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ABSTRACT OF THE DISSERTATION

Beyond Standard Modeling: Modular Symmetries and Non-Perturbative Methods

By

Shreya Shukla

Doctor of Philosophy in Physics

University of California, Irvine, 2024

Professor Michael Ratz, Co-Chair
Professor Yuri Shirman, Co-Chair

In this thesis, we investigate the fundamental aspects of particle physics, specifically in the

context of physics beyond the Standard Model. We focus on addressing two of the problems

in this context: the flavor problem and the dynamical evolution of chiral symmetries.

We explore the flavor problem, specifically concerning the mystery behind the number of

generations in the Standard Model (SM) by using the tools in supersymmetric theories to

challenge notions of ‘generations’ as an invariant through RG flows from UV to IR. To

achieve this, we perform a detailed analysis of non-perturbative field theoretic dynamics in

supersymmetric models. This study not only offers profound insights into the peculiarities

of QFTs but also helps navigate the string landscape of viable models. Furthermore, we also

develop model-building tools to achieve mass gaps in chiral models, a crucial ingredient in

generation flows, in full generality for various gauge groups.

In the second part of this thesis, we explore the flavor problem using the lens of modular

symmetries. Focusing on a torus-based approach, the underlying physical parameters in

this methodology are derived by adding flux to the two compactified extra dimensions. In

chapter 4, we wade through the strengths and challenges of this method. We can understand

the flavor parameters by examining the modular-form Yukawas, and the overall symmetry
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group in terms of the flux parameters. Expanding on the strengths of the modular approach,

in chapter 5, we also propose an eclectic scheme, where we draw from the union of modular

and traditional discrete flavor groups in string theory, to provide a unified framework for

understanding flavor physics.

Using mathematical analysis in various settings, be it stringy models, or supersymmetric

theories, we present this thesis as a minor contribution to the search for an understanding

of the puzzles of the Standard Model. It offers several model-building tools and frameworks

that provide non-standard insights beyond the Standard Model. I would like to conclude

this abstract with the following poem:

We work beyond the Standard Model,

On things unheard of and popular,

We used some supersymmetry and strings,

And explored everything modular.

The generations are explored,

Are they three or more?

Some fluxes on donuts we find,

As never seen before!

There’s still a long way to go,

The history of physics is colossal!

And while we want to know much more,

We’ll respect the Standard Model.
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Chapter 1

Introduction

Quantum Mechanics and Relativity are two successful frameworks that explain several mind-

boggling experiments and puzzles at the smallest and largest scales, respectively. However, a

new framework emerged when Quantum Mechanics was combined with Relativity - Quantum

Field Theories (QFT). The uncertainty relations of Quantum Mechanics and the ambiguity

of time ordering between space-like events in Relativity imply that in QFTs particles can

be created out of and annihilated into the vacuum. This gives rise to various intermediate

dynamics that can be studied for any scattering process in the framework of Quantum Field

Theories. Quantum Electrodynamics (QED), has been a remarkably successful framework,

with experimental results being verified up to various orders of magnitude. The Standard

Model, framed in a QFT language, encapsulates our current understanding of quantum

phenomena at the level of what constitutes matter (fermions) and force carriers (bosons).

While the Standard Model remains one of the most successful theoretical frameworks of our

understanding of particle physics, various aspects remain unanswered. Why are there so

many unknown parameters? How can one incorporate gravity into this structure? Why

is Higgs mass the value it is? Current-day particle physics lies at a crossroads: we can
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simultaneously access various advanced mathematical tools towards an understanding of

the UV completion of the Standard Model and what it might look like, and String Theory

remains one of the most consistent frameworks incorporating gravity and quantum theories

into a unified framework, yet it remains experimentally inaccessible.

However, one can start at a much simpler level - Why is the number of generations in the

SM just three? Is it possible to get three-generation models from string-inspired setups? Is

it possible for the number of generations to change from UV to IR? In our thesis, we explore

these questions, and if the answer is yes, we show what the possible models could look like.

1.1 Chiral Symmetries and Generation Flows

The chiral nature of the Standard Model is well known: the left-handed and right-handed

particles are charged differently, and right-handed neutrinos have not been observed yet,

and may not exist. The chiral symmetries and their origin present an intriguing question

in particle physics, and possible mechanisms govern the dynamics of particle interactions

of various models. However, in traditional QFT models, one finds that mass terms break

chiral symmetries, and thus introducing a mass term without breaking chiral symmetry is

not possible.

Can the chiral structure of a theory change under RG flow? For supersymmetric theories,

one can show that the answer is yes. The question would be harder to answer in ordinary

QFTs since we lose theoretical control over such theories at certain energy scales. In the

case of supersymmetry, however, we have certain tools at our disposal: holomorphicity and

non-renormalization theorems. In particular, a phenomenon known as s-confinement means

that in certain supersymmetric theories, the underlying structure is nice and smooth enough

that there is no order parameter between the Higgs regime and the confining regime, and

2



there is a chirality-preserving vacuum at the origin of the field space. This means that

remarkably, concerning this vacuum, chiral symmetries are preserved even with the addition

of mass terms.

However, the fact that chiral structure can change from UV to IR is well known. Recently,

however, a paper [107,117] explored specific examples where fermions can be gapped in the

IR. These thus opened up avenues for studying chirality changing flows from UV to IR in a

more general setting, as well as the consequences of such phenomena in studying the string

landscape.

In what follows, the analysis of chiral theories that we perform in Chapters 1 and 2 will

be based on a supersymmetric setup. As discussed earlier, the value of Higgs mass being

finite compared to the GUT scale has presented itself as the ‘hierarchy problem’. In non-

supersymmetric QFTs, such scalar masses receive large contributions, as large as the UV

cutoff. Not only are these mass corrections divergent, but they are also quadratically di-

vergent. Supersymmetry emerged as a framework that addressed this problem: since every

fermion has a bosonic superpartner and vice-versa, their contributions cancel out, giving rise

to finite scalar masses. Supersymmetric theories also follow powerful non-renormalization

theorems, which when compounded by the fact that the interaction term is holomorphic,

implies that the behavior of such terms is controlled and easier to study.

Despite its successful application in various domains, we have not been able to verify SUSY

experimentally. This raises questions regarding the reliability of such theories in studying

realistic phenomena, especially since the superpartners predicted by SUSY have not been

found. However, by using SUSY breaking methods like dynamical SUSY breaking, we can

still benefit from the strengths of SUSY in theories whose IR limits are non-supersymmetric.

We also note that supersymmetry has emerged as a crucial tool for understanding non-

perturbative physics, as opposed to QFTs, where it is harder to retain theoretical control

over strongly coupled sectors of the theory. In this sense, SUSY remains an important tool

3



for furthering our understanding of QFTs. Before proceeding further, let us review some

important ideas of supersymmetry and models that exhibit s-confinement, as opposed to

those that do not.

1.1.1 A Review of Supersymmetric Methods

In this section, we review various exact results in SUSY [108, 109]. The key difference

between the supersymmetric and non-supersymmetric theories is the restriction over the

precise functional form of the interaction terms in the Lagrangean, due to the co-variance

under a bigger symmetry group. To be more precise, any 4D N = 1 SUSY Lagrangian can

be written as a sum of three terms [115]

LSUSY =

∫
d2θd2θK +

∫
d2θW +

∫
d2θW † , (1.1)

where K is the Kähler potential governing the kinetic terms and W is the superpotential,

governing the interaction terms. While the Kähler potential is a real function of all the

fields in the theory, the superpotential is necessarily a holomorphic function of the chiral

superfields Φ. This heavily constrains the terms which are allowed in W . Couplings in

the superpotential can also be regarded as background fields, and so superpotentials are

also holomorphic functions of coupling constants. This can be used to prove powerful non-

renormalization theorems, and we can use these to find out exact superpotentials after taking

non-perturbative effects into account. Specifically, consider the case of pure SUSY Yang-Mills

with gauge group SU(N). In this case, the U(1)R symmetry is anomalous, and broken by

instantons to a discrete Z2N subgroup. The gaugino condensate further breaks the symmetry

down to Z2, and contributes to the superpotential,

⟨λaλa⟩ = −32π2 e2πik/NΛ3 , (1.2)
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where k = 1, 2 · · ·N and Λ is the holomorphic scale of the theory, Λ = |Λ|eiθYM/b.

For SYM with matter content, let us mention gauge-singlet composite operators which may

characterize the theory at low energies. These are scalar “meson” and “baryon” fields and

their superpartners (The baryons and anti-baryons only exist for F ≥ N):

M j
i = Φ̄jnΦni, (1.3)

Bi1,...,iN = Φn1i1 . . .ΦnN iN ϵ
n1,...,nN , (1.4)

B
i1,...,iN

= Φ̄n1i1 . . . Φ̄nN iN ϵn1,...,nN
, (1.5)

where we note that the baryon fields are only valid for cases where F ≥ N . For now, consider

Supersymmetric-QCD (SQCD) with F ≤ N flavors. At the classical level, the theory has no

superpotential.

SU(N) SU(F ) SU(F ) U(1) U(1)R
Φ, Q □ □ 1 1 F−N

F

Φ̄, Q̄ □ 1 □̄ -1 F−N
F

Table 1.1: Matter content of SQCD for F ≤ N flavors

For non-zero flavors, F ̸= 0, we note that there is a non-anomalous combination of U(1)A

and U(1)R, and this is the U(1)R in the table table 1.1.

We recall that the auxiliary fields are given by

Da = g
(
Φ∗jn(T a)mn Φmj − Φ̄jn(T a)mn Φ̄

∗
mj

)
, (1.6)

where j is a flavor index that runs from 1 to F , m and n are color indices that run from 1 to

N , and the index a labels an element of the adjoint representation. The D-term potential is

given by:

V =
1

2
DaDa . (1.7)
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This form of the potential assigns itself to a D-flat moduli space, i.e. a field space where the

potential is zero, given by

〈
Φ̄∗〉 = ⟨Φ⟩ =



v1

. . .

vF

0 . . . 0

...
...

0 . . . 0


. (1.8)

At a generic point in the moduli space the SU(N) gauge symmetry is broken to SU(N −F ).

The 2NF−F 2 degrees of freedom are eaten by the SuperHiggs Mechanism, and the remaining

F 2 light degrees of freedom in a gauge invariant way by an F ×F matrix field or the ‘meson’

field,

M j
i = Φ

jn
Φni . (1.9)

By using holomorphy and the non-renormalization theorem, one can derive the Affleck-Dine-

Seiberg superpotential [4]:

WADS = (N − F )

(
Λ3N−F

detM

)1/(N−F )

. (1.10)

For F = N − 1 this can be verified by an explicit instanton calculation.

Now consider the case of F = N flavors. In this case, the baryons are flavor singlets. They

also satisfy a classical constraint

detM = BB . (1.11)
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Using holomorphy and the symmetries of the theory, one can (after some analysis) find out

that the classical constraint will be modified at the quantum level due to instanton effects

detM −BB = Λ2N . (1.12)

Now note that we cannot take M = B = B = 0, i.e. we cannot go to the origin of

moduli space anymore. This means that the global symmetries are at least partially broken

everywhere in the quantum moduli space.

For F = N + 1, baryons are flavor anti-fundamentals (and the anti-baryons are flavor fun-

damentals) since they are antisymmetrized in N = F − 1 colors. In this case, the classical

constraints are

(
M−1

)i
j
detM = BiBj , (1.13)

M j
i B

i =M j
i Bj = 0 . (1.14)

From here, one can write the most general superpotential in terms of the baryon and meson

fields and find the correct values of the unknown parameters by integrating out one flavor

and matching the superpotential to F = N case. The correct superpotential turns out to be

WF=N+1 =
1

Λ2N−1

[
BiM j

i Bj − detM
]
. (1.15)

This equation can also be obtained by an explicit instanton calculation. Now, since the

point M = B = B = 0 lies on the quantum moduli space, one can worry about the singular

behavior that might occur there. One might expect that gluons and gluinos become massless,

but it turns out that only the components of M,B,B become massless. That is, we simply

have confinement without chiral symmetry breaking, a phenomenon we call s-confinement.

7



1.2 An Introduction to Modular Symmetries and the Fla-

vor Problem

As previously discussed, the Standard Model is only a low-energy effective theory and its UV

completion remains unknown. Despite being a rather successful framework, the model con-

tains several free parameters whose top-down origin is unclear, and float as free parameters.

In particular, these problems plague the flavor sector, where mixing angles, fermion masses,

and phases need to be dialed manually to match experiments. Whether in a top-down or

bottom-up framework, modular symmetries have emerged as a possible solution to this flavor

puzzle.

Modular symmetries and the theory of modular forms have also been instrumental in various

areas of physics, such as String Theory. In stringy contexts, they naturally arise at the two-

loop torus contribution of closed strings, as well as at the level of extra dimensions [54, 55],

which may be a product of tori. They have also played a major role in mathematics, where

such symmetries played an important role in the landmark paper outlining the proof of

Fermat’s theorem [122] and have currently been used to understand the packing efficiency

of spheres in higher dimensions [119]. These symmetries manifest as transformations un-

der the modular group SL(2,Z) or its variants, such as metaplectic groups, and are closely

linked to the geometry and topology of compactified dimensions. In the context of particle

physics where we will be most interested, modular symmetries have garnered attention for

their potential to explain various phenomena, including the hierarchies observed in fermion

masses and mixing angles. They also provide a rather simple top-down approach for deriv-

ing the full symmetry group of various D-brane models with fluxes in the extra dimensions

compactified on tori [30]. In particular, such constructions have been able to provide chiral

models with three generations, as observed in the Standard Model. In bottom-up approaches,

modular symmetries have proven especially useful, for example in the neutrino sector [49],
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where a small number of parameters can be used to predict nine neutrino mass parameters.

These symmetries therefore provide powerful tools for exploring beyond the Standard Model

physics. Further into this section, we review some mathematical aspects of modular symme-

tries and the underlying structures behind them, before we go into how these can be used

to tackle the flavor problem, in chapters 4 and 5.

1.2.1 A Review of Modular Groups and Modular Forms

Definition 1: The modular group is the group of 2-by-2 matrices with integer entries and

determinant 1 and given by [37]

SL(2,Z) =


a b

c d

 : a, b, c, d ∈ Z, ad− bc = 1

 . (1.16)

This group acts on the complex parameter τ on the upper half plane H, defined as

H = {τ ∈ C : Im(τ) > 0} . (1.17)

To make the notation more coherent, we will denote the SL(2,Z) transformation by γ, such

that the action of γ on the parameter τ is given by

τ
γ7−→ aτ + b

cτ + d
γ ∈ SL(2,Z) . (1.18)

The parameter τ is also called the half-period ratio and is given by τ := ω2/ω1. Here ω2 and

ω1 are the generators of the periodic lattice tessellating the complex plane (see figure 1.1).

These generators also define a torus by identifying the opposite sides of each lattice. However,

all tori related by so-called “modular transformations" are equivalent. The true group of these

transformations is the group PSL(2,Z) := SL(2,Z)/Z2. We divide by a Z2 group since an

overall minus sign still results in the same modular transformation. Modular transformations

9



Figure 1.1: The generators ω1 and ω2 of the lattice. If the opposite sides are identified, we obtain
a torus characterized by τ = ω2/ω1.

play a central role in the theory of modular forms, as they encode the symmetry properties

of modular forms under the action of congruence subgroups of SL(2,Z). The modular group

Γ = SL(2,Z) can be defined by the presentation relations

S4 = (S T )3 = 1 and S2 T = T S2 , (1.19)

where the generators S and T are usually chosen as

S =

 0 1

−1 0

 and T =

1 1

0 1

 . (1.20)

These generators act on the modulus τ according to

τ
S7−−→ −1

τ
and τ

T7−−→ τ + 1 . (1.21)

Moreover, since modular transformations define an equivalence relation, various values of τ

on the upper half plane are equivalent to others. This means that there is a fundamental

domain on H ∈ C which contains all the unique values of the parameter τ . Of course, this
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Figure 1.2: The gray region shows one of the fundamental domains in the upper-half complex plane
H.

fundamental domain is not unique, but it is customary to define it in the following way,

D = {τ ∈ H| |τ | ≥ 1, |Re(τ)| ≤ 1/2} . (1.22)

Thus, For every τ ∈ H there exists γ ∈ Γ such that γ ∈ D. We show the fundamental group

in figure 1.2 generated on Mathematica [62] for completeness.

Definition 2: The principal congruence subgroup of level N , given by Γ(N) is [29, 37]

Γ(N) :=


a b

c d

 ∈ SL(2,Z) :

a b

c d

 =

1 0

0 1

 mod N

 . (1.23)

Definition 3: A subgroup Γ of SL(2,Z) is a congruence subgroup if Γ(N) ⊂ Γ for some

N ∈ Z+, in which case Γ is said to be a congruence subgroup of level N .

Definition 4: A modular form is a complex-analytic function defined on the upper half-

plane H satisfying the following transformation properties under the action of a congruence

subgroup Γ of SL(2,Z), where γ ∈ Γ [82]:

fa(γ τ) = (c τ + d)k ρr(γ)ab fb(τ) , (1.24)

11



where τ is a complex number in the upper half-plane, and k is an integer representing the

weight of the modular form. In this context, a and b are regarded simply as integer counters,

while (cτ + d)k is frequently termed the automorphy factor. Additionally, ρr(γ) represents

an r-dimensional (irreducible) representation matrix of γ under the finite modular group

Γ′
N
∼= SL(2,ZN). These finite groups are defined by the relations:

S4 = (S T )3 = 1 , S2 T = T S2 , TN = 1 . (1.25)

Note that these relations are not enough to ensure finiteness for N > 5, and additional

relations are needed.

In anticipation of future chapters, let’s examine the modular symmetries associated with

modular forms with half-integral modular weights [84]. Analogously to the groups SU(2)

and SO(3), we need to consider the double cover of SL(2,Z), known as the metaplectic

group Γ̃ = Mp(2,Z). This is the usual modular group, in conjunction with an additional

phase factor that one needs to keep track of.

Definition 5: The unique double cover of the group SL(2,Z), or the metaplectic group

Mp(2,Z) is defined as

Γ̃ =
{
γ̃ = (γ, φ(γ, τ)) | γ ∈ Γ, φ(γ, τ) = ±(c τ + d)

1/2
}
, (1.26)

where the group operation acts as follows:

(γ1, φ(γ1, τ))(γ2, φ(γ2, τ)) = (γ1γ2, φ(γ1, γ2 τ)φ(γ2, τ)) . (1.27)

The metaplectic generators S̃ and T̃ of the group Γ̃ satisfy the relations:

S̃8 = (S̃ T̃ )3 = 1 and S̃2T̃ = T̃ S̃2 , (1.28)
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which may be represented by the choice

S̃ = (S,−
√
−τ) and T̃ = (T,+1) , S, T ∈ Γ . (1.29)

We note that the presentation relation for S̃ is S̃8 = 1 instead of S4 = 1, and the double cover

nature of the metaplectic group is manifest. To infer the sign of φ(γ, τ) for any element γ̃ ∈ Γ̃

unambiguously, one needs to express γ̃ as a product of the metaplectic generators (1.29) and

then utilize the multiplication rule (1.27).

The modular transformations γ̃ act on the modulus identical to γ. Let us now generalize

the notion of ‘half-integer’ weights to modular forms as well.

Defintion 6: Metaplectic modular forms are functions on the congruence subgroups of the

metaplectic group Γ̃4N , with modular weight k/2 and level 4N , where k,N ∈ N, are defined

by

fa(τ)
γ̃7−−→ fa(γ̃ τ) := φ(γ, τ)k ρr(γ̃)ab fb(τ) . (1.30)

Here φ(γ, τ)k is now the automorphy factor, and ρr(γ̃) is an (irreducible) representation

matrix of γ̃ in the finite metaplectic modular group Γ̃4N . The generators S̃ and T̃ of this

discrete group satisfy

S̃8 = (S̃ T̃ )3 = 1 , S̃2T̃ = T̃ S̃2 , T̃ 4N = 1 . (1.31)

As before, these relations are insufficient to ensure finiteness for N > 1, and additional

relations are needed. We thus need to identify the correct combinations of S̃ and T̃ that

result in 12 mod 4N . We thus need to ensure that this combination yields identity in the
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finite group. For the case of N = 2, we adopt the selection proposed in [84, equation (21)]:

S̃5T̃ 6S̃T̃ 4S̃T̃ 2S̃T̃ 4 = 1 . (1.32)

We also note that our choice for N = 3 is

S̃T̃ 3S̃T̃−2S̃−1T̃ S̃T̃−3S̃−1T̃ 2S̃−1T̃−1 = 1 . (1.33)

This concludes our review of modular groups and modular forms, and we describe the outline

of the thesis below.

Outline of the thesis

In chapter 2, we outline a general method-building tool to introduce the phenomenon of

chirality-changing RG flows. Starting with supersymmetric models, particularly focusing

on how the presence or absence of true s-confinement can significantly change the chirally

symmetric vacuum at the origin and lead to flows where chiral structure changes between

the UV and the IR. In particular, we show that in the absence of true, stable s-confinement,

the naive expectation of the efficacy of this mechanism does not hold.

In chapter 3, we focus on the applications of chirality changing RG flows specifically in

string setups. We build various string models where the number of generations of the models

changes from UV to IR, which means that common model searches in the string landscape

need to perform more systematic analyses. In particular, a model that appears unviable due

to the ‘wrong’ number of generations in the UV may be a close fit to the SM in the IR.

In chapter 4, we explore the flavor sector of the SM from a modular symmetric standpoint. In

particular, we show that Yukawa couplings in specific tori-based approaches may have simple
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structures behind complicated expressions, by using various properties of theta functions.

Furthermore, we show that these approaches follow the appropriate boundary conditions

exactly and that these symmetries offer a predictive model-building approach.

In chapter 5, we show how modular symmetries in conjunction with traditional discrete flavor

groups combine the strengths of both approaches in an ‘eclectic’ scheme. We show how this

scheme offers an approach where one can control the Kähler corrections, and motivate the

vacuum expectation values which offer a promising fit to the neutrino masses data, displaying

the strengths of modular symmetries in bottom-up approaches. And finally, in chapter 6,

we conclude the thesis.
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Chapter 2

Chirality Changing RG Flows: Dynamics

and Models

(This section is heavily based on the publication with Yuri Shirman and Michael Waterbury)

[111]

2.1 Chiral Symmetries and gapping fermions

As discussed in section 1.1 of the introduction, one of the many puzzles of the Standard

Model is regarding the number of generations. In this chapter and next, we will discuss how

the notion of generations of a theory is not invariant across RG Flows, and how one can

change the chiral structure of theories with various gauge groups by generating mass gaps.

Chiral symmetries have proven indispensable for the study of the dynamics of quantum field

theory (QFT). Since mass terms break chiral symmetries, they are only allowed for fermions

in vector-like representations, while fermions in theories with chiral matter content must

remain massless unless chiral symmetries are broken spontaneously. While it seems obvious

that these statements are renormalization group (RG) invariant, examples of RG flows alter-
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ing the chiral structure of QFT have been known for quite some time. [90,107,114,117]. The

underlying physics relies on the existence of models exhibiting confinement without chiral

symmetry breaking [108] referred to as s-confinement ∗. Generically, the elementary and

low–energy degrees of freedom of s-confining theories transform in different representations

of the global symmetries. Thus the chiral structure of the matter sector may differ between

ultraviolet (UV) and IR. The early models of this type [90,114] were motivated by a search

for realistic supersymmetry (SUSY) extensions of the SM and contained composite massless

SM generations in the IR. More recently, the possibility of developing a mass gap in the-

ories with apparently chiral matter content attracted some attention. References [107, 117]

explored the deformation class of QFT by constructing flows in theory space from anomaly-

free chiral theories to the trivial theory with no massless fermions. The ideas introduced

in [90, 107, 114, 117] were used in [105] to argue that string compactifications may lead to

realistic low energy physics even if the number of chiral generations in the UV differs from

3. The authors of [105] also began a careful analysis of dynamics underlying the chirality

changing RG flows. The goal of this chapter is to complete the systematic analysis of this

phenomenon and elucidate a unifying picture of chirality changing RG flows. While we will

concentrate on the generation of mass gap, our analysis will also cover models where addi-

tional composite chiral multiplets appear in the IR as well as more general cases where the

chiral matter content in IR differs from that in UV.

The model-building prescription for generating a mass gap is quite simple: one deforms an s-

confining gauge theory [33] by introducing the superpotential couplings to a set of spectators

superfields, transforming under the chiral symmetry in representations conjugate to the

representations of the composites of the strong dynamics. The most general superpotential

allowed by such a deformation of the s-confining model lifts all classical flat directions of the

s-confining sector ensuring that in the ground state the strong s-confining group is unbroken

and confines. One must then verify that the classical flat directions associated with the
∗See [33] for a complete classification of s-confining theories.
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spectator superfields are also lifted, which will generically be the case. If the spectator flat

directions are indeed lifted, the global symmetry group of the s-confining sector is unbroken

and a chiral subgroup of the global symmetry may be gauged thus leading us to the desired

result. On the other hand, we will also see examples where the flat directions associated with

the spectator fields are destabilized by the non-perturbative dynamics. Since the spectators

are charged under the chiral sector the chiral symmetry is broken in this class of models.

