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ABSTRACT

We explain how structures analogous to those appearing in the theory of stability conditions on abelian and
triangulated categories arise in geometric invariant theory. This leads to an axiomatic notion of a central charge
on a scheme with a group action and ultimately to a notion of a stability condition on a stack analogous to that
on an abelian category. In the appendix by Ibdfez Nufiez, it is explained how central charges can be viewed
through the graded points of a stack. We use these ideas to introduce an axiomatic notion of a stability condi-
tion for polarized schemes, defined in such a way that K-stability is a special case. In the setting of axiomatic
geometric invariant theory on a smooth projective variety, we produce an analytic counterpart to stability and
explain the role of the Kempf-Ness theorem. This clarifies many of the structures involved in the study of
deformed Hermitian Yang—Mills connections, Z-critical connections and Z-critical Kahler metrics.

1. INTRODUCTION

Mumford’s geometric invariant theory (GIT) gives a method for constructing quotient spaces in
algebraic geometry, with many important applications to the construction of moduli spaces [39].
These quotients parameterize polystable orbits—the unstable orbits are discarded to ensure a separated
quotient.

Perhaps the most powerful outcome of Mumford’s work was not GIT itself, but rather the intro-
duction of the notion of stability, which has been fundamental to an enormous amount of further
work. We mention two examples. The first is the notion of slope stability of a coherent sheaf, which
led to Rudakov’s abstraction to stability on general abelian categories (where there is no possible inter-
pretation via GIT) [40] and ultimately to Bridgeland’s very general theory of stability conditions on
triangulated categories [ 8], building on ideas of Douglas motivated by string theory [19]. Here GIT is
used more as a motivational philosophy rather than as a direct tool.

Received 19 October 2023; Revised 19 September 2024

© The Author(s) 2025. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence
(https:// creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits non-commercial reproduction and distribution of the work, in
any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial
re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our
RightsLink service via the Permissions link on the article page on our site—for further information please contact
journals.permissions@oup.com.

G202 YoJe £0 U0 1senb Aq 6885v6./.82/1/9./8101e/yrewlb/wod dno-oiwepeoe)/:sdny woy papeojumoq


https://orcid.org/0009-0007-8535-8472
mailto:ruadhai.dervan@glasgow.ac.uk
mailto:ibaneznunez@maths.ox.ac.uk
https://creativecommons.org/licenses/by-nc-nd/4.0/

288 « R.DERVAN AND A.IBANEZ NUNEZ

The second example we give is Mumford’s construction of the moduli space of (stable) curves [38],
and its higher-dimensional (and largely conjectural) analogue of K-stability of a polarized variety [46,
18]. Here again while Mumford’s theory can successfully be applied in the special case of curves,
in higher dimensions K-stability is only modelled on GIT, which is similarly used as a motivational
philosophy.

Bridgeland’s notion of a stability condition is the appropriate one in the presence of some linearity,
essentially due to the necessity of the presence of abelian categories, but many interesting problems in
algebraic geometry have no such linearity; this is notably the case for the theory of stability of polar-
ized varieties. Roughly speaking, in Bridgeland’s theory stability is only defined for certain abelian
subcategories A of the triangulated category (satisfying various hypotheses), where stability involves
choosing a central charge Z : A — C and demanding that for subobjects S C E the phase inequality

argZ(E) > arg Z(S)

holds (with arg denoting the argument of a complex number); this type of inequality is precisely of
a form analogous to those arising in the traditional theory of slope stability of coherent sheaves. It is
then important to assume that central charges are complex valued, as this is a basic step in Bridgeland’s
proof that the space of stability conditions on a triangulated category forms a complex manifold. Just as
Bridgeland’s theory gives a general way of understanding stability in the presence of a sort of linearity,
itis natural to ask if one can extend the theory beyond the linear setting.

This note revisits some of the foundational ideas of GIT, with the aim of developing a general parallel
of Bridgeland’s work. We accomplish roughly the easier half of this: motivated by a new notion of a
central charge associated with a group action on a projective scheme, we introduce a notion of a central
charge on a general stack, motivated by Halpern-Leistner’s approach to GIT on stacks [25]. When
this stack is the stack of coherent sheaves, we then explain how this relates to the classical notion of
a central charge. Our real interest, however, is in the stack of polarized schemes: here we use this to
define an axiomatic notion of stability for polarized schemes. As we explain, K-stability is then a special
case of Z-stability, with Z being a central charge. An ad hoc notion of stability for polarized varieties
was introduced in [14], and our motivation here is to give a more axiomatic approach to essentially
the same notion.

In the appendix Ibafiez Nuiiez, the relationship with Halpern-Leistner’s notion of the stack of
graded points of a stack is discussed and explained in detail, and a thorough stack-theoretic treat-
ment of the notion of a central charge is given. These results emphasize that central charges are natural
objects associated with stacks. In addition, it is observed there that the space of central charges natu-
rally has the structure of a complex vector space, proving a basic (loosely, abelian) counterpart to the
complex-manifold structure of the space of stability conditions on a triangulated category.

‘We emphasize that this only solves half of the problem, really giving a stacky analogue of Rudakov’s
notion of stability on an abelian category. To generalize Bridgeland’s theory is considerably more
challenging—the closest analogy is the requirement to extend from coherent sheaves to complexes of
coherent sheaves, and it is not clear what the right analogue of a complex should be for more general
stacks—especially the stack of polarised schemes. The author expects that the right categorical gen-
eralization of K-stability—parallel to stability conditions on triangulated categories—should involve
a larger overlying categorical structure, with stability defined then for appropriate substacks of this
larger structure. On these substacks, stability should precisely require choosing a central charge on
the stack, with stability then meaning what we introduce in the present work.

While this more categorical generalization of K-stability is speculative, general notions of stabil-
ity are of interest even for a fixed polarised variety, where the lack of ‘global structures analogous to
Bridgeland stability conditions should be less problematic. The reason for this interest is in links with
geometric partial differential equations and moment maps, as we explain in more detail further. Devel-
oping the theory purely algebraically appears to be very challenging, and we leave this for future work;
for example—away from the important special case of Fano varieties [47]—basic questions such as
Zariski openness of the stable locus are completely open even for K-stability of polarized varieties.
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1.1. Moment maps

Beyond the introduction of the general notion of stability in algebraic geometry, the most powerful
outcomes of Mumford’s GIT arose through resulting links between algebraic and differential geome-
try. These arise through the Kempf-Ness theorem [ 33, 34], which states that polystability of an orbit can
be characterized through the existence of zeroes of moment maps, as used in symplectic geometry. This
characterization then descends to a homeomorphism of the algebraic and symplectic quotients by
Kirwan [34]. The notions of slope stability of holomorphic vector bundles and K-stability of smooth
polarised varieties—which can be thought of as infinite-dimensional analogues of stability in GIT—
then have analytic counterparts through the existence of Hermitian Yang—Mills connections and constant
scalar curvature Kihler metrics, which can each be viewed as zeroes of infinite-dimensional moment
maps [3,17,21]. Thus these moment map equations give differential-geometric approaches to moduli
problems in algebraic geometry.

The second goal of this note is to give—in light of the axiomatic notion of a central charge in GIT—
a differential-geometric counterpart to central charges and resulting stability conditions, motivated by
(and using) the Kempf-Ness theorem on a smooth projective variety. For a central charge Z we define
a complex moment map and use it to define Z-critical points, and under a strong ‘subsolution’ hypothesis
we prove that the existence of Z-critical points is equivalent to Z-polystability—the axiomatic notion
of stability defined using the central charge.

