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The aim of this work 1is to present an overview including recent
advances 1in our understanding of the behavior of nuclear matter at
extreme conditijons such as high baryon density and/or high temperature.
The following subjects are covered:

1. The World of Quarks and Gluons

2 From Quark Bag to Quark-Gluon Plasma

3. Strangeness in the Quark-Gluon Plasma

4, Thermodynamics of the Interacting Hadronic Gas

5. Formation and Cooling of a Baryon-Rich Quark-Gluon Plasma in

Nuclear Collisions.

Until now most of the investigations on the fundamental properties
of matter have been performed with two-body systems. While this is an
essential first step, there exist important phenomena based on many-
body effects which therefore are not observable in the simple systems.
One such a phenomenon is the hypothetical new phase of matter, viz.,
the quark-gluon plasma, which is that state where owing to a suitable
combination of baryon and energy densities the individual hadrons have
melted together, or, said differently, have dissolved, freeing the
hadron constituents to form a weakly interacting Fermi and Bose gas.
The existence of such a state of matter is an almost inevitable conse-
guence of quantum chromodynamics (QCD) and the study of its properties
is clearly of utmost importance [1].

The rapid development of this new and exciting field of high
energy nuclear physics is based largely on the hypothesis that the
energy available in the collision of two relativistic heavy nuclei is
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equipartitioned among the accessible degrees of freedom. 0f course,
it is not needed that the whole system participate in this thermaliza-
tion; in addition, it is likely that only a small fraction of nuclear
collisions leads to this reaction channel, This means that occasion-
ally a domain in space arises in a center-of-mass frame in which the
€nergy of the 1longitudinal motion has been largely transferred to
transverse degrees of freedom. We call this region the "fireball.”
The physical variables characterizing a fireball are: energy density,
baryon number density, and total volume. The basic question concerns
the internal structure of the fireball, It can consist either of
individual hadrons, or, instead, of quarks and gluons in a new physical
phase, the plasma, in which they are deconfined and can move freely
over the volume of the fireball, It appears that the phase transition
from the hadronic gas phase to the quark-gluon plasma is controlled
mainly by the energy density of the fireball. Several estimates [2]
tead to 0.6-1 GeV/fm3 for the critical energy density, to be compared
with ca. 0.16 GeV/fm3 in nuclear matter. Many fundamental questions
about the nature of the strong interactions will be settled when the
properties of the phase transition are determined.

An important aspect of the developments in this field concerns the
observability of the plasma state. It seems that in order to observe
the characteristics of the plasma one must either use electromagnet-
ically interacting particles [3] (photons, Tlepton pairs) which can
rather easily leave the plasma, or study the heavy-flavor abundance
generated in the collision [4]. To understand the latter point imagine
that strange quarks are very abundant in the plasma (and indeed they
are!). Then, since the (sss)-state is bound and stable in the pertur-
bative QCD-vacuum, it would be the most abundant baryon to emerge from
the plasma. Surely the observation of such an "omegaization" of
nuciear matter could not leave any doubts about the presence of the
plasma. The observation of other exotic hadrons [5] such as, e.g.,
csq, cs, etc. would support this conclusion. But even the enhancement
of the abundance of the more accessible A may already be sufficient at
least for demonstrating the existence of a plasma.

To continue to higher energy densities, one may speculate that the
restoration of the perturbative QCD vacuum may be accompanied by the
restoration of chiral symmetry, then followed by the restoration of the
SU(2) symmetry, and finally of the SU(5) symmetry. This way one could
trace back the evolution of the universe [6] in the Tlaboratory. In
figure 1 we display qualitatively the boundary of the different phases
for T < 200 MeVv.
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Fig. 1 Phase diagram of hadronic matter in the p-T plane,

Another speculation concerns the fundamental aspect of the possi-
ble catalyzation of the baryon decay in the plasma [5]. A possible
mechanism which has been discussed in the recent literature [7]
involves the presence of magnetic monopoles. The quark-gluon plasma
might just be the proper environment in which the catalyzer could
continue to burn the baryon number at a rate sufficient to maintain the
necessary particle densities and temperatures, However,in view of our
ignorance of precisely how SU(5) tumbles down to SU(3) x SU(2) x U(1)
we should be prepared for great surprises in this matter., Certainly,
it would be most challenging to unlock the energy which had orginated
in the Big Bang and has since remained frozen in the baryon number,

It appears that magnetic monopoles in centers of giant stars could
generate sufficient amounts of energy in order to provide a quasar
energy generation mechanism [7].

Coming back to earth we begin by recalling that in a statistical
description of matter the un-handy microscopic variables, viz., energy,
baryon number, etc. are replaced by thermodynamical quantities. To
wit, the temperature T is a measure of energy per degree of ffeedom;
the baryon chemical potential p controls the mean baryon density (see
fig. 1). The statistical quantities such as entropy (= measure of the
number of available states), pressure, heat capacity, etc. also will
be functions of T and p and will have to be determined. The theoreti-
cal techniques required for the description of the two quite different
phases, viz., the hadronic gas and the gquark-gluon plasma, must allow
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for the formation of numerous hadronic resonances [8], which then at
sufficiently high energy density dissolve into the state consisting of
their constituents, At this point we must appreciate the importance
and help in reaching the transition to the quark-gluon plasma provided
by a finite, j.e., non-zero temperature, To obtain a high particle
density, instead of compressing the matter (which as it turns out is
quite difficult), we may heat it up; many pions are generated easily,
allowing the transition to occur at moderate, even vanishing baryon
density [9].

