · 10�9. An extended study will provide
more insight into the correlation between the sparticle masses and the FT due to the
phases, as well as the impact on ∆EW if we allow higher sparticle masses.

With the data sets that we do have on hand, we take a final look at the eEDM
and the FT. In Table 5.2 we show the maximum values of ∆φ that we find in our data
sets, and the minimum values of ∆φ with and without the experimental constraint

on |dEe | < 1.1 · 10�29.
We see that for typical data sets the minimum amount of FT is 103 when we

satisfy the constraint on dEe , which corresponds to FT of 0.1% in the eEDM.
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Figure 5.9 The dependence of the eEDM |d
E
e | on the phases ⌘, �µ, �At

and �M2
for a data

set where ⌘ and �µ are sampled as 10
−6

< |⌘|, |�µ| < 10
−2

and all other phases are randomly

sampled as 10
−6

< |�i| < ⇡/2. The amount of fine-tuning is shown as colour coding, with
the data points ordered such that lower values of ∆φ are put on top of those with higher
values of ∆φ.
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Figure 5.10 The dependence of the eEDM |d
E
e | on the phases ⌘, �µ, �M1

and �M2
for a

data set where ⌘, �µ, �M1
and �M2

are sampled as 10
−6

< |⌘|, |�µ|, |�M2
| < 10

−2
. All other

phases are randomly sampled as 10
−6

< |�i| < ⇡/2. The amount of fine-tuning is shown as
colour coding, with the data points ordered such that lower values of ∆φ are put on top of
those with higher values of ∆φ.

94



5.4. FINE-TUNING AND THE ELECTRON EDM

Figure 5.11 The dependence of the eEDM |d
E
e | on the phases ⌘, �µ, �M1

and �M2
for a

data set where ⌘, �µ, �M1
and �M2

are sampled as 10
−6

< |⌘|, |�µ|, |�M1
|, |�M2

| < 10
−2

.

All other phases are randomly sampled as 10
−6

< |�i| < ⇡/2. The amount of fine-tuning is
shown as colour coding, with the data points ordered such that lower values of ∆φ are put
on top of those with higher values of ∆φ.
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5.4.1 Alternative fine-tuning measures

We have studied the FT in the CP violating sector of the cpMSSM through a specific
measure: ∆φ. Similarly to the FT measure in the EW sector, there are more possib-
ilities and there is no consensus yet in the community about a measure. The choice
for ∆φ as defined in (3.27) is based on a general approach to FT measures [125]. We

can now comment on this choice, knowing more about the behaviour of dEe in the
cpMSSM.

We can define three regions for each phase: in the first, the behaviour of dEe
depends linearly on that phase. For example in Figure 5.4 we see that this region for
the phase �At

is roughly �At
> 10�4 for the blue line. For values �At

� 10�4 we

see in Figure 5.3 that for |�At
| ⇡ O(1) the relation between dEe and �At

is sine-like.1

For values �At
< 10�4 the behaviour changes as well, as �At

no longer influences dEe .
This is the third region. Note that the exact domains of the regions depend strongly
on the parameters of the data point. For e.g. �µ we identify completely different
regions based on Figures 5.3 and 5.4.

Our current definition does not take the different regions into account at all, but
is instead based on the second region. Consequently, the FT for small values of �i is
overestimated in the first and third region. The relative change in dEe is divided by
the absolute change in �i, although the dependence is linear. This results in a biased
definition towards high FT for small phases (and thus small values of dEe ).

A logarithmic derivative with respect to �i would cover those regions better, but
is problematic for �i = ⇡ as this does not take the sine-like behaviour into account.
The behaviour that �i = ⇡ results in the same eEDM as �i = 0 should be reflected in
the FT, but this is not possible for a straightforwardly defined logarithmic derivative
with respect to �i . We therefore propose a new definition for the CPV FT measure.

Having studied the FT measure ∆φ, we now propose to use the following definition
for a new FT measure

∆CPV = ∆sinφ = max
i

����sin�i
@ log de
@�i

���� , (5.7)

which avoids trouble at � = 0 but takes the nature of the first and third regions better
into account. With this definition we can take another look at the FT, for example
in iter13 as shown in the left panel of Figure 5.12.

We find that the bias towards high FT for small phases has disappeared with
the implementation of the new definition. This is confirmed by the plots shown in
Figure 5.13, where we see the relation between |dEe |, the phases ⌘,�µ,�M1

and �M2
,

and the FT.
However, we can find no clear relation between the FT as defined in (5.7) and

the cancellation points as shown in Figure 5.6, as is shown in the right panel of

1In fact, the behaviour in the first and second region can both be captured by a sinusoid.
Nevertheless, we distinguish these regions to clarify the discussion on the fine-tuning definition,
which is different in all three regions.
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Figure 5.12 On the left: the relation between |d
E
e | and the FT, based on the new ∆CPV

definition (5.7). On the right: the 1-loop and 2-loop contribution to |d
E
e |, with the new

definition of ∆CPV as colour coding. Points are ordered such that points with a high value
of ∆CPV are put on top of those with a low value of ∆CPV.

Figure 5.12. Instead, the line is smeared and there is a larger area with points that
have a high FT. We do feel that points with a significant cancellation between the
1-loop and 2-loop contributions are fine-tuned, in the sense that a small variation in
the parameters will have a large effect on the value of dEe . A proper FT measure
should take this into account.

We also find that points with a low FT exist for all values of the 1-loop and 2-loop
contributions. Since points are ordered such that points with a high value of ∆CPV

are put on top of those with a low value of ∆CPV, the homogeneously distributed
low-FT points are not immediately visible in Figure 5.12.

Although both definitions for ∆CPV can be properly motivated, the differences
are huge. With the definition as in (5.7), the correlation between dEe and ∆CPV is
completely gone. This shows that it is of the utmost importance to be clear about the
definition of the FT measure that is used. The first definition of ∆φ as a measure for
the FT in the phases does not properly display the cancellation between the 1-loop
and 2-loop contributions, and together with its bias for small phases, we believe this
definition is unsuitable to study what we define as FT. The second definition is better
as it does not have a bias, but nevertheless it does not satisfy the requirements for a
proper FT measure in our opinion.

Finally we want to remark that neither of these definitions are related to natural-
ness (in the sense of ’t Hooft [32]). One small phase is in fact very natural, as the CP
symmetry is restored for � = 0. However, the cpMSSM contains several CP violating
parameters and therefore the definition of naturalness cannot straightforwardly be
applied here.

In our opinion, a discussion on the concept of naturalness in the case of several
relevant parameters is necessary before any statement can be made on the naturalness
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Figure 5.13 The dependence of the eEDM |d
E
e | on the phases ⌘, �µ, �M1

and �M2
for a

data set where ⌘, �µ, �M1
and �M2

are sampled as 10
−6

< |⌘|, |�µ|, |�M1
|, |�M2

| < 10
−2

.

All other phases are randomly sampled as 10
−6

< |�i| < ⇡/2. The amount of fine-tuning
is shown as colour coding, with the data points in the left (right) panel ordered such that
lower (higher) values of ∆φ are put on top of those with higher values of ∆φ.

of a cpMSSM model point and hence, whether such a point is favourable or not. We
therefore urge to carefully consider exclusion limits such as shown in Figure 1.3.

5.5 Conclusion

We have created a spectrum generator using SARAH, allowing us to research the real
and complex parameter space of the cpMSSM. We have combined this approach with
the calculational tool FeynHiggs, resulting in a smaller uncertainty on the Higgs boson
masses in this model. To implement constraints from DM searches, we have adapted
the software package MicrOMEGAS, and to study the eEDM we have developed our
own code to calculate dEe and the amount of FT on it. We have performed a first
study, starting from the results from the (g � 2)µ study.

For parameter sets that satisfy the experimental constraints, such as the LEP
and LHC data, and the DM constraints, we have identified parameter sets that also
satisfy the experimental constraint on the eEDM, currently at |dEe | < 1.1 · 10�29 e cm
with the ACME experiment. We find that the eEDM constraint limits the amount of
CPV mostly through the phase of the Higgs parameter µ and the phase between the
Higgs doublets ⌘. By limiting the domain of �µ and ⌘, we find more data points that
satisfy the eEDM constraint. We also observe that the pMSSM parameters start to
dominate the value of dEe when we limit the possible values of the phases, which is to
be expected for our set up that is based on the data points from the (g�2)µ study as

the contributions to ∆aµ and |dEe | are very similar. The same parameters that allow
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us to obtain the correct value of ∆aµ in the pMSSM, prevent us from finding lower

values of |dEe | in the cpMSSM through larger sparticle masses.
Reaching lower values for the eEDM comes with a price, at least when defining

FT in the phases as ∆φ. We clearly see a direct relation between the value of |dEe | and

the phase FT ∆φ: for lower values of |d
E
e | we find more fine-tuned solutions. This is

to be expected based on the dependence of dEe on the individual phases. We see that
for typical data sets the minimum amount of FT is 103 when we satisfy the constraint
on |dEe |, which corresponds to FT of 0.1% in the eEDM.

Using a different FT measure, such as ∆sinφ, changes this picture completely.

There is no longer a dependence between |dEe | and ∆sinφ. However, the FT between
the 1-loop and 2-loop contributions is not captured fully by this measure. We there-
fore suggest a more extensive study that includes different measures, to search for
a measure that properly captures the FT in the phases: when a small change in �

results in a large (small) change in |dEe |, the FT should also be large (small).
We are therefore careful with our interpretation and only note that the FT in

the CP violating sector as defined in ∆CPV is potentially high enough to take into
account as a warning sign: the connection between |dEe | and the phases is strong for
the spectra that we studied, meaning further study is necessary and we cannot discard
the FT in this sector as irrelevant. We do note that small values for the phases are
not necessarily unnatural, as such a conclusion needs further consideration on the
definition of naturalness.

With these preliminary results, collaborators are currently expanding this study
to include the regions of parameter space in the cpMSSM that satisfy only the upper
bound ∆aµ < 3.69 · 10�9. We expect this will allow the combination of satisfying the

ΩDMh2 constraint more easily, as well as the constraint on |dEe |. This also permits
a study on the resulting points to gain more phenomenological insight into the rel-
evant regions of the cpMSSM parameter space and their FT for points where both
experimental constraints are met.

99



CHAPTER 5. THE ELECTRON ELECTRIC DIPOLE MOMENT

100



Chapter 6

Conclusion and outlook

101



CHAPTER 6. CONCLUSION AND OUTLOOK

102



6.1. CONCLUSIONS ON THE (G − 2)µ STUDY

We have studied two related supersymmetric models: the pMSSM and the cpMSSM.
Our aim was to identify data points in the parameter space of each model that satisfy
all available experimental constraints. This was done by generating the mass spec-
trum, coupling constants and mixing matrices for each data point, calculating the
observables based on this spectrum and comparing the observables to experimental
data.

6.1 Conclusions on the (g − 2)µ study

In Chapter 4 we performed a study where we have analyzed for the first time the
spectra in the pMSSM that are minimally fine-tuned, result in the right ΩDMh2 and
simultaneously offer an explanation for∆aµ. We made these spectra publicly available
under [157].

In terms of DM phenomenology, we have distinguished three interesting branches
of solutions: the funnel regimes, three types of coannihilation regimes, and the generic
bino-higgsino solution. All these solutions have in common that the LSP is predom-
inantly bino-like with a small higgsino component. The mass of the DM particle
ranges between 39� 495 GeV. We discussed the phenomenology at the LHC for each
of the regimes. The first and second regime are relatively more constrained by e�0

2e�±
1

searches at the LHC than the last regime, which is due to the lower wino-components
and higher masses of the e�0

2/e�±
1 sparticles that are typical in the last regime. On the

other hand, in particular when the coannihilation partner of the LSP is a light stau,
the LHC searches show little to no sensitivity to our found solutions.

Our solutions motivate further the ongoing efforts at the LHC to probe pMSSM
spectra that feature (compressed) production of higgsino-like e�0

2e�±
1 pairs. In addi-

tion, to increase the sensitivity of the LHC to our found solutions, we found that a
dedicated low-mass e⌧± search without an assumed mass degeneracy between e⌧±1 and
e⌧±2 would be needed, just as a dedicated search strategy for the mass-gap region of
55 GeV < ∆(m

eχ
0
2
,m

eχ
0
1
) < mZ , which is not yet probed at the LHC.

We found that DMDD experiments such as the LUX-ZEPLIN experiment [38,
229] that probe �SD,p will ultimately be sensitive to all of our minimally fine-tuned
spectra. The requirement of satisfying ∆aµ is crucial to arive at this conclusion. This
requirement excludes models with a higher-mass higgsino with m

eχ
0
1
= 550� 650 GeV

as the LSP, and these spectra would evade detection by future DMDD experiments.

6.2 Conclusions on the eEDM study

To study the cpMSSM we found that no readily available software is suited for this
model. Instead we have created a new spectrum generator using SARAH, allowing us
to research the real and complex parameter space of the cpMSSM. We have combined

103



CHAPTER 6. CONCLUSION AND OUTLOOK

this approach with the calculational tool FeynHiggs, resulting in a smaller uncertainty
on the Higgs boson masses in this model. To implement constraints from DM searches,
we have adapted the software package MicrOMEGAS, and to study the eEDM we
have developed our own code to calculate dEe and the amount of FT on it.

The first step of this project was to study the interplay between (g � 2)µ and the
eEDM. We have therefore extended the pMSSM data that satisfies all experimental
constraints as described in Chapter 4. We found that the interplay between both
observables is so strong, that a small deviation in the values of the real pMSSM
parameters will result in a significantly different value for ΩDMh2. We have therefore
opted to lift this constraint for the eEDM study.

Using the new cpMSSM data set, we have identified cpMSSM parameter sets that
also satisfy the experimental constraint on the eEDM, currently at |dEe | < 1.1 · 10�29 e
cm with the ACME experiment. Starting from pMSSM data points that additionally
satisfy the experimental bounds on (g � 2)µ, we found that the eEDM constraint
limits the amount of CPV mostly through the phase of the Higgs parameter µ and
the phase between the Higgs doublets ⌘. We emphasize the different conventions for
⌘, µ and b: if one chooses to rotate ⌘ away, the parameter b will in general be complex
beyond tree level.

We have not been able to test the often-made assumption that low values of |dEe |
can be obtained by taking large values for the sparticle masses, as these masses are
already constrained to low values due to the requirement of 1.33 · 10�9 < ∆aµ <

3.69 · 10�9.
We found that even with relatively small sparticle masses, necessary to satisfy the

constraint on ∆aµ, the phases do not have to be smaller than 10�2 to also satisfy the

limit |dEe | < 1.1 · 10�29 e cm. However, reaching these low values for the eEDM comes

with a price. We clearly see a direct relation between the value of |dEe | and the phase

FT measure ∆φ: for lower values of |dEe | we find more fine-tuned solutions. This is

to be expected based on the dependence of |dEe | on the individual phases.
Studying this dependence in more detail, we have motivated a proposal for a second

definition for the FT in the phases as given by the FT measure ∆sinφ. Using this new

definition, we do not find any correlation between |dEe | and the FT. We conclude that
a careful consideration of the definition of the FT measure is necessary in any FT
study. We propose to search for a definition that captures the true meaning of FT:
small changes in the parameters that result in large (small) changes in the observable,
should be reflected by a large (small) value of the FT.