Infinite-dimensional counterparts of this idea have become increasingly prominent in recent years,
notably for equations that arose in string theory and mirror symmetry. The most well-understood of
these is the deformed Hermitian Yang—Mills equation, which is the mirror of the special Lagrangian
equation under SYZ mirror symmetry [35, 37]. The deformed Hermitian Yang-Mills equation
roughly corresponds to stability of coherent sheaves with respect to a certain central charge, and for
more general central charges one obtains the condition for a connection on a holomorphic vector
bundle to be a Z-critical connection, as introduced by McCarthy and Sektnan [16]. A parallel, more
challenging analogue for smooth polarized varieties was introduced in [14, 15], through the theory
of Z-critical Kéhler metrics, linked with the notion of Z-stability of the polarized variety [ 14]. While—
with the notable exception of deformed Hermitian Yang-Mills connections on line bundles [9, 10,
31]—it remains an open problem to characterize the existence of solutions of these partial differen-
tial equations in terms of the associated notions of stability, the present work gives a finite-dimensional
analogue of these results which does provide evidence for generalizations of the Kempf-Ness theorem
to the aforementioned infinite-dimensional settings. In joint work with Hallam providing a sequel to
the present note, a geometric recipe is given which canonically associates complex moment maps with
central charges in the categories of polarized manifolds and holomorphic vector bundles, building on
some of the ideas presented here [15].

In both the variety and coherent sheaf settings, the Z-critical equation can be associated with very
general classes of central charges, but basic properties—such as ellipticity of the partial differential
equation—cannot hold in complete generality. This is best understood in the (smooth) coherent sheaf
setting, where the Z-subsolution condition governs ellipticity of the equation along with various other
geometric properties of the equation [10, 16, 44]. This subsolution condition—which as we explain
here has a finite dimensional analogue—is a positivity condition, and it seems plausible to suggest that
these notions are related to the various axioms of Bridgeland’s stability conditions, which themselves
can be thought of as positivity conditions (as an explicit example, the existence of Harder-Narasihman
filtrations assumed in the definition of a Bridgeland stability condition is a consequence of a kind of
convexity, which is in turn a consequence of a kind of positivity).

The analytic state-of-the-art in both the variety and coherent sheave cases is closer to stability on
an abelian category than a triangulated one, and it remains an important problem to extend the notion
of a Z-critical connection to more general complexes. The manifold setting is more mysterious again,
but the perspective presented here, along with the parallels between the coherent sheaf and variety
theories, provides analytic motivation for the appearance of an analogue of the derived category of
coherent sheaves in the setting of polarized schemes. That is, given that one should expect the need to
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consider the triangulated setting and categorical obstructions to fully understand the existence of Z-
critical connections in relation to Bridgeland stability, to understand the existence of Z-critical Kihler
metrics one should also need to understand deeper categorical obstructions. Optimistically one may
expect to be able to actually obtain the right categorical extensions from a deep understanding of the
analysis underlying the Z-critical Kéhler condition, much as one would hope to be able to recover the
notion of Bridgeland stability through understanding the analysis underlying the Z-critical connec-
tion condition. We also remark that there is evidence that Bridgeland stability may not be exactly the
right condition to be equivalent to the existence of deformed Hermitian Yang-Mills connections [11,
30], with this philosophy then suggesting that one may be able to obtain a similar algebro-geometric
stability condition through the analysis underlying the deformed Hermitian Yang—Mills condition:
the stability condition should be the one that is equivalent to existence of solutions of this equation.

In any case, our work here gives a finite-dimensional motivation for these geometric partial dif-
ferential equations and, in particular, gives a dictionary for passing from standard moment map
constructions—such as geometric flows—to interesting infinite-dimensional ones. We thus empha-
size that the main purpose of this note is to use GIT to understand the right general axiomatic notion
of stability for polarized schemes—and for general stacks—and to highlight how this viewpoint can
be used to motivate the appearance of differential-geometric counterparts to abstract stability condi-
tions. There are relatively few proofs, with the focus instead being on providing definitions which we
hope will motivate further work. We also hope that these ideas clarify many of the basic structures
appearing in recent work on general relationships between abstract stability conditions and geometric
partial differential equations.

1.2. Remark

Independent forthcoming work of Haiden-Katzarkov—Kontsevich-Pandit aims to develop an analytic
counterpart to Bridgeland stability for general triangulated categories; they title their programme ‘cat-
egorical Kihler geometry’ (see [23, 24] for precursors). Their programme has a substantial overlap
with the ideas developed here, and indeed the Z-critical condition used here bears some similarity to
equations that appear in their work. The author thanks Haiden and Pandit for discussions on these
ideas.

1.3. Outline

We discuss stability in GIT in Section 2.1, before turning to the axiomatic notion of Z-stability for
group actions on schemes in Section 2.2 and on stacks in Section 2.3. Section 2.4 then explains the
special cases of stability conditions on the stacks of coherent sheaves and polarized schemes. The ana-
lytic counterpart to Z-stability is described in Section 3 through the theory of complex moment maps,
and we end with a discussion of various natural analytic structures in complex moment map theory in
Section 3.2.

2. STABILITY CONDITIONS IN GIT
2.1. The classical theory

Let (X, L) be a polarized projective scheme, and let G be a reductive group acting on (X, L). We briefly

recall some of the basic ideas of GIT, which produces a quotient X / G of X by G. The original reference

is Mumford’s book [39], and good surveys are given by Hashimoto [27] and Thomas [45]. Rather

than parameterizing all orbits, the quotient represents only polystable orbits, which we now define.
Let \ : C" < G be a one-parameter subgroup. For a given x € X, we call

y= }%A(t).x

the specialization of x under \; we also say that x degenerates to y under \. As y is fixed by the C -action,
there is a C -action on the one-dimensional complex vector space L,; this action is multiplication by
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"0 for an integer /(y,\) € Z called the weight. We think of the weight as an assignment

y,A) = vy M) €7,
where \: C" & Gy is a one-parameter subgroup of the stabilizer Gy ofy.
DEFINITION 2.1 We say thatx € X is

(1) semistable if for all one-parameter subgroups \ of G, we have v/(y, \) > 0;

(2) polystable if for all one-parameter subgroups \ of G, we have v/(y, \) > 0, with
equality if and only if lim, ,, A(t).x € G.x;

(3) stable if for all non-trivial one-parameter subgroups A of G, we have (y,\) > 0;

(4) unstable otherwise.

Here in each case y is the specialization of x under \. These are conditions on the orbit G - x,
so we also have that the orbit G - x is semistable, polystable or stable, respectively.

The general machinery of GIT produces a quotient space X/G which parameterises polystable
orbits. The first important step in this process is that both the stable locus X® and the semistable locus
X* are Zariski open. The next step is to prove the existence of a surjective morphism X* — X/G
such that distinct polystable orbits are mapped to distinct points in X/ G. This map is well-defined is
equivalent to the fact that the closure of each semistable orbit contains a unique polystable orbit.

REMARK 2.2 This is not how stability in GIT is usually presented; rather, it is an equivalent
characterization provided by the Hilbert-Mumford criterion. More typically GIT is
presented instead using invariant global sections of L¥, from which constructing the GIT
quotient is almost tautological via the Proj construction. The Hilbert—-Mumford criterion
then gives a way of geometrically interpreting polystable orbits [39, Section 2].

It will be useful to relate one-parameter subgroups to associated elements of the Lie algebra g of G.
First consider rst a maximal (complex) torus T® C G with Lie algebra t©. The cocharacter lattice has
points consisting of the kernel of the exponential map exp : t© — TC; these are in bijection with the
one-parameter subgroups C — 1", Splitting tC =t @it, the R-span of the cocharacter lattice is the
real Lie algebra t of the torus T, and the C-span is the Lie algebra t€ itself. We denote bytg C 1 the
Q-span of the cocharacter lattice, so that the Q-vector space tg @ itg C t® is a dense subset. We call
the spaces {g and 1 @ it the collection of rational points of t and tC, respectively.

We next turn to the Lie algebra g, where we say that u € g is rational if there exists a maximal torus
T of G such that u € t* C g is a rational point. We denote by g, the set of rational points of g, and
note that while this is not a Q-vector space in general, g is nevertheless a dense subset of g. Similarly,
writing G as the complexification of a maximal compact subgroup K C G, the Lie algebra g splits as

g=taif,

where £ = LieK. With an analogous definition of 5, the R-span of £ is ¥ itself, meaning that {5 C ¥
is again dense.