Finally, if one is interested in the appearance of chiral composite generations, one chooses

different representations for the spectators so that in the IR some or all of the composites

do not have partners to generate mass terms.

2.1.1 Generic Construction

To construct models of chirality changing RG flows we will adopt the model-building ap-

proach of [107, 117] taking a product group theory H × G as a starting point. Here G is

the chiral symmetry group of interest which may be either a weakly-coupled gauge group

or an anomaly-free global symmetry, while H is the gauge group of an s-confining sector

whose dynamics is responsible for the chirality flows. For now, assume that G is unbroken

by the confining dynamics of H, such that it is sensible to study the chiral properties of G

in both the UV and IR. Fields charged under both G and H confine into composites which

generically transform under tensor representations of G and have different chiral properties

than the elementary representations of G. We call these flows from the UV to IR chiral-

ity changing flows on G induced by H. We are particularly interested in deformations of

s-confining models where some or all of the composite fields pair up with the spectators of

the strong dynamics in vector-like representations. When this is the case, the vector-like

representations can be decoupled with the addition of superpotential interactions that may

be marginal or irrelevant in the UV but behave as mass terms in the IR. As we will show,

the fact that the IR mass terms originate from the dimension d > 2 operators in the UV
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implies that dynamical effects of these superpotential terms are quite non-trivial and may

disrupt the confining dynamics of H. We will draw special attention to these scenarios.

Here, we restrict our attention to H × G models with N = 1 SUSY. In our analysis we

will be able to employ familiar tools often used in the study of dynamical supersymmetry

breaking [110] even though the models we consider will possess supersymmetric ground

states.

Let us discuss the construction in a bit more detail. We will start with s-confining models

based on gauge groupH and matter fieldsQi transforming in a chiral representation ofH×G̃,

where G̃ is a possibly anomalous chiral symmetry of the theory. We will limit our attention

to an anomaly-free subgroup G of this global symmetry and thus will study H ×G. As long

as G is only a global symmetry, the anomaly freedom means that mixed H2G anomalies

cancel. The anomaly cancellation condition is automatically satisfied whenever G is non-

Abelian, continuous, and only imposes nontrivial constraints on the model when G contains

U(1) factors. Aside from these weak constraints, G could be identified with any subgroup

of G̃. Generically G will have cubic anomalies. These are harmless as long as G is a global

symmetry, however, we will imagine weakly gauging G. This is only possible if we add a set

of spectators charged under G whose contribution to cubic anomaly cancels the contribution

of Qi’s. The dynamics of our s-confining model can be described in terms of the gauge

invariant composites Mf . In the UV these composites scale as Mf ∼ Q
df
i and thus have

engineering mass dimension df .† In the IR the composite moduli Mf are weakly coupled and

have mass dimension one. Generically, Mf will transform in chiral representations of G and

will contribute to cubic anomalies of G. The ’t Hooft anomaly matching condition ensures

that the Mf saturate the anomalies of the microscopic theory. To be able to gauge G we

must introduce a set of spectator fields that cancel G3 anomalies. The choice of spectators
†Here our notation for the composites derives from the simplest case of a bilinear composite, a meson,

M ∼ Q2. We stress that in this general discussion, Mf represent all moduli of the theory regardless of their
engineering dimension.
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is not unique. For example, one can choose spectators qi to transform in representations

conjugate to those of elementary fields, Qi, or a different set of spectators M f transforming

in representations conjugate to the composites Mf . As we shall soon see, the former choice

may lead to an appearance of massless chiral composites of G in the IR while the latter

choice may allow an RG flow to a gapped vacuum.

For the moment we choose the spectators transforming as M f so that an IR mass term is

allowed in the superpotential

W =
∑
f

MfM f . (2.1)

We must remember that H is s-confining, thus the full non-perturbative superpotential takes

the form

W = f(Mf ,Λ) +
∑
f

MfM f , (2.2)

where f(Mf ,Λ) is a dynamical superpotential generated by the s-confining dynamics of H.

By construction the full H × G symmetry is chiral and the mass terms are not allowed.

Moreover, even the G sector alone is chiral in the UV. In the IR the strongly coupled H

sector confines while the low energy matter content is vector-like under G. As long as the

deformation (2.1) of the s-confining model does not lift the chirally symmetric vacuum at

the origin of the moduli space, the dynamics of the deformed s-confining theory results in

development of the mass gap in the IR.

For chiral symmetry to be unbroken in the IR, the VEVs of both the composite moduli Mf

and the spectators M f must vanish in the ground state. This is indeed true for the moduli

Mf since the deformation (2.1) lifts all classical flat directions of H as long as it contains

mass terms for all H moduli. However, while the deformation (2.1), when written in terms
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of the IR degrees of freedom, looks like a simple set of mass terms for all the spectators, the

interplay between the non-perturbative dynamics of the s-confining sector and the tree level

superpotential is quite non-trivial and may result in the spontaneous breaking of G. Indeed,

while (2.1) lifts all the classical flat directions of H, it introduces new classical flat directions

parameterized by M f . To see that one simply needs to look at the deformation in terms of

elementary degrees of freedom

W =
∑
f

(Qi)
dfM f . (2.3)

The extrema of this superpotential with respect to M f are found at Mf = 0 or, equivalently

at Qi = 0. On the other hand, the extrema with respect to Qi are given by

∑
f

∂Mf

∂Qi

M f = 0 , (2.4)

which is satisfied for all values of M f since in the UV the composites Mf are simply mono-

mials of Qi’s with dimensions greater than or equal to two.

As we will see in the following sections the interplay between the strong dynamics and

the deformation (2.1) generates a non-perturbative superpotential for the spectators. This

is most easily seen by considering physics along classical flat directions for spectators that

couple to mesons of strong dynamics. Along such flat directions the spectator VEVs generate

large masses for all the quarks Qi and the low energy physics is described in terms of a

pure super-Yang–Mills (SYM) theory with dynamical superpotential generated by gaugino

condensation:

W = Λ3
L =

(
M

F
Λb
)3/bL

, (2.5)

where ΛL is the dynamical scale of the low energy SYM theory, b and bL are one-loop beta-
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function coefficients of the UV and IR theories respectively, F is the effective number of

flavors in our s-confining UV model and in the second equality we used the scale matching

relation ΛbLL = M
F
Λb. As long as 3F/bL > 1 the dynamical superpotential stabilizes the

spectators near the origin, the analysis of the ground state in terms of the IR degrees of

freedom is valid and the mass gap is generated. This is the case, for example, in models

satisfying the s-confinement conditions [33, 108]. On the other hand, whenever 3F/bL < 1

the dynamical superpotential destabilizes the chirally symmetric vacuum near the origin and

the models of this type cannot lead to a mass gap. Before looking at the examples outlined in

Chapter2, let us make a connection to Razamat–Tong (RT) [107] language. The discussion

of [107] takes the model with chiral symmetry group G as a starting point, then assigns

some, but not all, chiral superfields charges under the strongly coupled H sector. In this

language, the spectators M represent the basic chiral matter of the UV description. This is

in contrast to our construction where M fields are spectators needed to generate a mass gap

in an s-confining model. Nevertheless, once a model is fully specified we achieve the same

result as in [107] — a chiral theory with a mass gap in the IR.

2.2 Chirality flows and SP(2N) dynamics

In this section we consider the simplest class of models exhibiting chirality flows. These

models are based on the s-confining models with SP(2N) gauge group with F = N + 2

chiral matter fields in the fundamental representation. We will identify the chiral symmetry

group G with a subgroup of SU(2F ), the maximal chiral symmetry of the SP(2N) dynamics.

In section 2.2.1 we consider an example of a dynamically generated mass gap [107], while

studying a closely related example of a composite massless generation [90] in section 2.2.2.

In section 2.2.3 we briefly discuss additional chirality flow models that can be obtained by

considering different embeddings of G into the maximal global symmetry of the s-confining
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sector.

2.2.1 Dynamically generated mass gap

Following [107] we consider SP(2N) models where the chiral symmetry group G is identified

with the maximal global symmetry of the s-confining sector, G = SU(2F ) = SU(2N + 4).

To analyze the non-perturbative dynamics of this class of models we recall that an SP(2N)

theory with F flavors has an SU(2F ) global symmetry and possesses a set of classical flat di-

rections [63] which, up to gauge and global symmetry transformations, can be parameterized

by‡

Q =



q1

q2

. . .

qF


⊗ 12 . (2.6)

Alternatively, the space of classical vacua can be parameterized in terms of mesons, Aij ∼

QiQj transforming in an antisymmetric representation of the global SU(2F ) symmetry. At

a generic point on the moduli space rank(A) = min(2N, 2F ). This means that for F > N

the mesons must satisfy a set of constraints. Specifically in the case of interest, F = N + 2,

the meson VEVs satisfy classical constraints

ϵi1...i2N+2Ai1i2Ai3i4 . . .Ai2N+1i2N = 0 . (2.7)

‡Here we have restricted our attention to the F > N case.
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These constraints may be compactly written as

∂

∂A
(PfA) = 0 . (2.8)

Following Seiberg’s analysis [108] of s-confinement in SU(N), Intriligator and Pouliot argued

that the quantum and classical space coincide in F = N+2 SP(2N) models. Since the origin

belongs to the quantum moduli space, the model posseses a supersymmetric vacuum with

unbroken chiral symmetry. The low energy physics is described in terms of mesons with a

non-perturbative superpotential §

Wdyn =
1

Λ2N+2
PfA . (2.9)

To generate the mass gap [107] we deform the theory by including a set of spectator super-

fields A transforming in the conjugate antisymmetric representation of the chiral SU(2F ) =

SU(2N + 4) symmetry with the tree superpotential

Wtree = AQ2 ∼ ΛAA , (2.10)

where the second expression is written in terms of mesons A. The UV and IR matter content

of the model is presented in the top and bottom parts of table 2.1 respectively:

SP(2N) SU(2N + 4) U(1)R

Q 1
N+2

A 1 2N+2
N+2

A ∼ Q2 1 2
N+2

A 1 2N+2
N+2

Table 2.1: Field content of the SP(2N) model with F = N + 2 flavors.

§The equations of motion following from this superpotential enforce classical constraints on mesons A.
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The IR form of the superpotential (2.10) suggests that all the fields in the low energy

effective theory become massive and the model possesses a unique vacuum at the origin

with an unbroken chiral symmetry. While ultimately correct in this model, the conclusion

requires a more careful analysis of the non-perturbative dynamics. Indeed, while the tree

level superpotential lifts all flat directions associated with SP(2N) gauge group, the deformed

theory has a new set of classical flat directions parameterized by spectators A. Far enough

along this new branch of classical vacua, A ≫ Λ, the theory is weakly coupled and the

analysis of dynamics is most easily performed in terms of quark superfields since their Kähler

potential is nearly canonical in this regime. The spectator VEVs generate mass terms for

quark superfields which can be integrated out. The low energy physics is then described as

a pure SYM theory whose coupling constant is field dependent:

Λ
3(N+1)
L = Pf AΛ2N+1 . (2.11)

In the IR pure SYM dynamics generates the gaugino condensate superpotential, which can

also be interpreted as a superpotential for the spectators

W = Λ3
L =

(
Pf
(
A
)
Λ2N+1

) 1
N+1 ∼ A

1+ 1
N+1Λ2− 1

N+1 . (2.12)

It is easy to see that A is stabilized near the origin of the moduli space thus justifying the

naive analysis based on the tree level superpotential in terms of IR degrees of freedom. Of

course, in this model one does not have to rely on the semiclassical analysis we just performed.

Indeed, the description of the theory in terms of IR degrees of freedom is valid everywhere

on the moduli space of the deformed theory, and analysis of the full superpotential (given

by the sum of (2.9) and (2.10)) would yield the same result ¶. However, the semiclassical

analysis is often more intuitive and, as we shall see in section 2.3, in some models it is the
¶One must remember that while the Kähler potential of mesons is, in principle, calculable it is far from

canonical at large Ā.
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only tool at our disposal.

So far we have illustrated dynamical generation of the mass gap in models where the chiral

symmetry group is SU(M) with M = 2F = 2N + 4 even. This restriction is a consequence

of the fact that the fundamental of SP(2N) has an even dimension. However, it is easy to

generalize this construction to models with odd M [107]. Indeed, one can simply start with

the same s-confining SP(2N) sector but choose the chiral group G = SU(M) = SU(2F − 1)

to be a subgroup of the maximal chiral symmetry. Under SU(M) the meson A decomposes

into an antisymmetric A and a fundamental Q. Given this choice of chiral symmetry the IR

matter content of the model is given in Table 2.2. Since our mass gap analysis did not rely

SP(2N) SU(2N + 3) U(1)R

A 1 2
N+2

Q 1 2
N+2

A 1 2N+2
N+2

Q 1 2N+2
N+2

Table 2.2: IR content of the odd M model, M = 2N + 3.

on the dynamics of the SU(2N + 4) sector ‖, the chirally symmetric vacuum with mass gap

will exist as long as we include the tree level superpotential (2.10), now written in terms of

SU(2N + 3) degrees of freedom. Note that while the tree level superpotential must result

in a maximal rank mass matrix in the IR it does not have to respect the maximal global

SU(2N + 4) symmetry.

2.2.2 A Massless Composite Generation

In the previous subsection, we have mentioned that the choice of spectators is not unique.

Rather than choosing them in representations of SU(2N + 4) conjugate to those of mesons,
‖Recall that aside from requiring a cancellation of cubic anomalies we treat G sector of the model as a

global symmetry.
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we could choose, for example, the spectators transforming in representations conjugate to

those of quark superfields Q. In this case, while the full theory is chiral, the UV matter con-

tent from the point of view of the SU(2N +4) sector is non-chiral. Once the theory confines,

the low energy degrees of freedom contain SP(2N) composites which transform in an anti-

symmetric representation of the SU(2N+4) symmetry. Thus a non-chiral SU(2N+4) sector

acquires in the IR a massles chiral generation containing an antisymmetric tensor and 2N

antifundamentals. This theory may further be complemented by superpotential interactions

between the SP(N) moduli and spectators. Consider for example an SP(2) × SU(6) model

with matter given in (2.1). If we choose G = SU(3)× SU(2)× U(1) ⊂ SU(5) ⊂ SU(6) with

a standard decomposition of GUT fields under the SM, add two more spectator generations

charged under the SM and include all the superpotential terms allowed by symmetries we

will arrive at the composite supersymmetric model of Nelson and Strassler [90].

2.2.3 Different Embeddings of G

We conclude the discussion of chirality flows in s-confining SP(2N) models by noting that one

can construct new models by simply choosing different embeddings of the chiral symmetry

group G into the maximal global symmetry of the s-confining sector. Let’s briefly look at

some examples. For our first example, we consider the model studied in [107] withH = SP(2)

and G = SU(3)× SU(2)×U(1) ⊂ SU(5) ⊂ SU(6). Once again, the tree level superpotential

must be the most general one consistent with G but does not need to respect the full SU(6)

global symmetry of the s-confining sector. A somewhat more elaborate example can be found

by considering N = 3 case, i.e. an s-confining SP(6) model with 5 flavors and SU(10) global

symmetry. We will take G = SU(5) and embed it into SU(10) global symmetry so that

10 quark superfields transform in an antisymmetric representation of SU(5). The mesons

M ∼ Q2 then transform as 45 of SU(5). We now add the spectators in the 45 representation

of SU(5). The analysis of strong SP(6) dynamics remains unchanged and the model develops
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a mass gap in the IR. In our final example we start with the same SP(6) s-confining sector

and choose G = SU(3) embedding it into SU(10) in such a way that 10 quark superfields

transform in a 3-index symmetric representation of SU(3). The SP(6) mesons decompose as

10⊕ 35 of SU(3). Adding spectators in 10⊕ 35 representations as well as the most general

superpotential results in a mass gap appearing in the IR. Our discussion so far suggests that,

in addition to generating mass gaps or composite chiral matter, chirality flows may lead to

more general results. Indeed, in the following sections, we will see examples of models where

both UV and IR physics is chiral yet the chiral structure of the theory changes in the course

of RG flow. Our examples will include models based on different s-confining sectors but even

within specific s-confining dynamics we will have the freedom to construct different models

of chirality flow by using two different tools: an ability to choose different representations

of spectators introduced to cancel anomalies and use of different embeddings of G into the

maximal global symmetry of the s-confining sector.

2.3 The Role of s-confinement: An SO(N) example

In the previous section, we analyzed the dynamics of models where mass gap is generated

in the IR despite the matter content being chiral in the UV. Following [107] our examples

were based on s-confining SP(2N) theories and the choices of chiral matter representations

were dictated by embedding of the chiral symmetry in the maximal global symmetry of

the s-confining model. The simplest and most illuminating embedding generated a mass

gap in models with matter transforming in an antisymmetric representation of the chiral

SU(N) symmetry. This was a consequence of the fact that the composites of SP(2N) models

transform as antisymmetrics of global symmetries. It is then natural to expect that chiral

matter may be gapped in models where the composites of the confining sector transform in

symmetric representations of the global symmetry. To that end, the authors of [117] argued
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that a mass gap in theories with symmetric chiral matter can be generated by deformations

of confining SO(N) sector with F = N − 4 chiral superfields in a vector representation.

It is known [64] that this class of models exhibits two phases: a phase with dynamically

generated runaway superpotential and a no-superpotential phase where quantum moduli

space coincides with the classical one and extends to the origin. It was argued in [117] that

an appropriate deformation of these models generates a mass gap in the no-superpotential

phase. Unfortunately, this class of SO(N) models is not s-confining [33] and the phase

with chirally symmetric vacuum is quite fragile. We will argue here that the deformations

necessary to generate the gap destroy the chirally symmetric vacuum. Fortunately, as we

will show in section 2.4 constructions of gapped symmetric fermion models are still possible

albeit they are more cumbersome than hoped for in [117].

2.3.1 An SU(F )× SO(F + 4) model

We begin the analysis by reviewing the dynamics of SO(N) theories with F = N − 4

flavors [64]. The quantum numbers of the matter fields under the gauge SO(N) and global

SU(N − 4) symmetries are given in Table Table 2.3.

SO(N) SU(F ) U(1)R

Q F−N+2
F

S 1 2(F−N+2)
F

S 1 2(N−2)
F

Table 2.3: Field content of the SO(N) model with F flavors.

The one-loop beta function of SO(N) theory, for N > 4 is

b = 3(N − 2)− F . (2.13)
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The classical moduli space can be parameterized in terms of quark VEVs or gauge invariant

mesons Sij = QiQj. At a generic point on this moduli space the gauge group is broken to a

pure SYM SO(4) ∼ SU(2)L × SU(2)R. Further, in the IR SU(2)L × SU(2)R group confines,

generating the gaugino condensate superpotential. Since the dynamical scale of the low

energy physics depends on the moduli, this results in the superpotential for SO(N) fields

which, in terms of mesons, takes the form

Wdyn = 2⟨λλ⟩L + 2⟨λλ⟩R (2.14)

=
1

2
(ϵL + ϵR)

(
16Λ2(N−1)

detS

)1/2

, (2.15)

where ϵL,R = ±1. As explained in [64] the theory has two phases. When ϵLϵR = 1 the

two contributions to the superpotential add up constructively and the classical moduli space

is lifted, resulting in a phase without a stable ground state. When ϵLϵR = −1 the two

contributions to the superpotential cancel∗∗, resulting in a smooth quantum moduli space

with an unbroken SO(N) chiral global symmetry at the origin.

Let us now deform the theory by including superfields S transforming in conjugate symmetric

reprsentation of the chiral SU(F ) = SU(N − 4) symmetry††. Since the low energy matter

content is vector-like we can include a tree level superpotential which appears as a mass term

in the IR. The full low energy superpotential takes the form

W =
1

2
(ϵL + ϵR)

(
16Λ2(N−1)

detS

)1/2

+ ΛSS . (2.16)

A naive analysis of the no-superpotential branch suggests that our deformation generates a

mass gap. However, the absence of s-confinement and the presence of a second, runaway,
∗∗A pure SYM SO(4) theory is described by two dynamical scales, ΛL and ΛR which need not be equal.

However, in our case the dynamical scales of the low energy gauge groups are determined uniquely (up to
a sign) by the dynamical scale of UV physics and mesons VEV, thus ensuring the cancellation of the two
terms in the superpotential.

††It is easy to see that the matter content is anomaly free under the full SO(N)× SU(N − 4) symmetry.
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phase in SO(N) models implies that, in contrast to the theories we discussed earlier, the

chirally symmetric vacuum is unstable under any deformation. For example, an explicit mass

term, mQ2, lifts the classical moduli space while remaining consistent with an existence of

the chirally symmetric vacuum at the origin. Yet, as argued in [64], at the quantum level

the full no-superpotential branch, including the chirally symmetric vacuum, is lifted.

To better understand the fate of the chirally symmetric phase we will study the non-

perturbative dynamics in a weakly coupled regime. We note that the deformed theory

possesses a new classical flat direction parameterized by S. When S ≫ ΛSO(N) the physics is

weakly coupled and the Kähler potential is nearly canonical in terms of the quark superfields.

Furthermore, along this flat direction the quarks become massive, suggesting that argument

of [64] for the disappearance of the chirally symmetric vacuum should apply. The dynamical

nature of S allows us to perform a more detailed analysis. At large S the quarks must be

integrated out, and the low energy physics is described by a pure SO(N) SYM theory with

the dynamical scale given by

Λ
3(N−2)
L = detSΛ2N−2 . (2.17)

The low energy physics then generates the dynamical superpotential

W = Λ3
L =

(
detS

) 1
N−2Λ2+ 2

N−2 . (2.18)

One can see that this superpotential leads to runaway behavior for S. While our derivation

is only valid at large values of S, holomorphy suggests that in the absence of a singularity

in the Kähler potential the SUSY vacuum at the origin must be lifted.
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2.4 Chirality Flows and SU(N) Dynamics

2.4.1 s-confining SQCD

We begin by briefly reviewing an s-confining SQCD model with F = N + 1 flavors. The

theory has an SU(N + 1)L × SU(N + 1)R × U(1)B × U(1)R anomaly-free global symmetry

and the matter charges under gauge and global symmetries are given in the top part of

Table 2.4. The existence of a large chiral symmetry will allow us to construct a variety of

SU(N) SU(F )L SU(F )R U(1)B U(1)R

Q 1 1 1
N+1

Q 1 −1 1
N+1

M 1 0 2
N+1

B 1 1 N N
N+1

B 1 1 N N
N+1

S 1 0 2N
N+1

B 1 1 −N N+2
N+1

B 1 1 −N N+2
N+1

Table 2.4: Field content of s-confining SQCD model with F = N + 1 flavors. The top portion of
the table shows the elementary SU(N) charged fields. The middle section of the table shows the
confined degrees of freedom that are weakly coupled in the IR and near the origin of the moduli
space. The bottom portion of the table shows the quantum numbers of the spectator fields needed
to cancel flavor symmetry anomalies and generate mass gap for chiral fermions in the IR.

models exhibiting chirality changing RG flows by considering different embeddings of G in

the maximal global symmetry group of the s-confining sector.

In the absence of the superpotential, the model possesses a large moduli space of classical flat

directions. These flat directions can be parameterized in terms of gauge invariant composites,

M ∼ QQ, B ∼ QN , and B ∼ Q
N , whose quantum numbers are presented in the middle
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section of Table 2.4. Classically the moduli VEVs satisfy a set of identities

MijBj = BjMji = BjBi = 0 . (2.19)

It is well known that this model s-confines and the low energy physics is described in terms

of mesons, baryons, and anti-baryons with dynamically generated superpotential which im-

plements the classical constraints at the quantum level

W =
1

Λ2N−1

(
BMB − detM

)
. (2.20)

In the IR, mesons and baryons are weakly coupled and have a nearly canonical Kähler

potential. Thus it is convenient to rescale the moduli by absorbing appropriate powers

of the dynamical scale into the definition of the moduli so that M, B, and B have mass

dimension one.

In the following subsections, we will consider several illustrative embeddings of a chiral group

G in the maximal global symmetry of the s-confining sQCD where a chirally symmetric

vacuum is preserved while a mass gap is developed.

2.4.2 G = SU(N + 1)L × SU(N + 1)R

As our first example, we choose‡‡ G = SU(N+1)L×SU(N+1)R. As discussed earlier, the low

energy content of G is given by mesons M, baryons B, and anti-baryons B transforming as

( , ), ( , 1), and (1, ), respectively. Since our goal is to deform this model in such a way

that G3 anomalies vanish while the low energy matter content is vector-like, we introduce

a set of spectators, M , B, and B in representations conjugate to those of M, B, and B.

For completeness, the quantum numbers of the spectator fields are displayed in the bottom
‡‡The following analysis remains unchanged if we include a U(1)B factor in the definition of G.
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portion of Table 2.4.

