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ABSTRACT

We explain how structures analogous to those appearing in the theory of stability conditions on abelian and 
triangulated categories arise in geometric invariant theory. This leads to an axiomatic notion of a central charge 
on a scheme with a group action and ultimately to a notion of a stability condition on a stack analogous to that 
on an abelian category. In the appendix by Ibáñez Núñez, it is explained how central charges can be viewed 
through the graded points of a stack. We use these ideas to introduce an axiomatic notion of a stability condi-
tion for polarized schemes, defined in such a way that K-stability is a special case. In the setting of axiomatic 
geometric invariant theory on a smooth projective variety, we produce an analytic counterpart to stability and 
explain the role of the Kempf–Ness theorem. This clarifies many of the structures involved in the study of 
deformed Hermitian Yang–Mills connections, Z-critical connections and Z-critical Kähler metrics.

1 . I N T R O D U CT I O N
Mumford’s geometric invariant theory (GIT) gives a method for constructing quotient spaces in 
algebraic geometry, with many important applications to the construction of moduli spaces [39]. 
These quotients parameterize polystable orbits—the unstable orbits are discarded to ensure a separated 
quotient.

Perhaps the most powerful outcome of Mumford’s work was not GIT itself, but rather the intro-
duction of the notion of stability, which has been fundamental to an enormous amount of further 
work. We mention two examples. The first is the notion of slope stability of a coherent sheaf, which 
led to Rudakov’s abstraction to stability on general abelian categories (where there is no possible inter-
pretation via GIT) [40] and ultimately to Bridgeland’s very general theory of stability conditions on 
triangulated categories [8], building on ideas of Douglas motivated by string theory [19]. Here GIT is 
used more as a motivational philosophy rather than as a direct tool.
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The second example we give is Mumford’s construction of the moduli space of (stable) curves [38], 
and its higher-dimensional (and largely conjectural) analogue of K-stability of a polarized variety [46,
18]. Here again while Mumford’s theory can successfully be applied in the special case of curves, 
in higher dimensions K-stability is only modelled on GIT, which is similarly used as a motivational 
philosophy.

Bridgeland’s notion of a stability condition is the appropriate one in the presence of some linearity, 
essentially due to the necessity of the presence of abelian categories, but many interesting problems in 
algebraic geometry have no such linearity; this is notably the case for the theory of stability of polar-
ized varieties. Roughly speaking, in Bridgeland’s theory stability is only defined for certain abelian 
subcategories 𝒜 of the triangulated category (satisfying various hypotheses), where stability involves 
choosing a central charge Z : 𝒜 → ℂ and demanding that for subobjects S ⊂ E the phase inequality 

argZ(E) > argZ(S)

holds (with arg denoting the argument of a complex number); this type of inequality is precisely of 
a form analogous to those arising in the traditional theory of slope stability of coherent sheaves. It is 
then important to assume that central charges are complex valued, as this is a basic step in Bridgeland’s 
proof that the space of stability conditions on a triangulated category forms a complex manifold. Just as 
Bridgeland’s theory gives a general way of understanding stability in the presence of a sort of linearity, 
it is natural to ask if one can extend the theory beyond the linear setting.

This note revisits some of the foundational ideas of GIT, with the aim of developing a general parallel 
of Bridgeland’s work. We accomplish roughly the easier half of this: motivated by a new notion of a 
central charge associated with a group action on a projective scheme, we introduce a notion of a central 
charge on a general stack, motivated by Halpern–Leistner’s approach to GIT on stacks [25]. When 
this stack is the stack of coherent sheaves, we then explain how this relates to the classical notion of 
a central charge. Our real interest, however, is in the stack of polarized schemes: here we use this to 
define an axiomatic notion of stability for polarized schemes. As we explain, K-stability is then a special 
case of Z-stability, with Z being a central charge. An ad hoc notion of stability for polarized varieties 
was introduced in [14], and our motivation here is to give a more axiomatic approach to essentially 
the same notion.

In the appendix Ibáñez Núñez, the relationship with Halpern–Leistner’s notion of the stack of 
graded points of a stack is discussed and explained in detail, and a thorough stack-theoretic treat-
ment of the notion of a central charge is given. These results emphasize that central charges are natural 
objects associated with stacks. In addition, it is observed there that the space of central charges natu-
rally has the structure of a complex vector space, proving a basic (loosely, abelian) counterpart to the 
complex-manifold structure of the space of stability conditions on a triangulated category.

We emphasize that this only solves half of the problem, really giving a stacky analogue of Rudakov’s 
notion of stability on an abelian category. To generalize Bridgeland’s theory is considerably more 
challenging—the closest analogy is the requirement to extend from coherent sheaves to complexes of 
coherent sheaves, and it is not clear what the right analogue of a complex should be for more general 
stacks—especially the stack of polarised schemes. The author expects that the right categorical gen-
eralization of K-stability—parallel to stability conditions on triangulated categories—should involve 
a larger overlying categorical structure, with stability defined then for appropriate substacks of this 
larger structure. On these substacks, stability should precisely require choosing a central charge on 
the stack, with stability then meaning what we introduce in the present work.

While this more categorical generalization of K-stability is speculative, general notions of stabil-
ity are of interest even for a fixed polarised variety, where the lack of ‘global’ structures analogous to 
Bridgeland stability conditions should be less problematic. The reason for this interest is in links with 
geometric partial differential equations and moment maps, as we explain in more detail further. Devel-
oping the theory purely algebraically appears to be very challenging, and we leave this for future work; 
for example—away from the important special case of Fano varieties [47]—basic questions such as 
Zariski openness of the stable locus are completely open even for K-stability of polarized varieties.
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1.1. Moment maps
Beyond the introduction of the general notion of stability in algebraic geometry, the most powerful 
outcomes of Mumford’s GIT arose through resulting links between algebraic and differential geome-
try. These arise through the Kempf–Ness theorem [33, 34], which states that polystability of an orbit can 
be characterized through the existence of zeroes of moment maps, as used in symplectic geometry. This 
characterization then descends to a homeomorphism of the algebraic and symplectic quotients by 
Kirwan [34]. The notions of slope stability of holomorphic vector bundles and K-stability of smooth 
polarised varieties—which can be thought of as infinite-dimensional analogues of stability in GIT—
then have analytic counterparts through the existence of Hermitian Yang–Mills connections and constant 
scalar curvature Kähler metrics, which can each be viewed as zeroes of infinite-dimensional moment 
maps [3, 17, 21]. Thus these moment map equations give differential-geometric approaches to moduli 
problems in algebraic geometry.

The second goal of this note is to give—in light of the axiomatic notion of a central charge in GIT—
a differential-geometric counterpart to central charges and resulting stability conditions, motivated by 
(and using) the Kempf–Ness theorem on a smooth projective variety. For a central charge Z we define 
a complex moment map and use it to define Z-critical points, and under a strong ‘subsolution’ hypothesis 
we prove that the existence of Z-critical points is equivalent to Z-polystability—the axiomatic notion 
of stability defined using the central charge.

Infinite-dimensional counterparts of this idea have become increasingly prominent in recent years, 
notably for equations that arose in string theory and mirror symmetry. The most well-understood of 
these is the deformed Hermitian Yang–Mills equation, which is the mirror of the special Lagrangian 
equation under SYZ mirror symmetry [35, 37]. The deformed Hermitian Yang–Mills equation 
roughly corresponds to stability of coherent sheaves with respect to a certain central charge, and for 
more general central charges one obtains the condition for a connection on a holomorphic vector 
bundle to be a Z-critical connection, as introduced by McCarthy and Sektnan [16]. A parallel, more 
challenging analogue for smooth polarized varieties was introduced in [14, 15], through the theory 
of Z-critical Kähler metrics, linked with the notion of Z-stability of the polarized variety [14]. While—
with the notable exception of deformed Hermitian Yang–Mills connections on line bundles [9, 10,
31]—it remains an open problem to characterize the existence of solutions of these partial differen-
tial equations in terms of the associated notions of stability, the present work gives a finite-dimensional 
analogue of these results which does provide evidence for generalizations of the Kempf–Ness theorem 
to the aforementioned infinite-dimensional settings. In joint work with Hallam providing a sequel to 
the present note, a geometric recipe is given which canonically associates complex moment maps with 
central charges in the categories of polarized manifolds and holomorphic vector bundles, building on 
some of the ideas presented here [15].

In both the variety and coherent sheaf settings, the Z-critical equation can be associated with very 
general classes of central charges, but basic properties—such as ellipticity of the partial differential 
equation—cannot hold in complete generality. This is best understood in the (smooth) coherent sheaf 
setting, where the Z-subsolution condition governs ellipticity of the equation along with various other 
geometric properties of the equation [10, 16, 44]. This subsolution condition—which as we explain 
here has a finite dimensional analogue—is a positivity condition, and it seems plausible to suggest that 
these notions are related to the various axioms of Bridgeland’s stability conditions, which themselves 
can be thought of as positivity conditions (as an explicit example, the existence of Harder–Narasihman 
filtrations assumed in the definition of a Bridgeland stability condition is a consequence of a kind of 
convexity, which is in turn a consequence of a kind of positivity).