We begin by considering a summary of the relevant postulates and
results that characterize the current understanding of strong inter-
actions in QCD. The most important postulate is that the true physical
vacuum state in QCD is not the trivial perturbative state which is
changed 1ittle when the interactions between quarks and gluons are
turned off or on. In QCD the true vacuum state is believed to have a
complicated structure which originates in the gluon (gauge) sector of
the theory. It is supposed not to permit the presence of color fields.
The perturbative vacuum is an excited state with an energy density B
above the true vacuum, It is to be found inside hadrons where the per-
turbative quanta of the theory, in particular the quarks, therefore can
exist. The occurrence of the true vacuum state is intimately connected
with the gluon-gluon interaction; gluons also carry the color charge
that is responsible for the quark-gquark interaction. The confinement
of quarks is a natural consequence of this hypothetical structure of
the true vacuum.

An important feature which arises as a consequence of the energy
density B of the perturbative vacuum is that the true vacuum exercises
a pressure on the surface of the region of the perturbative vacuum.
Indeed, this is just the idea behind the original MIT bag model [10].
The Fermi pressure of the confined almost massless light quarks is in
equilibrium with the vacuum pressure B, When many quarks are combined
to form a giant quark bag then their properties inside the bag can be
obtained using standard methods of many-body theory [2]. In partic-
ular, this also allows the inclusion of the effect of internal excita-
tion through a finite temperature and through a change in the chemical
composition, a subject discussed in the subsequent lectures.

The essential role of strangeness as a characteristic observable
of the plasma state [4] with particular emphasis on strangeness genera-
tion in the plasma by elementary processes, and on expectations about
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the normal hadronic gas phase is addressed next. From the comparison
of the expectations for both phases of hadronic matter we are led to
consider the strange-particle abundances as a possible approach to the
observation of the properties and parameters of the quark-gluon plasma
created in nuclear collisions, It suggests itself that strangeness is
an excellent experimental trigger for the presence of plasma droplets
in high energy nuclear, or slow p-nucleus, collisions,

A very important observation in this context is that strangness is
a characteristic signal of the gluon abundance, which comprises the
only essential difference in the structure of the plasma state and the
hadronic gas. As we show [4], a large abundance of strangness is
generated by the gluon fraction in the plasma state and can not be
obtained from the hadronic gas phase owing to the fact that the then
required numerous Bosonic degrees of freedom are available only when
T > 500 MeV, But even then color is not free and the abundance of
strangness would still be about 3-5 times smaller. The presence of
gluons in the plasma state speeds the generation of strangeness
allowing the equilibrium abundance to be reached so that in that case
an up to 100 times larger strangeness abundance can be expected.

The state of hadronic matter formed by individual baryons and
mesons, which we call the hadronic gas phase is described next. The
present summary of the theoretical development of this field is based
on the work of Hagedorn and Rafelski [9]./ We content ourselves here
with the presentation of the main results in so far as they influence
our thinking about the phase transition to the quark-gluon plasma.

The attentive reader might question the validity of using simul-
taneously the bootstrap model and the bag model to describe hadronic
states. We will indeed find that the description in terms of the
statistical bootstrap for the hadronic gas on the one hand, and of
hadrons as bound quark states on the other hand, have many properties
in common and are quite complementary. Both the statistical bootstrap
and the bag model of quarks are based on quite equivalent phenomenclog-
ical observations, While it would be most interesting to derive the
phenomenological models quantitatively from the accepted fundamental
basis - the Lagrangian quantum field theory of a non-abelian SU(3)
gluon gauge field coupled to colored quarks - in this report we will
have to content ourselves with a qualitative understanding only.
Already this will allow us to study the properties of hadronic matter
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in both aggregate states - with the emphasis in this report put in
particular on the state in which individual hadrons have dissolved into
the plasma consisting of quarks and of the gauge field gquanta, the
gluons,

Having described the properties of both hadronic phases, we pres-
ent a discussion of the possible production and lifetime of the baryon-
rich plasma in nuclear collisions in the central kinematic region and
then describe the phase transition between the hadron gas and the
plasma. In the final chapter we describe the formation mechanism for a
baryon-rich plasma as possibly created at ~ 5 GeV/Nuc c.m. energies.