As the stabilizer G, of x € X is not reductive in general, it is not the case that g, ¢ as defined above
is dense in g, for all x € X. Instead we fix a maximal compact subgroup K, C G,, and let K© C G,
denote its complexification. We then repeat the above discussion for the reductive group K= and
denote by £,  and ng the rational points of ¥, and £5, respectively.
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Lemma 2.3 (Additivity) The weight function extends to a Lie algebra character
V(x,') : fx —R.

Similarly the weight function extends to a complex-valued Lie algebra character v/(x,-) : lff — C.
That the weight is additive on the cocharacter lattice implies that it extends linearly to a linear function
£, — R. Denoting by

g-A=gedog’

the adjoint action of G on one-parameter subgroups, associated with a one-parameter subgroup
A < G,, there is then an induced one-parameter subgroup g - A < G,(,). The conjugation-invariance
property

v(g(x),A) = (x,g- )

implies from this that v/ is actually a Lie algebra character, namely, that v/(x, [-,-]) = 0.

We also recall an equivariance property that is more global in nature. Consider a connected sub-
scheme B C X such that )\ is a one-parameter subgroup contained in the stabilizer G, of x for all
(closed) points x € B.

LemMA 2.4 (Equivariant constancy) The value v(x, \) is independent of x € B.
This property can be seen by equivariantly trivializing the restriction of L to an affine chart of B.

ExampLE 2.5 Fixapointx € X, and consider two commuting one-parameter subgroups A,y
of G. These induce a (C")*-equivariant morphism C* — X, where C? is given the natural
(C")?-action, such that the image of (C")? is contained in G.x. The image of C? is the affine
toric variety produced by taking the partial closure of the (C")*-orbit (C)%x C X. The
closure of the (C")*-orbit thus contains fixed points of 7y and \, which we denote by y As Yyt
respectively, where we have parameterized using coordinates s, t on C*. These families
intersect at the image of the origin in C*: Y0 = Y00 as follows from commutativity of A, 7.
Equivariant constancy then implies that 1/(y, , A) = v(y, o, A) and likewise for . This
example is related to forthcoming work of Kirwan-Nanda on representations of 2-quivers.

2.2. Axiomatic stability conditions

‘We would like to axiomatize the key structures of GIT. Thus consider a projective scheme X given the
action of a reductive group G. Denote by

8={(A) |y € X and A is a one — parameter subgroup of G, }/ ~,

where (y,A\) ~ (z,7) if there is g € G with g(y) =z and g - A = . Thus 8 is an upgrade of the space
of orbits in X by also remembering a one-parameter subgroup fixing the point in the orbit. There is a
canonical injective map

X =S, x— (x,1d),

where Id denotes the trivial one-parameter subgroup of G.
The set § admits the structure of a directed graph, with vertices given by elements of § and arrows
given by equivariant specialization. That is, we write

(x,0) ~» (1 A)

if A commutes with  and y is the specialization of x under \. We write x 4> (y,A) to mean that
(x,1d) v (3, A).
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LEMMA 2.6 Equivariant specialization is well-defined on orbits.

Proof. Let (x,() ~ (z,7), so that there is g € G with (g(x),g- () = (z,7).If (x,) v (3, ),
then

(Z,’Y) = (g(x);g ' C) A (g(y);g ' )‘) ~ (J’)/\)J
as required. O

Fixing a maximal compact subgroup K, of G, with Lie algebra £, asin Section 2.1, it is then useful to
consider 8 as consisting of pairs (x, v), where v € £ satisfies exp(v) = Id, meaning that v corresponds
to a one-parameter subgroup of G,.

DEFINITION 2.7 A central charge is a function Z : § — C such that

(1) (Additivity) For a fixed x € X, Z induces a function
Z(x,)): £, —C,

which is a Lie algebra character;

(2) (Equivariant constancy) Suppose B C X is a connected subscheme such that A is a
one-parameter subgroup of G, for each x € X. Then Z(x, \) is independent of
x€X.

Additivity in particular asks that Z(x,-) is additive under compositions of commuting one-
parameter subgroups, so that it canonically extends to a linear function on t, = LieT, for any maximal
torus T, C K. That Z is well-defined on 8 implies that Z(x,v) = Z(x,g - v) forv € £, and g € G, so
that its extension to t, induces an extension to £, canonically, since maximal tori are always conjugate.

We record a motivating property for the definitions given here, for which we take (, A commuting
one-parameter subgroups. Their composition ¢ o A is then well-defined and corresponds to exponen-
tiating the sum of the associated elements of £. In the following we view Z as taking values on pairs of
points and one-parameter subgroups.

LeMMA 2.8 Suppose (x,C) 2> (y,A). Then

Z(x, C) + Z(J/J/\) = Z(y;C ° /\)

Proof. Since
Z()’;C ° /\) = Z()’) g) + Z()’, )\);
the claim follows from the claim that
Z(x) <) = ZQ’; C))
which in turn follows from equivariant constancy. O

This notion of a central charge allows us to define stability, for which we must in addition fix a phase

p € (-m,m).

DEFINITION 2.9 We say thatx € X is
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(1) Z-semistable if for all x ~v» (y, A) we have
(e 2(, 1)) > 0

(2) Z-polystable if for all x ~» (y, \) we have Im(e ?Z(y,\)) > 0 with equality if and
onlyif G.x = G.y;

(3) Z-stable if x is polystable and in addition G, is finite;

(4) Z-unstable otherwise.

Thus stability is measured relative to the chosen phase . Z-semistability and polystability can be
defined similarly for points (x,{) € 8, and in this way Z-semistability of (x, () asks for ‘equivariant Z-
semistability” of x, namely Z-semistability with respect to one-parameter subgroups commuting with
(. In standard GIT, equivariant semistability is equivalent to semistability, and so we choose not to
emphasize this slightly more general situation.

REMARK 2.10 Under an additional hypothesis on ¢ and Z(y, \), we can rephrase the
numerical inequality governing stability in a way more reminiscent of Bridgeland stability
[8]. Letarg : C\R_, — (-, 7) denote the principal branch of the argument function and
denote by -

H={z€C|Im(z) > 0andz ¢ R_,}.
Provided Z(y,\) € H we define the phase of Z(x, () to be

() = arg((y,A)) € (-m,7).
Suppose further that ¢ "% and Z(y, \) both lie in H (so that ¢ € [0,7)). Then the condition
Im(eZ(y,\)) >0

holds if and only if the phase inequality

© >0\

holds and similarly if one demands strict inequalities. In fact what is important is to fix a
given half-plane in C; the specific choice H is not essential, as stability is independent of
simultaneously rotating the phase ¢ and the central charge Z by the same angle.

REMARK 2.11 To obtain a working theory with standard properties—such as Zariski openness
of the stable locus—one certainly needs further hypotheses on the central charge. What we
have given here seems to be the minimum required to give a definition analogous to the usual
definition of a central charge on an abelian category, as we discuss in Section ‘Coherent
sheaves’, and to obtain a link with moment maps and differential geometry, as we discuss in
Section 3.

2.3. Stability conditions on stacks

In Section 2.2 we considered a scheme X with the action of a reductive group G. Viewing this as pro-
ducing a global quotient stack [X/G], we next make analogous definitions for arbitrary stacks. What
will be important is that—just as with [X/G]—we can speak of a point along with a one-parameter
subgroup of its stabilizer. Our discussion will be rather formal, but to match with the hypotheses of
the appendix—where a more thorough stack-theoretic treatment is provided—we assume that X'is a
quasi-separated algebraic stack, which is locally of finite type over C and has affine stabilizers.
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Thus let XX be such a stack. For y € X we denote by Aut(y) the automorphism group (or stabiliser)
of y. We then define

8={( ) |y € X andX is a one — parameter subgroup of Aut(y)}/ ~,

where we say (x,A\) ~ (,7) if there is an isomorphism g : x =y such that g- A\ =+, where g- \
denotes the one-parameter subgroup of the stabilizer G, of y under the isomorphism g : x 22 y.

