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Abstract. Real geometric algebras distinguish between space and time;
complex ones do not. Space-times can be classified in terms of number
n of dimensions and metric signature s (number of spatial dimensions
minus number of temporal dimensions). Real geometric algebras are pe-
riodic in s, but recursive in n. Recursion starts from the basis vectors
of either the Euclidean plane or the Minkowskian plane. Although the
two planes have different geometries, they have the same real geometric
algebra. The direct product of the two planes yields Hestenes’ space-
time algebra. Dimensions can be either open (for space-time) or closed
(for the electroweak force). Their product yields the eight-fold way of
the strong force. After eight dimensions, the pattern of real geometric
algebras repeats. This yields a spontaneously expanding space-time lat-
tice with the physics of the Standard Model at each node. Physics being
the same at each node implies conservation laws by Noether’s theorem.
Conservation laws are not pre-existent; rather, they are consequences of
the uniformity of space-time, whose uniformity is a consequence of its
recursive generation.
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1. Introduction

An n-dimensional space-time has various geometric elements: 0-dimensional
points, 1-dimensional line segments (vectors), 2 -dimensional plane segments
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(bi-vectors), etc., up to the n-dimensional volume element. These geometric
elements form the bases of a geometric algebra, in which geometric elements
can be represented by square matrices of rank k.

The rank of a tensor T of type
(

I
J

)
with i contra-variant indices and j

co-variant indices is i+j. A matrix is a 2nd rank tensor of type
(
1
1

)
. Write

matrix A (index-free notation) with k rows by l columns (use k/l, not k×l
for “k by l”) in abstract-index notation ([16], p. 240) as AK

L, whose elements
are ak

�, where k = 0, 1, . . . ,k− 1 and � = 0, 1, . . . , l− 1. k is the row rank of
the matrix; l is the column rank. For square matrices, k = l. Starting the
count at 0, rather than at 1, simplifies certain formulas in the binary index
notation introduced in [13].

In geometric algebra, the dot product (symmetric product) of vectors
represented by square matrices A and B is given by

A · B =
1
2
(AB + BA) =

1
2

{A,B} (1)

and the wedge product (antisymmetric product) is given by

A ∧ B =
1
2
(AB − BA) =

1
2

[A,B] (2)

([12], p.11). The dot product leads to a Clifford algebra; the wedge product
leads to a Grassmann algebra; a geometric algebra is both a Clifford algebra
and a Grassmann algebra [4]. The left-hand equalities of equations (1) and (2)
give a geometrical interpretation useful for general relativity, while the right-
hand equalities give commutators and anti-commutators useful for quantum
mechanics. Geometric algebra has been suggested as a unifying language for
all of physics [2,6,7,10].

A dot product implies a metric, characterized by the number p of spa-
tial dimensions, the number q of temporal dimensions, and the number n0

of null dimensions. For non-degenerate metric spaces, n0 = 0. Geometric
algebras for non-degenerate space-times have previously been classified in
terms of p and q [18]. That classification can be simplified by expressing
it in terms of the number of dimensions n = p + q and metric signature
s = p − q. This paper uses a semicolon rather than a comma to distinguish
variables (n; s) from (p, q). Section 2 reviews real geometric algebras in terms
of n and s. Section 3 presents the construction of a compound set of ba-
sis vectors as the direct product of two sets of basis vectors, a geometric
interpretation of the construction, and a formulation of the recursive rela-
tion as a matrix of matrices. Section 4 gives applications of the process of
building geometric algebras from the basis vectors of either the Euclidean
plane or the Minkowskian plane. It includes complex numbers, dyreal num-
bers, qubits, quaternions, Pauli spin matrices, Hestenes’ Space-Time Algebra,
Dirac gamma matrices, and Kaluza-Klein construction of the Standard Model
of physics. It shows how the recursion of real geometric algebras leads to an
expanding 4-dimensional space-time lattice with the physics of the Standard
Model at each node of the lattice. Finally, it suggests understanding the gen-
eration and expansion of the universe in terms of the recursive generation of
real geometric algebras. Section 5 recapitulates the recursion in terms of n
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and s, discusses the different time scales of the 4-d and 8-d recursion, and
touts the unified framework for physics provided by recursive generation.

2. Geometric Algebra

A fundamental concept in geometry is the position vector rn;s, where n ∈
(0, 1, 2, . . .) is the number of dimensions and s ∈ (−n,−n + 2, . . . , n − 2, n) is
the metric signature.

2.1. Basis Vectors

If the position is parametrized, at least locally, by coordinates xi, where
i = 0, 1, . . . , n − 1, then basis vectors are

γi|n;s =
∂rn;s

∂xi
. (3)

The label n; s may be dropped if the context is clear. The dot products of
the basis vectors are the metric tensor gij|n;s:

γi|n;s · γj|n;s = gij|n;sIn;s, (4)

where In;s is the identity matrix appropriate for dimension n and metric
signature s, as discussed below.

Let’s use the Einstein summation convention that repeated indices, one
sub-scripted and one super-scripted, are to be summed over the n indices.
The inverse metric tensor gki is related to gij by the definition

gkigij = δk
j . (5)

As usual, the contra-variant form of the basis vectors is generated by using
the inverse metric tensor to raise indices:

γk = gkiγi. (6)

These γk are called “reciprocal vectors.” The γk space is dual to the γk

space. Multiplying equation (4) by gki yields

γk
n;s · γj|n;s = δk

j In;s. (7)

Hence
γk · γj = 0 for k �= j (8)

and
γk · γk = In;s (no sum on k). (9)

By Eq. (8), γk is perpendicular to all γj other than γk, but is not
necessarily parallel to γk. However, if the γi are mutually perpendicular,
then γk is parallel to γk, in which case, γk and γk commute. Then

γk · γk = γkγk = In;s (no sum on k), (10)

so contra-variant vector γk is the matrix inverse of the co-variant form γk:

γk = (γk)−1 =
γk

γk · γk

(no sum on k) (11)

for mutually orthogonal basis vectors.
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Using the Gram-Schmidt process, one can construct, at least locally,
orthonormal basis vectors, designated by e instead of γ, that satisfy

ei|n;s · ej|n;s = ηij|n;sIn;s, (12)

where

ηij =

⎧
⎨

⎩

+1 for i = j = 0, 1, . . . , p − 1 = 0, 1, . . . , n+s−2
2 ;

−1 for i = j = p, p + 1, . . . , p + q − 1 = n+s
2 , n+s+2

2 , . . . , n − 1;
0 for i �= j.

