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Abstract: We extend the Variational Autoencoder Inverse Mapper (VAIM) framework for the inverse17

problem of extracting Compton Form Factors (CFFs) from deeply virtual exclusive reactions, such as18

the unpolarized Deeply virtual exclusive scattering (DVCS) cross section. VAIM is an end-to-end19
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respectively. In particular, we incorporate Bayesian Neural Network (BNN) into the VAIM architecture22

(BNN-VAIM) for uncertainty quantification. By sampling the weights and biases distributions of the23

BNN in the backward mapper of the VAIM, BNN-VAIM is able to estimate prediction uncertainty24

associated with each individual solution obtained for an ill-posed inverse problem. We first demonstrate25
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BNN-VAIM to the inverse problem of extracting 8 CFFs from the unpolarized DVCS cross section.27
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1 Introduction15

Understanding the structure and dynamics of the nucleon is an important goal in modern nuclear16

physics. Deeply virtual exclusive scattering (DVCS) processes are considered as the golden channel17

for the extraction of information on partonic 3D dynamics in the nucleon [1, 2]. The Compton18

Form Factors (CFFs) [3], measured in DVCS, are two-dimensional slices of the Generalized Parton19

Distributions (GPDs) [2, 4, 5], which offer a universal way to characterize the nucleon structure in20

multi-dimension. Extracting CFFs has the potential to reveal new information on hadronic structure.21

In our previous work, we attempt to extract CFFs from a single unpolarization observable [6].22

We model the CFFs extraction as an inverse problem by inferring 8 CFFs from the unpolarized DVCS23

cross section. We employ an end-to-end deep learning architecture, so-called Variational Autoencoder24

Inference Mapper (VAIM), to handle the ambiguity issue in the ill-posed inverse problem of extracting25

CFFs. VAIM is an autoencoder-based deep neural network architecture [7]. The forward mapping26

and backward mapping are approximated by the encoder and decoder, respectively, and a variational27

latent layer is used to learn the posterior parameter distributions with respect to the given observable.28

The VAIM framework can be extended to accommodate unstructured and unordered experimental29

observables when point cloud representation is incorporated [8]. As a result, when VAIM is applied30

to CFFs extraction, by sampling the latent layer, VAIM is able to derive multiple potential CFFs31

solutions with respect to a given cross section measurement.32

However, an important piece missing in the VAIM architecture is, when there are multiple33

solutions available, the uncertainty associated with each solution is unknown. To address this issue, in34

this work, we extend VAIM into so-called BNN-VAIM by replacing the traditional artificial neural35

network (ANN) in the decoder architecture with a Bayesian Neural Network (BNN). BNNs [9–11]36

are stochastic machine learning models typically used for uncertainty quantification in predictions.37
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Associated with VAIM, BNN-VAIM is designed to provide an estimation of the uncertainty associated1

with each individual solution when multiple solutions are extracted in an ill-posed inverse problem.2

By applying BNN-VAIM to CFFs extraction, we are able to put a stochastic error bar on each CFF3

derived from a given cross section measurement.4

2 Background5

2.1 Inverse problems6

In mathematical modeling, a forward problem is to find the observables 𝑦 from the given parameters 𝑥7

using a mathematical model 𝑓 (·). An inverse problem is an opposite procedure of a forward problem,8

which attempts to recover the parameters 𝑥 from given observable 𝑦 [12, 13]. A forward problem is9

usually well-posed, i.e., for a given 𝑥, there is a unique solution 𝑦. Whereas an inverse problem is10

often ill-posed, which means that its solution is not necessarily unique. An illustrative example of an11

inverse problem involves diagnosing a disease based on observed symptoms. The forward model maps12

a disease to its associated symptoms; for instance, influenza might indicate symptoms such as fever,13

cough, and fatigue. Conversely, the inverse problem involves deducing the disease from symptoms,14

meaning that given the symptoms, one can infer the potential diseases. Clearly, in this example of15

inverse problem, the possible solutions are not unique. In addition to influenza, other diseases, such16

as RSV, COVID-19, and Pheumonia, can exhibit the similar symptoms of fever, cough, and fatigue.17

Figure 1 shows the relationship between a forward problem and an inverse problem.18

Figure 1. The forward problem and the inverse problem.