The conditions prevailing here are just opposite to those found in
ultra-relativistic collisions in which the baryon density is expected
[11] to be tlow in the central rapidity region. In our approach [11,
12] there is a substantial baryon density arising from pile-up of
nuclear matter in the collision region, The description of ultra-
relativistic collisions is based on extrapolations of pp and pA colli-
sions, which in our view cannot lead to the pileup of matter, i.e.,
baryon number, which is needed in our description, In order to esti-
mate the evolution of the plasma state we consider, contrary to popular
belief [13] that hydrodynamical expansion dominates the plasma evolu-
tion, the losses arising from particle radiation through the plasma
surface [14] and determine the corresponding time evolution of the
baryon-rich plasma,

1. THE WORLD OF QUARKS AND GLUONS

From the study of the hadronic spectra as well as from hadron-
hadron and hadron-lepton interactions there has emerged convincing
evidence for the description of the hadronic structure in terms of
quarks [15]. For many purposes it is entirely satisfactory to consider
baryons as bound states of three fractionally charged particles, while
mesons are quark-antiquark bound states. One of the central aims of
this and the next section is to show how this picture of hadrons can be
reconciled with the description of hot hadronic matter consisting of
individual particles described in section 4,

We now recall some fundamental assumptions about the strong inter-
actions, as needed here. The elementary quantum fields which appear in
quantum chromodynamics are:
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Spin 1: gauge bosons - gluons GL, i=1...8
. . = R,6,B = color
Spin 1/2: baryonic matter - quarks qz, 3 = d.u.s,c,b.(t) = flavor

The octet of gauge bosons Gu mediates the quark-quark and quark-
antiquark interactions between the color triplets {Red, Green, Blue}
and antitriplets. The gauge vector fields are written as

%— (1.1)

where xi are the generators of the SU(3) algebra [16]
[ah,a3] = 2 fl3k Kk (1.2)

Only quarks and antiquarks carry baryon number, J.e., bq + 1/3. The
flavor of the quarks represents all internal gquantum numbers conserved
in strong interactions - the up and down quarks carry * 1/2 units of IZ
(isospin) and combine to form the lowest baryonic isospin doublet

(%) = (sau) (1.30)

and the mesonic isospin triplet

nt ud

20 =L (cud ¢+ ad)] . (1.3b)
y2

T~ ud

These are the input particles of the statistical bootstrap model
discussed in section 4. The heavier flavors of quarks include the
strange, charm, bottom and perhaps the as yet undiscovered top quark.
The electric charge of u, ¢, t is + 2/3 and that of d,s,b is - 1/3,
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It is the color-charge of the quarks that introduces the quark-
quark interactions. The important empirical fact is that all known
hadrons are color neutral (i.g., color singlets). 1Including color into
the wave functions eq (1.3) and ignoring the space and spin degrees of
freedom we have, e.g.,

D = _% (uRquB _ .6 RdB GquR B G,R BuRdG _ 4R B G)

u’u +u - uudt o+ oy uu-d (1.4)
V6

(uRaR + 83t + uBaB) (1.5)

sil
w| =

where the p, and baryons in general, are color-antisymmetric and =, and
the mesons, are color symmetric. The antisymmetry of the baryonic wave
functions in a hidden degree of freedom has been one of the original
reasons for the introduction of <color. Otherwise, e.g.,
(A’”*)I=3/2 = (uuu)I=3/2 could not have an antisymmetric quarE-Q;ve
function as required for Fermions. Further experimental evidence [17]
of color includes the =° » 2y decay rate and the size of the e'te~ »
hadrons annihilation cross section., However, the evidence for color as
a dynamical degree of freedom, in particular, as being responsible for
quark-quark interactions, is derived from deep-inelastic lepton-nucleon
scattering, from a detailed study of ete- annihilation into hadrons,
and in particular, from the flavor-independence of the charmonium and
upsilonium potential which yields a quantitative agreement between the
experimental and the theoretical excitation spectra.

The Lagrangian of quarks and gluons is very similar to that of
electrons and photons, which is

Leep = (ve(p-eA) -m) ¢ - % Fouft s (1.6)

except for the required additional summations over flavor and color:

flavors 3 3 8 A .
Loco® (3 a%vep-m)q®+g ] a2 4" ) (<£Blal) of)
Qco r a=1 r r’'or o, f=1 r i=1 2 n r
1 8 i ppv . -
-7 21 Fqui + herm. conj. + gauge fixing (1.7)
a=
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The flavor-dependent masses m. of the quarks are smalil, For u,d
flavors one estimates My d ™ 5-20 MeV when the strange quark mass is
chosen in the range 150-280 MeV. In particular [18],

m, - m

¢ "% 1,

My, "3 (1.8a)
u
mU
— = 0,38 £ .13 ; (1.8b)
m
d
M
el 0.045 + 0,011 . (1.8c)
S

The heavy-quark mass differences can be obtained reliably from the
detailed study of the quarkonium spectra [19],[20]

my - M. = 3400 MeV; m, - mg = 1280 Mev . (1.9)

The color field strengths are now

Flv - auai - avel + gf 13K Gi ek . (1.10)
We note the nonlinearity of F which is required to secure the
invariance under local non-abelian gauge transformations. The presence
of this gluon-gluon interaction leads to major differences between the
properties of QED and QCD. As an example let us consider briefly the
asymptotic freedom of gauge theories [21].