6.3 Outlook and proposed studies and improvements

The aim of the eEDM project was to extend the (g � 2)µ study with an analysis on
the eEDM while still satisfying all the experimental constraints as implemented in the
(g� 2)µ study. Due to the nature of the data points from the (g� 2)µ study, we find
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that a small variation in the real pMSSM parameters has a profound impact on the
DM observables. Collaborators are therefore setting up two new analyses extending
the pMSSM parameter set from the (g� 2)µ study. For the first analysis this include
only the parameters that satisfy the upper bound on ∆aµ, while for the second set
this requirement is lifted completely. All the other experimental constraints are still
satisfied for these sets. These two sets are then expanded to the cpMSSM as explained
in Chapter 5.

We propose to study the phenomenology of the regions of cpMSSM parameter
space that satisfy the experimental constraint |dEe | < 1.1 · 10�29 e cm for these two
new data sets, similarly to the study in Chapter 4. Due to the close relation between
∆aµ and dEe , we expect that these new analyses will allow for spectra with higher
sparticle masses, allowing a study on the relationship between sparticle masses and
phases in more detail.

Ultimately we aim to study the regions of cpMSSM parameter space that satisfy
all experimental constraints. For this purpose we stress the importance of software
packages that allow for complex parameters, as not all observables can currently be
calculated in the cpMSSM.

Furthermore we propose a study on the effect of the phases in more detail. So
far we have only considered the situations where either all the phases have a non-
zero value, or only one phase has a non-zero value. From our current results it is
obvious that some phases (�µ, ⌘) have more impact on |dEe | than others. It would be
interesting to study a scenario where those phases are strictly 0, while all others are
allowed to have a non-zero value.

Collaborators are also striving to improve our calculational basis. The code to
calculate the FT in the pMSSM part of the parameter space, for which we use ∆EW ,
will be adapted to take the complex nature of the cpMSSM into account. Compared
to the expressions in [124] we expect new contributions and altered expressions for

the existing contributions to Σ
d
d and Σ

u
u, which will be determined and added to our

in-house code for calculating ∆EW . Additionally, we propose to extend our code by
calculating the value of dEe including all Barr-Zee type diagrams, also for charged
Higgs bosons.

For the long-term future we propose to extend the available software to include the
calculation of molecular EDMs in the cpMSSM. This would include a full spectrum
generator and an EFT framework to calculate the scalar and tensor contribution to
the molecular EDM.
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A. Conventions

A.1 General conventions

• We use natural units, in which ~ = c = ✏0 = kB = 1;

• We define the electron charge as qe = Qee = �1 e;

• We define the spacetime metric as ⌘µν = diag(+1,�1,�1,�1);

• Repeated indices are assumed to be summed over;

• We use g0, g and g3 for the U(1), SU(2) and SU(3) couplings respectively;

• ~� are the Pauli spin matrices;

• �
µν = i

2 [�
µ, �ν ];

• The electric dipole moment is given in e cm, which can be converted to (GeV)�1

by dividing by ~c = 1.973269788 · 10�14 GeV cm [45];

• Chiral projection operators are defined as

PL =
1

2
(1� �5) PR =

1

2
(1 + �5); (A.1)

• Angles are in radians, unless otherwise specified.

We use the Axodraw2 package [233] to draw the Feynman diagrams in this thesis.

A.2 The phase η

As we have already mentioned in Section 2.4, there are different conventions possible
with respect to the phase ⌘. At tree level this is straightforward, as the tadpole
equations (2.16) relate ⌘ directly to �b and we have seen that we can choose �b = ⌘ =
0. However, at higher orders this is more complicated.

Using the Peccei-Quin and R-type chiral U(1)A and U(1)B symmetries we have
some freedom in our conventions. If we adopt the convention of (2.6) to ensure real
vev’s, we will have in general ⌘ 6= 0. However, we can always use a rotation of the
kind

eiη(�Y/2+(QA+QB)/4) (A.2)
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to rotate a non-zero ⌘ away. Here QA and QB are the charges corresponding to the
U(1)A and U(1)B transformations, which are listed in Table 2.3. The corresponding
phases are then !A = !B = ⌘/4. As a result, the parameters µ and b and several
fields will be redefined. For the fields, this has no net effect as one can always absorb
a phase in the field.

For the parameters however, this rotation results (assuming ⌘ 6= 0) in

⌘ ! ⌘
0 = 0; (A.3)

µ ! µ0 = µeiη /2 R; (A.4)

b ! b0 = beiη /2 R. (A.5)

Starting with a non-zero general phase ⌘, we can rotate this to �µ0 ,�b0 6= 0. Con-
sequently, beyond tree-level it is not possible to have �b = 0 and ⌘ = 0 as a general
convention! It is therefore important to be clear which convention is chosen, ⌘ = 0 or
b 2 R.

A.3 Mixing matrices

There are several different conventions possible when defining the mixing matrices
for (s)particles. Unless otherwise specified, the expressions are based on [40]. We do,
however, use a different notation. Additionally we implement couplings from [55] for
the cpMSSM. In this Section we cover the main differences between [40, 55] and our
conventions. An overview of the different labels is given in Table A.1.

Mixing matrix Name in Sparticles Name in Ellis’ papers Name in thesis

Slepton W f̃ (6x6) Uf̃ (2x2) X l̃ (2x2)

Sneutrino U - 1

Chargino U ,V CL, CR U, V

Neutralino Z N N

Table A.1 Conventions for the mixing matrices in this thesis compared to Sparticles [40]
and Ellis’ papers [55].

Chargino mixing

To compare the conventions for the chargino mixing matrices, we first rotate the
factor e�iη in (2.47) away as described above in Section A.2. This allows for a clean
comparison. One way to define the chargino mixing is as follows [55]

CRMCC
†
L = diag{m

χ̃
±
1
,m

χ̃
±
2
}, (A.6)
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with

MC =

 
M2

p
2MW cos�p

2MW sin� µ

!
(A.7)

Whereas we use [40]

U⇤M
eχ
±V † = diag{m

χ̃
±
1
,m

χ̃
±
2
} (A.8)

(or V �1 instead of V † as this matrix is unitary) where

M
eχ
± =

 
M2

p
2MW sin�p

2MW cos� µ

!
(A.9)

so we see that MC = MT

eχ
± . We can use this to relate the matrices to each other by

taking the transpose of the entire diagonalisation expression. We then obtain CL = U
and CR = V ⇤.

Neutral Higgs boson mixing

In the case of CP violation, the neutral Higgs bosons mix. As a result, we can
no longer differentiate between the CP eigenstates h0, H0 and A0 beyond tree-level.
Instead, we use a mass ordering and label the three mass eigenstates accordingly. See
Section 2.4 for more details.

As described in Section 2.4, there are four gauge eigenstates of which we can
identify one as a Goldstone boson. The other three mix into mass eigenstates. Several
conventions exist to describe this mixing, using a mixing matrix S, R or O. Note
that the matrix O as defined in Section 2.4 and [54] is actually OT in [55]! We use
the convention of O, as we feel this makes comparison with the expressions for the
neutral Higgs boson couplings in [55] easier than for R or S. However, keep in mind
that the indices are switched compared to the reference.

Sfermion mixing

First, note that we assume that there is no flavour mixing in the (c)pMSSM. As a

result, the 6⇥ 6 mixing matrix for the charged sleptons W f̃ can be split in 3 blocks
of 2 ⇥ 2 mixing matrices, one for each flavour. For the sleptons we label these 2 ⇥ 2

matrices X l̃ for a lepton l = (e, µ, ⌧). The matrices X l̃ are based on the mass ordered
mass eigenstates and mix the left- and right-handed components of the sleptons.

Similarly we can split the mixing matrices W f̃ of the squarks in 2 ⇥ 2 blocks. See
Section 2.4.1 for more details.

The diagonalisation procedure for the 2⇥2 and 6⇥6 sfermion mixing per sector can
both be defined (in terms of their respective 2-dimensional and 6-dimentional vectors
f̃ and mass matrices M2

f̃ ) in different ways. We compare the different conventions
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for a 2-dimensional case, where we take the relevant 2 ⇥ 2 block from the full 6 ⇥ 6
dimensional matrix W .

We can now define [40]

(Mdiag

f̃
)2 = W f̃†M2

f̃W
f̃ , (A.10)

where (Mdiag

f̃
)2 is the diagonal matrix and M2

f̃ the general form. The 2-dimensional

mass eigenstate vector for the sfermions is then given by

f̃m = W f̃†f. (A.11)

However, one can also define

(Mdiag

f̃
)2 = X f̃M2

f̃X
f̃†, (A.12)

as is done in e.g. [101]. The mass eigenstates are then given by
 
f̃1
f̃2

!
= X f̃

 
f̃L
f̃R

!
. (A.13)

We will adopt the second convention, which accounts for the differences in the ex-
pressions compared to [40] in the lepton-neutralino-slepton couplings.

A.4 Feynman rules

A.4.1 Couplings for the one-loop diagrams and related con-
ventions

With our conventions we find the following couplings. Note that X l̃
mn is of course

different for the electron and muon; the corresponding slepton mixing matrices have

to be used. Definitions for X l̃ and the other mixing matrices can be found in Sec-
tion 2.4.1.

At first order both aµ and dEe receive contributions from a neutralino and a char-
gino diagram. The couplings of the lepton to the neutralino (chargino) and slepton
(sneutrino) are as follows [101]. Labelling is according to Table A.1.

Neutralino – lepton – charged slepton interactions

We define the interaction between a charged lepton l, neutralino e�0
i and a charged

slepton l̃m as follows

L
ll̃χ̃

0 = ¯̃�0
i

h
nL
imlPL + nR

imlPR

i
l̃⇤ml + h.c., (A.14)
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where we have assumed the lepton and slepton have the same flavour. The couplings
nL
iml and nR

iml can be defined in different ways, according to the chosen convention.
In [40] the neutralino couplings are defined as follows

GL
iml =

1p
2

�
gN⇤

i2 + g0N⇤
i1

�
W ⇤

1m � ylN
⇤
i3W

⇤
2m, (A.15)

GR
iml = �

p
2g0Ni1W

⇤
2m � ylNi3W

⇤
1m, (A.16)

whereas in [101] we find the following expressions

nL
iml =

1p
2

�
gNi2 + g0Ni1

�
(X l̃)⇤m1 � ylNi3(X

l̃)⇤m2, (A.17)

nR
iml =

p
2g0Ni1(X

l̃)m2 + ylNi3(X
l̃)m1. (A.18)

Here we denote the down-type lepton Yukawa coupling by yl = gml/(
p
2MW cos�),

where we use the lepton pole mass. To avoid mixing up scales, we implement this as
yl =

p
2ml/(v cos�).

Using W † = X l̃ (if we only consider the 2x2 part of W belonging to l̃), we can write

nL
iml =

1p
2

�
gNi2 + g0Ni1

�
W1m � ylNi3W2m, (A.19)

nR
iml =

p
2g0Ni1W

⇤
2m + ylNi3W

⇤
1m. (A.20)

Now we can compare the definitions and find that

GL
iml =

⇣
nL
iml

⌘⇤
,

GR
iml = �nR

iml. (A.21)

This implies the following identities that are relevant for (g � 2)µ or eEDM

Im
h
(GR

iml)
⇤GL

iml

i
= Im

h
�(nR

iml)
⇤(nL

iml)
⇤
i
= Im

h
nR
imln

L
iml

i
,

Re
h
(GR

iml)
⇤GL

iml

i
= �Re

h
nR
imln

L
iml

i
. (A.22)

We are interested in the real and imaginary part of [(GR)⇤GL] for the calculation
of the (g�2)µ and eEDM contributions respectively. We will stick to the conventions
in [40], with the note that we only use the 2⇥ 2 flavour specific part of the full 6⇥ 6
slepton matrices. The resulting expressions can be found in (3.12) and (3.15) for
∆aµ and the eEDM. Note the minus sign due to our different definition of the coup-
lings with respect to [101] in the first expression. For the latter we have confirmed
that our result agrees with the combination of (2.13) and (2.14) in [57].
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Note also the factor yl in our expressions compared to h⇤
l in [57]. We think this

is due to the tan(�) resummation that we do not take into account at one loop.
The resummed Yukawa coupling includes CP violating phases and can therefore be a
complex object. Since we consider the electron EDM, we do not take the small EW
threshold corrections into account for ye.

Chargino – lepton – sneutrino interactions

The interaction between a chargino, lepton and a sneutrino is given by the following
Lagrangian

L
lν̃lχ̃

± = cLk l̄ PR(e�+
k )

Ce⌫l + cRkl(e�+
k )

C
PRl e⌫⇤l + h.c., (A.23)

where the C represents charge conjugation. Note that we have assumed that the
sneutrino and lepton are of the same flavour, in accordance with the (c)pMSSM

convention. The couplings cLk and cRkl are defined as

cLk = �gVk1, (A.24)

cRkl = ylUk2. (A.25)

With this definition we get Re[cRcL] and � Im[cRcL] for the 1-loop chargino contribu-
tion to (g � 2)µ and the eEDM, respectively. Note the lack of the complex conjugate
for the right-handed couplings compared to [57].

A.4.2 Couplings for the two loop diagrams

Not all higher order contributions are relevant for our work: we only take the Barr-Zee
diagrams into account. For these we need to define the neutral Higgs couplings. Note
the differences with the conventions in [40] due to the explicit CP violation assumed
throughout this work. For the neutral Higgs bosons H0

i we use the couplings to fermi-
ons, sfermions and charginos as given in Table A.2, equation A.29 and equation A.26,
respectively.
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Higgs – chargino interactions

Based on [55] we define the following Lagrangian and couplings for the interaction
between a neutral Higgs boson and two charginos. We find in our conventions, with
CL = U and CR = V ⇤, that the interaction is as follows

L
H

0
χ̃
+
χ̃
� = � gp

2

X

i,j,k

H0
i �̃

�
j

⇣
gS
Hiχ̃

+
j χ̃

�

k
+ i�5g

P

Hiχ̃
+
j χ̃

�

k

⌘
�̃
�
k ,

gS
Hiχ̃

+
j χ̃

�

k
=

1

2

n
[V ⇤

j1U
⇤
k2G

φ1
i + e�iηV ⇤

j2U
⇤
k1G

φ2
i ] + [j $ k]⇤

o
,

gP
Hiχ̃

+
j χ̃

�

k
=

i

2

n
[V ⇤

j1U
⇤
k2G

φ1
i + e�iηV ⇤

j2U
⇤
k1G

φ2
i ]� [j $ k]⇤

o
, (A.26)

where G
φ1
i = (Oiφ1

�isβOia), G
φ2
i = (Oiφ2

�icβOia). The index i = 1, 2, 3 denotes the

neutral Higgs boson mass eigenstates H0
i and the index � = �1,�2 and a denotes the

three gauge eigenstates
⇣p

2Re{H0
d � vd/

p
2},

p
2Re{H0

u � vu/
p
2}, A

tree
0

⌘T

, where

the Goldstone boson is already projected out (see also Section 2.4).