The analytic state-of-the-art in both the variety and coherent sheave cases is closer to stability on 
an abelian category than a triangulated one, and it remains an important problem to extend the notion 
of a Z-critical connection to more general complexes. The manifold setting is more mysterious again, 
but the perspective presented here, along with the parallels between the coherent sheaf and variety 
theories, provides analytic motivation for the appearance of an analogue of the derived category of 
coherent sheaves in the setting of polarized schemes. That is, given that one should expect the need to 
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consider the triangulated setting and categorical obstructions to fully understand the existence of Z-
critical connections in relation to Bridgeland stability, to understand the existence of Z-critical Kähler 
metrics one should also need to understand deeper categorical obstructions. Optimistically one may 
expect to be able to actually obtain the right categorical extensions from a deep understanding of the 
analysis underlying the Z-critical Kähler condition, much as one would hope to be able to recover the 
notion of Bridgeland stability through understanding the analysis underlying the Z-critical connec-
tion condition. We also remark that there is evidence that Bridgeland stability may not be exactly the 
right condition to be equivalent to the existence of deformed Hermitian Yang–Mills connections [11,
30], with this philosophy then suggesting that one may be able to obtain a similar algebro-geometric 
stability condition through the analysis underlying the deformed Hermitian Yang–Mills condition: 
the stability condition should be the one that is equivalent to existence of solutions of this equation.

In any case, our work here gives a finite-dimensional motivation for these geometric partial dif-
ferential equations and, in particular, gives a dictionary for passing from standard moment map 
constructions—such as geometric flows—to interesting infinite-dimensional ones. We thus empha-
size that the main purpose of this note is to use GIT to understand the right general axiomatic notion 
of stability for polarized schemes—and for general stacks—and to highlight how this viewpoint can 
be used to motivate the appearance of differential-geometric counterparts to abstract stability condi-
tions. There are relatively few proofs, with the focus instead being on providing definitions which we 
hope will motivate further work. We also hope that these ideas clarify many of the basic structures 
appearing in recent work on general relationships between abstract stability conditions and geometric 
partial differential equations.

1.2. Remark
Independent forthcoming work of Haiden–Katzarkov–Kontsevich–Pandit aims to develop an analytic 
counterpart to Bridgeland stability for general triangulated categories; they title their programme ‘cat-
egorical Kähler geometry’ (see [23, 24] for precursors). Their programme has a substantial overlap 
with the ideas developed here, and indeed the Z-critical condition used here bears some similarity to 
equations that appear in their work. The author thanks Haiden and Pandit for discussions on these 
ideas.

1.3. Outline
We discuss stability in GIT in Section 2.1, before turning to the axiomatic notion of Z-stability for 
group actions on schemes in Section 2.2 and on stacks in Section 2.3. Section 2.4 then explains the 
special cases of stability conditions on the stacks of coherent sheaves and polarized schemes. The ana-
lytic counterpart to Z-stability is described in Section 3 through the theory of complex moment maps, 
and we end with a discussion of various natural analytic structures in complex moment map theory in 
Section 3.2.

2 . STA BI L I T Y CO N D I T I O N S I N G I T
2.1. The classical theory

Let (X, L) be a polarized projective scheme, and let G be a reductive group acting on (X, L). We briefly 
recall some of the basic ideas of GIT, which produces a quotient X//G of X by G. The original reference 
is Mumford’s book [39], and good surveys are given by Hashimoto [27] and Thomas [45]. Rather 
than parameterizing all orbits, the quotient represents only polystable orbits, which we now define.

Let 𝜆 : ℂ* ↪ G be a one-parameter subgroup. For a given x ∈ X , we call 

y = lim
t→0

𝜆(t).x

the specialization of x under 𝜆; we also say that x degenerates to y under 𝜆. As y is fixed by the ℂ*-action, 
there is a ℂ*-action on the one-dimensional complex vector space Ly; this action is multiplication by 
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t𝜈(y,𝜆) for an integer 𝜈(y,𝜆) ∈ ℤ called the weight. We think of the weight as an assignment 

(y,𝜆) → 𝜈(y,𝜆) ∈ ℤ,

where 𝜆 : ℂ* ↪ Gy is a one-parameter subgroup of the stabilizer Gy of y.

Definition 2.1 We say that x ∈ X  is

(1) semistable if for all one-parameter subgroups 𝜆 of G, we have 𝜈(y,𝜆) ≥ 0;
(2) polystable if for all one-parameter subgroups 𝜆 of G, we have 𝜈(y,𝜆) ≥ 0, with 

equality if and only if limt→0 𝜆(t).x ∈ G.x;
(3) stable if for all non-trivial one-parameter subgroups 𝜆 of G, we have 𝜈(y,𝜆) > 0;
(4) unstable otherwise.

Here in each case y is the specialization of x under 𝜆. These are conditions on the orbit G ⋅ x, 
so we also have that the orbit G ⋅ x is semistable, polystable or stable, respectively.

The general machinery of GIT produces a quotient space X//G which parameterises polystable 
orbits. The first important step in this process is that both the stable locus Xs and the semistable locus 
X ss are Zariski open. The next step is to prove the existence of a surjective morphism X ss → X//G
such that distinct polystable orbits are mapped to distinct points in X//G. This map is well-defined is 
equivalent to the fact that the closure of each semistable orbit contains a unique polystable orbit.

Remark 2.2 This is not how stability in GIT is usually presented; rather, it is an equivalent 
characterization provided by the Hilbert–Mumford criterion. More typically GIT is 
presented instead using invariant global sections of Lk, from which constructing the GIT 
quotient is almost tautological via the Proj construction. The Hilbert–Mumford criterion 
then gives a way of geometrically interpreting polystable orbits [39, Section 2].

It will be useful to relate one-parameter subgroups to associated elements of the Lie algebra 𝔤 of G. 
First consider rst a maximal (complex) torus Tℂ ⊂ G with Lie algebra 𝔱ℂ. The cocharacter lattice has 
points consisting of the kernel of the exponential map exp : 𝔱ℂ → Tℂ; these are in bijection with the 
one-parameter subgroups ℂ* → Tℂ. Splitting 𝔱ℂ = 𝔱⊕ i𝔱, the ℝ-span of the cocharacter lattice is the 
real Lie algebra 𝔱 of the torus T, and the ℂ-span is the Lie algebra 𝔱ℂ itself. We denote by 𝔱ℚ ⊂ 𝔱 the 
ℚ-span of the cocharacter lattice, so that the ℚ-vector space 𝔱ℚ ⊕ i𝔱ℚ ⊂ 𝔱ℂ is a dense subset. We call 
the spaces 𝔱ℚ and 𝔱ℚ ⊕ i𝔱ℚ the collection of rational points of 𝔱 and 𝔱ℂ, respectively.

We next turn to the Lie algebra 𝔤, where we say that u ∈ 𝔤 is rational if there exists a maximal torus 
Tℂ of G such that u ∈ 𝔱ℂ ⊂ 𝔤 is a rational point. We denote by 𝔤ℚ the set of rational points of 𝔤, and 
note that while this is not a ℚ-vector space in general, 𝔤ℚ is nevertheless a dense subset of 𝔤. Similarly, 
writing G as the complexification of a maximal compact subgroup K ⊂ G, the Lie algebra 𝔤 splits as 

𝔤 ≅ 𝔨⊕ i𝔨,

where 𝔨 = LieK . With an analogous definition of 𝔨ℚ, the ℝ-span of 𝔨ℚ is 𝔨 itself, meaning that 𝔨ℚ ⊂ 𝔨
is again dense.

As the stabilizer Gx of x ∈ X  is not reductive in general, it is not the case that 𝔤x,ℚ as defined above 
is dense in 𝔤x for all x ∈ X . Instead we fix a maximal compact subgroup Kx ⊂ Gx, and let Kℂ

x ⊂ Gx
denote its complexification. We then repeat the above discussion for the reductive group Kℂ

x  and 
denote by 𝔨x,ℚ and 𝔨ℂx,ℚ the rational points of 𝔨x and 𝔨ℂx , respectively.
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Lemma 2.3 (Additivity)  The weight function extends to a Lie algebra character

𝜈(x, ⋅) : 𝔨x → ℝ.

Similarly the weight function extends to a complex-valued Lie algebra character 𝜈(x, ⋅) : 1𝔨ℂx → ℂ.
That the weight is additive on the cocharacter lattice implies that it extends linearly to a linear function 
𝔨x → ℝ. Denoting by 

g ⋅ 𝜆 = g ∘ 𝜆 ∘ g−1

the adjoint action of G on one-parameter subgroups, associated with a one-parameter subgroup 
𝜆 ↪ Gx, there is then an induced one-parameter subgroup g ⋅ 𝜆 ↪ Gg(x). The conjugation-invariance 
property 

𝜈(g(x),𝜆) = 𝜈(x, g ⋅ 𝜆)

implies from this that 𝜈 is actually a Lie algebra character, namely, that 𝜈(x, [⋅, ⋅]) = 0.
We also recall an equivariance property that is more global in nature. Consider a connected sub-

scheme B ⊂ X  such that 𝜆 is a one-parameter subgroup contained in the stabilizer Gx of x for all 
(closed) points x ∈ B.

Lemma 2.4 (Equivariant constancy)  The value 𝜈(x,𝜆) is independent of x ∈ B.

This property can be seen by equivariantly trivializing the restriction of L to an affine chart of B.