(13)
The ei are n orthogonal (since ηij = 0 for i �= j) anti-commuting matrices,
normalized in the sense that the first p of them square to +I (p space-like
basis vectors) and the remaining q of them square to −I (q space-like basis
vectors). In 4 dimensions, the ei form a vierbein; in n dimensions, a vielbein.
In Cartesian coordinates in the tangent space,

rn;s = xiei|n;s. (14)

Then

(rn;s)2 = ((x0)2 + · · · + (xp−1)2 − (ct0)2 − · · · − (ctq−1)2)In;s. (15)

Sums and products of the orthonormal basis vectors ei|n;s over the
real/complex numbers generate a real/complex geometric algebra Rn;s / Cn.
Since multiplying a basis vector ei by the imaginary unit ı makes space-like
basis vectors time-like, and vice versa, complex geometric algebras do not
distinguish between space and time. Therefore let’s restrict our attention to
real geometric algebras.

2.2. Isomorphisms

Real geometric algebras for non-degenerate space-times have previously been
classified in terms of the number of spatial dimensions p and the number of
temporal dimensions q ([18], p.133). That classification can be simplified by
expressing it in terms of the number of dimensions n = p + q and the metric
signature s = p−q, instead of p and q. In terms of n and s, the periodic table
for real geometric algebras Rn;s ([12], p. 217) is shown in Table 1. The sign
σs of the square of the n-volume is defined in Eq. (28).

Table 1. Periodic table for real geometric algebras Rn;s

(n-volume is space-like for σs = +1, time-like for σs = −1)

4 H(2) H(2) R(4) R(4) H(2)
3 2H C(2) 2R(2) C(2)
2 H R(2) R(2)
1 C 2R
n = 0 R

s = − 4 − 3 − 2 − 1 0 + 1 + 2 + 3 + 4
σs = + 1 + 1 − 1 − 1 + 1 + 1 − 1 − 1 + 1
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R(k), C(k), and H(k) are k by k matrices with real, complex, and
quaternionic entries, respectively, and the double fields 2K(k) = K(k)⊕K(k)
can be represented by 2 by 2 matrices with k by k matrices of kind K along
the diagonal

(
K(k) 0

0 K(k)

)
. (16)

Elements of 2H ∼= 2R ⊗ H are often called split-biquaternions, but
Rosenfeld calls them dyquarterions, to be distinguished from biquaternions,
C⊗H ∼= C(2) ([20], p. 48). In the same way, elements of 2R have been given
a variety of names, but are better called dyreals.

Euclidean geometries have only space-like dimensions and no time-like
dimensions (q = 0), and so are to be found on the rightmost diagonal (s = n)
of Table 1; Minkowskian geometries have one time-like dimension (q = 1),
and so are to be found on the diagonal (s = n − 2) immediately to the left of
the rightmost one. Universes with more than one time-like dimension cannot
have coherent histories and so can be excluded as unphysical.

Real geometric algebras Rn;s are isomorphic to matrix algebras, with
the kind of matrix depending only on the metric signature s and the rank of
that kind of matrix depending only on the number of dimensions n. The
dependence of matrix type on s is |(s + 3)mod 8 − 4|, not |(s − 1)mod 8|
found in ([22], pp. 300). Explicitly, Rn;s is isomorphic to algebras of dyreal
2R(2

n−1
2 ), real R(2

n
2 ), complex C(2

n−1
2 ), quaternionic H(2

n−2
2 ), or dyquater-

nionic 2H(2
n−3
2 ) matrices, for |(s + 3)mod 8 − 4| = 0, 1, 2, 3, or 4, respectively.

Because of this separation of variables with matrix kind depending only on s
and matrix rank depending only on n, Rn;s is a more useful form than Rp,q.
The isomorphisms of real geometric algebras Rn;s are shown in Table 2.

The periodic table of geometric algebras can be extended by a number
of theorems, usually expressed in terms of p and q, but better expressed in
terms of n and s. The periodic table is extended horizontally in s by the
theorem

Rp,q
∼= Rp+4k,q−4k (17)

Table 2. Isomorphisms of real geometric algebras Rn;s

|(s + 3)mod 8 − 4| Matrix

0 2R
(
2

n−1
2

)

1 R
(
2

n
2
)

2 C
(
2

n−1
2

)

3 H
(
2

n−2
2

)

4 2H
(
2

n−3
2

)
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for any integer k such that p + 4k ≥ 0 and q − 4k ≥ 0 ([22], p. 296), which
can be rewritten as

Periodicity in s : Rn;s
∼= Rn;s+8k (18)

for any integer k such that |s + 8k| ≤ n. This shows that real geometric
algebras are periodic in metric signature s, not in dimension n. This 8-fold
periodicity, called Bott periodicity, was proven for Clifford algebras in [1].

The periodic table can be extended vertically in n by adding two more
dimensions, one space-like and one time-like, so as to preserve the signature.

Recursion in n : Rn;s ⊗ R2;0 = Rn+2;s. (19)

For each two additional dimensions, the rank of the matrix representation
doubles. This forms the foundation of recursive generation of larger geometric
algebras discussed below. Rn;s is periodic in s, but recursive in n, which is
further reason to prefer Rn;s over Rp,q. Porteous’s “periodicity theorem” in
q ([18] p. 133) conflates periodicity in s and recursion in n.