The inclusion of the spectator fields in the theory allows a tree-level superpotential consistent

with the full H ×G symmetry,

Wtree =MM+BQN +BQ
N ∼MM+BB +BB . (2.21)

Repeating the analysis of section 2.2 far along the meson branch of the moduli space we

obtain the low energy superpotential for mesons

W = Λ3
L =

(
detMΛ2N−1

)1/N
, (2.22)

where we used the scale matching relation

Λ3N
L = detMΛ2N−1 . (2.23)

We see that this superpotential stabilizes the spectator mesons at the origin of the moduli

space. The analysis of baryonic directions is more complicated due to the non-renormalizability

of the superpotential terms involving the baryons in the IR. Nevertheless, an analysis of the

full superpotential shows that the baryons are also stabilized at the origin. Having estab-

lished the absence of runaway directions on the moduli space we conclude that this model

develops a mass gap.

2.4.3 G = SU(N + 1)D with Symmetric and Antisymmetric

Our next example involves the identification of G with an SU(N +1)D diagonal subgroup of

SU(N +1)L×SU(N +1)R. However, if this diagonal subgroup is generated by TD = TL+TR

the matter fields transform in non-chiral representations of SU(N + 1)D and thus this case
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is not of interest to us. Instead, we will consider SU(N)D generated by TD = TL − TR.

The easiest way to do so is to assign Q to a fundamental rather than antifundamental

representation of SU(N + 1)R. With this charge assignment, the mesons M transform as

a sum of symmetric and antisymmetric representations of G while both baryons and anti-

baryons transform in anti-fundamental representation. This implies that the spectator field

M decomposes as A and S, while both B and B transform as fundamentals of SU(N +1)D.

The matter content of this model is given in Table 2.5. The deformation superpotential

(2.21) takes the form

W = ĀA+ SS +BB +BB (2.24)

The non-perturbative dynamics of the model remains unchanged and vacuum is found at

the origin of the moduli space.

SU(N) SU(N + 1)D U(1)B

Qi 1

Qi −1

M = A+ S 1 ⊕ 0

B 1 N

B 1 −N

M = A+ S 1 ⊕ 0

B 1 −N
B 1 N

Table 2.5: Field content of the SU(N) model with SU(F )D flavor symmetry

Simply by choosing a different chiral symmetry group G and selecting a desirable embedding

of this group in the maximal global symmetry of s-confining SU(N) we have constructed

a model with one chiral symmetric and one chiral antisymmetric representation in the UV

which is fully gapped in the IR.
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2.4.4 Antisymmetric ↔ Symmetric Flows

The early studies of the chirality flows [90,114] aimed at generating composite chiral matter

in the IR while the recent work [107, 116] was driven by an interest in generating mass

gaps in chirally symmetric vacua. In this section, we will illustrate that these two types

of models are simply extreme examples of a more general class of chiral theories where the

chirality structure changes under the RG flow. Indeed, we have already used the fact that

the choice of spectators necessary to cancel G3 anomalies is not unique. To generate the mass

gap we chose the spectators in representations of G conjugate to the representations of the

composites of the strong dynamics. On the other hand, to generate composite chiral matter

in the IR we chose the spectators in the representations of G conjugate to representations

of the elementary superfields. But one can mix and match. For example, in the model of

section 2.4.3 we can replace A with N − 4 spectators q̄ transforming as antifundamentals

of SU(N + 1)D. In this case, the UV model contains a chiral symmetric representation of

SU(N+1)D and N−4 vector-like flavors (with all antiquarks of SU(N+1)D being spectators

and all quarks charged under SU(N)). With this choice of G and the spectator fields the

most general tree level superpotential is

W = yAqq̄ + SS +BB +BB , (2.25)

where we have explicitly included the Yukawa coupling y in the first term. We note in passing

that y is naturally small since it arises from a non-renormalizable term in the UV description.

Analyzing the non-perturbative dynamics of this model we find that in the IR the composite

S and the spectator S pick up a mass and decouple from the low energy physics while the

massless matter content contains a single antisymmetric generation. Thus we constructed

a more general model of chirality flow where non-perturbative dynamics modifies the chiral

structure of the theory in IR instead of simply adding or removing a chiral generation. A

reverse flow, from an antisymmetric generation in the UV to a symmetric generation in the
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IR, is equally easy to achieve.

2.4.5 Gapping Symmetric Matter

The results of Section 2.4.4 suggest a model-building trick that allows one to gap the sym-

metric S of the chiral G = SU(F ) symmetry, even if the required model is somewhat baroque.

To that end, one needs two s-confining sectors, both with fields charged under G. The first

s-confining sector is based on an SU(N), N = F − 1, gauge group whose composites trans-

form as A and S of G, while the second sector is based on SP(2M), 2M = F − 4, group

whose composites transform as A. The matter content is given in Table 2.6.

SU(N) SU(F )D SP(2M)

Qi 1

Qi 1
q 1

S ⊕A 1 ⊕ 1

B 1 1
B 1 1
A 1 1

S 1 1

B 1 1

B 1 1

Table 2.6: Field content of the gapped symmetric model. The top section shows elementary fields
of the model charged under one of the s-confining sectors, the middle section shows the composites
of strong dynamics, and the bottom section shows the spectators charged only under the chiral
G = SU(F ) symmetry

The tree level superpotential in terms of composites and the spectators is given by

Wtree = SS +AA+BB +BB . (2.26)
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A careful analysis of dynamics in regions where either A or A is large establishes that the

model develops a mass gap in the IR.

2.5 A Concluding Poem

I wrote this poem about the general mechanisms of gapping fermions, told from the fermion’s

perspective:

I was alone, people told me I was destined to be,

Pauli excluded me from the principle, saddened me,

They told me I was light and my state was ground,

Into darkness, with no companion to be found!

Chiral symmetries cursed me to be single,

I’m starting to age, my skin is in wrinkles!

But SUSY saved me! I am at the origin, a deposit

I can confine with a partner and form a composite!

Now the messengers brought a long-awaited,

Mechanism for me, highly rated!

I was no longer on ground, no longer trapped,

I had a mass-partner, and I was gapped.
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Chapter 3

Generation flow in field theory and

strings

(This section is heavily based on the publication with Saúl Ramos–Sánchez, Michael Ratz,

Yuri Shirman and Michael Waterbury) [106]

3.1 Chirality flows from UV to IR

In chapter 2, we outlined a procedure for altering the chiral structure of theories by generating

mass gaps without breaking chiral symmetry. However, changing the chiral structure can also

result in increasing the number of generations: This happens when one or more composite

generations appear in the IR. We demonstrate how the evolution from UV to IR can either

increase or decrease the generations using the techniques from the previous chapter. We

emphasize that the non-perturbative dynamics play a crucial role in modifying the effective

number of generations during the process of Renormalization Group (RG) flow. This has

significant implications for string model searches, particularly when determining the number

of generations in candidate UV completions of the Standard Model (SM).
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As in the last chapter, we will concentrate on supersymmetric models both because it is con-

venient in the context of string model building and because the relevant non-perturbative

dynamics are under qualitative and often quantitative control in such theories. As shown by

Seiberg [108], non-perturbative effects can have a dramatic impact on gauge theories. In par-

ticular, due to confinement and duality, the degrees of freedom appropriate for describing IR

physics often differ considerably from the UV degrees of freedom. Throughout this chapter,

aiming at preserving the chirality of the SM (or its Grand Unified Theory (GUT) completion),

we consider confinement without chiral symmetry breaking (so-called s-confinement [32,33]).

Since the low-energy degrees of freedom in these models are composites of the elementary

fields, they usually transform in different representations of the unbroken global symmetry.

When a subgroup of such global symmetry is identified with a GUT or the SM gauge group,

a new, composite, chiral generation may emerge in the IR or, alternatively, an existing chiral

generation may become massive. The first of these phenomena was initially used in [90,114]

to construct realistic extensions of the minimal supersymmetric Standard Model with some

of the third generation quarks and Higgs bosons arising as composites of strong dynamics.

In this approach, which we will refer to as the Nelson–Strassler (NS) mechanism, the RG

flow leads to the appearance of light chiral composites in the IR thus increasing the effective

number of chiral generations. The NS mechanism may be modified in several fairly obvious

ways. For example, some of the composites may acquire masses by mixing with elementary

chiral fields, modifying the spectrum of light fields in the IR in nontrivial ways. When all

of the composites acquire mass, the model is in the second regime which attracted attention

more recently [107]. We will refer to the second phenomenon as the RT mechanism. Here

all of the composites of strong dynamics acquire masses by partnering with elementary

degrees of freedom and thus reduce the number of effective generations in the IR. As we will

argue, these two mechanisms can be continuously connected by introducing mass terms for

vector-like elementary fields, which are allowed to mix with the composites. When masses

of vector-like fields are small while the mixing between elementary fields and composites is
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of order one, the theory flows to the RT limit where all the light fields are elementary. On

the other hand, in the limit of large mass the vector-like elementary fields decouple, leaving

massless composites behind. In this case, the theory flows to the NS limit where some light

fields are composites. By varying the mass terms, one can interpolate between the two limits,

and for intermediate values of the mass term some IR degrees of freedom will be partially

composite. Furthermore, one has freedom to decouple any number of composites. In general,

however, non-perturbative dynamics affects RG flow and modifies the effective number of

chiral generations in the IR. We will refer to these phenomena as generation flow.

It is then natural to ask whether generation flow can occur in scenarios where the number

of generations is predicted from other data. This is particularly relevant for string model

building (cf. e.g. [61] for a review), where one obtains the SM generations from string com-

pactifications. We will argue that generation flow indeed occurs in some globally consistent

string models. In these constructions, the true number of generations in the IR description

can differ from the tree-level value that one obtains at the compactification scale. Hence, a

search for 3-generation models in string theory has to go beyond the tree-level analysis.

The organization is as follows. In Section 3.2, we will review the RT mechanism of gapped

chiral fermions. In Section 3.3, we construct models exhibiting generation flow towards a

3-generation theory with (a GUT completion of) the SM gauge group in the IR. Our first

example is a 4⇝3 model based on the RT mechanism where all the IR degrees of freedom are

elementary. We then construct a generalization of the 4⇝3 model where some of the third

generation fields are composite. We point out that our construction is analogous to the NS

mechanism [90, 114]. This motivates us to build a 2⇝3 model with an upward generation

flow. Furthermore, we discuss the stability of the chirally symmetric vacua in s-confining

models under the deformations which induce generation flow. While such deformations may

generally destabilize the vacua by non-perturbative dynamics (see [112] for a more detailed

discussion), we argue that the chirally symmetric vacua survive in our models. In Section 3.4,

we collect evidence for the existence of string models exhibiting generation flow by presenting
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explicit examples.

3.2 s-confinement and Gapped Chiral Fermions

We begin by briefly reviewing dynamics of supersymmetric gapped fermion models intro-

duced in [107]. In the following we will take the approach of [112] to building models of

chiral gapped fermions. This approach starts with SUSY QCD models that exhibit confine-

ment without chiral symmetry breaking on smooth moduli space [108].∗ For our purposes

it is convenient to restrict attention to s-confinement in SU(2)s SUSY QCD with six chiral

doublet superfields and thus SU(6) chiral global symmetry. We review the dynamics of this

model in the subsection 3.2.1. In the subsection 3.2.2, we discuss the deformation of the

SUSY QCD required to arrive at mass gap models of [107].

3.2.1 s-confining SU(2)s model

The model outlined above possesses SU(6)×SU(2)s symmetry, where SU(6) is a chiral global

symmetry while SU(2)s is a strongly interacting s-confining gauge group. For future con-

venience we will assign quark superfields to (6,2) representation of the symmetry group.

The theory possesses a set of classical D-flat directions which can be parameterized either

in terms of squark VEVs or in terms of gauge invariant mesons which are classically defined

as Mij ∼ QiQj/Λ, where we suppressed contraction of SU(2)s-color indices and the dynam-

ical scale of the quantum theory Λ is introduced on dimensional grounds. The mesons M

transform in the conjugate antisymmetric representation of the global SU(6) symmetry 15.

However, since quark VEVs satisfy a set of algebraic identities, not all meson VEVs are
∗This dynamics is usually referred to as s-confinement. See [33] for a complete classification of such

theories.
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independent. These classical constraints imply a set of relations between the mesons,

εi1...i6Mi3i4Mi5i6 = 0 . (3.1)

One may implement these constraints in the composite description of the theory by postu-

lating a dynamical superpotential

Ws = εi1...i6Mi1i2Mi3i4Mi5i6 ≡ Pf(M) . (3.2)

The moduli space parameterized by mesons M together with the superpotential (3.2) coin-

cides with the classical moduli space of the theory parameterized by quark VEVs satisfying

D-flatness conditions. It was shown in [108] that the classical moduli space of vacua remains

unmodified quantum mechanically and the IR physics is described in terms of weakly inter-

acting mesons with the superpotential (3.2). While the chiral global symmetry of this model

is broken at a generic point on the moduli space, the chiral symmetry remains unbroken at

the origin where the theory exhibits confinement without chiral symmetry breaking. This is

precisely the vacuum we are interested in.

3.2.2 Mass Gap Model

For phenomenological purposes we are interested in gauging SU(6) global symmetry of the

s-confining model discussed in the previous subsection (more precisely we are interested in

gauging a subgroup of SU(6), such as a GUT SU(5) or the SM group SU(3)×SU(2)×U(1)).

To this end, one must introduce a set of spectator fields charged under SU(6) but not

SU(2)s (so that the s-confining dynamics remains unaffected) to ensure a cancellation of the

cubic SU(6) anomaly. This can be achieved, for example, by introducing spectators that

transform in representations of SU(6) conjugate to those of elementary fields, i.e. by adding

two spectators with quantum numbers given by (6,1). Alternatively, one can introduce
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a single spectator S in an SU(6) representation conjugate to the one of the mesons, i.e.

transforming as (15,1). In the former case, the theory remains chiral both in the UV and

IR. This is because SU(2)s is not yet confined in the UV and the matter fields transform in

chiral representations of the full SU(6)× SU(2)s symmetry, while the representations of IR

degrees of freedom are chiral under SU(6). However, in the latter case, the chiral properties

of the model change as the theory flows from the UV to the IR. While the UV theory

is clearly chiral, the IR degrees of freedom, the mesons M and spectators S, transform in

conjugate representations and thus form a single vector-like representation. By choosing to

cancel anomalies with the spectator S in the antisymmetric representation, we will be able

to construct a model that flows from a gapless, chiral phase in the UV to a gapped phase in

the IR.

Since the matter content in the IR is non-chiral, a mass term, SM , is allowed in the IR super-

potential. In terms of the UV degrees of freedom, this mass term corresponds to a marginal

operator, SQ2. Thus, we deform the s-confining model by a tree-level superpotential

W = ySQ2 = cΛSM , (3.3)

where the numerical coefficient c represents both an arbitrary Yukawa coupling y of the UV

theory and the fact that the mass scale generated by confinement is not directly calculable.

At this point one might be tempted to conclude that a mass gap develops in the chirally

symmetric vacuum at the origin, while the rest of the moduli space is lifted by the equations

of motion for S and M . However, while ultimately correct, this conclusion is somewhat

premature. Indeed, while lifting SU(2)s D-flat directions, the deformation (3.3) introduces

new classical flat directions, those parameterized by SU(2)s singlets S. Since any VEVs

for S would break the chiral symmetry, it is important to verify that the non-perturbative

dynamical superpotential (3.2) does not destabilize these directions. A careful analysis [112]
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of the full superpotential in (3.2) and (3.3) demonstrates that SU(2)s dynamics generates an

effective superpotential for gauge singlets S stabilizing them at the origin.† While referring

the reader to [112] for the full analysis, we present a simple argument here. Consider the

theory at large S where all quark superfields become heavy. In this region of the moduli space

the low-energy physics is described in terms of a pure SYM SU(2)s theory with dynamical

scale given by Λ6
L = Pf(S) Λ3. The dynamics of the low-energy SYM in turn generates a

gaugino condensate implying the existence of an effective superpotential

Wdyn = Λ3
L =

(
Λ3 Pf(S)

)1/2
. (3.4)

It is easy to see that this superpotential stabilizes S near the origin.

The main lesson we learn from this example is a possibility that the RG flow may change

the chiral properties of the theory and, in particular, may change the number of chiral

generations. Here we define a chiral generation as a field transforming in an antisymmetric

representation of the chiral symmetry accompanied by an appropriate number of fields in an

antifundamental representation as required by anomaly cancellation conditions. Then the net

number of generations is given by a difference between number of fields in an antisymmetric

representation and in a conjugate antisymmetric representation, ν = n −n . For example,

in our example with SU(6) chiral symmetry the number of generations is given by n15 −n15 .

This definition is chosen such that it can be used throughout this study, and coincides with

what one calls a generation in SU(5) GUTs. From the SU(6) perspective, our UV model

is a one-generation model containing an antisymmetric, 15, and two antifundamental, 6, of

SU(6). On the other hand, the IR theory has no massless chiral superfields even while the

chiral symmetry remains unbroken.

While the construction of [107] decreases the number of chiral generations in the IR, we will
†We stress that this conclusion is model dependent, and there exist models where the S = 0 vacuum at

the origin is destabilized, resulting in chiral symmetry breaking.
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show in the following section that non-perturbative dynamics may also lead to an increase

in the number of chiral generations. As we will see, the existence of generation flow offers

immense opportunities for model building both in field theory (Section 3.3) and string theory

(Section 3.4).

3.3 Generation Flows in GUTs

The supersymmetric gapped fermion model reviewed in the previous section is based on

an SU(2)s s-confining theory with SU(6) global symmetry. Generalizations to s-confining

SP(2N) with SU(2N + 4) global symmetry are straightforward [107].‡ However, for phe-

nomenological purposes one is interested in similar models with SU(5) or SU(3)×SU(2)×U(1)

global symmetry which can then be identified with the GUT or the SM gauge group. As

shown in [107], this can be easily achieved simply by considering the model of Section 3.2.2

and identifying GUT or SM gauge group with an appropriate subgroup of SU(6).

For example, to construct a one-generation SU(5)× SU(2)s theory which behaves as a pure

SYM SU(5) in the IR, one decomposes elementary fields of the model under SU(5) as follows

S : (15,1) → T : (10,1)⊕ F : (5,1) , Q : (6,2) → F
′
: (5,2)⊕ ϕ : (1,2) . (3.5)

The tree-level superpotential (3.3) and dynamical superpotential (3.2) can be easily written in

the SU(5) language. One can verify that the UV description corresponds to a one-generation

model complemented by a single vector-like flavor in a fundamental representation. As we

learned in Section 3.2, the s-confining dynamics leads to a unique ground state with an

unbroken chiral symmetry and no light matter fields.
‡See also discussion in [112].
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We are now ready to generalize the mass gap construction of RT [107] to obtain models

where the number of chiral generations is changed through renormalization group flow but

remains nonzero both in the UV and the IR. As we will see shortly, the RG flow may

lead both to an increase and a decrease in the effective number of chiral generations. The

latter can be achieved in two ways. In the first approach, as in the model of Section 3.2,

some of the chiral elementary fields acquire masses by partnering with the chiral composites

generated by confining dynamics. As a result, all the massless degrees of freedom in the IR are

elementary fields of the theory. Just like in the model of Section 3.2, the chirally symmetric

vacuum is a unique ground state of this theory. The second approach is reminiscent of the

construction first introduced in [90, 114]. In this approach, some of the massless fields in

the IR are composites even as other composites may become massive. Generically, models

in this class retain the quantum moduli space and only one vacuum on this moduli space

is chirally symmetric. Since IR degrees of freedom, including the massless composites, are

to be identified with the SM multiplets, the motion along this moduli space is equivalent to

motion along D-flat directions of a GUT or the SM. Note that the mechanism utilized in

the second approach may also lead to an increase in the effective number of generations.

3.3.1 4⇝3 Generation Flow

We can now detail our general observations by building an explicit model of downward gen-

eration flow. Let us start with a more straightforward example, where the number of chiral

generations decreases in the IR while all the composites are heavy. In particular, we con-

struct a 4⇝3 model, i.e. a model containing 4 generations in the UV and 3 generations in the

IR. The matter fields of the model and their quantum numbers are presented in Table 3.1a.

Note that this matter content comprises the fields appearing in (3.5) complemented by three

chiral flavors of SU(5) i.e. three copies of T ⊕ F . Thus, this is a four-generation model. It

is easy to see that SU(2)s dynamics is not affected by the introduction of additional chiral
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# irrep label

4 (10,1) T
2

(
5,1

)
F

1
(
5,2

)
F

′

1 (1,2) ϕ

1 (5,1) F
1

(
5,1

)
F

(a) Unconfined spectrum.

# irrep label

4 (10,1) T
4

(
5,1

)
F ,F

1
(
10,1

)
T

1 (5,1) F

(b) Confined spectrum.

Table 3.1: Summary of the SU(5) × SU(2)s quantum numbers of the chiral superfield content of
the 4⇝3 model. The vector-like pair at the bottom of Table 3.1a can be decoupled, resulting in a
separate 4⇝3 model.

multiplets as long as one linear combination of the Ti’s has the Yukawa coupling with F ′ and

ϕ that is implied by the superpotential (3.3). Indeed, at low energies SU(2)s charged fields

confine into T ∼ F
′
F

′
/Λ and F ∼ F

′
ϕ/Λ. The transformation properties of the IR degrees

of freedom are given in Table 3.1b. Finally, in the IR the superpotential (3.3) behaves like a

mass term pairing composites F and T with F and one copy of T , respectively. Repeating

the analysis of Section 3.2.2 one concludes that the classical flat directions parameterized by

F and T are stabilized non-perturbatively.

Let us consider a generalization by noting that the symmetries of the model allow a mass

term for the vector-like pair F⊕F . With this mass term, the full UV superpotential becomes

W = y1TF
′
F

′
+ y2FF

′
ϕ+mFF . (3.6)

Note that the additional mass term and y1 ̸= y2 explicitly break the SU(6) symmetry. Neither

F nor F are charged under SU(2)s, thus the confined spectrum of the model (Table 3.1b)

does not change. In the IR, the superpotential becomes

W = T T F + c1ΛT T + c2ΛFF +mFF , (3.7)
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where the first term is the s-confining superpotential Equation (3.2). A simple analysis

shows that in the presence of the mass term the model possesses a quantum moduli space

satisfying the condition

c2ΛF +mF = 0 . (3.8)

While at a generic point on the moduli space the chiral SU(5) symmetry is broken, the s-

confining vacuum where one generation acquires a mass survives at F = F = 0. This leaves

three light generations, two made up entirely of elementary fields and another where the 5

is made up of a linear combination of F and F . This lays out two interesting limits. In

the limit m → 0, the light generations are entirely composed of elementary fields, F = 0,

and the chirally symmetric vacuum is stabilized as in Section 3.2.2. We refer to this as the

RT limit because all composite fields decouple. In the limit m → ∞, one of the three light

generations has a composite 5. We refer to this limit as the NS limit due to the appearance

of light composite fields. At finite mass, there is a flat direction which can be parameterized

by F . For the purposes of phenomenology, F would play the role of a SM multiplet; motion

along the moduli space of this model corresponds to motion along D-flat directions of a GUT

(or the SM).

3.3.2 2⇝3 Generation Flow

The NS limit of the model discussed above resulted in a theory with a composite 5 while

the number of 10’s (i.e. number of generations) was smaller in the IR. On the other hand,

original models of [90, 114] had a composite 10 in the IR thus increasing the number of

generations. That construction can be interpreted as an upward generation flow. Let us

discuss a variation of that model where the starting point of RG flow contains two chiral

generations while the end point in the IR has three chiral generations, i.e. a 2⇝3 model.
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# irrep label

2 (10,1) T
4

(
5,1

)
F

1 (5,2) F ′

1 (1,2) ϕ

(a) Unconfined spectrum.

# irrep label

3 (10,1) T, T
3

(
5,1

)
F

1
(
5,1

)
F

1 (5,1) F

(b) Confined spectrum.

Table 3.2: Summary of the SU(5)×SU(2)s quantum numbers of the chiral superfield content of the
2⇝3 model.

Once again we consider a model with the symmetry group SU(5) × SU(2)s, whose matter

content and charges are given in Table 3.2a. The tree-level superpotential in terms of the

UV degrees of freedom is

W = yF F ′ϕ . (3.9)

When the non-perturbative dynamics is included, the IR superpotential becomes

W = T T F + cΛFF , (3.10)

where T ∼ F ′F ′/Λ and F ∼ F ′ϕ/Λ.

