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ticularly notably for nuclear physics, the sign problem prevents the calculation
of the properties of QCD at finite baryon density, thereby precluding an under-
standing of the dense nuclear matter found in the center of a neutron star. The

central idea developed in this thesis is to use the multidimensional generalization



of Cauchy’s Integral Theorem to deform the Feynman Path Integral of lattice
fields theories into complexified field space to manifolds upon which the phase
oscillations which cause the sign problem are gentle. Doing so allows calculations
of theories with sign problems. Two practical manifold deformation methods, the
holomorphic gradient flow and the sign-optimized manifold method, are devel-
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manifolds through stochastic gradient ascent. With an eye toward QCD at finite
density, the Cauchy’s Theorem approach is applied to relativistic quantum field
theories of fermions at finite density throughout this thesis. Finally, these meth-
ods are general and can be applied to both bosonic and fermionic theories, as well

as Minkowski path integrals describing real-time dynamics.
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Chapter 1

Introduction

The variety of phenomena that emerges from simple interactions between par-
ticles when large collections of particles are considered is striking [1]. From sound
waves to superconductivity, the consequences of collective phenomena abounds.

The purpose of this thesis is to develop methods for quantum field theory which
aid in the analysis of many-body systems. In particular, we develop methods for
computing the properties of lattice quantum field theories at finite density. I will
assume that the reader is familiar with the lattice formulation of quantum field
theory throughout the text. The unfamiliar reader is referred to a few textbooks
for an introduction [2-4].

To make the discussion concrete, suppose that one was interested in a partic-
ular many-body system, say a neutron star. A neutron star likely hosts very rich
and interesting phenomena due to the extremely high densities achieved in its inte-
rior [5,6]. How might one calculate the properties of such a system from our most
microscopic description of reality? To formulate the question precisely, we will
approximate a neutron star as the equilibrium configuration of a large collection
of baryons when all standard model processes other than quantum chromodynam-
ics (QCD) are turned off. QCD is the quantum field theory describing the strong
force, and this is not an unreasonable approximation given that a neutron star is

composed primarily of baryons. Of course this is by no means the whole story,



for without the weak interaction a neutron star could not even form', but the
problem is difficult enough including only QCD at these high densities.

To compute the thermodynamic properties of a system governed by QCD
with a non-zero density of baryons, one may utilize the formalism of (quantum)
statistical mechanics [8]. It is a standard result of statistical mechanics [8,9] that
all thermodynamic properties of a system can be computed from the partition

function:

Z = tr(e 1)) (1.1)

Here we are using the “grand-canonical ensemble”, H is the Hamiltonian of QCD,

[ is the inverse temperature and ) is the baryon number operator
Q=Y [dinty. (1.2)
!

Here 1) are quark fields, f is a flavor index running over the six flavors of quarks,
and p is the chemical potential which is tuned to achieve the density of baryons
desired. For those less familiar with this formalism, () is an operator which counts
the number of baryons minus the number of anti-baryons of a given state. For
example, if |[¢)) is the quantum state corresponding to a proton at rest, then
QlY) = (+1)[¢).

Though this is certainly a succinct procedure for computing the finite den-
sity thermodynamics of QCD, actually computing the partition function is rather
daunting. How might one go about actually computing this partition function?
One approach to this problem is to use lattice quantum field theory. It is a stan-

dard result [2—4,10] that the partition function of any field theory can be expressed

IThere is substantial evidence that neutron stars are created when the cores of massive stars
collapse due to gravitational forces. During the collapse, electrons and protons combine into
neutrons and neutrinos through the weak interaction [7], and this process is responsible for the
abundance of neutrons in the to-be neutron star.



as the continuum limit of a lattice path integral. That is,
Z = tr(e PH—1Q)) ~ / DYDypDA e~ SWA) (1.3)

where the equality becomes exact as the lattice spacing goes to zero. Notice the
similarity between the expression Eq. (1.3) and the expression of the partition

function in classical statistical mechanics of particles

N
J = /Hdgpldgql ef,BH(p,q) . (14)

This formal similarity between the statistical mechanics of collections of classical
particles and of quantum fields aids in the calculation of Eq. (1.3). In particular,
numerical Monte Carlo methods developed to calculate observables from Eq. (1.4)
can be also used to calculate observables from Eq. (1.3).

We have carried out two steps in writing the partition function as a path
integral. First, the continuum action is “latticeized”. To carry out this procedure,
one takes the continuum action and replaces the integral over spacetime with a
finite sum over a hypercubic lattice of finite volume and non-zero lattice spacing

a. That is

[ L0 4) 5 3 LG A) (15)

where 1,1, and A, are fermion fields and gauge fields on lattice site x respec-
tively. The lattice serves as a UV regulator and restricts energies and momenta
to be less than the inverse lattice spacing, thus rendering observables finite and
free of divergences. Continuum physics is recovered by taking the lattice spac-
ing to zero. The technical details of taking the continuum limit are non-trivial
and we will not discuss them here. The interested reader may consult the stan-

dard texts [2-4,10]. Once the theory is put on the lattice, the partition function



can be written as a path integral by the repeated insertion of coherent states of
the gauge and fermion fields. This “coherent state path integral” is a standard
construction [3].

Having put the theory on the lattice, and having expressed the lattice partition

function as a (coherent state) path integral, we are left with the expression
7 = / DYDYDA e S04 (1.6)

Here, S is the Euclidean action which takes the form

S(h, 0, A) = Sy(A) + Y huDay (A, (1.7)

where S, is the “gauge action” which encodes the dynamics of the bosonic fields
A, and where D is the fermion matrix, which governs the dynamics of the fermions

coupled to the bosonic fields. Throughout this thesis we will use the shorthand

DDy = [ [ dibpdip, DA=T]dA, (1.8)

for brevity. Here [], ranges over all lattice sites. The fermionic integration mea-
sure Dy D1 is over grassmann variables [3] at each lattice site and the bosonic
integration measure DA is over gauge fields on all links. Integrating over the

fermions yields a determinant of the fermion matrix [3] and one has
7 = / DA e %WdetD(A) . (1.9)

When calculating observables from Z numerically, the expression above, which
involves only real numbers (rather than Grassmann variables), is what is evalu-

ated. From this partition function, any observable in thermal equilibrium can be



evaluated in the grand canonical ensemble

O — [ DA O(A) e=%AWdetD(A)
(0) = [ DA e=Ss(DdetD(A)

(1.10)

One can calculate, for example, the density (n) = (Q)/V of baryon number, or the

compressibility k = %(

—TInZ

% ) of this material, as a function of temperature and

chemical potential. Knowing these functions are useful in characterizing the prop-
erties of this material and determine, for instance, the mass-radius relationship
for a neutron star [11].

How does one compute these path integrals in practice? Exact evaluation of the
high dimensional integrals we come across in lattice field theory is almost always
prohibitively difficult. However, in the = 0 case, there is a well-developed art for
computing lattice path integrals numerically with Monte Carlo methods [2—4, 10].

To evaluate Eq. (1.10), one approach is to first notice that

e %W detD(A) e 5A)
Z A

p(A) =

(1.11)

can be interpreted as a probability distribution provided detD(A) > 0 for any
A. This is typically the case for u = 0. Note that we have defined the notation
S(A) = S4(A) —In detD(A) for convenience. Therefore we have

(O) = / DA p(A)O(A) (1.12)

and so if we collect a number of field configurations {Ay, ..., Ay} distributed ac-
cording to the probability distribution p(A), then we can estimate observables

()= 13004, (1.13)

with a statistical uncertainty in (O) proportional to \/LN There are many methods



for sampling a probability distribution. In this thesis we use a family of methods
called “Markov Chain Monte Carlo” (MCMC). The reader interested in the details
of how to carry out an MCMC is directed to the review [12].

What about g # 0?7 Then a complication arises: the fermion determinant

s(A
Z

e~

becomes complex. In this case, ! cannot be interpreted as a probability dis-
tribution, and so the Monte Carlo method described above is not valid. Theories
with complex actions are said to have a “sign problem”. Theories with sign prob-
lems can be found across various fields of physics from QCD at finite density [13,14]
to the Hubbard model away from half filling [15].

So what can be done? There are many approaches to dealing with the sign

problem. A common approach is to define

e—Re S(A)

- [ DA ¢ReS(A)

p(A) (1.14)

which is a probability distribution, and collect field configurations according to

—ilm S

e R 54 a7, while absorbing the phase e into observables. This procedure

fDA e—Re S

is called “reweighting” [16]. To be explicit, reweighting amounts to the following

exact decomposition:

O — f DA e—S(A)O(A) B f DA e—Re 8(A)g—ilm S(A)O<A)
() = f DA e—SA) f DA e—Re S(A)p—ilm S(A)

B f DA e—Re S(A)g—ilm S(A)(’)(A)/ f DA e—Re S(4)

= f DA e—Re S(4)g—ilm 5(4) / f DA e—Re S(4)
(Oc™™ %)Re s

<efiIm S)Re g

(1.15)

where ( - )re s mean to average with respect to the distribution Eq. (1.14). The
name ‘reweighting” makes sense: any observable can be expressed as a ratio of

observables averaged with respect to the real part of the action, reweighted by the



fluctuating phase e=™ 5.

This general procedure of reweighting allows one to compute the proper-
ties of theories with complex actions. There’s just one catch: the denominator
(e=m 5)p s has a magnitude that gets small exponentially fast in both the spa-
tial volume and the inverse temperature. Moreover, the standard deviation of
|(e=m )k, | remains order one (because it an average of numbers which live on
the unit circle) as the mean decreases [17]. This combination of effects; the vari-
ance of the average sign being much larger than an exponentially small mean is
what makes theories with sign problems difficult to analyze.

One approach to demonstrating the exponential decay of the average sign is
given in [17], and I will reproduce it here. The average phase is a ratio of partition
functions:

[DAe™® Z

—4Im S
P et 1.16
(™™ Fre s [DAcRes — 7 (1.16)

Using the relation Z = e #F where F is a free energy, we then find
<eiilm S>RC S = eiB(FiF/) . (117)

where F' is only guaranteed to real in the continuum limit?. Note however that

|F'| > |F'| in general because

1Z| = \/DA e 9| :|/DA e ¥ < /DA le™| = /DA e ReS— 7 (1.18)

Now the free energy, being an extensive quantity, can be written as F' = V f where

f is finite in the thermodynamic limit. Therefore we find that

|<e—i1m S)Re Sl — e—ﬁv(f_f/) , (119)

?In the continuum limit Z = [ DA e~ — tr(e”#(#=#N)) which is manifestly real because
it is the sum of eigenvalues all of which are real and positive.



showing that the modulus of the average phase vanishes exponentially fast in V.

The exponential smallness of the average phase makes it very difficult to es-
timate observables computed with a Monte Carlo because the statistical uncer-
tainty in a stochastically estimated quantity scales as N ~'/2 [12]. This means that
O(ePVU=f ’)2) samples are required to estimate the denominator of Eq. (1.15) [17].
This has the consequence that, until an exponential number of field configurations
are collected, one basically has no idea what the value of an observable is. This
is a simple point, but it is worthwhile to dwell on this for a moment. Suppose we
are calculating observables in a theory with a sign problem and sufficiently many

configurations are collected to determine that Re (e=#™ %)p ¢ = 0.0014:0.1. Then

<Oe7i1m S)Re S
0.001 +0.1

(0) = (1.20)

This means that the observable is completely unknown since the denominator
overlaps with zero. Obviously this is not a useful result, and this demonstrates
why theories with a sign problem are so difficult to analyze: until (e=™ %)g. g, a
quantity exponentially small in the spacetime volume, is resolved from zero, all
observables are unknown.

Because the quantity (e~"™ %), ¢ determines the severity of the sign problem,
it will come up frequently in the text to follow. Therefore I will give it the
name “the average phase” or “the average sign” and we define the shorthand
(o) = (™™ F)pe s

This brings us to the main idea of the present thesis: I will explain a generic

method for taming the sign problem [18]. By this I mean that I will describe
a procedure which can be applied to a large number of theories that takes the
average sign and makes it larger [19-23]. Since the average sign is a quantity

which controls the severity of the sign problem, when the average sign is increased



a theory becomes “easier” to solve. Our method sometimes improves the average
sign dramatically, and renders previously unsolvable theories solvable.

To be clear, I do not have a solution to the sign problem. Indeed it is known
that the sign problem is NP-hard [17], implying that there is no generic solution
unless NP = P. Instead, what I will present is a method for alleviating the sign
problem. By alleviate I mean the following. Recall that the average phase can be

expressed as

(€™ S)pe 5 = e PV (1.21)

In essence, the method I will describe is a way to take the free energy difference
f — f" and make it smaller. It is in this way that the sign problem is alleviated.
Sometimes the free energy difference can be shrunk so much that a problem which
was, practically speaking, unsolvable, becomes solvable. Of course at large enough
volumes, the average phase will always vanish exponentially, but infinite volumes
aren’t necessary in lattice calculations. All that are needed are volumes large
enough that an extrapolation can be performed.

I will briefly explain the method here and the details are in the chapters to

follow. The central idea at the heart of the method is the following theorem.

Suppose f = f(x) is an analytic function of x € RY. Then f has an analytic
continuation f = f(z) for z € CV. Such a function f(z) has the property 5(39_2{1 =0,

where z, is the complex conjugate of z,, for every a. Then

/ f(x) d:cl/\dxg/\.../\de:/ f(z)dzy Ndzg Ao Ndzy , (1.22)
RN MocCN

where My = RY. We are now viewing the integral as being performed over RV,
a submanifold of C¥. The manifold RV is real dimension N while CV is real

dimension 2N. Consider smoothly deforming M, into My C CV. At each



step the deformed manifold will be a complex manifold with real dimension N,
therefore the sequence of deformations sweeps out a N + 1 dimensional manifold
which we will call ¥. Then the boundary of ¥ is 9% = My U (—Mr). Stokes’

theorem implies

0 0
(2) dzl/\dz'g/\.../\dzN:/Z[ fdza+—fd2a]/\dzl/\dZQ/\.../\dzN

12> = aza aza
a T/
(1.23)
0
:Z/ fdza/\d21/\d22/\.../\d2]\[
- N 3,2@
=0.
Therefore
(2) dzy Ndza N ... Ndzy = / f(z) dzy Ndzg A ... Ndzy (1.24)
Mo MT

What this means is that integrals of holomorphic functions over RY can be
deformed to integrals over manifolds in C¥. We will call this “Cauchy’s theorem
in many dimensions” or just “Cauchy’s theorem”.

The idea is, since lattice path integrals are just many dimensional integrals of
(often) holomorphic functions, Cauchy’s theorem applies®. The partition function

can be computed over a host of manifolds in CV:
Z=| DAe® = / DA e (1.25)
RN McCN

A corollary of Cauchy’s theorem is that holomorphic observables can be inte-

grated over deformed contours as well. That is, if O(A) is a holomorphic function

3The gauge action e59(4) is typically an exponential and det D(A) is a polynomial. The

action in this case is the product of two holomorphic functions and is therefore also holomorphic.

10



of A then
_ Jr DASDOA) [, DA e SWO(4)

<O> fRN —DA e—S(A) fM DA e—S4)

(1.26)

Requiring that observables be holomorphic is also hardly a restriction. Bosonic
observables are quite generally polynomials of the bosonic fields of the theory,
and being polynomials they are holomorphic. Fermionic observables lead to holo-
morphic integrands as well. This is most readily demonstrated by an example.
Consider the density (n) = (»7°%). The integration over fermions with the inser-
tion of ¥y% can be carried out by expanding the very large number of terms in

the Grassmann integral:

[ DEDY 0 e B (1.27)

Very few terms in the expansion will contribute to the Grassmann integral, and
those that survive will be products of elements of the Dirac matrix. But the
elements of the Dirac matrix are generally well behaved functions like e*#(®) [4]
and constant factors such as the mass. A finite product of such functions is
holomorphic, so it’s clear that the integrand of the path integral after integrating
out the fermions is a holomorphic function. By the same logic, the integrand of
the path integral after integrating out the fermions for any operator insertion of
products of fermionic fields will behave in this way.

Now, given the freedom to deform the path integral allotted by Cauchy’s the-
orem, we tame the sign problem by integrating over carefully chosen manifolds

—ilm S

where the phase fluctuations e which cause the sign problem are damped.

To see how this might work, notice that while observables are unchanged by a
deformation process, the average sign is changed. This is because the average
sign is

[DAe™®

—Im S _
<e >Res—fDAe—ReS'

(1.28)

11



Since the denominator is the integral of a non-holomorphic function, the average
sign is manifold dependent. The idea is to make this quantity as large as possible
by choosing “good” integration contours. There is more than one way to generate
manifolds which increase the average sign. In this thesis we will concentrate on
two methods.