2.2 Variational Autoencoder Inverse Mapper (VAIM)19

VAIM is an autoencoder-based deep learning approach for solving the inverse problems, particular20

when non-unique solutions are available [7]. The architecture of VAIM consists of two ANNs, a21

forward mapper as an encoder from parameters to observables and a backward mapper as a decoder22

from observables back to parameters. The key component of the VAIM architecture is a latent23

layer incorporated in between the forward mapper and the backward mapper, serving the purpose of24
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capturing the information loss in forward mapping from parameters to observables, which is later used1

to reconstruct the parameter distribution from the given observables. In VAIM, an inverse problem is2

modeled as a statistical inverse problem by approximating a probability distribution of parameters3

when an instance of observables is given. Figure 2 shows the general architecture of VAIM.4

Figure 2. The general architecture of VAIM.

2.3 VAIM for CFFs extraction5

The VAIM architecture is applied to the CFFs extraction problem, which is framed as an inverse6

problem of estimating the CFFs as the parameters from the measured unpolarized DVCS cross section7

as the observables [6]. A forward model based on Bethe-Heitler (BH) scattering is used to generate8

the cross sections [14, 15], which depend on 8 CFFs, ℜ𝑒H , ℑ𝑚H ,ℜ𝑒E,ℑ𝑚E,ℜ𝑒H̃ ,ℑ𝑚H̃ ,ℜ𝑒Ẽ,9

and ℑ𝑚Ẽ. The forward mapping between the CFFs and the cross sections are used to generate the10

training data to train the VAIM. Figure 3 illustrates the VAIM architecture for CFFs extraction.11

Figure 3. The VAIM architecture for CFFs extraction.
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2.4 Bayesian Neural Networks (BNNs)1

BNNs are stochastic neural networks whose weights are probability distributions instead of fixed
numerical values in ANNs. BNNs are trained using Bayesian inference, allowing one to estimate
uncertainty in predictions by sampling the probability distribution of weights and biases. In a BNN
where the weights and biases are represented as probability distributions, the output 𝑦 of the BNN
with respect to input 𝑥 becomes a probability distribution such that

𝑝(𝑦 |𝑥, 𝐷) =
∫

𝑝(𝑦 |𝑥, 𝜃)𝑝(𝜃 |𝐷)𝑑𝜃,

where 𝜃 represents the BNN parameters, such as weights and biases, 𝑝(𝑦 |𝑥, 𝜃) is the likelihood
function, and 𝑝(𝜃 |𝐷) is the Bayesian posterior distribution over 𝜃 given the observed data 𝐷. In
particular, 𝑝(𝜃 |𝐷) can be calculated by Bayesian inference such that

𝑝(𝜃 |𝐷) = 𝑝(𝐷 |𝜃) · 𝑝(𝜃)∫
𝜃 ′
𝑃(𝐷 |𝜃′)𝑃(𝜃′)

,

where 𝑝(𝜃) is the prior and 𝑝(𝐷 |𝜃) is the likelihood. However, computing the Bayesian posterior2

distribution and sampling from it are usually intractable due to the difficulty of computing the3

integral. In practice, either Markov Chain Monte Carlo [16], approximating the integral by sampling,4

or variational inference [17], approximating the integral by optimization, are used to estimate the5

Bayesian posterior distribution 𝑝(𝜃 |𝐷). A detailed description and analysis of BNNs can be found6

in the tutorial by Jospin et al. [18]7

3 Methodology8

3.1 BNN-VAIM architecture9

To quantify the uncertainty associated with the each individual solution found in VAIM, we incorporate10

BNN into the VAIM architecture (BNN-VAIM). More specifically, we replace the ANN in the11

backward mapper with a BNN. Similar to VAIM, BNN-VAIM comprises a forward mapper and a12

backward mapper. While the forward mapper is still an ANN that approximate the forward model13

from the parameters to the observables, the backward mapper is a BNN where the weights and biases14

are probability distributions instead of fixed numerical values in an ANN.15

In our BNN-VAIM implementation, BNN adopts a Gaussian prior distribution for the weights16

and biases. These prior parameters represent our initial beliefs about the distributions of weights17

and biases before observing any data. During the forward pass, BNN uses forward computation to18

generate the parameters from the given observables. Instead of learning a single set of weights and19

biases, the BNN learns the posterior distribution over weights and biases, which represents the updated20

beliefs about the weights and biases after observing the data. During training, we use variational21

inference to approximate the true posterior distribution [19, 20], which is a Gaussian distribution in22

our implementation by maximizing the log likelihood of the data given the weights and biases as the23