Higgs – fermion interactions

The coupling between a neutral Higgs boson H0
i , a charged lepton or quark f and its

anti-particle f̄ is defined by the following Lagrangian

L
H

0
ff̄

= � gmf

2MW

3X

i=1

H0
i f̄(g

S
Hiff̄

+ igPHiff̄
�
5)f, (A.27)

where gSHiff̄
and gPHiff̄

are the scalar and pseudoscalar couplings. At tree level, they
are given by the expressions in Table A.2. We also include loop-corrections for the
third generation fermions by implementing a leading-order resummation of tan�, as
described in [55]. We present the expressions for this resummation in Appendix A.5.

f = u f = d, l

gSHiff̄
Oiφ2

/ sin� Oiφ1
/ cos�

gPHiff̄
�Oia cot� �Oia tan�

Table A.2 Neutral Higgs couplings to fermions

115



APPENDIX A. CONVENTIONS

Higgs – sfermion interactions

Based on [55], the Lagrangian that describes the interaction between a neutral Higgs

boson H0
i , an anti-sfermion ef⇤

j and a sfermion efk is

L
H

0
f̃j f̃k

= v

3X

i=1

X

f=u,d

g
Hif̃

⇤

j f̃k
(H0

i f̃
⇤
j f̃k), (A.28)

where

vg
Hif̃

⇤

j f̃k
=
⇣
Γ
αf̃

⇤
f̃
⌘
βγ

OiαX
f̃⇤
βjX

f̃
γk. (A.29)

We only take the contributions from the third-generation sfermions into account for
the Barr-Zee diagrams, as the contributions from the first and second generation are
much smaller.

In the ( efL, efR) basis, the effective couplings Γα ef
⇤ ef are given by

Γ
ab̃

⇤
b̃ =

1p
2

 
0 i y⇤b (sβA

⇤
b + eiηcβµ)

�i yb(sβAb + e�iηcβµ
⇤) 0

!
,

Γ
φ1b̃

⇤
b̃ =

0
@ �|yb|

2vcβ + 1
4

⇣
g2 + 1

3g
02
⌘
vcβ � 1p

2
y⇤bA

⇤
b

� 1p
2
ybAb �|yb|

2vcβ + 1
6g

02vcβ

1
A ,

Γ
φ2b̃

⇤
b̃ =

0
@ � 1

4

⇣
g2 + 1

3g
02
⌘
vsβ

1p
2
y⇤bµe

iη

1p
2
ybµ

⇤e�iη � 1
6g

02vsβ

1
A ,

Γ
at̃

⇤
t̃ =

1p
2

 
0 i y⇤t (e

�iηcβA
⇤
t + sβµ)

�i yt(e
iηcβAt + sβµ

⇤) 0

!
,

Γ
φ1 t̃

⇤
t̃ =

0
@ � 1

4

⇣
g2 � 1

3g
02
⌘
vcβ

1p
2
y⇤t µ

1p
2
ytµ

⇤ � 1
3g

02vcβ

1
A ,

Γ
φ2 t̃

⇤
t̃ =

0
@ �|yt|

2vsβ + 1
4

⇣
g2 � 1

3g
02
⌘
vsβ � 1p

2
y⇤tA

⇤
t e

�iη

� 1p
2
ytAte

iη �|yt|
2vsβ + 1

3g
02vsβ

1
A ,
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Γ
aτ̃

⇤
τ̃ =

1p
2

 
0 i y⇤τ (sβA

⇤
τ + eiηcβµ)

�i yτ (sβAτ + e�iηcβµ
⇤) 0

!
,

Γ
φ1τ̃

⇤
τ̃ =

0
@ �|yτ |

2vcβ + 1
4

⇣
g2 � g02

⌘
vcβ � 1p

2
y⇤τA

⇤
τ

� 1p
2
yτAτ �|yτ |

2vcβ + 1
2g

02vcβ

1
A ,

Γ
φ2τ̃

⇤
τ̃ =

0
@ � 1

4

⇣
g2 � g02

⌘
vsβ

1p
2
y⇤τµe

iη

1p
2
yτµ

⇤e�iη � 1
2g

02vsβ

1
A

Γ
aν̃

⇤

τ
ν̃
τ = 0, Γ

φ1ν̃
⇤

τ
ν̃
τ = �1

4
(g2 + g02)vcβ , Γ

φ2ν̃
⇤

τ
ν̃
τ =

1

4
(g2 + g02)vsβ . (A.30)

A.5 tan(β) resummation

The exchanges of gluinos and charginos give finite loop-induced threshold corrections
to the Yukawa couplings yu,d [55], with the structure

yd =

p
2md

v cos�

1

1 + (�yd/yd) + (∆yd/yd) tan�
,

yu =

p
2mu

v sin�

1

1 + (�yu/yu) + (∆yu/yu) cot�
. (A.31)

This modifies the couplings of the neutral Higgs Hi to quarks, for both the scalar
and pseudoscalar coupling. We implement this for the top and bottom quarks only,
as these are heavy and therefore receive larger corrections that have to be taken into
account.

gSHid̄d
= Re

✓
1

1 + d tan�

◆
Oiφ1

cos�
+ Re

✓
d

1 + d tan�

◆
Oiφ2

cos�

+ Im


d (tan

2
� + 1)

1 + d tan�

�
Oia ,

gPHid̄d
= �Re

✓
tan� � d
1 + d tan�

◆
Oia + Im

✓
d tan�

1 + d tan�

◆
Oiφ1

cos�

� Im

✓
d

1 + d tan�

◆
Oiφ2

cos�
, (A.32)

(A.33)
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gSHiūu
= Re

✓
1

1 + u cot�

◆
Oiφ2

sin�
+ Re

✓
u

1 + u cot�

◆
Oiφ1

sin�

+ Im


u (cot

2
� + 1)

1 + u cot�

�
Oia ,

gPHiūu
= �Re

✓
cot� � u
1 + u cot�

◆
Oia + Im

✓
u cot�

1 + u cot�

◆
Oiφ2

sin�

� Im

✓
u

1 + u cot�

◆
Oiφ1

sin�
. (A.34)

In the above equations, we have used the abbreviation

q =
(∆yq/yq)

1 + (�yq/yq)
, (A.35)

for q = u, d. Detailed expressions for the threshold contributions (�yq/yq) and
(∆yq/yq) are given by [234]:

�yd
yd

= �2↵s

3⇡
m⇤

g̃Ad I(m
2
d̃1
,m2

d̃2
, |mg̃|

2) � |yu|
2

16⇡2 |µ|2 I(m2
ũ1
,m2

ũ2
, |µ|2) , (A.36)

∆yd
yd

=
2↵s

3⇡
m⇤

g̃ µ
⇤I(m2

d̃1
,m2

d̃2
, |mg̃|

2) +
|yu|

2

16⇡2 A⇤
uµ

⇤ I(m2
ũ1
,m2

ũ2
, |µ|2) , (A.37)

∆yu
yu

=
2↵s

3⇡
m⇤

g̃µ
⇤ I(m2

ũ1
,m2

ũ2
, |mg̃|

2) +
|yd|

2

16⇡2 A⇤
dµ

⇤ I(m2
d̃1
,m2

d̃2
, |µ|2) , (A.38)

�yu
yu

= �2↵s

3⇡
m⇤

g̃Au I(m
2
ũ1
,m2

ũ2
, |mg̃|

2) � |yd|
2

16⇡2 |µ|2 I(m2
d̃1
,m2

d̃2
, |µ|2) . (A.39)

where I(a, b, c) is the defined as the function

I(a, b, c) ⌘ ab ln(a/b) + bc ln(b/c) + ac ln(c/a)

(a� b)(b� c)(a� c)
. (A.40)
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A.6 Conventions in software

The software packages that are used throughout this thesis have different conventions.
Especially in the cpMSSM, it is of utmost importance to keep track of these conven-
tions to avoid calculational errors. We describe the conventions here, for as far as
they are known.

A.6.1 CPsuperH

The conventions for CPsuperH are relevant for us, even though we do not use the
software directly. The package in MicrOMEGAs that implements the CPV violating
MSSM is based on CPsuperH. Although we have adapted MicrOMEGAs to override
the spectrum from CPsuperH with our own inputfile, we still have to match the
conventions. These are:

• At all orders of renormalisation ⌘ = 0;

• Hence b can be a complex parameter beyond loop-level;

• Tadpole equations are solved for sign(µ), m2
Hu

and m2
Hd

• The neutral Higgs mixing matrix is OT ;

• The SLHA block ‘CHVMIX’ is the 3x4 mixing matrix accoring to [54].

A.6.2 FeynHiggs

The relevant conventions for FeynHiggs are:

• Im(b) = 0 at all orders;

• The neutral Higgs mixing matrix is R, which is given in the SLHA block ‘CHV-
MIX’ (3x3)

• The PDG numbering for the sparticles is according to their flavour composition;

• The mixing matrices for the third generation squarks and charged slepton are
presented separately in 2x2 blocks.

We use a rotation as described in (2.36) to switch between the FeynHiggs conven-
tion and the SPheno convention for the phases. We transform the trilinear couplings
(3x3) Tu, Td and Te as calculated by SPheno, together with the input parameters for
SPheno. This gives consistent results at tree level.

A.6.3 Low Energy calculation

For our own in-house code, we use the output from both SPheno and FeynHiggs.
As we only use FeynHiggs to improve the calculation of the Higgs boson masses, we
use the SPheno output for everything beside the Higgs boson masses and the Higgs
boson mixing matrices. We do however adopt the FeynHiggs convention to order
the sfermions according to their flavour content, i.e. not ordered according to their
masses.
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A.6.4 MicrOMEGAs

Note that we have adapted MicrOMEGAs to accept an SLHA input file, to avoid
using the spectrum as calculated by CPsuperH. As a result, we need the following
input that is typically calculated by CPsuperH:

• The input requires the block ‘THRESHOLD’, containing the components of
κq tan(β)

1+κq tan(β) for q = t, b (see Table 6 of [109]);

• The input requires the blocks ‘HCOUPLINGS’ and ‘IMHCOUPLINGS’, contain-
ing the real and imaginary parts of the 7 �i as given in (2.8);

• The input requires the block ‘CVHMIX’, containing the values of the 3x4 neutral
Higgs mixing matrix according to the conventions of [54].

We explicitly assume that the conventions for HiggsBounds, HiggsSignals and Lilith
are such that this is internally consistent, as MicrOMEGAs offers the option to use
an integrated version of these software packages.

A.6.5 SPheno

• We assume both Im(b) 6= 0 and ⌘ 6= 0

• The tadpole equations are solved for Re(b), Im(b) and sign(µ);

• The mixing matrices for sparticles are based on mass ordering;

• The mixing matrices for the squarks and charged sleptons are presented as 6x6
matrices;

• The PDG numbering for the sparticles is based on mass ordering.

The first convention means we have explicitly not used the freedom as described in
Section 2.4 to rotate away any phase, which allows us to solve the tadpole equations
as described. As a result, some of the parameters are redundant, but this is not
unphysical. Without this convention, we cannot be sure that the results from SPheno
are correct.

At tree level, we find that the spectrum as calculated by SPheno is now the same for
a set of input parameters, and a set that is rotated according to the transformations in
(2.36). For higher orders we find minor differences. Since SPheno does not implement
the full one-loop or two-loop calculation, these differences are to be expected.

Note that due to the mass ordering, it can happen that a sparticle with e.g. PDG
number 100011 can be (mostly) smuon or stau, if the concerning sparticle is the
lightest charged slepton.

We observe that the switch between mass ordering and particle content is not
always consistently implemented in SPheno, so we urge a careful treatment when
several software packages are used together.
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B. Loop Functions

The loop functions for the 1-loop diagrams in 3.1.1 and 3.1.2 read [101]

FN
1 (x) =

2

(1� x)4

h
1� 6x+ 3x2 + 2x3 � 6x2 log(x)

i
, (B.1)

FN
2 (x) =

3

(1� x)3

h
1� x2 + 2x log(x)

i
, (B.2)

FC
1 (x) =

2

(1� x)4

h
2 + 3x� 6x2 + x3 + 6x log(x)

i
, (B.3)

FC
2 (x) =

3

2(1� x)3

h
�3 + 4x� x2 � 2 log(x)

i
. (B.4)

We can identify the following relations with [57], where slightly different conventions
are used

FN
2 (x) = 6B(x), FC

2 (x) = �3A(x). (B.5)

For the 2-loop Barr-Zee diagrams we have the following loop functions [57]

F (⌧) =

Z 1

0

dx
x(1� x)

⌧ � x(1� x)
log


x(1� x)

⌧

�
, (B.6)

f(⌧) =
⌧

2

Z 1

0

dx
1� 2x(1� x)

x(1� x)� ⌧
log


x(1� x)

⌧

�
, (B.7)

g(⌧) =
⌧

2

Z 1

0

dx
1

x(1� x)� ⌧
log


x(1� x)

⌧

�
. (B.8)

To implement these loop functions in a piece of software, it is not convenient to rely
on numerical integration, as this can be very time consuming. Instead, we express
the loop functions in terms of dilogarithms as follows. We define the dilogarithm
according to

Li2(z) = �
Z 1

0

dt
ln(1� tz)

t
= �

Z z

0

du
ln(1� u)

u
. (B.9)
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We use it to write Z 1

0

dx
ln(x/a)

x� a
= �

h
Li2(1�

x

a
)
ix=1

x=0
, (B.10)

which we can evaluate as

Li2(1)� Li2(1�
1

a
) =

⇡
2

6
� Li2(1�

1

a
). (B.11)

With these identities we can now write

g(⌧) =
⌧

2

Z 1

0

dx
ln(x(1� x)/⌧)
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1p
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, (B.12)

where we have defined x± = 1
2 (1 ±

p
1� 4⌧). Putting this together we find for the

loop function g(⌧) the following expression

g(⌧) =
⌧p

1� 4⌧


Li2(

�x�
x+

)� Li2(
�x+
x�

)

�

=
⌧p

1� 4⌧
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p
1� 4⌧ � 1p
1� 4⌧ + 1

)� Li2(

p
1� 4⌧ + 1p
1� 4⌧ � 1

)

�
(B.13)

We implement the last line of this expression in our script to calculate the eEDM. We
also implement

F (⌧) = �2g(⌧) + 2 + ln(⌧) (B.14)

f(⌧) = (1� 2⌧)g(⌧) + 2⌧ + ⌧ ln(⌧). (B.15)

In the limit ⌧ ! 1/4 we implement g(⌧) ! log(2). Note that the Python package
scipy.special includes the Spence function, which is defined using a different convention
as

Spence(z) =

Z z

1

dt
ln(t)

1� t
(B.16)

= Li2(1� z). (B.17)
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C. Projection operators: a calcula-
tional tool

In this appendix we give the expressions for the projection operators that are used
to project on the observable of interest and extract the contribution to it originating
from a general Feynman diagram, as is necessary to arrive at the expressions given in
Chapter 3.