It is convenient to analyze the behavior of this superpotential by going along a flat direction

parameterized by F . Without loss of generality we can assume that the VEV of F lives in

a single component, say F 5. At large VEV, the global symmetry is broken from SU(5) to

SU(4), and one pair of doublets, the one corresponding to the F5 meson, becomes heavy and

can be integrated out. Along this flat direction the superpotential becomes

W = F5(Pf
′ T + F 5) , (3.11)

where prime on the Pfaffian indicates that it is taken only over the light mesons comprising

a 6-plet of the remaining SU(4) symmetry. Note that at this stage F5 is not a dynamical
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field since it is a meson made out of heavy doublets. At the same time, the F 5 VEV remains

arbitrary albeit related to the T VEVs by the F5 equation of motion,

Pf ′ T + F 5 = 0 . (3.12)

Upon a careful inspection of (3.11) and (3.12), one notices that they correspond to the

superpotential and one of the equations of motion of a four-doublet theory with a deformed

moduli space, a dynamical scale Λ6
L = F 5Λ

5, and the meson F5 playing a role of Lagrange

multiplier. We see that for each nonvanishing value of F 5 the effective theory possesses a

quantum deformed moduli space, i.e. it exhibits confinement with chiral symmetry breaking.

Furthermore, the scale of chiral symmetry breaking is parameterized by F 5. While the

effective description in terms of four-doublet theory is only valid at large F 5, the solution of

the F5 equation of motion is valid everywhere on the quantum moduli space up to a SU(5)

symmetry transformation. In particular, the chirally symmetric vacuum Pf ′ T = F 5 = 0

belongs to the quantum moduli space.

Note that the models introduced in this section differ in their quantum moduli spaces and

their low-energy spectra. In the RT limit of the 4⇝3 model, there is a unique, s-confining

vacuum. All composite degrees of freedom become massive via the RT mechanism, and there

are three light generations made out of the elementary fields. In the 2⇝3 model and the

NS limit of the 4⇝3 model, there remains a quantum moduli space of vacua parameterized

by the VEV of F (or equivalently F ), respectively, which includes the chirally symmetric

vacuum. In the 2⇝3 model, one of the three light generations contains a composite 10, while

at finite mass, the 4⇝3 model has a 5 which is partially composite and partially elementary.

In the following sections, we will show how these models can arise naturally in string model

building, providing examples of phenomenologically viable string models which would have

previously been ruled out by the tree-level analysis of the models.
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3.4 Generation Flow in String Models

Given the possibility of generation flow discussed in Sections 3.2 and 3.3, we will now turn

our attention to string model building. Why can generation flow be relevant for string

models? In string phenomenology, one tries to connect string theory to the real world (cf.

e.g. [61]). In practice, this often amounts to searching for a string compactification which

reproduces the SM in its low-energy limit. When constructing a string model, one chooses

a framework, such as one of the perturbative string theories, and compactifies it down to

four dimensions. The step of compactification consists of making an assumption on the

geometry of compact dimensions (in principle one also must show that the emerging setup

is stable, i.e. string moduli describing the size and shape of compact space are stabilized).

However, attempts to build realistic models often fail already at an earlier stage because the

zero-modes do not comprise the SM matter. This could mean that one has chiral exotics, or

just not the right number of generations. It is the latter possibility where generation flow,

as discussed in Section 3.3, can be important.§ In practice, when determining the number

of generations, one looks at the tree-level predictions. However, as discussed in Sections 3.2

and 3.3, the number of generations obtained this way may differ from the true number of

chiral generations in the low-energy effective theory.¶ It is therefore interesting to study the

question to which extent models of the type discussed earlier can be obtained from string

theory.

It is not our purpose to construct a fully realistic model exhibiting generation flow. Rather,

we will collect evidence for the existence of such models. To keep our discussion simple,

and in order to relate our findings to Section 3.3, we will look for SU(5) models rather than
§It is conceivable that more generally chiral exotics can be removed along the lines of Section 3.2 (cf. [39]

for an example). It will be interesting to work out the detailed conditions for this to happen.
¶It is known that chirality-changing phase transitions can occur in string compactifications [6, 47, 66].

In this work we focus on generation flow that can be understood in terms of field-theoretic supersymmetric
gauge dynamics with an s-confining SU(2)s as in Sections 3.2 and 3.3. It will be interesting to see whether
there is a deeper relation between these phenomena.
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models with SM gauge group. However, we expect that the results carry over to models with

the SM gauge group after compactification.

3.4.1 Model Scans

In what follows, we focus on orbifold compactifications of the (E8×E′
8) heterotic string [44,45],

which can be efficiently constructed with the orbifolder [94]. We will collect evidence for

the existence of globally consistent string compactifications that have either two or four

generations of SM matter at tree level, but in fact have three generations in their low-energy

effective description. That is, we will present evidence for the existence of stringy versions

of the 4⇝3 and 2⇝3 models discussed in Section 3.3.

The orbifolder allows us to compute a 4D model from certain input data, which comprises

the geometry of the orbifold and the so-called gauge embedding. The latter essentially

describes how the geometric operations of the 6D space-like compact dimensions act on the

E8 × E′
8 lattice. This determines not only what the residual gauge symmetry of the model

is but also the spectrum. In more detail, the orbifolder provides us with the continuous

and discrete gauge symmetries after compactification as well as the chiral spectrum of the

model.

By using the orbifolder, we obtained a large sample of supersymmetric heterotic orbifold

models with the following properties:

• orbifold geometry Z2 × Z4 (1,1) (see [52] for the notation, and [87] for details of the

geometry);

• 4D gauge group G4D ⊃ SU(5) × SU(2)s (where we labeled the second factor “s” to

indicate that this SU(2) plays the same role as in our earlier discussion in Sections 3.2

and 3.3);
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• the SU(5) and SU(2)s gauge groups emerge each from a different E8 factor of the

original heterotic string;

• a net number of n SU(5) GUT generations, with no representation (10,2) least one

representation (5,2) or (5,2);

• at least one “flavon” field transforming as (1,2); other fields of this type could in

principle be decoupled from low energies;

• a (large) number of SU(5)× SU(2)s singlets;

• additional non-Abelian gauge factors under which the SU(5) charged fields are singlets;

and

• additional U(1) factors which can be broken along D-flat directions without breaking

SU(5)× SU(2)s.

Our scan yielded several models in which s-confinement can change the number of chiral

representations.

3.4.2 Models

Rather than providing the reader with an extensive survey, we focus on two sample models

defined in the Appendix. In more detail, we discuss

• a 4⇝3 model (cf. Table 3.3a) in which the 4th chiral generation acquires a mass and

decouples through, and

• a 2⇝3 model (cf. Table 3.3b) in which the 3rd chiral generation emerges from states

that are vector-like under SU(5) through a variant of the RT effect, in which a chiral

10 ⊕ 5 arises as a composite of (5,2)⊕ (1,2)⊕ 2(5,1)
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4⇝3 model
# irrep label

4 (10,1) T
4

(
5,1

)
F

7
(
5,1

)
F

9 (5,1) F

1
(
5,2

)
F

′

170 (1,1) N
27 (1,2) ϕ

(a) The first block contains four chiral gen-
erations of SU(5) matter.

2⇝3 model
# irrep label

2 (10,1) T
2

(
5,1

)
F

10
(
5,1

)
F

8 (5,1) F
1 (5,2) F ′

240 (1,1) N
41 (1,2) ϕ

(b) The first block represents two chiral
families of an SU(5) GUT.

Table 3.3: Summary of the SU(5) × SU(2)s quantum numbers of the (left-chiral) massless matter
spectra of heterotic orbifold models with (a) 4⇝3 and (b) 2⇝3 SU(5) generation flow. These models
have (a) four and (b) two chiral generations at tree level, respectively, but three chiral generations
in the low-energy effective description due to SU(2)s strong dynamics. The second (third) block of
each table consists of states that are vector-like (invariant) under SU(5).

Both models have the virtue that the SU(5) and SU(2)s factors come from different E8’s.

Consequently, SU(2)s can naturally be more strongly coupled than SU(5) (cf. e.g. [60]).

A Stringy 4⇝3 Model

The model defined by the parameters provided in Equation (A.1.1) results in the 4D gauge

group G4D = SU(5) × SU(2)s × [SU(2)5 × U(1)6]. The gauge factors in the brackets can be

broken along D-flat directions. Since the Lagrange density is invariant under complexified

gauge transformation, we can infer that nontrivial solutions to the F -term equations preserve

supersymmetry [19,85]. We are then left with Gunbroken = SU(5)× SU(2)s.

Before discussing the 4⇝3 properties of this model, let us comment on the possibility to break

SU(2)s along D-flat directions. In this case, we will obtain a vacuum with 4 generations of

an SU(5) GUT, i.e. 4 copies of 10 ⊕ 5 while the other states are now vector-like and pick

up masses proportional to the VEVs of the SU(5) singlets that got switched on. According

to the usual string phenomenology practices, we would thus label this model an unrealistic
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4-generation model, not worth being considered further.

On the other hand, if we leave SU(2)s unbroken, in a generic vacuum we obtain in an in-

termediate step a model with 4 copies of (10,1), 2 copies of
(
5,1

)
, a
(
5,2

)
and a (1,2).

Since string selection rules do not forbid the corresponding couplings, the other states of

Table 3.3a acquire masses proportional to the VEVs of the SU(5) × SU(2)s singlets. Con-

ceivably, there also exist special string vacua that can allow for an extra massless vector-like

pair (5,1) ⊕ (5,1). This brings us to either of the 4⇝3 models discussed in Section 3.3,

and summarized in Table 3.1a. As we have seen there, due to the SU(2)s strong dynamics,(
5,2

)
and (1,2) condense together to build a 5 and condensates of

(
5,2

)
yield an SU(5)

antigeneration 10. Since there are no string selection rules prohibiting the couplings, we

thus expect this antigeneration to pair up with a linear combination of the 4 generations,

and we are left with a 3-generation model at low energies.

An important condition for the strong SU(2)s dynamics to play out as described is that

SU(2)s is much more strongly coupled than SU(5). Since these two gauge factors origi-

nate from different E8’s, it is plausible that this happens [46, 60, 113]. However, a detailed

computation of the string thresholds is beyond the scope of this study.

A Stringy 2⇝3 Model

The model defined by the parameters provided in Equation (A.1.2) results in the 4D gauge

group G4D = SU(5) × SU(2)s × [SU(2)2 × U(1)9]. As in the previous model, the gauge

factors in parentheses can be spontaneously broken along D-flat directions while preserving

supersymmetry. The corresponding massless spectrum after compactification is summarized

in Table 3.3b, where we only display the quantum numbers with respect to SU(5)× SU(2)s.

After switching on the VEVs of SU(5)×SU(2)s singlets, we are left with 2 copies of (10,1),

4 copies of (5,1), and 1 instance of (5,2) and (1,2), reproducing the spectrum of the 2⇝3
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model presented in Table 3.2a.

If we also break SU(2)s along D-flat directions, we obtain a vacuum with an SU(5) GUT

symmetry and two generations of 10 ⊕ 5. In the traditional approach, we would thus label

the model as an unrealistic 2-generation model that is to be discarded.

However, this conclusion changes if we look at vacua where SU(2)s confines. In this case,

according to our discussion of the 2⇝3 model in Section 3.3, we can obtain a third generation

from SU(2)s strong dynamics. In particular, the (5,2) builds a condensate that behaves as

the 10-plet of a third generation of an SU(5) GUT. This means that this model admits

3-generation vacua and cannot be ruled out immediately.
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Chapter 4

Metaplectic Flavor Symmetries from

Magnetized Tori

(This section is heavily based on the publication with Yahya Almumin, Mu-Chun Chen,

Michael Ratz, Saúl Ramos–Sánchez and Víctor Knapp-Pérez) [5]

4.1 Modular Flavor Symmetries

As discussed in section 1.2 of the introduction, we know that the SM of particle physics is

an effective theory. This means that it has many parameters that have to be adjusted by

hand to fit data. The bulk of these parameters resides in the flavor sector, i.e. concerns

the fermion masses, mixing angles and CP phases. Any UV completion of the SM will have

to explain these parameters. Turning this around, one may hope to get more insights on

the UV completion by constructing a working theory of flavor. In chapters 2 and 3, we

have observed that the number of generations is not an invariant notion across RG flows,

and non-perturbative dynamics plays a significant role, particularly in the search for string

models. When it comes to building string models, obtaining the correct number of chiral
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fermions and generations is a challenging task. In this chapter, we explore a framework

where modular symmetries present in the extra two dimensions of a torus not only result

in chiral fermions, but also allow the magnetic flux on the torus to act as a parameter for

determining the number of generations.

Modular symmetries have been at the forefront of string-inspired model building. Recently,

a new approach to address the flavor problem has been put forward [49]: Yukawa couplings

could be modular forms. There are two main ways in which this proposal has been utilized:

1. symmetry based (SB), i.e. impose the modular flavor symmetry to construct the La-

grange density [8, 31,35,40–43,76,77,79,82,84,95,99,101,123], and

2. torus based (TB), in which one derives the symmetries from an underlying torus or

related setup [13–15,58,68,70–74,78,92,98].

Both strategies have strong points and challenges. In the SB approach, very good fits to

data have been achieved. However, this is, in part, possible because one can postulate the

symmetry and other data like modular weights and representations at will. Apart from the

arbitrariness of the flavor group and modular weights, the kinetic terms of the fields are

not very constrained by the modular transformations [27]. The TB approach is much more

restrictive, in particular when embedded into string theory [13–15,92]. However, while these

models have great promise and certainly fix the above–mentioned problems of arbitrariness,

it is probably fair to say that they do not yet provide us with unequivocal predictions on

flavor parameters that can be tested in the foreseeable future.

The purpose of this chapter is to explore the details of the relation between these approaches.

More specifically, we derive metaplectic symmetries from magnetized tori. Earlier works

on this subject include [68, 70–74, 78, 98]. To accomplish this, we work out closed–form

expressions for the Yukawa couplings that are valid for arbitrary flux parameters, and thus
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generalize the results of the pioneering work by Cremades, Ibáñez and Marchesano [30].

We also present consistent modular transformation laws for both even and odd numbers

of generations. Models derived from magnetized tori also allow us to understand to which

extent supersymmetry is crucial for modular flavor symmetries, which we will argue to be

less important than usually assumed. Additional motivation for looking at magnetized tori,

with and without supersymmetry, comes from the fact that even without supersymmetry

interacting scalar masses seem to be protected from quantum corrections [20,21,53,56].

4.1.1 Zero Modes on Tori with Magnetic Flux

Let us consider a gauge theory with two extra dimensions. Two of the extra dimensions

are compactified on a 2–torus T2, which is endowed with a magnetic flux. Using the index

theorem, we can show that the flux will give rise to chiral zero–modes.

The main goal of this section is to review some of the properties of the zero–modes. The

wave functions of the zero modes of the Dirac operator on tori with magnetic flux have been

worked out in [30]. They are given by

ψj,M(z, τ, ζ) = N eπ iM (z+ζ)
Im(z+ζ)

Im τ ϑ
[

j
M

0

](
M (z + ζ),M τ

)
. (4.1.1)

Here, M ∈ N indicates the units of flux, 0 ≤ j ≤ M −1 is an integer, z the coordinate in the

extra dimensions, ζ a so–called Wilson line parameter, and τ the torus parameter or half-

period ratio. The wave functions from equation (4.1.1) correspond to left–handed particles

in 4D whereas there are no right–handed particles for positive M . On the other hand, for

negative values of the integer M there are no solutions for left–handed particles, but there

are |M | right–handed particles described by ψj,M(z̄, τ̄ , ζ̄), with 0 ≤ j ≤ |M | − 1. Further-

more, notice that despite what the notation may suggest, the ψj,M are neither holomorphic

functions of z, nor of τ . ϑ denotes the so–called Jacobi ϑ–function, cf. appendix B.1. The
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normalization is given by

N =

(
2M Im τ

A2

)1/4

, (4.1.2)

where A = (2πR)2Imτ is the area of the torus (cf. appendix B.2). We find it instructive to

derive the quantization condition on M . Let us follow the discussion by [30]. Consider a

U(1) gauge group in the torus with a magnetic flux given by the gauge potential

A(z + ζ) =
B

2 Im τ
Im
(
(z̄ + ζ̄)dz

)
. (4.1.3)

Then, if the wave function ψj,M(z, τ, ζ) has charge q under this U(1), its transformation

under torus translations are

ψj,M(z + 1, τ, ζ) = exp

(
i qB

2 Im τ
Im(z + ζ)

)
ψj,M(z, τ, ζ) , (4.1.4a)

ψj,M(z + τ, τ, ζ) = exp

(
i qB

2 Im τ
Im(z + ζ)τ̄

)
ψj,M(z, τ, ζ) . (4.1.4b)

In order to have consistency through a contractible loop in the torus, we must get the same

wave function shifting z → z + τ + 1 as in the case where we shift by z → z + 1+ τ . Then,

ψj,M(z + τ + 1, τ, ζ) = exp

(
i qB

2 Im τ
Im
(
(z + ζ + 1

)
τ̄)

)
ψj,M(z + 1, τ, ζ)

= exp

(
i qB

2 Im τ
Im
(
(z + ζ + 1

)
τ̄)

)
exp

(
i qB

2 Im τ
Im(z + ζ)

)
ψj,M(z, τ, ζ)

= exp

(
i
qB Im τ̄

2 Im τ

)
exp

(
i qB

2 Im τ
Im
(
τ̄(z + ζ)

))
× exp

(
i qB

2 Im τ
Im(z + ζ)

)
ψj,M(z, τ, ζ) , (4.1.5)
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where we used first equation (4.1.4b) and then equation (4.1.4a). On the other hand,

ψj,M(z + τ + 1, τ, ζ) = exp

(
i qB Im(z + ζ + τ)

2 Im τ

)
ψj,M(z + τ, τ, ζ)

= exp

(
i
qB Im(z + ζ + τ)

2 Im τ

)
exp

(
i qB

2 Im τ
Im τ̄(z + ζ)

)
ψj,M(z, τ, ζ)

= exp

(
i
qB Im τ

2 Im τ

)
exp

(
i qB

2 Im τ
Im(τ̄(z + ζ))

)
exp

(
i qB

2 Im τ
Im(z + ζ)

)
ψj,M(z, τ, ζ) ,

(4.1.6)

where we used first equation (4.1.4a) and then equation (4.1.4b). Imposing that equa-

tion (4.1.5) and equation (4.1.6) yield the same wave function leads to the flux quantization

condition

qB = 2πM , (4.1.7)

with M an arbitrary integer. Therefore, in what follows, we will not consider q and B

individually, but only the integer M instead. Then, we have

ψj,M(z + 1, τ, ζ) = exp

(
i πM

Im τ
Im(z + ζ)

)
ψj,M(z, τ, ζ) , (4.1.8a)

ψj,M(z + τ, τ, ζ) = exp

(
i πM

Im τ
Im(z + ζ)τ̄

)
ψj,M(z, τ, ζ) . (4.1.8b)

4.1.2 Yukawa Couplings

4.1.3 Couplings from Overlap Integrals

One of the main rationales of working out the wave functions in section 4.1.1 is that the

overlaps of wave functions yield the (Yukawa) couplings of the model. Let us consider a 4+2

dimensional theory which is compactified on a torus T2. There is a gauge group breaking
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U(N) → U(Na) × U(Nb) × U(Nc) with N = Na + Nb + Nc due to the introduction of a

magnetic flux in the compact dimensions given by

Fzz̄ =
πi

Imτ


ma

Na
1Na×Na 0 0

0 mb

Nb
1Nb×Nb

0

0 0 mc

Nc
1Nc×Nc

 , (4.1.9)

where we will assume that sα = mα

Nα
is an integer for α ∈ {a, b, c}. Then, in [30, equation (5.7)]

one finds that Yukawa couplings of the 4D effective theory are given by

Yijk(ζ̃ , τ) = g σabc

∫
T2

d2z ψi,Iab(z, τ, ζab)ψ
j,Ica(z, τ, ζca)

(
ψk,Icb(z, τ, ζcb)

)∗
. (4.1.10)

Here, ψi,Iab(z, τ, ζab) are the wave functions of equation (4.1.1) that represent chiral fermions

bifundamentals transforming as (N a,N b) under U(Na)×U(Nb), and similarly for ψj,Ica and

ψk,Icb . The multiplicities of Iαβ of these bifundamentals are given by

Iαβ = sα − sβ , (4.1.11)

which implies that

Iab + Ibc + Ica = 0 . (4.1.12)

Furthermore, g is the (4 + 2)–dimensional gauge coupling, and σabc = sign(IabIbcIca) [30] is

a sign which is equal to −1 throughout our discussion. The ζαβ are given by

ζαβ =
sαζα − sβζβ
sα − sβ

(4.1.13)

for α, β ∈ {a, b, c}. Finally, ζα are the Abelian Wilson lines associated to the group U(Nα)

for α ∈ {a, b, c}. ζcb and ζca are defined similarly. As one can see from equation (4.1.1),
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the ζα represent translation of the torus origin. However, as shown in [30] if all three wave

functions are shifted by the same Wilson line, then the values of the Yukawa couplings are

unaffected.

4.1.4 Yukawa Couplings for Generic Flux Parameters

Let us now discuss how one can reduce the overlap integrals (4.1.10) to a linear combination

of ϑ–functions. We follow the strategy of [30], but generalize the result to the cases Iab > 1

and/or gcd(Iab, Ica, Ibc) > 1, with Iab, Ica > 0 and Ibc < 0. Note that the analogous

discussion applies to the case in which Iab and Ica are negative [30, cf. the discussion around

equation (5.6)].

In order to find closed–form expressions for the Yukawa couplings, one uses two important

facts [30]:

1. products of ϑ–functions can be expanded in terms of ϑ–functions, see [30, equa-

tion (5.8)], and that

2. the ϑ–functions fulfill certain orthogonality and completeness relations.

These facts allow one to find analytic expressions for the Yukawa couplings (4.1.10) that do

no longer involve integrals [30]. In more detail, starting from (4.1.10), one obtains (cf. [30,

equation (5.15)])

Yijk(ζ̃ , τ) = Nabc e
H(ζ̃,τ)

2

∑
m∈ZIbc

δk,i+j+Iabm ϑ

Icai−Iabj+IabIcam
−IabIbcIca

0

(ζ̃ , τ |IabIbcIca|) ,
(4.1.14)
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where

Nabc = g σabc

(
2 Im τ

A2

)1/4 ∣∣∣∣IabIcaIbc

∣∣∣∣1/4 (4.1.15)

is a normalization constant and the Wilson line dependence is encoded in the quantities

ζ̃ := −Iab Ica (ζca − ζab) = dαβγ sα ζα Iβγ (4.1.16)

and

H(ζ̃ , τ)

2
:=

πi

Im τ
(Iab ζab Im ζab + Ibc ζbc Im ζbc + Ica ζca Im ζca)

=
πi

Im τ
|Iab Ibc Iab|−1 ζ̃ Im ζ̃

Im τ
. (4.1.17)

with

dαβγ =


1 , if {α, β, γ} is an even permutation of {1, 2, 3} ,

0 , otherwise ,

(4.1.18)

where we have used [30, equation (5.28)]. Cremades et al. obtain then [30, equation (5.15)]

Yijk(ζ̃ , τ) = Nabce
H(ζ̃,τ)

2 ϑ

−
(

j
Ica + k

Ibc

)
/Iab

0

(ζ̃ , τ |IabIbcIca|) for i = k − j mod Iab .

(4.1.19)

This expression yields the correct couplings only if Iab = 1, which implies that d = 1, where

d := gcd
(
|Iab|, |Ica|, |Ibc|

)
. (4.1.20)
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To see that we need to demand that d = 1 for (4.1.19) to hold, notice that in (4.1.14) the

integers i, j and k are only defined modulo Iab, Ibc and Ica, respectively. This is evident

from the overlap integral (4.1.10), where e.g. ψi,Iab(z, τ, ζab) = ψi+Iab,Iab(z, τ, ζab). However,

if gcd(|Iab|, |Ica|) > 1 or |Iab| > 1, shifting i (or j) by |Iab| (or (|Ica|), which leaves the wave

functions invariant and hence has to produce the same overlap integral, leads to different

results for the Yukawa couplings when using (4.1.19).

To obtain the general expression, let us look at [89, Proposition II.6.4. on p. 221]

ϑ
[

j
Iab
0

]
(z1, Iabτ) · ϑ

[
j

Ica
0

]
(z2, Icaτ) =

∑
m∈ZIab+Ica

ϑ

i+j+Iabm
Iab+Ica

0

(z1 + z2, (Iab + Ica)τ
)

ϑ

Icai−Iabj+IabIcam
IabIca(Iab+Ica)

0

(Ica z1 − Iab z2, IabIca(Iab + Ica)τ) , (4.1.21)

which was used in [30]. In our wave functions, z1 = Iab (z + ζab) and z2 = Ica (z + ζca), so

that in the overlap integral z1 + z2 = Icb (z + ζcb) and Ica z1 − Iab z2 = ζ̃. One thus obtains

(cf. [30, equation (5.12)])

ψi,Iab(z, τ, ζab) · ψj,Ica(z, τ, ζca) = A−1/2 (2 Im τ)1/4
∣∣∣∣Iab IcaIbc

∣∣∣∣1/4eH(ζ̃,τ)
2

∑
m∈Z|Ibc|

ψi+j+Iabm,Icb(z, τ, Icb)ϑ

Icai−Iabj+IabIcam
IabIca(Iab+Ica)

0

(ζ̃ , IabIca(Iab + Ica)τ
)
. (4.1.22)

The product (4.1.22) gets projected on a third wave function ψk,Iab+Ica via the overlap integral

(4.1.10). This means that k has to “match”, i.e. m has to be a solution of the congruence

equation

Iabm+ i+ j = k mod Ibc . (4.1.23)
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Now observe that, since Iab+Ibc+Ica = 0, gcd
(
|Iab|, |Icb|

)
= d with d from equation (4.1.20).

