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ABsTrACT: We extend the Variational Autoencoder Inverse Mapper (VAIM) framework for the inverse
problem of extracting Compton Form Factors (CFFs) from deeply virtual exclusive reactions, such as
the unpolarized Deeply virtual exclusive scattering (DVCS) cross section. VAIM is an end-to-end
deep learning framework to address the solution ambiguity issue in ill-posed inverse problems, which
comprises of a forward mapper and a backward mapper to simulate the forward and inverse processes,
respectively. In particular, we incorporate Bayesian Neural Network (BNN) into the VAIM architecture
(BNN-VAIM) for uncertainty quantification. By sampling the weights and biases distributions of the
BNN in the backward mapper of the VAIM, BNN-VAIM is able to estimate prediction uncertainty
associated with each individual solution obtained for an ill-posed inverse problem. We first demonstrate
the uncertainty quantification capability of BNN-VAIM in a toy inverse problem. Then, we apply
BNN-VAIM to the inverse problem of extracting 8 CFFs from the unpolarized DVCS cross section.
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1 Introduction

Understanding the structure and dynamics of the nucleon is an important goal in modern nuclear
physics. Deeply virtual exclusive scattering (DVCS) processes are considered as the golden channel
for the extraction of information on partonic 3D dynamics in the nucleon [1, 2]. The Compton
Form Factors (CFFs) [3], measured in DVCS, are two-dimensional slices of the Generalized Parton
Distributions (GPDs) [2, 4, 5], which offer a universal way to characterize the nucleon structure in
multi-dimension. Extracting CFFs has the potential to reveal new information on hadronic structure.

In our previous work, we attempt to extract CFFs from a single unpolarization observable [6].
We model the CFFs extraction as an inverse problem by inferring 8 CFFs from the unpolarized DVCS
cross section. We employ an end-to-end deep learning architecture, so-called Variational Autoencoder
Inference Mapper (VAIM), to handle the ambiguity issue in the ill-posed inverse problem of extracting
CFFs. VAIM is an autoencoder-based deep neural network architecture [7]. The forward mapping
and backward mapping are approximated by the encoder and decoder, respectively, and a variational
latent layer is used to learn the posterior parameter distributions with respect to the given observable.
The VAIM framework can be extended to accommodate unstructured and unordered experimental
observables when point cloud representation is incorporated [8]. As a result, when VAIM is applied
to CFFs extraction, by sampling the latent layer, VAIM is able to derive multiple potential CFFs
solutions with respect to a given cross section measurement.

However, an important piece missing in the VAIM architecture is, when there are multiple
solutions available, the uncertainty associated with each solution is unknown. To address this issue, in
this work, we extend VAIM into so-called BNN-VAIM by replacing the traditional artificial neural
network (ANN) in the decoder architecture with a Bayesian Neural Network (BNN). BNNs [9-11]
are stochastic machine learning models typically used for uncertainty quantification in predictions.
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Associated with VAIM, BNN-VAIM is designed to provide an estimation of the uncertainty associated
with each individual solution when multiple solutions are extracted in an ill-posed inverse problem.
By applying BNN-VAIM to CFFs extraction, we are able to put a stochastic error bar on each CFF
derived from a given cross section measurement.

2 Background

2.1 Inverse problems

In mathematical modeling, a forward problem is to find the observables y from the given parameters x
using a mathematical model f(-). An inverse problem is an opposite procedure of a forward problem,
which attempts to recover the parameters x from given observable y [12, 13]. A forward problem is
usually well-posed, i.e., for a given x, there is a unique solution y. Whereas an inverse problem is
often ill-posed, which means that its solution is not necessarily unique. An illustrative example of an
inverse problem involves diagnosing a disease based on observed symptoms. The forward model maps
a disease to its associated symptoms; for instance, influenza might indicate symptoms such as fever,
cough, and fatigue. Conversely, the inverse problem involves deducing the disease from symptoms,
meaning that given the symptoms, one can infer the potential diseases. Clearly, in this example of
inverse problem, the possible solutions are not unique. In addition to influenza, other diseases, such
as RSV, COVID-19, and Pheumonia, can exhibit the similar symptoms of fever, cough, and fatigue.
Figure 1 shows the relationship between a forward problem and an inverse problem.