To introduce the subject we note that it is often convenient to
define a gq-dependent coupling constant by writing

£ 0032 = - «(a?) L (1.11)

where in the case of QED D is the QED longitudinal photon propagator.
We ignore for the moment the transveral photon degrees of freedom. In
terms of the polarization function m(g2) we have
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, e2/4r i - 137 > 97 >0
a(q?) = (g2 - £(0) (1.12)
, 192 > m2
1-2(0)4= (- &3)

or, with the more complete form of the polarization function

a=1(q?) = o= 1(0) + 1u(g?)/a(0)

H

2m?2 4m?2
2 @ gy2 (1 + 52) /1 - S5
- eM0) - & f, G ——T . (1.13)

M2_q2

The electron-loop polarization function 1m{g2) follows from the
jteration of the standard lowest order diagram:

As easily can be seen, a«-!(q2) decreases with increasing g2 > 4me2.
This means that for short distances the effective strength of the QED
interaction increases. Only because of the magnitude of oa-1(0) = 137
is this effect usuaﬁy unimportant. However, it is part of the QED
radiative corrections and has been quite precisely verified.

In QCD additional contributions originate in the gluon-gluon
interaction

Z +W®'\/\/\+A/@\/‘+ jterations  (1.15)
qﬁkwmfxm,ﬁili.yvxn. G G 6 6
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Since gluons are massless we cannct select the point g2 = 0 as a refer-
ence point. We have [21],

2n
- 1 -q?2
ag}(a?) = agl(-u2) + g7 [11 - 2] a0 =Ly (1.16)
with a certain space-like g2 = - p2 * 0 now serving as the reference,

. js the number of light quark flavors (m2r < |g2|). For large g2,
absorbing the first term on the right hand side in eq (l.16) in the
definition of p? we have the so called asympototic freedom formula:

12n

ag(a?) = 33 - an 1n(-lq‘/A‘) (1.17)

which, unlike the case of QED leads to QJL%MJ
falling o with rising |q2| for the
likely case nq < 16. Hence, at
asymptotically short distances the
interaction diminishes and the theory
becomes free, We emphasize that T @
therefore the chain of approximations ;23?)
leading to eq (1.17) here, i.e., in
QCD, becomes more and more consistent Smﬁme ///////—
as |q2| increases. In figure 1.1 the e L
running coupling constant is shown for W00 D00 o )
space-like, g2 < 0, and time-like, Fig. 1.1 as(qz) for space-like
g2 > 0, momenta. In the latter case and Re as(qz) for time-
we show Re @t like momenta.

Re a (q? > 0) = pyiik inla /A (1.18)

33 - an (anljg</a¢])? + x¢

We notice that at the presently accessibie momenta, i.e., up to 100a
(A ~ 200-400 MeV), o is considerably smaller for time-like g2 than for
space-like g2, For large as(qz) other than order g2 diagrams must be
included in the determination of as(qz). This may change the value of
A which at this stage is a phenomenological parameter fitted to the
experiment and which reflects in its value the order of the expansion.
At present the actual value of A is rather uncertain since as can be
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seen in eq (1.17) it manifests itself only in small logarithmic correc-
tions. Quarkonium fits {(space-like q2) favor A ~ 400 MeV [19] while
deep-inelastic experiments (time-like q2) indicate A = 100 = 100 MeV

[171.

As we have seen above, the strength of the gluon-gluon interaction
influences significantly the gluon propagation in the {(perturbative)
vacuum, Little is known about the behavior of the gluon propagator
at small q2, i.e., at large distances. Attractive channels in the
gluon-gluon interaction are expected to induce a gluonic structure onto
the vacuum state [22],[23]. To appreciate this remark let us imagine a
box of size R filled with a gas of N gluons. Including a 1/R kinetic
energy and an attractive long range interaction we have for the energy
density E/V:

eBOX(N) ~ N/R* - N2 g2/R" (1.19)

and hence for some N = Ncr it would cost no energy to fill the box with
gluons, Hence the empty box (perturbative vacuum) and the box with Ncr
particles would be degenerate. We conclude that an improved gound
state, i.g., the true vacuum, has to be constructed. Such a state
would have a lower energy density than the value of the perturbative

state.

The energy density of the perturbative state 'is defined with
respect to the true vacuum state and hence is by defiﬁition a positive
quantity, denoted by B. This notion has been introduﬁed originally in
the MIT bag model [10], but initially in a different context. The
value of B is derived phenomenologically from a fit to the hadronic
spectrum [10],[24] or from sum rule considerations [25] which give

B = [(140 - 210) MeV]* = (50 - 250) MeV/fm3 ., (1.20)

The central assumption of the quark-bag approach is that inside a
hadron where quarks are found the true vacuum structure is displaced or
destroyed. One can turn this point around: quarks can only propagate
in domains of space in which the true vacuum structure is absent. This
statement is a resolution of the quark confinement problem. The
remaining difficult problem is to show the incompatibility of quarks
with the true vacuum structure. Examples of such behavior in ordinary
physics are easily found: e.g., a light wave is reflected from a mirror
surface; magnetic field lines are expelled from superconductors; etc.
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In this spirit we may argue that all color-charged particles are
reflected at the true vacuum surface (stationary waves) or alterna-
tively, may under certain circumstances deform the surface. Whatever
ijs the case, the presence of color electric fields in a volume element
is incompatible with the presence of the true vacuum structure. It is
interesting to note that the Lorentz covariance of the theory requires
that a negative pressure p = -B as seen from the perturbative vacuum
acts on the surface between the true and the perturbative vacuum.
Hence, in the absence of other forces the excited space domain contain-
ing the perturbative vacuum would quickly vanish,