The first method I will cover is called the holomorphic gradient flow. In this
method, the original domain of integration is evolved by a first order differential
equation to a manifold which has gentle phase fluctuations. This method evolved
out of an initial proposal by Witten [24,25] to perform path integrals over special
contours in the complexified field space called “Lefschetz thimbles” with the intent
to answer certain questions in Chern-Simons theories. We will not say much about
Lefschetz thimbles in this thesis, but a few comments are in order to put the
holomorphic gradient flow in context.

To begin, Lefschetz thimbles are the multi-dimensional analog of stationary
phase contours [26,27] and they are defined as follows. Given a holomorphic
function S : C¥ — C (call it the action), for every extrema z* of the action
(i.e. a point where 05/0z;/(z*) = 0) there is an associated thimble. The thimble
associated with z* is defined as the union of all curves in complex field space which

satisfy the following differential equation:

dz; (85)*7 (1.29)

and which satisfy lim z(s) = z*. Geometrically, the thimble associated to z* is
S§——00

the union of all trajectories which emanate from z* and satisfy Eq. (1.29). The

imaginary part of the action is constant on a thimble. To see this, consider an

arbitrary flow trajectory on a thimble. Then the change in the action along this

12



flow trajectory is

d 85( (s)) dzi 9S(z(s)) 0S(z(s))"
£S(2(5)) =T 0s ds o oz, 0. (1.30)

Since the change in action is strictly positive, the imaginary part does not change,
and therefore we see that the imaginary part of the action is constant on a thimble.
We see that a function of the form e~ has a constant phase on a thimble, and it
is in this sense that a thimble is the multi-dimensional generalization of paths of
stationary phase.

What makes Lefschetz thimbles useful in computations is the so-called “thim-
ble decomposition”, which states the following: Given a holomorphic action, the

following equality holds [28]

/ dz e~ an —ilm S( / dz e RS (1.31)
Ti

where 2 are the extrema of the action, 7; is the thimble attached to 2 and n; are
integers called “intersection numbers”*. This means that the path integral can
be decomposed into a sum of integrals over thimbles. Since the phase e™™™ % ig
constant a each thimble, ostensibly the sign problem is alleviated by an integration
over thimbles.

The idea of using thimbles as a practical tool to alleviate the sign problem in
lattice field theory originated in the work of Cristoforetti, Di Renzo and Scorzato
[29]. This led to a rapid development of the “Lefschetz thimble method” for taming
the sign problem in lattice field theory [30-47]. There are difficulties in using the
Lefschetz thimble method in practice however. The main difficulty in applying the

method is that many thimbles can contribute to the path integral. There doesn’t

4The n; give information about the weight a given thimble contributes to the path integral.
Some thimbles have n; = 0 and do not contribute to the path integral.

13



currently exist a generic way to find all extrema to which the thimbles are attached,
nor is there a generic method for computing the intersection numbers n;, so if
many thimbles contribute to the path integral these issues become problematic.
It is in striving to overcome these difficulties that the holomorphic gradient flow
was formulated. The holomorphic gradient flow is a way to deform the original
domain of integration to a manifold which approximates the set of thimbles which
contribute to the theory without having to know the position of the extrema or
the intersection numbers of the thimbles.

The second method for taming the sign problem I will describe in this thesis is
called the sign-optimized manifold method [48]. Also based on Cauchy’s theorem,
the sign-optimized manifold method is a different way to deform path integrals to
tame the sign problem. Rather than deforming the domain of integration by a flow
evolution, one proposes a family of manifolds at the outset and then computes
observables on an optimal member of the proposed family. To be quantitative,

recall that the average sign is

f DA e *

_ —iIm S _
() = (""" )res = [DAeTes

(1.32)

and being an integral of a non-holomorphic function, changes from one manifold to
the next. The goal of the sign-optimized manifold method is to find the manifold
which maximizes the average sign. More procedurally, if we denote the family of
manifolds as M()\), then we want to find a set of A for which V(o) = 0. The
form of the proposed manifolds can vary, provided the stipulations of Cauchy’s
theorem are met, and knowledge of the particularities of the system of interest
help to guide the proposal. In our formulation, the optimal manifold is found by
stochastic gradient ascent in manifold space. This method has been used to solve

the sign-problems in theories of fermions at finite density [22,48].
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This thesis is organized as follows. In Ch. 2 we will define the holomorphic
gradient flow and describe how to integrate over a complex manifold with Monte
Carlo methods. In Ch. 3 we will apply the methods developed to a toy fermionic
model with a sign problem as a proof of principle. In Ch. 4 we will explain several
important optimizations developed to improve the speed of sampling on complex
manifolds. Utilizing these optimizations, we proceed to Ch. 5 where we compute
the thermodynamic properties of a field theory of fermions with a sign problem.
In Ch. 6 we explain the sign-optimized manifold method and apply it to another
theory of fermions. Appendices with supplemental information can be found in
Ch. 8.

We conclude this introduction with a few comments. The first is that the
holomorphic gradient flow and the sign optimized manifold method are not the
only approaches to taming the sign problem. The sign problem occurs in various
fields of physics, and consequently many approaches have been developed to tame
it. I attempt to compile a reasonably comprehensive list of approaches to the sign
problem in lattice field theory here.

One popular approach is the Complex Langevin method, which is a general-
ization of the Langevin method to complex field variables, and has been applied
to a number of models from cold atoms to QCD [49-59].The Complex Langevin
method is straightforward and is numerically inexpensive. however, certain con-
ditions need to be met by the theory of interest for the the method to converge to
correct results [60,61]. The relatively new “path-optimization method” is another
procedure for dealing with the sign problem. In this approach, a cost function
which quantifies the sign problem is defined and minimized over a set of integration
manifolds. This approach has been applied to a number of toy models [62-65].

Dual variables is another approach to the sign problem. Here the degrees of

freedom of the partition function are changed such that, in the new variables the
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partition function is a sum of positive weights. When such a dual formulation can
be found, the sign problem is manifestly absent. This approach has been applied
a wide number of systems [66-76]. Another approach to the sign problem are
the so-called “cluster algorithms”, in particular the “meron-cluster” alogrithm,
in which terms in the partition function are grouped into sub-sums over flips of
“clusters”, with the sub-sums contributing non-negatively to the partition function
[77-84]. The fermion bag approach is yet another approach to dealing with the
sign problem in fermionic systems [85-91]

Finally, in this document we will be solely concerned with computing the
thermodynamic properties of relativistic theories of fermions at finite density.
This narrow scope is due to my interest in such systems. However, a host of
other systems also suffer from the sign problem. This includes bosons at finite
density, non-relativistic systems as well as systems evolving in real-time. Cauchy’s
theorem and the holomorphic gradient flow can equally well be applied to these
other systems, and it has been [19,20,92,93]. The methods developed here are

completely generic and can be applied to any theory with a complex action.
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Chapter 2

The Holomorphic Gradient Flow

2.1 Flowing Points and Volumes

The holomorphic gradient flow is a way to generate a manifold in the com-
plexified field space which satisfies the stipulations of Cauchy’s Theorem [18]. To
set notation, let us denote our fields which live on a hypercubic spacetime lattice
with N sites as (¢1, ¢9, ..., ) and let us denote the action governing the system
of interest as S. The fields ¢, can have internal degrees of freedom, however
we will suppress these indices. We will concern ourselves with theories having
complex actions, which are typical for systems at finite density. The holomorphic
gradient flow a mapping between points on the original path integration domain
and a submanifold of the complexified field space. The mapping is generated by

the following first order differential equation

o0 = (55560) " .1)

Here the star means complex conjugate and ¢ is a parameter with no physical
relevance whose purpose is simply to parameterize the extent of the flow. We will

leave the spacetime index of ¢ implicit for most of the discussion for neatness.
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When clairity demands T will write indices. In components Eq. (2.1) reads

d

E%(t) = < 0

09z

S(6(1)) (2.2)

One sees from the definition of the holomorphic gradient flow that, if the action
is complex, the fields evolve in a complex direction. Therefore, given a real field ¢
as an initial condition, the holomorphic gradient flow will evolve fields in the real

plane RY to fields into the complex plane C¥.

Figure 2.1: A schematic depiction of the deformation process. Arbitrary points
¢ € RYN evolve according to the holomorphic gradient flow, deforming the flat
manifold RY into the curved manifold My c CV.

Now consider subjecting all points in the original domain of integration to a
certain amount of flow time 7. Let us suppose that ¢ € R™. Then each individual

point ¢ will evolve to a new point ¢ in the complex plane which has the explicit
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expression

sor=o+ [ ar (5 (2.3

The set of all evolved points g% forms a new manifolds The facts of the past few
paragraphs can be summarized by what we shall call the “flow map”. For a
selected flow-time T, the flow map ®7 : RV — C¥ is the function which takes a
real valued field ¢ € RY to the complex valued field ¢ € CV obtained by applying

the holomorphic gradient flow for an amount of time 7"

85)* (2.4)

Dr(¢) =¢+/0Tdt (a—¢

Applying the flow map ®7 to the original domain of integration RY generates a
complex manifold Mz C CV. Symbolically, ®(RY) = M.

Having generated a manifold by flowing the real plane, let us understand how
to integrate on such a surface. Any observable computed in the grand-canonical

ensemble has the path integral expression

 Jaw Do O(¢p)e5@)
<O> - fRN ng e_s(¢)

(2.5)

Here I have denoted explicitly the domain of integration RY. Because a flowed
manifold My can be generated from RY without violating the stipulations of
Cauchy’s Theorem (I still have yet to prove this), one has by Cauchy’s Theorem

the following equality

Jrw D6 O(¢)e=5@ [ D O(¢)e=5@
(0) = fRN D¢ e=5@) - fMT D¢ 5

It is evident that any flowed manifold gives the same value for observables.
Typically a lowed manifold M is a complicated surface in the complex plane

which cannot be written in a closed form. In spite of this difficulty, it is straight-
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forward to describe how to integrate on such manifolds [18]. First, to integrate
on a flowed manifold M, it is necessary pick a parameterization of the surface.
Since the flowed points in ¢ € My are in one-to-one correspondence with unflowed
points ¢ € RV, it is clear that My can be parameterized by N real numbers, i.e.
it is a manifold of N real dimensions. Let us call our coordinates ¢. That is,
for every ¢ € My there is an N dimensional array of real numbers ¢ such that
¢ = ¢(¢). Keep in mind that even though both the coordinate system and the
original domain of integration are parameterized by RY, they do not represent the
same geometrical objects. The original domain of integration is RY while the co-
ordinates are surrogate quantities which represent points on Mr. In coordinates,

observables take the form

Sy DO O()e@ [ D detd (6)O((¢))e @)

fMT D¢ e=5) fRN D¢ detj(ﬁﬁ)e_s(qg(@) (27)

where J(¢) is the Jacobian matrix associated with the choice of coordinates used
to describe the manifold and det J(¢) is the volume element. It is obvious by
the last equality that to compute the path integral one must be able to compute
the Jacobian detJ(¢). We will find that computing the Jacobian is the most
computationally expensive task when integrating on flowed manifolds.

We choose the following set of coordinates: the coordinate of ¢ is its pre-image
under the flow [18]. In this language, the flow map ®1 is the map which takes
coordinates to points on the manifold and we can use ®7 to compute the Jacobian
associated with this choice of coordinates. The integration measure satisfies

do

M:mm

(2.8)
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% and since #(¢) = Or(p) one has

We therefore see that J(¢) = g_d>

J(9) = a%%((b) (2.9)

Writing J(¢) is not possible in closed form for an arbitrary flow map. Fortunately
in the case of the holomorphic gradient flow J(¢) can be written, albeit implicitly,
as the solution to a differential equation [94].

To derive this differential equation, note that Eq. (2.9) suggests that to look
at nearby points ¢ and ¢’ on the coordinate manifold and examine the difference
between their images under the flow. Define the difference between two nearby
flowed points as do(t) = ¢'(t) — ¢(t). Although it may not be possible compute
do(t) explicitly, it is possible to compute how d¢(t) changes in a short amount of

flow time. Expanding §¢(t)

so(t) = /1) — () = {/0) + ;121 Y o)+ a0y 4 ogar)
— 56(0) + At{d(@i o - 22014 O(At2)
— 56(0) +At{agfb )iy — agib oot 0} +0o(ar)
— 56(0) + At{%dcﬁ( )} +O(AR)

Taking the limit as At — 0 one finds that, along a flow trajectory ¢(t), a vector

evolves as
Co6(t) = (H(6(1)55) (2.10)

928

where we have called the Hessian, the matrix of second derivatives H,, = B0y
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It follows then that matrices evolve as

S0 = (Ho)I®) (2.11)

J = {Ul,...,UN} (2.12)
Therefore
d
%J: [% 1% N} (2.13)
= {H*l,...,HUN] (2.14)

(H [q, UN] ) (2.15)
- (HJ>* (2.16)

We can use this finding to compute det J(¢). Note that det J(¢) the ratio of the
volume spanned by a set of vectors after the flow map to the volume spanned by
the set of vectors before the flow map. If we take the original set of vectors to be
the canonical basis on RY, then 1 is the matrix before the flow map. Applying

the flow map, and using Eq. (2.11), the Jacobian matrix is given by

*

10) =1+ [ ar (60 I060)) (217)

where ¢(t) is evaluated on the flow trajectory with initial condition ¢.
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Figure 2.2: Above is a schematic picture of the evolution of a pair of displacement
vector as a function of flow time.

Computing J(¢) for a general theory is hard because in order to do so one must
solve a coupled point-flow/matrix-flow evolution which typically must be done
numerically. This is always an expensive procedure, but the expense differs greatly
in the presence and absence of fermions. This is not surprising; the inclusion of
fermions always increases the cost of lattice calculations due to the presence of
the fermion determinant. It is instructive, however, to estimate the cost of the
holomorphic gradient flow with and without fermions.

In the absence of fermions, lattice actions are typically local and of the form

S(¢) = f=(9) (2.18)

where f, is a function of ¢, and its nearest neighbors. Therefore computing
aaTi ~ O(1). This means that a flow trajectory costs O(N X Ng,) where N
is the number of lattice sites and Ny, is the number of discrete time steps in

the holomorphic gradient flow evolution. Similarly, the cost of computing the

Jacobian for a bosonic theory is O(N? X Ngp,). In the presence of fermions,
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however, actions get a contribution from the fermion determinant

S(¢) = fu(¢) — In detD(g) (2.19)

and the cost of the holomorphic gradient flow is increased. To find the cost of

flowing with fermions, note that for a single time step and for a single lattice site

dei(t) . 1
T fo(9) —tr(D™ ()

9D(¢)
I

) (2.20)

The first term has a cost of O(1) but the second term is more expensive. Typically
D(¢) are sparse matrices [3], and 372 has O(1) non-zero entries, independent of

the number of lattice sites. In particular 0D/0¢, is “ultra-local”, meaning that

<8D

~ 0t Opyt 2.21
8¢x ) z'y’ 6x$ 5xy ( )

This imples that for a single time step, to flow all points costs a matrix inversion.
This means to computing a single flow trajectory costs O(N® X Ng,), which is
N? more expensive than the bosonic case. Evolving the Jacobian is still more
expensive. To compute a single time step of the discretized evolution of

% - (HJ>* (2.22)

it is necessary to compute the matrix product HJ. To understand the cost of this

multiplication, first note that H,, ~ D,/

D,.}. Thus to compute the hessian, one
must first pay O(N?) to invert D and then O(N?) more to assign each element
of the hessian. Finally, one must multiply matrices to compute H.J, and the cost

of multiplying matrices is O(N?). All together, a single time step has a cost of

O(N?®). Consequently flowing the Jacobian costs O(N® x Nge,). It is sometimes
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possible to construct more sophisticated algorithms to flow the Jacobian which

cost less than the straightforward algorithm detailed here [23].

2.2 Monte Carlo on Flowed Manifolds

Using the holomorphic gradient flow to deform the domain of integration of

the path integral, we are left with the task of evaluating

_ Jux D& detJ(9)O(6(6))e= )

9 Jaw D¢ detJ (¢)e=S(@(0)

(2.23)

To compute (O) we will use Monte Carlo methods. I will assume the reader is
accustomed with the basic ideas of Markov Chain Monte Carlo and those less
familiar with may find [3,4,12] to be useful references.

To begin a Monte Carlo evaluation of Eq. (2.23) we first define the effective

action

Serf(6) = S(¢(¢)) — In detJ(¢) , (2.24)

which includes the Jacobian. Note that S(¢) includes a fermion determinant if
the theory has fermions. Using the effective action we can rewrite observables in

the reweighted form

_ Jrw Do O(p(p))eSers(6(4)

©) Jan D = Sers(6(9))

(2.25)
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Separating the real and imaginary parts of the action, we can rewrite

_ Jru DO O(p(¢))eSerr((9)
Jan Do e Ser1(3(6))
Jow Do O(())eImSess (3(8)) g~ ReSess (3(4)
a Jan Do e—ilmSes(3(¢)) o~ ReSers (6(9))
_ Jrv Do O(P(p))eImSess (O e=ReSers (90D | [ D O(p(p))eReSers (9())
Jon D e~ 1mSes (6(@)e—ReSers (69 / | [\ D O(¢(p))eReSers (4(0))
<Oef’ilmseff>Re Seff

(e=MmSeir ), Sy

(0)

where ( - )Rres,,, 15 an average with respect to the probability distribution

e—Re Sers(9)

- Jruw D € eSers (9(6)

p(9) (2.26)

As stated in the Introduction, this re-writing of observables as a ratio of observ-
ables with fields distributed as Eq. (2.26) is called “reweighting”. This is because

—imSess alters the weight of a given configu-

absorbing on the fluctuating phase e
ration.