2.3. Binary Index Notation

A bit is a unit real number: +1 or −1. The binary index b of bitb ∈ (0, 1) is
such that

bitb = (−1)b. (20)
The elements Eb|n;s of a geometric algebra Rn;s are generated by all possible
products of the basis vectors ei|n;s. By repeated application of equation (12),
the basis vectors in a product can be arranged with the indices increasing:

Eb|n;s = Eb0···bi···bn−1|n;s = (e0|n;s)b0 · · · (ei|n;s)bi · · · (e(n−1)|n;s)bn−1 . (21)

By Eq. (11), the inverse (Eb|n;s)−1 is
b|n;sE = bn−1···bi···b0|n;sE = (e(n−1)|n;s)bn−1 · · · (ei|n;s)bi · · · (e0|n;s)b0 , (22)

where, as usual, superscripts/subscripts designate contra-/co-variant vectors
and, following [13], prescripts/postscripts designate descending/ascending or-
der. Since ei

2 = ±I, each of the n ei occurs in the ordered product Eb either
once or not at all; hence each bi is either 1 or 0. These possible values of bi

led [13] to treat bi as the bits of a binary number b:

b =
n−1∑

i=0

bi 2i ≡ bi 2i, (23)

where the Einstein summation convention is extended to exponents as well as
to superscripts. The binary label b of the geometric element Eb for the basis
vector ei is a power of two: E2i = ei. For binary labels that are not powers of
two, the geometric element is the unique product of those basis vectors whose
labels sum to the label of the element: for example, E5 = E1E4 = e0e2.

The grade gb of element Eb|n;s is the number of basis vectors it contains:

gb =
n−1∑

i=0

bi ≡ bi 1i. (24)
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In the geometric algebra for n dimensions with signature s, there are 2n

geometric elements, labeled by the binary index b, which runs from 0 to
2n − 1. The zeroth element is

E0|n;s = E0···0···0 = (e0|n;s)0 · · · (ei|n;s)0 · · · (e(n−1)|n;s)0 = In;s, (25)

where In;s is the identity matrix of the rank and kind appropriate for that
number of dimensions and metric signature, as given in the previous section.
(Equation (1.10) of [13] erroneously identified In;s as In, the n × n identity
matrix. In;s happens to be In, in the cases n = 2 or 4, s = 0 or 2, but not
in general.) The last element of the geometric algebra is the n-dimensional
volume element

E2n−1 = E1···1···1 = (e0|n;s)1 · · · (ei|n;s)1 · · · (e(n−1)|n;s)1 = Vn;s. (26)

By repeated application of equation (13),

(Vn;s)2 = (−1)
n(n−1)

2 (−In;s)q(In;s)p = (−1)
s(s−1)

2 In;s, (27)

where the factor (−1)
n(n−1)

2 arises from reversing the order of the n elements
of Vn;s. Introducing the sign

σs = (−1)
s(s−1)

2 (28)

gives
(Vn;s)2 = σsIn;s. (29)

Thus the volume element Vn;s is space-like for smod 4 = 0 or 1 and time-like
for smod 4 = 2 or 3. The inverse volume element is

(Vn;s)−1 = n;sV = σsVn;s. (30)

Likewise, by reversion,
n;sV = σnVn;s (31)

and
Vn;s = σnσsVn;s = (−1)(n−s)/2Vn;s = (−1)qVn;s, (32)

as expected from the q time-like basis vectors.
The Hodge dual is usually defined as Eb|n;sVn;s ([12], pp 38-39). A

better definition is
�Eb|n;s = n;sV Eb|n;s = hbEb|n;s, (33)

where b is the bit inverse of b and

hb =
n−1∏

i=0

(−1)bi(n−i−1). (34)

The Hodge dual is an element of the geometric algebra of the cotangent space.
For odd/even strictly positive n, the volume element Vn;s commutes/

anti-commutes with each basis vector:

ei|n;sVn;s = (−1)n−1Vn;sei|n;s for n ≥ 1. (35)

The commutativity/anti-commutativity of the n-volume is used below in the
construction of larger geometric algebras as direct products of smaller geo-
metric algebras. See [3] and [13] for additional applications of binary notation.
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3. Construction of Larger Geometric Algebras

Let’s build larger geometric algebras from smaller ones by using the direct
product. Consider two real geometric algebras, Rn;s with n orthonormal basis
vectors ei with signature s, and Rn′;s′ with n′ orthonormal basis vectors ei′

with signature s′. Construct basis vectors:

ei|n′′;s′′ = ei|n;s ⊗ In′;s′ for i = 0, 1, . . . , n − 1; (36)

en+i′|n′′;s′′ = Vn;s ⊗ ei′|n′;s′ for i′ = 0, 1, . . . , n′ − 1. (37)

The n basis vectors of equation (36) are orthonormal because of the orthonor-
mality of the original ei. The n′ basis vectors of equation (37) are orthonormal
because of the orthonormality of the original ei′ ; they are orthogonal to the n
basis vectors of equation (36) by Eq. (35), provided n is a strictly positive even
integer. For strictly positive even n, the (n + n′) basis vectors ei′′|n′′;s′′ form
an orthogonal set of basis vectors. While this construction is not unique, it
does have a simple geometrical interpretation: the n basis vectors of equation
(36) are the n basis vectors ei|n;s extruded into the n′ additional dimensions
without change, while the n′ basis vectors of equation (37) are the n′ basis
vectors ei′|n′;s′ appended onto n-volume element Vn;s.