We endow & with the structure of a directed graph as follows. We begin with the simplest case,
namely when we consider (x,Id), with Id denoting the trivial (identity) one-parameter subgroup. Here
we say that

(x,1d) > (3, M)

if there is a morphism W : [C/C"] — X such that ¥(1) = x and
\I/(O, C*) = (yr)\)y

that is, we consider C <> Aut(0) for 0 € C and ask that this one-parameter subgroup is mapped to
A & Aut(y).
To define what it means for there to exist a degeneration

(x,¢) » (1),

we consider the quotient stack [C?/ (CH?] given the natural action. We choose coordinates (s, t) on
C? and C -actions X, (, so that for s = 1 the point (0, 1) has stabilizer £ and similarly for ¢ = 0 the point
(1, 0) has stabilizer C The notation is suggestive: we will ask that X (Amap to A, ¢, respectively. We then
say that (x,¢) ~» (y,\) if there is a morphism W : [C?/ (CY]-2x satisfying the following two con-
ditions. Firstly, on points we ask that ¥ (,1) = x for all t € C and ¥(¢,0) = y. Secondly, on stabilizers
we ask that the C -stabilizer ¢ of (0, 1) is mapped to ¢ C Aut(¥(0,1)) = Aut(x), and we in addition
ask that the stabilizer X of (t,0) is mapped to A C Aut(¥(t,0)) = Aut(y). The consideration of C? is
not essential, and one can instead consider the quotient stack [C/ (C")?], where one copy of C’ lies
in the stabilizer of every point of C.

DEFINITION 2.12 We call a morphism W : [C/C"] — X with U(1) = x being a test
configuration for x.

REMARK 2.13 Morphisms [C/C"] — X are called ‘filtrations of x by Halpern-Leistner [25],
motivated by the case when XX is the stack of coherent sheaves on a scheme, but since this
word has various other meanings in the theory of K-stability, we instead use Donaldson’s
terminology.

REMARK 2.14 With this terminology, maps [C*/ (C)?] — X (as considered in our definition
of a degeneration (x,() v (y,\)) are essentially ‘test configurations of test configurations’;
we give a geometric example of this condition for polarized schemes in Remark 2.18.

We can now define a central charge analogously to before. Two pieces of notation will be useful.
Firstlywelet ¥, C LieAut(x) be the Lie subalgebra associated with a maximal compact subgroup K, C
G

-
DEFINITION 2.15 A central charge is a function Z : § — C such that

(1) (Additivity) For each x € X, Z extends to a Lie algebra character
Z(x,-) : f,—C.
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(2) (Equivariant constancy) Suppose ¥ : [B/C’] — X is a morphism where C fixes
each point b € B of a connected finite-type scheme B, and denote by Ay ;) the
associated one-parameter subgroup of Aut(¥(b)). Then Z(W(b), /\\I,(b)) is
independent of b € B.

REMARK 2.16 A central charge as defined here is a variant of Halpern-Leistner’s notion of a
‘numerical invariant’ [2§], and in particular the equivariant constancy used here is motivated
by a property he demands.

A central charge induces a notion of stability just as before: fixing a phase ¢ € (-, 7), we say that
«x is xZ-semistable if for all (x,1d) ~» (y,\) the inequality

Im(eZ(y,\)) >0
holds, and Z-stability, Z-polystability and Z-instability are defined analogously.

2.4. Examples

We give two examples of central charges for particular stacks: the stack of coherent sheaves and the stack
of polarized schemes.

Coherent sheaves

Let € denote the stack of coherent sheaves over a projective scheme X, with § parameterizing sheaves
along E along with a one-parameter subgroup of Aut(E). There is a classical notion of a central charge
on C: this associates with each coherent sheaf E on X a complex number Z(E) which is deformation
invariant (that is, constant in flat families of sheaves; this is a consequence of central charges being
assumed to factor through the numerical Grothendieck group of coherent sheaves and constancy of
numerical invariants in flat families) and additive in short exact sequences. Here we explain how this
canonically induces a central charge in the sense of Section 2.3, so that our notion can be seen as a
generalization of the classical notion.

In the stack of coherent sheaves, test configurations [C/ Cl— CforE correspond to filtrations
of E labelled by integers (this is standard; see, for example, [25, Example 0.0.2]). For example, any
subsheaf § C E induces the specialization

(E,Id) ~» (S®E/S, (1d,exp(t)).
Suppose that we are given for each coherent sheaf E a complex number Z(E) which is constant in

flat families and additive in short exact sequences (such as from a central charge in the classical sense).
For an element

(E,®...®E,(14,...,exp(t),...,1d)) € S,
with exp(t) in the j spot, first set
Z(E\®...DE,(14,...,exp(t),...,1d)) = Z(Ej).

Then setting

k
Z(E, @ ... ®E,, (exp(a,t),...,exp(a.t))) = Z“jZ(E;‘)

j=1

induces a central charge: additivity follows by definition, while equivariant constancy is a consequence
of Z(E) being constant in flat families of sheaves.
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The classical example of a central charge on the stack of coherent sheaves over a polarized scheme
(X, L) is given by

Z(E) = tkE - idegE,

where rkE denotes the rank and degE =¢,(E)-L"" denotes the degree. With this choice Z-
semistability recovers slope semistability, while if one restricts to test configurations induced by sat-
urated subsheaves of E then Z-polystability recovers slope polystability (for a survey explaining slope
stability and its relation to Bridgeland stability see [4]).

Polarized schemes
Denote by X the stack of Q-polarized schemes with fixed Hilbert polynomial (that is, we consider
schemes together with an ample Q-line bundle). The main differences between the polarized scheme
theory and the coherent sheaf theory is that test configurations no longer correspond directly to sub-
objects, so it is more natural to consider polarized schemes with fixed Hilbert polynomial rather than
considering all polarized schemes at the same time.

Unravelling the definition, a test configuration for (X,L) in X corresponds to a flat family
(Y,L£y) — C of polarized schemes along with a C -action covering the natural one on C, such that
the fibres satisfy (¥,,£y,) = (X, L) for all t # 0. This agrees with the usual definition of a test config-
uration due to Donaldson [18], generalizing Tian’s prior work [46]. Given a test configuration with
associated C -action \, we write (X,L) (yo,ﬁyo, A).

The set 8§ consists of triples (X,L,{) where (X,L) is a polarized scheme and ( is a
one-parameter subgroup of Aut(X,L). Denote by £ (x,) the Lie algebra of a maximal com-
pact subgroup K C Aut(X,L). The notion of a central charge for polarized schemes is the
following.

DEFINITION 2.17 A central charge is a function Z : § — C which satisfies the following:

(1) (Additivity) For a fixed polarized scheme, Z induces a Lie algebra character

Z((X,L),) : f(X,L) — C

(2) (Equivariant constancy) Suppose that 7 : (Y, £Ly) — Bis a flat family of polarised

schemes, and suppose that there is a C'-action \ on (H,Ly) suchthat mo A(t) =
for all t. Then Z(yb,Lyb, A) is independent of b € B, where (y,,,z:yb) denotes the
fibre of 7w over b.

Given a central charge, one can then ask for a polarized scheme (X, L) to be Z-semistable, Z-stable,
Z-polystable or Z-unstable in the natural way. For example, fixing a phase ¢ € (-m,7) for (X, L) to be
Z-semistable that for all (X,L) ~» (Y, Ly, A) we have

Im (e 7?Z(Y,Ly,\)) > 0.

For a test configuration (Y, L), if we define Z(Y,£Ly) to be Z(yO,LyO, A), we may think of a central
charge as associating a complex number with each test configuration, in an additive and equivariantly
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constant manner. With this notation Z-semistability then for all test configurations (¥, £) for (X, L)
we have

Im(e7%Z(Y,£)) > 0.