Our Monte Carlo strategy for integrating on flowed manifolds is to sample
fields which live on the coordinate manifold according to p(¢), and then compute
observables with the reweighting technique. There are many algorithms to do
this sampling and we elect to use the Metropolis algorithm [95]. To begin a flow

time T is chosen; this defines the manifold that will be integrated over. Then the

following steps are iterated:
1. Begin with a configuration ¢ on the coordinate manifold.

2. Evolve ¢ according to the holomorphic gradient flow for time 7" and call
the evolved point ¢V, With the flow trajectory in hand, evolve the Jacobian

according to its flow equation Eq. (2.17).
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3. Compute the effective action S.;(6®) = S(¢®) — In detJ(¢?) and save.

4. Propose a new configuation on the coordinate manifold ¢! = ¢ 4 §5p®

where §¢® is a small variation.
5. Repeat steps 2 — 4 with ¢(+V

6. If ReS.;p(¢+Y) < ReS.;r(¢™) accept the proposed configuration immedi-

ately, otherwise accept the proposed configuration with probability

ef(ReSeff(¢(i+1))*ReSeff(¢(i))) (227)

7. Repeat steps 1-6.

Fields sampled in this way will be distributed according to p(¢) in the limit that

the number of configurations collected tends to infinity [18].
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Chapter 3

Application 1: 0+1 Thirring Model

3.1 Continuum Theory and Lattice Formulation

We now apply the methods described in the previous chapter to a simple
model of fermions. The idea here is to demonstrate that the program outlined
in the last chapter indeed works. We will demonstrate the method by computing
the properties of the finite density Thirring model in zero spatial dimensions. A
few particularities arise in the analysis due to the fermion determinant, but the
procedure described in the previous chapters is unchanged.

In the general case, the Thirring model at finite density in d dimensions is

defined by the continuum Euclidean action

S = /dtdd:c{ﬁ(@ +m 4 py° ) + g;(%“wf} : (3.1)

where 1 is a Dirac fermion and 4* are Euclidean Dirac matrices satisfying {v*,7"} =
214x40,,,. The Thirring model (at m = 0 and p = 0) was introduced quite some
time ago, originally in (1 + 1) dimensions [96], and is one of the few examples of
an “exactly solvable” quantum field theory. Various solutions of the massless case
are given here [97,98].

In the m # 0 case the S—matrix has been explicitly computed [99] and it was

shown by Coleman [100] that the Thirring model at zero density is equivalent
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to the sine-Gordon model, which, interestingly, is a theory of bosons rather than
fermions. We choose to test our methods on the Thirring model both because it
is a simple model which is well-studied, and because it is a theory of fermions,
which ostensibly forces us to face the high cost of such calculations. Aside from
its simplicity, however, there are other reasons for looking at this model. For
example, there is reason to expect the finite density properties of the Thirring
model to have some resemblance to the finite density properties of QCD [101], but
from our perspective what’s important is not the Thirring model’s proximity to
QCD, but rather the fact that it has a sign problem which can be made arbitrarily
severe.

In this chapter we apply the holomorphic gradient flow to (0+1) version of the

theory. Here the action reduces to
—d 0 g — 0\ 2
S = [ at{B(Zy" +m+ w0+ L [@Fr)'} (3.2)

To analyze this theory on the lattice, it pays to introduce an auxiliary vector field

A, whose role is to decouple the four fermi interaction. By noting that
/DA#e_(Q;?A’%‘HA“(M%)) = const X e’g(%“w)(%“ﬁ) , (3.3)
one sees that the action in terms of auxiliary fields reads (in d dimensions)
S = /dtddx{zngAi LG +idrm+ mo)w} . (3.4)

In (0 + 1) dimensions A, has only one component, Ay, which we will call ¢ to
align with the notation of the previous chapter. We now put this theory on the

lattice. In our calculations we simulate an action whose naive continuum limit is
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Eq. (3.4); the lattice action reads

5= éz (1 - COS(@)) + mzaﬂ/& + % Z (Eteiéﬁﬂi/)tﬂ - Et+le_iét_ﬂ¢t>

t t t (3.5)
where ¢ indexes the time slices and ranges from 0 to N — 1 [18]. In the action
Eq. (3.5), ¢; are real numbers while 1,1, are Grassmann variables satisfying
{y, '} = {ahy, by} = {aby, 1y} = 0. Here, because we are interested thermody-
namics, the Grassmann fields are anti-periodic in time, i.e. ¥y; = —; and the
auxiliary fields are periodic in time ¢ny1 = ¢;. These boundary conditions are
fixed by the fact that we are doing thermodynamics, and therefore taking a trace

with fermionic/bosonic coherent states to compute tr e ?H—#N) [3],

3.2 Deforming Compact Fields and Proving Sufficient Conditions

Notice that the action is a function of a compact variable in our formulation,
ie. S(¢)) = S(¢y + 2r) for any t. This means that our original domain of
integration is not RY, but (S;)Y, that is N copies of the circle S;. This change in
the domain of integration does not change the analysis in any fundamental way.
Let us demonstrate that this is the case.

First, note that any element of (S1)" is of the form (¢!, ..., €¥¥) where ¢; € R.
In our formulation, we choose to deform the argument ¢; into the complex plane,

and therefore points in the complexified domain of integration are of the form

(ez‘(lF{e<;$1—i—iImd)l)7 m,ei(ReqﬁN—i-iIquN)) c (Sl % R)N : (36)
therefore the complexified field space is (S; x R)Y. Our goal is to use the holo-

morphic gradient flow to deform the original domain of integration (S;)" into

a submanifold My of the complexified field space (S; x R)N. In order for this
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Figure 3.1: Here we depict possible manifold deformations for the simple case of
a single variable. The blue cylinder represents the full complexified space S; x R.
The original domain of integration is the yellow circle on the bottom, while possible
deformed manifolds M; and Mj are shown above. In order for Cauchy’s theorem
to hold, it must be possible to deform S; to the final manifold smoothly. Therefore
M can be used for integration while M5 cannot be used due to the discontinuity.

deformation to leave the path integral invariant, it must be the case that the stip-
ulations of Cauchy’s theorem hold for the deformation in question. The behavior
of the integrand at the boundary must not be changed, and one must not cross
any singularities of the integrand in the deformation process.

Since (S7)" has no boundary (it’s a compact manifold) the first assumption
of Cauchy’s theorem is satisfied trivially, as long as the new intgration contour
can be be produced by a continuous deformation of the original domain of inte-
gration. It is important that no discontinuities are introduced in the deformation
process; such deformations are not allowed. For two examples of deformations see
Fig. (7.1).

Manifolds generated by the holomorphic gradient flow have no discontinuities.
To see this, note that ¢(¢) = ¢(¢ + 2mé;) for any 4, where 27é; is a 27 shift in
the " direction. This is because 9S/d¢p(p) = 0S/Ip(p + 2mé;), which is true
because S is periodic. There cannot be any discontinuities in the manifold then,

because if there were, it would be possible wrap 27 around this point and obtain
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two different ¢, contradicting the fact that ¢(¢) = ¢(¢ + 27é;) for every i.

The second assumpution of Cauchy’s theorem is that no singularities are
crossed during the deformation. No singularities are crossed during the flow in this
model because there are no singularities in (S; x R)Y to cross. This is typically
the case for field theories with fermions. To see this, note that after integrating

out the fermions, the partition function takes the form
7 = / D¢ e 9P det D(¢) (3.7)

g

where detD(¢) is the fermion determinant and S,(¢) = & >, (1 - cos(ggt)) It is
clear that the integrand has no poles: the fermion determinant is a polynomial in
the phases ¢t and S, is analytic. Furthermore, any fermion correlation function,

such as the chiral condensate for example,

(Do) = / DEDPDY ¢S EN G . (3.8)

also has an integrand without poles. This can be demonstrated by expanding
the Grassmann integral. Let us consider a simple example; the generalization is

straightforward. Consider a fermion action with two degrees of freedom

S, 1) = Mirir + Migtts + Mooty + Mogthat)s . (3.9)

where M = M (¢). Then the chiral condensate at variable 1 is given by

(i) =27 [ Do e ( [ DiDye5101) (3.10)
= Zl/Dqs e ™59 Moy ().

32



The entries of M are analytic functions, and therefore (113/1) is the integral of
an analytic function. Therefore there are no singularities to cross when the path
integral is deformed, so Cauchy’s theorem holds and the integral doesn’t change.

This might be surprising to some given that the chiral condensate also has

another representation

(ipy) = Z71 / D¢ e %99 det D(¢) D7i(9) (3.11)

and at points where det D = 0, D~! blows up. How can it be that the integrand
has no poles? The answer is that the expression above is not always valid: the
chiral condensate can only be written as Eq. (3.11) when the determinant is non-
zero. On the other hand, Eq. (3.10) is always true and fermion correlators always
have analytic path integrands. These two statements are not in contradiction
because D! is always multiplied by det D. As D! blows up, det D goes to
zero in such a way that the limit of the path integrand exists as a zero of the

determinant is approached. For clarity, suppose D is diagonal, then

My () Mas(0)

Mas(¢) = det D(¢) D7 (6) = M (9) (3.12)

If we look at a region around a zero of the determinant, then nearby in field space
both the left hand and right hand sides exist At the zero however, the right hand
side does not exist, but the Grassmann integral still exists and is equal to My (o).
If one elects to calculate the path integrals by simulating ¢ with the fermions
integrated out, which is typical, then the precise integrand of the path integral,

say in the case of the chiral condensate, is
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£ e~ det D(¢) Dy} (9), when det D(¢) # 0
limy 4 %) det D(¢') D' (¢'), when det D(¢) = 0

and so the integrand of the path integral is perfectly well-defined and finite. This
is very much like what happens with the function f(x) = sinx/x, which converges
to 1 as © — 0 even though f does not exist at zero.

Having demonstrated that we can apply Cauchy’s theorem, we elect to deform

the manifold in two steps [18]:

1. Shift all fields into the imaginary direction: q@z — él + 4. This shift causes

the manifold to touch a saddle point of the action.

2. Apply the holomorphic gradient flow to the shifted manifold.

3.3 The Tangent Plane

The first step in our taming the sign problem of the Thirring model is a shift
of the domain of integration in the purely imaginary direction. Let us understand
why this might be advantageous for the purpose of taming phase fluctuations.
Note that there is quite a bit of analysis that goes into showing this, however it
is worth dwelling on because shifting the integration domain to the tangent plane
is an inexpensive way to tame phase fluctuations.

To begin, consider an extrema ¢* of the action

B
8—¢5(gb) T 0 (3.13)

Due to the fact that S is holomorphic, any such extrema is a saddle point, rather

than a minimum or a maximum [102]. To see this, consider the case of a single
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complex variable: S = S(z) = Sgr(x,y) +iSr(z,y) where z = x + dy. In order for
S to be a holomorphic function it must satisfy the Cauchy-Riemann conditions.

That is,

OSp 0SSy 0Sg 0S|
or Oy’ Oy  Ox (3.14)

Taking derivatives of the Cauchy-Riemann conditions shows directly that V2Sg =
0 and V2S; = 0. Now, changes of the action arise at second order when expanding

about an extrema. Examining the Hessian of the real part:

0%Sr  0%Sg
oz2 oxd
Hp= | ™ % (3.15)
2Sr  92Sgk
Oxdy Oy?

one finds that tr(H) = V2Sg = 0, and so it must be the case that the eigenvalues
of H are either both zero, or both non-zero with opposite signs. Therefore any
non-degenerate critical point has a direction where Sg increases and an orthogonal
direction where Si decreases, i.e it is a saddle point. The same analysis applies
to St and therefore any non-degenerate critical point of a holomorphic function
of a single variable is a saddle point.

To extend this analysis to a multivariate holomorphic function S = S(zy, ..., z,)
is straightforward. Recall that a holomorphic function is a function that satisfies

the Cauchy-Riemann conditions in each variable (keeping all other variables fixed):

8SR - aS[ OSR . aSI
Ox; B 0yi’ Oy B Oz, (3'16)

This means that VZSz = (aa—; + 88—;)33 = 0 for each i (and similarly for Sy).

*

Therefore, if we have an extrema z* = (z},...,2") and a deviation dz; in the i*!
direction, we see that the Hessian at the critical point has a pair of eigenvalues
with opposite signs. Since this applies to each variable, half of the eigenvalues

of the Hessian at the critical point are positive and half are negative, i.e. the
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extrema is a saddle point in n dimensions.

We will now demonstrate by expanding the holomorphic gradient flow about
an extrema of the action that there is a plane passing though the extremal point
such that, at least close to the extrema, the phase fluctuations vanish. If the
original domain of integration can be shifted and rotated into this plane then
it can be used for integration and doing so tames the sign problem to a certain
degree. After demonstrating the existence of this “tangent plane” generically, we
will calculate explicitly the tangent plane for the Thirring model.

Let us call the extremum ¢* and expand

o1
S(8) = S(6°) + 366:H;366; + O(50°) (3.17)
where H;; = %S (9) . To quadratic order in the action, the holomorphic
i j ¢:¢*
gradient flow is equal to
do *
%= <H¢> (3.18)

This differential equation can be solved exactly. To do so, let H = Hgr + ¢H; and
¢ = ¢r+1i¢r. Then by separating the left and right hand sides into their real and

imaginary parts, it is clear that

d Hp —-H )
4 Or _ R 1| |or Py R (3.19)
o1 —H; —Hgr| |¢1 b1
Hr —H;p
where we have defined the “super-hessian” H = . Note that H is a
—H; —Hp

real symmetric matrix and is therefore diagonalizable. It is clear from the analysis
in the previous paragraphs that H has paired positive/negative eigenvalues. This
is because extrema of analytic functions are saddle points and a saddle point

always has an increasing and a decreasing direction. Another way to see this is as
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follows: suppose that H¢ = A¢ and define

0 -1
€= (3.20)
1 0

It is simple to deduce that €2 = —1 and that eHe = H. Therefore
H(ep) = —eHop = —A(ed) (3.21)

So each eigenvector ¢ has another eigenvector e with an opposite eigenvalue.
Taking the n eigenvectors with positive eigenvalue one can form a basis of the
tangent space of the thimble attached to the extremum ¢*. To do this, denote
every eigenvector of the super hessian by p = . . Then the set {p; + ip2}

P2
is a basis of the tangent space of the thimble. The basis of the tangent space

attached to an extremum which defines a thimble is sometimes called a set of
“Takagi vectors”.

Now for the point: moving the domain of integration to be the tangent space
of the thimble aligns the integration domain with a thimble, at least in a region
near the extrema. Therefore, since thimbles are surfaces of stationary phase, the
tangent space at the extrema has small phase fluctuations and such a deformation
is therefore useful for taming the sign problem. This statement holds for any path
integral. Let us now carry out this procedure explicitly for the (0+1) Thirring
Model.

The action

S= % Z (1 - COS(&t)) +m Zaﬂﬁt + % Z (Eteidgt-i-ﬂwt_i_l — Et+1e—i$t—ﬁ¢t>
t t t (3.22)

presumably has many extrema, most of which are very difficult to find. One way of
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attacking such a complicated problem is to search for extrema with a particular
form, rather than to search for a generic one. To that end let us look in the
sub-space of field configurations that are constant in spacetime, that is ngSt = ¢ for
every t. For constant fields the action Eq. (3.22) can be diagonalized in momentum
space. Using ¢y = Y e “h),, where w = %, k=0,...,N; — 1 then we find

upon integrating out the fermions
1 b+ f—iw _ —ip—ftiw
S = §—2Nt<1 - cos(qb)) - Zln(ez‘bﬂ‘ — e oAt ) (3.23)

Consequently the derivative is given by

oS sin ¢
— = —cot(p —w—1 3.24
55 =2 g —eotlo—w =i (3.24)
There is a point with purely imaginary ¢ where the derivative vanishes. The
position of this point is a function of the parameters of the model g, i. An example

calculation is shown in Fig. (3.2) where the extrema of the action is located at a

constant field configuration and ¢* = ¢0.368....

S .
—Z%(IO)

10

Figure 3.2: Here we show the derivative of the action evaluated along the imagi-
nary axis for g = 1.0 and i = 0.5 on a lattice with V; = 6.