Equation (4.1.23) is a linear congruence equation for the variable m. It is known that (cf.

e.g. [48, Lemma 3 on p. 37]) if

k − i− j = 0 mod d , (4.1.24)

the linear congruence of equation (4.1.23) has d solutions. Otherwise there is no solution.

Note that the condition (4.1.24) provides us with a selection rule for the Yukawa couplings,

which can be interpreted as a Zd flavor symmetry (cf. [1]). We thus know that the Yukawa

couplings will be proportional to

∆
(d)
i+j,k :=


1 , if i+ j = k mod d ,

0 , otherwise .
(4.1.25)

Consider now combinations of i, j and k satisfying the selection rule (4.1.24). This means

that

k − i− j = m′ d (4.1.26)

with some integer m′ = (k− i− j)/d. Define now I ′
ab = Iab/d, I ′

ca = Ica/d and I ′
bc = Ibc/d,

which are integers because of equation (4.1.20). We can thus divide equation (4.1.23) by d

to get

|I ′
ab|m = m′ mod |I ′

bc| , (4.1.27)

where gcd
(
|I ′
ab|, |I ′

bc|
)
= 1. Equation (4.1.27) can be solved with e.g. the Mathematica

command FindInstance. However, as we shall discuss now, one can find a closed–form

expression for the solution. The linear congruence (4.1.27) has one (inequivalent) solution

m = m0, which is given by
[
|I ′
ab|
]
(|I′

bc|)
m′ where

[
|I ′
ab|
]
(|I′

bc|)
is the multiplicative inverse
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of |I ′
ab| modulo |I ′

bc|. According to Euler’s theorem (cf. e.g. [48, Theorem 1 on p. 64]), the

multiplicative inverse can be expressed via the Euler ϕ–function,
[
|I ′
ab|
]
(|I′

bc|)
= (I ′

ab)
ϕ
(
|I′

bc|
)
−1.

This means that

m0 = (I ′
ab)

ϕ
(
|I′

bc|
)
−1 k − i− j

d
mod |I ′

bc| . (4.1.28)

Note that the Euler ϕ–function is implemented in Mathematica as EulerPhi. Relation

(4.1.28) implies that one particular solution m0 of equation (4.1.23) satisfies

Iabm0 = (I ′
ab)

ϕ
(
|I′

bc|
)
(k − i− j) mod |Ibc| . (4.1.29)

Given the solution m0 in equation (4.1.28), the d solutions of equation (4.1.23) are given by

m = m0 − |I ′
bc| t for t = 0, . . . , (d− 1) . (4.1.30)

Thus, using equation (4.1.30) in (4.1.14), we see that the Yukawa couplings are given by

Yijk(ζ̃ , τ) = Nabce
H(ζ̃,τ)

2 ∆
(d)
i+j,k

d−1∑
t=0

ϑ

Icai−Iabj+IabIcam0

|IabIbcIca|
+ t

d

0

(ζ̃ , |IabIcaIbc|τ) , (4.1.31)

Equation (4.1.31) can be simplified further. Let us define

P := |IabIcaIbc| , (4.1.32a)

λ := lcm
(
|Iab|, |Ica|, |Ibc|

)
. (4.1.32b)
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Next we note that∗

P = λ d2 . (4.1.33)

Then equation (4.1.31) can be recast as

Yijk(ζ̃ , τ) = Nabce
H(ζ̃,τ)

2

d−1∑
t=0

ϑ

1
d

(
α̂ijk

λ
+ t
)

0

(ζ̃ , P τ) , (4.1.34)

where

α̂ijk = I ′
ca i− I ′

ab j + I ′
ca Iabm0 (4.1.35)

is an integer. Using equation (4.1.28), α̂ijk becomes

α̂ijk = I ′
ca i− I ′

ab j + I ′
ca (I ′

ab)
ϕ
(
|I′

bc|
)
(k − i− j) mod λ d . (4.1.36)

Now we can use equation (B.1.4) to express the sum (4.1.34) as

Yijk(ζ̃ , τ) = Nabce
H(ζ̃,τ)

2

d−1∑
t=0

∞∑
ℓ=−∞

exp

[
iπ

(
1

d

α̂ijk
λ

+
1

d
t+ ℓ

)2

P τ

]
exp

[
2πi

(
α̂ijk
λ d

+
t

d
+ ℓ

)
ζ̃

]

= Nabce
H(ζ̃,τ)

2 ϑ

α̂ijk

λ

0

( ζ̃
d
, λ τ

)
. (4.1.37)

∗To see this, consider two positive integers a and b, and define c = gcd(a, b) = gcd
(
a, b, (a + b)

)
such

that a = a′ c and b = b′ c with integers a′ and b′. Then lcm
(
a, b, (a+ b)

)
= c lcm

(
a′, b′, (a′ + b′)

)
. Since a′,

b′ and (a′ + b′) do not have a nontrivial common divisor,

lcm
(
a, b, (a+ b)

)
= c a′ b′ (a′ + b′) ,

so that

a b (a+ b) = [gcd
(
a, b, (a+ b)

)
]2 lcm

(
a, b, (a+ b)

)
.
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Here, ℓ′ = d ℓ+ t. When ℓ runs over all integers, and t runs from 0 to d− 1, ℓ′ runs over all

integers. The α̂ijk are integers. Therefore, the physical Yukawa couplings are given by

Yijk(ζ̃ , τ) = Nabc e
H(ζ̃,τ)

2 ∆
(d)
i+j,k ϑ

I′
ca i−I′

ab j+I′
ca (I′

ab)
ϕ(|I′

bc|) (k−i−j)
λ

0

( ζ̃
d
, λ τ

)
(4.1.38)

with d from equation (4.1.20), ∆(d)
i+j,k from equation (4.1.25), λ from equation (4.1.32b) and

assuming Iab, Ica > 0 and Ibc < 0. Note that if d = 1 and Iab = 1, this formula reproduces

equation (4.1.19). Further, a priori this expression does not rely on supersymmetry, it is

simply derived from the overlap of wave functions. However, one may expect the scalar

wave function to be subject to substantial corrections in non–supersymmetric theories. In

section 4.1.10 we will argue that magnetized tori may not comply with these expectations,

and that this formula may even be a good leading–order result in a non–supersymmetric

theory. The normalization factors in equation (4.1.38) are

Nabc = g σabc

(
2 Im τ

A2

)1/4

λ
1/4

∣∣∣∣ 1I ′
bc

∣∣∣∣1/2 (4.1.39)

with g being the gauge coupling. In equation (4.1.64) we will express the normalization in

terms of Kähler potential terms. Notice that if there are nontrivial relative Wilson lines,

the normalization of the fields changes compared to the case without Wilson lines [30, equa-

tion (7.37)]. This has to be taken into account when computing physical Yukawa couplings.

In what follows, we will set the Wilson lines to zero, leaving the detailed study of their

impact on the modular flavor symmetries for future work. As mentioned above, the selection

rule (4.1.24) entails a Zd symmetry. As we discuss in more detail in appendix B.4, out of a

priori P = λ d2 entries, at most λ/2 + 1 are distinct.
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Modular Groups and Modular Forms of Matter Fields

We have reviewed most of the mathematical prerequisites of modular forms and modular

symmetries in section 1.2.1. In this short subsection, we note the modular transformation

properties of the matter fields. As already noted, [49] proposes that Yukawa couplings in

quantum field theories can be modular forms, whereas, despite not being modular forms,

“matter” superfields ϕi transform under a general modular transformation γ ∈ Γ as

ϕi
γ7−−→ (c τ + d)kϕ ρs(γ)ij ϕ

j . (4.1.40)

Here ρs(γ) is the s-dimensional (reducible or irreducible) Γ′
N representation matrix. As for

modular forms, the powers kϕ are also known as modular weights and are identical for the

fields in the transformation. Thus, matter fields build a representation of the finite modular

group Γ′
N , which can be adopted as a symmetry of the underlying (quantum) field theory.

In this scenario, Γ′
N can be considered a “modular flavor symmetry”.

In string–derived models, it is known that matter fields are subject to modular transforma-

tions similar to equation (4.1.40). Moreover, Yukawa couplings also transform as in equa-

tion (1.24). However, as we shall see in this section, the modular weights can be fractional

and, hence, the emerging modular flavor symmetry is not necessarily one of the Γ′
N . Yet,

to obtain fractional modular weights it is not necessary to go all the way to strings, they

already emerge from simpler settings such as magnetized tori (see e.g. [68,70–74,78,98]). As

we discuss in detail in detail in section 4.1.5, this follows already from the τ–dependence of

the normalization of the wave functions [30].

Finally, in field theories endowed with Γ̃4N symmetries, the modular transformations of

matter fields are given by

ϕi
γ̃7−−→ φ(γ, τ)kϕ ρs(γ̃)ij ϕ

j , (4.1.41)
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object ψj,M ϕj,M Ωj,M Yijk W

modular weight k 1/2 −1/2 0 1/2 −1

Table 4.1.1: Modular weights of the T2 wave functions ψj,M , 4D fields ϕj,M , 6D fields Ωj,M , Yukawa
couplings Yijk, and superpotential W .

where ρs(γ̃) is now a (reducible or irreducible) Γ̃4N representation. As we shall see, this

behavior is natural in toroidal compactifications with magnetic fluxes.

4.1.5 Normalization of the Wave Functions and Modular Weights

The wave functions in equation (4.1.1) satisfy

∫
T2

d2z |ψj,M(z, τ, ζ)|2 = A
1∫

0

dx

1∫
0

dy |ψj,M(x+ τ y, τ, ζ)|2 !
= 1 , (4.1.42)

where T2 denotes the fundamental domain of the torus, cf. appendix B.2. The normalization

constant N ∝ (Im τ)−1/4 in equation (4.1.2) is chosen in such a way that the normalization

condition (4.1.42) holds. This implies, in particular, that the Kähler metric is proportional

to (Im τ)−1/2, i.e.

Kīı ∝
1

(Im τ)
1/2

, (4.1.43)

i.e. the modular weight of the 4D fields ϕj,M describing the zero modes is kϕ = −1/2. We

survey the modular weights of the fields, coupling and superpotential in table 4.1.1. The

modular weights kψ of the wave functions can be inferred from their normalization factor N

in equation (4.1.2) to be kψ = +1/2, as we shall also confirm through their explicit modular

transformations, equation (4.1.62). Therefore, the 6D fields,

Ωj,M = ϕj,M(xµ)⊗ ψj,M(z, τ) , (4.1.44)
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have trivial modular weights, as they should. The modular weights of the Yukawa couplings,

kY = 1/2, can be explicitly determined from their modular transformations, equations (B.5.8)

and (B.5.10). Since the superpotential terms describing the Yukawa couplings involve three

4D fields and one coupling “constant”, the superpotential W has modular weight kW =

3kϕ + kY = −1. This means that under a modular transformation the superpotential picks

up an automorphy factor

W
γ7−−→ (c τ + d)−1W . (4.1.45)

The automorphy factor (c τ + d)−1 can in general be “undone” by so–called Kähler transfor-

mations [121], under which

W 7→ e−F (Φ) W (Φ) , (4.1.46a)

K(Φ,Φ) 7→ K(Φ,Φ) + F (Φ) + F (Φ) , (4.1.46b)

where Φ denotes the collection of 4D superfields, and F a holomorphic function. In our

case, the Kähler potential is, after setting the “matter” fields to zero and at the classical

level, given by (cf. e.g. [30, equation (5.50)])

K̂ = − ln(S + S)− ln(T + T )− ln(U + U) ⊂ K , (4.1.47)

in terms of the axio–dilaton S, the Kähler modulus T and the complex structure modulus U .

These chiral fields are related to the gauge coupling g, the torus volume A and τ according to

ReS ∝ 1/g2, Re T ∝ A and ReU = Im τ . Consequently, τ appears in the Kähler potential

as

− ln(U + U) = − ln(−i τ + i τ̄) . (4.1.48)
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Given that

τ − τ̄
γ7−−→ |c τ + d|−2 (τ − τ̄) , (4.1.49)

it is easy to see that K under a modular transformation of τ becomes

K
γ7−−→ K + ln(c τ + d) + ln(c τ̄ + d) . (4.1.50)

A Kähler transformation (4.1.46) with F = − ln(c τ + d) then absorbs simultaneously the

modular transformation of K and W , see equation (4.1.45), yielding a modular invariant

supersymmetric theory. That is, the supergravity Kähler function

G(Φ,Φ) = K(Φ,Φ) + ln|W (Φ)|2 (4.1.51)

is automatically invariant under the simultaneous transformation (4.1.45) and (4.1.50). In

other words, we cannot dial the modular weight of the superpotential at will, it is already

determined by the (classical) Kähler potential of the torus (4.1.47). In particular, setting

the modular weight of the superpotential to zero is not an option in this approach, we derive

modular flavor symmetries from an explicit torus.

4.1.6 Boundary Conditions for the Transformed Wave Functions

It has been stated in the literature [71,98] that the wave functions given by equation (4.1.1)

do not satisfy the boundary conditions given by the lattice periodicity when transformed

under equation (1.21) for odd units of flux, M . If true, this would mean that a physical wave

function gets mapped to an unphysical one just by looking at an equivalent torus, which

would indicate that either the expressions for the wave functions were incorrect, or there

is something fundamentally wrong with odd M . In this case, simple explanations of three
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generations would be at stake.

However, as we shall see, the transformed wave functions do obey the correct boundary

conditions, both for even and odd M . The important point is that, if our original wave

function ψj,M(z, τ, 0) satisfied conditions for τ , after a modular transformation τ 7→ τ ′ the

transformed wave function ψj,M(z, τ ′, 0) needs to fulfill the conditions for τ ′, and not for τ .

For the modular S transformations, the boundary conditions, given by equations (4.1.8a)

and (4.1.8b), are now

ψj,M
(
−z
τ
+ 1,−1

τ
, 0

)
= exp

(
iπM

Im(−z/τ)

Im(−1/τ)

)
ψj,M

(
− z

τ
,−1

τ
, 0

)
= exp

(
− iπM

Im zτ̄

Im τ

)
ψj,M

(
− z

τ
,−1

τ
, 0

)
, (4.1.52a)

ψj,M
(
− z

τ
− 1

τ
,−1

τ
, 0

)
= exp

(
iπM

Im(−z/τ)(−1/τ̄)

Im(−1/τ)

)
ψj,M

(
− z

τ
,−1

τ
, 0

)
= exp

(
iπM Im z

Im τ

)
ψj,M

(
− z

τ
,−1

τ
, 0

)
. (4.1.52b)

The fact that the transformed wave functions follow the boundary condition is a consequence

of the wave functions being functions of z and τ , which we can just replace by their image

under S. Nonetheless we verify this explicitly in appendix B.3.1.

Next, under the modular T transformation given by equation (1.21) the transformed bound-

ary conditions, equations (4.1.8a) and (4.1.8b), are

ψj,M(z + 1, τ + 1, 0) = exp

(
i
πM

Im τ
Im z

)
ψj,M(z, τ + 1, 0) , (4.1.53a)

ψj,M(z + τ + 1, τ + 1, 0) = exp

(
i
πM

Im τ
Im
(
(τ̄ + 1)z

))
ψj,M(z, τ + 1, 0) . (4.1.53b)

We can make the same argument as above but also verify the statement explicitly in ap-

pendix B.3.2.
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However, the transformed wave function equation (B.3.6), i.e. the wave functions “living” on

a torus with torus parameter τ ′ = τ + 1 do not follow the original boundary conditions of

equations (4.1.8a) and (4.1.8b) with τ . Indeed, from equation (B.3.6) we get

ψj,M(z + τ, τ + 1, 0) = Ñ e
iπM
Im τ

[z Im z+z Im τ+τ Im z+τ Im τ ]ϑ

[
j
M
M
2

]
(Mz +Mτ,Mτ)

= Ñ e
iπM
Im τ

[z Im z+z Im τ+τ Im z+τ Im τ ]e−iπMτ−2πi (Mz+M
2
)ϑ

[
j
M
M
2

]
(Mz,Mτ)

= e−πiMe
iπM
Im τ

(z Im τ+τ Im z+τ Im τ−τ Im τ−2z Im τ)Ñ eiπMz Im z
Im τ ϑ

[
j
M
M
2

]
(Mz,Mτ)

= e−πiM exp

(
i
Mπ

Im τ
Im τ̄ z

)
ψj,M(z, τ + 1, 0) , (4.1.54)

where Ñ := e−iπ j
(
1− j

M

)
N and we have used equation (B.1.5b) in the second line. Thus, we

find that

ψj,M(z + τ, τ + 1, 0) = e−πiM exp

(
i
Mπ

Im τ
Im τ̄ z

)
ψj,M(z, τ + 1, 0) . (4.1.55)

Therefore, for odd M equation (4.1.55) differs from equation (4.1.8b) by a phase. However,

there is also no reason why the transformed wave functions should obey boundary conditions

for τ instead of τ ′ = τ + 1. Nevertheless, this fact will have important implications for the

explicit form of the T–transformation, as we shall see in section 4.1.7.

4.1.7 Modular Flavor Symmetries

Modular Transformations of the Wave Functions ψj,M

Crucially, physics should not depend on how we choose to parametrize the underlying torus.

That is, if we subject the half–period ratio τ of the torus to a modular transformation, the

physical predictions of the theory have to stay the same. This means that there should be
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a dictionary between theories with seemingly different but equivalent values of τ , which are

related by modular transformations.

Let us now study the action of T , under which z 7→ z and τ 7→ τ +1. We wish to establish a

dictionary between the wave functions on a torus with parameter τ and an equivalent torus

with parameter τ + 1. Let us now consider [71, equation (37)],

ψj,M(z, τ, 0)
T7−−→ ψj,M(z, τ + 1, 0) = eiπ

j2

|M| ψj,M(z, τ, 0) . (4.1.56)

As shown in [71], this relation holds for even units of magnetic flux M . However, for odd M

a relation of the form

ψj,M(z, τ + 1, 0) =
M−1∑
j′=0

[ρ(T )]jj′ ψ
j′(z, τ, 0) (4.1.57)

cannot be true because according to equation (4.1.55) both sides have different periodicities.

That is, on the left–hand side of the equality (4.1.56) we see a function that is supposed to

be “periodic” under z 7→ z + τ ′ whereas on the right–hand side the function is supposed to

be “periodic” under z 7→ z + τ . According to equation (4.1.55), for odd M only one of these

“periodicities” can hold.

At first sight, this statement may appear odd. One might think that the zero modes ψj,M

form a basis of eigenmodes of the Dirac operator with eigenvalue 0. So one may expect

that the transformed wave functions can be expanded in terms of the original ones as in

equation (4.1.57). However, this argument is incorrect. When we write down our wave

functions we make a choice for the origin of the torus. A priori there are arbitrarily many

choices possible, which may be parametrized by ∆z in ψj,M(z + ∆z, τ, 0). So, on general
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grounds we only know that

ψj,M(z, τ + 1, 0) =
M−1∑
j′=0

[ρ(T )]jj′ ψ
j′(z +∆z, τ, 0) (4.1.58)

for some appropriate real constant ∆z. As we shall see, an appropriate choice of ∆z will

allow us to express the transformed wave functions in terms of the original one also for odd

M . More concretely, we will impose that z 7→ z +∆z, with some real constant ∆z that we

are going to find. Inserting this ansatz leads to (cf. equation (B.3.9))

ψj,M(z +∆z, τ + 1, 0) = Ñ eiπM∆z Im z
Im τ eiπMz Im z

Im τ ϑ
[

j
M

0

]
(M(z +∆z + 1/2),Mτ) (4.1.59)

Thus, if N := M(∆z + 1/2) is an integer, we might use equation (B.1.5a), which we recast

here in a slightly different form

ϑ
[

j
M

0

]
(Mz +N, τ) = e2πiN α ϑ

[
j
M

0

]
(Mz,Mτ) , (4.1.60)

to get rid of the extra factor in the z coordinate of the ϑ function. Finally, after the

redefinition z 7→ z −∆z, we obtain

ψj,M(z, τ, 0)
T7−−→ eiπM∆z

Im(z)
Im τ eiπ

j2

|M|+2iπj∆z ψj,M(z −∆z, τ, 0) . (4.1.61)

Note that in order to get an integer N , it is sufficient to demand an integer or half–integer

∆z for even M . For ∆z = 0 equation (4.1.61) reproduces equation (4.1.56). However, for

odd M we need a half–integer ∆z. Specifically, for ∆z = 1/2 we find that (see appendix B.3
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for details)

ψj,M(z, τ, 0)
S7−−→ ei

π
4

√
M

(
− τ

|τ |

)1/2 M−1∑
k=0

e2πijk/M ψk,M(z, τ, 0)

= −
(
− τ

|τ |

)1/2[
ρ(S)ψM

]
jk
ψk,M(z, τ, 0) , (4.1.62a)

ψj,M(z, τ, 0)
T7−−→ eiπM

Im z
2 Im τ eiπj(j/M+1) ψj,M(z − 1/2, τ, 0)

= eiπM
Im z
2 Im τ

[
ρ(T )ψM

]
jk
ψk,M(z − 1/2, τ, 0) , (4.1.62b)

where

[
ρ(S)ψM

]
jk

:= − eiπ/4√
M

exp

(
2πi j k

M

)
, (4.1.63a)[

ρ(T )ψM

]
jk

:= exp

[
iπ j

(
j

M
+ 1

)]
δjk . (4.1.63b)

As we shall confirm shortly in equation (4.1.73), the matrices (4.1.63) equal, up to a phase in

equation (4.1.63a), representation matrices of the generators of finite metaplectic modular

groups. They are compatible with [58, 70–72], but (4.1.63a) differs from [98] by the eiπ/4

phase. For even M , the T transformation can rather be represented as in equations (4.1.62)

and (4.1.63) or equation (4.1.56) due to the freedom of choosing half–integer or integer

∆z. However, since the Yukawa integral involves wave functions with both odd and even

fluxes M , we need to be consistent in our choice of ∆z to cancel the z–dependent phase

appearing in equation (4.1.62b) (cf. equation (B.5.3)). Specifically, we need ∆z = 1/2 for

the T transformation also for even M , in which case our results differ from [58, 70, 71,

98] by phase factors which are absent in equation (4.1.56). Nevertheless, the modular T

transformation of the 2D compact wave functions for odd M was excluded in [58,70,71,98].

In [72] they were introduced through the so–called Scherk–Schwarz phases. In particular, our

equations (4.1.62) and (4.1.63) are consistent with their discussion in [72, equation (126)].

However, as discussed in section 4.1.6, we disagree with the statement made in [58, 70–72,
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98] that the modular transformed wave functions do not follow the appropriate boundary

conditions. As we have shown, the T transformation can generally not be represented by a

matrix multiplication of the set of wave functions, but necessarily goes beyond this. However,

as we discuss in appendix B.5, the extra exponential factors in equation (4.1.62b) get canceled

in the overlap integral (4.1.10), thus allowing us to define a matrix representation for the

transformation of the 4D fields, which derive from equation (4.1.63).

Modular Flavor Symmetries in the Effective 4D Theory

Let us now define proper “modular flavor transformation” for the 4D fields. The first thing

to notice is that these transformations cannot be unique, at least not in models of this type.†

The reason is that there are additional symmetries at play, such as the remnant gauge factors,

and we can always add an extra transformation to our transformation law. That is to say that

the details of the representation matrices of a modular flavor symmetries acting on the fields

are somewhat ambiguous. Let us start with something unambiguous: the transformation of

the Yukawa couplings. As we have seen in equation (4.1.38), there are a priori λ Yukawa

couplings, out of which at most λ/2 + 1 are independent, as shown in appendix B.4.