Consider a general diagram as in Figure C.1. At tree level this is simply the inter-
action between a photon and an electron, determined by the charge of the electron.
However, at higher orders there are more structures that can be identified, including
the magnetic moment and electric dipole moment. To calculate the contribution of
a certain diagram to an observable it is therefore important to identify the relevant
part of the diagram. We project on the required observable(s) with specific operators
as defined below.

l� p1

l�
p2

�(✏µ)

q

Figure C.1 General vertex structure of the interaction between a lepton and a photon.

We can write the general matrix element of Figure C.1 for any lepton as

iM = �ie ū(p2) Γ
µ u(p1) ✏µ(q), (C.1)

where we have defined the vertex structure Γ
µ, which reduces at tree level to
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Γ
µ = Qe�

µ = ��µ. Beyond tree level we can construct the general structure of Γµ,
since we know that ū(p2) Γ

µ u(p1) is a Lorentz-vector. The possible ingredients are
the independent momenta of the particles and general Dirac structures like �µ, �5
and �µν = i

2 [�
µ, �ν ]. Defining Pµ = pµ1 + pµ2 and qµ = pµ2 � pµ1 , we can write Γ

µ for a
lepton of mass m in terms of the form factors Ai as

Γ
µ = �

µA1 +
Pµ

2m
A2 +

qµ

2m
A3 + �

µ
�5A4 +

qµ

2m
�5A5 + i

Pµ

2m
�5A6. (C.2)

Using the Gordon identities for ū(p2) Γ
µ u(p1) we find

ū(p2)
Pµ

2m
u(p1) = ū(p2)

✓
�
µ � i

�
µνqν
2m

◆
u(p1) and ū(p2)iP

µ
�5u(p1) = ū(p2)�

µνqν�5u(p1),

(C.3)
allowing us to rewrite the vertex structure as

Γ
µ = �

µ(A1 +A2)� i
�
µνqν
2m

A2 +
qµ

2m
A3 + �

µ
�5A4 +

qµ

2m
�5A5 +

�
µνqν
2m

�5A6. (C.4)

By imposing current conservation and using the Ward identity we find A3 = 0 and

A5 = � 4m
2

q
2 A4. Hence

Γ
µ = �

µ(A1 +A2) +

✓
�
µ � 2m qµ

q2

◆
�5A4 � i

�
µνqν
2m

A2 +
�
µνqν
2m

�5A6, (C.5)

which is usually written as

Γ
µ = �

µFE(q
2)+

✓
�
µ � 2m qµ

q2

◆
�5FA(q

2)+i
�
µνqν
2m

FM (q2)+
�
µνqν
2m

�5FD(q2). (C.6)

We can now identify the physical form factors, which are all defined in the limit q ! 0,
as follows. The corresponding observables in units of e can be extracted from these
form factors.

FE = A1 +A2 electromagnetic charge

FA = A4 anapole moment

FM = �A2 anomalous magnetic moment

FD = A6 electric dipole moment

We can rewrite the last lines to the following definitions of the anomalous magnetic
moment of the muon aµ and the electric dipole moment of the electron dEe :

aµ = �FM (q2)

����
q
2!0

(C.7)

dEe
e

= �FD(q2)

2me

����
q
2!0

. (C.8)
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This allows us to identify the part of a Feynman diagram that contributes to
a physical quantity, by splitting the matrix element in the different structures that
we recognize as form factors. This is typically done by projecting on the relevant
structure. In general, we can design a projection operator Oµ such that a form factor
Ai is given by

Ai = Tr
�
OiµΓ

µ . (C.9)

For a lepton of mass m this results in

Oµ = ( /p1 +m)

✓
�
µc1 +

Pµ

2m
c2 +

qµ

2m
c3 + �

µ
�5c4 +

qµ

2m
�5c5 � i

Pµ

2m
�5c6

◆
( /p2 +me)

(C.10)

⌘ ( /p1 +me)Λ
µ( /p2 +m). (C.11)

In D spacetime dimensions we find

Tr
�
OµΓ

µ =

6X

i=1

Aigi = A1[c1(2(D � 2)s+ 8m2) + c2(�2s+ 8m2)]

+ A2[c1(�2s+ 8m2) + c2(�4s+
s2

2m2 + 8m2)]

+ A3[c3(2s�
s2

2m2 )]

+ A4[c4(2(D � 2)s� 8(D � 1)m2) + c5(2s)]

+ A5[c4(�2s) + c5(
s2

2m2 )]

+ A6[c6(2s�
s2

2m2 )],

where we have defined s = q2. Requiring gi = 1 and gj = 0 for all j 6= i results
in the coefficients ck as shown in Table C.1 for all Oµ

i = ( /p1 +m)Λµ
i ( /p2 +m). Any

unspecified ck is understood to be zero.
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Operator Coefficients Expression for Λµ

c1 = s�4m
2

4m
2 c2

O1
c2 = 2m

2

(D�2)s(s�4m
2
)

Λ
µ
1 = 1

2s(D�2)

n
�
µ + 4m

2

s�4m
2
P

µ

2m

o

c1 = 2m
2

(D�2)s(s�4m
2
)

O2
c2 = (D�2)s+4m

2

s�4m
2 c1

Λ
µ
2 = 2m

2

s(D�2)(s�4m
2
)

n
�
µ + (D�2)s+4m

2

s�4m
2

P
µ

2m

o

O3 c3 = �2m
2

s(s�4m
2
)

Λ
µ
3 = �2m

2

s(s�4m
2
)

q
µ

2m

c4 = s

4m
2 c5

O4
c5 = 2m

2

(D�2)s(s�4m
2
)

Λ
µ
4 = 1

2(D�2)(s�4m
2
)

n
�
µ + 4m

2

s
q
µ

2m

o
�5

c4 = 2m
2

(D�2)s(s�4m
2
)

O5
c5 = 2s�4m

2�D(s�4m
2
)

s c4
Λ
µ
5 = 2m

2

s(D�2)(s�4m
2
)

n
�
µ + 4(D�1)m

2�(D�2)s
s

q
µ

2m

o
�5

O6 c6 = �2m
2

s(s�4m
2
)

Λ
µ
6 = 2im

2

s(s�4m
2
)

P
µ

2m�5

Table C.1 Projection operators in D spacetime dimensions

With these definitions we can obtain the projection operators for aµ and dEe /e
specifically. We use D = 4 for O6. The projection operator for aµ is given by

O2 = ( /p1 +ml)
2m2

l

s(D � 2)(s� 4m2
l )

(
�
µ +

 
s(D � 2)/2 + 2m2

l

s� 4m2
l

!
Pµ

ml

)
( /p2 +ml),

(C.12)

where for the muon we have ml = mµ. The projection operator for dEe /e is given by

�O6/2me = ( /p1 +me)
�iPµ

2s(s� 4m2
e)
�5( /p2 +me). (C.13)

With these operators one can, in principle, extract the contribution of any Feynman
diagram to the relevant observables.
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D. Comparison of spectrum gener-
ators

We give a comparison of the spectrum generators CPsuperH and SPheno for two
example sets of input parameters: one random set of pMSSM input parameters that
does produce a non-excluded spectrum with SPheno, and a set where we have adjusted
the input to minimize the differences between CPsuperH and SPheno. Note that the
second set gives results that would be excluded (e.g. the lack of a SM-like Higgs boson
for the SPheno output).

The SM input is set to the latest experimental values [45] for both sets. For the
first input set, the SUSY parameters are chosen as in Table D.1, where we assume
the masses of the first and second generations are the same.

The output for the first set of parameters is shown in Table D.2, for both CPsuperH
and SPheno. We observe that the differences between the two spectra are significant
in almost every aspect: only the lightest Higgs, charged Higgs, both bottom squarks
and the third and fourth neutralino are similar.

Note that the trilinear couplings and µ obtain imaginary parts in CPsuperH,
shown in Table D.3, even though they are defined to be completely real in the input.
Apparently, the parameters can still obtain a different value than the given input.
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SUSY parameter CPsuperH SPheno

tan(�) 18.7881 18.7881

m±
H 1452.2 GeV solved in tadpoles

m2
Hd

solved in tadpoles 2080330.79 GeV2

m2
Hu

solved in tadpoles -61371.4582 GeV2

|µ| 252.362768 GeV solved in tadpoles

|M1| 1454.226 GeV 1454.226 GeV

|M2| 1147.779 GeV 1147.779 GeV

|M3| 1091.982 GeV 1091.982 GeV

|At| 1736.005 GeV 1736.005 GeV

|Ab| 2779.689 GeV 2779.689 GeV

|Aτ | 2263.821 GeV 2263.821 GeV

�µ 0.0 0 by definition

�M1
0.0 0 by definition

�M2
0.0 0 by definition

�M3
0.0 0 by definition

�At
0.0 0 by definition

�Ab
0.0 0 by definition

�A
τ

0.0 0 by definition

mQ3
1307.134 GeV 1307.134 GeV

mU3
2490.581 GeV 2490.581 GeV

mD3
9389.581 GeV 9389.581 GeV

mL3
1392.465 GeV 1392.465 GeV

mE3
1175.462 GeV 1175.462 GeV

mQ1
1589.634 GeV 1589.634 GeV

mU1
1244.327 GeV 1244.327 GeV

mD1
1032.191 GeV 1032.191 GeV

mL1
142.2132 GeV 142.2132 GeV

mE1
124.4694 GeV 124.4694 GeV

Table D.1 Input parameters for CPsuperH and SPheno, where we expect significant dif-
ferences in the output. Note that CPsuperH does not take the parameters of the first and
second generation directly as input, but rather uses a hierarchy factor, e.g. ⇢Q = mQ1

/mQ3
.
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PDG code Particle CPsuperH mass (GeV) SPheno mass (GeV)

24 W boson 79.2062590 80.3562659

25 H0
1 123.123702 125.111301

35 H0
2 947.796889 1447.53877

36 H0
3 947.823768 1447.43888

37 H± 1452.26470 1449.76005

1000005 b̃1 939.138592 960.950354

2000005 b̃2 1308.59007 1317.56173

1000006 t̃1 1299.88299 255.137213

2000006 t̃2 2500.74286 1341.33913

1000015 ⌧̃1 63.5574611 108.880629

2000015 ⌧̃2 182.514632 130.175652

1000016 ˜⌫τ,L 123.499756 93.9105368

1000022
˜
�
0
1 262.931125 52.5701692

1000023
˜
�
0
2 270.375739 -56.8182496

1000025
˜
�
0
3 1153.80926 1169.45606

1000035
˜
�
0
4 1455.64069 1457.25828

1000024 �̃
±
1 250.757990 54.5186855

1000037 �̃
±
2 444.024060 1169.74874

Table D.2 The output from CPsuperH and SPheno for the set of input parameters as given
in Table D.1

Parameter Value

At -1295.91650 GeV

Ab -0.240800634 GeV

Aτ -0.775613844 GeV

µ 1.08164108 GeV

Table D.3 The imaginary parts of the parameters as given by CPsuperH.
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We have also done a run for the input set that is shown in Table D.4, which keeps
the sparticles of the same kind (e.g. t̃1 and t̃2) close in mass for the SPheno output.
This is done to minimize the differences that arise from the approaches taken (running
RGEs versus effective potential).

However, the output for this set of parameters that is shown in Table D.5 still has
significant differences. Mainly the Higgs sector is clearly treated completely different
in the two programs, resulting in a sharp contrast between the resulting masses.
For this set also the mass of the SM-like Higgs boson varies more between the two
programs. The results in the squark and slepton sector are more similar, especially
with respect to the results from the first set, although a O(10%) difference still exists.

Again we also obtain imaginary parts in the CPsuperH output, as shown in
Table D.6. Interestingly, these imaginary parts are the same as for the first input
set. We do not know why this happens.
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SUSY parameter CPsuperH SPheno

tan(�) 18.7881 18.7881

m±
H 1452.2 GeV solved in tadpoles

m2
Hd

solved in tadpoles 2080330.79 GeV2

m2
Hu

solved in tadpoles -61371.4582 GeV2

|µ| 252.362768 GeV solved in tadpoles

|M1| 1454.226 GeV 1454.226 GeV

|M2| 1147.779 GeV 1147.779 GeV

|M3| 1091.982 GeV 1091.982 GeV

|At| 17.36005 GeV 17.36005 GeV

|Ab| 2779.689 GeV 2779.689 GeV

|Aτ | 22.63821 GeV 22.63821 GeV

�µ 0.0 0 by definition

�M1
0.0 0 by definition

�M1
0.0 0 by definition

�M1
0.0 0 by definition

�At
0.0 0 by definition

�Ab
0.0 0 by definition

�A
τ

0.0 0 by definition

mQ3
1307.134 GeV 1307.134 GeV

mU3
1307.134 GeV 1307.134 GeV

mD3
1307.134 GeV 1307.134 GeV

mL3
599.246 GeV 599.246 GeV

mE3
1175.462 GeV 1175.462 GeV

mQ1
1589.634 GeV 1589.634 GeV

mU1
1244.327 GeV 1244.327 GeV

mD1
1032.191 GeV 1032.191 GeV

mL1
142.2132 GeV 142.2132 GeV

mE1
124.4694 GeV 124.4694 GeV

Table D.4 Input parameters for CPsuperH and SPheno, where we expect the outputs to
be closer together than for the first set. Note that CPsuperH does not take the parameters
of the first and second generation directly as input, but rather uses a hierarchy factor, e.g.
⇢Q = mQ1

/mQ3
.
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PDG code Particle CPsuperH mass (GeV) SPheno mass (GeV)

24 W boson 79.2062590 80.3600340

25 H0
1 123.123702 116.180397

35 H0
2 947.796889 1459.53044

36 H0
3 947.823768 1459.50863

37 H± 1452.26470 1461.97128

1000005 b̃1 1301.43596 1323.04887

2000005 b̃2 1314.38645 1323.95370

1000006 t̃1 1144.94966 1328.43680

2000006 t̃2 1463.68888 1332.17120

1000015 ⌧̃1 124.353822 99.1441508

2000015 ⌧̃2 601.325950 598.996568

1000016 ˜⌫τ,L 595.784317 593.322979

1000022
˜
�
0
1 262.931125 167.046494

1000023
˜
�
0
2 270.375739 -173.851237

1000025
˜
�
0
3 1153.80926 1169.22699

1000035
˜
�
0
4 1455.64069 1458.63705

1000024 �̃
±
1 250.757990 170.079699

1000037 �̃
±
2 444.024060 1169.50377

Table D.5 The output from CPsuperH and SPheno for the set of input parameters as given
in Table D.4