It is a more challenging task to compute the hessian. Taking derivatives one
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finds

Hyy =

0*S Cos ¢y ( oD oD ) o (D_l 9*D

— = fy— +tr( D' D'
00y " g* ' 00y

To calculate these derivatives it is necessary to have the fermion matrix handy.

Here it is:

Dy = 6tt’m+%({5t’,t+lei¢t+ﬂ_5t’,15t,Nei¢N+ﬂ}_{5t’,t—le_z¢t1_ﬂ_5t’,N5t,le_i¢N_ﬂ}>

(3.26)
Note that the anti-periodic boundary conditions are the source of the &y 19; n
type terms. These boundary terms are a bit unruly, so for the remainder of the
discussion I will render these terms implicit by agreeing to always adhere to the

following;:

o [ will take the delta functions to be periodic in both arguments, i.e. §;y =

5t+N,t' = 6t,t+N'

e Any input field ¢ = (¢1,...,¢n) is to be mapped to ¢ = (¢y,...,on + T)
before being plugged into the dirac matrix. Since fields appear in the action

as €' this mapping takes e’®N — —e'®~N | enforcing anti-periodicity.

With these stipulations, the implicit form of the dirac matrix is
. i+ —ide_1—fi
Dy = o + B <5t',t+1e T — by e M) (3.27)

Taking the second derivative we find:

9’°D 1 , .
<8¢ 3¢b>tt' = —5 <5t,a5t,b5t/,t+1ez¢t+u - 5t—1,aét—l,b5t’,t—1e_z¢t_l_u> . (3-28)
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Thus,

2
tr (Dlaz §¢ ) = —%5@ [D;jwei%w — D;;He*@'%*“] (3.29)
a b

and

oD 9D
tr( D! D—l—) =
r( a¢a a¢b

(e e (D) (D Vg + (DD s

e et (D) b (D osra01 + e_i%_ue_i%_u(D_l)bv““(D_l)“’bH}

With these ingredients it is now possible to compute the hessian and find the
directions tangent to the thimble attached to the solution we have found in the
constant field subspace. The tangent space for a typical set of parameters is given

in Table (3.1).

0.810 —0.288 —0.102 -0.5
—0.493 —0.288 —0.650 -0.5
—0.316 —0.288 0.752 -0.5

0.0 0.866 0.0 —-0.5

Table 3.1: Listed is a basis of the tangent space of the thimble at the extrema
¢y = 19" for the parameters N, =4, m =1.0, g =1.0, 4 =0.1.

It can be noticed from Table (3.1) that the tangent vectors are purely real, so
the tangent plane is parallel to the real plane. So far there is no proof that the
tangent plane is always parallel to the real axis in the Thirring Model, however
this feature holds for every combination of parameters tried in this work. The fact
that the tangent plane is parallel to the original domain of integration is computa-
tionally useful. For one, it is not necessary to store tangent vectors for simulations,
which is helpful for large lattices where storing the tangent plane might require

memory not available. Additionally, during a Monte Carlo simulation, where one
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needs to constantly map from the coordinate manifold to the deformed manifold,
the map is trivial: one simply adds i¢* to a point on the coordinate manifold to

compute the corresponding point on the deformed manifold.

3.4 The Flow

Recall that our strategy for taming the sign problem for the Thirring model
to first shift the manifold, then flow the shifted manifold. We have discussed the
details of the shift in the previous section and we now move on to the flow.

The exact form for a flowed point is

o) = ¢+ /OTHOW dt (%’ff)))* . (3.30)

The derivative of the action is

35 Sirld)t 1 _ idi+ii _ i —i
3_@ — 7 + §(Dt,tl+1€ Peti 4 DHlLte ¢ “) (3.31)

and in our simulations we solve Eq. (3.30) numerically using a Cash-Karp in-
tegrator, which is an adaptive step size integrator of order O(A¢#®) [103]. Such
an adaptive integrator is helpful for efficiently handling the right hand side of
Eq. (3.30) which grows rapidly as the flow time is increased. Similarly the exact

form of the Jacobian is given by

*

10) =1+ [ ar (60 I060)) (332

which is evolved with the same numerical method that flows points. The explicit
form of the Hessian is given in the last section.
We conclude by noting that, if a point where det D(¢) = 0 is approached along

a flow trajectory, the holomorphic gradient flow causes the flow trajectory to evolve
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very quickly to points of high action. In these situations, the adaptive step size
of the Cash-Karp integrator tends to shrink without bound. If this happens, then
the Markov chain gets stuck at a particular configuration rendering the calculation
useless.

In our simulations, if the step size shrinks past a pre-specified minimum, the
point is rejected automatically and a new point is drawn to continue the Metropo-
lis chain. This procedure prevents the Metropolis chain from getting stuck to a
particular configuration and introduces at worst exponentially small biases which
cannot be resolved by a Monte Carlo of reasonable length. This is because the
action monotonically grows along a flow trajectory, so if a det D(¢) = 0 point
is approached, the action will shoot up to very large values and never decrease.

Therefore, since the probability of a configuration is e ¢

, points whose trajec-
tory approach zeros of the determinant give vanishingly small contributions to the

path integral and can be rejected without consequence.

3.5 Results

The (041)d Thirring model is solvable, so we will calculate observables both
exactly and on the lattice; the agreement between these two approaches validates
the holomorphic gradient flow approach. The results in this section are from [18].

To begin, the partition function can be computed exactly using techniques

from [104,105]. One finds:

—Na

Z = S [ 1 (@) cosh(N i) + 17 () cosh (N sinh ™ (7)) | (3.33)
where a = ﬁ and I, are modified Bessel functions of the first kind, which are
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defined by the integral equation [1006]

1 [" -
I,(z) = %/ dg e*<3(@)gind (3.34)

—T

The charge density and chiral condensate are given by derivatives of the partition

function:

10 10
IN(a) sinh(N 1)

B IN () cosh(N 1) 4+ I (@) cosh (N sinh ™ (1))

)
= = — 1 Z .
3 0m Nom 8 (3.36)

_ o+ m?) V2 (@) sinh (N sinh ™ (1))
I¥(a) cosh(N i) 4+ I (@) cosh (NN sinh ™" (1))

Let us begin by looking at the average phase (e~%7), which is a diagnostic
measure of the severity of the sign problem. When the average phase has close to
unit modulus, this means that the phase hardly fluctuates and the sign problem is
gentle. On the other hand when the average phase has close to zero modulus, the
phase fluctuates a lot and therefore the sign problem is severe. It can be seen in
Fig. (3.3) that the sign problem becomes severe at high densities. We find that the
severity of the sign problem rapidly increases when the lattice begins to become
populated with charge. This happens when p/m; ~ 1 where my is the physical
mass of the fermion field 1. Therefore, for u > my it is necessary to deform the
domain of integration. Let us now discuss this process.

It is helpful to see the flow happen directly. In particular, the connection
between flowed manifolds and thimbles becomes particularly obvious when one

sees a manifold deform into a set of thimbles. Unfortunately the deformation
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Figure 3.3: The average phase on the original domain of integration S for N =
8, m =1 and > = 1/6 (blue) and g = 1/2 (red). Notice the rapid decay of the
average phase as the density of the system is increased.

occurs in a high dimensional complex space and so visualization is not easy. There
is one device we have developed to aid visualization however, and this is called
the “constant field subspace”. The constant field subspace is the set of all fields
which are constant in spacetime {¢ = (¢1,...,0n) | ¢+ = ¢ Vt}. Notice that this
is a one real dimensional subspace of the original domain of integration. For any
action with translation invariance, any field in the constant field subspace of the
original domain of integration will remain in the constant field subspace under
the holomorphic gradient flow. This is simple to show: by translation invariance
every component of gTi is the same when evaluated at a point which is constant
in spacetime. Since all components of the gradient are equal, and points move in
the direction of the gradient of the action, the evolution of a point starting in the
constant field subspace is the same in all directions. This means that if ¢(t = 0)
is constant in spacetime, then the flowed point & = ¢(t) will be constant in
spacetime too. This means that one dimension of a flowed surface can be plotted.

A plot of the constant field subspace of a sequence of flowed manifolds is shown
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Figure 3.4: Here is the evolution of the constant field subspace under the holo-
morphic gradient flow. Before flowing, the domain of integration is shifted to
the constant field critical point ¢ = (i¢*,...,7¢*). This initial manifold, which
is flat and parallel to the real axis, has a direction along the constant field sub-
space which is plotted as the dotted gray line. These points are then subjected
to various amounts of flow. The red curve shows the result of flowing all points
in the constant field subspace for 7' = 0.01. The purple and blue curves are the
manifolds obtained by flowing for 7" = 0.05 and T" = 0.5 respectively. Note: The
solid blue points denote extrema of the action and the hollow blue points denote
zeros of the fermion determinant.

in figure Fig. (3.4). Looking at Fig. (3.4) helps one to see the flow generating a
family of manifolds which interpolates between the shifted real plane and a set of
thimbles. The blue curves in Fig. (3.4) are constant field subspace projections of
the thimbles which contribute to the path integral. The red then purple manifolds
clearly converge to the blue thimbles.

It is also instructive to examine the action along flowed manifolds. In Fig. (3.5)
we have plotted the action on manifolds flowed by various amounts. For visual-
ization purposes, we choose to represent each point on a flowed manifold by its
projection on the real axis. That is, if My is a flowed manifold, and if b e My,
then in our plot the point ¢ corresponds to Reg. The first thing to notice is that

paths of stationary phase indeed emerge by flowing the shifted manifold. This is
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Figure 3.5: Here we plot the real (top) and imaginary (bottom) parts of the action,
as a function of the horizontal projection of the point on the manifold. In the
top figure, the dotted red line is the real part of the action along the shifted but
unflowed manifold. The ever bluer profiles are obtained from manifolds flowed
by T = 0.01, 0.05, 0.50. From viewing the top figure it is evident that a large
amount of flow creates action barriers between thimble, and the bottom figure
shows that the manifolds obtained have stationary phase.

demonstrated by the convergence of S to a piecewise constant function. Evidently
three thimbles intersect the constant field subspace in this model. Furthermore,
from the top plot one finds that large flow times generate action barriers between
regions of parameter space.

A close examination of the behavior of the action as a function of flow time
demonstrates how the holomorphic gradient flow tames sign problems. First, along
a flow trajectory, which takes a point on the coordinate manifold to a point on a
flowed manifold, the real part of the action strictly increases while the imaginary

part of the action is constant. This is easily derived from the definition of the
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holomorphic gradient flow:

2

>0 (3.37)

d _ 25(0l0)dott) _ 05(616) (2S(6(8)y" _ 'asw(t))

W) =—5 " 29 00 00

A consequence of this observation is that, the regions of support of the probability
distribution p(¢) = e S#(@) on the parameterization manifold monotonically
shrink as a function of flow time. This is because as the action of a point increases
its probability decreases. In fact, a point ¢ in the parameterization manifold
typically achieves a very low probability in a finite flow time due to the ever
increasing action caused by the holomorphic gradient flow. For a large flow time,
the only points on the parameterization manifold with any reasonable chance
of being sampled are those points which are in a small neighborhood of those
few points which flow to extrema of the action. This is because the only points
which ever stop moving are those for which % = 0, which are those points which
asymptote to an extremum of the action. For a finite flow time, there will be a
set of points around a point which flows to an extremum which have small enough
actions that they contribute significantly to the path integral.

Now, in addition to the real part of the action ever increasing, the imaginary
part of the action stays constant along a flow trajectory. Since the integrand of the
path integral is a holomorphic function and is therefore continuous, small neigh-
borhoods around any given point have mildly fluctuating phases. The fluctuations
of the phase in field space are not affected by the holomorphic gradient flow, and
therefore the small pockets of parameterization space which have finite probabil-
ity after a large amount of flow time have stationary phase. This combination of
effects is how the holomorphic gradient flow works: applying the holomorphic gra-
dient flow results in a probability distribution on the parameterization manifold

that has pockets of high probability and stationary phase.
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image of region of support

Figure 3.6: Here we depict schematically how regions of parameter space are
rendered important and otherwise by the holomorphic gradient flow. The black
point is a point which flows to an extremum of the action. For a given finite flow
time, there is a region of support around the this black point which has appreciable
probability, and all other points are mapped to high actions. The yellow region
on RY is the small neighborhood which has high probability. Its image under
the flow is the yellow conic shape, with particular flow trajectories shown in the
yellow lines. Away from this neighborhood (the gray) points are mapped to high
action.

Now we must point out an important detail to the argument above. The

argument relied on the fact that along a flow trajectory the probability
p(¢) o e Re 5(6(¢)) (3.38)

of a point ¢ on the parameterization manifold strictly decreases with flow. How-
ever, the integral includes a jacobian. One approach is to view the jacobian as
an extra factor by which every observable must be reweighted. That is, we write

Obser Vables as
O detJ
<O> < € >SR

T (3.39)

In this case the previous discussion is unchanged: one samples with respect to

p(¢) o< e ReS@@) and flow creates a probability distribution which becomes
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<xXx>

strictly increasingly peaked as a function of flow. The only detail is that ob-
servables are reweighted with the jacobian.

In our simulations, however, we sample with respect to

p(9) oc e %@ - S.0(¢) = S(6(¢)) — In detJ(9) (3.40)

which includes the jacobian. Under the holomorphic gradient flow, the effective
action evolves as
d ‘55 (¢(1))]”

g on(9(t) = | =52 | — (ST (341)

which is complicated by the tr(J*J 'H*) term. While it is difficult to describe
the analytic behavior of this probability distribution, in practice we find that
e~ Re Sei(9) hehaves very similarly to e Re 5(®): flowing the manifold generates pock-

ets of high probability and stationary phase on the parameterization manifold.
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Figure 3.7: Here we show the chiral condensate computed in the continuum (left)
and zero-temperature (right) limits. The N = 8 calculations are have parameters
set at m = 1.0, g*> = 1/2, which is a strongly coupled case. In the left plot where
the continuum limit is taken, red is a coarse lattice spacing and blue is a fine
lattice spacing. In the right hand plot red is hot and blue is cold. The scaling of
the parameters as the continuum and zero-temperature limits

49



Having demonstrated that there is a sign problem in Fig. (3.3), and having
described how and why the holomorphic gradient flow works to tame it, let us
finally examine some calculations on flowed manifolds.

In Fig. (3.7) we compute the chiral condensate (¥1)) as a function of the chem-
ical potential ji. We explore both the continuum limit and the zero temperature
limit. We expect the sign problem to worsen as a function of the spacetime volume,
and we indeed find this to be the case. In the left hand panel of Fig. (3.7) we take
the continuum limit of the theory at fixed lattice volume (i.e. fixed temperature).
The continuum limit is taken by taking N — oo while keeping mN, §°N, N
fixed [18]. We find that a simple shift to the tangent plane suffices to tame the
sign problem enough to compute observables for an entire sweep of fi. No flow is
required for these calculations.

On the other hand, as we decrease the temperature the sign problem worsens.
This is evidenced by the right hand plot of Fig. (3.7) where the error bars grow as
the zero temperature limit is taken. The zero temperature limit calculations were
also done on the shifted tangent plane, and it is clear that the tangent plane is
good enough for certain temperatures but not others. The bluest data in Fig. (3.7)
for example has a bad enough sign problem that at the transition /i, which occurs
roughly between 1.6 < ji < 1.7, the value of the condensate is completely unknown
due to large statistical uncertainties.

There are two lessons here worth pointing out. The first lesson is that often it
is sufficient to simply shift the manifold of integration to tame the sign problem
enough to do calculations. This holds for a variety of models, and this is useful
because there is almost zero cost to computed on a shifted manifold. The second
lesson we find is that the sign problem becomes severe when thermodynamic
observables sharply change. This holds for a variety of models as we will see in

later chapters.
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N <XX> <Xx>ea:act
16 [ 0.330(13) | 0.353
32 | 0.345(46) 0.353
64 | 0.375(48) | 0.353

Table 3.2: Value of the condensate in the low temperature (N — oo) limit and
i = 1.688 obtained with flow time T, = 0.5. These results and its error bars
should be compared to the ones in the right panel of Fig. (3.7) obtained with
Tflow = 0.

800f 400!

4001 2007

-S

<>

8000
2000+

40001 1000}

1 L ® -2 2m Si

Figure 3.8: Here we show the results of a Monte Carlo on T, = 0.0 (top) and
Tfiow = 0.5 (bottom) manifolds at N = 32. The left hand plots are a probability
distribution of the fields on the constant field subspace of the parameterization
manifold, and the right hand plots are a distribution of the imaginary part of the
action. The diffusiveness of the imaginary part of the action on the top row is
responsible for the sign problem. It is evident from the bottom row that flowing
the manifold creates small pockets in the parameterization manifold with high
probability (left) and relatively stationary phase (right).

Let us now consider the transition region in Fig. (3.7), where a simple tangent
shift is not sufficient to tame the sign problem. Since the chemical potential
is basically a step function at low temperatures, a precise chemical potential of
it = 1.688, which lies at the middle of the jump, is chosen as a representative
point to study.