The space-like or time-like nature of each basis vector can be found by
squaring each one. Since (A ⊗ B)2 = A2 ⊗ B2,

(ei|n′′;s′′)2 = (ei|n;s)2 ⊗ (In′;s′)2 for ν = 0, 1, . . . , n − 1; (38)

(en+i′|n′′;s′′)2 = (Vn;s)2 ⊗ (ei′|n′;s′)2 for i′ = 0, 1, . . . , n′ − 1. (39)

Each of the first n basis vectors ei|n;s⊗In′;s′ in the product space has the same
space-like or time-like nature as the corresponding basis vector ei|n;s. The
space-like or time-like nature of the last n′ basis vectors Vn;s⊗ei′|n′;s′ depends
on the sign of (Vn;s)2. If the n-volume is space-like, (Vn;s)2 = +In;s, each of
the n′ basis vectors Vn;s ⊗ei′|n′;s′ has the same space-like or time-like nature
as the corresponding ei′|n′;s′ . If the n-volume is time-like, (Vn;s)2 = −In;s,
each of the n′ basis vectors Vn;s ⊗ ei′|n′;s′ changes from space-like to time-
like and vice versa. Thus for strictly positive even n, the direct product of
Rn;s with n orthonormal basis vectors ei with signature s, and Rn′;s′ with n′

orthonormal basis vectors ei′ with signature s′, is isomorphic to Rn+n′;s+s′σs

with n + n′ orthonormal basis vectors ei′′ with signature s + s′σs:

Rn;s ⊗ Rn′;s′ = Rn+n′;s+s′σs
for n = 2m > 0. (40)

Similarly,

ei′|n′′;s′′ = In;s ⊗ ei′|n′;s′ for i′ = 0, 1, . . . , n′ − 1; (41)
en′+i|n′′;s′′ = ei|n;s ⊗ Vn′;s′ for i = 0, 1, . . . , n − 1. (42)

In that case,

Rn;s ⊗ Rn′;s′ = Rn′+n;s′+sσs′ for n′ = 2m′ > 0. (43)

For n′ = 2, s′ = 0, Eq. (43) becomes

Rn;s ⊗ R2;0 = Rn+2;s. (44)
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This proves the recursion relation (Eq. 19) by construction. Since direct prod-
ucts can be written as matrices of matrices, the recursion relation can be
written as

rn+2;s =
(

rn;s (xp + ctq)Vn;s

(xp − ctq)σsVn;s (−1)nrn;s

)
. (45)

Each geometric algebra can be constructed from the one directly below it in
the periodic table of geometric algebras. The matrix representation doubles
in rank for each increase of n by 2 dimensions, keeping s constant. That is to
say, adding the next space-like dimension xp and the next time-like dimension
tq doubles the rank of the matrix representation.

4. Applications

4.1. The Minkowskian Plane

R2;0 has one space-like basis vector, e0|2;0, and one time-like basis vector,
e1|2;0. By Eq. (21), the geometric elements of R2;0 are

E0|2;0 = E00|2;0 = (e0|2;0)0(e1|2;0)0 = I2;0; (46)

E1|2;0 = E10|2;0 = (e0|2;0)1(e1|2;0)0 = e0|2;0; (47)

E2|2;0 = E01|2;0 = (e0|2;0)0(e1|2;0)1 = e1|2;0; (48)

E3|2;0 = E11|2;0 = (e0|2;0)1(e1|2;0)1 = e0|2;0e1|2;0 = V2;0. (49)

V2;0, the element of area in the Minkowskian plane, is space-like.

4.2. The Euclidean Plane

R2;2 has two space-like basis vectors, e0|2;2 and e1|2;2. By equation (21), the
geometric elements of R2;2 are

E0|2;2 = E00|2;2 = (e0|2;2)0(e1|2;2)0 = I2;2; (50)

E1|2;2 = E10|2;2 = (e0|2;2)1(e1|2;2)0 = e0|2;2; (51)

E2|2;2 = E01|2;2 = (e0|2;2)0(e1|2;2)1 = e1|2;2; (52)

E3|2;2 = E11|2;2 = (e0|2;2)1(e1|2;2)1 = e0|2;2e1|2;2 = V2;2. (53)

V2;2, the element of area in the Euclidean plane, is time-like.

4.3. Different Geometries; Same Geometric Algebra

Both R2;0, generated by basis vectors in the Minkowskian plane, and R2;2,
generated by basis vectors in the Euclidean plane, are isomorphic to the
matrix algebra R(2) of 2 × 2 matrices of real numbers. Indeed, identify

I2;0 = I2;2 = I2; (54)
e0|2;0 = e0|2;2 = X2; (55)
e1|2;0 = V2;2 = T2; (56)
e1|2;2 = V2;0 = Y2. (57)

The consistency of these assignments is established by noting that V2;0 =
X2T2 = Y2 is consistent with V2;2 = X2Y2 = X2(X2T2) = T2.
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Although the Euclidean plane and the Minkowskian plane do not have
the same geometry, they have the same geometric algebra, R(2) ([11]). Since
the basis elements of R(2), namely I2, T2, X2, and Y2, can be used via
Eq. (40) to construct the elements of all geometric algebras, R(2) can be
taken as foundational. R(2) itself can be generated by any two of the three
basis vectors: T2, X2, and Y2. There is no unique set of elements out of
which R(2) is generated: the basis vectors of either the Euclidean plane or
the Minkowskian plane will do, so neither can be taken as more fundamental.
R(2) is indeed foundational – it can be used to construct all larger space-
times, but it itself is not composed of something more fundamental.

Any element R2 of R(2) can be decomposed into a trace, an antisym-
metric matrix, and a symmetric trace-free matrix:

R2 =
1
2
Tr (R2) I2 +

1
2

(R2 − R ᵀ
2 ) +

1
2

(R2 + R ᵀ
2 − Tr (R2) I2) , (58)

where Aᵀ is the transpose of matrix A. The trace of a matrix is a scalar,
with no directionality. Entities with direction, such as vectors and bi-vectors,
are trace-free. Antisymmetric matrices are necessarily trace-free. Real anti-
symmetric 2 × 2 matrices A2 are of the form:

A2 =
(

0 a
−a 0

)
. (59)

Now A 2
2 = −a2I2, so A2 is necessarily time-like. The unit antisymmetric

real 2 × 2 matrix has a = ±1, so a is on the 0-dimensional unit sphere
S0 = {x0 ∈ R|x0

2 = 1}. In the Euclidean plane, the two signs correspond to
the two sides of the ordered element of area V2;2. In the Minkowskian plane,
the two signs correspond to particles and antiparticles moving forward and
backward, respectively, through time.