Example 2.5 Fix a point x ∈ X , and consider two commuting one-parameter subgroups 𝜆,𝛾
of G. These induce a (ℂ*)2-equivariant morphism ℂ2 → X , where ℂ2 is given the natural 
(ℂ*)2-action, such that the image of (ℂ*)2 is contained in G.x. The image of ℂ2 is the affine 
toric variety produced by taking the partial closure of the (ℂ*)2-orbit (ℂ*)2.x ⊂ X . The 
closure of the (ℂ*)2-orbit thus contains fixed points of 𝛾 and 𝜆, which we denote by y𝜆,s, y𝛾,t , 
respectively, where we have parameterized using coordinates s, t on ℂ2. These families 
intersect at the image of the origin in ℂ2: y𝛾,0 = y𝜆,0, as follows from commutativity of 𝜆,𝛾. 
Equivariant constancy then implies that 𝜈(y𝜆,s,𝜆) = 𝜈(y𝜆,0,𝜆) and likewise for 𝛾. This 
example is related to forthcoming work of Kirwan–Nanda on representations of 2-quivers.

2.2. Axiomatic stability conditions
We would like to axiomatize the key structures of GIT. Thus consider a projective scheme X given the 
action of a reductive group G. Denote by 

𝒮 = {(y,𝜆) | y ∈ X  and 𝜆 is a one − parameter subgroup of Gy}/ ∼,

where (y,𝜆) ∼ (z,𝛾) if there is g ∈ G with g(y) = z and g ⋅ 𝜆 = 𝛾. Thus 𝒮 is an upgrade of the space 
of orbits in X by also remembering a one-parameter subgroup fixing the point in the orbit. There is a 
canonical injective map 

X → 𝒮, x → (x, Id),

where Id denotes the trivial one-parameter subgroup of G.
The set 𝒮 admits the structure of a directed graph, with vertices given by elements of 𝒮 and arrows 

given by equivariant specialization. That is, we write 

(x,𝜁) ⇝ (y,𝜆)

if 𝜆 commutes with 𝜁 and y is the specialization of x under 𝜆. We write x ⇝ (y,𝜆) to mean that 
(x, Id) ⇝ (y,𝜆).
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Lemma 2.6 Equivariant specialization is well-defined on orbits.

Proof. Let (x,𝜁) ∼ (z,𝛾), so that there is g ∈ G with (g(x), g ⋅ 𝜁) = (z,𝛾). If (x,𝜁) ⇝ (y,𝜆),
then 

(z,𝛾) = (g(x), g ⋅ 𝜁) ⇝ (g(y), g ⋅ 𝜆) ∼ (y,𝜆),

as required. �

Fixing a maximal compact subgroup Kx of Gx with Lie algebra 𝔨x, as in Section 2.1, it is then useful to 
consider 𝒮 as consisting of pairs (x, v), where v ∈ 𝔨x satisfies exp(v) = Id, meaning that v corresponds 
to a one-parameter subgroup of Gx.

Definition 2.7 A central charge is a function Z : 𝒮 → ℂ such that

(1) (Additivity) For a fixed x ∈ X , Z induces a function 

Z(x, ⋅) : 𝔨x → ℂ,

which is a Lie algebra character;
(2) (Equivariant constancy) Suppose B ⊂ X  is a connected subscheme such that 𝜆 is a 

one-parameter subgroup of Gx for each x ∈ X . Then Z(x,𝜆) is independent of 
x ∈ X .

Additivity in particular asks that Z(x, ⋅) is additive under compositions of commuting one-
parameter subgroups, so that it canonically extends to a linear function on 𝔱x = LieTx for any maximal 
torus Tx ⊂ Kx. That Z is well-defined on 𝒮 implies that Z(x, v) = Z(x, g ⋅ v) for v ∈ 𝔨x and g ∈ Gx, so 
that its extension to 𝔱x induces an extension to 𝔨x canonically, since maximal tori are always conjugate.

We record a motivating property for the definitions given here, for which we take 𝜁,𝜆 commuting 
one-parameter subgroups. Their composition 𝜁 ∘ 𝜆 is then well-defined and corresponds to exponen-
tiating the sum of the associated elements of 𝔨. In the following we view Z as taking values on pairs of 
points and one-parameter subgroups.

Lemma 2.8 Suppose (x,𝜁) ⇝ (y,𝜆). Then 

Z(x,𝜁) + Z(y,𝜆) = Z(y,𝜁 ∘ 𝜆).

Proof. Since 

Z(y,𝜁 ∘ 𝜆) = Z(y,𝜁) + Z(y,𝜆),

the claim follows from the claim that 

Z(x,𝜁) = Z(y,𝜁),

which in turn follows from equivariant constancy. �

This notion of a central charge allows us to define stability, for which we must in addition fix a phase
𝜑 ∈ (−𝜋,𝜋).

Definition 2.9 We say that x ∈ X  is
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(1) Z-semistable if for all x ⇝ (y,𝜆) we have 

Im(e−i𝜑Z(y,𝜆)) ≥ 0;

(2) Z-polystable if for all x ⇝ (y,𝜆) we have Im(e−i𝜑Z(y,𝜆)) ≥ 0 with equality if and 
only if G.x = G.y;

(3) Z-stable if x is polystable and in addition Gx is finite;
(4) Z-unstable otherwise.

Thus stability is measured relative to the chosen phase 𝜑. Z-semistability and polystability can be 
defined similarly for points (x,𝜁) ∈ 𝒮, and in this way Z-semistability of (x,𝜁) asks for ‘equivariant Z-
semistability’ of x, namely Z-semistability with respect to one-parameter subgroups commuting with 
𝜁. In standard GIT, equivariant semistability is equivalent to semistability, and so we choose not to 
emphasize this slightly more general situation.

Remark 2.10 Under an additional hypothesis on 𝜑 and Z(y,𝜆), we can rephrase the 
numerical inequality governing stability in a way more reminiscent of Bridgeland stability 
[8]. Let arg : ℂ\ℝ≤0 → (−𝜋,𝜋) denote the principal branch of the argument function and 
denote by 

ℍ = {z ∈ ℂ | Im(z) ≥ 0 and z ∉ ℝ<0}.

Provided Z(y,𝜆) ∈ ℍ we define the phase of Z(x,𝜁) to be 

𝜑(y,𝜆) = arg((y,𝜆)) ∈ (−𝜋,𝜋).

Suppose further that e−i𝜑 and Z(y,𝜆) both lie in ℍ (so that 𝜑 ∈ [0,𝜋)). Then the condition 

Im(e−i𝜑Z(y,𝜆)) ≥ 0

holds if and only if the phase inequality 

𝜑 ≥ 𝜑(y,𝜆)

holds and similarly if one demands strict inequalities. In fact what is important is to fix a 
given half-plane in ℂ; the specific choice ℍ is not essential, as stability is independent of 
simultaneously rotating the phase 𝜑 and the central charge Z by the same angle.

Remark 2.11 To obtain a working theory with standard properties—such as Zariski openness 
of the stable locus—one certainly needs further hypotheses on the central charge. What we 
have given here seems to be the minimum required to give a definition analogous to the usual 
definition of a central charge on an abelian category, as we discuss in Section ‘Coherent 
sheaves’, and to obtain a link with moment maps and differential geometry, as we discuss in 
Section 3.

2.3. Stability conditions on stacks
In Section 2.2 we considered a scheme X with the action of a reductive group G. Viewing this as pro-
ducing a global quotient stack [X/G], we next make analogous definitions for arbitrary stacks. What 
will be important is that—just as with [X/G]—we can speak of a point along with a one-parameter 
subgroup of its stabilizer. Our discussion will be rather formal, but to match with the hypotheses of 
the appendix—where a more thorough stack-theoretic treatment is provided—we assume that 𝒳 is a 
quasi-separated algebraic stack, which is locally of finite type over ℂ and has affine stabilizers.
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Thus let 𝒳 be such a stack. For y ∈ 𝒳 we denote by Aut(y) the automorphism group (or stabiliser) 
of y. We then define 

𝒮 = {(y,𝜆) | y ∈ 𝒳 and𝜆 is a one − parameter subgroup of Aut(y)}/ ∼,

where we say (x,𝜆) ∼ (y,𝛾) if there is an isomorphism g : x ≅ y such that g ⋅ 𝜆 = 𝛾, where g ⋅ 𝜆
denotes the one-parameter subgroup of the stabilizer Gy of y under the isomorphism g : x ≅ y.

We endow 𝒮 with the structure of a directed graph as follows. We begin with the simplest case, 
namely when we consider (x, Id), with Id denoting the trivial (identity) one-parameter subgroup. Here 
we say that 

(x, Id) ⇝ (y,𝜆)

if there is a morphism Ψ : [ℂ/ℂ*] → 𝒳 such that Ψ(1) = x and 

Ψ(0,ℂ*) = (y,𝜆);

that is, we consider ℂ* ↪ Aut(0) for 0 ∈ ℂ and ask that this one-parameter subgroup is mapped to 
𝜆 ↪ Aut(y).

To define what it means for there to exist a degeneration 

(x,𝜁) ⇝ (y,𝜆),

we consider the quotient stack [ℂ2/(ℂ*)2] given the natural action. We choose coordinates (s, t) on 
ℂ2 and ℂ*-actions 𝜆,𝜁, so that for s = 1 the point (0, 1) has stabilizer 𝜉 and similarly for t = 0 the point 
(1, 0) has stabilizer 𝜁. The notation is suggestive: we will ask that 𝜆,𝜁 map to 𝜆,𝜁, respectively. We then 
say that (x,𝜁) ⇝ (y,𝜆) if there is a morphism Ψ : [ℂ2/(ℂ*)2] → 𝒳 satisfying the following two con-
ditions. Firstly, on points we ask that Ψ(t, 1) = x for all t ∈ ℂ and Ψ(t, 0) = y. Secondly, on stabilizers 
we ask that the ℂ*-stabilizer 𝜁 of (0, 1) is mapped to 𝜁 ⊂ Aut(Ψ(0, 1)) = Aut(x), and we in addition 
ask that the stabilizer 𝜆 of (t, 0) is mapped to 𝜆 ⊂ Aut(Ψ(t, 0)) = Aut(y). The consideration of ℂ2 is 
not essential, and one can instead consider the quotient stack [ℂ/(ℂ*)2], where one copy of ℂ* lies 
in the stabilizer of every point of ℂ.