We first note that the flow time must be tuned to a certain extent. On the
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Figure 3.9: Here we show the condensate (left) and the deviation of the condensate
from the exact result (right) as a function of the chemical potential . The
parameters for these calculations are N = 8 m = 1.0 and ¢ = 1/2. Under
these conditions the sign problem is non-negligible, but can be handled with high
statistics. The blue points are results from 7Y, = 0.0 calculations while the red
points are obtained fro T, = 2.0 calculations.

one hand, a large enough flow time will generate a set of thimbles upon which the
phase is piecewise constant. This is good because this tames the sign problem.
On the other hand, because the holomorphic gradient flow creates pockets with
high probability, too much flow can trap a Monte Carlo of reasonable length to a
single thimble which can lead to systematic errors in observables. We will see this
later on. For the i = 1.688 point, after some trail and error we find a flow time
of Thow = 0.5 to be sufficient to tame the sign problem without being trapped to
a single thimble.

Calculating on these flowed manifolds, we find the results Table (3.2). Compar-
ing these results to those found in Fig. (3.7), it is clear that the flowed manifolds
have a much tamer sign problem than the tangent plane.

For visual purposes we show histograms of the action of the field configura-
tions obtained on flowed and not-flowed manifolds in Fig. (3.8). The top row is
obtained on the tangent plane while the bottom row is obtained from a T4, = 0.5

manifold. It is clear that the Monte Carlo samples paramter space more smoothly
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on the tangent plane, and this results in a more diffuse distribution of S;. On the
other hand, as can be seen from the bottom row of Fig. (3.8), after applying the
holomorphic gradient flow the important pockets of the parameterization mani-
fold are isolated and the imaginary part of the action fluctuates less. This tames
the sign problem.

We end this section with a caution: don’t get trapped. As has been stated
previously, a large amount of flow can trap a simulation to a single thimble and
this leads to systematic uncertainties in observables. We demonstrate that this
happens in Fig. (3.9). While the T, = 0.0 results match with the exact result,
one sees significant deviation from the exact result at T, = 2.0. This is because
the Tty = 2.0 result is obtained by integrating over a single thimble, while many

thimbles contribute in this model.

53



Chapter 4

Optimizations for Simulations

While in (041) dimensions it is relatively simple to calculate on flowed mani-
folds, higher dimensions are more difficult due to the increased number of degrees
of freedom. In this chapter we will discuss two optimizations we have developed to
alleviate this difficulty [21,94]. One is a particular scaling of Metropolis proposals

and the other is a cheap way to compute approximate jacobians.

4.1 Optimizing Metropolis Proposals

We use a metropolis algorithm to sample fields on flowed manifolds. Since a
metropolis style Monte Carlo sampling relies on proposing small changes ¢ — ¢’

on the coordinate manifold, and then accepting this proposal with probability

Pr = min{1, e~ (5@¢)=5@)} (4.1)

it is necessary that changes in the action S(¢') — S(¢) due to the proposal are
not too large. One typically tries to make the change in the action due to a
proposal to be O(1), which achieves an acceptance rate of roughly 50%. Such an
acceptance rate allows the Monte Carlo chain to sample the configuration space
without being stuck to a particular configuration for a long time.

To achieve a reasonable acceptance rate on a flowed manifold can be hard

however, because a small displacement in coordinate space can be mapped under
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the flow to a large displacement on a flowed manifold. Even for a free theory, a
point on the coordinate manifold ¢ flows as (t) = 3, ¢;(0)e i p;, so small changes
in the ¢;(0) are exponentially magnified.

We account for this rapid flowing of points to achieve a reasonable acceptance
rate by scaling the width of the proposal distribution in different directions. Before
describing how we scale proposals, let us understand why this might be necessary.
First, any point on the coordinate manifold (which in the case of the (1+1) thirring
model is the tangent plane of the thimble in the constant field subspace) is of the
form ¢ = > ¢;p; where ¢; are real and p; are the Takagi vectors associated with
the extremum of the action. In our simulations, we make proposals by changing
the {¢;} by small amounts. Near the extremum, the change in the action due to

the proposal ¢; — ¢; + d¢; is
5SS = ¢ Z 2c:.0c: NN (4.2)

for a flow time of 7T". One sees that due to the eigenvalues )\;, different directions
in the tangent plane contribute different amounts to the change in action. Clearly
it is sensible to propose smaller changes in directions with large eigenvalues. Also
one sees that proposals need to be smaller for larger flow times to keep the change
in action O(1).

We therefore propose as follows:

e—)\iT

)

¢ —citex ( (4.3)

where € is a uniform random variable on the interval [—A, A] where A is tuned
as desired. The factor of the 1/y/)\; absorbs some of the )\; dependence in each
direction and the factor of e absorbs some of the flow time dependence. These

scalings are extremely important. Without them, even simulations with relatively
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small flow times have very low acceptance rates. With the scalings in place, the

single proposal parameter to tune, A, varies little from simulation to simulation.

4.2 Jacobian Estimators

With a cost scaling as O(N® x Ng,), computing the Jacobian in a theory
with fermions is the most expensive part of a calculation using the holomorphic
gradient flow. With a small number of degrees of freedom this cost can be dealt
with by brute force, however brute force quickly becomes ineffective as the lattices
become larger. To deal with this issue we have developed several “estimators”,
quantites which track the behavior of the jacobian but which are less expensive

to compute [94] . Recall that any observable can be expressed as

<Oeiilmseff >Re Sefy

(e=ImSesr ), St

(0) = (4.4)

where Ser(¢) = S(¢(¢)) — In detJ(¢) and ( - )ges,,, means to average with

respect to the probability distribution

e—Re Sers(d)

p(¢) = [ow D o Re50150(0)

(4.5)

The idea behind an estimator is to sample with respect to a different probability
distribution, in particular one that is easier to sample from, then reweight the
difference [94]. If we call S.s;(¢) = S(¢(4)) — In detJ(¢) the action defined with
respect to an estimator jacobian J, then any observable can be re-written exactly

as _
<OefiImS€ffeA1n detJ> 5

Re Sery
0O) = — efs 4.6
< > <e—zImSeff eAln detJ>Re Seff ( )
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where ( - )p, 5.;, means to now average with respect to the new probability

distribution
R e—Re Serr(9) A7
p(¢) = fRN Do o—ReSesr(6(¢) (47)
and eAln det/ — gl det] Jelndet] jg 5 complex number with both phase and magni-

tude which we will call the “reweighting fator”. Eq. (4.6) tells us that one can
obtain correct results by sampling from any probability distribution desired pro-
vided the difference between the sampled distribution p and the actual distribution
p is accounted for by reweighting observables with the appropriate reweighting fac-
tor. While Eq. (4.6) is an exact relation, its usefulness hinges on J being close
enough to J.

A key point for the utility of an estimator is that at each step of the Monte
Carlo chain only the cheaper J is needed. One updates the Markov chain with the
estimator, which is a cheap procedure, and take measurements every so often when
the Markov chain decorrelates. Only on measurement steps does one compute
the reweighting factor. This calculating the reweighting factor only on the small
subset of configurations where measurements are taken is what allows the speedup
to happen.

We have developed two estimators for use in simulations. One is a good approx-
imation when the jacobian is nearly real and the other is a good approximation

when the action is nearly quadratic. The first estimator is
~ T
In detJ,(t) = / dt tr H*(t) , (4.8)
0

where T is the flow time. This estimator is the log det of the solution to the
differential equation:

—Ji=(H)"Jy (4.9)
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which differs from the actual jacobian evolution

d "
-7 = (HJ) (4.10)

by only a complex conjugate. Indeed the solution of Eq. (4.9) is

Ji(t) = J1(0) P exp(/ot dt' H*(t")) (4.11)

where P denotes path ordering along a flow trajectory. Initializing jl(O) to be a
matrix of unit determinant, Eq. (4.8) follows. We see that the estimator tracks
the jacobian well when the jacobian is nearly real. This is the approximator that
we use in the (1+1) Thirring model, which will be discussed in the next chapter.
To establish the cost of the estimator, note that the cost of computing Eq. (4.8)
is the number of time steps Ngep times the cost of each step. In the case of
fermions, as was pointed out in Sec. 2.1 the cost of computing an element of the
hessian H,, ~ D, /D, ! is the cost of inverting the fermion matrix which is O(N?)
where N is the number of lattice points. Computing the trace costs another
factor of N and therefore the estimator Eq. (4.8) costs O(N* X Ngep), which is a
substantial improvement over the O(N® x Nitep) cost of the actual jacobian.

The second estimator we use is

In det.Jy(t) = /OT dt Zpa([—](t)pa)* : (4.12)

where {p”} is an orthonormal basis of tangent vectors to the thimble at the ex-
tremum in the constant field subspace (which recall in the case of the finite density
Thirring Model is just the standard basis of RY). To motivate this estimator, note

that in the vicinity of the extremum where the action is nearly quadratic, this is
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an exact solution. To see this, notice that %J = (H J )* has the exact solution:

J(t) = J(O)—I—/tdtl H*(tl)J*(O)+/t /t1 dtidty H*(t1)H (t2)J(0) + ... (4.13)

Near the extremum the Hessian is constant, in which case

2

J(t) = J(0) + tH* J*(0) + %H*HJ(O) b (4.14)

Using the freedom one has to initialize the Jacobian to any matrix desired, so we
choose J(0) = (p', p%, ..., p) to be a row vector of Takagi vectors. Using the fact
that (Hpa)* = A\p* one finds

(HJ(0))" = diag(A1, Az, ..., An)J(0) = AJ(0) (4.15)

This allows us to solve

J(t):J(O)—i—tH*J*(O)—l—gH*HJ(O)—i—... (4.16)
= (1+tA+ (t%)? +...)J(0)
= exp(tA)J(0)
in which case
IndetJ(t) =1 Y Ao = /T dt Y p"(H(t)p")" . (4.17)

So we see that Eq. (4.12) is a good estimator to the extent that the action is

quadratic. The cost of computing Eq. (4.12) is O(N® X Ngep). Since:
1. Hyy ~ D, D,  costs N?
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2. For a single a, p? (nyp‘yl)* costs N2
3. The sum over a costs N
4. The previous steps must be repeated Ngp, number of times.

One sees that Eq. (4.12) is a more expensive estimator that Eq. (4.8), however
Eq. (4.12) was still found to be useful as it tracks the real jacobian more closely
than Eq. (4.8).

Before quantifying the utility of these estimators as we will in the following sec-
tion, let us briefly repeat the analysis above for bosonic models. First, computing
the actual jacobian evolution requires the evolution of %J = (H J ) *. For a bosonic
theory, the Hessian is a sparse matrix and the right hand side of this equation can
be written down exactly without having to perform a matrix multiplication. For

example if we take massless ¢* theory, an action is
((bachu - ¢w>2

S = AL AT, 4.18

; 5 (4.18)

where x ranges over a d dimensional hypercubic lattice and p = 1,...,d. This

action gives a sparse Hessian
1
Hpy = bz, — 5 > Sy + Oyap (4.19)
nw

Consequently, each time step of %J = (H J)* costs only O(N?) to compute.
At the end of a flow trajectory a determinant must be computed, which costs
O(N3). Therefore the cost of computing In det.J for a bosonic theory is either
O(N? X Ngep) or O(N?); typically in our calculations N >> Ny, and the cost

of computing In det.J scales as O(N?).
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Now, for the first estimator
3 T
In detJ;(t) :/ dt tr H(t) (4.20)
0

computing the trace for bosons costs N for each step, and so In det.J; (t) costs

O(N X Ngtep). For the second estimator,

0

In detjg(t> == /T dt Zpa(H(t)pa)* (421)

due to the sparsity of H, for fixed a, computing p® (H (t)p“)* costs O(N) and
summing over a costs another factor of N. Therefore this estimator costs O(N? x

Nitep), which is less than the actual jacobain because Ngep << N.

4.3 Results

We now test these estimators on the (0+1) Thirring model to quantitatively
understand their performance. The results in this section come from [94].

A quantity which measures the quality of an estimator is the “statistical
power”, which is defined as follows. First, for a set of field configurations {¢1, @2, ..., dn}

drawn from the distribution p(¢) define the quantity

eRe (In detJ—In det.J;)

v Z eRe (In detJ—In detji) (422)

where the sum runs over the elements of the sample drawn. Up to an overall
normalizaton, w is the factor by which each configuration is reweighted. The

statistical power X is a function of the set of {w,ws, ..., wx} defined as

(w)

1
E:./\_f<w2>'

(4.23)



The statistical power is an observable which takes on values between 1/N < ¥ <1
which tells us what fraction of the sample is rendered statistically significant by

the process of reweighting. Consider the case where efte (I det/—In detJ;)

= const,
i.e. the difference between the estimator and the actual jacobian is constant. In
this case our estimator is perfect: sampling with respect to an estimator which
differs from the real jacobian by a constant is the same as sampling with respect
to the jacobian. In fact, w; = 1/N for every configuration and

(w)

1
ST N

=1 (4.24)

In other words, every single configuration is equally statistically significant. On

Re (In detJ—In detJ;) is very large for a

the other extreme, consider a sample were e
single configuration, say the first one, and much lower values for all other config-
urations. This is what would happen if the estimator were poor: the difference
between the actual jacobian and the estimator fluctuates wildly over the sample.
In this case

eRe (In detJ—In det.J;)

= (eRe (In detJ—In detJ;)) =1 (4.25)

and w; ~ 0 for all others. In this case (w) = (w?) = 5 and so

5 = (4.26)

1
N
In other words, effectively only 1 out of N configurations contributes to the sample
after reweighting.

We begin our analysis by noting that for the Thirring model (in any number of

spacetime dimensions), the two estimators of the last section are the same. This
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Figure 4.1: Here we plot the statistical power for the estimator In detJ, = In detJ,
in the (0+1) Thirring model. The parameters for these calculations are N = 8,
9> = 1/2, m = 1.0 and ji = 1.0. The dotted line is an average over the last six
points. The convergence to ¥ ~ 0.75 indicates that effectively 75% of the sampled
configurations contribute to observables after the process of reweighting.

is because

In det.Jo(t / dt Zp —/ dt tr (H*(t Zpa*@)p (4.27)
0

0

— / ! dt tr (H*(t)) = In detJy(t)

where in the last equality of the top line we have used the fact that {p®} is
the standard basis of RY. Now, choosing parameters the same as in Fig. (3.7),
namely m = 1.0,¢*> = 1/2, as well as i = 1.0 and N = 8, we compute the
statistical power of the estimator as a function of flow time. One finds that the
statistical power is near unity for small flow times and asymptotes to > ~ 0.75
at large flow times. The fact that the statistical power of the estimator remains
appreciably different from zero demonstrates its usefulness in this particular case.
Moreover, with ~ 75% of the sample contributing in Fig. (4.1) one needs gather

4/3 as many configurations as when an estimator is not used, but since the cost
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Figure 4.2: Statistical power of reweighting for lattice of size N = 32. All param-
eters used in this plot are the same as the parameters of Fig. (4.1), except the
temperature, which is 1/4 of the temperature in Fig. (4.1).

of computing In det.J; is so much smaller than the cost of computing the actual
jacobian, simulations are effectively much faster when the estimator is used.
Next let us explore the continuum zero-temperature behavior of the estimator.
We take parameters based off those used in Fig. (4.1), which are N = 8, §* =
1/2, 1 = 1.0. To take the zero temperature limit, all that is necessary is to take
N — oo while keeping all other parameters fixed. In Fig. (4.2) we have lowered
the temperature by a factor of four relative to Fig. (4.1). One can see that there
is a dip in the statistical power around 7" = 1.0, where ¥ ~ 0.4(2), but at all
times the statistical power is large enough that the using the estimator remains

profitable.
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Chapter 5

Application 2: 1+1 Thirring Model

5.1 Continuum theory and Lattice Formulation

In this section we consider the two-flavor (141) dimensional Thirring Model
at finite density. Adding a dimension makes the problem harder due to the in-
creased number of degrees of freedom, and our purpose is to demonstrate that the
holomorphic gradient flow can handle this increase in complexity. To tackle this
problem we will use Metropolis proposals and estimators for jacobians discussed
in the last chapter to increase the algorithm’s speed.

The continuum Lagrangian describing the theory is
N — :
S = /dtdx{2—g];Ai+¢a(($+z4{+m+/wo)wa} (5.1)

where A = (Ag, A1) is a vector field, ¢, at fixed « is a two component Dirac
spinor and « is a flavor index. In this section we elect to analyze the Ny = 2
theory, which allows us to use both Wilson and staggered fermions (the staggered
formulation can only support an even number of flavors). We will break from the
notation of Chapter 3 by denoting fields as A, rather than ¢ because our fields
now have more than one component.