BNN parameters. We minimize the Kullback-Leibler (KL)-divergence between the approximated24

posterior distributions and the prior, with the purpose of avoiding overfitting.25

After the BNN-VAIM is properly trained, the backward mapper is used for solving the inverse26

problem, as shown in figure 4(b). First of all, similar to VAIM, feeding the given observables as27
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input and sampling the latent layer generate multiple solutions of the parameters. Then, for each1

solution corresponding to the observables and the latent space input, sampling the distributions of2

the BNN weights and biases provides an estimation of its uncertainty.3

Figure 4. VAIM for CFFs extraction.

3.2 BNN-VAIM for CFFs extraction4

Figure 5 shows the architecture of BNN-VAIM for CFFs extraction. Here the VAIM is implemented5

as a conditional Variational Auto Encoder (VAE), where 𝑥𝐵 𝑗 , 𝑄2, and 𝑡 are treated as the input6

conditions for both the forward mapper and the backward mapper. The backward mapper adopts a7

BNN architecture. During training, the BNN-VAIM attempts to minimize the loss of reconstructing the8

cross-section 𝑥, reconstructing the 8 CFFs, ℜ𝑒H , ℑ𝑚H ,ℜ𝑒E,ℑ𝑚E,ℜ𝑒H̃ ,ℑ𝑚H̃ ,ℜ𝑒Ẽ, and ℑ𝑚Ẽ,9

the KL-divergence of the distribution of the latent variable 𝑍 , and the KL-divergence of the posterior10

distribution of BNN to the Gaussian prior distribution. Once trained, by sampling the latent layer 𝑍 ,11

the backward mapper generates the potential CFFs solutions with respect to the given cross-section12

and the condition of 𝑥𝐵 𝑗 , 𝑄2, and 𝑡. Sampling the distribution of weights and biases provides an13

uncertainty estimation for each CFF solution.14
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Figure 5. BNN-VAIM for CFFs extraction.

4 Results and discussion1

In this section, we first demonstrate the effectiveness of BNN-VAIM on a toy inverse problem2

with ambiguous solutions. Then, we apply BNN-VAIM to extracting CFFs from the unpolarized3

DVCS cross section.4

4.1 Toy inverse problem 𝒇 (𝒙) = 𝒙25

We consider the following toy inverse problem of predicting 𝑥 by given 𝑓 (𝑥):

𝑓 (𝑥) = 𝑥2.

This toy inverse problem generally has two distinct solutions for every given 𝑓 (𝑥), except for 𝑓 (𝑥) = 0.6

We train the BNN-VAIM with 106 data samples uniformly distributed between 𝑥 = −2 to 𝑥 = 2.7

Smearing noise is introduced to the training data by allowing data to deviate within 5% of its original8

values. Both the forward mapper and the backward mapper employ fully connected networks with 39

layers, each layer having 512 hidden nodes. The dimension of the latent layer is 100. The dimension10

of the latent space is a hyperparameter of VAIM. Provided that the dimension of the latent space11

is not less than the dimension of the actual information lost during the forward mapping process,12

VAIM can in theory rebuild the complete parameter distribution from the observables. A larger latent13

space dimension provides more flexibility for VAIM to represent the lost information. However, a too14

large latent space dimension can slow down the training process, due to the fact of the resulting large15

neural networks for the forward and backward mappers. The prior of the latent variables is a uniform16

distribution. The prior of the BNN adopts a standard Gaussian distribution. We use Adam [21] as the17

optimizer with learning rate 1𝑒−5. Training concludes once the reconstruction error falls below 10−3.18

The histogram in blue in figure 6 shows the distribution of the multiple 𝑥 solutions with respect19

to 𝑓 (𝑥) = 1 by sampling the latent layer. Then, for a solution obtained, we sample the weights and20
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(a) (b)

Figure 6. Predicted solution distributions of 𝑓 (𝑥) = 𝑥2 and the estimated uncertainties of two solutions using
BNN-VAIM.