In this picture of hadronic structure and quark confinement all
colortess assemblies of gquarks, antiquarks, and gluons can form
stationary states, called a quark bag. In particular all higher combi-
nations of the three-quark baryons (qgqq) and quark-antiquark mesons
(qg) form a permitted state, i.e., a hadronic resonance, much in the
spirit of the statistical bootstrap model of the hadronic gas, to be
described later,

The energy of a hadronic bag of radius R including the particle
and the volume bag terms is:

E(R) = (] X;)/R + 3 =3 B (1.21)
1

where Xi/R are the appropriate eigenvalues, i.e., single particle
energies of "confined" particles and the sum is over all guanta in the
bag. Effects of interactions can be considered to be included in Xi’
in which case the Xi become functions of the interaction strength and
the number of particles present. For massive particles an additional
dependence on mR is present. The radial pressure (force/area) on the
surface is:

X.)
. =0E/BR _ (2%
Pe = TRZ = Bt TIRe (1.22)

which, combined with eq (1.21) leads to the interesting relation

E(R) = (3P, + 4B)V . (1.23)

For a radially stable object Pr must vanish, or, in other words, E(R)
must have a minimum. From eq (1.22) we have
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IXs 1/u
= g-1l/74 (-1
Roin = B (=) (1.24)
and from eq (1.23)
- = pl/t a/y 4 1/
E(R ;) = 4BV = BL/%(ZX.)3/% 2 (4x) 1/ (1.25)

From eqs (1.24), (1.25) we learn that the radius of the bag grows
with (in)lf“, while it decreases as B-1/%, as could be expected from
dimensional arguments, Similarly, the energy (mass) of the bag grows
with (ZX1)3/“, but also with Bl/*  as expected on dimensional grounds.
The remarkable relation E = 4BV is often called the virial relation as
it follows alone from the dimensionality of space. We further notice
that the dimensionless structure constant

R . E(R.. ) = -g— (2X;) (1.26)

min

can not be directly compared with the values known for example for

protons:

charged -

Rproton Mproton 3.82 (1.27)
since Rmin is not the charge radius but the hadronic radius of the bag.

Also note that eq (1.26) has been obtained without interactions,

To illustrate the conflict between both the quantities of (1.27)
consider the true lowest eigenvalue X for the quark wavefunctions; is
found by solving the three-dimensional Dirac equation with the bag
boundary condition [10], which leads to

RE =X, =2.00. (1.28)

When inserted into eq (1.26), we would find with three quarks for the
hadronic radius of a nucleon

Rmin ~ 4 x 2,04 x 197 MeV fm/940 MeV = 1.7 fm (1.29)

which clearly is an unacceptable result.
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Obviously, something is missing in eq (1.22), and it must be added
in order for it to give the proper phenomenology of hadronic states.
In the original MIT bag approach an additional zero-point energy

EO ~r (1.30)

was introduced. This can be taken care of by replacing (in) in above
formula by (ZXi - Lg). MWith this we find for the proton

(1.31)

which requires Z;, ~ 2 in order to make R sufficiently small, i.e.,

<1 fm, as long as the noninteracting va1u21;0 = 2.04 is employed. The
constraint arising from the fact that the sum of.the bag energy and E,
must not become negative has been so far 1little appreciated., Namely, a
negative value is unacceptable, as it leads to stable empty bags; this
would contradict the characteristics of the true vacuum. Using the

virial relation eq (1.23), this constraint becomes:

1 1
0 < EO + BV = EO + T m_ = (Z- mp Rm'in' ZO) . (1.32)

Recalling now eq (1.31) we find from eq (1.32) the constraint

0 < Eg + BV » 7y <

e

Xy . (1.33)

This consideration is equally valid for mesons, but is less conclusive
since other effects intervene, such as the restoration of translational
invariance to the quark bound states. For nucleons, eq {1.33) implies

3
7, < 7 Xy (1.34)

which 1is wusually Jjust barely satisfied once one includes the inter-
actions. At any rate, for three quarks the introduction of Z; coupled
with the constraint (1.33) reduces the numerical value eq (1.29) at
most by a factor 3/4, which is not enough to yield the empirical value,



378

Clearly, this discussion shows that in order to resolve this
apparent contradiction one must include the quark-quark interaction and

eventually project on translationally invariant states. For our pres-
ent discussion it dis important to realize that the quark-bag picture
can be made internally consistent only when the quarks are allowed to
interact. Unfortunately, for "small" bags, i.e., for normal hadronic
states, this opens the Pandora's box of all complicated self-energy,
exchange and other contributions 1eadfng to the current confusion in
the field of how such large corrections can mutually cancel; not to
speak about such problems as the theoretically infinite values for Z,,
or the influence of pionic degrees of freedom when the bag radius is
too small. However, we note that most of these problems disappear in
“large" bags, i.e., those bags which contain many single-particle
excitations., Also in this case the treatment of the quark-quark inter-
actions by perturbative QCD becomes very simple, and hence we will
introduce the interactions in this case below.

2., FROM QUARK BAG TO QUARK-GLUON PLASMA

A large quark-gluon bag, i.e., one which contains many particles,
is characterized by the available modes Xi and their occupation
numbers n.., An important simplification of its description arises if

i
it is possible to use a statistical treatment.