Definition 2.12 We call a morphism Ψ : [ℂ/ℂ*] → 𝒳 with Ψ(1) = x being a test 
configuration for x.

Remark 2.13 Morphisms [ℂ/ℂ*] → 𝒳 are called ‘filtrations’ of x by Halpern-Leistner [25], 
motivated by the case when 𝒳 is the stack of coherent sheaves on a scheme, but since this 
word has various other meanings in the theory of K-stability, we instead use Donaldson’s 
terminology.

Remark 2.14 With this terminology, maps [ℂ2/(ℂ*)2] → 𝒳 (as considered in our definition 
of a degeneration (x,𝜁) ⇝ (y,𝜆)) are essentially ‘test configurations of test configurations’; 
we give a geometric example of this condition for polarized schemes in Remark 2.18.

We can now define a central charge analogously to before. Two pieces of notation will be useful. 
Firstly we let 𝔨x ⊂ LieAut(x) be the Lie subalgebra associated with a maximal compact subgroup Kx ⊂
Gx.

Definition 2.15 A central charge is a function Z : 𝒮 → ℂ such that

(1) (Additivity) For each x ∈ 𝒳, Z extends to a Lie algebra character 

Z(x, ⋅) : 𝔨x → ℂ.
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(2) (Equivariant constancy) Suppose Ψ : [B/ℂ*] → 𝒳 is a morphism where ℂ* fixes 
each point b ∈ B of a connected finite-type scheme B, and denote by 𝜆Ψ(b) the 
associated one-parameter subgroup of Aut(Ψ(b)). Then Z(Ψ(b),𝜆Ψ(b)) is 
independent of b ∈ B.

Remark 2.16 A central charge as defined here is a variant of Halpern-Leistner’s notion of a 
‘numerical invariant’ [25], and in particular the equivariant constancy used here is motivated 
by a property he demands.

A central charge induces a notion of stability just as before: fixing a phase 𝜑 ∈ (−𝜋,𝜋), we say that 
x is xZ-semistable if for all (x, Id) ⇝ (y,𝜆) the inequality 

Im(e−i𝜑Z(y,𝜆)) ≥ 0

holds, and Z-stability, Z-polystability and Z-instability are defined analogously.

2.4. Examples
We give two examples of central charges for particular stacks: the stack of coherent sheaves and the stack 
of polarized schemes.

Coherent sheaves
Let 𝒞 denote the stack of coherent sheaves over a projective scheme X, with 𝒮 parameterizing sheaves 
along E along with a one-parameter subgroup of Aut(E). There is a classical notion of a central charge 
on 𝒞: this associates with each coherent sheaf E on X a complex number Z(E) which is deformation 
invariant (that is, constant in flat families of sheaves; this is a consequence of central charges being 
assumed to factor through the numerical Grothendieck group of coherent sheaves and constancy of 
numerical invariants in flat families) and additive in short exact sequences. Here we explain how this 
canonically induces a central charge in the sense of Section 2.3, so that our notion can be seen as a 
generalization of the classical notion.

In the stack of coherent sheaves, test configurations [ℂ/ℂ*] → 𝒞 for E correspond to filtrations 
of E labelled by integers (this is standard; see, for example, [25, Example 0.0.2]). For example, any 
subsheaf S ⊂ E induces the specialization 

(E, Id) ⇝ (S ⊕ E/S, (Id,exp(t)).

Suppose that we are given for each coherent sheaf E a complex number Z(E) which is constant in 
flat families and additive in short exact sequences (such as from a central charge in the classical sense). 
For an element 

(E1 ⊕ … ⊕ Ek, (Id,… ,exp(t),… , Id)) ∈ 𝒮,

with exp(t) in the jth spot, first set 

Z(E1 ⊕ … ⊕ Ek, (Id,… ,exp(t),… , Id)) = Z(Ej).

Then setting 

Z(E1 ⊕ … ⊕ Ek, (exp(a1t),… ,exp(akt))) =
k

∑
j=1

ajZ(Ej)

induces a central charge: additivity follows by definition, while equivariant constancy is a consequence 
of Z(E) being constant in flat families of sheaves.
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The classical example of a central charge on the stack of coherent sheaves over a polarized scheme 
(X, L) is given by 

Z(E) = rkE − idegE,

where rkE denotes the rank and degE = c1(E) ⋅ Ln−1 denotes the degree. With this choice Z-
semistability recovers slope semistability, while if one restricts to test configurations induced by sat-
urated subsheaves of E then Z-polystability recovers slope polystability (for a survey explaining slope 
stability and its relation to Bridgeland stability see [4]).

Polarized schemes
Denote by 𝒳 the stack of ℚ-polarized schemes with fixed Hilbert polynomial (that is, we consider 
schemes together with an ample ℚ-line bundle). The main differences between the polarized scheme 
theory and the coherent sheaf theory is that test configurations no longer correspond directly to sub-
objects, so it is more natural to consider polarized schemes with fixed Hilbert polynomial rather than 
considering all polarized schemes at the same time.

Unravelling the definition, a test configuration for (X, L) in 𝒳 corresponds to a flat family 
(𝒴,ℒ𝒴) → ℂ of polarized schemes along with a ℂ*-action covering the natural one on ℂ, such that 
the fibres satisfy (𝒴t ,ℒ𝒴,t) ≅ (X , L) for all t ≠ 0. This agrees with the usual definition of a test config-
uration due to Donaldson [18], generalizing Tian’s prior work [46]. Given a test configuration with 
associated ℂ*-action 𝜆, we write (X , L) ⇝ (𝒴0,ℒ𝒴0

,𝜆).
The set 𝒮 consists of triples (X , L,𝜁) where (X, L) is a polarized scheme and 𝜁 is a 

one-parameter subgroup of Aut(X , L). Denote by 𝔨(X ,L) the Lie algebra of a maximal com-
pact subgroup K ⊂ Aut(X , L). The notion of a central charge for polarized schemes is the
following.

Definition 2.17 A central charge is a function Z : 𝒮 → ℂ which satisfies the following:

(1) (Additivity) For a fixed polarized scheme, Z induces a Lie algebra character 

Z((X , L), ⋅) : 𝔨(X ,L) → ℂ.

(2) (Equivariant constancy) Suppose that 𝜋 : (𝒴,ℒ𝒴) → B is a flat family of polarised 
schemes, and suppose that there is a ℂ*-action 𝜆 on (𝒴,ℒ𝒴) such that 𝜋 ∘ 𝜆(t) = 𝜋
for all t. Then Z(𝒴b,ℒ𝒴b

,𝜆) is independent of b ∈ B, where (𝒴b,ℒ𝒴b
) denotes the 

fibre of 𝜋 over b.

Given a central charge, one can then ask for a polarized scheme (X, L) to be Z-semistable, Z-stable, 
Z-polystable or Z-unstable in the natural way. For example, fixing a phase 𝜑 ∈ (−𝜋,𝜋) for (X, L) to be 
Z-semistable that for all (X , L) ⇝ (Y , LY ,𝜆) we have 

Im(e−i𝜑Z(Y , LY ,𝜆)) ≥ 0.

For a test configuration (𝒴,ℒ), if we define Z(𝒴,ℒY ) to be Z(𝒴0,ℒ𝒴0
,𝜆), we may think of a central 

charge as associating a complex number with each test configuration, in an additive and equivariantly 
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constant manner. With this notation Z-semistability then for all test configurations (𝒴,ℒ) for (X, L) 
we have 

Im(e−i𝜑Z(𝒴,ℒ)) ≥ 0.

Remark 2.18 The analogue for polarized schemes of the condition that (x,𝜁) ⇝ (y,𝜆) is the 
following. Suppose that (X, L) is a polarized scheme, with 𝜁 being a ℂ*-action on (X, L). We 
can then ask for a test configuration (𝒴,ℒ𝒴) to be 𝜁-equivariant, in the sense that there is a 
ℂ*-action on 𝒴 acting fibrewise (so preserving the map to ℂ), extending the action of 𝜁 on 
the general fibre (X, L) and commuting with the 𝜉-action on 𝒴 coming from the definition of 
a test configuration. Given such a 𝜁-equivariant test configuration, we obtain a family 
𝒴×ℂ → ℂ2 with a (ℂ*)2-action induced from 𝜉 on the first factor and (the extension of) 𝜁
on the second. There are two ℂ*-actions on (𝒴0,ℒ𝒴0

) induced by 𝜉 and 𝜁, and the condition 
that (X , L,𝜁) ⇝ (𝒴0,ℒ𝒴0

,𝜆) asks that there is a 𝜁-equivariant test configuration as described 
such that in addition 𝜉 ∘ 𝜁 = 𝜁 ∘ 𝜉 = 𝜆 as subgroups of Aut(𝒴0,ℒ𝒴0

). Note that this implies 𝜆
and 𝜁 also commute in Aut(𝒴0,ℒ𝒴0

). As before, it is not essential to consider families over 
ℂ2, as one can instead consider families over ℂ at the expense of working with the ineffective 
quotient [ℂ/(ℂ*)2].