Let us make an important distinction between “physical Yukawa coupling” Yijk and “holo-

morphic Yukawa couplings” Yijk [67], which are related by (cf. [30, equation (5.41)])

Yijk(τ) = eK̂/2
Yijk(τ)

(KīıKjȷ̄Kkk̄)
1/2

. (4.1.64)

Here, K̂ stands for the Kähler potential of the moduli, which is, in our truncated setup, at

tree level given by equation (4.1.47). The formula for the Yukawa couplings (4.1.38), which

we obtained from the overlap integral (4.1.10), contains the normalization factor (4.1.39),
†It has been suggested that the modular flavor symmetries can be defined by the requirement that the

6D fields remain invariant [98]. However, apart from the fact that this prescription fails for odd M since the
2D coordinates gets shifted (cf. equation (4.1.62b)), it is not clear to us why one should impose this very
requirement.
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which is not holomorphic. In our case, the matter field Kähler metric is proportional to

(Im τ)−1/2 (cf. equation (4.1.43)), so (cf. [30, section 5.3])

eK̂/2

(KīıKjȷ̄Kkk̄)
1/2

= Nabc ∝ g

(
Im τ

A2

)1/4

. (4.1.65)

While Yijk(τ) is normalized and thus “physical”, it is not holomorphic. On the other hand,

the superpotential coupling

Yijk(τ) = ϑ

α̂ijk/λ
0

(0, λ τ) (4.1.66)

is a proper modular form. Here, we have made use of the fact that the upper characteristic

is of the form α̂ijk/λ with some integer α̂ijk, cf. the discussion below equation (4.1.38), and

we set, as done throughout this section, the Wilson lines to zero. Further, all additional

non–zero factors appearing in equation (4.1.38) must be included in the Kähler potential,

so that they are canceled in the holomorphic couplings through the redefinition (4.1.64).

The holomorphic coupling Yijk(τ) differs from the physical coupling between canonically

normalized fields by a non–holomorphic factor. The modular transformations are seemingly

non–unitary because of the automorphy factor has generally not modulus 1. However, the

automorphy factors get canceled, cf. our discussion below equation (4.1.71).

As shown in appendix B.5, the λ–plet of Yukawa couplings transforms with the simple

transformation law

Yα̂(τ)
γ̃7−−→ Yα̂(γ̃ τ) = ±(c τ + d)

1/2 ρλ(γ̃)α̂β̂ Yβ̂(τ) , (4.1.67)

where α̂ and β̂ are integers that label the distinct Yukawa couplings, and we use the meta-

plectic element γ̃ ∈ Γ̃ instead of γ ∈ Γ because the Yukawa couplings have weight kY = 1/2.
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The transformation matrices of the modular generators are given by

ρλ(S̃)α̂β̂ = −eiπ/4√
λ

exp

(
2πi α̂ β̂

λ

)
, (4.1.68a)

ρλ(T̃ )α̂β̂ = exp

(
iπ α̂2

λ

)
δα̂β̂ . (4.1.68b)

These matrices are symmetric and unitary, so that

[ρλ(S̃)α̂β̂]
−1 = [ρλ(S̃)α̂β̂]

∗ and [ρλ(T̃ )α̂β̂]
−1 = [ρλ(T̃ )α̂β̂]

∗ . (4.1.69)

Since there can be relations between the Yukawa couplings, this may not be an irreducible

representation. The relations between the Yukawa couplings depend on the choice of fluxes.

We will specify the irreducible representations of the Yukawa couplings in our survey of

models in section 4.1.8. The modular transformations of the Yukawa couplings given by

equation (4.1.10) were also studied in [98]. Although an explicit general formula for any

combination of Iαβ was not given in their work, our results from equation (4.1.68) match

their result up to the phase ei
π
4 in the model described in section 4.1.8. This phase is crucial

to have the transformation matrices (4.1.68) satisfy the presentation (1.31) and, thus, give

rise to representations of a finite metaplectic modular group, as was noted in [58]. Note also

that there is an extra minus in our equation (4.1.68) compared to [98, equations (64) and

(108)] and [58]. However, this sign comes only from our convention that the automorphy

factor is φ(S, τ) = −
√
−τ in equation (1.30).

Next, we discuss modular flavor symmetries. They are, by definition, symmetry transforma-

tions of the 4D Lagrange density. In our present discussion, we are thus seeking transforma-

tions of the 4D fields, ϕj,M , which are such that superpotential couplings

W ⊃ Yijk(τ)ϕi,Iab ϕj,Ica ϕk,Icb (4.1.70)
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are invariant up to Kähler transformations, cf. the discussion around (4.1.45). Here, Icb =

−Ibc = Iab + Ica > 0. That is, our modular flavor transformations are given by

ϕj,M
γ̃7−→ ±(c τ + d)−

1/2
[
ρϕM(γ̃)

]−1

jk
ϕk,M . (4.1.71)

Notice that, due to equations (4.1.67) and (4.1.71), the superpotential acquires modular

weight kW = −1, see equation (4.1.45). The corresponding automorphy factor gets canceled

by the transformation of τ in the Kähler potential followed by a Kähler transformation,

see our discussion around equation (4.1.49). Therefore, the requirement that the modular

transformations be a symmetry amounts to demanding that

Yijk(γ̃ τ)
[
ρϕIab

(γ̃)
]−1

ii′
ϕi

′,Iab
[
ρϕIca

(γ̃)
]−1

jj′
ϕj

′,Ica
[
ρϕIcb

(γ̃)
]−1

kk′
ϕk

′,Icb

!
= Yijk(τ)ϕi,Iab ϕj,Ica ϕk,Icb . (4.1.72)

As already mentioned, this condition does not fix the transformation laws of the 4D fields

uniquely. However, we can use the transformation properties of the T2 wave functions,

(cf. equations (B.5.3) and (B.5.4)), to infer the matrix structure of the transformations.

One way in which we may infer the transformations of the 4D fields is by using the quasi–

inverse transformations of the compact wave functions, that is, the inverse transformations

of equation (4.1.63). However, a more convenient choice is

ρϕM (S̃)jk = −eiπ(3M+1)/4

√
M

exp

(
2πi j k

M

)
, (4.1.73a)

ρϕM (T̃ )jk = exp

[
iπ j

(
j

M
+ 1

)]
δjk , (4.1.73b)

where we have chosen the transformation (4.1.63a) multiplied by a phase e3iπ
M
4 in the S

matrix representation. These matrices fulfill equation (4.1.69), too. This choice has the

virtue that ρM (γ̃) = [ρM (γ̃)]∗ and that, as we will demonstrate in section 4.1.8, it yields the
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correct representation matrices for the group Γ̃2λ.

We also note that, as far as the Yukawa couplings are concerned, there is a U(1) symmetry

due to the condition of equation (4.1.12), which acts as

ϕj,Iαβ
U(1)7−−−→ eiqα Iαβϕj,Iαβ , (4.1.74)

where α, β ∈ {a, b, c} as in equation (4.1.11). Here, ϕIab , ϕIca have a charge +1 and ϕIcb a

charge −1. This U(1) factor allows one to install “extra” phases of the above type. Note

that while the T–transformed wave functions, for odd M , cannot be expanded in terms

of untransformed wave functions, the additional factor in our dictionary (4.1.62b) cancels

in the overlap integrals (4.1.10) so that there is a meaningful, well–defined modular flavor

transformation of the 4D fields also for odd M . Our proposal in equation (4.1.73) for

the transformations of 4D fields ϕj,M for even values of M differs from the results in [98].

While [98] assumes that the modular transformations of the 4D fields coincide with those of

the 2D wave functions, we assume the 4D fields transform quasi–inversely to the 2D wave

functions. Furthermore, we have an extra phase e3iπ
M
4 , which is useful to achieve metaplectic

group representations. Note that we specify the T transformation, rather than just the T 2

representation as in [98].

4.1.8 An Example Model

In this subsection, we note an important toy model. While far from realistic, this highlights

how modular flavor symmetries derive from some simple magnetized tori with even and odd

numbers of repetitions of matter fields. For the example model will use the representation

matrices stated in equation (4.1.73) for the Icb–plet of ϕk 4D fields, while the Iab–plet of ϕi

and Ica–plet of ϕj 4D fields will transform in the conjugate representation. On the other

hand, the λ–plet of Yukawa couplings will follow the representation matrices found in equa-
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tion (4.1.68). We will show that the modular flavor symmetries in such models are given by

Γ̃2λ with λ being the least common multiple of matter repetition numbers (4.1.32b). Further-

more, using equation (4.1.33) one can see that for a fixed total number of Yukawa couplings

P , the largest number of independent Yukawa couplings, that is the largest λ, is obtained

by having the least possible d. Although we have proposed the representation matrices for

the 4D fields in equation (4.1.73), the ones for the Yukawa couplings equation (4.1.68) are

unambiguous. For the model we discuss here, we will find that the representations ρλ sat-

isfy equation (1.31) together with the finiteness conditions (1.32)–(1.33) for N = 2, 3, with

λ = 2N . Thus, the modular transformations of the Yukawa couplings build representations

of the finite metaplectic group Γ̃2λ. In [58] it was also noted that, for even numbers of

flavors, the Yukawa couplings transform as a λ–plet under the metaplectic group. However,

in [58] it does not get mentioned that for λ > 2 this representation is reducible, which is

rather easy to see from our general compact expression (4.1.38), but less obvious when one

represents the Yukawa coupling as the sum (4.1.22). Moreover, we will demonstrate that the

transformations of the 4D fields encoded in ρϕIαβ
build representations of the same group, so

that Γ̃2λ can be regarded as the modular flavor symmetry of the models. We are hence led

to conjecture that, with λ from equation (4.1.32b),

magnetized tori with λ = lcm(# of flavors) exhibit a Γ̃2λ modular flavor symmetry .

(4.1.75)

Model with Iab = Ica = 3 and Ibc = −6

Let us consider a three generation toy model, based on a super–Yang–Mills theory in six

dimensions with gauge group U(4) [98]. The two extra dimensions are compactified on T2,
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field
SU(2)× U(1)a × U(1)b × U(1)c

quantum numbers # of copies

L 2(1,−1,0) Iab = 2− (−1) = 3

R 1(0,+1,−1) Ibc = −1− (5) = −6

H 2(−1,0,1) Ica = 5− (2) = 3

Table 4.1.2: Matter content of the 336 model.

and the U(4) gauge symmetry gets broken to SU(2)× U(1)a × U(1)b × U(1)c by the fluxes

F =
πi

Im τ


12×2 0 0

0 −3 0

0 0 3

 , (4.1.76)

where we used equation (4.1.9). The chiral matter content of the supersymmetric model is

given in table 4.1.2. They decompose into three generations of L particles, six generations of

R particles and three generations of H particles. The superpotential of this model is given

by

W ⊃ YijkLiHjRk , (4.1.77)

where the (holomorphic) Yukawa couplings are given by equation (4.1.38),

Yijk(τ) = ϑ
[

k−2j
6

0

]
(0, 6τ) . (4.1.78)

Here we used the values from table 4.1.2 and assumed zero Wilson lines. The explicit

transformation matrices for the Li and Hj are given by (4.1.73) for M = 3, and are the
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conjugates of

ρϕ3(S̃) = − 1√
3


i i i

i e−
5iπ
6 e−

iπ
6

i e−
iπ
6 e−

5iπ
6

 and ρϕ3(T̃ ) =


1 0 0

0 e−
2iπ
3 0

0 0 e−
2iπ
3

 . (4.1.79)

The explicit transformation matrices for the Rk fields are given by equation (4.1.73) for

M = 6

ρϕ6(S̃) = −i
ei

π
4

√
6



1 1 1 1 1 1

1 e
πi
3 e

2πi
3 −1 e−

2πi
3 e−

πi
3

1 e
2πi
3 e−

2πi
3 1 e

2πi
3 e−

2πi
3

1 −1 1 −1 1 −1

1 e−
2πi
3 e

2πi
3 1 e−

2πi
3 e

2πi
3

1 e−
πi
3 e−

2πi
3 −1 e

2πi
3 e

πi
3


, (4.1.80a)

ρϕ6(T̃ ) = diag
(
1, e−

5πi
6 , e

2πi
3 , i, e

2πi
3 , e−

5πi
6

)
. (4.1.80b)

As discussed at the end of section 4.1.2, there are only λ/2 + 1 = 4 independent Yukawa

couplings,‡

Y0 := Yi=j,j,k=2j , Y1 := Yi=j+1,j,k=2j+1 = Y5 := Yi=j+2,j,k=2j+5 , (4.1.81a)

Y3 := Yi=j,j,k=2j+3 , Y2 := Yi=j+2,j,k=2j+2 = Y4 := Yi=j+1,j,k=2j+4 , (4.1.81b)

where i and j are understood to be modulo 3, and k modulo 6. The six–plet of holomorphic

Yukawa coupling coefficients Y6 = (Y0,Y1,Y2,Y3,Y4,Y5)
T obeys the transformation law

‡The relations given in equation (4.1.81) are valid for both holomorphic and non–holomorphic Yukawa
couplings.
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equation (4.1.67) under modular transformations, with the matrix representations

ρ6(S̃) = −i ρϕ6(S̃) and ρ6(T̃ ) = diag
(
1, e

πi
6 , e

2πi
3 ,−i, e

2πi
3 , e

πi
6

)
. (4.1.82)

However, the 6 × 6 matrices can be reduced to a 4–dimensional representation due to the

relation between the Yukawa couplings in equation (4.1.81). Using the projection matrix

P6→4 =



1 0 0 0

0 1√
2

0 0

0 0 1√
2

0

0 0 0 1

0 0 1√
2

0

0 1√
2

0 0


, (4.1.83)

we can define the 4–plet of independent Yukawa couplings through Y4 = P T
6→4Y6 , which

transform as modular forms with the representation matrices given by

ρ4(S̃) = P T
6→4ρ6(S̃)P6→4 = − ei

π
4

√
6



1
√
2

√
2 1

√
2 1 −1 −

√
2

√
2 −1 −1

√
2

1 −
√
2

√
2 −1


, and (4.1.84a)

ρ4(T̃ ) = P T
6→4 ρ6(T̃ )P6→4 =



1 0 0 0

0 e
πi
6 0 0

0 0 e
2πi
3 0

0 0 0 −i


. (4.1.84b)
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The representation matrices in equations (4.1.79), (4.1.80), (4.1.82) and (4.1.84) fulfill the

conditions (1.31) for N = 3 and (1.33), which implies that this model exhibits a Γ̃2λ=12

finite modular symmetry of order 2304. The fact that there are only four distinct Yukawa

entries implies that the 6–dimensional representation of the Yukawa couplings decomposes

into Γ̃12 irreducible representations according to 6 = 4 ⊕ 2, as we have confirmed, where

the doublet vanishes. As we shall discuss below, this can be also attributed to the existence

of an outer automorphism. Using the character tables (cf. [103, section 3.4]), we find that

the matter triplets and six–plets are reducible as well, 3 = 2′′ ⊕ 1′ and 6′ = 4′ ⊕ 2′, where

we added primes to indicate that these are different representation matrices, and that the

singlet is nontrivial. We have verified that the reducible representation 6′ provides us with a

faithful representation content of Γ̃12 and its tensor products yield all other representations

of the group. The six Yα̂ have been identified in [98], where they have been represented as

sums of three different ϑ–functions each, and the relations Y1 = Y5 and Y2 = Y4 have been

missed. The latter relations are actually quite interesting as they can be thought of as i ↔ j

exchange symmetries,

Yijk(τ) = Yjik(τ) . (4.1.85)

However, the wave functions labeled i and j, i.e. the Li and Hj, have different quantum

numbers in 4D (and in the upstairs theory). This means that this symmetry is not an

“ordinary” flavor symmetry but an outer automorphism of the low-energy gauge symmetry.

Note that the existence of this very outer automorphism depends on the specifics of the

model. Examples for such outer automorphisms include the so–called left–right parity [88].

It is known that such symmetries can originate as discrete remnants of gauge symmetries

either by dialing appropriate VEVs [23, 69] or by orbifolding [16]. As the exchange of the

U(1) factors is part of the original U(4) gauge symmetry of the model, we have identified

yet another way in which these outer automorphism can emerge from an explicit gauge
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symmetry.

A geometric interpretation of Yukawa couplings. It is instructive to discuss the

geometrical interpretation of these results. We have derived the couplings by computing the

overlaps of wave functions, see (4.1.10). The result is that, up to a normalization factor, the

Yukawa couplings are given by

Yα̂ ∝ (Im τ)−1/4 ϑ

α̂/λ
0

(0, λ τ) = (Im τ)−1/4

∞∑
ℓ=−∞

e−π λ(Im τ−i Re τ)(α̂/λ+ℓ)2 , (4.1.86)

where we have used equation (B.1.4). Here we choose to highlight the fact that the terms are

exponentially suppressed by e−π λ Im τ ξ with some ξ > 0 in order to compare our result for

the Yukawa couplings with a simple overlap of Gaussians. For simplicity, we just consider

two Gaussians, and consider

y(a, b1, b2) =

∞∫
−∞

dxNb1 e
−x2/b1 Nb2 e

−(x−a)2/b2 =
e−a

2/(b1+b2)

√
π
√
b1 + b2

(4.1.87)

with Gaussian normalization factors Nb = 1/
√
bπ. In order to compute the overlap on the

torus, one does not only have to compute the overlap of a given Gaussian of width b1, say,

with one Gaussian of width b2, but with all images of the second Gaussian under torus

translations. This leads to an expression which is qualitatively similar to the sum on the

right–hand side of equation (4.1.86).

Turning this around, the upper characteristics α̂ in equations (4.1.38) and (4.1.86), or, more

precisely, min
(
|α̂/λ|, |1 − α̂/λ|

)
with 0 ≤ |α̂/λ| < 1, has the interpretation of a “distance

between the loci of the states”, i.e. a in figure 4.1.1. We illustrate this by plotting some

sample Yukawa couplings in figure 4.1.2. This geometric intuition may conceivably provide

us with an understanding of the observed hierarchies of fermion masses. Apart from the
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fundamental
domain

a

Figure 4.1.1: Overlap of two Gaussians on a torus. The overlap of a given, say red, curve is not just
the overlap with one blue curve but with infinitely many of them, thus leading to an expression of
the form (4.1.86).
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Figure 4.1.2: Dependence of the magnitude of the Yukawa couplings Yα̂ for Re τ = 0.1. The
black solid, orange dashed, green dotted and red dash–dotted curves represent α̂ = 0, 1, 2 and 3,
respectively. There is an exponential suppression with Im τ that depends on the “distance” between
the wave functions α̂, i.e. the Im τ dependence is more pronounced for larger α̂.

fact that the kinetic terms are under control, the geometric interpretation may be one of the

strongest motivations for deriving the modular flavor symmetries from explicit tori.

4.1.9 Comments on the Relation to Bottom–up Constructions

As we have seen, the models derived from explicit tori give rise to the finite metaplectic

groups, which have been discussed e.g. in [84] in the context of bottom–up model building.

The models presented here do not attempt to make an immediate connection to particle

phenomenology. At first sight, it seems to be hard to derive the models of [84] from tori for
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at least two reasons:

1. our fields all have modular weight −1/2 while in [84] they come with a variety of weights,

and

2. we have additional symmetries like the outer automorphism symmetry (4.1.85) and

residual gauge factors.

On the other hand, deriving the modular transformations from an explicit higher–dimensional

model has the virtue that normalization of the fields is known at tree level, and that oth-

erwise free parameters get fixed. Of course, the Kähler potential is not exact, apart from

the usual 4D corrections there are additional terms contributing (cf. [36]), yet the point that

there is a zeroth order classical form plus corrections, which are under control. On the other

hand, in the SB approach every invariant Kähler potential is as good as others [27], and there

are thus large uncertainties. An additional benefit of deriving the modular flavor symmetries

from explicit tori is the geometrical intuition one can develop for the Yukawa couplings, cf.

our discussion at the end of section 4.1.8.

One may now wonder if the price that one has to pay for all these benefits is the inability to

construct semi–realistic models. In what follows, we will argue that this is not the case. First

of all, the T2 model is just a building block of a more complete story. As explained in [30],

these models are dual to some intersecting D–brane constructions. Moreover, the couplings

of the latter are closely related to heterotic string compactifications [3], which provide us

with a large number of potentially realistic models [61].§ These more complete settings come

with a variety of modular weights [59]. Second, even if one is not adding more dimensions to

the construction, fields with higher modular weights can emerge as composites of fields with

modular weight −1/2. That is, if “quarks” of a model with an SU(Nc) have modular weights
§We adopt the convention to call models with realistic and unrealistic features “semi–realistic” while

“potentially realistic” models are constructions that have no obviously unrealistic features, but have not yet
been analyzed in enough detail to be called realistic.
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−1/2, then the “baryons” will have weights −Nc/2.

4.1.10 Comments on the Role of Supersymmetry

Let us comment on the role SUSY plays in the discussion. While Cremades et al. work

in a supersymmetric theory, they mention [30, see the beginning of section 5.3] that their

derivation “in principle is valid for toroidal compactifications where supersymmetry might

be broken explicitly”. Of course, if one wants to claim that the couplings that one has

computed are Yukawa couplings, one needs to make sure that one computes the overlap

between two fermionic and one bosonic zero–modes. In supersymmetric models there is no

problem because the superpartners are described by the same wave functions.

In a model without low–energy SUSY one may be worried that quantum corrections lead to

uncontrollable corrections to the wave function of the scalar. This is generally a very valid

concern, yet is as recently been observed that in the magnetized tori there is an interesting

cancellation of corrections to the scalar mass [20, 21, 53, 56]. While this has not yet led to

a complete solution of the hierarchy problem in the SM, it does suggest that in the context

of the very models that we were led to consider for the sake of deriving modular flavor

symmetries the situation is “better” than in other nonsupersymmetric completions of the

SM with a high UV scale. In fact, similar cancellations have been reported in [38], where

they were attributed to modular symmetries.

In a bit more detail, one could imagine a torus compactification in which the Yukawa cou-

plings emerge as outlined in [30], namely as the overlap of three wave functions. These wave

functions describe two fermions and one scalar, such as the SM Higgs. If the scalars remain

light, they will still be approximate zero–modes, and thus the profile is approximately given

by equation (4.1.1). So the Yukawa couplings will, to some good approximation, be the ones

of equation (4.1.10). So supersymmetry is not instrumental for having models with modular
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flavor symmetries.

4.2 Another Concluding Poem

This is another poem I wrote on the work in this chapter:

Take two dimensions you don’t live in,

And put them on a torus.

Add to them the magnetic flux,

And the strings strum into a chorus!

The couplings are now modular forms,

Thus a single theta function,

They look like the wavefunctions did,

Without the GCD assumption!

And the boundary conditions are just fine,

The fluxes are chill being odd,

We get our three generations,

To this please just applaud!
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Chapter 5

Quasi–Eclectic Modular Flavor

Symmetries

(This section is heavily based on the publication with Mu-Chun Chen, Víctor Knapp-Pérez,

Mario Ramos-Hamud, Saúl Ramos–Sánchez and Michael Ratz) [24]

5.1 Eclectic Symmetries

In this thesis, we have primarily concerned ourselves with the problem of the flavor sector:

determining the number of generations, the neutrino masses, Yukawa couplings, etc. We

have seen in chapter 4 that modular flavor symmetries [31,41,49,75,82,84,95,101] present an

exciting new approach to the flavor problem. Very simple settings can, in principle, provide us

with a surprisingly good fit to data while making a comparatively large number of nontrivial,

testable predictions. For more details and models, Feruglio’s paper [51] is a great reference.

What is the new ingredient of Feruglio’s models [49] which appears to make the traditional A4

models [10,86] even more compelling? The challenges in traditional models (see e.g. [65] for

an extended list of examples and references) lie mainly in the flavon sector. More specifically,
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one has to align the flavons at some appropriate values, see e.g. [57] for a discussion and

further references. However, often flavons naturally settle at symmetry–enhanced points

(see e.g. [80]), which are typically not entirely realistic. As a consequence, the traditional

flavor models often require an extended flavon sector, which introduces a number of free

parameters, thus limiting the number of nontrivial predictions. Models with modular flavor

symmetries evade these arguments because the flavons get replaced by multiplets of modular

forms. One then faces the lesser challenge to find, and eventually justify, appropriate values

of the half–period ratio τ which the modular forms depend on. The resulting models are

very elegant and describe data surprisingly well [51].

However, there is a price one has to pay. The modular flavor symmetries, which we will

review in some more detail in Section 4.1.7, are nonlinearly realized. As a consequence,

the Kähler potential is not under control [27], i.e. there is no preferred field basis. This

introduces additional parameters, thus limiting the predictive power of the construction. On

the other hand, in the framework of traditional flavor symmetries the Kähler potential is

under control. It is still subject to possibly important corrections [25, 26], but one has at

least a perturbative expansion in ε = ⟨ξ⟩/Λ, where ⟨ξ⟩ denotes the VEV of a so–called flavon

and Λ is the cut–off scale.

In this chapter, we show that a hybrid scheme allows us to combine the advantages of both

approaches while largely avoiding their limitations. The simplest models of this hybrid

approach have a flavor symmetry of the form

Gflavor = Gtraditional ×Gmodular , (5.1.1)

and a flavon χ, which is charged under both Gtraditional and Gmodular. Once χ acquires a VEV,

the flavor symmetry will be broken to its diagonal subgroup,

Gflavor = Gtraditional ×Gmodular
⟨χ⟩−−−→ Gdiagonal . (5.1.2)
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Matter fields are assumed to transform under Gtraditional, which is why their Kähler potential

is under control [25, 26, 93]. However, after the breaking (5.1.2), their couplings will be

effectively given by modular forms.