REMARK 2.18 The analogue for polarized schemes of the condition that (x,() 4> (y,A) is the
following. Suppose that (X, L) is a polarized scheme, with  being a C -action on (X, L). We
can then ask for a test configuration (¥, £y ) to be (-equivariant, in the sense that there is a
C -action on Y acting fibrewise (so preserving the map to C), extending the action of ( on
the general fibre (X, L) and commuting with the &-action on Y coming from the definition of
a test configuration. Given such a (-equivariant test configuration, we obtain a family
Y x C — C*witha (C")*-action induced from ¢ on the first factor and (the extension of) ¢
on the second. There are two C -actions on (Y, £ yo) induced by £ and ¢, and the condition
that (X,L,¢) v (Yo, L Yy A) asks that there is a (-equivariant test configuration as described
such that in addition § o { = { o £ = A as subgroups of Aut(yo,ﬁyo). Note that this implies A
and ( also commute in Aut(Y,, Ly, ). As before, it is not essential to consider families over

C?, as one can instead consider families over C at the expense of working with the ineffective

quotient [C/(C")?].

ExampLe 2.19 (K-stability) Suppose that (¥,£) is a test configuration for an n-dimensional
scheme (Y, L), inducing a C -action \, on H(Y,,, £’5) for all k. The dimension of
H O(HO,LIOC) and the total weight of the action on H’(Y, ,ng) are polynomials for k > 0
which we may write

h(k) = agk™ +a, k" + O(k"™2),
w(k) = bok™! + b, k" + O(k" ™),

respectively. Setting
Z((Y0,Ly), Ag) = —iby + by, Z((Y,L),1d) = iay — ay,

produces a central charge, and the notion of Z-semistability recovers Donaldson’s notion of
K-semistability [ 18] (extending Tian’s analytic definition in the Fano case [46]) and
similarly for Z-stability and Z-polystability.

After Donaldson’s original work, a subtlety in the definition of K-stability (rather than
K-semistability) was realized: for normal varieties one must exclude certain ‘almost trivial’
test configurations (test configurations whose total space normalizes to the trivial test
configuration) to have a sensible theory [7, 13, 36, 42]; it is not clear what role these
degenerate test configurations play in the theory for more general central charges. Excluding
almost trivial test configurations is analogous to the restriction to considering saturated
subsheaves in the definition of slope stability of torsion-free coherent sheaves; by contrast
torsion sheaves play a central role in Bridgeland stability.

ExaMPLE 2.20 The notion of a central charge is intended to axiomatize the notion of a central
charge introduced in [14]. There a specific smooth polarized variety (X, L) was fixed, and a
central charge was defined explicitly through a choice of topological information on (X, L).
This choice canonically induces a phase ¢ = arg Z(X, L), which is then independent of (X, L)
itself, provided that it varies in a flat manner. For each test configuration (¥, £) with smooth
total space, a number Z(Y,£) € C was then defined via intersection theory on a natural
compactification of the total space Y. Thus the definition relies on (yO,LO) being the central
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fibre of a test configuration with reasonable total space. It would be interesting to define
these quantities intrinsically on (Y, £,), more in line with the perspective of this note.

3. Z-CRITICALPOINTS AND COMPLEXMOMENT MAPS

We next describe the analytic counterpart to Z-stability, through what we call complex moment maps.
In the traditional theory of moment maps, one can either consider maps to the Lie algebra or its
dual; the former requires a choice of an inner product. This is mostly an aesthetic choice, and we
choose to fix an inner product so that the links with the motivating infinite-dimensional problems are
most transparent, as this is one of the main goals of our work. We refer to Kirwan [34], Georgoulas—
Robbin-Salamon [22] and Hashimoto [27] for comprehensive accounts of the relationship between
moment maps and GIT.

To define the inner product, we proceed as follows. Firstly we fix a faithful representation of G on a
complex vector space V, giving an embedding

g C EndV.

Thus we may multiply elements of g. The most important example to keep in mind is when X C P" =
P(V) is a subvariety of projective space and G acts faithfully and linearly on projective space, meaning
that there is a natural G-action on V. We assume that G is reductive and is hence the complexification of
a maximal compact subgroup K C G. We also fix a K-invariant Hermitian inner product on V, which
induces one on EndV and hence induces an isomorphism

g=g.
In this way, for u € gand o € g we have
<u,a> = tr(u*av),
where (-, ) is the natural pairing, &” € g is the dual element of & and u'is the conjugate transpose.

We now return to a smooth projective variety X, which we endow with a closed K-invariant complex
(1, 1)-form w,. For the moment we do not assume any positivity hypotheses on w,.

Let G be a reductive linear algebraic group acting holomorphically on X, and fix a representation
of G and a Hermitian inner product as earlier. We write K for the maximal compact subgroup of G,
and let £ denote the Lie algebra of K. We will—slightly abusively—identify an element v € g with its
induced vector field on X.

DEFINITION 3.1 We say that a smooth map
Z:X—g
is a complex moment map if for all u € ¥ we have
dtr (u'Z) = —1,w,
and Z is K-equivariant with respect to the adjoint action on £.

REMARK 3.2 Similar structures to complex moment maps arise in Bérczi—Kirwan’s recent work
providing a moment map interpretation of non-reductive GIT [6], and it would be
interesting to understand the relationship between their work and what we consider here.

We now assume that Z is a complex moment map. To link with the definition of a central charge, it
is useful to upgrade Z to a smooth function

Z:Xxt—g
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by defining
Z(x,v) = v Z(x),
where the second term is interpreted as multiplication of elements of ¢ C EndV'. In the following we
view 8 as consisting of pairs (x, u) such that x € X and u € ¥,. We fix a central charge Z on § and a

phase ¢ € (-, 7).

DEFINITION 3.3 We say that Z is compatible with a central charge Z : S — Cifforall (x,v) € 8
we have

tr(Z(x,v)) = Z(x,v)
and

arg tr(Z(x)) = Q.

REMARK 3.4 Compatibility is a key point of the definitions: if one thinks of Z as analogous to a
choice of topological classes—as will be the case in the examples given
below—compatibility is analogous to asking that Z produces Chern-Weil and equivariant
Chern-Weil representatives of these topological classes. Being able to phrase the
compatibility condition is the main advantage of choosing a representation of G on the
vector space V.

From here we fix a central charge Z compatible with the complex moment map Z. We thus turn to
linking complex moment maps with Z-stability, and in particular we will exclusively be interested in
understanding Z on points, rather than general pairs (x, u). We fix a phase ¢ € (-7, 7).

DEFINITION 3.5 We say that a point x is Z-critical if

Im(eZ(x)) = 0,

where Im refers to the skew Hermitian part of an element of g with respect to the Hermitian
inner product.

As we will explain, this is the key condition related to Z-polystability. A basic observation shows
that compatibility is actually automatic at Z-critical points:

LEMMA 3.6 Suppose x is a Z-critical point. Then

argtr(Z(x)) = .

Proof. Write
Z(x) = M, (x) + M(x),
where e M, (x) is Hermitian and ¢ M, (x) is skew-Hermitian. Then we see that

Im(e"°Z(x)) = ¢ M, (x),
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SO

trlm(e P Z(x)) = tre"? M, (x),
= PtM,(x),
=Im(e™trZ(x)),

where in the final step we used the similar fact that tre”? M, (x) is real. Thus if
Im(e"?Z(x)) = 0, we must have Im(e”"#trZ(x)) = 0, which implies

argtr(Z(x)) = ¢,
concluding the proof. O

While we actually assume compatibility throughout, this result nevertheless makes clear that it is a
natural condition. We next relate complex moment maps to usual moment maps for compact group
actions.

DEFINITION 3.7 We callamap p: X — ¥ a formal moment map with respect to a closed
(1, 1)-form 7 if p1 is K-equivariant and

d(p,v) = -1,n.
Thus if 1 is positive—hence defining a symplectic form—/¢ is a moment map in the usual sense. In

the language of equivariant cohomology, the condition asks that the (complex) equivariant differential
form 7+ p is equivariantly closed.