Similar to the (0+1) case, our lattice action is formulated with compact aux-
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iliary fields and reads in the generic case [21]

S = Z]ZF (1 — cos Ay ( +Zw A (y) . (5.2)

T,V

The fermion matrix using for Wilson fermions is

DY =Gt r > [ i@ tibag (1 4y e Wby T (5.3)
v=0,1
where the Wilson parameter is £ = 1/(2m + 4) in (1+1) dimensions and where,
as before, the fermions are anti-periodic in time 1, (x + N;0) = —tho(z) and the
auxiliary fields are periodic in time A,(x + N,0) = A,(z). To reach infinite
volume physics faster, we choose periodic spatial boundary conditions for both
the fermions and the auxiliary fields.

We choose the following gamma matrices

70 = 03, 71 =0y, 75 =09 (5~4)

The continuum limit of this lattice theory encodes two flavors of Dirac spinors (a
Dirac spinor in 141 dimensions has two components [107]).
In the staggered fermion action, there is a single Grassmann variable at each

site. The staggered fermion matrix reads

1 . .
DQJS _ m(')*wy + 5 Z [UV(I)elA"(m)_‘—#éyoéx-s-u,y _ ﬁl(y)e_m”(y)_“é”o%yw , (55)
v=0,1

where the “staggered phases” n,(z) are no(z) = 1 and n(x) = (—1)*. Such an
action encodes two flavors of two component Dirac fermions in the continuum

limit as well. With these definitions, the action after integrating out the fermions
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reads

S = Nf(Z (1—cos(4,;) ) —71In detD(A)> (5.6)

T,V

where v = 1 for Wilson fermions and v = 1/2 for staggered fermions.

5.2 The Tangent Plane

As in the (0+1) Thirring model, we create our manifold of integration by first
shifting the original domain of integration into the complex plane and then flowing
it. However, in (1+1) dimensions there are both Ay and A;, unlike the (0+1) case
where there was only ¢. One finds that the higher dimensional analog of the
constant field critical point is in the imaginary Ag direction. That is, the action
is extremized at constant field point Ag(z) = i, Ai(z) = 0 for a particular «

which satisfies [21]

0
0A,(z)

S(Ao(z), A1(2))| ag(2)=ia, Ar(z)=0 =0 - (5.7)

Using the action Eq. (5.6), one can write the extremum condition implicitly as

the following “gap” equation

isinh(a) = g%y tr (D—l aif@) (5.8)

One can develop an intuition for this extremum by looking at the action Eq. (5.3).
The chemical potential couples only to the timelike links e*0®*#_If one makes the
substitution Ag(z) — Ao(x)+iu, then the phase fluctuations from the determinant
of the fermion matrix vanish because the fermion matrix is rendered real. This
substitiution renders the gauge term ) 1 — cos(Ay(z)) complex however, and
the solution to the gap equation balances the effect of these two terms. One finds

that the Takagi vectors attached to this extremum are purely real. This renders
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Figure 5.1: Here we plot the derivative of the action for constant field config-
urations Ay = i, A; = 0 at various chemical potentials for Wilson fermions.
Here N; = N, = 4, and i = 0.1, §*> = 1.0. One sees that the extremum of the
action coincides with the real plane when i = 0, and it begins to move up in the
imaginary direction as ji is increased.

the tangent space of the thimble at this extremum parallel to the real plane, as
with the (0+1) case. This once again makes simulations on the tangent plane
computationally inexpensive.

We presently solve the condition for the constant field extremum more explic-
itly. If we consider field configurations constant in spacetime, then the fermion
portion of the action can be diagonalized in momentum space. Once the action is
diagonalized, taking the determinant is trivial and one can show that for constant
fields (Ag(z), A1(z)) = (Ao, 0), the action (for Wilson fermions) is

NN, :
;2 (l—cos(AO))—Z In [1 + 8k% + 4k cos(Ag — po — ip) (1 + 2k cos(pl))]

Ppo,p1

S/Ny =

(5.9)
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Figure 5.2: Here we plot the derivative of the action for constant field configura-

tions Ay = iar, Ay = 0 at various chemical potentials for staggered fermions. Here
N, =N, =4, and i = 0.1, §% = 1.0.

Consequently the gradient of the action is

0 NN, 4k sin(Ag — po — i,u)(l + 2K cos(pl))

—(S/N;) = in(A
0A ( / f) J2 sin 0)+pozpl 1+ 8k2% + 4k cos(Ag — po — i,u)(l + 2k cos(pl))
(5.10)

These sums can be done numerically and the derivative is plotted for Ay = i«
in Fig. (5.1). It is clear from the plot that, at i = 0, the tangent plane is the
original domain of integration. As fi is increased, however, the tangent plane rises
up along the imaginary axis.

The analysis is much the same with staggered fermions. Assuming once again
a constant fields, the fermion term of the staggered action in momentum space is

equal to

1 ) ) ) ) 1 ) )
Sy = Z x(k) [ml + 503 (eZA‘)*“”kO — eﬂAD*““kO) + 301 (e”“1 — e”kl)} x(k)

ko,k1
(5.11)
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where y (k) is a two component spinor field with 0 < ky < 7 and 0 < k; < 27 and

ko, k1
= | PR (5.12)

w(ko + T, kl)

Integrating out the fermions then yields the effective action

NN, 1 ) . .
S/Ny = —2(1 — cos(Ay)) — = Z In [mZ +sin(Ag — ko — ip)” + sin(k;)?
9> 2
ko<m,k1
(5.13)
which leads to the derivative
0 NN, . 1 2sin(Ag — kg — i) cos(Ag — kg — 1
_(S/Nf): L Gin(A) — 5 Y [ 2( 0 = ko n) .(20 ko ;;)
0Ay g 2, b om? A+ sin(Ag — ko —ip)” + sin(ky)
(5.14)

Once again this derivative can be evaluated numerically. We plot the derivative
along the imaginary Ay axis in Fig. (5.2). One finds similar behavior for the

location of the extremum as in the Wilson case.

5.3 The Flow

In order to flow field configurations it is necessary to know the first derivative
of the action. Additionally, to flow either the jacobain or estimators thereof one
needs the second derivative of the action. We record these results in this section.
Those uninterested in the fine details of the calculation are encouraged to skip
ahead to the next section.

For Wilson fermions, the first derivative of the action is

0

sin A, (z)
DAL (2) (S/Nf) =T 3

92

oD
9A(2)

—tr (D' ) (5.15)
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where the derivative of the dirac matrix is

0 : (s o
<a A(2) D)gﬁy = M[(l—%)%éy,xme Aa(2) 1000 (1 474,)00 2 aly, L0 e () TH00 ]

(5.16)
The second derivative of the action is
0 0
S/N;) = 5.17
8Ag(z’)8Aa(z)( / f) ( )
cos Ay (2) ., 0D |, 9D . 0?D
=0, ,008————— +tr (D D —tr (D
e Y WEI Ly w e Al Gy wour s
with the second derivative of the dirac matrix
0 0
D = 1
<8Aﬁ<2/) 8Aa(z) ):L‘y <5 8)

- (7:2’%)50(#36,2,2’ [(1 - Va)ézzéy,x-FaeiAa(z)—i_“éao — (1 + ’)/a)5w,z+a(5y,ze_iAa(Z)_“6ao

For staggered fermions

8 1
ERE) (S/Ny) = —2 St (D™ T4, (Z)) (5.19)

where

a_ ! ida(z —iAa(z)—
(8Aa(z) D)xy = 57704(2) 0220y zt+al Aa(2)+18a0 4 Or.ztaly € Aa(2) udao] . (5.20)

The second derivative of the action with staggered fermions takes the same form
as with Wilson fermions with the only difference being the factor of 1/2 in the

staggered case. Finally, the second derivative of the Dirac matrix for staggered
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fermions is:

B o
<8A5(z/) 8Aa(z)D>my - (5.21)

= (i2/2)5a,/55z,z’77a (Z) [&uzéy,eraeiAa(Z)erao _ z,z+a5y,zefi‘4“(z)’“5a°] .

5.4 Results

The results in this section are from [21]. To determine physical parameters, we
measure two particle masses: a fermion and a boson. Denoting the lattice spacing
as a, we extract amy and amy from the long-time behavior of the correlators
(O}(t)of(o» and (O] (t)0,(0)) where the fermion interpolating field is Of(t) =
>~ (Z,t) and the boson interpolating field is Oy (t) = > (7, )5 (73) 150, (T, 1).
The subscripts label the flavor index of the fields, while the spinor index is left
implicit (so that ¢ for example is a two component object). Note that for a free
theory, my = 2my. We can therefore gauge the strength of the interaction by
the ratio m,/my: when this quantity is significantly different from 2 the theory
is strongly interacting. For Wilson fermions, we choose g = 1.0 and m = —0.25.
For such bare parameters, am; = 0.30(1) and am;, = 0.44(1). Since the boson
is bound by about half a fermion mass we conclude that the theory is strongly
interacting. For staggered fermions we choose bare parameters so that the physical
masses are the same as in the Wilson case.

We first explore the severity of the sign problem in this theory. In Fig. (5.3)
we show results obtained on a 10 x 10 lattice with Wilson fermions on various
manifolds. In the right half of the figure we plot the average sign, which is a
measure of the sign problem; when the average sign is close to 1 the sign problem
is gentle, and when the average sign is close to 0 the sign problem is severe. The
black points are obtained on the standard domain of integration. One sees that the

average sign drops to zero at about a fermion mass; this is a basic manifestation
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Figure 5.3: Here we plot the density of fermions per flavor (left) and the average
sign (right) as a function of the chemical potential in units of the fermion mass.
In the left plot, the upper horizontal line is the saturation density and the dot-
ted curve corresponds to the free gas result; we grayed out the points with the
errorbars exceeding 0.3 to make the figure easier to read. In the right figure, the
black points are calculations on the standard domain of integration where the sign
problem is severe, the red points are calculated on a shifted contour, and the blue
points are calculated on a shifted and flowed contour. The ever increasing average
sign demonstrates that the holomorphic gradient flow tames the sign problem.

of the sign problem. We also note that when p ~ m¢, fermions begin to populate
the box. It appears that the sign problem quickly worsens when the box begins
to be populated. We don’t have a solid understanding of why this occurs at this
time. The red points come from integrating on the tangent plane to the critical
point in the constant field subspace. One sees that the sign problem is tamed for
p/my ~ 3, which is a substantial improvement over the tangent plane. A key
point to note here is that calculations on the tangent plane cost just as little as
calculations on the real plane, and so integrating on a shifted manifold is useful. In
order to probe higher chemical potenials one must flow the shifted plane. Flowing
the shifted manifold by a flow time 7" = 0.4, one obtains a manifold whose average
sign is plotted in blue. It is clear that the sign problem is solved for all values of
the chemical potential.

It is helpful to see how the sign problem is reflected in calculations of observ-

ables. We present calculations of the density on the real plane (black), tangent

73



plane (red) and flowed manifold (blue) in the left half of Fig. (5.3). The smallness
of the average sign for real plane calculations is reflected in the dramatic increase
in the error bars on the density after u/m; ~ 1. This rapid increase in statistical
uncertainty causes one to lose all predictability. One sees similar behavior in the
red data: while the average sign is under control and distinguishable from zero
the statistical uncertainty on the density is manageable and the Monte Carlos are
predictive. However, once the average sign drops to zero at around p/my ~ 3, the
error bars blow up and one loses accuracy. Finally, it is clear that the statistical
uncertainty is under control for all values of the chemical potential on the flowed
manifold, reflecting the fact that on this manifold the sign problem is tamed.

We pause for a moment to remark on the behavior of the error bars in the
density plot of Fig. (5.3). It will be noticed that the size of the error bar fluctu-
ates wildly from point to point as the density is increased. As explained in the
Introduction, until the average sign is distinguishable from zero, observables are
completely unknown and the error bars are correspondingly large.

We further note a useful, albeit loose, rule. By standard error analysis, the

statistical uncertainty in any observable O is proportional to

1
5O ~ o (5.22)

where o is the average sign. This is because for a function f(z,y), the relative

error due to uncertainties dx,dy in z,y is given by 0f/f = \/(dx/x)? + (0y/y)>.
This means that when the average sign is close to zero, much can be gained from
a small improvement in the average sign. For example, if the average sign goes
from 0.001 to 0.01 by a suitable improvement of the manifold of integration, then
the statistics needed for a specified error bar goes down by a factor of 100.

Having demonstrated that the sign problem is severe at large chemical po-
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Figure 5.4: Fermion density as a function of chemical potential on two different
volumes, 10 x 10 from Fig. (5.3) and 10 x 20 using the same parameters. Dotted
line is the free gas result.

tentials and having showed that the holomorphic gradient flow can cure it for a
particular set of parameters, let us explore the efficacy of the method for differ-
ent parameter sets. We will consider the infinite volume, zero temperature and
continuum limits in that order.

First we demonstrate that the sign problem is tamed even for lattices close
to the thermodynamic limit. As expected from standard arguments [17], we find
that the severity of the sign problem increases as the volume grows, however we
are able to tame the growing sign problem with the holomorphic gradient flow.
In Fig. (5.4) we compute the density for Wilson fermions with the same couplings
specified in Fig. (5.3). We calculate on manifolds flowed by 7' = 0.4 for both
volumes. It is clear that the sign problem is under control in both calculations.

Next we consider the zero temperature limit and demonstrate that our method
can handle temperatures low enough to be deep in the degenerate limit and exhibit
the “Silver Blaze” phenomenon [108]. We find that the sign problem worsens as
the temperature is decreased, but over the parameters studied the sign problem

remained manageable. In Fig. (5.5) we plot the density as a function of the
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Figure 5.5: (n) as a function of p for several temperatures using staggered
fermions. The horizontal line is the density that corresponds to one particle in
the box (per flavor). The solid curves are splines interpolations of the data points
to guide the eye. The dotted curve represents a fermion free gas in the staggered
discretization on a 40 x 10 with the dimensionless mass set to the value of amy.

chemical potential for temperatures ranging from “hot” (7//m; = 0.38) in red to
“cold” (T'/my = 0.09) in blue. The lattices for these simulations range from 10x 10
to 40 x 10. Two clear plateaus emerge in the cold calculations at p ~ 1.0 and
1~ 2.0 There are two reasons this is a non-trivial result. First, standard Monte
Carlo methods can’t reach temperatures where this step structure emerges because
the sign problem is too severe. Second, the two step structure indicates that our
simulations are not trapped to the main thimble. The holomorphic gradient flow
solves the sign problem by gradually creating pockets of high probability and
stationary phase, so there is always the worry that a simulation is trapped around
a single local minima attached to one thimble. We can be reasonably confident
that this is not the case in our simulations however because it has been shown,
at least in (0+1) dimensions [109], that an integration around a single thimble
leads to a linear increase in the density. The fact that we find a step structure
in the density indicates that field space is appropriately sampled. Note that we

find staggered fermions to have a less severe sign problem than Wilson fermions,
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Figure 5.6: Particle density as a function of the chemical potential for different
lattice spacings, for fixed volume (m;L =~ 3.31) and temperature (7//m; =~ 0.302).
The solid line represents a spline interpolating through finest lattice spacing data
points. The dotted line represented the fermion free gas result. Horizontal lines
indicate integral number of particles in the box.

so in these cold temperature simulations we use staggered fermions. Furthermore
are staggered fermions are 8x cheaper than Wilson fermions. The calculations of
Fig. (5.5) were done on the tangent plane.

Finally, we demonstrate that the holomorphic gradient flow can reach a regime
“fairly close” to the continuum limit. Again we use staggered fermions and we vary
the lattice spacing in the ratios % : f—g : % while keeping the ratio my,/m; ~ 1.70,
as well as the temperature and volume fixed. We find that the sign problem varies

little with the lattice spacing, rendering the calculations of Fig. (5.6) possible on

the tangent plane.
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Chapter 6

Sign-Optimized Manifolds

In this chapter we develop an approach for generating manifolds with tame
sign problems which is quite different from the holomorphic gradient flow, the
so-called “sign-optimized manifold” method [22,48]. Recall that the sign problem

makes computing observables difficult because in the reweighting expression

0y = 0" e s 6.1)

<efilrn S>Re g

the denominator and the numerator are exponentially small in the spacetime vol-
ume. The objective of the sign-optimized method, just like that of the holomorphic
gradient flow, is to make the average sign as large as possible. The sign-optimized
manifold method is also a deformation of the domain of integration of the path
integral (and is therefore correct due to Cauchy’s theorem), however the means
by which this is achieved is quite different than with the holomorphic gradient
flow. Instead of flowing the original domain of integration, one proposes a family
of complex manifolds parameterized by a few real parameters, then systematically
hunts around in manifold space for the optimal manifold to integrate over. In this
chapter we will develop this idea in detail then apply it to the (2+1) Thirring

model at finite density in the next.
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6.1 The Method

Consider a lattice theory with a sign problem. Call the action S and let the
the field variables be denoted as A, ;. Then on the original domain of integration
the average sign (e7™ %), 5 is exponentially small in the spacetime volume [17].
It can be made larger with the sign-optimized manifold method, which is the

following procedure:

1. Propose a family of complex manifolds M(X) parameterized by real numbers

X. One typically does this by explicitly specifying the functions Amw =

N

oA ).