Forward Problem

Yy =£ix)

~a

parameters observables

x=f"(y)

Inverse Problem

Figure 1. The forward problem and the inverse problem.

2.2 Variational Autoencoder Inverse Mapper (VAIM)

VAIM is an autoencoder-based deep learning approach for solving the inverse problems, particular
when non-unique solutions are available [7]. The architecture of VAIM consists of two ANNSs, a
forward mapper as an encoder from parameters to observables and a backward mapper as a decoder
from observables back to parameters. The key component of the VAIM architecture is a latent
layer incorporated in between the forward mapper and the backward mapper, serving the purpose of



capturing the information loss in forward mapping from parameters to observables, which is later used
to reconstruct the parameter distribution from the given observables. In VAIM, an inverse problem is
modeled as a statistical inverse problem by approximating a probability distribution of parameters
when an instance of observables is given. Figure 2 shows the general architecture of VAIM.

” reconstructed
parameters
latent layer

Forward Mapper Backward Mapper

L

Figure 2. The general architecture of VAIM.

2.3 VAIM for CFFs extraction

The VAIM architecture is applied to the CFFs extraction problem, which is framed as an inverse
problem of estimating the CFFs as the parameters from the measured unpolarized DVCS cross section
as the observables [6]. A forward model based on Bethe-Heitler (BH) scattering is used to generate
the cross sections [14, 15], which depend on 8 CFFs, Re¥H, Sm?—(,?&eS,ﬁmS,‘Reﬁ,ﬁmﬁ,%eé,
and Im&. The forward mapping between the CFFs and the cross sections are used to generate the
training data to train the VAIM. Figure 3 illustrates the VAIM architecture for CFFs extraction.

CFKFFs

CFFs

ReH
SmH
Ree

Y

Sme
ReH
SmH

Reé
= ﬂ 3Ime
v Forward e

Backward
Mapper

Mapper

Figure 3. The VAIM architecture for CFFs extraction.
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2.4 Bayesian Neural Networks (BNNs)

BNNSs are stochastic neural networks whose weights are probability distributions instead of fixed
numerical values in ANNs. BNNs are trained using Bayesian inference, allowing one to estimate
uncertainty in predictions by sampling the probability distribution of weights and biases. In a BNN
where the weights and biases are represented as probability distributions, the output y of the BNN
with respect to input x becomes a probability distribution such that

p(yl. D) = / p(ylx.6)p(6]D)de,

where 6 represents the BNN parameters, such as weights and biases, p(y|x, 8) is the likelihood
function, and p(6|D) is the Bayesian posterior distribution over 8 given the observed data D. In
particular, p(6|D) can be calculated by Bayesian inference such that

_ p(D|9) - p(09)
P = lep@)

where p(0) is the prior and p(D|6) is the likelihood. However, computing the Bayesian posterior
distribution and sampling from it are usually intractable due to the difficulty of computing the
integral. In practice, either Markov Chain Monte Carlo [16], approximating the integral by sampling,
or variational inference [17], approximating the integral by optimization, are used to estimate the
Bayesian posterior distribution p(6|D). A detailed description and analysis of BNNs can be found
in the tutorial by Jospin et al. [18]

3 Methodology

3.1 BNN-VAIM architecture

To quantify the uncertainty associated with the each individual solution found in VAIM, we incorporate
BNN into the VAIM architecture (BNN-VAIM). More specifically, we replace the ANN in the
backward mapper with a BNN. Similar to VAIM, BNN-VAIM comprises a forward mapper and a
backward mapper. While the forward mapper is still an ANN that approximate the forward model
from the parameters to the observables, the backward mapper is a BNN where the weights and biases
are probability distributions instead of fixed numerical values in an ANN.