As the u and d quarks are almost massless inside a bag they can be
produced in pairs, and at moderate internal excitations, i.e., tempéra-
tures, many d§ pairs will be present, Similarly, ss pairs also will be
produced. We will return to this point at length below. Furthermore,
real transversal gluons can be excited and will be included here in our
considerations. We now first convince ourselves that already a
moderate number of quarks justifies the statistical approach. For a
degenerate Fermi gas of quarks the number of 1light gquarks {(u and d)
determines the quark Fermi energy By Omitting for the present the qq
interactions we have

4 1
m

3 b =N =2_x2.x3 xV 3
sTTf e (21)3 3 "q

q

2
=y & 3 2.1
g kg (2.1)

where the indices s,f,c refer to spin, flavor, and color degenéracies
respectively. Equation (2.1) establishes a relation between a given
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baryon number b (gquarks carry 1/3 unit of baryon number) and the
variables V (volume) and B The energy of the quark bag is easily
obtained noting that

= _d3p /mZ + p2 2 . 2 _ m2 2
Eq,gas = 25%2¢x3cxVJ om) 3 mz + o2 e(u? - (p2 - md)) (2.2)

Hence in the limit of small quark mass, i.e., uq >> mq, we find,
omitting here again for the sake of simplicity the gqg-interaction term,

E(V, N, V) = BV + V —3—2 pe + O(mg/u) (2.3)

27 q

In order to determine the explicit dependence on a given quark number

(baryon number) we use eq (2.1) to eliminate “q:

N /3
E(V,N_ ) = BV + 34—
q y1/3

C= (2.4)

Bfeo

This expression has as before a minimum as function of the volume V,
which corresponds to the equilibrium state:

3E
ol

o=
()]
#

N
o .. Bk % (ﬁ2)1/3 ( q )4/3 (2.5)

2
Combining eqs (2.4) and (2.5), of course we find again

E . = 4BV

min min (2.6)

and hence we see that in agreement with the virial theorem the energy
density is 4B also in the statistical bag. Combining eq (2.4) with
(2.5), we find furthermore for the energy per quark the usual result:

gas _
(E/Nq)min B (“q)min

= Bi/4(2x2)1/% = 2,11 Bl/% | (2.7)

Here (”q)min is the chemical potential. It is found by inserting
eq (2.5) into eq (2.1), upon which the Nq-dependence drops out. This
result, eq (2.7) can be compared with a similar result for the smallest
closed-shell bag which contains 12 quarks owing to stzfX3c = 12, With

Xo = 2.04 we find from eq (1.25)
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3/4
(E/12)p,0 = (12 x %504) % (4n)1/% Bl/% = 2.3 Bl/% | (2,8)

Thus we conclude that the statistical result, eq (2.6) is in a remark-
ably good agreement with a closed shell bag even when its baryon number
is only 4. As the energy per quark in the statistical bag approach is
slightly underestimated we conclude that the quark (i.g., baryon)
density

Nq/V = (E/V) (Nq/E) = 48/(E/Nq) (2.9)
is somewhat overestimated.

As a final remark we note that eqs (2.3) and (2.6) imply that the
energy per baryon in the bag is just ., i.e., the baryon chemical
potential

E/b = 3 E/(Ng/3) = 3ug = » (2.10a)
The factor 3 is necessary to account for the baryon number 1/3 of the
quarks: three quarks form one baryon. We note that from eq (2.10)
stems the conventional wisdom that p_ = m_ /3 at T = 0 where T is the
temperature, Omitting the bag term in egq (2.2) one finds the well-
known relativistic ideal-gas result

Eq/N =3/4 p . {2.10b)

Thus we see that the bag term is a necessary ingredient for recovering
the hadronic gas limit [9]

E/blpg = b - (2.11)

Quarks will not always form a degenerate Fermi gas, especially
inside a large bag. Depending on the creation history of the bag it is
very likely that in an initial stage some of the quarks will be in
excited states. In the statistical approach this situation easily can
be described by introducing a quark temperature T = 1/8 which describes
the internal excitations of each bag (= hadronic cluster) [26]. This
does not imply an exact internal thermodynamic equilibrium of the quark
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gas in the bag. However, an assembly of excited bags in mutual thermal
contact which is sharing to a certain extent the internal excitations,
may be already similar in nature to the Gibb's grand canonical ensem-
ble, i.e., an infinite number of interacting identical subsystems.

Hence, though the quarks in each individual bag may be far from
thermodynamic equilibrium, in an assembly of bags which are able to
scatter several times the average distribution may be much closer to
the equilibrium, When making these remarks we have here particularly
in mind highly excited nuclear matter as created in relativistic
nuclear collisions, and, perhaps in antiproton annihilations in nuclei.
Other circumstances prevail in e*e- > hadrons or even in pp reactions,
But also in our case the word "kinetic equilibrium" has to be used with
great care: the further in a particular bag the mean kinetic energy of
the quarks is from ~ T, the less reliable becomes a priori the equi-
librium assumption. We record here, however, that particle spectra
from p-p collisions [8] behave as if a thermal equilibrium were always
reached. Therefore the concept of "preformed” equilibrium has been
introduced in thermodynamical models of hadron reactions.