PROPOSITION 3.8 Suppose that Z is a complex moment map with respect to w,. Then
im(e™Z(): X =¥
is a formal moment map with respect to the (1, 1)-form Re(ew,).
Here the notation iIm(g_i‘pZ(’))v means the composition of ilm(e"*Z(-)) — £ with the isomor-
phism £ ’:V‘f*, while Im(e™¥w,) denotes the imaginary part of the complex (1, 1)-form ¢™*w,. Note
that Im(e™?Z(-))" itself has image in i¥, meaning that iIm(e#Z(-))" takes values in Hermitian

matrices. This extra factor of i is compensated for in the (1, 1)-form as
Re(ePw,) = Im(ePiw,).
Proof. K-equivariance of Z : X — g implies that ilm (e ?Z(+)) : X — ¥ is K-equivariant, while
the K-equivariance of the Hermitian inner product on V implies that the isomorphism
¥ =~ f is K-equivariant.
To prove the moment map equation, it is equivalent to show that
d{u,Im(e"?Z(x))") = -1, Im(ePw,).
Since u € £ corresponds to a real vector field on X, we have

tIm(e™Pw,) = Im(e 71 wy),
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which by the complex moment map identity gives
-, Im(e"Pw,) =Im (e_is"dtr (u*Z)) .

Using a similar linear algebra argument as Lemma 3.6 along with the fact that u viewed as an
element of EndV corresponds to a Hermitian matrix, we see

Im (¢ dtr (u*Z)) = dtr (u*Im(e_"“"Z(x))) .
Since the isomorphism ¥ = ¥ arises from the Hermitian inner product on V, it follows that
tr (4 Tm(e P 2(2))) = (s Im(e# 2(2)) )
and hence
4 Im(e 7 2(x))") = 2, Im(e %),
proving the result. g

Positivity is, of course, crucial to the theory of moment maps. While many aspects of the the-
ory require global positivity, others rely only on local positivity; for example, to obtain a symplectic
quotient, one only needs positivity in an open neighbourhood of the zero set of the moment map.

DEFINITION 3.9 We say that a point x € X is a Z-subsolution if the form
Re(e%w,)
is positive on T X, in the sense that
Re(e™Pw,)(u,Ju) >0

forallu #+ 0, with ], : T,X — T, X being the almost complex structure. We further say that Z
satisfies the global subsolution hypothesis if every point x € X is a subsolution.

The global subsolution hypothesis is strong: analogues fail in infinite dimensions, as discussed in
Remark 3.13. As mentioned there, in the better-understood infinite-dimensional problems, what is
expected to be true is that every solution of the equation (that is, being an analogue of a Z-critical
point) is also a subsolution. This is often enough to obtain geometric consequences:

THEOREM 3.10 Suppose that every Z-critical point is a Z-subsolution. Then the symplectic quotient
X/, K :=Im(e™*Z(-))"(0)/K
admits the structure of a Kéhler space.

Proof. This is classical under the global subsolution hypothesis [29, 28], but the proofs only
require a Kihler metric in a neighbourhood of the zero set of the moment map. Thus since
every Z-critical point is a subsolution, and the subsolution condition is open in x (as it is a
positivity condition on an inner product on the tangent space), the form Re(e ¥w,,) is
indeed a Kihler metric in a neighbourhood of Im(e"#Z(-)) ™ (0). O

More explicitly, in this generality the Kihler metric on the quotient is produced as follows. Let
1, € C*°(X,C) bealocal potential for the complex (1, 1)-form w,, in a neighbourhood of a Z-critical
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point x, in the sense that near x

Wy = 1651/12.

Restricting 1), to (a neighbourhood of x intersected with) Im(e™*Z( -))’l (0), as 1), is a K-invariant
function, it descends to a continuous functiont), on the quotient Im(e “?Z(-)) ™' (0) /K. The function

Re(e™4),) € C°(X/,K,R)

is then a weak Kihler potential for the induced form on the complex space X/,K in the sense used by
Heinzner-Huckleberry-Loose [28].

Our main result explains how to relate the existence of Z-critical points to complex moment maps.
The proof reduces to a version of the classical Kempf-Ness theorem (due to Kempf-Ness being in the
affine setting [33] and to Kirwan being in the projective setting [34]).

THEOREM 3.11 Suppose that Z satisfies the global subsolution hypothesis. Then the following are
equivalent:

(1) there is a pointy € G.x such that Im(e "¢ Z(y)) = 0;
(2) xis Z-polystable.

Proof. By the global subsolution hypothesis, the form Im (e *#w,,) is a Kahler metric on X and
Im(e#Z(-)) is a moment map. Although X is a smooth projective variety, the form
Re(e*w,) may not lie in an integral class, meaning that we cannot apply the classical
Kempf-Ness theorem. Instead we apply the Kempf-Ness theorem for Kéhler manifolds (see,
for example, the survey [22, Section 12]), which implies that the existence of a Z-critical
point in the orbit of x is equivalent to the condition that for all x 4+ (y,u) we have

(ilm(e™Z(y))",u) <0,
with equality if and only if y = x. Here our slightly extended notation means that
y= tlg(r)lo exp(—itu).x.

What this essentially means is that, in the Kihler setting one must also include ‘irrational’
vector fields to obtain the existence of a zero of the moment map, rather than merely rational
ones inducing one-parameter subgroups of G.

The rest of the proof will compare this numerical condition to the one governing
Z-polystability and will then explain that in fact it is enough to merely consider ‘rational’
vector fields (equivalently one-parameter subgroups) in our situation.

The definition of the isomorphism g 2 g’ gives

(im(e?Z(y)"),u) = tr((iIm(e " Z(y))) w),
= tr(ilm(e ™ Z(y)u),
=-Im(e™Z(y,u)).

In slightly more detail, the final step follows from the fact that for a (complex) matrix A and a
Hermitian matrix B we have

tr(i(ImA)B) = ~Imtr(AB),

and also from the compatibility condition tr (u*Z(y)) =tr (Z(y)u) = Z(y,u) again using that
u is Hermitian.
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To conclude we must show that it is enough to check stability with respect to rational
elements of ¥, generating one-parameter subgroups. If x is Z-unstable, it is standard to
produce rational destabilizing elements of f given the existence of an irrational one by an
approximation argument, and thus we may assume that x is Z-semistable; here we note that
Z-semistability with respect to rational vector fields implies Z-semistability also with respect
to irrational ones. Then from the ‘semistable’ case of the Kempf-Ness theorem there is a
pointz € G.x which is itself Z-critical. We can then take a slice of the G-action in a
neighbourhood of the Z-critical point z (essentially by construction of the quotient in the
complex setting [29]), so that the action is modelled on the linear action on T, X, where it is
clear that one can find a one-parameter subgroup taking x to z. (]

REMARK 3.12 Rather than the global subsolution hypothesis, the proof only requires the
weaker condition that Re(e ¥ w,) be positive in a neighbourhood of G.x.

In the classical projective case a consequence of this sort of result is a homeomorphism between
the symplectic and algebraic quotients (this is due to Kirwan [34]). As we have appealed to a Kihler
version of the Kempf—Ness theorem, there is no purely algebraic definition of the quotient. So while—
under the global subsolution hypothesis—one still obtains a quotient X / K which is a complex space
endowed with a Kihler metric by Theorem 3.10, there is no direct algebraic construction to compare
it with.

3.1. Examples in infinite dimensions

‘We next briefly explain the link between the categorical notions of stability for coherent sheaves and
polarized schemes and moment maps.

Vector bundles

Associated with a class of central charges on Coh(X)—which in particular take the form of
Section ‘Coherent sheaves—is a partial differential equation on Hermitian metrics on holomorphic
vector bundles on X, solutions of which are called Z-critical connections [16]. Briefly, these central
charges involve a choice of Kihler class on X, a choice of (products of ) Chern classes of the sheaf and
a choice of topological classes on X (as motivated by Bayer’s polynomial stability conditions [5]). To
a Kahler metric on X, a Hermitian metric on E producing a Chern connection A and a closed differ-
ential form on X representing the topological class is then associated with an EndE-valued (n, n) form
Z(E,A) which satisfies

2=z,
X
which is analogous to the compatibility of the central charge as given in Definition 3.3. The inner prod-
uct corresponding to the trace used there is the L*-inner product defined with respect to the volume
form associated with the Kahler metric.