Our setup is heavily inspired by the scheme of “eclectic flavor groups” [91], which arise nat-

urally in string models [12,92,93] and magnetized toroidal compactifications [98]. Generally

in top–down models (cf. e.g. [5,73,74,78]) one can, at least in principle, compute the Kähler

potential, but at this point it is probably also fair to say that this approach has not yet

provided us with completely realistic predictive models. These groups are the result of com-

bining nontrivially a traditional and a modular flavor group, such that Gmodular is a subgroup

of the outer automorphisms of Gtraditional. Hence, eclectic groups represent a more complex

hybrid scheme than Equation (5.1.1), sharing the feature of a controlled Kähler potential

due to Gtraditional. The purpose of the present work is to show how one can, in a bottom–up

effective field theory (EFT) approach, combine modular flavor symmetries with perturbative

control over the Kähler potential. We leave the question of an explicit stringy completion

for future work.

5.1.1 Modular and Eclectic Flavor Symmetries

The half–period ratio or modulus τ of a torus does not uniquely characterize a given torus.

Rather, different τ related by transformations in the so–called modular group PSL(2,Z)

describe the same torus. Under an arbitrary element γ ∈ PSL(2,Z), the modulus and

matter superfields Φj transform as

τ
γ7−−→ γ τ :=

a τ + b

c τ + d
, (5.1.3a)

Φj
γ7−−→ (c τ + d)kj ρrj

(γ) Φj , where γ :=

a b

c d

 (5.1.3b)
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with det γ = 1 and a, b, c, d ∈ Z. Further, kj denotes the so–called modular weight of

the matter superfield Φj, which can build an rj–dimensional representation of some finite

modular group∗ ΓN , N = 2, 3, . . .. ρrj
(γ) corresponds to the rj× rj matrix representation of

γ in the finite modular group. This transformation of the matter fields indicates that ΓN can

be regarded as a modular flavor symmetry [31, 49], which is however nonlinearly realized,

as is evident from Equation (5.1.3a). Finally, note that the action of the modular flavor

symmetry is accompanied by (cτ + d)kj , which is known as automorphy factor.

Note that, as a consequence of Equation (5.1.3a),

(−iτ + iτ̄)k
γ7−−→
(
(c τ + d)(c τ̄ + d)

)−k
(−iτ + iτ̄)k , (5.1.4)

for an arbitrary k. This implies that an invariant under the finite modular group is given by

(−iτ + iτ̄)kj
(
Φ̄jΦj

)
1
, (5.1.5)

where the subindex 1 refers to the trivial ΓN singlet(s) resulting from tensoring the superfield

Φj with its conjugate.

To complete a supersymmetric model based on modular flavor symmetries, we must specify

its superpotential and Kähler potential. In terms of the matter fields Φj, the superpotential

can be expressed as a polynomial of the form

W (Φ) =
∑
i,j,k

Ŷ (kY )
s (τ) ΦiΦjΦk + higher order terms , (5.1.6)

where Ŷ (kY )
s (τ) are modular forms of level N and modular weights kY transforming as an s–

dimensional representation of ΓN . In general, the superpotential is constrained to transform
∗We restrict here to ΓN finite modular groups, but our discussion can be readily extended to their double

cover Γ′
N and metaplectic extensions (cf. [5, 82–84,96,120,123]).
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according to

W (Φ)
γ7−−→ W (Φ′) := (cτ + d)kW W (Φ) . (5.1.7)

In our case, given our bottom-up approach, we choose the superpotential to be modular

invariant, i.e., kW = 0. This amounts to demanding s⊗r i⊗rj⊗rk
!
⊃ 1 and kY

!
=−ki−kj−kk.

The Kähler potential of matter fields in models endowed with a modular flavor symmetry is

typically assumed to take the canonical form

K (Φ, Φ̄) ⊃
∑
j

(−iτ + iτ̄)kj |Φj|2 , (5.1.8)

as in [49]. However, the nonlinear realization of this symmetry implies that there are ad-

ditional terms with free coefficients, which are at the same footing as the canonical terms,

thus limiting the predictive power of the model [27].

Eclectic Flavor Symmetries

The so–called eclectic flavor symmetries [91] arise naturally in string models [12,92,93] and

magnetized toroidal compactifications [98]. They are given by group–theoretic unions of a

traditional (flavor) symmetry, Gtraditional, and a modular symmetry, Gmodular,

Geclectic = Gtraditional ∪Gmodular , (5.1.9)

such that the modular symmetry is built out of outer automorphisms of Gtraditional, Gmodular ⊂

Out(Gtraditional). The union “∪” in Equation (5.1.9) is to be understood as the multiplicative

closure of the groups.

Crucially, Geclectic has representations which transform nontrivially under both Gtraditional and
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Gmodular. This means that, by giving a VEV to a representation of that kind, we can break

Geclectic to a diagonal subgroup which inherits properties from Gtraditional as well as Gmodular.

Even though eclectic groups can also be built from a bottom–up perspective [91], in this

work we refrain from working out an explicit eclectic model. Rather, in what follows we

will analyze the somewhat simpler situation in which the union “∪” in Equation (5.1.9) gets

replaced by a direct product, i.e. Gquasi-eclectic = Gtraditional × Gmodular. As we shall see, the

emerging scheme is still simple enough to be analyzed and at the same time illustrates how

the desirable properties of Gtraditional and Gmodular get inherited by the diagonal group.

5.2 A Simple Quasi–eclectic Example

5.2.1 Symmetries and Representations

To illustrate the main points of our quasi–eclectic scheme, let us consider a model by Fer-

uglio [49], but with a slight twist. We will take the original flavor symmetry to be

Gflavor = Atraditional
4 × Γ3 , (5.2.1)

where Γ3 can be thought of as a modular version of A4. The quantum numbers of the states

are listed in Table 5.2.1. We take the superpotential to have modular weight kW = 0.

5.2.2 Diagonal Breaking

Let us now assume that the flavon χ attains a “diagonal” VEV, i.e. in the real basis

⟨χai ⟩ = v1 13 . (5.2.2)
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(EC
1 , E

C
2 , E

C
3 ) L Hd Hu χ φ Sχ Sφ Y

SU(2)L × U(1)Y 11 2−1/2 2−1/2 21/2 10 10 10 10 10

Atraditional
4 (10,12 ,11) 3 10 10 3 3 10 10 10

Z
χ
3 0 0 0 1 1 0 1 0 0

Z
φ
3 1 0 1 0 0 1 0 1 0

Γ3 10 10 10 10 3 10 10 10 3

k (kE1 , kE2 , kE3) kL kHd
kHu kχ kφ kS kS kY

modular weights (1, 1, 1) −1 0 0 0 0 0 0 2

Table 5.2.1: Variation of model 1 of [49]. EC
i , L, Hu and Hd are the superfields of the charged

leptons, left–handed doublets, up–type Higgs and down–type Higgs, respectively. Sχ and Sφ are
part of the VEV alignment, see Appendix C.1. In our notation, A4

∼= Γ3 has the representations
3,10,11 and 12, whose tensor products are given e.g. in [49, Appendix C].

In the complex basis, this diagonal VEV has the shape†

⟨χai ⟩ = v1


1 0 0

0 0 1

0 1 0

 . (5.2.3)

We discuss the alignment of the flavon in Appendix C.1. Similarly to Feruglio, we introduce

a flavon φ (as in [49]). Here, a is a Γ3 index and i an Atraditional
4 index. The VEV (5.2.3)

breaks Atraditional
4 × Γ3 to Γdiagonal

3 . Both Γ3 and Γdiagonal
3 are nonlinearly realized.

†The relation between these bases is explained in Appendix C.2.
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5.2.3 Charged Lepton Yukawa Couplings

The charged fermion masses are obtained just like in [49]. Since we assigned them the 10,

11 and 12 under Atraditional
4 , respectively, we can write down superpotential terms‡

We =
ỹe
Λ
Hd(LφE

C
1 )10

+
ỹτ
Λ
Hd(LφE

C
2 )10

+
ỹµ
Λ
Hd(LφE

C
3 )10

, (5.2.4)

which involve the three free parameters ỹe, ỹµ and ỹτ , and the cut–off scale Λ of the model.

Here, a 10 subscript indicates a contraction to a Gflavor singlet. In order to get a diagonal

charged lepton Yukawa coupling matrix, we will take the VEV of φ to be

⟨φi⟩ = v2


1

0

0

 (5.2.5)

in the complex basis and

⟨φi⟩ =
v2√
3


1

1

1

 (5.2.6)

in the real basis, similarly to Feruglio’s model [49]. This choice will be justified in Ap-

pendix C.1. Equation (5.2.4) along with Equation (5.2.5) gives the charged lepton mass

matrix

me = vd
v2
Λ

diag(ỹe, ỹτ , ỹµ) , (5.2.7)

‡Following Feruglio’s model (cf. [49, discussion between Equations (39) and (40)]), we exchange here ỹµ
and ỹτ to best fit data.
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where vd is the VEV of Hd, as usual. Like in [49], we introduced three parameters, ỹe, ỹµ

and ỹτ . These parameters can be used to reproduce the observed charged lepton masses. In

order to reproduce the observed τ lepton mass, ε2 := v2/Λ cannot become too small. This

sector does not really contain any novel ingredients, nor does it by itself make nontrivial

predictions. Some ideas to address the question of fermion mass hierarchies can be found in

e.g. [50, 97,100].

5.2.4 The Weinberg Operator

Like in Feruglio’s model [49] the new ingredients are in the Weinberg operator, which emerges

from the superpotential couplings

Wν =
1

Λ2
[(Hu · L)χ (Hu · L)Y ]10

. (5.2.8)

To construct the couplings at the component level, we first contract Y χ to Γ3 singlets. Since

χ consists of three Γ3 3–plets, we obtain an Atraditional
4 triplet

[(Y χ)(3,10)]i = Y1χ
1
i + Y2χ

3
i + Y3χ

2
i , (5.2.9)

where i is an Atraditional
4 index. Here, (r, r′) means that the contraction transforms as (r, r′)

under Atraditional
4 × Γ3. This Atraditional

4 triplet can be contracted with the unique Atraditional
4

triplet that emerges from combining the Atraditional
4 triplet L with itself,

(LL)(3,10) =
2√
3


L2
1 − L2L3

L2
3 − L1L2

L2
2 − L1L3

 . (5.2.10)
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After inserting the “diagonal” VEV (5.2.3), the effective superpotential coincides, up to an

irrelevant prefactor, with the one proposed in [49],

Wν =
v1
Λ2

[(Hu · L)Y (Hu · L)]10
. (5.2.11)

In particular, the matrix structure of the Weinberg operator is identical to the one in [49].

That is, the neutrino mass matrix is given by

mν =
v2uε1√
3Λ


2Y1(τ) −Y3(τ) −Y2(τ)

−Y3(τ) 2Y2(τ) −Y1(τ)

−Y2(τ) −Y1(τ) 2Y3(τ)

 , (5.2.12)

where ε1 = v1/Λ and vu is the VEV of Hu. Then this matrix has only three free real

parameters: Λ, Re τ and Im τ .

5.2.5 Kinetic Terms

Before χ and φ attain VEVs, the Kähler potential of the charged leptons is diagonal because

of the presence of Atraditional
4 . Therefore, the Kähler potential is under control. After the

breaking to the diagonal flavor symmetry,

KL = L† L+O(ε21) +O(ε22) . (5.2.13)

This is because the corrections to the Kähler potential come from terms involving§ χ and φ.

A priori these terms are not known. In this work we ask how much we can limit the effects

of these terms in a bottom–up approach.
§Terms including the fields L and the modular forms Y (see e.g. [27, Equation (12)]) are restricted by

Atraditional
4 to be just the product of the L† L and Y †Y trivial singlets of Atraditional

4 , and are hence diagonal
too.
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Let us first turn our attention to χ. χ enters the leptonic superpotential only through the

Weinberg operator, yielding Equation (5.2.12). Therefore, we cannot place a stringent lower

bound on the size of v1.

On the other hand, the magnitude of the VEV of φ, v2, is bounded from below by the

requirement to reproduce a realistic τ Yukawa coupling, yτ . The value yτ depends on the

Higgs VEV ratio tan β, yτ =
√
1 + tan2 β mτ/vEW ∼ 10−2

√
1 + tan2 β (at tree level), where

vEW denotes the electroweak VEV. In [31], the best fits to data are obtained for small tan β,

in which case yτ is suppressed, and the lower bound on v2 is less stringent.

At first glance, one may suspect to find linear contributions to the Kähler metric,

K ⊃ (φLL†)10
and/or

(
φEC

i (E
C
i )

†)
10
. (5.2.14)

However, the terms (5.2.14) are forbidden due to the symmetry Zφ3 (cf. Table 5.2.1). Thus,

the first nontrivial flavon–dependent contributions to the Kähler metric are given by (Lφ)†(Lφ)

and (φφ†)(EE†), which we will call ∆KL and ∆KR, respectively. Let us first focus on the

L contribution. Considering the discrete charges of L and φ, we identify seven Atraditional
4

invariant terms from the product (3 ⊗ 3 ⊗ 3 ⊗ 3). After inserting on the VEV of φ (5.2.5),

these are reduced to only three nonvanishing invariant contributions to ∆KL, which are

associated with three independent coefficients Ci. The resulting contribution to the Kähler

metric, in the complex basis, is

∆KL =
v22
3Λ2


3C1 + 4C2 0 0

0 3C1 − 2C2 + 2
√
3C3 0

0 0 3C1 − 2C2 − 2
√
3C3

 , (5.2.15)
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which can be decomposed as

∆KL = ε22

(
C1 13 +

2C2

3
diag(2,−1,−1) +

2C3√
3
diag(0, 1,−1)

)
. (5.2.16)

In the case of the R contribution, after evaluating in Equation (5.2.5), we get nine invariant

terms from which only three are nonvanishing. The resulting contribution, in both complex

and real basis, is

∆KR = ε22 diag(D1, D2, D3) , (5.2.17)

where Di is defined similarly as in Equation (5.2.15).

The impact of these corrections can be estimated using the discussion in [25,26]. We see that

the corrections of the mixing angles come from ∆KL only. Generically, the solar angle θ12 is

the most sensitive angle in a scheme with inverted mass ordering, its correction gets enhanced

by a factor m2
1/∆m

2
sol, which is about 34 in the Feruglio model. The corrections are also

proportional to ε22 = v22/Λ
2 ≳ y2τ . Furthermore since the unperturbed theory has diagonal

kinetic terms, the coefficients of the Kähler corrections are also not arbitrarily large. For

corrections associated with the coefficient Ci of the Kähler metric ∆KL in Equation (5.2.16),

we find

∆θ12 ≃ Ci

( ε2
0.03

)2
·



0 , if i = 1 ,

−0.05 , if i = 2 ,

0.01 , if i = 3 .

(5.2.18)

While an exact computation of the coefficient Ci would require a UV completion of the model

(cf. e.g. [2, 7]), we make the EFT assumption that the coefficients are at most of the order

unity. Equation (5.2.18) shows that, if the correction is proportional to the unit matrix,
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θ12 does not change, as expected. For small tan β, ε2 ∼ 0.03 is possible, and the Kähler

corrections are comparable to the experimental uncertainties. However, for large tan β, the

model we discuss here requires additional ingredients to allow us to make precise predictions.

Altogether we see that the Kähler corrections are controlled by ε2, which also governs the

charged lepton Yukawa couplings. In this regard this bottom–up analysis is somewhat rem-

iniscent of minimal flavor violation (MFV) [22, 28, 34]. We can hence conclude that the

quasi–eclectic scheme presented here allows us to construct predictive bottom–up models

with modular flavor symmetries.
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Chapter 6

Conclusions and Final Words

We have illustrated various modern tools for understanding physics beyond the Standard

Model. In particular, we focused on modular flavor symmetries and non-perturbative dynam-

ics which induce chirality flows in supersymmetric gauge theories. We started by studying

non-perturbative dynamics underlying chirality flows in strongly interacting SUSY gauge

theories. In our analysis, we identified stability conditions for chirally symmetric vacua in

various gauge groups and developed model-building tools to construct multiple models ex-

hibiting chirality flows. We also showed how the straightforward approach that works in

most gauge groups fails in the case of SO groups due to the absence of true s-confinement.

In particular, ‘the s-confining branch’ is unstable, leading to a runaway potential even under

small mass deformations of the theory.

Further, we explored the consequences of chirality-changing RG flows in the context of string

theory. We noted that non-perturbative s-confining dynamics change the effective number of

chiral generations in such stringy models. The non-perturbative dynamics may increase the

number of generations by generating new chiral composites in IR or decrease the generations

due to the appearance of a mass gap. Using the construction of explicit models from string
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compactifications, we highlighted the importance of considering generation flow in the search

for realistic string models by undergoing more thorough analyses.

In the second part, we studied modular flavor symmetries derived from tori with magnetic

fluxes. Using simple mathematical tools, we derived closed-form expressions for Yukawa

couplings for general flux parameters and showed that odd-generation models deriving from

such setups are not inconsistent, contrary to previous papers. This played an important

role in understanding the full symmetry group of the theory, for various models. One very

interesting conclusion here is that, unlike bottom-up approaches, these Yukawa couplings

suffer no ambiguities and are determined exactly in such setups!

Finally, building upon the achievements of Feruglio’s models, we proposed a novel approach

to fix the kinetic terms in bottom-up scenarios, by working in an eclectic scheme. We started

with the product of a modular group and a traditional discrete flavor group and introduced

flavon VEVs that break them into their diagonal subgroups. This helped us build on the

predictive capacity of our framework while aligning vacuum expectation values, and control-

ling the Kähler terms. Due to this, we were able to achieve the desired symmetry-breaking

patterns. This opens up new avenues for exploration of such hybrid schemes not only applied

to neutrino models but also quark sectors.

In summary, we have used non-perturbative physics in supersymmetric theories to show how

the chiral structure of theories can be altered by introducing mass gaps, and how this affects

string model searches. Furthermore, we used modular symmetries in both top-down and

bottom-up approaches to show how these can help build predictive models. As we continue

to explore these in more detail, we might hope to understand new physics emerging from

experiments, with valuable insights from such theoretical structures.

Finally speaking of the PhD journey itself: While there were both bad days and good days,

the support I have received from my advisors, other faculty, my colleagues, and friends has
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been invaluable. The vibrant atmosphere at this department has made UCI the best place I

have ever worked in, and although the future awaits, the PhD life is something I will always,

always miss. I want to finish the conclusions with this poem about my PhD journey:

The road felt infinite ahead of me,

And infinitely steep,

For I didn’t know how long I’d work

And think how deep!

There were many easy days,

And difficult ones, some

Days filled with nervousness and anxiety,

And then the laughter ones would come.

So at the end of this long, great journey

I do feel a bit saddened,

But if something ending makes you sad,

It must’ve been incredible when it happened.
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Appendix A

(This appendix first appeared in the publication with Saul Ramos-Sanchez, Michael Ratz,

Yuri Shirman and Michael Waterbury) [106]

A.1 Orbifold Model Definitions

In the bosonic formulation, a Z2 ×Z4 (1,1) heterotic orbifold compactification is defined by

the shifts V1 and V2 of order 2 and 4, respectively, as well as six discrete Wilson lines Wa,

a = 1, . . . , 6 of order 2. These Wilson lines are restricted to satisfy W1 = W2 and W5 = W6

to be compatible with the Z2 × Z4 point group of the compactification.∗ These parameters

can be used as input in the orbifolder [94] to obtain the corresponding massless spectrum

and compute the superpotential of the associated low-energy effective field theory.

A.1.1 Details of the 4⇝3 heterotic orbifold model

One heterotic orbifold model with geometry Z2×Z4 (1,1) which yields 4⇝3 generations via

the RT scheme is defined by the following shifts and Wilson lines (with W4 = 0):

V1 =
(
−7

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
, 1
4
, 7
4

)
, (0, 0, 0, 0, 0, 0, 0, 0) , (A.1.1a)

∗See e.g. [11, 104, 118] for reviews on orbifold compactifications, and [87, Section 4] for more details on
this specific orbifold geometry.
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V2 =
(
3
8
, 1
8
, 1
8
, 1
8
, 3
8
, 9
8
,−3

8
,−3

8

)
,
(
−1, 0, 0, 0, 1

4
, 1
4
, 1
4
, 3
4

)
, (A.1.1b)

W1 = W2 = (0, 0, 0, 0, 0, 0, 0, 0),
(
−1,−1, 1

2
, 3
2
,−1

2
, 0, 1

2
, 0
)
, (A.1.1c)

W3 = (0, 0, 0, 0, 0, 0, 0, 0),
(
−5

4
,−5

4
, 1
4
, 3
4
, 3
4
, 7
4
,−3

4
, 7
4

)
, (A.1.1d)

W5 = W6 =
(
−1,−1, 0, 1, 3

2
, 1
2
, 1
2
, 3
2

)
, (0, 0, 0, 0, 0, 0, 0, 0) . (A.1.1e)

The effective massless matter spectrum before decoupling of vector-like representations and

SU(2)s confinement, obtained by the orbifolder is summarized in Table 3.3a.

A.1.2 Details of the 2⇝3 heterotic orbifold model

The orbifold parameters that define the Z2 ×Z4 (1,1) heterotic orbifold model presented in

section 3.4.2 are

V1 =
(
−1

4
,−1

4
, 1
4
, 1
4
, 1
4
, 1
4
, 1
4
, 9
4

)
, (0, 0, 0, 0, 0, 0, 0, 2) , (A.1.2a)

V2 =
(
1
8
, 9
8
,−7

8
,−1

8
,−1

8
,−1

8
, 9
8
, 7
8

)
,
(
−1

2
, 0, 0, 0, 1

4
, 1
4
, 3
4
,−3

4

)
, (A.1.2b)

W1 = W2 = (1, 0,−2,−1, 0, 1,−1,−2),
(
1
4
,−3

4
,−1

4
, 7
4
,−3

4
, 3
4
,−5

4
, 5
4

)
, (A.1.2c)

W3 =
(
−5
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, 5
4
, 5
4
,−7

4
,−5

4
,−5

4
, 1
4
,−5

4

)
,
(
7
4
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4
, 7
4
, 7
4
, 5
4
, 9
4
,−1

4
, 9
4

)
, (A.1.2d)

W5 = W6 =
(
−2,−1

2
, 0, 1,−1

2
, 1, 1

2
, 3
2

)
,
(
−7

4
,−1

4
,−5

4
,−5

4
, 7
4
, 1
4
,−3

4
,−7

4

)
, (A.1.2e)

and W4 = 0. Using these parameters as input of the orbifolder, one finds the massless

matter spectrum before decoupling of vector-like representations and SU(2)s confinement

shown in Table 3.3b.
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Appendix B

(This appendix first appeared in the publication with Yahya Almumin, Mu-Chun Chen, Michael

Ratz, Saul Ramos-Sanchez and Victor Knapp-Perez) [5]

B.1 ϑ–functions

In this appendix, we collect some relevant facts on the ϑ–functions. Our conventions are

based on [89] and [102]. One defines

ϑ
[α
β

]
(z, τ) := Sβ Tα ϑ(z, τ) = e2πiαβ Tα Sβ ϑ(z, τ) , (B.1.1)

where [89, p. 4]

ϑ(z, τ) :=
∑
ℓ∈Z

exp(iπ ℓ2 τ) exp(2πi ℓ z) (B.1.2)

with Im τ > 0, and [89, p. 6]

(Sβf)(z) := f(z + β) , (B.1.3a)

(Tαf)(z) := eiπ α
2 τ+2πiα z f(z + α τ) . (B.1.3b)
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This immediately gives us (cf. [102, p. 214 f.])

ϑ
[α
β

]
(z, τ) =

∞∑
ℓ=−∞

eiπ (α+ℓ)2 τ e2πi (α+ℓ) (z+β) . (B.1.4)

For an integer n ∈ Z one has torus periodicities

ϑ
[α
β

]
(z + n, τ) = e2πinα ϑ

[α
β

]
(z, τ) , (B.1.5a)

ϑ
[α
β

]
(z + n τ, τ) = e−iπ n2 τ−2πin (z+β) ϑ

[α
β

]
(z, τ) . (B.1.5b)

Further, the ϑ–function have several periodicities in the characteristics α and β,

ϑ
[
α+1
β

]
(z, τ) = ϑ

[α
β

]
(z, τ) , (B.1.6a)

ϑ
[ α
β+1

]
(z, τ) = e2πiα ϑ

[α
β

]
(z, τ) . (B.1.6b)

The behavior under modular transformation is

ϑ
[α
β

]
(z, τ + 1) = e−iπ α (α+1) ϑ

[
α

β+α+ 1
2

]
(z, τ) , (B.1.7a)

ϑ
[α
β

](
−z
τ
,−1

τ

)
=

√
−i τ e

2πi
(

z2

2τ
+αβ

)
ϑ
[−β
α

]
(z, τ) . (B.1.7b)

Another useful formula is

ϑ
[

0
j/M

](
z,

τ

M

)
=

M−1∑
k=0

e2πijk/Mϑ

 k
M

0

(Mz,Mτ) . (B.1.8)

B.2 Torus Integration

The torus is defined by two lattice vectors, which can be chosen as e1 = 2πR and e2 = 2πR τ ,

where the real, dimensionful quantity R sets the length of one lattice vector, and τ with
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Im τ > 0 is the half–period ratio. In this basis, the torus metric reads

G = (2πR)2

 1 Re τ

Re τ |τ |2

 . (B.2.1)

We can define the fundamental domain of the torus as

T2 = {z ∈ C ; z = x e1 + y e2 with 0 ≤ x, y ≤ 1} . (B.2.2)

It is straightforward to verify that the Jacobian of the transformation (Re z, Im z) 7→ (x, y)

is given by (2πR)2 Im τ . Therefore, the integrals of an arbitrary function f(z) over the fun-

damental domain are given by

∫
T2

d2z f(z) = (2πR)2 Im τ

1∫
0

dx

1∫
0

dy f(xe1 + ye2) . (B.2.3)

Let us now look at constant modes on the torus, or, equivalently integrate over the torus T2

to determine its volume. We then have

vol(torus) =
∫
T2

d2z 1 = (2πR)2 Im τ =: A . (B.2.4)
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B.3 Explicit Verification of the Boundary Conditions for

the Transformed Waveunctions

B.3.1 The S Transformation

We now compute the S transformation, τ 7→ −1/τ (cf. equation (1.21)), of equation (4.1.1).