Real symmetric trace-free 2 × 2 matrices S2 are of the form:

S2 =
(

b c
c −b

)
. (60)

Now S 2
2 =

(
b2 + c2

)
I2, so S2 is necessarily space-like. Thus the decompo-

sition in equation (58) separates R2 into scalar, time-like, and space-like
parts. The unit symmetric real 2 × 2 matrix has (b, c) on the 1-dimensional
unit sphere, i.e. a circle, S1 = {xi ∈ R2|x0

2 + x1
2 = 1}. So space has an

additional degree of freedom, θ, corresponding to rotation in the Euclidean
plane:

S2 =
(

cos θ ± sin θ
± sin θ − cos θ

)
, (61)

with the ± sign corresponding to clockwise or counterclockwise rotation.
Without loss of generality, one can choose θ as the angle of S2 from the X2

axis going towards the Y2 axis. Then

S2 = X2 cos θ + Y2 sin θ. (62)

A matrix representation of a vector in the Euclidean plane is thus

r2;2 = r

(
cos θ sin θ
sin θ − cos θ

)
=

(
x y
y −x

)
= xX2 + yY2. (63)
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With that choice of θ,

T2 = X2Y2 =
(

0 1
−1 0

)
. (64)

In the Euclidean plane, Ar2;2A−1 reflects vector r2;2 over vector A.
Consequently, (BA)r2;2(BA)−1 reflects vector r2;2 over vector A and then
over vector B; that is, it rotates vector r2;2 in the direction from A to B
by twice the angle between A and B ([12], p. 13-14). In R2;2, the geometric
algebra of the Euclidean plane, bi-vectors are generators of rotations. Euler’s
relation becomes

eiθ �→ eT2θ = eX2Y2θ = I cos θ + X2Y2 sin θ. (65)

X2Y2 is a real matrix representation of the imaginary number i in Euler’s
relation. The operation

r′
2;2 = eY2X2θ/2r2;2 eX2Y2θ/2 (66)

actively rotates vector r2;2 in the direction from X2 towards Y2 by angle θ.
A matrix representation of a vector in the Minkowskian plane is

r2;0 = xX2 + yT2 =
(

x y
−y −x

)
, (67)

where y = ct. Note the difference in signs between (63) and (67).
In R2;2, the geometric algebra of the Euclidean plane, bi-vectors are

generators of rotations. In R2;0, the geometric algebra of the Minkowskian
plane, bi-vectors are generators of boosts. There Euler’s relation is

eX2T2α = I2 cosh α + X2T2 sinh α. (68)

The operation

r′
2;0 = eT2X2α/2r2;0e

X2T2α/2 (69)

actively boosts vector r2;0 by rapidity α, where tanh α = β = v/c.

4.4. Complex Numbers

A matrix representation of complex numbers in polar coordinates C = reiθ

becomes

C2 = reT2θ = r cos θI2 + r sin θT2 =
(

x y
−y x

)
. (70)

Note the difference in signs among (63), (67), and (70). Geometrically, the
so-called “complex plane” is not a plane since I2 is a scalar, not a vector.
T2, which squares to −I2, is a real matrix representation of the imaginary
number i. By Eq. (64), T2, the i of ict, is the same as X2Y2, the i of eiθ.
However, as we shall see below, it differs from the i of σxσyσz or of i�.
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4.5. Dyreal Numbers

A matrix representation of dyreal numbers is

D2 = xI2 + yY2 =
(

x y
y x

)
. (71)

Again, note the differences in signs among (63), (67), (70), and (71). This
exhausts the four choices of signs (either same or opposite on either major
or minor axis). Like complex numbers, dyreal numbers do not form a plane.

4.6. Qubits

Qubits are usually described by complex amplitudes of two orthogonal states:

|Q〉 = C0 |0〉 + C1 |1〉 , (72)

where C ∗
0 C0 + C ∗

1 C1 = 1. In geometric algebra, the two orthogonal states
can be taken as X2 and Y2. Then

Q =
(

C0 C1

C1 −C0

)
, (73)

where Q∗Q = I2. This Q is an element of C(2) and so describes 3 real
dimensions – the three axes of the Bloch sphere. It is really a qutrit, not a
qubit. In geometric algebra, a qubit is

Q = cos θX2 + sin θY2 =
(

cos θ sin θ
sin θ − cos θ

)
, (74)

where QQ = I2. This is a unit vector in the Euclidean plane, not a complex
number. [19] recently asserted that quantum theory based on real numbers
can be experimentally falsified. Unfortunately, [19] chose as the real density
matrix ρ corresponding to the complex density matrix ρ

ρ = �(ρ) ⊗ 1
2
I2 + �(ρ) ⊗ 1

2
X2Y2, (75)

instead of one constructed with anti-commuting basis vectors

ρ = �(ρ) ⊗ X2 + �(ρ) ⊗ Y2. (76)

I2 and X2Y2 commute, but X2 and Y2 anti-commute, thereby guaranteeing
that if complex ρ is orthonormal, so is real ρ . Using anti-commuting basis
vectors enables real quantum mechanics to reproduce the results of complex
quantum mechanics, including Bell correlations. Thus we can use Euclidean
spaces, which have anti-commuting basis vectors over the real numbers, in
place of Hilbert spaces over complex numbers for all of quantum mechanics.