2. The average sign is locally maximized over the family of manifolds. This is

done with a gradient descent algorithm in our work.
3. Observables are calculated on the obtained manifold.

The details of the first step vary from theory to theory because what a “good”
manifold looks like depends on the details of the action S. Therefore we will
postpone a detailed discussion of this step until we begin the analysis of the
(2+1) Thirring Model at finite density. The second step warrants discussion. The
~ilm S

average sign, which we denote as () = (e Re 5, 18 a function of X:

fM(X) DA ¢S
DA e—Re S(A)

(0)(X) = (6.2)

fM(X)

The average sign is very difficult to compute stochastically in general because it is
a globally defined quantity, requiring an full integration to calculate, and further-
more it suffers from the sign problem. Luckily, as we will show momentarily, the
gradient of the modulus of the average sign is sign-problem free, and is therefore

easy to compute. This means, given a family of manifolds, without once com-
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puting the average sign of a member, it is possible to find the member with the
largest (in modulus) average sign.

To calculate the gradient of the modulus of the average sign it suffices to
calculate its logarithm because In(x) is monotonically increasing. We therefore
need to find the point where V) In|(c)| vanishes. To compute this derivative
explicitly, it is necessary to include the jacobian associated with the choice of

coordinates. We will denote the jacobian matrix J(A;\) = %A(A; X). Then

 Jaw DA e Re(57ndet)) (Re W, S(A) — Re tr(J7'V,J))
o fRN DA e—Re (S—In detJ) ’

Vi Inf(o) (6.3)

Re (S—In detJ) appears in

The calculation of Eq. (6.3) is sign problem free: only e~
the Bolzmann weight. Using Eq. (6.3) we locally minimize the modulus of the
average sign using a stochastic gradient ascent alogorithm [110]. In practice this
is done as follows. First one chooses an initial set of parameters Xl. Then the
gradient, being sign-problem free, is estimated by computing Eq. (6.3) with a
short Monte Carlo. Based on this estimate of the gradient, a small step is taken,
giving a new set of parameters Xg. This process is repeated many times, causing
the modulus of the average sign to gradually increase. Once the average sign

reaches a plateau, say at the parameters XN, the process is terminated and the

manifold M (Xy) is used for calculating observables.
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Chapter 7

Application 3: 2+1 Thirring Model

7.1 Continuum Theory and Lattice Action

We now apply the sign-optimized manifold methd to the (2+1) Thirring model

at finite density, whose continuum action is
S= [at@a{ 2 17 3+ id 0 7.1
- T @ M+¢a( + +m+:u’y)¢a . ()

As with the (141) dimensional model, we choose Ny = 2. Little is known about
the finite density properties of this model. To my knowledge, beside the calcula-
tion presented in this chapter, the only other lattice study of the (2+1) dimensional
Thirring Model at finite density is presented in [111], where Complex Langevin is
used. While our goal here is to try to solve as difficult sign problems as possible,
for the purpose of developing robust techniques, the (2 + 1) Thirring model at
finite density is also phenomenologically interesting, appearing in effetive models
of high-T, superconductors and graphene (see references in [112]).

Our lattice action is a direct generalization of the staggered action from (1+1)
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dimensions and reads:

S = Z %(1 —cos A, (x)) + mZ@mez (7.2)

1 . - e
T 92 Z () [¢meZA”(x)+M6“0¢:c+u — Yprp€ Ap() u%owz]
zp

where x ranges over a 3 dimensional hypercbic lattice, v = 0,1,2, n,(z) =
(—1)*ot-F*u=1 and 1), is a single component grassman variable at lattice site

2. The family of manifolds we propose is

AO,a: = Ao’x + Z()\l + )\2 COS Ao’x + /\3 COS 2A0,a:)7 (73)
Al,x = Al,xv
AQ,x = AZ,JJ .

For compact notation let us call f(Ag,) = A1 + Az cos Ag, + Az cos 24, , so that
flo@ = Ap.+if(Ap.). Notice that we are choosing to complexify only the timelike
links, and furthermore the complex variable flw only depends on Ay ,, and not on

Ay, with y # . This means that the proposed family of manifolds is separable

and that the jacobian is diagonal

Sy = OzyOpw (if/(AO@)(SMO + 0 + 5u2) . (7.4)

7.2 Proving Sufficient Conditions

For Eq. (7.3) to be a legitimate deformation, our proposed family of manifolds
must satisfy the stipulations of Cauchy’s theorem. This means that it has to be
possible to smoothly deform the original domain of integration (S;)" to the final
manifold without crossing any poles and without changing the behavior of the

integrand at the boundary.
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Figure 7.1: Here we repropduce Fig. (7.1) to guide the eye. Deformed manifolds
must be continuous for Cauchy’s Theorem to hold.

Consider

A(Ao,x)t = A()’x —|— th(A()@) (75)

Then at ¢t = 0 we have the original manifold and at ¢t = 1 we have the final
manifold. Furthermore the deformation is smooth because it’s indexed by a linear
function. Also, since the original domain of integration is (S1)", it is necessary
that the proposed family of manifolds are 27 periodic. This periodicity ensures
that the manifold is not ripped at the edge as t increases, which must hold for the
deformation of the manifold to be smooth.

Clearly the deformation Eq. (7.3) is 27 periodic. Indeed, one may inter-
pret the function f(Ap.) = A\ + Aa2cos Agx + A3cos2A4g, as the most general
expansion of a 27 periodic function up to third order in a Fourier series. Fi-
nally, no poles are crossed during the deformation process because the integrand

exp(—>_,, (1 —cos A, ;)) det D(A) has no poles in the complexified field space.

7.3 Motivation for Manifolds

The form of the manifold Eq. (7.3) is motivated by more than just satisfy-

ing Cauchy’s theorem. One immediately sees that the average sign for a sign-
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optimized manifold must be larger than the average sign on the standard domain
of integration. This is because the original domain of integration is included in the
proposed family of manifolds. Now from the (141) dimensional Thirring model we
know that a constant vertical shift in the imaginary direction of the Aq variables
alleviates a fair amount of the sign problem. This is the origin of the \; term.
What is interesting is that the A; value which is obtained in the gradient ascent is
not equal to the vertical shift required to place the integration domain parallel to
the tangent space of the constant field extremum [22]. There is a small difference
between \; and the position of the tangent plane. We interpret this result as an
entropy effect; it is not quite optimal to simply shift the domain of integration to
the extremum of the action, fluctuations of the field about this minima (entropy)
can be incorporated by an adjusted shift in the imaginary direction.

Next, note that we propose a separable family of manifolds. By separable
we mean that M(\) can be written as a direct product of smaller dimensional
manifolds (in the same way that R® = R x R x R). We do this for several reasons.
First, the jacobian associated with the manifold is diagonal and therefore easy to

compute and the log determinant of Eq. (7.4) can be written exactly
In detJ(A; X) = > " In(1+if'(Ao,)) (7.6)

This is in stark contrast with the holomorphic gradient flow where the jacobian
cannot be written analytically and is very expensive to compute. We will see that
while the jacobian associated with the family of manifolds are inexpensive to com-
pute, these manifolds are generally less efficient at taming the sign problem than
those generated with the holomorphic gradient flow. There are two competing
factors, the cost of the jacobian and the improvement of the average sign. We

find that, at least in the case of the (2+1) Thirring model (which has a severe
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sign problem) the balance between the expense of the jacobian and effectiveness
of the manifold is in favor of the sign-optimized manifolds.

In addition to computational convenience, there is a theoretical motivation for
proposing separable manifolds. In the limit © — oo where the lattice is saturated

with particles, the path integral factorizes [111]:

= [paes—([aoe)” (7.7

where S is a function which we’ll write down in a moment and N is the number

of lattice sites. To see that the path integral does factorize, consider the action

S = Z %( —cos A,(z)) +m Z Yoty (7.8)

1 VK 7 —1

In the limit that u becomes large, the action can be approximated to exponential

precision by
N 1Ap(z)+
S:Z (1 —cos A, (z ZI/J e T ) 1o (7.9)
in which case the determinant of the dirac matrix can be written exactly

det D(A) = H exp (Z (iAo + 1)) (7.10)

and so after integrating out the fermions the action reads

N N
S ~ Z (1 —cos(Apz)) — (1Ap. + 1) + g_2f<1 —cos(A1z)) + g_2f(1 — cos(Az))
(7.11)

proving the claim that the action is separable.
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Another beneficial byproduct of the fact that we can write In detJ explicitly,
and a primary motivation for proposing separable manifolds is that we are able
to use a hybrid Monte Carlo (HMC) algorithm when we simulate this model. In

the HMC algorithm, it is necessary to frequently calculate the derivative

0 ~ -
a—A(S((A)) — In detJ(4; ) . (7.12)

Computing this derivative involves knowing a%J (A; X), which is a relatively in-
volved procedure on flowed manifolds [92]. On the other hand, the derivative of

the jacobian Eq. (7.4) can be written explicitly

0 - plr
aTny’lw = (5,)05” [5xy5wj(lf (A()@)éuo)} (713)

pz

The ability to switch from Metropolis to HMC sampling yields a large speed-up.
We conclude this section by recording the explicit expression of V,Re (S —

In detJ ), which is needed to carry out the manifold optimization:

ViRe (S(A(A)) — In detJ(A)) (7.14)
85 - o
~ Re [8—(A(A)) VAV, Z In(1+if (AOx))]
i3, e (A(4)) e THP (o)
=Re | iy, cos(Ao) 5o (A(A)) | —Re | ¥, o)
i3, cos(2A0.) 5o (A(A)) >, e

7.4 Hybrid Monte Carlo on Sign-Optimized Manifolds

In this section we detail our Hybrid Monte Carlo algorithm for integrating

on sign optimized manifolds. To begin, recall that Cauchy’s theorem gives the
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following set of equalities:

7 = / DA e 5® (7.15)
(

= [ DAeSA (Cauchy’s Theorem)
M

:/ DA det J(A)e_S(A(A)) (choose coordinates),
(SN

where the manifold is defined in coordinates in Eq. (7.3), and the parameterization
manifold is (S;)". We wish to integrate over this sign-optimized manifold using

the reweighting technique. This means we want to sample fields according to

e"Re S det J(A) e ReSey(A)
"~ [ DA e ReSW[det J(A)| ~ [ DA e ReSers

p(A) (7.16)

where we have defined the effective action S;;(A) = S(A(A)) — In detJ(A), and

then compute observables from

<Oe_ﬁm Sess > Re Seyy

<efiIm Seff>Re S

(0) = (7.17)

An efficient way to sample configuration space according to Eq. (7.16) is the
“Hybrid Monte Carlo” (HMC) method [113] a standard method in lattice QCD.
In this approach, one defines a hamiltonian by adding to the action (or in this
case Re S) a kinetic term with new auxiliary momentum variables, then generates
proposals by alternating between momentum and field updates which are gener-
ated by discretized Hamiltonian dynamics. The new configuration generated in
this way is distant in field space yet has a high probability of acceptance. This
makes for a markov chain which decorrelates quickly, and therefore results in an
efficient sampling of field space.

To define an HMC algorithm on our sign-optimized manifold we first define
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the Hamiltonian
Hir A) = J(A) g4 Re S(A(A 7.18
(m, )—2Z7Tmu( (A~ J(A) ™ )awr ywTar + Re S(A(A)) (7.18)
Tp

where J is the jacobian Eq. (7.4). If (m, A) space is then sampled according to

the Bolzmann distribution

e—H(ﬂ',A)

A) = 1

o~ Re Scpp(4)

then the distribution of interest p(A) = TDA e ST

can be obtained by a

marginalization over w. To see this, note first that
1 _ _ N
/DTI‘ exp(—é ZWW(J(A) 1TJ(A) Yawr e Torw) = /7 |det J(A)]  (7.20)
ap

Therefore

[ Dr e~H@A) e~Re S| det J (A))|
n o) — _ =p(A) .
] ot ) = e ~ e )~
(7.21)

Our task, then, is to sample (7, A) space according to the distribution Eq. (7.19)
then throw out the 7 configurations collected. Doing so will marginalize over the
momentum distribution, yielding the desired distribution Eq. (7.16) over fields A.

To carry this program out we must first sample according the Bolzmann dis-

tribution Eq. (7.19). Let us us first write out Eq. (7.22) more explicitly:

H(r,A) =Y [% + 72, + 72,] + Re S(A(A)) (7.22)

xT

= K(m, A)+ U(A)

Our HMC algorithm is the following:
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1. Begin with configuration (m, A)

1 T 4 =1 _1
. . . 7 (JII) T
2. Draw 7« from the distribution p(7’) = —**——+——— and replace the
[ Dn’ e 3™ CAr

configuration by (7', A).

3. Generate a new configuration (7', A) — (7", A”) with any time reversible

symplectic integrator of the Hamiltonian equations of motion.

4. Accept/reject final configuration (7, A) with probability min {1, e~ (H#{msA)=H(mA)Y

We will relegate to the appendices a proof that the procedure above generates a
Markov chain in (7, A) space which converges to the distribution Eq. (7.19). The
details of how we implement steps 2 & 3 of the algorithm are also presented in

the appendices.

7.5 Results

We now present calculations of the thermodynamics of the (241) Thirring
Model using the sign optimized manifold method. Here we take Ny = 2 and
we set m = 0.01 and g = 1.08 in the staggered action Eq. (7.2). With these
bare parameters, we fix the physical scales by measuring the masses of a fermion
and a boson, defined to be the lowest energy excitation coupled to the inter-
polating operators (O;(¢)O(0)1) and (Oy(t)O0y(0)7), where O;(t) = > (Z, 1)
and Oy(t) = Y (—1)%0ter+e2y(7 t)oh(F,¢). The operator O can be seen to
be a pseudoscalar, equivalent to @ = 1% in the continuum, by noting that
Tiy = (—1)¥*®+e24, is the staggered implementation of the 4* matrix. Comput-
ing masses on a spatial volume of L? = 10? we find m = 0.46(1) and m;, = 0.21(1).
This indicates that the system is strongly coupled since the boson is so bound that
its mass is smaller than the fermion.

First we demonstrate that the optimization procedure converges to an optimal

manifold. In Fig. (7.2) we plot the evolution of parameters (A1, Ay, A3) which de-
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Figure 7.2: Here we plot the evolution of manifold parameters (A1, A2, A3) as
a function of the number of steps Ngep of the optimization procedure. Here
m = 0.01, g = 1.08, u = 0.80 and the lattice size is 43. It can be seen that all
three parameters converge to an approximately fixed value, with the stochastic
fluctuations in the asymptotic value small compared to the parameters themselves.

fine the sign-optimized manifold for ;1 = 0.80 on a 42 lattice as a function of the
optimization step. We randomly initialize parameters and find that, independent
of the initial set of parameters the simulation converges to a locally optimal man-
ifold over the course of a simulation. The evolution of parameters in Fig. (7.2) is
typical for the range of thermodynamic conditions studied.

We now quantify the improvement of the average sign on our sign-optimized
manifolds. In Fig. (7.3) we plot log |(co)| as a function of the chemical potential
for several values of the inverse temperature 5. In black is the average sign in a
10 X 6 x 6 lattice, computed on the original domain of integration (S;)". For small
values of the chemical potential, where the average sign is large enough to be easily
computed, we find and exponential decay with the chemical potential. This rapid

decay of the average sign is why we cannot use the original domain of integration to

90



&
b B=12
o B=10 |
o /}:8 i
[o] /8:4
1.8 2.0

Figure 7.3: Plot of the log-magnitute of the average sign as a function of the
chemical potential for inverse temperatures § = 2,4,...,12 on 3 x 6 x 6 lattices.
The black points are a calculation of the average sign on the original domain of
integration (S;) on a 10 X 6 x 6 lattice. We compute for chemical potentials
between 0.0 < p < 0.7, then plot for substantially larger chemical potentials
= 1.6,1.8.2.0. The revival of the average sign at large chemical potential is a
result of the fact that the path integral factorizes for high u, which increases the
effectiveness of our separable sign-optimized manifold.

study this model. The sign is larger however on the sign-optimized manifolds. For
any temperature there is still an exponential decay of the average sign, however
the rate of this decay is smaller on sign optimized manifolds. This means that sign-
optimized manifolds are exponentially better than (S;)Y for integration in terms
of the statistics needed to compute observables with a specified error, however
for large p computing observables still requires high statistics. For example, the
simulations in Fig. (7.3), required between 10? and 10® configurations. Due to the
speed with which the Jacobian can be calculated and the HMC on the manifold,
these calculations were done with computational power equivalent to ~ 20 laptops
run over a few weeks.