Parameter Value

At -1295.91650 GeV

Ab -0.240800634 GeV

Aτ -0.775613844 GeV

µ 1.08164108 GeV

Table D.6 The imaginary parts of the parameters as given by CPsuperH for the second set
of input parameters.
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E. SARAH model files

To generate a new source code for SPheno that can deal with the complex MSSM, we
have used the Mathematica package SARAH 4.0 [184]. We have used the following
definitions for our complex MSSM model, which is based on the standard MSSM-CPV
files that are included in the installation of SARAH. First, the model file itself:

Off [General : : s p e l l ]

Model ‘Name = ”MSSMCPV” ;
Model ‘NameLaTeX =”MSSM−CPV” ;
Model ‘ Authors = ”M. vanBeekveld ,M. Schutten ,F . Staub” ;
Model ‘Date = ”2022−02−21” ;

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ Par t i c l e Content ∗)
(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

(∗ Globa l symmetries ∗)

Global [ [ 1 ] ] = {Z [ 2 ] , RParity } ;
RpM = {−1 ,−1 ,1};
RpP = {1 ,1 ,−1} ;

(∗ Vector Su p e r f i e l d s ∗)

Gauge [ [ 1 ] ] = {B, U[ 1 ] , hypercharge , g1 , False , RpM} ;
Gauge [ [ 2 ] ] = {WB, SU [ 2 ] , l e f t , g2 , True , RpM} ;
Gauge [ [ 3 ] ] = {G, SU [ 3 ] , co lo r , g3 , False , RpM} ;
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(∗ Chira l S u p e r f i e l d s ∗)

SuperF ie lds [ [ 1 ] ] = {q , 3 , {uL , dL} , 1/6 , 2 , 3 , RpM} ;
SuperF ie lds [ [ 2 ] ] = { l , 3 , {vL , eL} , −1/2, 2 , 1 , RpM} ;
SuperF ie lds [ [ 3 ] ] = {Hd, 1 , {Hd0 , Hdm} , −1/2, 2 , 1 , RpP} ;
SuperF ie lds [ [ 4 ] ] = {Hu, 1 , {Hup , Hu0} , 1/2 , 2 , 1 , RpP} ;

SuperF ie lds [ [ 5 ] ] = {d , 3 , conj [dR] , 1/3 , 1 , −3, RpM} ;
SuperF ie lds [ [ 6 ] ] = {u , 3 , conj [uR] , −2/3, 1 , −3, RpM} ;
SuperF ie lds [ [ 7 ] ] = {e , 3 , conj [ eR ] , 1 , 1 , 1 , RpM} ;

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ Supe rpo t en t i a l ∗)
(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

SuperPotent ia l = Yu u . q .Hu − Yd d . q .Hd − Ye e . l .Hd
+ \ [Mu] Hu.Hd;

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ DEFINITION ∗)
(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

NameOfStates={GaugeES ,EWSB} ;

(∗ Gauge Sec tor ∗)

DEFINITION[EWSB] [ GaugeSector ] =
{

{{VB,VWB[ 3 ] } , {VP,VZ} ,ZZ} ,
{{VWB[ 1 ] ,VWB[ 2 ] } , {VWm, conj [VWm]} ,ZW} ,
{{fWB[ 1 ] , fWB[ 2 ] , fWB[ 3 ] } , {fWm, fWp, fW0} ,ZfW}

} ;
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DEFINITION[GaugeES ] [ Di racSp inors ]={
Bino −>{fB , conj [ fB ] } ,
Wino −> {fWB, conj [ fWB]} ,
Glu −> {fG , conj [ fG ] } ,
H0 −> {FHd0 , conj [ FHu0 ]} ,
HC −> {FHdm, conj [FHup]} ,
Fd1 −> {FdL , 0} ,
Fd2 −> {0 , FdR} ,
Fu1 −> {FuL , 0} ,
Fu2 −> {0 , FuR} ,
Fe1 −> {FeL , 0} ,
Fe2 −> {0 , FeR} ,
Fv −> {FvL,0}

} ;

DEFINITION[GaugeES ] [ Phases ]=
{ {SHup , Exp [ I eta ]} ,

{SHu0 , Exp [ I eta ]}
} ;

(∗ −−−−− VEVs −−−− ∗)

DEFINITION[EWSB] [ VEVs]=
{{SHd0 , {vd , 1/Sqrt [ 2 ] } , {sigmad , I/Sqrt [ 2 ] } , {phid ,1/Sqrt [ 2 ] } } ,
{SHu0 , {vu , 1/Sqrt [ 2 ] } , {sigmau , I/Sqrt [ 2 ] } , {phiu ,1/Sqrt [ 2 ] } } } ;

(∗ −−−− Mixings −−−− ∗)

DEFINITION[EWSB] [ MatterSector ]=
{ {{SdL , SdR} , {Sd , ZD}} ,

{{SuL , SuR} , {Su , ZU}} ,
{{SeL , SeR} , {Se , ZE}} ,
{{SvL} , {Sv , ZV}} ,
{{phid , phiu , sigmad , sigmau } , {hh , ZH}} ,
{{SHdm, conj [ SHup ]} ,{Hpm,ZP}} ,
{{ fB , fW0 , FHd0 , FHu0} , {L0 , ZN}} ,
{{{fWm, FHdm} , {fWp, FHup}} , {{Lm,UM} , {Lp ,UP}}} ,
{{{FeL} ,{ conj [ FeR]}} ,{{FEL,ZEL} ,{FER,ZER}}} ,
{{{FdL} ,{ conj [FdR]}} ,{{FDL,ZDL} ,{FDR,ZDR}}} ,
{{{FuL} ,{ conj [FuR]}} ,{{FUL,ZUL} ,{FUR,ZUR}}}

} ;
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DEFINITION[EWSB] [ Phases ]=
{ {fG , PhaseGlu}

} ;

DEFINITION[EWSB] [ Di racSp inors ]={
Fd −>{ FDL, conj [FDR]} ,
Fe −>{ FEL, conj [FER]} ,
Fu −>{ FUL, conj [FUR]} ,
Fv −>{ FvL , 0} ,
Chi −>{ L0 , conj [ L0 ]} ,
Cha −>{ Lm, conj [ Lp ]} ,
Glu −>{ fG , conj [ fG ]}

} ;

(∗ Model not suppor ted by CalcHep ∗)
SetOptions [ MakeAll , IncludeCalcHep−>True ] ;
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The following particles are defined:

(∗ : : Package : : ∗)

Pa r t i c l eD e f i n i t i o n s [ GaugeES ] = {
{SdL , { Desc r ip t i on −> ” Le f t Down−Squarks ” }} ,
{SdR , { Desc r ip t i on −> ”Right Down−Squarks ” }} ,
{SuL , { Desc r ip t i on −> ” Le f t Up−Squarks ” }} ,
{SuR , { Desc r ip t i on −> ”Right Up−Squarks ” }} ,
{SeL , { Desc r ip t i on −> ” Le f t S e l e c t r on ” }} ,
{SeR , { Desc r ip t i on −> ”Right Se l e c t r on ” }} ,
{SvL , { Desc r ip t i on −> ” Le f t Sneutr ino ” }} ,
{SHd0 , { Desc r ip t i on −> ”Neutral Down−Higgs ” }} ,
{SHdm, { Desc r ip t i on −> ”Charged Down−Higgs ” }} ,
{SHu0 , { Desc r ip t i on −> ”Neutral Up−Higgs ” }} ,
{SHup , { Desc r ip t i on −> ”Charged Up−Higgs ” }} ,
{VB, { Desc r ip t i on −> ”B−Boson” }} ,
{VG, { Desc r ip t i on −> ”Gluon” }} ,
{VWB, { Desc r ip t i on −> ”W−Bosons” }} ,
{gB , { Desc r ip t i on −> ”B−Boson Ghost” }} ,
{gG, { Desc r ip t i on −> ”Gluon Ghost” }} ,
{gWB, { Desc r ip t i on −> ”W−Boson Ghost” }} ,
{Glu , { Desc r ip t i on −> ”Gluino” }} ,
{Wino , { Desc r ip t i on −> ”Wino” }} ,
{Bino , { Desc r ip t i on −> ”Bino” }} ,
{H0 , { Desc r ip t i on −> ”Neutral Higgs inos ” }} ,
{HC, { Desc r ip t i on −> ”Charged Higgs inos ” }} ,
{Fd1 , { Desc r ip t i on −> ”Dirac Le f t Down−Quark” }} ,
{Fd2 , { Desc r ip t i on −> ”Dirac Right Down−Quark” }} ,
{Fu1 , { Desc r ip t i on −> ”Dirac Le f t Up−Quark” }} ,
{Fu2 , { Desc r ip t i on −> ”Dirac Right Up−Quark” }} ,
{Fe1 , { Desc r ip t i on −> ”Dirac Le f t E lec t ron ” }} ,
{Fe2 , { Desc r ip t i on −> ”Dirac Right Elec t ron ” }} ,
{Fv , { Desc r ip t i on −> ”Neutr inos ” }}
} ;
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Pa r t i c l eD e f i n i t i o n s [EWSB] = {
{Sd , { Desc r ip t i on −> ”Down−Squarks ” }} ,
{Su , { Desc r ip t i on −> ”Up−Squarks ” }} ,
{Se , { Desc r ip t i on −> ” S leptons ” }} ,
{Sv , { Desc r ip t i on −> ” Sneutr inos ” }} ,
{hh , { Desc r ip t i on −> ”Higgs ” ,

PDG −> {0 ,25 , 35 ,36} ,
PDG. IX−>{0 ,100000001 ,100000002 ,100000003} }} ,

{Hpm, { Desc r ip t i on −> ”Charged Higgs ” }} ,
{VP, { Desc r ip t i on −> ”Photon” }} ,
{VZ, { Desc r ip t i on −> ”Z−Boson” ,

Goldstone −> hh [{1} ]}} ,
{VG, { Desc r ip t i on −> ”Gluon” }} ,
{VWm, { Desc r ip t i on −> ”W−Boson” }} ,
{gP , { Desc r ip t i on −> ”Photon Ghost” }} ,
{gWm, { Desc r ip t i on −> ”Negat ive W−Boson Ghost” }} ,
{gWmC, { Desc r ip t i on −> ” Po s i t i v e W−Boson Ghost” }} ,
{gZ , { Desc r ip t i on −> ”Z−Boson Ghost” }} ,
{gG, { Desc r ip t i on −> ”Gluon Ghost” }} ,
{Fd , { Desc r ip t i on −> ”Down−Quarks” }} ,
{Fu , { Desc r ip t i on −> ”Up−Quarks” }} ,
{Fe , { Desc r ip t i on −> ”Leptons” }} ,
{Fv , { Desc r ip t i on −> ”Neutr inos ” }} ,
{Glu , { Desc r ip t i on −> ”Gluino” }} ,
{Chi , { Desc r ip t i on −> ”Neut ra l ino s ” }} ,
{Cha , { Desc r ip t i on −> ”Charginos ”}}

} ;

WeylFermionAndIndermediate = {
{FHd0 , { Desc r ip t i on −> ”Neutral Down−Higgs ino ” }} ,
{FHu0 , { Desc r ip t i on −> ”Neutral Up−Higgs ino ” }} ,
{FHdm, { Desc r ip t i on −> ”Charged Down−Higgs ino ” }} ,
{FHup, { Desc r ip t i on −> ”Charged Up−Higgs ino ” }} ,
{L0 , { Desc r ip t i on −> ”Neutra l ino Weyl−Spinor ” }} ,
{Lm, { Desc r ip t i on −> ”Negat ive Chargino Weyl−Spinor ” }} ,
{Lp , { Desc r ip t i on −> ” Po s i t i v e Chargino Weyl−Spinor ” }} ,
{fG , { Desc r ip t i on −>”Gluino Weyl−Spinor ” }} ,
{fWB, { Desc r ip t i on −>”Wino Weyl−Spinor ” }} ,
{fW0 , { Desc r ip t i on −>”Neutral Wino” }} ,
{fWm, { Desc r ip t i on −>”Negat ive Wino” }} ,
{fWp, { Desc r ip t i on −>” Po s i t i v e Wino” }} ,
{ fB , { Desc r ip t i on −>”Bino Weyl−Spinor ” }} ,
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{phid , { Desc r ip t i on −> ” Sca l a r Down” }} ,
{phiu , { Desc r ip t i on −> ” Sca l a r Up” }} ,
{sigmad , { Desc r ip t i on −> ”Pseudo Sca l a r Down” }} ,
{sigmau , { Desc r ip t i on −> ”Pseudo Sca l a r Up” }} ,
{SHd , { Desc r ip t i on −> ”Down−Higgs ” }} ,
{SHu , { Desc r ip t i on −> ”Up−Higgs ” }} ,
{Sl , { Desc r ip t i on −> ” Le f t S lepton ” }} ,
{Sq , { Desc r ip t i on −> ” Le f t Squark” }} ,
{FeL , { Desc r ip t i on −> ” Le f t E lec t ron ” }} ,
{FeR , { Desc r ip t i on −> ”Right Elec t ron ” }} ,
{FdL , { Desc r ip t i on −> ” Le f t Down−Quark” }} ,
{FdR, { Desc r ip t i on −> ”Right Down−Quark” }} ,
{FuL , { Desc r ip t i on −> ” Le f t Up−Quark” }} ,
{FuR, { Desc r ip t i on −> ”Right Up−Quark” }} ,
{FEL, { Desc r ip t i on −> ”Rotated Le f t E lec t ron ” }} ,
{FER, { Desc r ip t i on −> ”Rotated Right Elec t ron ” }} ,
{FDL, { Desc r ip t i on −> ”Rotated Le f t Up−Quark” }} ,
{FDR, { Desc r ip t i on −> ”Rotated Right Up−Quark” }} ,
{FUL, { Desc r ip t i on −> ”Rotated Le f t Down−Quark” }} ,
{FUR, { Desc r ip t i on −> ”Rotated Right Down−Quark” }} ,
{FHd, { Desc r ip t i on −> ”Down−Higgs ino ” }} ,
{FHu, { Desc r ip t i on −> ”Up−Higgs ino ” }} ,
{Fl , { Desc r ip t i on −> ” Le f t Leptons” }} ,
{Fq , { Desc r ip t i on −> ” Le f t Quarks” }} ,
{FvL , { Desc r ip t i on −> ” Le f t Neutrino ” }} ,