In our BNN-VAIM implementation, BNN adopts a Gaussian prior distribution for the weights
and biases. These prior parameters represent our initial beliefs about the distributions of weights
and biases before observing any data. During the forward pass, BNN uses forward computation to
generate the parameters from the given observables. Instead of learning a single set of weights and
biases, the BNN learns the posterior distribution over weights and biases, which represents the updated
beliefs about the weights and biases after observing the data. During training, we use variational
inference to approximate the true posterior distribution [19, 20], which is a Gaussian distribution in
our implementation by maximizing the log likelihood of the data given the weights and biases as the
BNN parameters. We minimize the Kullback-Leibler (KL)-divergence between the approximated
posterior distributions and the prior, with the purpose of avoiding overfitting.

After the BNN-VAIM is properly trained, the backward mapper is used for solving the inverse
problem, as shown in figure 4(b). First of all, similar to VAIM, feeding the given observables as



1 input and sampling the latent layer generate multiple solutions of the parameters. Then, for each
2 solution corresponding to the observables and the latent space input, sampling the distributions of
s the BNN weights and biases provides an estimation of its uncertainty.

reconstructed
parameters

Forward Mapper Backward Mapper
(a)

Backward Mapper

reconstructed
parameters

latent layer

=ampleto generate sampleto generate uncertainty
multiple solutions estimation of a solution

Figure 4. VAIM for CFFs extraction.

4+ 3.2 BNN-VAIM for CFFs extraction

s Figure 5 shows the architecture of BNN-VAIM for CFFs extraction. Here the VAIM is implemented
s as a conditional Variational Auto Encoder (VAE), where xp;, 02, and t are treated as the input
7 conditions for both the forward mapper and the backward mapper. The backward mapper adopts a
s BNN architecture. During training, the BNN-VAIM attempts to minimize the loss of reconstructing the
o cross-section x, reconstructing the 8 CFFs, ReH, ImH Re&E,ImE, ReH,ImH, ReE, and IméE,
10 the KL-divergence of the distribution of the latent variable Z, and the KL-divergence of the posterior
11 distribution of BNN to the Gaussian prior distribution. Once trained, by sampling the latent layer Z,
12 the backward mapper generates the potential CFFs solutions with respect to the given cross-section
13 and the condition of xp;, Q7?, and ¢. Sampling the distribution of weights and biases provides an
14 uncertainty estimation for each CFF solution.
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Figure 5. BNN-VAIM for CFFs extraction.

4 Results and discussion

In this section, we first demonstrate the effectiveness of BNN-VAIM on a toy inverse problem
with ambiguous solutions. Then, we apply BNN-VAIM to extracting CFFs from the unpolarized
DVCS cross section.

4.1 Toy inverse problem f(x) = x2

We consider the following toy inverse problem of predicting x by given f(x):
fx) =x2.

This toy inverse problem generally has two distinct solutions for every given f(x), except for f(x) = 0.

We train the BNN-VAIM with 10° data samples uniformly distributed between x = —2 to x = 2.
Smearing noise is introduced to the training data by allowing data to deviate within 5% of its original
values. Both the forward mapper and the backward mapper employ fully connected networks with 3
layers, each layer having 512 hidden nodes. The dimension of the latent layer is 100. The dimension
of the latent space is a hyperparameter of VAIM. Provided that the dimension of the latent space
is not less than the dimension of the actual information lost during the forward mapping process,
VAIM can in theory rebuild the complete parameter distribution from the observables. A larger latent
space dimension provides more flexibility for VAIM to represent the lost information. However, a too
large latent space dimension can slow down the training process, due to the fact of the resulting large
neural networks for the forward and backward mappers. The prior of the latent variables is a uniform
distribution. The prior of the BNN adopts a standard Gaussian distribution. We use Adam [21] as the
optimizer with learning rate 1e~5. Training concludes once the reconstruction error falls below 1073,

The histogram in blue in figure 6 shows the distribution of the multiple x solutions with respect
to f(x) = 1 by sampling the latent layer. Then, for a solution obtained, we sample the weights and
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Figure 6. Predicted solution distributions of f(x) = x and the estimated uncertainties of two solutions using
BNN-VAIM.