Example 2.19 (K-stability) Suppose that (𝒴,ℒ) is a test configuration for an n-dimensional 
scheme (Y, L), inducing a ℂ*-action 𝜆0 on H0(𝒴0,ℒk

0) for all k. The dimension of 
H0(𝒴0,ℒk

0) and the total weight of the action on H0(𝒴0,ℒk
0) are polynomials for k ≫ 0

which we may write 

h(k) = a0kn + a1kn−1 + O(kn−2),

w(k) = b0kn+1 + b1kn + O(kn−1),

respectively. Setting 

Z((𝒴0,ℒ0),𝜆0) = −ib0 + b1, Z((Y , L), Id) = ia0 − a1,

produces a central charge, and the notion of Z-semistability recovers Donaldson’s notion of 
K-semistability [18] (extending Tian’s analytic definition in the Fano case [46]) and 
similarly for Z-stability and Z-polystability.

After Donaldson’s original work, a subtlety in the definition of K-stability (rather than 
K-semistability) was realized: for normal varieties one must exclude certain ‘almost trivial’ 
test configurations (test configurations whose total space normalizes to the trivial test 
configuration) to have a sensible theory [7, 13, 36, 42]; it is not clear what role these 
degenerate test configurations play in the theory for more general central charges. Excluding 
almost trivial test configurations is analogous to the restriction to considering saturated 
subsheaves in the definition of slope stability of torsion-free coherent sheaves; by contrast 
torsion sheaves play a central role in Bridgeland stability.

Example 2.20 The notion of a central charge is intended to axiomatize the notion of a central 
charge introduced in [14]. There a specific smooth polarized variety (X, L) was fixed, and a 
central charge was defined explicitly through a choice of topological information on (X, L). 
This choice canonically induces a phase 𝜑 = argZ(X , L), which is then independent of (X, L) 
itself, provided that it varies in a flat manner. For each test configuration (𝒴,ℒ) with smooth 
total space, a number Z(𝒴,ℒ) ∈ ℂ was then defined via intersection theory on a natural 
compactification of the total space 𝒴. Thus the definition relies on (𝒴0,ℒ0) being the central 
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fibre of a test configuration with reasonable total space. It would be interesting to define 
these quantities intrinsically on (𝒴0,ℒ0), more in line with the perspective of this note.

3 . Z- C R I T I C A L P O I N TS A N D CO M P L E X M O M E N T M A P S
We next describe the analytic counterpart to Z-stability, through what we call complex moment maps. 
In the traditional theory of moment maps, one can either consider maps to the Lie algebra or its 
dual; the former requires a choice of an inner product. This is mostly an aesthetic choice, and we 
choose to fix an inner product so that the links with the motivating infinite-dimensional problems are 
most transparent, as this is one of the main goals of our work. We refer to Kirwan [34], Georgoulas–
Robbin–Salamon [22] and Hashimoto [27] for comprehensive accounts of the relationship between 
moment maps and GIT.

To define the inner product, we proceed as follows. Firstly we fix a faithful representation of G on a 
complex vector space V, giving an embedding 

𝔤 ⊂ EndV .

Thus we may multiply elements of 𝔤. The most important example to keep in mind is when X ⊂ ℙn =
ℙ(V ) is a subvariety of projective space and G acts faithfully and linearly on projective space, meaning 
that there is a natural G-action on V. We assume that G is reductive and is hence the complexification of 
a maximal compact subgroup K ⊂ G. We also fix a K-invariant Hermitian inner product on V, which 
induces one on EndV  and hence induces an isomorphism 

𝔤 ≅ 𝔤*.

In this way, for u ∈ 𝔤 and 𝛼 ∈ 𝔤* we have 

⟨u,𝛼⟩ = tr(u*𝛼∨),

where ⟨⋅, ⋅⟩ is the natural pairing, 𝛼∨ ∈ 𝔤 is the dual element of 𝛼 and u* is the conjugate transpose.
We now return to a smooth projective variety X, which we endow with a closed K-invariant complex

(1, 1)-form 𝜔Z. For the moment we do not assume any positivity hypotheses on 𝜔Z.
Let G be a reductive linear algebraic group acting holomorphically on X, and fix a representation 

of G and a Hermitian inner product as earlier. We write K for the maximal compact subgroup of G, 
and let 𝔨 denote the Lie algebra of K. We will—slightly abusively—identify an element v ∈ 𝔤 with its 
induced vector field on X.

Definition 3.1 We say that a smooth map 

Z̃ : X → 𝔤

is a complex moment map if for all u ∈ 𝔨 we have 

dtr(u*Z̃) = −𝜄u𝜔Z

and Z̃ is K-equivariant with respect to the adjoint action on 𝔨.

Remark 3.2 Similar structures to complex moment maps arise in Bérczi–Kirwan’s recent work 
providing a moment map interpretation of non-reductive GIT [6], and it would be 
interesting to understand the relationship between their work and what we consider here.

We now assume that Z̃ is a complex moment map. To link with the definition of a central charge, it 
is useful to upgrade Z̃ to a smooth function 

Z̃ : X × 𝔨 → 𝔤
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by defining 

Z̃(x, v) = v*Z̃(x),

where the second term is interpreted as multiplication of elements of 𝔤 ⊂ EndV . In the following we 
view 𝒮 as consisting of pairs (x, u) such that x ∈ X  and u ∈ 𝔨x. We fix a central charge Z on § and a 
phase 𝜑 ∈ (−𝜋,𝜋).

Definition 3.3 We say that Z̃ is compatible with a central charge Z : 𝒮 → ℂ if for all (x, v) ∈ 𝒮
we have 

tr(Z̃(x, v)) = Z(x, v)

and 

arg tr(Z̃(x)) = 𝜑.

Remark 3.4 Compatibility is a key point of the definitions: if one thinks of Z as analogous to a 
choice of topological classes—as will be the case in the examples given 
below—compatibility is analogous to asking that Z̃ produces Chern–Weil and equivariant 
Chern–Weil representatives of these topological classes. Being able to phrase the 
compatibility condition is the main advantage of choosing a representation of G on the 
vector space V.

From here we fix a central charge Z compatible with the complex moment map Z̃. We thus turn to 
linking complex moment maps with Z-stability, and in particular we will exclusively be interested in 
understanding Z̃ on points, rather than general pairs (x, u). We fix a phase 𝜑 ∈ (−𝜋,𝜋).

Definition 3.5 We say that a point x is Z-critical if 

Im(e−i𝜑Z̃(x)) = 0,

where Im refers to the skew Hermitian part of an element of 𝔤 with respect to the Hermitian 
inner product.

As we will explain, this is the key condition related to Z-polystability. A basic observation shows 
that compatibility is actually automatic at Z-critical points:

Lemma 3.6 Suppose x is a Z-critical point. Then 

arg tr(Z̃(x)) = 𝜑.

Proof. Write 

Z̃(x) = Mh(x) + Ms(x),

where e−i𝜑Mh(x) is Hermitian and e−i𝜑Ms(x) is skew-Hermitian. Then we see that 

Im(e−i𝜑Z̃(x)) = e−i𝜑Ms(x),
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so 

trIm(e−i𝜑Z̃(x)) = tre−i𝜑Ms(x),

= e−i𝜑trMs(x),

= Im(e−i𝜑trZ̃(x)),

where in the final step we used the similar fact that tre−i𝜑Mh(x) is real. Thus if 
Im(e−i𝜑Z̃(x)) = 0, we must have Im(e−i𝜑trZ̃(x)) = 0, which implies 

arg tr(Z̃(x)) = 𝜑,

concluding the proof. �

While we actually assume compatibility throughout, this result nevertheless makes clear that it is a 
natural condition. We next relate complex moment maps to usual moment maps for compact group 
actions.

Definition 3.7 We call a map 𝜇 : X → 𝔨* a formal moment map with respect to a closed 
(1, 1)-form 𝜂 if 𝜇 is K-equivariant and 

d⟨𝜇, v⟩ = −𝜄v𝜂.

Thus if 𝜂 is positive—hence defining a symplectic form—𝜇 is a moment map in the usual sense. In 
the language of equivariant cohomology, the condition asks that the (complex) equivariant differential 
form 𝜂 + 𝜇 is equivariantly closed.

Proposition 3.8 Suppose that Z̃ is a complex moment map with respect to 𝜔Z. Then 

iIm(e−i𝜑Z̃(⋅))∨ : X → 𝔨*

is a formal moment map with respect to the (1, 1)-form Re(e−i𝜑𝜔Z).

Here the notation iIm(e−i𝜑Z̃(⋅))∨ means the composition of iIm(e−i𝜑Z̃(⋅)) → 𝔨 with the isomor-
phism 𝔨 ≅ 𝔨*, while Im(e−i𝜑𝜔Z) denotes the imaginary part of the complex (1, 1)-form e−i𝜑𝜔Z. Note 
that Im(e−i𝜑Z̃(⋅))∨ itself has image in i𝔨, meaning that iIm(e−i𝜑Z̃(⋅))∨ takes values in Hermitian 
matrices. This extra factor of i is compensated for in the (1, 1)-form as 

Re(e−i𝜑𝜔Z) = Im(e−i𝜑i𝜔Z).