We have

ψj,M
(
−z
τ
,−1

τ
, 0

)
=

(
2M Im −1

τ

A2

)1/4

exp

(
iπM

z

τ

Im z
τ

Im −1
τ

)
ϑ
[

j
M

0

](
− Mz

τ
,−M

τ

)
=

N√
|τ |

exp

(
iπM

z

τ

Im zτ̄

Im τ

)√
−i

τ

M
e2πM i z

2

2τ ϑ
[

0
j
M

](
z,

τ

M

)

=
N√
|τ |

exp

(
iπM

z

τ

Im zτ̄

Im τ

)√
−i

τ

M
eiπM

z2

τ

M−1∑
k=0

e2πi jk/M ϑ
[

k
M

0

]
(Mz,Mτ)

=
e

iπ
4

√
M

(
− τ

|τ |

)1/2 M−1∑
k=0

e
2πijk
M

[
N exp

(
iπMz

τ

Im zτ̄

Im τ
+ iMπ

z2

τ

)
ϑ
[

k
M

0

]
(Mz,Mτ)

]

=
ei

π
4

√
M

(
− τ

|τ |

)1/2 M−1∑
k=0

e
2πijk
M N eiπMz Im z

Im τ ϑ
[

j
M

0

]
(Mz,Mτ) , (B.3.1)

where we used (4.1.2), (B.1.7b) and (B.1.8) in the first, second and third lines respectively.

We thus arrive at (B.3.2). Therefore, the S modular transformation of the zero modes is

ψj,M
(
−z
τ
,−1

τ
, 0

)
=

ei
π
4

√
M

(
− τ

|τ |

)1/2 M−1∑
k=0

e2πijk/M ψk,M(z, τ, 0) . (B.3.2)

It is straightforward to see that the wave function of equation (B.3.2) satisfies the boundary

conditions of equations (4.1.52a) and (4.1.52b). Note that

ψj,M
(
− z

τ
+ 1,−1

τ
, 0

)
= ψj,M

(
− (z − τ)

τ
,−1

τ
, 0

)
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=
ei

π
4

√
M

(
− τ

|τ |

)1/2 M−1∑
k=0

e
2πijk
M ψk,M(z−τ, τ, 0) = exp

(
−iπM

Im zτ̄

Im τ

)
ψj,M

(
−z
τ
,−1

τ
, 0

)
(B.3.3)

and

ψj,M
(
− z

τ
− 1

τ
,−1

τ
, 0

)
= ψj,M

(
− (z + 1)

τ
,−1

τ
, 0

)
=

ei
π
4

√
M

(
− τ

|τ |

)1/2 M−1∑
k=0

e
2πijk
M ψk,M(z+1, τ, 0) = exp

(
iπM Im z

Im τ

)
ψj,M

(
− z

τ
,−1

τ
, 0

)
.

(B.3.4)

Thus, from equations (B.3.3) and (B.3.4) we can see that the S transformed zero mode

follows the boundary conditions of equations (4.1.52a) and (4.1.52b) for both odd and even

M .

B.3.2 The T Transformation

Now, we compute the transformed wave function ψj,M(z, τ + 1, 0) and check that it satisfies

both equation (4.1.53a) and equation (4.1.53b). Applying the T modular transformation in

equation (4.1.1) gives

ψj,M(z, τ + 1, 0) = N eiπMz Im z
Im τ ϑ

[
j
M

0

](
Mz,M(τ + 1), 0

)
= e−iπj

(
j
M

+1
)
N eiπMz Im z

Im τ ϑ

[
j
M

j+M
2

]
(Mz,Mτ)

= e−iπj
(

j
M

+1
)
N eiπMz Im z

Im τ e2πi
j
M
jϑ

[
j
M
M
2

]
(Mz,Mτ)

= e−iπj
(
1− j

M

)
N eiπMz Im z

Im τ ϑ

[
j
M
M
2

]
(Mz,Mτ) , (B.3.5)
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where we used (B.1.7a) and (B.1.6b) in the second and third line, respectively. Defining

Ñ := e−iπj
(
1− j

M

)
N we can thus write

ψj,M(z, τ + 1, 0) = Ñ eiπMz Im z
Im τ ϑ

[
j
M
M
2

]
(Mz,Mτ) . (B.3.6)

Now we check that equation (B.3.6) satisfies boundary conditions given by equations (4.1.53a)

and (4.1.53b). The first boundary condition is satisfied as shifting z → z + 1 in equa-

tion (B.3.6) gives

ψj,M(z + 1, τ + 1, 0) = Ñ eiπM(z+1) Im z
Im τ ϑ

[
j
M
M
2

]
(M(z + 1),Mτ)

= exp

(
i
πM Im z

Im τ

)
Ñ eiπM(z+1) Im z

Im τ e2πiM
j
M ϑ

[
j
M
M
2

]
(Mz,Mτ)

= exp

(
i
πM Im z

Im τ

)
ψj,M(z, τ + 1, 0) , (B.3.7)

where we used equation (B.1.5a) in the second line. For equation (4.1.53b) we have

ψj,M(z + τ + 1, τ + 1, 0) = Ñ e
iπM(z+τ+1)

Im τ
Im(z+τ+1)ϑ

[
j
M
M
2

]
(M(z + τ + 1),Mτ)

= Ñ e
iπM
Im τ

[z Im z+(τ+1) Im z+z Im(τ+1)+(τ+1) Im(τ+1) e2πi
j
M
Mϑ

[
j
M
M
2

]
(M(z + τ),Mτ)

= Ñ e
iπM
Im τ

[z Im z+(τ+1) Im z+z Im(τ+1)+(τ+1) Im(τ+1) e−πi τM−2πi (Mz+M
2
)ϑ

[
j
M
M
2

]
(Mz,Mτ)

= e
iπM
Im τ

[(τ+1) Im z+z Im(τ+1)+(τ+1) Im(τ+1)−τ Im τ−2z Im τ−Im τ ] Ñ e
iπM
Im τ

z Im zϑ

[
j
M
M
2

]
(Mz,Mτ)

= exp

(
i πM

Im τ
Im(τ̄ + 1)z

)
ψj,M(z, τ + 1, 0) , (B.3.8)

where we have used equations (B.1.5a) and (B.1.5b) in the second and third line respectively.

Therefore, the transformed modular wave function given by equation (B.3.6) follows the

transformed boundary conditions of equations (4.1.53a) and (4.1.53b) for even and odd M .

Let us now tackle the problem of expressing the T transformed wave functions in terms of
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the original ones. As noted in section (4.1.7), for odd values of M it is not possible to express

the T transformed wave functions in terms of the original ones because of (4.1.55). At the

level of the wave functions, one can refer to equation (B.3.6) and see that if M is even, then

using (B.1.6b) confirms (4.1.56). However, if M is odd, in order to make use of (B.1.6b) we

need to shift the z coordinate as z 7→ z +∆z with real ∆z. Using equation (B.3.6) we have

ψj,M(z +∆z, τ + 1, 0) = Ñ eiπM(z+∆z) Im z
Im τ ϑ

[
j
M
M
2

]
(M(z +∆z),Mτ)

= Ñ eiπM∆z Im z
Im τ eiπMz Im z

Im τ ϑ
[

j
M

0

]
(M(z +∆z + 1

2
),Mτ), (B.3.9)

where we have used (B.1.4) to rewrite the lower characteristic of the ϑ–function as a shift

in the z coordinate. Therefore, if we assume that ∆z is a half–integer number, we can use

(B.1.5a) which gives

ψj,M(z +∆z, τ + 1, 0) = Ñ eiπM∆z Im z
Im τ eiπMz Im z

Im τ e2πij(
1
2
+∆z)ϑ

[
j
M

0

]
(Mz,Mτ)

= eiπM∆z Im z
Im τ eπij(

j
M

+2∆z)ψj,M(z, τ, 0). (B.3.10)

Note that in order to use (B.1.5a), M
(
1
2
+∆z

)
needs to be an integer. Therefore, for odd

M , ∆z needs to be half–integer, whereas for even M both integer and half–integer ∆z are

valid choices. After a redefinition of z → z −∆z with some half–integer ∆z,

ψj,M(z, τ, 0)
T7−−→ eiπM∆z Im z

Im τ eiπ
j2

|M|+2iπj∆z ψj,M(z −∆z, τ, 0) , (B.3.11)

and this is valid for both even and odd values of M .
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B.4 Symmetries Between the Yukawa Couplings

In this appendix we identify additional relations between the Yukawa couplings given in equa-

tion (4.1.38). Yukawa entries with different i, j and/or k are equal if the upper characteristic,

I ′
ca i− I ′

ab j + I ′
ca (I ′

ab)
ϕ(|I′

bc|) (k − i− j)

λ
=: uijk , (B.4.1)

with I ′
αβ = Iαβ/d, is the same. For instance, suppose i′ = i+ r, j′ = j+ s and k′ = k+ r+ s,

so that i′, j′ and k′ also satisfy the selection rule (cf. equation (4.1.24)). Then, for values of

r and s satisfying

Ica r − Iab s = 0 , (B.4.2)

we find that uijk = ui′ j′ k′ , thus implying that Yijk = Yi′ j′ k′ . We know that Ica and Iab are

divisible by d = gcd
(
|Iab|, |Ica|, |Ibc|

)
(cf. equation (4.1.20)), uijk has the form

uijk =
α̂ijk
λ

(B.4.3)

with some integer α̂ijk given by

α̂ijk = I ′
ca i− I ′

ab j + I ′
ca (I ′

ab)
ϕ(|I′

bc|) (k − i− j) mod λ . (B.4.4)

Further, as a shift of uijk by 1 leaves the ϑ–function in the Yukawa entry invariant (cf.

equation (B.1.6a)), there are at most λ distinct entries, i.e.

uijk ∈ {0, 1/λ, . . . (λ− 1)/λ} . (B.4.5)
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Additionally, for vanishing Wilson lines, the ϑ–function takes the simple form (cf. equa-

tion (B.1.4))

ϑ

α̂ijk

λ

0

(0, λ τ) = ∞∑
ℓ=−∞

eiπ (α̂ijk/λ+ℓ)
2 λτ , (B.4.6)

which shows that

ϑ

− α̂ijk

λ

0

(0, λ τ) = ϑ

α̂ijk

λ

0

(0, λ τ) . (B.4.7)

Therefore, there are λ/2 − 1 additional relations between the Yukawa couplings, and we

have at most λ/2 + 1 distinct entries. These additional relations can manifest themselves in

different ways. For instance, if Iab = Ica, the overlap integral (4.1.10) becomes

Yijk = g σabc

∫
T2

d2z ψi,Iab(z, τ, ζ)ψj,Iab(z, τ, ζ)
(
ψk,Icb(z, τ, ζ)

)∗
. (B.4.8)

This equation is symmetric under i ↔ j, which implies that

Yijk = Yjik . (B.4.9)

As we discuss around equation (4.1.85) in the main text, the i ↔ j flip can entail an outer

automorphism of the low–energy gauge symmetry.

B.5 Modular Transformations of the Yukawa Couplings

In this appendix we will show the different ways in which the Yukawa couplings obtained

from the overlap integrals (4.1.10) transform under modular transformations and how that
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they indeed are modular forms according to equation (1.30).

B.5.1 Transformation of the Overlap Integrals

Let us start by discussing how our dictionary (4.1.62b) between the wave functions with

torus parameter τ and an equivalent torus with parameter τ + 1 allows us to infer how the

three index Yukawa couplings Yijk transform. We start with the T transformation where

we use (4.1.62b) for the 2D wave functions. As we have discussed around (4.1.59), our

dictionary involves a shift of the z–coordinate, ∆z. For definiteness we use ∆z = 1
2
. Thus,

from equation (4.1.10) we have

Yijk(τ + 1) =

∫
T2

d2z
(
ρ(T )ψi,i′e

iπIab Im z
Im τ ψi

′,Iab
(
z − 1

2
, τ, 0

))(
ρ(T )ψj,j′e

iπIca Im z
Im τ ψj

′,Ica
(
z − 1

2
, τ, 0

))
·
(
ρ(T )ψk,k′e

iπIcb Im z
Im τ ψk

′,Icb
(
z − 1

2
, τ, 0

))∗
=

∫
T2

d2z eiπ(Iab+Ica+Ibc) Im z
2 Im τ ρ(T )ψi,i′ρ(T )

ψ
j,j′

(
ρ(T )ψk,k′

)∗
· ψi′,Iab(z − 1

2
, τ, 0)ψj

′,Ica(z − 1
2
, τ, 0)

(
ψk

′,Icb(z − 1
2
, τ, 0)

)∗
. (B.5.1)

Using equation (4.1.12), we find that,

Yijk(τ + 1) = ρ(T )ψi,i′ρ(T )
ψ
j,j′

(
ρ(T )ψk,k′

)∗
·
∫
T2

d2z ψi
′,Iab(z − 1

2
, τ, 0)ψj

′,Ica(z − 1
2
, τ, 0)

(
ψk

′,Icb(z − 1
2
, τ, 0)

)∗
. (B.5.2)

We can now define w := z − 1
2
. Then d2z = d2w, i.e. the integration measure for torus

coordinates and the domain of integration remains invariant. Thus we find that

Yijk(τ + 1) = ρ(T )ψi,i′ρ(T )
ψ
j,j′

(
ρ(T )ψk,k′

)∗ ∫
T2

d2wψi
′,Iab(w, τ, 0)ψj

′,Ica(w, τ, 0)
(
ψk

′,Icb(w, τ, 0)
)∗
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= ρ(T )ψi,i′ρ(T )
ψ
j,j′

(
ρ(T )ψk,k′

)∗
Yijk(τ)

= eiπ(i
2/Iab+j2/Ica−k2/Icb+i+j−k) Yijk(τ) . (B.5.3)

Thus the z–dependent phase appearing in our dictionary for T transformation (4.1.61) can-

cels out due to the condition (4.1.12).

For the S transformation of Yijk, we use equation (4.1.62a), which gives

Yijk(−1/τ) =

∫
T2

d2z

(
−
(
−τ
|τ |

)1/2

ρ(S)ψi,i′ψ
i′,Iab(z, τ, 0)

)(
−
(
−τ
|τ |

)1/2

ρ(S)ψj,j′ψ
j′,Ica(z, τ, 0)

)

·

(
−
(
−τ
|τ |

)1/2

ρ(S)ψk,k′ψ
k′,Icb(z, τ, 0)

)∗

= −
(
−τ
|τ |

)1/2

ρ(S)ψi,i′ρ(S)
ψ
j,j′

[
ρ(S)ψk,k′

]∗
Yi′j′k′

= −
(
−τ
|τ |

)1/2 −ei
π
4√

|IabIbcIbc|

Iab−1∑
i′=0

Ica−1∑
j′=0

Icb−1∑
k′=0

e
2πi

(
ii′
Iab

+ jj′
Ica

+ kk′
Ibc

)
Yi′j′k′ , (B.5.4)

where have used the fact that the automorphy factor and the ρ(S)ψ matrix do not depend

in the z coordinate, and then, can be taken out of the integral.

Equations (B.5.3) and (B.5.4) give the modular transformations of Yijk. They can be used

to infer the possible modular transformations of the 4D fields.

B.5.2 Modular Transformation of the λ–plet of Yukawa Couplings

The λ–plet of holomorphic Yukawa couplings (4.1.66), Yijk(τ) = ϑ
[
α̂ijk/λ

0

]
(0, λ τ), transforms

as a modular form of weight 1/2. To see this, let us first investigate how Yα̂(τ), where α̂ :=
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α̂ijk ∈ Zλ, behaves under T . Obviously,

Yα̂(τ)
T7−−→ Yα̂(τ) =

∞∑
ℓ=−∞

exp

[
iπ

(
α̂

λ
+ ℓ

)2

λ (τ + 1)

]
. (B.5.5)

The phase can be manipulated to give

iπ

(
α̂

λ
+ ℓ

)2

λ (τ + 1) = iπ

(
α̂

λ
+ ℓ

)2

λ τ + iπ
(α̂ + λ ℓ)2

λ
. (B.5.6)

The second term can be rewritten as

iπ
(α̂ + λ ℓ)2

λ
= iπ

α̂2

λ
+ 2πi ℓ+ iπ λ ℓ2 . (B.5.7)

Only the first term on the right–hand side yields a nontrivial phase. The two others are

integer multiples of 2πi because λ is even. Therefore,

Yα̂(τ + 1) = eiπ
α̂2

λ Yα̂(τ) . (B.5.8)

Likewise, under S

Yα̂(τ)
S7−−→ Yα̂(−1/τ) = ϑ

[
α̂/λ

0

](
0,−λ/τ

)
=: ϑ

[
α̂/λ

0

](
0,−1/t

)
(B.5.9)

where t := τ/λ. Then

Yα̂(−1/τ) =
√
−i t ϑ

[
0
α̂/λ

](
0, t
)
=

√
−i τ√
λ

λ−1∑
β̂=0

e
2πi α̂ β̂

λ ϑ
[
β̂/λ

0

](
0, λ τ

)
= (−τ)1/2

λ−1∑
β̂=0

e
πi
4

√
λ
e

2πi α̂ β̂
λ ϑ

[
β̂/λ

0

](
0, λ τ

)
= −(−τ)1/2

λ−1∑
β̂=0

(
− e

πi
4

√
λ

)
e

2πi α̂ β̂
λ Yβ̂(τ) .

(B.5.10)
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Here we used equations (B.1.8) and (B.1.7b). This shows that the λ–plet of Yα̂(τ) picks up

the correct automorphy factors to be a modular form of weight 1/2. Note that we choose

the minus sign in equation (B.5.10), anticipating that these transformations comply with

equation (1.30), for φ(S, τ) = −
√
−τ , and thus with equation (1.31). Therefore, from equa-

tions (B.5.8) and (B.5.10) we get the representations of the λ–plet of Yukawa couplings

(4.1.68b), which we recast here

ρλ(S̃)α̂β̂ = −eiπ/4√
λ

exp

(
2πi α̂ β̂

λ

)
, (B.5.11a)

ρλ(T̃ )α̂β̂ = exp

(
iπ α̂2

λ

)
δα̂β̂ . (B.5.11b)

Finally, although these matrices may be not be irreducible for some choice of Iαβ, in sec-

tion 4.1.8 we get the irreducible representation matrix in each case (cf. e.g. equations (4.1.82)

and (4.1.84)). Therefore, equation (1.30) is satisfied and the Yukawa couplings given by equa-

tion (4.1.10) are modular forms of weight kY = 1/2. Furthermore, as discussed in section 4.1.8,

the representation matrix will correspond to a representation of the metaplectic group Γ̃2λ,

which implies that the Yukawa couplings have level 2λ.
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Appendix C

(This appendix first appeared in the publication with Mu-Chun Chen, Victor Knapp-Perez,

Mario Ramos-Hamud, Saul Ramos-Sanchez and Michael Ratz) [24]

C.1 Flavon VEV alignment∗

field χ φ Sχ Sφ

Atraditional
4 3 3 10 10

Γ3 3 10 10 10

Z
χ
3 1 0 1 0

Z
φ
3 0 1 0 1

Table C.1.1: Flavon sector.

We use the flavon VEVs (5.2.3) and (5.2.5) (cf. Sec-

tion 5.2.3), which in the so–called real basis (cf. [49, Ap-

pendix C]) are given by

⟨χai ⟩ = v1


1 0 0

0 1 0

0 0 1

 and ⟨φi⟩ =
v2√
3


1

1

1

 . (C.1.1)

We assume that the Atraditional
4 representation matrices act

from the left, and the Γ3 matrices act from the right. Then

the VEV ⟨χai ⟩ is the unique VEV which is invariant simul-
∗The computations of this Appendix can be checked in the attached supplementary Mathematica note-

book which makes use of the Discrete package.
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taneous S and T transformations from both groups,

S ⟨χ⟩ST = T ⟨χ⟩T T = ⟨χ⟩ . (C.1.2)

So it is a symmetry–enhanced point, which suggests that it should not be too difficult to

obtain such VEVs [80].

One can make this more explicit. Let us consider the most general renormalizable superpo-

tentials involving the flavons χ, φ, Sχ and Sφ (see Table C.1.1 for their charges),

W = Wχ + Wφ , (C.1.3)

where

Wχ =
κχ
2
Sχ (χχ)10

− λ1
3
(χχχ)

(1)
10

− λ2
3
(χχχ)

(2)
10

+ κ1S
3
χ , (C.1.4a)

Wφ =
κφ
2
Sφ(φφ)10

− λ3
3
(φφφ)10

+ κ2S
3
φ . (C.1.4b)

Here, the subscript “10” indicates the contraction to a singlet. There are two independent

such contractions of three χ fields,

(χχχ)
(1)
10

= χ1
1χ

2
3χ

3
2 + χ1

2χ
2
1χ

3
3 + χ1

3χ
2
2χ

3
1 , (C.1.5a)

(χχχ)
(2)
10

= χ1
1χ

2
2χ

3
3 + χ1

2χ
2
3χ

3
1 + χ1

3χ
2
1χ

3
2 . (C.1.5b)

We assume that Sχ and Sφ acquire VEVs ⟨Sχ⟩ ≪ Λ and ⟨Sφ⟩ ≪ Λ. This is plausible

since in string–derived models often the VEVs get fixed by D–terms [17, 18]. In fact, in

the heterotic orbifold models, which underlie the eclectic scheme, the Fayet–Iliopoulos (FI)

D–terms drive the flavons to nonzero VEVs [9], which has been verified in many explicitly

constructed models (cf. e.g. [81]). One can verify that there is a nontrivial solution to the

135



F–term equations†, where the VEVs are given by Equation (C.1.1) with

v1 =
κχ⟨Sχ⟩
λ2

and v2 =
κφ⟨Sφ⟩
λ3

. (C.1.6)

Of course, there is another solution at which all VEVs vanish, and there are solutions in

which only one of the VEVs vanishes. Technically, in supergravity, the above solution is the

deepest minimum of the scalar potential, but addressing the vacuum energy is beyond the

scope of this study. Furthermore, Equation (C.1.4) exhibits two accidental R symmetries

which get spontaneously broken by the flavons. As a consequence, there are, at this level,

two flat directions. However, these flat directions parametrize the overall magnitudes of the

VEVs but do not alter their shapes given by Equations (C.1.1) and (C.1.6). The stabilization

of the flat directions is beyond the scope of this study as the magnitudes of the VEVs are

input parameters and only the shapes of the VEVs are important for our scenario. We

also note that at higher orders there are additional terms that can alter the above solution

slightly. Especially cross terms between χ and φ can shift the VEVs. However, these terms

appear at much higher order, and are thus suppressed against the Kähler corrections which

we discuss and tame in the main text. Altogether we find that, in a bottom–up EFT theory

approach we can successfully align the VEVs to provide us with a scenario of diagonal

breaking Atraditional
4 × Γ3 → Γdiagonal

3 .
†Note that, since we have assumed that Sχ and Sφ acquire VEVs by a different mechanism, their dynamics

is not relevant in the F–term equations.
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C.2 Basis Change Matrices

Considering the three-dimensional representation of A4, the group generators can be ex-

pressed in the complex basis,

SC3 =
1

3


−1 2 2

2 −1 2

2 2 −1

 , TC3 =


1 0 0

0 ω 0

0 0 ω2

 , (C.2.1)

where ω = exp(2πi/3). However, one might find it useful to express these generators in the

real basis, where they adopt the form

SR3 =


1 0 0

0 −1 0

0 0 −1

 , TR3 =


0 1 0

0 0 1

1 0 0

 . (C.2.2)

These bases are related by the unitary transformation

SR3 = USC3 U
† and TR3 = UTC3 U

† , (C.2.3)

where U is a unitary matrix, given by

U =
1√
3


1 1 1

1 ω ω2

1 ω2 ω

 . (C.2.4)
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