The Z-critical equation then asks that

Im(e "B Z(h)) =0,

where this denotes the skew-Hermitian part of the EndE component as defined through the Hermitian
metric h. The various sign conventions used in the present work are chosen to match with the Z-critical
connection and the deformed Hermitian Yang—Mills literature. An especially noteworthy example is
given by the deformed Hermitian Yang-Mills equation [35, 37] (which appeared long before the more
general notion of a Z-critical connection), which corresponds to the central charge

Z(E) = / e ). ch(E);
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other equations relevant to string theory and mirror symmetry involve including Chern classes of X
itself [16, Example 2.8].

REMARK 3.13 On line bundles, an almost complete theory of deformed Hermitian Yang-Mills
connections exists, especially due to the studies by Chen, Collins, Jacob and Yau [9, 10, 12,
31], and their theory emphasizes many of the structures that one should expect to be
relatively general. For example, the existence of a solution to the deformed Hermitian
Yang-Mills equation implies that the associated Hermitian metric is a subsolution [10] (in
the so-called ‘supercritical phase range’). An important aspect of the theory is that this same
statement (‘solution implies subsolution’) is true along a continuity method one can use to
solve the equation under a stability hypothesis [9], so one always has positivity along the
path designed to solve the equation.

In fact, the converse of this statement also holds on line bundles: the existence of deformed
Hermitian Yang—Mills connections on a line bundle is equivalent to the existence of a
subsolution (again in the appropriate phase range); this is due to the study by
Collins—Jacob-Yau [10]. In higher rank, for appropriate classes of central charge it should
still be the case that the existence of a solution implies the existence of a subsolution, but the
converse cannot hold. For example, the Hermitian Yang—Mills condition is a special case of
the Z-critical condition, and here the subsolution condition is automatic (as it asks that "'
is a positive (n — 1,n — 1)-form where w is the Kihler metric), but nevertheless obstructions
to the existence of solutions appear from saturated subsheaves.

Polarized varieties

The theory for smooth polarized varieties is analogous, but with additional complications on the ana-
lytic side [ 14, 15]. Here the equation is for a Kihler metric w € ¢;(L) on a smooth projective variety
X, and one makes analogous choices—namely a choice of topological classes on X and products of
Chern characters of X. The equation is only explicitly available in the case of powers of the first Chern
class of X (along with arbitrary auxiliary differential forms on X and powers of the ample line bundle),
where one associates with w a complex valued function

Z(w): X = C.

To tighten the parallel with the bundle theory, equivalently by multiplying by w" one can consider
Z(w) as a complex valued (1, n)-form. This complex (n, n)-form satisfies the ‘compatibility’ condition

/ Z(w) = Z(X,L),

X

and the Z-critical equation asks

Im(e_i‘p(X’L)Z(w)) =0.

The actual construction of Z(w), however, is more subtle than its bundle analogue. The reason is
that its construction involves not only various Chern-Weil representatives but also higher-order terms
essential for a link with algebraic geometry. A good understanding of the Z-subsolution condition—
along with various other foundational structures—remains to be achieved.

3.2. Structures in complex moment map theory
‘We now briefly explain the appearance of several standard structures in classical moment map theoryin
our setup: the norm-squared of the moment map, the moment map flow, the log-norm functional and
the log-norm functional as a Kihler potential. Many of these have appeared in the infinite-dimensional
theories discussed earlier, and our new perspective gives some finite-dimensional motivation for their
appearance. All these structures are discussed at great length in the survey [22].
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For any x € X, the norm-squared of the moment map is simply the value
[1m(e Z()) P = te(lm(e ™ 2(x)) - (e 2(x))).

This is the functional whose Euler-Lagrange equation produces both Z-critical points and Z-extremal
points: points which satisfy

Im(e™Z(x)) € i¥,.

To define the moment map flow, note that for x € X the value ilm(e "*Z(x) € ¥ can be thought
of as an element of T, X through the infinitesimal action. Thus for any x, we may define a flow by
x(0) = x, and

() = -Im(e 72 Z(x(1))).
dt
This is the downward gradient flow of the norm-squared of the moment map
x — [Im(e**Z(x))]?,

and we call this flow the Z-flow. The asymptotics of this flow are related to ‘optimal destabilizing
one-parameter subgroups), which are in turn analogous to Harder-Narasihman-type filtrations in the
coherent sheaf setting. In the deformed Hermitian Yang—Mills setting this flow corresponds to the tan-
gent Lagrangian phase flow of Takahashi [43], and we note that in that setting there is also the line bundle
mean curvature flow, introduced by Jacob-Yau [31], which is instead motivated by the Lagrangian mean
curvature flow in the study of special Lagrangians.

The log-norm functional is a functional on a fixed orbit, which is defined through its variation.
Fixing a reference point x € X, any other point is of the the form g.x for some g € G. We first define a
one-form dE, on G (the notation will be justified by this one-form being exact) by setting

(dE,, u>g = tr(u*Z(g(t).x)).

This is then K-invariant and hence descends to a one-form on the symmetric space G/K. A standard
calculation, identical to the usual one in moment map theory, shows that this one form is closed and
is hence exact. In particular it is well-defined, independent of the choice of path. Thus we obtain a
functional

E,:G/K —C,

and we define the Z-energy to be
Re(¢¥E,) : G/K — R.

This is the analogue of the log-norm functional; this is convex along geodesics in the symmetric space
G/K in the locus of Z-subsolutions, and it is strictly decreasing along the Z-flow (again in the locus
of Z-subsolutions). In the deformed Hermitian Yang-Mills setting this corresponds to what Collins—
Yau call the Calabi-Yau functional [12, Definition 2.13] and in the setting of Z-critical Kihler metrics
corresponds to the Z-energy [ 14, Definition 3.7].

We lastly turn to the potential for the form w,. A G-orbit G.x C X is affine, hence on this locus

w,, = i00Y, for some complex-valued function t,. We can consider E, as a function G.x — R by
defining the Z-energy relative to the base point x. Then on this locus a calculation shows that

i00E, = w,,
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so that we can view the Z-energy as a potential for the form w,. In particular on this locus we have
i00(Re(ePE,)) = Re(e % w,).

Thus the Z-subsolution condition forces the complex Hessian i@é(Re(e’i‘pEz)) to be positive at the
point x.
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A.BYANDRES IBANEZ NUNEZ

In this appendix we explain how the notion of a central charge on an algebraic stack X' can be for-
mulated using the formalism of graded points on X, in the spirit of Halpern-Leistner’s definition of
numerical invariant [25]. In the present section we will call these complex linear forms on X, to make
the statements of our results (especially the equivalence with Definition 2.7) transparent.

We denote G,, = SpecClt, t71] the multiplicative group scheme over C, whose C-points are
G,(C)= C'. A crucial role will be played by the classifying stack BG,, of G,,. While BG,, is deter-
mined by the fact that, for any algebraic stack X over C, the groupoid Hom(X, BG,,) of maps X' —
BG,, is equivalent to that of line bundles on X, here we will rather be interested in maps from BG,,
into other algebraic stacks.

We fix an algebraic stack X, quasi-separated and locally of finite type over C, with affine stabilizers.
Examples of stacks satisfying these assumptions are moduli stacks of polarized projective schemes
over C [41, Tag 0ODPS], [32, Section 2.1], moduli stacks of objects in suitable C-abelian categories
[2, Section 7] and stacks of G-bundles on a proper scheme X over C for G a linear algebraic group
over C [26, Tag 00BK].

DEFINITION A.1 The stack of graded points Grad(XX) of XX is the stack over C defined by
setting, for any scheme T over C,

Hom(T,Grad(X)) = Hom(BG,, x T,X).

In other words, Grad(XX) is the mapping stack Maps(BG,,, X). Thus a map T — Grad(X) is the
same data as a map BG,, x T — X. It is a nontrivial result [1, Theorem 5.10] that Grad(XX) is an
algebraic stack locally of finite type over C. We denote |Grad(XX)| as its underlying topological space.