With these remarks in mind we now turn to the description of
excited quark bags with the help of quantum statistical methods. We
will initially ignore the effect of quark-quark interactions and return
to this probiem further below. 1In principle, we could avoid the formal
development and simply proceed by including the temperature through a
Fermi distribution function in eq (2.2). However, as is well known, a
complete description of the thermodynamical behavior of a many-particle
system can be derived from the grand canonical partition function Z.
Hence it is more useful for further developments to obtain right-away
the grand partition functions for 1ideal Fermi and Bose gases. We
follow here initially the standard textbooks [27] in calculating the
grand canonical partition function which is defined as

Z(Byugs-er) = Tr(e Bl - 00y (2.12)
Here H 1is the Hamiltonian of the system and Q is the baryon charge
operator. The chemical potential p determines the average baryon
number of the system, The trace is to be carried out over all allowed
states of the many-body system. We note that



382

~ -B(H-uQ) )
<y sIr Qe 0] —%%; AINZ(Bstyeee) (2.13)
Tr e FAT-H
-B(H-uQ)
<H> = Iﬁ—ﬂg—gzg——57 = - %E ANZ(Byp,esa) + pskQ> . (2.14)
Tr e PLI-B

The partition function may depend implicitly on other quantities such
as the volume or even the shape of the considered quantum system.

In the particle-number representation the trace, eq (2.12), can be
easily carried out for free quarks. Here

H= § efnl+ | efdf (2.15a)
i, i, 2
_ 2 -2
Q= ] by(ny-ny) (2.15b)
i,
where ni is the number operator of the ith single-particle state of a
quark (ﬁi for antiquarks) with (discrete) quantum numbers "a", such as
flavor. b,Q is the baryon charge, i.e., + 1/3 for quarks and - 1/3 for
antiquarks as already introduced explicitly in eq (2.15b). A quantum

state is characterized by the occupation numbers nf, ﬁf of the quarks

and antiquarks. Hence the trace which sums only the diagonal matrix
elements is

-[5_2 (Ef-l/3 u)n? + .z (e?+1/3 H)ﬁf]
1,4 ils
’ ’ . (2.186)

Here the sum runs over all sets of numbers n?, ﬁ?. We factorize the

partition function in terms of the discrete quantum numbers 2:

I =11 (2.17a)

2 1 1 -2
-B(e;=1/3 pwin: - B(e;+1/3 u)n;
1, = ) me ! ! ! Voo (2.17b)
i



383

The infinite product over all states can be interchanged with the
infinite sum over all occupation numbers, leading to:

-s(ef-l/s u)nf -5(£§+1/3 u)ﬁf
anZy = 7 [(an ] e J+(an ] e )] . (2.18)
i -
n

Only nf = 0,1 is allowed for Fermions. Hence we find the well known
result (f = flavor, s = spin, ¢ = color)

-8(ef-1/3 ) -plef+1/3 1)

nz_ = Y 2 BC[Z an{l + e )+ 1 an(l + e

q s
flavor i i (2.19)

where the spin and color factors count the respective degeneracies. In
the continuum limit

3 3 3
J— 87X 4% oy g 47 (2.20a)
j (2m)3 (2n)3
e]_; —> /pT ¥ ? (2.20b)

and we find

3 -p(vm +P2'1/3 u)
anZ, = § 2 3, v [ =L [an(ive f
q f (2x)3

-s(/mf2+p2+1/3 p)
+ an(l+e ’ 1. (2.21)

For the light u and d gquarks, for which usually me K u is fulfilled,
we can evaluate the momentum integrals analytically [2b], [28]:

25x2fx3cxv N ) ) 7 N
(7 anq) = (p* + qu(nT) + 5 (aT) } . (2.22)

light flavors 242 q

The quark chemical potential

m =% M (2.23)
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controls the quark number Nq - Nﬁ'

In order to recover the limit T > 0, eq (2.3), we must introduce a
phenomenological bag, i.e., vacuum term

nZ = -BVR . (2.24)

With eq (2.24) and

anZ = anq + lnzvac (2.25)
we indeed find
- = . 8 3
E = <H> Y anZ + u e T anZ
3 7
= BV + =— vV [p"* + 2u2(aT)2 + ¢ (=T)* .
. [ug + 202(=T) 15 (7T)*] (2.26)
and at the same time for the baryon number
b/3 = <2 Q> = N_ - No = =2 T snz
3 q q By
=2 y(u3 ¢ o (aT)2) (2.27)
2 q q

Equations (2.26) and (2.27) generalize the T = 0 results, eq (2.1) and
(2.3) to finite temperatures, We note also that for finite T it is
possible to eliminate b analytically from eq (2.26) with the help of
Cardan‘s formulae [28] for eq (2.27), and to obtain E(V,b,T).