{e , { Desc r ip t i on −> ”Right Elec t ron Sup e r f i e l d ” }} ,
{d , { Desc r ip t i on −> ”Right Down−Quark Sup e r f i e l d ” }} ,
{q , { Desc r ip t i on −> ” Le f t Quark Sup e r f i e l d ” }} ,
{u , { Desc r ip t i on −> ”Right Up−Quark Sup e r f i e l d ” }} ,
{ l , { Desc r ip t i on −> ” l e f t Lepton Sup e r f i e l d ” }} ,
{Hd, { Desc r ip t i on −> ”Down−Higgs Sup e r f i e l d ” }} ,
{Hu, { Desc r ip t i on −> ”Up−Higgs Sup e r f i e l d ” }} ,
{G, { Desc r ip t i on −> ”Gluon Sup e r f i e l d ” }} ,
{B, { Desc r ip t i on −> ”B Supe r f i e l d ” }} ,
{WB, { Desc r ip t i on −> ”W Supe r f i e l d ” }}

} ;
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The following parameters are defined:

(∗ : : Package : : ∗)

Paramete rDe f in i t i ons = {

{g1 , {Desc r ip t i on −>”Hypercharge−Coupling” }} ,
{g2 , {Desc r ip t i on −>”Left−Coupling” }} ,
{g3 , {Desc r ip t i on −>”Strong−Coupling” }} ,

{AlphaS , {Desc r ip t i on −>”Alpha Strong” }} ,
{e , {Desc r ip t i on −>” e l e c t r i c charge ” }} ,
{Gf , {Desc r ip t i on −>”Fermi ’ s constant ” }} ,
{aEWinv , {Desc r ip t i on −>” i nv e r s e weak coup l ing constant at mZ” }} ,

{Yu, {Desc r ip t i on −>”Up−Yukawa−Coupling” }} ,
{Yd, {Desc r ip t i on −>”Down−Yukawa−Coupling” }} ,
{Ye , {Desc r ip t i on −>”Lepton−Yukawa−Coupling” }} ,

{T[Ye ] , {Desc r ip t i on −>” Tr i l i n e a r−Lepton−Coupling” }} ,
{T[Yd] , {Desc r ip t i on −>” Tr i l i n e a r−Down−Coupling” }} ,
{T[Yu] , {Desc r ip t i on −>” Tr i l i n e a r−Up−Coupling” }} ,

{ eta , {Descr ipt ion−>”Angle f o r Higgs phases ” ,
Real −> True ,

OutputName −>eta ,
LaTeX −> ”\\ eta ” ,
LesHouches−>{HMIX,500} }} ,

{\ [Mu] , {Desc r ip t i on −>”Mu−parameter ” }} ,
{B[ \ [Mu] ] , { Desc r ip t i on −>”Bmu−parameter ” }} ,

{mq2 , {Desc r ip t i on −>” So f tb r eak ing l e f t Squark Mass” }} ,
{me2 , {Desc r ip t i on −>” So f tb r eak ing r i g h t Slepton Mass” }} ,
{ml2 , {Desc r ip t i on −>” So f tb r eak ing l e f t S lepton Mass” }} ,
{mu2, {Desc r ip t i on −>” So f tb r eak ing r i g h t Up−Squark Mass” }} ,
{md2, {Desc r ip t i on −>” So f tb r eak ing r i g h t Down−Squark Mass” }} ,
{mHd2, {Desc r ip t i on −>” So f tb r eak ing Down−Higgs Mass” }} ,
{mHu2, {Desc r ip t i on −>” So f tb r eak ing Up−Higgs Mass” }} ,
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{MassB , { Desc r ip t i on −> ”Bino Mass parameter ” }} ,
{MassWB, { Desc r ip t i on −> ”Wino Mass parameter ” }} ,
{MassG , { Desc r ip t i on −> ”Gluino Mass parameter ” }} ,

{vd , { Desc r ip t i on −> ”Down−VEV” ,
DependenceNum −> v Cos [ArcTan [ TanBeta ] ] } } ,

{vu , { Desc r ip t i on −> ”Up−VEV” ,
DependenceNum −> v Sin [ArcTan [ TanBeta ] ] } } ,

{v , { Desc r ip t i on −> ”EW−VEV” }} ,
{TanBeta , { Desc r ip t i on −> ”Tan Beta” , OutputName −>TanBeta }} ,

{ZD, { Desc r ip t i on −> ”Down−Squark−Mixing−Matrix” }} ,
{ZU, { Desc r ip t i on −> ”Up−Squark−Mixing−Matrix” }} ,
{ZE, { Desc r ip t i on −> ”Slepton−Mixing−Matrix” }} ,
{ZV, { Descr ipt ion−>” Sneutr ino Mixing−Matrix” }} ,
{ZH, { Descr ipt ion−>” Sca lar−Mixing−Matrix” ,

Dependence −> None,
DependenceNum −> None,
DependenceOptional −> None,
Real −> True }} ,

{ZP, { Descr ipt ion−>”Charged−Mixing−Matrix” ,
Real −> False ,
Dependence −> None,
DependenceOptional −> None,
DependenceNum −> None}} ,

{ZN, { Descr ipt ion−>”Neutra l ino Mixing−Matrix” }} ,
{UP, { Descr ipt ion−>”Chargino−plus Mixing−Matrix” }} ,
{UM, { Descr ipt ion−>”Chargino−minus Mixing−Matrix” }} ,

{ZEL, { Desc r ip t i on −>”Left−Lepton−Mixing−Matrix” }} ,
{ZER, { Desc r ip t i on −>”Right−Lepton−Mixing−Matrix” }} ,
{ZDL, { Desc r ip t i on −>”Left−Down−Mixing−Matrix” }} ,
{ZDR, { Desc r ip t i on −>”Right−Down−Mixing−Matrix” }} ,
{ZUL, { Desc r ip t i on −>”Left−Up−Mixing−Matrix” }} ,
{ZUR, { Desc r ip t i on −>”Right−Up−Mixing−Matrix” }} ,

{ThetaW, { Desc r ip t i on −> ”Weinberg−Angle” }} ,
{PhaseGlu , { Desc r ip t i on −> ”Gluino−Phase” }} ,

{ZZ , {Desc r ip t i on −> ”Photon−Z Mixing Matrix” }} ,
{ZW, {Desc r ip t i on −> ”W Mixing Matrix” }} ,
{ZfW, {Desc r ip t i on −> ”Wino Mixing Matrix”}} } ;
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Using this model, these particles and these parameters, we have defined the following
settings to generate a new version of SPheno:

(∗ : : Package : : ∗)

EXTPAR={{1 ,M1input } ,
{2 ,M2input } ,
{3 ,M3input } ,
{11 ,AUinput } ,
{12 ,ADinput} ,
{13 ,AEinput } ,
{21 ,mHd2input} ,
{22 ,mHu2input} ,
{31 ,meLinput } ,
{33 ,mtauLinput } ,
{34 ,meRinput } ,
{36 ,mtauRinput } ,
{41 ,mQ1input} ,
{43 ,mQ3input} ,
{44 ,muRinput} ,
{46 ,mtRinput } ,
{47 ,mdRinput} ,
{49 ,mbRinput }} ;

MINPAR={{3 ,TanBeta } ,
{4 ,SignumMu} ,
{6 , etaInput }} ;

RealParameters = {TanBeta , etaInput , mHd2input , mHu2input ,
mQ1input , mQ3input , meLinput , mtauLinput , meRinput ,
mtauRinput , muRinput , mtRinput , mdRinput , mbRinput } ;
ParametersToSolveTadpoles = {abs [ \ [Mu] ] ˆ 2 , re [B [ \ [Mu] ] ] , im [B [ \ [Mu ] ] ] } ;
Tad1Loop [4 ]=Tad1Loop [ 3 ] ∗ vd/vu ;

(∗TanBeta needed in the matching cond i t i on s to the SM∗)
DEFINITION[ MatchingCondit ions ]=Default [THDMII ] ;
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BoundarySUSYScale={
{MassB , M1input } ,
{MassWB, M2input } ,
{MassG , M3input } ,
{ eta , etaInput } ,
{T[Ye ] , AEinput∗Ye} ,
{T[Yd] , ADinput∗Yd} ,
{T[Yu] , AUinput∗Yu} ,
{mq2 [ 1 , 1 ] , mQ1inputˆ2} ,
{mq2 [ 2 , 2 ] , mQ1inputˆ2} ,
{mq2 [ 3 , 3 ] , mQ3inputˆ2} ,
{ml2 [ 1 , 1 ] , meLinput ˆ2} ,
{ml2 [ 2 , 2 ] , meLinput ˆ2} ,
{ml2 [ 3 , 3 ] , mtauLinput ˆ2} ,
{md2 [ 1 , 1 ] , mdRinputˆ2} ,
{md2 [ 2 , 2 ] , mdRinputˆ2} ,
{md2 [ 3 , 3 ] , mbRinputˆ2} ,
{mu2 [ 1 , 1 ] , muRinputˆ2} ,
{mu2 [ 2 , 2 ] , muRinputˆ2} ,
{mu2 [ 3 , 3 ] , mtRinput ˆ2} ,
{me2 [ 1 , 1 ] , meRinput ˆ2} ,
{me2 [ 2 , 2 ] , meRinput ˆ2} ,
{me2 [ 3 , 3 ] , mtauRinput ˆ2} ,
{mHd2, mHd2input} ,
{mHu2, mHu2input} ,
{vd , Sqrt [ 4 mz2/( g1ˆ2+g2 ˆ2 ) ]∗Cos [ArcTan [ TanBeta ] ] } ,
{vu , Sqrt [ 4 mz2/( g1ˆ2+g2 ˆ2 ) ]∗Sin [ArcTan [ TanBeta ] ] }

} ;

Renormal i za t ionSca l eF i r s tGues s =Sqrt [mq2 [ 3 , 3 ] ∗mu2 [ 3 , 3 ] ] ;
Renormal i zat ionSca le = Sqrt [ (mq2 [ 3 , 3 ] + (vuˆ2∗ conj [Yu[ 3 , 3 ] ]
∗Yu[ 3 , 3 ] ) / 2 ) ∗ (mu2 [ 3 , 3 ] + (vuˆ2∗ conj [Yu[ 3 , 3 ] ] ∗Yu[ 3 , 3 ] ) / 2 )
−((vd ∗\ [Mu]∗ conj [Yu[ 3 , 3 ] ] − vu∗ conj [T[Yu ] [ 3 , 3 ] ] )
∗( vd∗ conj [ \ [Mu] ] ∗Yu[ 3 , 3 ] − vu∗T[Yu ] [ 3 , 3 ] ) ) / 2 ] ;

ConditionGUTscale = g1 == g2 ;
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(∗ l oop decays not suppor ted f o r t h i s model ∗)
SetOptions [ MakeSPheno , IncludeLoopDecays −> False ] ;
SetOptions [ PrepareRGEs , ComplexPhases −> True ] ;

L i s tDecayPar t i c l e s = Automatic ;
L i s tDecayPart i c l e s3B = Automatic ;

SA‘ AddOneLoopDecay = False ;
Defau l t InputValues = { etaInput −>1,mHd2input−>500,mHu2input−>500,
TanBeta−>10,SignumMu−>−1,M1input−>1500,M2input−>1500,M3input−>1500,
AUinput−>−2000,ADinput−>−2000,AEinput−>−2000,mQ1input−>1500,
mQ3input−>1500,meLinput−>1500,mtauLinput−>1500,meRinput−>1500,
mtauRinput−>1500,mdRinput−>1500,mbRinput−>1500,muRinput−>1500,
mtRinput−>1500};

We then obtain the source code for SPheno as explained in the SARAH manual.

144



F. Data management

The research in this thesis was carried out under the RUG data management policy,
as documented in
www.rug.nl/digital-competence-centre/ug-research-data-policy-2021.pdf.
Accordingly, we explain how to obtain the relevant data in this Appendix.

F.1 Software

We have used several software packages. These can be obtained from the following
places:

• CPsuperH – https://www.hep.manchester.ac.uk/u/jslee/CPsuperH.html

• DDCalc – https://ddcalc.hepforge.org/

• FeynHiggs – https://wwwth.mpp.mpg.de/members/heinemey/feynhiggs/index.
html

• GM2Calc – https://gm2calc.hepforge.org/

• MicrOMEGAS (including HiggsBounds, HiggsSignals and Lilith) – https://

lapth.cnrs.fr/micromegas/

• Prospino – https://www.thphys.uni-heidelberg.de/~plehn/index.php?show=
prospino

• SARAH – https://sarah.hepforge.org/

• SPheno – https://spheno.hepforge.org/

• SUSY-AI – https://amia.nikhef.nl/

• SUSYHIT – https://www.itp.kit.edu/~maggie/SUSY-HIT/

• SoftSUSY – https://softsusy.hepforge.org/

• SuperIso –http://superiso.in2p3.fr/

• Vevacious – https://vevacious.hepforge.org/

To obtain the version of SPheno that we have used in our study of the cpMSSM,
see Appendix E for the SARAH model files that we have used.
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APPENDIX F. DATA MANAGEMENT

F.2 Datasets

We have generated large sets of data. In Chapters 4 and 5 we describe how the data
for the (g � 2)µ and eEDM projects was generated, respectively. The full datasets,
including all input and output files, contain all the input and output files for the
various software packages.

• For the (g�2)µ study in Chapter 4, the relevant files can be found at [157] under
the name ‘gm2 data.tar’. A description of the specific files in each map can be
found here as well.
The files are organized in iterations, according to the iteration they were pro-
duced in. The map name within one iteration is labeled by “[Barbieri-Giudice
fine-tuning measure] [Electroweak fine-tuning measure] [time stamp]”. It is not
straightforward to extract all the necessary data from each of these files. Instead,
we have stored the output of the project in a separate file,
‘datagm2 right omegah2 only.csv’, that is also made publicly available. This con-
tains the data from all the files that have the right ΩDMh2. In the .csv file the
data is organised in columns, as described in [157].

• For the eEDM study in Chapter 5, the full set of input output files can be found
at [235]. The input files are stored per iteration as ’input iter[n].csv’ and the
output files are gathered under the name ‘eEDMdata.tar’. The code to obtain
the output from the input has been uploaded in the directory ’SPheno to eEDM’.
The name of the directory (’dir name’) in the output file corresponds to the index
of the line in the input file. One directory with the input and output files for
each software package is created for each data point. The output in de csv file
contains the masses, couplings, mixing matrices, observables and fine-tuning for
each data point, which is organised in columns.
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G. Phases

This is the full background of the discussion in Section 5.2. For completeness we show
all the figures and give the full parameter sets on which these figures are based.

We have done two different sets of studies: in the first, the phases are varied
between 0 and 2⇡. The second study varies the phases between 10�8 and 10�2, to
gain a better understanding of the behaviour of dEe for very small values of the phases.

The value 10�8 is chosen because of numerical stability. In several cases we see
that the limit of this numerical stability is reached (e.g. in the left panels of the
second, third and fourth row in Figure G.2).