4.7. Quaternions

By Eq. (40), R2;0⊗R2;0 = R4;0. By equations (36) and (37), the basis vectors
of R4;0 are

e0|4;0 = X2 ⊗ I2, which is space-like;
e1|4;0 = T2 ⊗ I2, which is time-like;
e2|4;0 = Y2 ⊗ X2, which is space-like;
e3|4;0 = Y2 ⊗ T2, which is time-like.

(77)
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The time-like basis vectors can be chosen as the first two quaternions:

i = T2 ⊗ I2;
j = Y2 ⊗ T2.

(78)

Then
k = ij = X2 ⊗ T2. (79)

Thus the quaternions can be expressed in terms of R(2).

4.8. Pauli Algebra

By Eq. (40), R2;2 ⊗ R1;−1 = R3;3 or R(2) ⊗ C = C(2). By equations (36)
and (37), the basis vectors of R3;3 are

e0|3;3 = X2 ⊗ I2, which is space-like - call it X3;
e1|3;3 = Y2 ⊗ I2, which is time-like - call it Y3;
e2|3;3 = T2 ⊗ T2, which is space-like - call it Z3;

(80)

This is 3-dimensional Euclidean space. The volume element V3;3 = X3Y3Z3

= −I2⊗T2 squares to −I4 and can be taken as the imaginary i3. One usually
uses complex variables and simply writes i3 as i, but the use of real variables
shows that i3 = V3;3, a time-like 3-volume, is geometrically different from
i1 = T2, the time-like vector of ict, and i2 = X2Y2, the time-like bivector
of eiθ. By Eq. (64), i1 can be equated to i2, since both are elements of R(2),
but i3 is an element of R(4). From Eq. (45),

r3;3 =
(

r2;2 zV2;2

zσ2V2;2 (−1)2r2;2

)
=

⎛

⎜
⎜
⎝

x y 0 z
y −x −z 0
0 −z x y
z 0 y −x

⎞

⎟
⎟
⎠ = xX3 +yY3 +zZ3. (81)

This shows how 3-dimensional Euclidean space, represented by 4 × 4 real
matrices, is generated by the geometrical elements of 2-dimensional Euclidean
space, represented by 2 × 2 real matrices. The Pauli representation of r3;3 in
terms of 2 × 2 complex matrices C(2),

r3;3 =
(

z x − iy
x + iy −z

)
= zX2 + xY2 − iyV2;2, (82)

obscures its 2-dimensional roots. In quantum information theory, X2 and Y2

are called Pauli-Z and Pauli-X, respectively. C(2) also leads to loop quantum
gravity [21], which can be reformulated geometrically in terms of R(2).

4.9. Space-Time Algebra

By Eq. (40), R2;2 ⊗ R2;0 = R4;2. By Eq. (45),

r4;2 =
(

r2;2 (z + ct)V2;2

(z − ct)σ2V2;2 (−1)2r2;2

)

=

⎛

⎜
⎜
⎝

x y 0 z + ct
y −x −z − ct 0
0 −z + ct x y
z − ct 0 y −x

⎞

⎟
⎟
⎠ .

(83)



   51 Page 14 of 21 D. W. Marks Adv. Appl. Clifford Algebras

Then

(r4;2)2 =
(
x2 + y2 + z2 − c2t2

)
(

I2 02

02 I2

)
=

(
x2 + y2 + z2 − c2t2

)
I4. (84)

This is 4-dimensional Minkowskian space-time. Its geometric algebra forms
the elements of Hestenes’ space-time algebra [9]: scalar I4; space-time basis
vectors: X4, Y4, Z4, T4; spin-area bi-vectors: σx = T4X4, σy = T4Y4, σz =
T4Z4, Areax = Y4Z4, Areay = Z4X4, Areaz = X4Y4; energy-momentum
trivectors: E/c = −X4Y4Z4, p̂x = Y4Z4T4, p̂y = −X4Z4T4, p̂z = X4Y4T4;
and the action 4-volume V4;2 = X4Y4Z4T4. Now V4;2 squares to −I4 and
can be taken as the imaginary i4, which is the i of i�.

In standard quantum mechanics, one treats momentum as a differential
operator

p̂μ = −i�
∂

∂xμ
. (85)

In geometric algebra, one recognizes that this i is the 4-volume, X4Y4Z4T4,
so

p̂μ = −X4Y4Z4T4�Xμ = (−T4Z4Y4X4)�Xμ = �
�Xμ. (86)

Thus

p4;2 =

⎛

⎜
⎜
⎝

px −py −pz + E/c 0
−py −px 0 −pz + E/c
−pz − E/c 0 −px py

0 −pz − E/c py px

⎞

⎟
⎟
⎠ . (87)

Then

(p4;2)2 =
(
p2

x + p2
y + p2

z − E2/c2
)
I4. (88)

r · p =
1
2

(r4;2p4;2 − p4;2r4;2) = (xpx + ypy + zpz + Et)X4Y4Z4T4.

(89)

r ∧ p =
1
2

(r4;2p4;2 + p4;2r4;2)

= − [(xpy − ypx)Z4 + (ypz − zpy)X4 + (zpx − xpz)Y4]T4

− (xE/c + ctpx)Y4Z4 − (yE/c + ctpy)Z4X4

− (zE/c + ctpz)X4Y4.

(90)

The trivector for px commutes with the basis vectors Y4, Z4, and T4 that
comprise it, but anti-commutes with X4, and similarly for the other com-
ponents of the four-momentum. In the momentum representation, the four-
momentum is the vector and the position is the trivector. (A way to visualize
this is to think of position in terms of a three-cornered reflector.)