We will use the notation I'4(G" ) = Hom(G,,,G".) for the group of cocharacters of G, which is

isomorphic to Z". More generally, for a linear algebraic group G over C we denote with I" Z(G) the set
of cocharacters of G and with I',(G) the abelian group of characters of G.
The main definition in this appendix is as follows:

DEFINITION A.2 A complex linear form Z on X is a locally constant map

Z: |Grad(X)| — C
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such that, forany n € Z_, and any morphism g: BG,, — X, the map
z,:T%(G},) = C

induced by g and Z is Z-linear, where the definition of Z, is as follows: if a: G, — G, isa
cocharacter, the composition

Ba g
BG,, — BG,, — X

defines a point p of Grad(:X'), and we set Z () = Z(p).

We denote with PStab(X) the set of complex linear forms on XX, which is naturally a
C-vector space. The notation is intended to signify that we think of a complex linear form as a
‘pre-stability condition) where the eventual full structure of a stability condition should in
addition require a positivity property. The relationship with central charges and stability in
the sense of Sections 2.3 and 2.2 is explained by Remarks A.7 and A.8, respectively.

REMARK A.3 Definition A.2 makes sense whenever Grad(XX) is an algebraic stack, which holds
under very general assumptions on XU (see [1, Theorem 5.10]). In this generality, the
linearity condition in the definition should be imposed forall g : BG"m’k — X, where kis an
arbitrary algebraically closed field.

Complex linear forms on the classifying stack of a group have a transparent description.

LEMMA A4 Let G be an affine algebraic group over C. Then there is a canonical isomorphism

between the vector space of complex linear forms on BG and that of complex characters of G.

Proof. Let T be a maximal torus of G, and let W = N (T)/C(T) be the associated Weyl
group. Let C be a complete set of representatives of Weyl orbits in I'4(T). Then by [25,
Theorem 1.4.8] there is a canonical isomorphism

Grad(BG) = | | BL()),
AeC
where L(\) is the centralizer of A in G. Therefore 7, (Grad(XX)) = I'%(T)/W,anda
complex linear form on BG is given by amap Z: I'2(T)/W — C. The linearity condition in
Definition A.1 amounts to the composition

z
I'“(T) — I'4(T)/W — C
being a homomorphism. Thus we have an isomorphism
PStab(BG) = Hom(T'Z(T),C)" = C®, T',(T)".

The result follows from the fact that the natural map Q@ I',(G) — Q ®, T'( T)%V isan
isomorphism [20]. O

Let now denote 2 = Grad(XX)(C) the groupoid of C-points of Grad(XX), and S the set of equiva-
lence classes of P, namely,

8 =7y (P).
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Thus 2 has objects (x, ), where x: SpecC — X is a pointand A\: G,, — G, is a cocharacter of the
stabilizer group G, of x. Amap (x,A) — (y, ) in P is an isomorphism g: x — y such that = A8,
where (-)¢: G, — G, denotes the isomorphism that g induces on automorphism groups by conjuga-
tion. From this we see that the set § defined here coincides with that in Section 2.3. We now compare
Definition 2.15 with Definition A.2.

LEMMA A.S The data of a locally constant map |Grad(X)| — C are equivalent to those of a map
Z: 8 — C satisfying that, for every connected finite type scheme T over C and every map
BG,, x Z — X, the composition

z
T(C) —8—C
is constant.

This is precisely the equivariant constancy condition of Definition 2.18.

Proof. Under the natural injection 8 — |Grad(X)|, 8 is the set of points of |Grad(X)| that can

be realized by a map SpecC — Grad(XX), and thus § inherits a topology from | Grad(XX)|.
For any closed subset R of |Grad(XX)|, the intersection S N R is dense in R, so § and

|Grad(XX)| have the same connected components. For any morphism T — Grad(XX), where
T is a scheme over C, the induced map T(C) — 8 is continuous. Moreover, if
Y — Grad(X) is a smooth atlas, then the induced map Y(C) — 8 is a submersion.
Therefore, giving a locally constant map |Grad(X')| — C is equivalent to giving a locally
constant map 8§ — C, which is in turn equivalent to giving a map § — C such that, for every
morphism T — Grad(XX) with T a scheme of finite type over C and connected, the
composition T(C) — 8§ — C s constant. O

PrROPOSITION A.6 Let Z: |Grad(XX)| — C be a locally constant map. For a point x € X(C),
with stabilizer group G, we denote 1p,: T4(G,) — C as the map induced by Z and x. Then the
following conditions are equivalent:

(1) The map Z defines a complex linear form on X.

(2) For every x € X(C), the map 1, is induced by a (uniquely determined) complex character x €
C ®Z FZ(Gx) Ofo

(3) Forevery x € X(C), if K, is a maximal compact subgroup of G, and ¥ . is the Lie algebra of K, then
the map 1), is induced by a (uniquely determined) complex Lie algebra character £, — C.

(4) For every x € X(C) and for all commuting cocharacters \,\ € T%(G,) we have ¢ (A\\) =
6+ 5, (V).

Proof. If Z is a complex linear form on 2 and x € X'(C), then there is an induced
monomorphism ¢: BG, — X where G, is the stabilizer group of x. The pullback \'Z, that is,
the composition

|Grad()| V4
|Grad(BG, )| —— |Grad(XX)| —— C,

is a complex linear form on BG.,.. It follows from Lemma A 4 that 1, is given by a complex
character y € C ®, I'(G, ) that is uniquely determined. Therefore (1) implies (2).

Now fixx € X(C). Let U be the unipotent radical of G, and L = G,/U, which is
reductive. Let [ be the Lie algebra of L. Then for any maximal compact subgroup K, of G,,
the composition K, — G, — L exhibits L as the complexification of K. Therefore, the Lie
algebra | of L equals C ®p £, and thus a homomorphism £, — C of real Lie algebras is the
same data as a homomorphism | — C of complex Lie algebras. Any character G, — G,,
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10.

11.

12.
13.

factors through G, — L and, taking the differential of the induced L — G,,,, it gives a Lie
algebra character [ — C. This gives a homomorphism I',(G,) — Homy;,(I,C) and, by
extending scalars,amap r: C®,I',(G,) — Hom,(L,C).

An element x € C®,',(G,) gives a pairing map (-, x): I'*(G,) — C. Similarly, a Lie
algebra character a € Homy (I, C) gives amap (-, ) : T'4(G,) — C as follows. If
A: G,, — G, is a one-parameter subgroup, then (), cv) is the composition of

Lie(G,, i) G, — L) and o, which is a linear map C — C and thus identified with a complex
number. Both pairings are compatible in the sense that (-, x) = (-, 7(x)) forall
X € C®,I'4(G,). Therefore, if 1), = (-, x) for some Y, then it also equals ¢, = (-, (X))
and it is thus induced by a Lie algebra character r(x): | = C ®p ¥, — C, which is uniquely
determined because the image of the map I'?(L) = [: A — Lie(A\)(1) spans [ by
reductivity of L. This shows that (2) implies (3).

Any Lie algebra character respects addition, so it is clear that (3) implies (4).

Ifg: BG), — X is a map, then there is a point x € XL(C) such that g factors as
BG,, — BG, — X. Thus themap Z, : I'4(G") — C induced by g and Z factors through the

map 1, : I%( G,) — Cinduced by Z and . Therefore Z,is additive for all g if (4) is satisfied
for all x, and thus (4) implies (1). O

REMARK A.7 Together, Lemma A.S and Proposition A.6 establish that Definitions 2.15
and A.2 are equivalent.

REMARK A.8 If X = X/G is a quotient stack, then we can describe
S§={(x,\): x€X(C), X\:G,—G.}/~,

where (x,\) ~ (y, 1) if there is g € G(C) such that y = gx and p = AS.
Therefore, Definition 2.7 of a central charge for the G-scheme X is equivalent to
Definition A.2 of a complex linear form on X/G.
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