Proof. K-equivariance of Z̃ : X → 𝔤 implies that iIm(e−i𝜑Z̃(⋅)) : X → 𝔨 is K-equivariant, while 
the K-equivariance of the Hermitian inner product on V  implies that the isomorphism 
𝔨 ≅ 𝔨* is K-equivariant.

To prove the moment map equation, it is equivalent to show that 

d⟨u, Im(e−i𝜑Z̃(x))∨⟩ = −𝜄uIm(e−i𝜑𝜔Z).

Since u ∈ 𝔨 corresponds to a real vector field on X, we have 

𝜄uIm(e−i𝜑𝜔Z) = Im(e−i𝜑𝜄u𝜔Z),
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which by the complex moment map identity gives 

−𝜄uIm(e−i𝜑𝜔Z) = Im(e−i𝜑dtr(u*Z̃)) .

Using a similar linear algebra argument as Lemma 3.6 along with the fact that u viewed as an 
element of EndV  corresponds to a Hermitian matrix, we see 

Im(e−i𝜑dtr(u*Z̃)) = dtr(u*Im(e−i𝜑Z̃(x))) .

Since the isomorphism 𝔨 ≅ 𝔨* arises from the Hermitian inner product on V, it follows that 

tr(u*Im(e−i𝜑Z̃(x))) = ⟨u, Im(e−i𝜑Z̃(x))∨⟩

and hence 

d⟨u, Im(e−i𝜑Z̃(x))∨⟩ = −𝜄uIm(e−i𝜑𝜔Z),

proving the result. �

Positivity is, of course, crucial to the theory of moment maps. While many aspects of the the-
ory require global positivity, others rely only on local positivity; for example, to obtain a symplectic 
quotient, one only needs positivity in an open neighbourhood of the zero set of the moment map.

Definition 3.9 We say that a point x ∈ X  is a Z-subsolution if the form 

Re(e−i𝜑𝜔Z)

is positive on TxX, in the sense that 

Re(e−i𝜑𝜔Z)(u, Jxu) > 0

for all u ≠ 0, with Jx : TxX → TxX  being the almost complex structure. We further say that Z̃
satisfies the global subsolution hypothesis if every point x ∈ X  is a subsolution.

The global subsolution hypothesis is strong: analogues fail in infinite dimensions, as discussed in 
Remark 3.13. As mentioned there, in the better-understood infinite-dimensional problems, what is 
expected to be true is that every solution of the equation (that is, being an analogue of a Z-critical 
point) is also a subsolution. This is often enough to obtain geometric consequences:

Theorem 3.10 Suppose that every Z-critical point is a Z-subsolution. Then the symplectic quotient 

X/ZK := Im(e−i𝜑Z̃(⋅))−1(0)/K

admits the structure of a Kähler space.

Proof. This is classical under the global subsolution hypothesis [29, 28], but the proofs only 
require a Kähler metric in a neighbourhood of the zero set of the moment map. Thus since 
every Z-critical point is a subsolution, and the subsolution condition is open in x (as it is a 
positivity condition on an inner product on the tangent space), the form Re(e−i𝜑𝜔Z) is 
indeed a Kähler metric in a neighbourhood of Im(e−i𝜑Z̃(⋅))−1(0). �

More explicitly, in this generality the Kähler metric on the quotient is produced as follows. Let 
𝜓Z ∈ C∞(X ,ℂ) be a local potential for the complex (1, 1)-form 𝜔Z in a neighbourhood of a Z-critical 
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point x, in the sense that near x 

𝜔Z = i𝜕𝜕𝜓Z.

Restricting 𝜓Z to (a neighbourhood of x intersected with) Im(e−i𝜑Z̃(⋅))−1(0), as 𝜓Z is a K-invariant 
function, it descends to a continuous function 𝜓Z on the quotient Im(e−i𝜑Z̃(⋅))−1(0)/K . The function 

Re(e−i𝜑𝜓Z) ∈ C0(X/ZK ,ℝ)

is then a weak Kähler potential for the induced form on the complex space X/ZK  in the sense used by 
Heinzner–Huckleberry–Loose [28].

Our main result explains how to relate the existence of Z-critical points to complex moment maps. 
The proof reduces to a version of the classical Kempf–Ness theorem (due to Kempf–Ness being in the 
affine setting [33] and to Kirwan being in the projective setting [34]).

Theorem 3.11 Suppose that Z̃ satisfies the global subsolution hypothesis. Then the following are 
equivalent:

(1) there is a point y ∈ G.x such that Im(e−i𝜑Z̃(y)) = 0;
(2) x is Z-polystable.

Proof. By the global subsolution hypothesis, the form Im(e−i𝜑𝜔Z) is a Kähler metric on X and 
Im(e−i𝜑Z̃(⋅)) is a moment map. Although X is a smooth projective variety, the form 
Re(e−i𝜑𝜔Z) may not lie in an integral class, meaning that we cannot apply the classical 
Kempf–Ness theorem. Instead we apply the Kempf–Ness theorem for Kähler manifolds (see, 
for example, the survey [22, Section 12]), which implies that the existence of a Z-critical 
point in the orbit of x is equivalent to the condition that for all x ⇝ (y, u) we have 

⟨iIm(e−i𝜑Z̃(y))∨, u⟩ ≤ 0,

with equality if and only if y = x. Here our slightly extended notation means that 

y = lim
t→∞

exp(−itu).x.

What this essentially means is that, in the Kähler setting one must also include ‘irrational’ 
vector fields to obtain the existence of a zero of the moment map, rather than merely rational 
ones inducing one-parameter subgroups of G.

The rest of the proof will compare this numerical condition to the one governing 
Z-polystability and will then explain that in fact it is enough to merely consider ‘rational’ 
vector fields (equivalently one-parameter subgroups) in our situation.

The definition of the isomorphism 𝔤 ≅ 𝔤* gives 

⟨iIm(e−i𝜑Z̃(y)∨), u⟩ = tr((iIm(e−i𝜑Z̃(y)))*u),

= tr(iIm(e−i𝜑Z̃(y)u),

= −Im(e−i𝜑Z(y, u)).

In slightly more detail, the final step follows from the fact that for a (complex) matrix A and a 
Hermitian matrix B we have 

tr(i(ImA)B) = −Imtr(AB),

and also from the compatibility condition tr(u*Z̃(y)) = tr(Z̃(y)u) = Z(y, u) again using that 
u is Hermitian.
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To conclude we must show that it is enough to check stability with respect to rational
elements of 𝔨, generating one-parameter subgroups. If x is Z-unstable, it is standard to 
produce rational destabilizing elements of 𝔨 given the existence of an irrational one by an 
approximation argument, and thus we may assume that x is Z-semistable; here we note that 
Z-semistability with respect to rational vector fields implies Z-semistability also with respect 
to irrational ones. Then from the ‘semistable’ case of the Kempf–Ness theorem there is a 
point z ∈ G.x which is itself Z-critical. We can then take a slice of the G-action in a 
neighbourhood of the Z-critical point z (essentially by construction of the quotient in the 
complex setting [29]), so that the action is modelled on the linear action on TzX , where it is 
clear that one can find a one-parameter subgroup taking x to z. �

Remark 3.12 Rather than the global subsolution hypothesis, the proof only requires the 
weaker condition that Re(e−i𝜑𝜔Z) be positive in a neighbourhood of G.x.

In the classical projective case a consequence of this sort of result is a homeomorphism between 
the symplectic and algebraic quotients (this is due to Kirwan [34]). As we have appealed to a Kähler 
version of the Kempf–Ness theorem, there is no purely algebraic definition of the quotient. So while—
under the global subsolution hypothesis—one still obtains a quotient X/K K  which is a complex space 
endowed with a Kähler metric by Theorem 3.10, there is no direct algebraic construction to compare 
it with.

3.1. Examples in infinite dimensions
We next briefly explain the link between the categorical notions of stability for coherent sheaves and 
polarized schemes and moment maps.

Vector bundles
Associated with a class of central charges on Coh(X)—which in particular take the form of 
Section ‘Coherent sheaves’—is a partial differential equation on Hermitian metrics on holomorphic 
vector bundles on X, solutions of which are called Z-critical connections [16]. Briefly, these central 
charges involve a choice of Kähler class on X, a choice of (products of) Chern classes of the sheaf and 
a choice of topological classes on X (as motivated by Bayer’s polynomial stability conditions [5]). To 
a Kähler metric on X, a Hermitian metric on E producing a Chern connection A and a closed differ-
ential form on X representing the topological class is then associated with an EndE-valued (n, n) form 
Z̃(E, A) which satisfies 

∫
X

Z̃(A) = Z(E),

which is analogous to the compatibility of the central charge as given in Definition 3.3. The inner prod-
uct corresponding to the trace used there is the L2-inner product defined with respect to the volume 
form associated with the Kähler metric.

The Z-critical equation then asks that 

Im(e−i𝜑(E)Z̃(h)) = 0,

where this denotes the skew-Hermitian part of the EndE component as defined through the Hermitian 
metric h. The various sign conventions used in the present work are chosen to match with the Z-critical 
connection and the deformed Hermitian Yang–Mills literature. An especially noteworthy example is 
given by the deformed Hermitian Yang-Mills equation [35, 37] (which appeared long before the more 
general notion of a Z-critical connection), which corresponds to the central charge 

Z(E) = ∫
X

e−i[𝜔] ⋅ ch(E);
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other equations relevant to string theory and mirror symmetry involve including Chern classes of X
itself [16, Example 2.8].