The relationship between space-time vectors and energy-momentum
trivectors is an example of Hodge duality between the

(
n
g

)
elements of grade g

and the same number of elements
(

n
n−g

)
of grade n− g. Each element Eb of a

geometric algebra commutes or anti-commutes with its Hodge dual according
to

Eb
�Eb = (−1)gb(n−gb) �Eb Eb. (91)
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In n = 4 dimensions, vectors (gb = 1) and their Hodge dual momenta anti-
commute, as a consequence of the anti-commutativity of the basis vectors.
The Heisenberg anti-commutation relations between position and conjugate
momentum are consequences of the anti-commutativity of the basis vectors,
without the need of introducing an additional postulate about momenta. The
postulates of quantum mechanics are consequences of the geometric algebra.

4.10. Dirac Gamma Matrices

By Eq. (40), R4;2 ⊗ R1;−1 = R5;3
∼= C(4) ∼= R(4) ⊗ C. By equations (36)

and (37), the basis vectors of R5;3 can be taken as

e0|5;3 = X4 ⊗ I2, which is space-like - identify it as Γ1;
e1|5;3 = Y4 ⊗ I2, which is space-like - identify it as Γ2;
e2|5;3 = Z4 ⊗ I2, which is space-like - identify it as Γ3;
e3|5;3 = T4 ⊗ I2, which is time-like - identify it as Γ0;
e4|5;3 = X4Y4Z4T4 ⊗ T2, which is space-like - call it Γ4.

(92)

This is a matrix representation of the Dirac gamma matrices ∈ C(4), which
naturally describe a 5-dimensional space-time with signature −,+,+,+,+.

By Eq. (40), R2;0 ⊗ R3;3 = R5;3. Various choices of the matrix repre-
sentation of R2;0 lead to various representations of Dirac matrices as 2 × 2
matrices of Pauli matrices.

4.11. Kaluza-Klein Theory

R(4)⊗C is the direct product of 4-dimensional space time and something with
symmetry C ∼= U(1) ∼= SO(2), taken to be electromagnetism. To describe the
electroweak force with symmetry U(1) ⊗ SU(2) ∼= SO(2) ⊗ SO(3), one needs
1 dimension of time and 3 of space, namely another copy of R4;2, only with
compactified dimensions. By Eq. (40), R4;2 ⊗ R4;2 = R8;0.

By Eqs. (36) and (37), the basis vectors of R8;0 can be taken as

e0|8;0 = X4 ⊗ I4, which is space-like - call it X8;
e1|8;0 = Y4 ⊗ I4, which is space-like - call it Y8;
e2|8;0 = Z4 ⊗ I4, which is space-like - call it Z8;
e3|8;0 = T4 ⊗ I4, which is time-like - call it T8;
e4|8;0 = X4Y4Z4T4 ⊗ X4, which is time-like - call it U8;
e5|8;0 = X4Y4Z4T4 ⊗ Y4, which is time-like - call it V8;
e6|8;0 = X4Y4Z4T4 ⊗ Z4, which is time-like - call it W8;
e7|8;0 = X4Y4Z4T4 ⊗ T4, which is space-like - call it S8.

(93)

However, R8;0
∼= R(16) has neutral metric signature (s = 0). What is needed

for quantum mechanics is the Euclidean space R8;8, which by Bott periodicity
is also isomorphic to R(16). Its basis vectors can be taken as the four space-
like basis vectors of equation (93), together with the four space-like trivectors
composed of three time-like vectors:

T̄8 = U8V8W8;
Ū8 = V8W8T8;
V̄8 = W8T8U8;
W̄8 = T8U8V8.

(94)
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R8;8
∼= R(16) expresses the “eightfold way” of the strong force [8]. In turn,

R(16) ⊗ R(16) ∼= R(32) leads to the SO(32) formulation of M-Theory.

4.12. Recursion

After R8;8, the pattern of geometric algebras repeats. Repeated application
of equation (43) gives

Rn+8k;s+8k
∼= Rn;s ⊗R8;8 ⊗ · · · ⊗ R8;8︸ ︷︷ ︸

k times

∼= Rn;s ⊗R(16) ⊗ · · · ⊗ R(16)
︸ ︷︷ ︸

k times

. (95)

Suppose that the open basis vectors are similarly recursive, but doubling in
size at each recursion k:

em+8k|n+8k;s+8k = 2kem|n;s, (96)

for m = 0, 1, 2, 3; but that the closed basis vectors do not double in size:

em+8k|n+8k;s+8k = em|n;s, (97)

for m = 4, 5, 6, 7. This forms a 4-dimensional recursive integer lattice of the
open space-time dimensions with 4 closed dimensions, encoding the physics of
the Standard Model, at each node of the space-time lattice. Specifically, the
8 dimensions are 1 open time dimension, 3 open space dimensions, 1 closed
time-like dimension for electromagnetism, and 3 closed space-like dimensions
for the weak force, which collectively form 8 dimensions for the strong force.
The open dimensions double by Eq. (96), while by Eq. (97), the closed di-
mensions do not, thus resolving the conundrum: if everything in the universe
expands at the same rate, how could you tell? The answer is that space-time
grows, but atomic clocks and rulers do not ([14], p. 719).

It is easier to visualize a 2-d Euclidean recursive integer lattice:

em+2k|2+2k;2+2k = 2kem|2;2,with m = 0, 1. (98)

Then

doubles to

,
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where r = xkek with xk ∈ {0, 1} and k = 0, 1, 2, 3; and where each binary
number labels the node to its lower left, for example, 1101r = 1e3 + 1e2 +
0e1 + 1e0.