M1 (GeV) M2 (GeV) M3 (GeV) At (GeV) Ab (GeV)

-62.3624 236.72669 -4738.12+23.85823j -5840.988 -1994.2731

Aτ (GeV) µ (GeV) m2
Hu

(GeV2) m2
Hd

(GeV2) Qsusy (GeV)

-792.70011 257.89983 -59954.133 708281.4 3594.556

tan� ⌘ mtL
(GeV) mtR

(GeV) mbR
(GeV)

24.58265 0.0 -62.3624 2219.176 1651.646

muL
(GeV) muR

(GeV) mdR
(GeV) meL

(GeV) meR
(GeV)

1534.244 1752.216 1975.511 545.7135 4830.292

mτL
(GeV) mτR

(GeV) �µ �M1
�M2

4121.306 3642.808 0.0 3.141593 0.0

�M3
�At

�Ab
�A

τ

3.136557 3.141593 3.141593 3.141593

Table G.1 The parameters of the first data point. Each of these has been kept constant,
except the phase we were studying. The original value of the eEDM was |d

E
e | = 9.0054 · 10

−33

e cm.

The two original data points have the parameter values as shown in Tables G.1
and G.2.
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M1 (GeV) M2 (GeV) M3(GeV) At (GeV) Ab (GeV)

-47.17723 160.3648 4924.345 -4826.255 -2877.530-0.7186789j

Aτ (GeV) µ (GeV) m2
Hu

(GeV2) m2
Hd

(GeV2) Qsusy (GeV)

-2380.637 265.54159 -42278.92 633588.6 2638.648

tan� ⌘ mtL
(GeV) mtR

(GeV) mbR
(GeV)

24.7834 0.0 3973.995 1753.604 3418.491

muL
(GeV) muR

(GeV) mdR
(GeV) meL

(GeV) meR
(GeV)

1600.814 4429.666 1872.030 708.21701 2052.146

mτL
(GeV) mτR

(GeV) �µ �M1
�M2

4154.055 3968.693 0.0 3.141593 0.0

�M3
�At

�Ab
�A

τ

0.0 3.141593 3.141343 3.141593

Table G.2 The parameters of the second data point. Each of these has been kept constant,
except the phase we were studying. The original value of the eEDM was |d

E
e | = 6.2557 · 10

−34

e cm.

For each phase we have created two data sets where all the parameters are the
same as in Table G.1 and G.2, except the phase we are studying. The results of these
studies for different values of the phases are shown in the figures below, starting with
the results for general phases.
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Figure G.1 The dependence of the eEDM d
E
e on the phases, where for each plot all para-

meters other than that phase have been kept constant.
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Figure G.2 The dependence of the eEDM d
E
e on the phases, where for each plot all para-

meters other than that phase have been kept constant; this time for small values of the
phases.
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SAMENVATTING

Deze samenvatting is bedoeld voor alle mensen die nog niet thuis zijn in de na-
tuurkunde. Aangezien dat een ontzettend brede doelgroep is, heb ik geprobeerd voor
ieder wat wils te bieden. Laat je dus niet ontmoedigen door een stuk tekst dat net
iets te ver gaat voor je begrip, of als het juist wat langzaam wordt uitgelegd naar
jouw smaak.

Uiteindelijk hoop ik dat ik hiermee iedereen een beeld geef van mijn vakgebied.
De titel van het proefschrift bevat natuurlijk veel jargon: de meeste mensen zullen
niet weten wat observabelen zijn (of meetbare grootheden in beter Nederlands) en
een ander idee hebben dan ik bij ‘lage energie’, laat staan dat ze weten wat ik bedoel
met finetuning en het MSSM. Ik hoop dat je aan het eind van deze samenvatting in
elk geval weet wat ik met dit jargon bedoel en waarom het interessant is om over dit
onderwerp na te denken.

Ik vind het zelf wonderbaarlijk hoe veel we weten over de wereld en ik zou graag
een stukje van dat enthousiasme aan je overdragen. De wereld is ingewikkeld en zit
vol schijnbare toevalligheden. Wij fysici proberen die toevalligheden te begrijpen en
te beschrijven in onze wiskundige modellen. Soms is het daarom juist heel leuk om
een stapje terug te doen en je opnieuw te verwonderen. Ik had veel lol in het schrijven
van deze samenvatting, dus ik wens je ook veel plezier in het lezen!

Het standaardmodel der deeltjesfysica

Het werk in dit proefschrift speelt zich af in een vakgebied dat we hoge-energiefysica
noemen: de natuurkunde die probeert fenomenen te beschrijven, verklaren en voor-
spellen die zich afspelen als er (extreem) hoge energie in het spel is. Paradoxaal genoeg
gaat het ook over heel erg kleine dingen. Dat komt omdat je de kleinste dingen alleen
kunt maken als je er heel veel energie in stopt. De kleinste bouwstenen noemen we
ook wel fundamentele of elementaire deeltjes en daarom heet het vakgebied soms ook
deeltjesfysica.

De elementaire deeltjes kun je zien als een soort Lego blokjes: je kunt ze niet
zomaar in tweeën hakken, zonder ze kapot te maken. Tegelijkertijd kun je met deze
Lego bouwstenen nieuwe dingen maken, door ze op de juiste manier in elkaar te
klikken. Op dezelfde manier vormen bepaalde elementaire deeltjes samen de materie
om ons heen door eerst samen te klikken tot protonen en neutronen. Daarna vormen
deze samen met elektronen, die ook elementaire deeltjes zijn, grotere blokken, die we
atomen noemen. Atomen vormen daarna weer moleculen en daaruit is onze wereld
opgebouwd. Een molecuul is het kleinste deeltje dat nog alle eigenschappen van een
stof bevat, voor atomen is dat al niet meer waar.

Afhankelijk van de schaal waarop je naar de wereld kijkt, wil je ook een model dat
past bij die schaal. Het is bijvoorbeeld helemaal niet handig om de tijd in seconden
te meten als je met iemand een afspraak maakt die volgende maand plaatsvindt,
of wanneer je van Nijmegen naar Groningen reist. Er bestaan niet voor niets ook
minuten, uren, dagen en maanden. Op dezelfde manier beschrijven we een appel die
van de boom valt in termen van de boom, de appel en de grond. Het is onnodig
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ingewikkeld om na te denken over de moleculen in die appel, laat staan om over nog
kleinere deeltjes te praten.

Toch kan het handig zijn om over een model te beschikken dat de allerkleinste
deeltjes en hun interacties beschrijft. Allereerst is het gewoon leuk om op elk niveau te
weten hoe dingen in elkaar steken en te begrijpen hoe de verschillende niveaus in elkaar
overgaan. Daarnaast is het ook praktisch: tegenwoordig kunnen we experimenten
doen waarbij we op de kleinste schaal moeten begrijpen hoe de wereld werkt. Om
echt te begrijpen hoe atomen en moleculen de wereld om ons heen vormen, is het ook
nodig om te weten hoe elementaire deeltjes de atomen vormen. Hiervoor willen we
dus graag een model.

Het standaardmodel der deeltjesfysica beschrijft de elementaire deeltjes zoals we
die nu kennen. Het model legt ook uit hoe de verschillende deeltjes interageren of met
elkaar ‘praten’. Er bestaan namelijk verschillende soorten deeltjes: de deeltjes die we
materie noemen en zogenaamde krachtdragers. Door een krachtdrager uit te wisselen,
praten materiedeeltjes met elkaar: ze gaan een interactie aan. Het is gebruikelijk om
dit heel schematisch weer te geven in de vorm van diagrammen, zoals je kunt zien in
Figuur 6.3. Zulk soort diagrammen zie je dan ook vaak terugkomen in dit proefschrift
als we willen beschrijven wat voor proces er plaatsvindt.

e�

e�

e�

e�

�

Figuur 6.3 Voorbeeld van een Feynman diagram. Een elektron (links, e
−

) zendt een foton
(midden, �) uit dat wordt ontvangen door een ander elektron (rechts, e

−

). Een andere
manier om dit te zien is dat de twee elektronen elkaar afstoten, omdat ze dezelfde elektrische
lading hebben.

Je kunt dit soort processen op twee manieren bekijken. Tot nu toe beschrijf ik dit
in termen van deeltjes en interacties. In het voorbeeld zie je twee elektronen die een
foton uitwisselen. Een andere manier om ernaar te kijken is dat de elektrisch geladen
elektronen elkaar afstoten, omdat de elektromagnetische kracht ze uit elkaar duwt.
Beide manieren om hiernaar te kijken zijn even goed en correct. In het dagelijks le-
ven praten we vaker over krachten en net als de fundamentele deeltjes kennen we ook

154



SAMENVATTING

een paar fundamentele krachten: de elektromagnetische kracht, de sterke kernkracht,
de zwakke kernkracht en de zwaartekracht. Met elke kracht kunnen we een deeltje
associëren, zodat we een proces ook kunnen beschrijven in termen van elementaire
deeltjes en hun interacties.

Het standaardmodel beschrijft al deze deeltjes, zowel voor materie als voor kracht,
op een wiskundige manier. In Figuur 6.4 staat een overzicht van alle deeltjes die we
nu kennen. Links zien we de ‘dagelijkse’ deeltjes: de materie om ons heen is hieruit
opgebouwd. Protonen en neutronen bestaan namelijk allebei uit een mix van up- en
downquarks, die bij elkaar worden gehouden door de uitwisseling van gluonen (of door
de sterke kernkracht). Samen met elektronen vormen de protonen en neutronen dan
atomen. De middelste en rechterrij van de materiedeeltjes lijken qua eigenschappen
op de eerste, maar de deeltjes zijn zwaarder. Rechts daarnaast staan de krachtdragers:
het gluon voor de sterke kernkracht, het foton voor de elektromagnetische kracht en
de W - en Z-bosonen voor de zwakke kernkracht. Het Higgsdeeltje is een buitenbeetje
en beschrijft geen kracht zoals de anderen, maar is verantwoordelijk voor de massa’s
van de andere deeltjes.

Figuur 6.4 Het standaardmodel met alle deeltjes
die we nu kennen [1].

Door het standaardmodel op een
wiskundige manier op te schrijven,
kunnen we ook regels afleiden waar
de deeltjes zich volgens het model
aan moeten houden. Hierbij is het
heel belangrijk om op te merken dat
we zeggen ‘volgens het model’. Elke
theorie moet namelijk altijd getest
worden in experimenten. Het liefst
stel je een theorie op die verklaart
wat we tot nu toe hebben gezien in
experimenten én iets nieuws voor-
spelt. Daarmee heb je ook met-
een iets dat je in een ander expe-
riment kunt controleren. Het vak-
gebied waarin vooral wordt gekeken
naar het samenspel tussen theorie en
experiment heet ook wel fenomeno-
logie. Dit is de focus van mijn proef-
schrift.
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Het standaardmodel testen

Het standaardmodel is in de loop der jaren uitvoerig getest. De allereerste vormen van
het model bestaan al sinds de jaren ’70, toen het bestaan van quarks werd bevestigd.
Sindsdien is het model uitgebreid tot zijn huidige vorm en worden alle onderdelen
van het model tot op steeds grotere precisie getest. Dit gebeurt onder andere bij de
Large Hadron Collider (LHC) in Cern. Daar laten we protonen met grote snelheden
op elkaar botsen, waarbij dan andere (elementaire) deeltjes kunnen ontstaan. Door
de botsingen te bestuderen leren we meer over het standaardmodel en kunnen we de
voorspellingen die het model doet over processen testen.

Tot nu toe zijn er bij de LHC nog geen echte afwijkingen gevonden. Desondanks
weten we vrij zeker dat het model niet compleet is. Geen van de deeltjes uit het
standaardmodel biedt namelijk een verklaring voor het fenomeen ‘donkere materie’.
Dit is een onbekende stof die voorkomt in het universum en daarmee de astrofysische
waarnemingen van bijvoorbeeld sterrenstelsels bëınvloedt. Zonder donkere materie
begrijpen we niet goed hoe het heelal zich zo heeft ontwikkeld tot de huidige vorm.
We begrijpen alleen ook nog niet goed wat donkere materie nou precies is, aangezien
geen van de deeltjes in het standaardmodel de juiste eigenschappen heeft om deze
stof te kunnen zijn.

Aan de andere kant zijn er waarnemingen bij lage energieën. Hiermee bedoelen
we experimenten die niet, zoals bij de LHC of in het heelal, met enorme energieën
gepaard gaan. Het verschil is enorm en daardoor bijna niet te bevatten: de typische
energy bij de LHC is 10�6 joule, terwijl er ook experimenten bestaan die een verschil
van 10�42 joule kunnen waarnemen. Ter vergelijking: ons melkwegstelsel is 1018

kilometer groot, terwijl het verschil tussen deze experimenten 1036 is. Het verschil is
dus echt enorm.

Het voordeel is dat experimenten bij lage energie is dat ze veel kleinschaliger
kunnen zijn en daarmee ook goedkoper dan deeltjesversnellers zoals de LHC. Het
nadeel is dat ze veel specifieker kijken naar één meetbare grootheid (observabele) en
dus minder algemeen zijn. Wij proberen de bevindingen van beide type experimenten
te combineren en daardoor zo veel mogelijk te leren over het model.

Elektrische en magnetische momenten

Er zijn twee observabelen waar we naar kijken: het afwijkend magnetische moment
van het muon1 en het elektrisch dipoolmoment van het elektron. Deze twee hebben
we uitgekozen omdat ze nauw verbonden zijn en er in Groningen een experiment
wordt gemaakt om het elektrisch dipoolmoment te meten. Dit is nogal een mondvol
en om te begrijpen wat deze observabelen zijn moeten we eerst kijken naar een andere
eigenschap van deeltjes: spin. Elementaire deeltjes hebben een aantal eigenschappen
die vastliggen voor elk deeltje van dezelfde soort. Zo hebben alle elektronen dezelfde
massa en elektrische lading. Ze hebben ook dezelfde spin.

1Dit is het zwaardere broertje van het elektron.
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Als we kijken naar een grote bol, dan kan deze om zijn eigen as draaien. Dat
beschrijven we met iets dat we impulsmoment noemen. Dit is een maat voor de
hoeveelheid draaïıng in verhouding tot de bol en zijn massa. De vergelijking gaat niet
helemaal goed op, maar spin is voor elementaire deeltjes een beetje wat impulsmoment
is voor bollen.2 Daarna kan er een wisselwerking ontstaan tussen de spin van een
deeltje en het elektrisch of magnetisch veld. De sterkte van die wisselwerking heeft
een eigen naam en is ook weer een eigenschap van het elementaire deeltje. Voor het
elektrisch veld noemen we dat het elektrisch dipoolmoment en voor het magnetisch
veld heet dit het magnetisch moment.

Figuur 6.5 Het tol-
len van een bol, die
ook al om zijn eigen
as draait [236].

Opnieuw kunnen we proberen dit beter te begrijpen door te
kijken naar bollen in plaats van deeltjes. Stel je voor, we maken
een bol die bestaat uit allemaal verschillende stukjes. Elk stukje
geven we dan een elektrische lading en een magnetische lading.3

De totale bol heeft nu ook een lading. Daarna geven we een
flinke zwiep aan de bol, zodat hij om zijn eigen as gaat tollen.
Vervolgens kijken we dan hoe de draaiende bol zich gedraagt in
een magnetisch veld en in een elektrisch veld. In Figuur 6.5 staat
een schematische weergave hiervan.