Figure 7. Closure test of 𝑓 (𝑥) = 𝑥2 for 𝑓 (𝑥) = 1. The training data has a mean of 0.999, a standard deviation of
0.0500, a kurtosis of -0.0054, and a skewness of -0.0015. The closure test results show a mean of 1.019, a
standard deviation of 0.102, a kurtosis of 0.212, and a skewness of 0.0856.

biases in BNN to generate the uncertainty estimation. Figures 6(a) and 6(b) show two individual1

solutions with error bars in 1 standard deviation, corresponding to 𝑥 = 1 and 𝑥 = −1, respectively.2

Figure 7 shows a closure test by sampling an individual solution within its uncertainty estimation and3

feeding the samples to the forward model to reconstruct 𝑓 (𝑥). One can find that, although somehow4

over-estimating, the reconstructed 𝑓 (𝑥) has good coverage of the training data within its noise range.5

4.2 BNN-VAIM for CFFs extraction6

We apply BNN-VAIM to extracting CFFs from the unpolarized DVCS cross-section. The forward7

mapper of BNN-VAIM includes an input layer representing the array of CFFs concatenated with the8

kinematics array, followed by three fully-connected layers comprising 2, 048 neurons each, activated9

by a Parameterized ReLU function [22]. The output layer encompasses the cross section and latent10

– 7 –
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variables (𝑧). The backward mapper contains an input layer representing the concatenated cross1

section, kinematics, and latent variable layer (𝑧), followed by three fully-connected Bayesian linear2

layers with 2, 048 neurons each, activated by a Parameterized ReLU function. The output layer3

reconstructs the CFFs. We use 225, 000 samples generated by BH scattering to train the BNN-VAIM4

model. Adam is used as the optimizer with learning rate 1𝑒−5. We adopt an adaptive training, which5

terminates when the reconstruction error is less than 10−4.6

Figure 8. Predicted CFFs using BNN-VAIM at a fixed kinematic point 𝑥𝐵 𝑗 = 0.343, 𝑡 = 0.172 GeV2, and
𝑄2 = 1.820 GeV2. 100 solutions are showed in grey lines. The uncertainty of one of these solutions, highlighted
in blue line, are specified with error bar obtained by BNN.

Figure 8 shows the results using BNN-VAIM to predict the CFFs from a singular kinematic7

point 𝑥Bj = 0.343, 𝑡 = −0.172 GeV2, and 𝑄2 = 1.82 GeV2 with respect to the unpolarized DVCS8

cross-section measurement at a beam energy of 5.75 GeV. While sampling the latent variables in9

VAIM generates an ensemble of 100 potential CFF solutions (grey lines in figure 8), sampling the10

BNN in the backward mappers provides an uncertainty estimation (red bar in figure 8) of one of11

these solutions. Compared to VAIM for CFF extraction, which provides the overall CFF solution12

distribution, BNN-VAIM further estimate the uncertainty associated with each solution. The size13

of the error bar indicates the sensitivity of each CFF solution. One can find that in the highlighted14

CFF solution in figure 8, ℑ𝑚E is most flexible while ℜ𝑒H̃ and ℑ𝑚H̃ are most constrained, which15

is quite consistent with the overall distribution of the CFF solutions.16

5 Conclusion17

In this paper, we incorporate BNN into our VAIM architecture for uncertainty quantification. By18

sampling the weights and biases distributions of the BNN in the backward mapper of the VAIM,19

BNN-VAIM enables the estimation of prediction uncertainty associated with each individual solution20

found in an ill-posed inverse problem. The uncertainty quantification capability of BNN-VAIM21

is demonstrated in a toy inverse problem of 𝑓 (𝑥) = 𝑥2. We further apply BNN-VAIM to a CFFs22

extraction problem, whose goal is to extract 8 CFFs from an unpolarized DVCS cross-section. Despite23

– 8 –
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the ill-posedness of the CFFs extraction problem, the uncertainty with respect to each CFF indicates1

its sensitivity to the cross-section measurement.2
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