The line element for the basis vectors of equation (96) is

ds2 = 22k
(
dx2 + dy2 + dz2 − d(ct)2

)
= 22k(t)

(
dx2 + dy2 + dz2

) − d(ct)2.
(99)

This is of the form of the Robertson-Walker line element for a flat spatially
isotropic universe ([14], p. 722):

ds2 = a(t)
(
dx2 + dy2 + dz2

) − d(ct)2. (100)

For a Λ-dominated universe,

a(t) ∝ expct
√

Λ/3 = 22k(t), (101)

which implies a doubling time of

τ2 =
ln2
c

√
3
Λ

=
ln2√
ΩΛ

T0 ≈ 0.835T0 (102)

[17]. From this perspective, the various terms of the Einstein field equation

R − 1
2
RI + ΛI =

8πG

c4
T (103)

have different origins: the R terms are the Einstein curvature over dimen-
sions 0, 1, 2, 3; the Λ term is over dimensions (0, 1, 2, 3)mod 8 (Eq. (96)); and
the T term is over dimensions 4, 5, 6, 7 (Eq. (97)). Einstein is said to have
complained that the field equation is like a mansion with two wings, one of
which is made from fine marble and the other is made from cheap wood [23].
Perhaps the whorls of Einstein’s wood are the compact dimensions curling
back on themselves.

Noether’s theorem [15] states that, if the action is invariant under con-
tinuous displacement in coordinate qi, then the momentum pi conjugate to
qi is conserved. Noether’s theorem is also valid for discrete displacements [5].
By Eq. (96), space-time coordinates form an integer lattice for dimensions
0, 1, 2, 3, with the same physics over dimensions 4, 5, 6, 7, by Eq. (97) at each
node of the space-time lattice. The lattice being invariant under discrete dis-
placement of dimensions 0, 1, 2, 3 implies conservation of energy-momentum
by Noether’s theorem. Conservation laws are not pre-existent; rather, they
are consequences of the uniformity of space-time, whose uniformity is a con-
sequence of its recursive generation.

4.13. Cosmogenesis

Consider the basis vectors of the Euclidean plane X2 and Y2 as possible
actions: “going a step in some direction” and “going a step in some other
direction.” They generate a geometric algebra, R2;2, which also includes I2,
“going neither some way nor some other way,” and X2Y2, “going some way
while going some other way,” which introduces an element of time, T2. The
direct product of a unit of the Euclidean plane (X2,Y2) and a unit of the
Minkowskian plane (X2,T2) produces an element of 4-d Minkowskian space-
time (X4,Y4,Z4,T4) if the coordinates don’t close back on themselves and a
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quantum of the electroweak force if they do. The geometric algebra R4;2 of 4-d
space-time automatically satisfies the Heisenberg commutation relations. The
direct product of the two 4-d algebras is an 8-d algebra, R8;0

∼= R8;8
∼= R(16),

that describes the Standard Model of physics. After eight dimensions, the
pattern of geometric algebras repeats itself, generating recursively a sponta-
neously expanding space-time lattice with the physics of the Standard Model
at each node of the lattice. The total energy needed to generate the universe
is zero, within the limits of observation (ΩK = 0.0005+0.0038

−0.0040 [17]), so it can
arise spontaneously without the need for an initiating agent, either inflaton
or deity.

5. Discussion

Real geometric algebras have previously been classified in terms of the number
of spatial dimensions p and the number of temporal dimensions q [18], but
are better classified in terms of the number of dimensions n = p + q and
metric signature s = p − q. Rn;s is periodic in s (equation 18):

Rn;s
∼= Rn;s+8k (104)

for any integer k such that |s + 8k| ≤ n; but recursive in n (Eq. 19):

Rn;s ⊗ R2;0 = Rn+2;s, (105)

which can be written as a matrix of matrices:

rn+2;s =
(

rn;s (xp + ctq)Vn;s

(xp − ctq)σsVn;s (−1)nrn;s

)
, (106)

where rn;s is an n-dimensional position vector with signature s, xp is the
next dimension of space, tq is the next dimension of time, and Vn;s is the
n-volume, whose signature σs is space-like or time-like depending only on s
(Eq. 29):

σs = (−1)
s(s−1)

2 =
{

+1 for smod 4 = 0, 1 – space-like n-volumes;
−1 for smod 4 = 2, 3 – time-like n-volumes. (107)

These equations provide a way of constructing larger real geometric algebras
as direct products of smaller ones.

Real geometric algebras provide a unified framework for various aspects
of physics. Geometric algebras can be generated recursively, which shows a
path whereby the physical processes described mathematically by real geo-
metric algebras may have arisen. One normally thinks of mathematical oper-
ations as occurring instantaneously. However, the mathematical operations in
this paper describe physical processes that take time. The formation of area
X2Y2 = T2, which is the i of ict, cannot happen faster than the speed of
light. The scale of the unit 4-volume of Minkowskian space-time, X4Y4Z4T4,
which is the i of i�, sets the unit of action. The scale of R4;2 with closed
dimensions sets the Planck length. The rate of recursion of R8;8 sets the cos-
mological constant. Recursion of R8;8 is a different physical process from the
scale of the closed copy of R4;2, so it’s not surprising that the time scale for
the cosmological constant is very different from the Planck time.
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Despite the wide-ranging scales of the physical processes, they can all
be expressed mathematically in terms of real geometric algebras, all of which
can be generated recursively from the set of real 2 × 2 matrices, R(2), the
geometric algebra generated by basis vectors of either the Euclidean plane or
the Minkowskian plane. Recursive generation provides sets of basis vectors for
space-times of any number of dimensions n and metric signature s. It also pro-
vides matrix representations for complex numbers, dyreal numbers, qubits,
quaternions, Pauli spin matrices, 4-dimensional space-time, Dirac gamma
matrices, the electroweak and strong forces, and the cosmological constant.
Constructing all these entities from the same two basic geometric elements
shows the deep relationships among them. It also simplifies computerized
symbolic manipulation of them. The recursive generation of real geometric
elements raises the possibility that the universe generates itself recursively
from two basic geometric elements. Growing recursively, they generate an ex-
ponentially expanding space-time lattice with the Standard Model of physics
at each node of the lattice. The uniformity of space-time and the consis-
tency of physics across the universe are consequences of its recursive gener-
ation. Conservation of energy-momentum is a consequence of the uniformity
of space-time. Conservation laws are not antecedent to the existence of the
universe; rather they are consequences of how the universe grows, recursively.
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