Wat we zien is het volgende: de draaiende bol
gaat een tollende beweging maken, ofwel precessie. He-
laas kan ik hier geen filmpje laten zien, maar bijvoor-
beeld https://nl.wikipedia.org/wiki/Precessie#/media/

Bestand:Gyroscope_precession.gif is heel duidelijk. Je kunt
denken aan een tol die niet netjes rechtop staat. Behalve dat
hij om zijn eigen as tolt, maakt hij ook nog een extra draaibe-
weging. Iets dergelijks gebeurt als de as van onze draaiende bol
niet dezelfde richting heeft het als magneetveld. De bol gaat dan
een precessiebeweging maken. De snelheid van deze precessiebe-
weging hangt af van het magnetisch moment van de bol.

Dit werkt alleen als de bol een lading heeft en die lading niet
helemaal uniform is verdeeld over de bol. Je kunt het magne-
tisch moment daarom zien als een maat voor de verdeling van

de magnetische lading en het elektrisch dipoolmoment als een maat voor de verdeling
van de elektrische lading.

Elementaire deeltjes hebben een intrinsieke eigenschap die hier direct vergelijkbaar
mee is. Het magnetisch moment beschrijft de sterkte van de interactie tussen de spin
van het deeltje en een magneetveld, het elektrisch dipoolmoment beschrijft de sterkte
van de interactie tussen de spin van het deeltje en een elektrisch veld. Door heel precies

2Een elementair deeltje is eigenlijk een punt, geen bol, en draait ook niet daadwerkelijk... Volg
je het nog?

3We maken ons even niet druk over hoe die bol dan één geheel blijft en niet uit elkaar valt omdat
de verschillende ladingen elkaar afstoten. De bol bestaat gewoon.
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te meten hoe de elementaire deeltjes zich gedragen als je ze in een magneetveld en
elektrisch veld laat bewegen, kun je ook meten wat het intrinsieke magnetisch moment
en elektrisch dipoolmoment is.

Het standaardmodel voorspelt ook een waarde voor het magnetisch moment en
elektrisch dipoolmoment van elk elementair deeltje. Door die te meten, kun je dus
testen of het standaardmodel klopt. Voor het elektrisch dipoolmoment is de voor-
spelde waarde helaas te klein om te meten door de huidige experimenten: er zitten
nog ongeveer 8 ordes van grootte tussen de voorspelling en de gevoeligheid van het
beste experiment. Dat kun je zien als een voorspelling over de vorm van een cafëıne
molecuul, terwijl wij op het moment alleen nog in staat zijn om een koffiekop te zien.
Om dit echt goed te testen, moeten we dus nog veel preciezer zien te meten en daar-
voor hebben we nu nog niet de benodigde technieken. Voor het magnetisch moment
is er al wel een experimentele waarneming mogelijk en het lijkt er voorlopig op dat
het standaardmodel er net even naast zit bij het muon. Het verschil is nog niet groot
genoeg om officieel het stempel ‘ontdekking’ te krijgen, maar het is wel interessant
om te bestuderen.

Uitbreidingen van het standaardmodel

Om de afwijkende waarnemingen te verklaren, moet het standaardmodel aangepast
worden. Een mogelijkheid is om extra deeltjes toe te voegen en het model uit te brei-
den. Dit wordt bijvoorbeeld gedaan in supersymmetrie, waar elk bekend elementair
deeltje een zogenaamde superpartner krijgt. Alle kwantumgetallen van de superpart-
ners zijn hetzelfde als die van het standaardmodeldeeltje, behalve de spin. Hierdoor
bestaat er ook een deeltje dat, met de juiste aanvullende eigenschappen, donkere
materie zou kunnen zijn. Daarnaast zou dit nieuwe model kunnen verklaren wat de
experimentele waarneming is voor het magnetisch moment van het muon. Tot slot
kunnen we aan de hand van het nog niet waargenomen elektrisch dipoolmoment van
het elektron ook controleren of het model nog niet is uitgesloten.4

Een uitdaging van werken met supersymmetrie is dat het model komt met heel veel
vrije parameters. De symmetrie is namelijk niet helemaal kloppend, hij is gebroken.
Je kunt dit vergelijken met je spiegelbeeld. Een volledige symmetrie betekent dat jij
en je spiegelbeeld precies hetzelfde zijn. Een gebroken symmetrie leidt tot verschillen:
je spiegelbeeld heeft bijvoorbeeld net even een andere kleur shirt aan, of gedraagt
zich net niet helemaal hetzelfde als jij. Op dezelfde manier zijn de supersymmetrische
deeltjes die we zouden kunnen zien, als ze bestaan, ook net even anders dan we gedacht
hadden. De precieze manier waarop ze verschillen, hangt af van de parameters van
het model.

4Een model is uitgesloten als het een voorspelling doet die wordt weerlegd door een experimenteel
resultaat.
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Figuur 6.6 Spiegelsymmetrie
[237].

Spiegelsymmetrie kennen we in de deeltjesfysica
ook, namelijk onder de naam CPT symmetrie. Dit
staat voor Charge conjugation, Parity en Time re-
versal. De volledige CPT symmetrie maakt van een
deeltje een anti-deeltje dat zich in tegenovergestelde
richting beweegt en tegen de tijd ingaat. Aangezien
we de tijd niet om kunnen draaien, kunnen we niet di-
rect testen of deze symmetrie klopt (behouden is). We
gaan hier wel altijd vanuit in onze modellen, omdat
er anders grote problemen ontstaan. Indirect kunnen
we wel controleren of eigenschappen die heel nauw
verbonden zijn aan CPT symmetrie kloppen. Een
voorbeeld is bijvoorbeeld dat we aannemen dat fy-
sica zich overal in het Heelal hetzelfde gedraagt, volgens dezelfde natuurwetten. Dit
is wel te testen.

Wat we ook kunnen doen, is kijken naar losse stukken. Wanneer het elektrisch
dipoolmoment niet precies 0 is, dan betekent dit automatisch dat de CP symmetrie
gebroken is. Op de omslag zie je een voorbeeld van de implicaties: het elektron zou
er dan net even anders uitzien in spiegelbeeld.

Mijn werk

Wat ik in dit proefschrift beschrijf, is hoe we voorspellingen kunnen doen over het
muon magnetisch moment en het elektrisch dipoolmoment van het elektron in een be-
paald supersymmetrisch model, namelijk het minimale supersymmetrische standaard-
model (MSSM). Daarvoor moet je eerst een keuze maken voor alle vrije parameters
van het model. Vergelijk het met een radio die ontzettend veel knoppen heeft om aan
te draaien. Voor elke knop maak je een keuze en daarna kijk je of je een radiozender
te pakken hebt gekregen.

Ik bekijk eerst een model waar 19 knoppen zijn. Je kunt je voorstellen dat als je
willekeurig aan deze knoppen gaat draaien, de kans erg klein is dat je een radiozender
tegenkomt met goede muziek. Daarom maken we gebruik van optimalisatiemodellen
die op een slimme manier aan de knoppen draaien. Wat we verstaan onder goede
muziek is een model waar de juiste waarde van het muon magnetisch moment uitkomt
en waarbij het model een deeltje heeft dat donkere materie kan verklaren. Daarnaast
mag het model op geen enkele manier botsen met de experimentele resultaten die we
hebben, bijvoorbeeld de metingen bij de LHC. Tot slot stellen we een grens aan de
zogenaamde finetuning van het model.

Met finetuning bedoelen we dat de uitkomsten van het model niet te sterk afhan-
kelijk mogen zijn van de input. Dit kan komen door twee verschillende dingen. De
eerste vorm van finetuning is als je een totaal andere uitkomst had gekregen door
maar een heel klein beetje aan een knop te draaien. Stel dat je een parameter met 1%
verandert, maar je daardoor je magnetisch moment 100% verandert. Dan moeten de
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parameters wel erg goed afgestemd zijn om de juiste waarde eruit te krijgen. Men is
het niet helemaal eens over de geaccepteerde hoeveelheid finetuning, maar wij gaan
uit van 1%.

Wat ook kan gebeuren, is dat een meetbare grootheid afhankelijk is van andere
getallen. Bijvoorbeeld als het een som is van verschillende waarden, zoals het geval is
bij de massa van het Higgs deeltje. De getallen in de som zijn dan weer afhankelijk van
de parameters in het model. Als de verschillende onderdelen dan heel precies op elkaar
afgestemd moeten zijn om de juiste massa te krijgen, spreken we ook van finetuning.
Denk bijvoorbeeld aan de som 125 = 38210429431� 38210429306. Die twee getallen
moeten dan erg nauwkeurig kloppen om op 125 uit te komen en een relatief kleine
verandering in een van de twee getallen kan al snel een grote verandering betekenen
voor de uitkomst. Daarom staan we niet te veel finetuning toe in een model.

Voor het magnetisch moment van het muon hebben we bestudeerd wat de feno-
menologie is van de oplossingen die de juiste waarde voorspellen voor het magnetisch
moment, maar ook een passend deeltje hebben voor donkere materie en geen enkel
experiment tegenspreken. Hier blijken allerlei mogelijkheden te bestaan waarbij de
finetuning onder de 1% blijft. Wel zien we dat in de nabije toekomst onze oplossingen
allemaal getest kunnen worden in een categorie experimenten waarbij donkere materie
gezocht wordt. Daarmee zouden de oplossingen dus uitgesloten kunnen worden.

Voor het elektrisch dipoolmoment van het elektron neemt men vaak aan dat een
supersymmetrisch model alleen onder de experimentele limiet kan blijven, als het
model veel finetuning heeft. Ook wordt vaak gezegd dat bepaalde parameters heel
klein moeten zijn, of de massa’s van de supersymmetrische deeltjes heel groot. In mijn
werk laat ik zien dat dit niet zo zwart-wit te zien is. Ik heb oplossingen gevonden
voor niet al te zware deeltjes, waarbij de betreffende parameters ook niet ontzettend
klein hoeven te zijn. In vervolgonderzoek zullen anderen deze oplossingen nog verder
uitwerken.

Daarnaast bestudeer ik de finetuning van de gevonden oplossingen. Het blijkt
lastig te zijn om een goede definitie te vinden die de finetuning zoals hierboven be-
schreven weergeeft. Daarom bekijken we twee verschillende definities, die we met
elkaar vergelijken. De resultaten daarvan laten zien dat er nog verbetering mogelijk
is in de definitie, om echt goed te vangen wat we met finetuning bedoelen. Hiervoor
stellen we dus ook vervolgonderzoek voor.

Al met al blijkt dat de metingen aan het elektrisch dipoolmoment nog veel ruimte
laten voor interessante supersymmetrische modellen, ook met een kleine finetuning of
met kleine massa’s. Dit was tegen de voorspellingen in, dus dat is een leuke conclusie!
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Het laatste onderdeel van de thesis, maar wel het stuk dat iedereen als eerste wil
lezen: het dankwoord! Want zoals geldt voor elke PhD thesis, had ook dit werk er
niet zo uit gezien zonder de hulp van mijn begeleiders, vrienden en familie. Als het
goed is horen jullie dat niet nu voor het eerst, maar het is fijn om het hier nog eens
te kunnen benadrukken. Het is een flinke uitdaging geweest om het hele traject af
te ronden en ik ben blij dat ik er nu op kan terugblikken en iedereen nog eens kan
bedanken voor zijn bijdrage.

Allereerst wil ik mijn begeleiders bedanken, want zonder jullie, Rob en Wim,
zou dit project überhaupt nooit hebben bestaan. Ik ben dankbaar dat ik aan zo’n
inspirerend onderwerp heb mogen werken, waar allerlei verschillende onderdelen in
samenkomen. Dat zou zonder de uitgebreide input van jullie beiden niet mogelijk zijn
geweest.

Daarnaast ben ik heel dankbaar voor de vrijheid die ik heb gekregen door de jaren
heen. Het zal niet altijd makkelijk geweest zijn om mij en het project te begeleiden.
Ondanks alle ups en downs hebben jullie met me mee gedacht hoe we het project het
beste vorm konden geven, waarbij ik zelfs naar de andere kant van het land (terug)
ben verhuisd. Achteraf gezien was dat, zeker met de coronacrisis, de enige manier
om het project voort te zetten. Ik ben dan ook ontzettend dankbaar dat jullie deze
verhuizing mogelijk hebben gemaakt en als een mogelijkheid hebben gezien, in plaats
van een probleem.

Zelfs naast alle managementtaken is het jullie altijd gelukt om tijd voor me te
maken. Door de jaren heen heb ik veel van jullie geleerd en ik kijk met veel plezier
terug op onze samenwerking. Bedankt!

Naast mijn begeleiders zijn ook de leden van de manuscriptcommissie onmisbaar
geweest voor dit boekje. Bedankt voor jullie tijd om dit werk van voor tot achter te
lezen en voor alle nuttige feedback die daaruit volgde. Jullie onafhankelijke oordeel
en frisse blik heeft geholpen om het resultaat nog weer beter te maken.

Verder hebben ook allerlei anderen dit proefschrift gevormd met hun feedback,
door het als bètalezer te testen en te helpen zo veel mogelijk fouten eruit te halen.
Iedereen die de tijd heeft genomen een stuk aandachtig te lezen, weet hoe waardevol
jullie bijdrages voor me zijn geweest.

Ook mijn collega’s verdienen een plekje hier, want jullie hebben de fijne werkplek
mogelijk gemaakt waar ik al die jaren naar dit resultaat heb toegewerkt. Aan alle
collega’s in Groningen, Nijmegen en Amsterdam: het was altijd gezellig en ik heb er
veel aan gehad om mijn ups en downs met jullie te kunnen delen, zowel inhoudelijk
als persoonlijk. Dankzij de discussies bij de koffie-automaat voelt het toch als een
gezamelijke project en ik ben dankbaar voor alle hulp, oplossingen en suggesties die
ik door de jaren heen van jullie gekregen heb.

Een speciaal plekje daarin verdienen de mensen met wie ik een kantoor gedeeld
heb: eerst Femke en Pi, ook al was dat niet zo lang als we hadden gedacht. Later
Bart, Bob, David, Jesse, Jochem, Inge en Zhongyi: hopelijk kunnen jullie de planten
die ik heb achter gelaten een beetje in leven houden. Het was fijn om er niet alleen
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voor te staan en van elkaar te kunnen leren.
Melissa, zonder jou had dit proefschrift er niet gelegen. Inhoudelijk heb je van tijd

tot tijd het project helemaal uit het slop weten te trekken met je nieuwe idee/ën en
kennis van zaken. Daarnaast heb je ook mij regelmatig uit de dip weten te trekken,
zelfs vanuit Oxford. Een stukje tekst hier is veel te weinig om het goed te kunnen
zeggen, maar je weet gelukkig ook al hoe dankbaar ik voor alles ben.

Sandra en Nicole, ondanks de afstand lukt het nog altijd om onze vriendschappen
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