With the sign problem under control we can now calculate observables. Let
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Figure 7.4: Here we plot the chiral condensate (1)¢) as a function of the chemical
potential for the same ensembles used in Fig. (7.3). We see the typical behavior
of a chiral transition: as the temperature is decreased the condensate develops,
and as the chemical potential is increased the condensate decays. The steepness
of this transition is sharpened as the temperature is decreased. The solid curves
are interpolations of the form (1)9) (1) = co + citanh[ca(p — c3)].

us explore the chiral transition of this model which has until now been out of
reach. Since the fermion in the theory has a non-zero mass (am; = 0.46(1)) we
expect the chiral condensate (¥1)) # 0 at zero temperature and zero chemical
potential. Looking at Fig. (7.4) we find this to be the case. Here we use the
same ensembles as in Fig. (7.3); we are computing on 3 x 6 x 6 lattices. As the
temperature decreases at zero chemical potential the chiral condensate develops.
Having developed a condensate, as the chemical potential is increased there is an
abrupt change in the chiral condensate from a region (/1)) # 0 at low u to a region
where (1)9)) ~ 0 at high p which indicates the presence of a chiral transition in
the (2+1) Thirring model.

The calculations of Fig. (7.4) can be converted into a phase diagram, which is
plotted in Fig. (7.5). The plot is a heat map of a smooth interpolation of the data

in Fig. (7.4) where red denotes high chiral condensate and blue/purple denotes
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Figure 7.5: Here we plot a heat map of a smooth interpolation of the data in
Fig. (7.4). Red denotes high chiral condensate while blue/purple denote little
chiral condensate. The purple curve encircling the lower left quadrant is an inter-
polation between points where (19 is 0.5 of its maximum value (at u = 0) at a
given temperature. The peripheral lines around the thick purple lines interpolate
between points where (1)) = 0.45,0.55 of its maximum value. While we have
not performed continuum limit extrapolation, it is clear that some features of the
expected QCD transition are captured in this model.

little chiral condensate. We have not done a systematic study of the continuum
limit, however it is clear that some expected features of the QCD phase transitions
appear in this model.

Since we have an explicit fermion mass, a second order chiral transition is not
expected in this model because the theory is not chirally symmetric. However,
one may wonder if at non-zero am; this transition is first order. An indication of
a first order transition would be a sharpening of the jump in the chiral condensate
as the volume grows. To that end, we compute on a pair of lattices 10 x 10 x 10
and 10 x 6 x 6 at fixed temperature. The jump in the chiral condensate can
clearly be seen to sharpen as the volume increases in Fig. (7.6). The sign problem
is extremely severe on the 10 x 10 x 10 lattice and it remains for future work to

devise strategies to tackle larger lattices and colder temperatures.
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Figure 7.6: Plot of the chiral condensate (1)) on 10 x 10 x 10 and 10 x 6 x 6
lattices. The chiral transition is seen to sharpen as the volume is increased, hinting
at the existence of a first order transition in this model.
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Chapter 8

Appendix

In this appendix we record details of our Hybrid Monte Carlo algorithm used
to integrate on sign-optimized manifolds. We first demonstrate that our proposal
method satisfies detailed balance. We then demonstrate that our integrator used
for Hamiltonian dynamics is symplectic. Finally, we record specific details of the
integrator in the case of the (2+1) Thirring model. The details are non-trivial

because the manifold of integration is curved.

8.1 Detailed Balance

It is a standard result in Markov Chain Monte Carlo that, to prove that
the Markov chain converges to the canonical distribution with respect to the
Hamiltonian Eq. (7.22), it is sufficient (but not necessary) to demonstrate that
the transition probability that defines the Markov Chain satisfies detailed balance

[114]. That is, it suffices to demonstrate
PI"Ob(?T, A)T((?T, A) — (7Tf, Af)) = Pl"Ob(?Tf, Af)T((Wf, Af) — (71', A)) (81)

where Prob(w, A) = drdA # is the probability that the fields lie in a phase
space volume drdA centered around (7, A) and where T'((w, A) — (7s, Af)) is the

probability of transitioning from (7, A) to (7, Ay). Our transition probability is
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the composition of two transitions:
T = T2 o} T1 (82)

where

e~z (D)

B J D)y emam Ty

Ty((m, A) = (74, A)) (8.3)

is the probability of transitioning from (m, A) to (7, A) due to T;. Notice that

this step only changes the momenta. The transition probability 75 is defined as

e_H(ﬂvaf)

Ty((m, A) = (my, Ag)) = 0((my, Ap) = @(m, A)) x min{l, ——z=-}

(8.4)
where ¢ is a 2N dimensional delta function on phase space and where ® is the sym-
plectic reversible map from phase space to phase space. Note that by reversibility

we mean P satisfies

O(D(r, A)) = (, A) (8.5)

Symplecticness means that, if we denote the jacobain matrix of ® as D®, then
D® satisfies the relation

DOTjD® = j (8.6)

-1
where j is the canonical 2-form on phase space j = [115]. One of the
1 0

properties of a symplectic transformation is that it leaves volumes of phase space
unchanged. That is if dwdA is a patch of phase space and of dn’dA’ is the image
of this patch under ®, then

dr'dA" = drd A (8.7)

96



That this holds for a symplectic transformation is easily seen from Eq. (8.6):

taking the determinant of both sides one finds

det D®? = det j* =1 (8.8)

Now, if each transition probability satisfies detailed balance, then so does their

composition. Note that

e H(mA) o= LTI () g

p<ﬂ-7 A)T1(<7T, A) - (Wf7 A)) = dﬂ_dA Z f D’TF} e_%ﬂ.fT(J(A)TJ(A))—lﬂ.f (89)
and
e—H(ﬂ’f,A) e—%ﬂ'T(J(A)TJ(A))717T
p(ry, A)T1((mf, A) = (7, A)) = dndA (8.10)

Z [ Drl e 3 U@ Ir

so 17 satisfies detailed balance. To see that 15 satisfies detailed balance, we once

again compute both sides of the detailed balance condition:

o—H(mA) e—H(mpAy)
p(m, ATa((m, A) = (74, Af)) = drdA 0((ms, Ag)=®(m, A))min{l, ——e—-}
(8.11)
and
e—H(ﬂ'f,Af) e_H(TrvA)

p(mp, Ap)Ta((mp, Ap) — (m, A)) = drypd Ay o((m, A)—@(my, Ay))min{1, -

VA -H (ﬂf:Af)}
(8.12)
Now, since the map is symplectic, drydA; = drdA. Since the map is also re-

versible the following holds:

O((ry.Ap) = B(r. ) = by Ap) = (rA) (819

= 5((m, A) — ®(r7, A))) (8.14)
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—H(m,A
Let’s now suppose that % < 1. Then
e

—H(my,Af) —H(m,A)
plongs APy, Ay) = o A)) = dmgd Ay (. 4) = @y, A {1, )
(8.15)
e—H(nf,Af) e_H(W’A)
= dﬂdAT5((7ra A) — &(my, Af))m
o—H(m,A)
— drdA 8((myp, Ay) — ®(m, A))
o—H(r.A) e~ H(ms,Af)
— drdA 0((ms, Ay) — ®(m, A))min{1, -}

= p(m, A)Tz((m, A) — (7, Ay))

It’s clear that the same holds when % > 1 and so T5 also satisfies detailed

balance. Therefore our HMC algorithm satisfies detailed balance and therefore

converges to the canonical distribution with respect to H(m, A), which induces a

o~ Re Scpp(4)

sample of the distribution desired p(A) = ToA RS

upon a marginalization

over 7.

8.2 Selecting Momenta and Symplectic Evolution

Now that we have demonstrated that the HMC satisfies detailed balance and
therefore converges to the canonical distribution, we explain how momenta are
selected and we discuss the symplectic, reversible map ®. To select momenta

according to the probability

—17rT(JTJ)*17rD
e 2 T
Prob, () = p(m)Dr = [Dn o3 T () 1n (8.16)

it suffices to select a momentum 7 distributed as

—3n N
Prob,(1) = fD—” (8.17)
e
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and then define n = (J7J)™'/27. Indeed, consider a particular momentum 7*.
The probability that this momentum is selected is the probability that n =
(JTJ)"Y27*. So

Prob(7*) = Proby(n = (J1.J)71/?x%) (8.18)
B ef%ﬂ*T(ﬁJ)*lfr*Dn
= f Dneféﬂ'*T(‘]T'])_lﬂ-*
e VT D det (1)
[ Dydet(Jt)) e bW I

eféﬂ*T(JJfJ)*lﬂ'* Dr

1/2

— f Dﬂ- ei%ﬂ,*T(JTJ)flﬂ*

= Proby (1)

The benefit of this approach is that there are exist very efficient algorithms for
sampling from Gaussian distributions, so the sampling of the n variables is triv-
ial. Furthermore, due to the sparsity of the jacobian, the multiplication required
to transform from n to 7 = (J'J)"/2n is cheap. In fact, the multiplication is

implemented analtically:

0z = 1 —i—f’l(A )277090 (8.19)
Tie = Ma (8.20)
Tow = Moz (8.21)

(8.22)

In our calculations, we use an symplectic map ¢ which is implicit. & is the
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composition of the following two maps

Anti/2 _ Ay + 2V H(nn, Ani1)2) (3.23)
TN+1/2 TN — %VAH(WN, AN+1/2)
AN+ _ Ansip2 + 5V H (T, Angys) (8.24)
TN+1 Tn+1/2 — SV AH (Tni1, Aniig2)

The first step is typically called an “Euler A” integration while the second step is
called an “Euler B” integration [115]. Here At is a parameter which is chosen at
the start of the simulation and VH is a vector with components g—g and V4 H is
a vector with components g—i. These maps are discrete approximations to Hamil-
ton’s equations. Since they are discretized, they will not conserve the Hamiltonian
exactly. In spite of this discretization, this map is ezactly reversible and symplec-
tic, and a consequence of the reversibility is that the error in the Hamiltonian at a
given time step is O(At?). This quadratic dependence on At leads to an approx-
imate conservation of H and therefor a high acceptance rate. Furthermore, note
that Eq. (8.23) is an implicit equation in Ani/ while Eq. (8.24) is an implicit
equation in myy1. Therefore for this map to be well defined, At must be small
enough that the implicit equation is well defined on all of phase space. We find
this to be easily satisfied for At ~ O(107!) in our simulations.

We presently demonstrate that our map ® = Euler B o Euler A is symplectic
and time reversible. To show that & is symplectic, we use the techniques of
differential forms described in detail in [115]. The theorem we make use of is the

following

Theorem 1 If dq A dp is the canoncial 2-form on phase space, acting on pairs of
0 -1 q q
vectors ¢ and n as (dg A dp)(¢,n) = (Tin = (T n if and —
1 0 p p
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under some map ®, then ® is symplectic if dg N dp = dgNdp [115].

This theorem is useful because all that is required to check the symplecticness of
a map is the computation of a few differentials. To show that our map (Eq. (8.23)
and Eq. (8.24)) is symplectic, it suffices to check that each step is symplectic
because the composition of two symplectic maps is symplectic. Computing the

differential of Eq. (8.23)

dAN+1/2 dAN + % [vﬂ—vﬂ—H(ﬂ'N7 AN_H/Q)CZTFN + VWVAH(’R'N, AN+1/2)dAN+1/2i|

dmn 4172 dmy — % [VwVAH(WM Anti2)dnn + VAV aH (T, AN+1/2)dAN+1/2}
(8.25)

Rearranging, one finds

At At
dAN+1/2 = (1 — TVNVAHOTN, AN+1/2))_1 [dAN + TVvaH(W]\h AN+1/2)d7TN

(8.26)

At At
d7TN+1/2 = d’/TN(l — TVWVAH(’/TN, AN+1/2)) — TVAVAH('/TN, AN+1/2)dAN+1/2

(8.27)

Using the fact that dAny1/2 A dAn41/2 = 0 one finds that

At
dAny12 NdTing172 = dAN112 A [dT"N(l — 7VWVAH(7TN7AN+1/2))] (8.28)

At
= |:dAN+1/2(1 - TVTFVAHOTN? AN+1/2))] N d?TN

At
= |:dAN + TVﬂ—Vﬂ-HOTN, AN+1/2>d7TN] N dﬂ'N

:dAN/\d’YTN

where in the last line we have used dny A dny = 0. Therefore the first step
in our discretized Hamiltonian evolution is symplectic. A nearly identical set of

manipulations demonstrates that the second step is also symplectic.
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The final ingredient needed to show that out numerical method converges to
the canonical distribution is to demonstrate that ® is time reversal symmetric.
To do so it suffices to show that the method is self-adjoint [115]. If one labels a
method as ¥, for example 15, could be the Euler A method defined in Eq. (8.23),

then the adjoint method is defined as

Ya = VA (8.29)

If we can show that the adjoint of Euler A is Euler B, then the proof is finished

because

(Euler A o Euler B)* = (Euler B* o Euler A*) = Euler A o Euler B (8.30)

This is indeed the case. To begin, let ©o; be the Euler A method and note that
any adjoint method satisfies ¥_a¢ (Y3, (A, 7)) = (A, 7). If we denote ¥}, (A, 7) =
(A*, ) then

A AT AV H(r A
= Y_a(A" ) = (8.31)
T ™+ AtV H (7%, A)

where we have defined A to be the position components of ©)_x;(A*, 7*). We have

then that A = A, and so

A A* — AtV H(n*, A)
- (8.32)
T ™+ AtV H (7", A)

Therefore

) A A+ AV, H(r*, A)
VA, ) = = (8.33)
* m— AtV H (1", A)
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This the Euler B method. Therefore Euler B is the adjoint of Euler A and so our

discretized flow map is self adjoint and therefore time reversible.

8.3 Integrator Details

In this section we detail how we implement our Euler B o Euler A integrator.

To begin, here are the relevant derivatives used to compute the discretized time

evolution:
L "
and
aéjﬁx:(‘ 3x>f{(f°;?<ﬁ§j;’§3me (aii(ﬁ(fl»(lﬂf’m%))) (8.35)
1, ~ e (g, (Aan)
1~ e (g, ()

The Hamiltonian evolution is not trivial to compute because 0S/0A,, appears,
which requires a calculation of an inverse dirac matrix which is an expensive
operation. Our procedure for computing the discrete map is designed to minimize
the number of times we comute 95/0A,,,. For Euler B oEuler A, the dirac matrix
needs to be inverted only once, while for Euler A oEuler B it needs to be computed
twice.

To perform the Euler A integration we begin with a phase space configuration

(AN 1) then evolve according to:

ANty _ Ay + 2V H(ny, Ani1y2) (3.36)

TN41/2 TN — %VAH(WN;AN-HM)

103



N+1/2 ;

In this method, the AN+1/2 is an implicit calculation while 7 is explicit. We

first compute An,1/2. This is trivial for the space-like components:
At
AT = AN + 5 T (8.37)

as there is no implicit equation to solve. For the timelike components we need to

solve

At Nx
e o] (8.38)

which 4s implicit. This is done by finding the zero of the function

S

closest to Aéi using the iterative Newton Solver ;. = z; — dc%zlx With Aé\gfl/ 2

N+1/2

in hand, =, is obtained by computing the explicit relations

f( N+1/2)f,/( N+1/2)

w1 = S Re (22 (AN )1+ i (AR — ()

Ao, (1+ fr(Ag72)2)2
(8.40)
At oS | ~
2=l = 5 [Re (5 A )
At oS | ~
ot e (22 Gaa)|

These relations can be computed with a single calculation of the gradient of the

action. The second step of the integration, Euler B, is

ANt _ Aniip+ SV H (T, Ang) (8.41)

At
TN+1 TNt12 — 5 VaH (Tni1, Anyiy2)

This time ANt is explicit while 7V*! is implicit. Once again, the space-like
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components are easy to compute

A+l = N2 % [Re ( ai)f (A(AN“/?)))} (8.42)
lx
Al = 7Tévgc+1/2 _ % [Re <8?452x (A(AN-H/Q)))}

and require no implicit solutions. Note that the derivative needed in Eq. (8.42)
is the same as the derivative needed in Eq. (8.43) and therefore need not be
computed twice. This gives the Monte Carlo a factor of 2 speed-up relative to
the less efficient Euler A o Euler B method, more commonly called the “Stormer-

Verlet” method [115]. The updated momenta g,

' is obtained by solving

FART?)

1 12 At s = 12 1/2 2 (A
w1 = T [Re (G (A )+ (AGT)) = (m ) s AT

This is just a quadratic equation. If we denote

A B At f ( N+1/2)f//( N+1/2) 8 43
T2 / N+1/2 (8.43)
(14 f/(Ag, 77)?)?
B=-1
At oS
C = N+1/2 R ( (A(ANTV2))(1 +if'(A N+1/2))>
aAOx
then 7)™ = l_m is the correct root. Finally, AV T is
At N+1
A = A s
L (A0,
AV = Ajl\;ﬂ/z + %Wﬁﬂ
AN = ANHL2Z %Wé\;}—l
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