Closure test results
Training data with noise
200000 4

150000

100000 A

50000 4

T T T T
-1.0 —-0.5 0.0 0.5 1.0
X

Figure 7. Closure test of f(x) = x? for f(x) = 1. The training data has a mean of 0.999, a standard deviation of
0.0500, a kurtosis of -0.0054, and a skewness of -0.0015. The closure test results show a mean of 1.019, a
standard deviation of 0.102, a kurtosis of 0.212, and a skewness of 0.0856.

biases in BNN to generate the uncertainty estimation. Figures 6(a) and 6(b) show two individual
solutions with error bars in 1 standard deviation, corresponding to x = 1 and x = —1, respectively.
Figure 7 shows a closure test by sampling an individual solution within its uncertainty estimation and
feeding the samples to the forward model to reconstruct f(x). One can find that, although somehow
over-estimating, the reconstructed f(x) has good coverage of the training data within its noise range.

4.2 BNN-VAIM for CFFs extraction

We apply BNN-VAIM to extracting CFFs from the unpolarized DVCS cross-section. The forward
mapper of BNN-VAIM includes an input layer representing the array of CFFs concatenated with the
kinematics array, followed by three fully-connected layers comprising 2, 048 neurons each, activated
by a Parameterized ReLLU function [22]. The output layer encompasses the cross section and latent
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variables (z). The backward mapper contains an input layer representing the concatenated cross
section, kinematics, and latent variable layer (z), followed by three fully-connected Bayesian linear
layers with 2,048 neurons each, activated by a Parameterized ReLLU function. The output layer
reconstructs the CFFs. We use 225, 000 samples generated by BH scattering to train the BNN-VAIM
model. Adam is used as the optimizer with learning rate 1e™5. We adopt an adaptive training, which
terminates when the reconstruction error is less than 1074,

C-VAIM
Data with Error Bars

75 4
50

25

o

CFF values

|
[S]
w

-50

=75

=100

ReH 3ImH Ree 3me ReH 3mHA Reé 3mé

Figure 8. Predicted CFFs using BNN-VAIM at a fixed kinematic point xg; = 0.343, ¢ = 0.172 GeVZ, and
Q? = 1.820 GeV?. 100 solutions are showed in grey lines. The uncertainty of one of these solutions, highlighted
in blue line, are specified with error bar obtained by BNN.

Figure 8 shows the results using BNN-VAIM to predict the CFFs from a singular kinematic
point xg; = 0.343, t = —-0.172 GeV?, and Q7 = 1.82 GeV? with respect to the unpolarized DVCS
cross-section measurement at a beam energy of 5.75 GeV. While sampling the latent variables in
VAIM generates an ensemble of 100 potential CFF solutions (grey lines in figure 8), sampling the
BNN in the backward mappers provides an uncertainty estimation (red bar in figure 8) of one of
these solutions. Compared to VAIM for CFF extraction, which provides the overall CFF solution
distribution, BNN-VAIM further estimate the uncertainty associated with each solution. The size
of the error bar indicates the sensitivity of each CFF solution. One can find that in the highlighted
CFF solution in figure 8, Im& is most flexible while ReH and ImH are most constrained, which
is quite consistent with the overall distribution of the CFF solutions.

5 Conclusion

In this paper, we incorporate BNN into our VAIM architecture for uncertainty quantification. By
sampling the weights and biases distributions of the BNN in the backward mapper of the VAIM,
BNN-VAIM enables the estimation of prediction uncertainty associated with each individual solution
found in an ill-posed inverse problem. The uncertainty quantification capability of BNN-VAIM
is demonstrated in a toy inverse problem of f(x) = x>. We further apply BNN-VAIM to a CFFs
extraction problem, whose goal is to extract 8 CFFs from an unpolarized DVCS cross-section. Despite
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the ill-posedness of the CFFs extraction problem, the uncertainty with respect to each CFF indicates
its sensitivity to the cross-section measurement.
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