Remark 3.13 On line bundles, an almost complete theory of deformed Hermitian Yang–Mills 
connections exists, especially due to the studies by Chen, Collins, Jacob and Yau [9, 10, 12,
31], and their theory emphasizes many of the structures that one should expect to be 
relatively general. For example, the existence of a solution to the deformed Hermitian 
Yang–Mills equation implies that the associated Hermitian metric is a subsolution [10] (in 
the so-called ‘supercritical phase range’). An important aspect of the theory is that this same 
statement (‘solution implies subsolution’) is true along a continuity method one can use to 
solve the equation under a stability hypothesis [9], so one always has positivity along the 
path designed to solve the equation.

In fact, the converse of this statement also holds on line bundles: the existence of deformed 
Hermitian Yang–Mills connections on a line bundle is equivalent to the existence of a 
subsolution (again in the appropriate phase range); this is due to the study by 
Collins–Jacob–Yau [10]. In higher rank, for appropriate classes of central charge it should 
still be the case that the existence of a solution implies the existence of a subsolution, but the 
converse cannot hold. For example, the Hermitian Yang–Mills condition is a special case of 
the Z-critical condition, and here the subsolution condition is automatic (as it asks that 𝜔n−1

is a positive (n − 1, n − 1)-form where 𝜔 is the Kähler metric), but nevertheless obstructions 
to the existence of solutions appear from saturated subsheaves.

Polarized varieties
The theory for smooth polarized varieties is analogous, but with additional complications on the ana-
lytic side [14, 15]. Here the equation is for a Kähler metric 𝜔 ∈ c1(L) on a smooth projective variety 
X, and one makes analogous choices—namely a choice of topological classes on X and products of 
Chern characters of X. The equation is only explicitly available in the case of powers of the first Chern 
class of X (along with arbitrary auxiliary differential forms on X and powers of the ample line bundle), 
where one associates with 𝜔 a complex valued function 

Z̃(𝜔) : X → ℂ.

To tighten the parallel with the bundle theory, equivalently by multiplying by 𝜔n one can consider 
Z̃(𝜔) as a complex valued (n, n)-form. This complex (n, n)-form satisfies the ‘compatibility’ condition 

∫
X

Z̃(𝜔) = Z(X , L),

and the Z-critical equation asks 

Im(e−i𝜑(X ,L)Z̃(𝜔)) = 0.

The actual construction of Z̃(𝜔), however, is more subtle than its bundle analogue. The reason is 
that its construction involves not only various Chern–Weil representatives but also higher-order terms 
essential for a link with algebraic geometry. A good understanding of the Z-subsolution condition—
along with various other foundational structures—remains to be achieved.

3.2. Structures in complex moment map theory
We now briefly explain the appearance of several standard structures in classical moment map theory in 
our setup: the norm-squared of the moment map, the moment map flow, the log-norm functional and 
the log-norm functional as a Kähler potential. Many of these have appeared in the infinite-dimensional 
theories discussed earlier, and our new perspective gives some finite-dimensional motivation for their 
appearance. All these structures are discussed at great length in the survey [22].
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For any x ∈ X , the norm-squared of the moment map is simply the value 

‖Im(e−i𝜑Z̃(x))‖2 = tr(Im(e−i𝜑Z̃(x)) ⋅ Im(e−i𝜑Z̃(x))).

This is the functional whose Euler–Lagrange equation produces both Z-critical points and Z-extremal 
points: points which satisfy 

Im(e−i𝜑Z̃(x)) ∈ i𝔨x.

To define the moment map flow, note that for x ∈ X  the value iIm(e−i𝜑Z̃(x) ∈ 𝔨 can be thought 
of as an element of TxX through the infinitesimal action. Thus for any x0 we may define a flow by 
x(0) = x0 and 

d
dt

x(t) = −Im(e−i𝜑Z̃(x(t))).

This is the downward gradient flow of the norm-squared of the moment map 

x → ‖Im(e−i𝜑Z̃(x))‖2,

and we call this flow the Z-flow. The asymptotics of this flow are related to ‘optimal destabilizing 
one-parameter subgroups’, which are in turn analogous to Harder–Narasihman-type filtrations in the 
coherent sheaf setting. In the deformed Hermitian Yang–Mills setting this flow corresponds to the tan-
gent Lagrangian phase flow of Takahashi [43], and we note that in that setting there is also the line bundle 
mean curvature flow, introduced by Jacob–Yau [31], which is instead motivated by the Lagrangian mean 
curvature flow in the study of special Lagrangians.

The log-norm functional is a functional on a fixed orbit, which is defined through its variation. 
Fixing a reference point x ∈ X , any other point is of the the form g.x for some g ∈ G. We first define a 
one-form dEZ on G (the notation will be justified by this one-form being exact) by setting 

⟨dEZ, u⟩g = tr(u*Z̃(g(t).x)).

This is then K-invariant and hence descends to a one-form on the symmetric space G/K . A standard 
calculation, identical to the usual one in moment map theory, shows that this one form is closed and 
is hence exact. In particular it is well-defined, independent of the choice of path. Thus we obtain a 
functional 

EZ : G/K → ℂ,

and we define the Z-energy to be 

Re(e−i𝜑EZ) : G/K → ℝ.

This is the analogue of the log-norm functional; this is convex along geodesics in the symmetric space 
G/K  in the locus of Z-subsolutions, and it is strictly decreasing along the Z-flow (again in the locus 
of Z-subsolutions). In the deformed Hermitian Yang–Mills setting this corresponds to what Collins–
Yau call the Calabi–Yau functional [12, Definition 2.13] and in the setting of Z-critical Kähler metrics 
corresponds to the Z-energy [14, Definition 3.7].

We lastly turn to the potential for the form 𝜔Z. A G-orbit G.x ⊂ X  is affine, hence on this locus 
𝜔Z = i𝜕𝜕𝜓Z for some complex-valued function 𝜓Z. We can consider EZ as a function G.x → ℝ by 
defining the Z-energy relative to the base point x. Then on this locus a calculation shows that 

i𝜕𝜕EZ = 𝜔Z,
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so that we can view the Z-energy as a potential for the form 𝜔Z. In particular on this locus we have 

i𝜕𝜕(Re(e−i𝜑EZ)) = Re(e−i𝜑𝜔Z).

Thus the Z-subsolution condition forces the complex Hessian i𝜕𝜕(Re(e−i𝜑EZ)) to be positive at the 
point x.
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A . BY A N D RÉS I BÁÑ E Z N Ú Ñ E Z
In this appendix we explain how the notion of a central charge on an algebraic stack 𝒳 can be for-
mulated using the formalism of graded points on 𝒳, in the spirit of Halpern-Leistner’s definition of 
numerical invariant [25]. In the present section we will call these complex linear forms on 𝒳, to make 
the statements of our results (especially the equivalence with Definition 2.7) transparent.

We denote 𝔾m = Specℂ[t, t−1] the multiplicative group scheme over ℂ, whose ℂ-points are 
𝔾m(ℂ) = ℂ*. A crucial role will be played by the classifying stack B𝔾m of 𝔾m. While B𝔾m is deter-
mined by the fact that, for any algebraic stack 𝒳 over ℂ, the groupoid Hom(𝒳, B𝔾m) of maps 𝒳 →
B𝔾m is equivalent to that of line bundles on 𝒳, here we will rather be interested in maps from B𝔾m
into other algebraic stacks.

We fix an algebraic stack 𝒳, quasi-separated and locally of finite type over ℂ, with affine stabilizers. 
Examples of stacks satisfying these assumptions are moduli stacks of polarized projective schemes 
over ℂ [41, Tag 0DPS], [32, Section 2.1], moduli stacks of objects in suitable ℂ-abelian categories 
[2, Section 7] and stacks of G-bundles on a proper scheme X over ℂ for G a linear algebraic group 
over ℂ [26, Tag 00BK].

Definition A.1 The stack of graded points Grad(𝒳) of 𝒳 is the stack over ℂ defined by 
setting, for any scheme T over ℂ, 

Hom(T,Grad(𝒳)) = Hom(B𝔾m × T,𝒳).

In other words, Grad(𝒳) is the mapping stack Maps(B𝔾m,𝒳). Thus a map T → Grad(𝒳) is the 
same data as a map B𝔾m × T → 𝒳. It is a nontrivial result [1, Theorem 5.10] that Grad(𝒳) is an 
algebraic stack locally of finite type over ℂ. We denote |Grad(𝒳)| as its underlying topological space.

We will use the notation Γℤ(𝔾n
m) = Hom(𝔾m,𝔾n

m) for the group of cocharacters of 𝔾n
m, which is 

isomorphic to ℤn. More generally, for a linear algebraic group G over ℂ we denote with Γℤ(G) the set 
of cocharacters of G and with Γℤ(G) the abelian group of characters of G.

The main definition in this appendix is as follows:

Definition A.2 A complex linear form Z on 𝒳 is a locally constant map 

Z : |Grad(𝒳)| → ℂ
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such that, for any n ∈ ℤ>0 and any morphism g : B𝔾n
m → 𝒳, the map 

Zg : Γℤ(𝔾n
m) → ℂ

induced by g and Z is ℤ-linear, where the definition of Zg is as follows: if 𝛼 : 𝔾m → 𝔾n
m is a 

cocharacter, the composition 

B𝔾m
B𝛼

−−→ B𝔾n
m

g
−−→ 𝒳

defines a point p of Grad(𝒳), and we set Zg (𝛼) = Z(p).
We denote with PStab(𝒳) the set of complex linear forms on 𝒳, which is naturally a 

ℂ-vector space. The notation is intended to signify that we think of a complex linear form as a 
‘pre-stability condition’, where the eventual full structure of a stability condition should in 
addition require a positivity property. The relationship with central charges and stability in 
the sense of Sections 2.3 and 2.2 is explained by Remarks A.7 and A.8, respectively.

Remark A.3 Definition A.2 makes sense whenever Grad(𝒳) is an algebraic stack, which holds 
under very general assumptions on 𝒳 (see [1, Theorem 5.10]). In this generality, the 
linearity condition in the definition should be imposed for all g : B𝔾n

m,k → 𝒳, where k is an 
arbitrary algebraically closed field.

Complex linear forms on the classifying stack of a group have a transparent description.

Lemma A.4 Let G be an affine algebraic group over ℂ. Then there is a canonical isomorphism 

PStab(BG) ≅ ℂ⊗ℤ Γℤ(G)

between the vector space of complex linear forms on BG and that of complex characters of G.

Proof. Let T be a maximal torus of G, and let W = NG(T)/CG(T) be the associated Weyl 
group. Let C be a complete set of representatives of Weyl orbits in Γℤ(T). Then by [25, 
Theorem 1.4.8] there is a canonical isomorphism 

Grad(BG) ≅ ⨆
𝜆∈C

BL(𝜆),

where L(𝜆) is the centralizer of 𝜆 in G. Therefore 𝜋0(Grad(𝒳)) = Γℤ(T)/W , and a 
complex linear form on BG is given by a map Z : Γℤ(T)/W → ℂ. The linearity condition in 
Definition A.1 amounts to the composition 

Γℤ(T) −→ Γℤ(T)/W
Z

−−→ ℂ

being a homomorphism. Thus we have an isomorphism 

PStab(BG) = Hom(Γℤ(T),ℂ)W = ℂ⊗ℤ Γℤ(T)W .

The result follows from the fact that the natural map ℚ⊗ Γℤ(G) → ℚ⊗ℤ Γ(T)W
ℤ  is an 

isomorphism [20]. �

Let now denote 𝒫 = Grad(𝒳)(ℂ) the groupoid of ℂ-points of Grad(𝒳), and 𝒮 the set of equiva-
lence classes of 𝒫, namely, 

𝒮 = 𝜋0(𝒫).
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Thus 𝒫 has objects (x,𝜆), where x : Specℂ → 𝒳 is a point and 𝜆 : 𝔾m → Gx is a cocharacter of the 
stabilizer group Gx of x. A map (x,𝜆) → (y,𝜇) in 𝒫 is an isomorphism g : x → y such that 𝜇 = 𝜆g , 
where (−)g : Gx → Gy denotes the isomorphism that g induces on automorphism groups by conjuga-
tion. From this we see that the set 𝒮 defined here coincides with that in Section 2.3. We now compare 
Definition 2.15 with Definition A.2.

Lemma A.5 The data of a locally constant map |Grad(𝒳)| → ℂ are equivalent to those of a map 
Z : 𝒮 → ℂ satisfying that, for every connected finite type scheme T over ℂ and every map 
B𝔾m × Z → 𝒳, the composition 

T(ℂ) −→ 𝒮
Z

−−→ ℂ

is constant.

This is precisely the equivariant constancy condition of Definition 2.15.

Proof. Under the natural injection 𝒮 → |Grad(𝒳)|, 𝒮 is the set of points of |Grad(𝒳)| that can 
be realized by a map Specℂ → Grad(𝒳), and thus 𝒮 inherits a topology from |Grad(𝒳)|.

For any closed subset R of |Grad(𝒳)|, the intersection 𝒮∩ R is dense in R, so 𝒮 and 
|Grad(𝒳)| have the same connected components. For any morphism T → Grad(𝒳), where 
T is a scheme over ℂ, the induced map T(ℂ) → 𝒮 is continuous. Moreover, if 
Y → Grad(𝒳) is a smooth atlas, then the induced map Y (ℂ) → 𝒮 is a submersion. 
Therefore, giving a locally constant map |Grad(𝒳)| → ℂ is equivalent to giving a locally 
constant map 𝒮 → ℂ, which is in turn equivalent to giving a map 𝒮 → ℂ such that, for every 
morphism T → Grad(𝒳) with T a scheme of finite type over ℂ and connected, the 
composition T(ℂ) → 𝒮 → ℂ is constant. �

Proposition A.6 Let Z : |Grad(𝒳)| → ℂ be a locally constant map. For a point x ∈ 𝒳(ℂ), 
with stabilizer group Gx, we denote 𝜓x : Γℤ(Gx) → ℂ as the map induced by Z and x. Then the 
following conditions are equivalent:

(1) The map Z defines a complex linear form on 𝒳.
(2) For every x ∈ 𝒳(ℂ), the map 𝜓x is induced by a (uniquely determined) complex character 𝜒 ∈

ℂ⊗ℤ Γℤ(Gx) of Gx.
(3) For every x ∈ 𝒳(ℂ), if Kx is a maximal compact subgroup of Gx and 𝔨x is the Lie algebra of Kx, then 

the map 𝜓x is induced by a (uniquely determined) complex Lie algebra character 𝔨x → ℂ.
(4) For every x ∈ 𝒳(ℂ) and for all commuting cocharacters 𝜆,𝜆′ ∈ Γℤ(Gx) we have 𝜓x(𝜆𝜆′) =

𝜓x(𝜆) + 𝜓x(𝜆′).

Proof. If Z is a complex linear form on 𝒳 and x ∈ 𝒳(ℂ), then there is an induced 
monomorphism 𝜄 : BGx → 𝒳 where Gx is the stabilizer group of x. The pullback 𝜄*Z, that is, 
the composition 

|Grad(BGx)|
|Grad(𝜄)|
−−−−→ |Grad(𝒳)|

Z
−−−→ ℂ,

is a complex linear form on BGx. It follows from Lemma A.4 that 𝜓x is given by a complex 
character 𝜒 ∈ ℂ⊗ℤ Γℤ(Gx) that is uniquely determined. Therefore (1) implies (2).

Now fix x ∈ 𝒳(ℂ). Let U be the unipotent radical of Gx and L = Gx/U , which is 
reductive. Let 𝔩 be the Lie algebra of L. Then for any maximal compact subgroup Kx of Gx, 
the composition Kx → Gx → L exhibits L as the complexification of Kx. Therefore, the Lie 
algebra 𝔩 of L equals ℂ⊗ℝ 𝔨x, and thus a homomorphism 𝔨x → ℂ of real Lie algebras is the 
same data as a homomorphism 𝔩 → ℂ of complex Lie algebras. Any character Gx → 𝔾m
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factors through Gx → L and, taking the differential of the induced L → 𝔾m, it gives a Lie 
algebra character 𝔩 → ℂ. This gives a homomorphism Γℤ(Gx) → HomLie(𝔩,ℂ) and, by 
extending scalars, a map r : ℂ⊗Z Γℤ(Gx) → HomLie(𝔩,ℂ).

An element 𝜒 ∈ ℂ⊗Z Γℤ(Gx) gives a pairing map ⟨−,𝜒⟩ : Γℤ(Gx) → ℂ. Similarly, a Lie 
algebra character 𝛼 ∈ HomLie(𝔩,ℂ) gives a map ⟨−,𝛼⟩ : Γℤ(Gx) → ℂ as follows. If 
𝜆 : 𝔾m → Gx is a one-parameter subgroup, then ⟨𝜆,𝛼⟩ is the composition of 

Lie(𝔾m
𝜆
−→ Gx → L) and 𝛼, which is a linear map ℂ → ℂ and thus identified with a complex 

number. Both pairings are compatible in the sense that ⟨−,𝜒⟩ = ⟨−, r(𝜒)⟩ for all 
𝜒 ∈ ℂ⊗ℤ Γℤ(Gx). Therefore, if 𝜓x = ⟨−,𝜒⟩ for some 𝜒, then it also equals 𝜓x = ⟨−, r(𝜒)⟩
and it is thus induced by a Lie algebra character r(𝜒) : 𝔩 = ℂ⊗ℝ 𝔨x → ℂ, which is uniquely 
determined because the image of the map Γℤ(L) → 𝔩 : 𝜆 → Lie(𝜆)(1) spans 𝔩 by 
reductivity of L. This shows that (2) implies (3).

Any Lie algebra character respects addition, so it is clear that (3) implies (4).
If g : B𝔾n

m → 𝒳 is a map, then there is a point x ∈ 𝒳(ℂ) such that g factors as 
B𝔾n

m → BGx → 𝒳. Thus the map Zg : Γℤ(𝔾n
m) → ℂ induced by g and Z factors through the 

map 𝜓x : Γℤ(Gx) → ℂ induced by Z and x. Therefore Zg is additive for all g if (4) is satisfied 
for all x, and thus (4) implies (1). �

Remark A.7 Together, Lemma A.5 and Proposition A.6 establish that Definitions 2.15 
and A.2 are equivalent.

Remark A.8 If 𝒳 = X/G is a quotient stack, then we can describe 

𝒮 = {(x,𝜆) : x ∈ X(ℂ), 𝜆 : 𝔾m → Gx}/ ∼,

where (x,𝜆) ∼ (y,𝜇) if there is g ∈ G(ℂ) such that y = gx and 𝜇 = 𝜆g .
Therefore, Definition 2.7 of a central charge for the G-scheme X is equivalent to 

Definition A.2 of a complex linear form on X/G.
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