We have not yet considered one quite important aspect of the
excited bag, viz., the possible presence of real transversal gluons,
At present the evidence for the existence of perturbative gluons inside
bags is not quite conclusive. Some theoretical calculations [29] indi-
cate that gluons could be admixed to the quark wave functions in bags.
However, gluonijum, i.e., gluon-only bags have not yet been conclusively
established experimentally [30]. None-the-less it is very likely that
in a large quark bag at finite temperature the transversal gluons will
be present with an abundance corresponding to that expected from the
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blackbody radiation Jaw, 1i.e., as given by the Stefan-Boltzmann
equation. To include these bosonic degrees of freedom we evaluate
eq (2.16) taking into account the fact that the occupation number of
the gluon modes can be n; = 1,2,...=, and that gluons do not carry
baryon charge. We thus find

] e = — (2.28)
= 2

Here & counts the N2 - 1 = 8 color degrees of freedom as well as the
two transversal polarizations, All gluon single-particle energies are
degenerate with respect to &, Taking the continuum 1imit we find:

} d3 -8l1p|
,ang = -BC x 25 x V fm;% ,Qn(l - € ) . (2.29)

This expression is very well known and, except for the color factor,
corresponds to the standard photon result. We find explicitly

V
T Jang = 8 7572 {(=T)% . (2.30)

As emphasized at the end of the last section the quark-quark inter-
action still must be taken into account., We shall use here the contri-
butions which are first order in the QCD running coupling constant
as(qz) = g2/4x. As as(qz) increases when the average momentum
exchanged between quarks decreases it would seem that this approach
will have only 1limited validity at relatively low densities and/or
temperatures. However, the collective screening and the phonon modes
in the p1asmé are of comparable order of magnitude and cancel each
other [31]. The influence of perturbative contributions are governed
by the expansion factor § = (4/3)(as/n) ~ 0.15 - 0.3. In other words,
since 62 < 0.02 - 0.09 the use of first order perturbation theory may
be quite adequate [32]. For the case of the quark-gluon plasma in the
perturbative vacuum, one finds for the partition function an analytic
expression through first order in @ when neglecting the quark masses,
We obtain for the quark Fermi gas [2b], [2g9], [28]:

Zas n2 50 o 7t

gV
anZ () = g7z 873[(1 - —2)(F (B + = (ep)2) + (1 - 37 =2) 55
(2.31)
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where g = (2s + 1)(21 + 1)N = 12 counts the number of the components,
i.e., the degeneracy of the quark gas. The gluon partition function is
similarly reduced by the interactions:

82 15¢
mZ (A) = Vogp 870 (1 - —32) (2.32)

We notice above the second relevant difference from the photon gas:
aside from the presence of the degeneracy factor 8 there is the term
associated with the gluon-gluon interaction since gluons carry color
charge,

Finally, let us recall the true-vacuum term 2&n Zvac’ eq (2.24),
which describes the required positive energy density B within the
volume occupied by the colored quarks and gluons and leads to a nega-
tive pressure on the surface of this region. As discussed above, at
this stage this term is entirely phenomenological. The equations of
state for the quark-gluon plasma are obtained by differentiating

anZ = &nZ _ + &nZ_ + 2nZ (2.33)
q 9 v

ac
with respect to B, u, and V. The energy density, baryon number den-
sity, pressure, and entropy density, of u,d quarks and gluons respec-
tively, are written in terms of the baryonic chemical potential p and
the temperature T

2a a
e n-=d @) L@ na e -85 (0
+ T8y (aT)* (1 -li—%i)JcB (2.34)
2 2(15 L 3 _E
v=g5 (1 - 2)((5) +« § () 2) (2.35)
P =1 (c- ap) (2.36)
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In egs (2.34) and (2.37) the second T* and T3 terms originate in the
gluonic degrees of freedom. In eq (2.36) we have right away used the
relativistic relation between the quark and gluon energy density and
pressure

p_ = % e (2.38)

in order to derive this simple form of the equation-of-state of the
quark-gluon plasma. This form is slightly modified when the finite
quark masses are included, or when the dependence of the QCD coupling
constant @ on the dimensional parameter A is taken into account.

As we have already seen in the discussion of the hadronic bag
structure in section 1, an assembly of quarks will assume a geometric
configuration such as to make the total energy E(V,b,S) as small as
possible at given baryon number and fixed total entropy. As is appar-
ent from the first law of thermodynamics

dE = - PdVY + TdS + udb (2.39)
we have
p = - 2ElL:b.S (2.40)
Hence, the geometrically stable configuration dE/3V = 0 corresponds

also to the configuration with vanishing pressure P. Rather than to
work in the microcanonical ensemble with fixed b and S, we exploit the
advantages of the grand cononical ensemble and consider P as a function
of uw and T:

P =25 (T anz(p,T,V)) (2.41)

with the result as given by eg (2.36). From eq (2.36) it follows that
when the pressure vanishes in a static configuration the energy density
is 4B, independent of the values of p and T which fix the line P = 0.
We recall that this has been precisely the kind of behavior found for
the hadronic gas. For P > 0 we have e > 4B, We recall that in the
hadronic gas we always had ¢ < 4B. Thus, in this domain P > 0 of the
p - T plane the quark-gluon plasma must be exposed to an external force
to achieve a stationary state.
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In order to obtain an idea of the form and location of the P = 0
configuration in the p - T plane for the quark-gluon plasma, we rewrite
eq (2.36) for P = Q:

Zas
(1 - =—=2) Thn2 S5a 15a
B = ———X— [,2 + (31T)2]2 - [12(1 - —2) - 8(1 - 2)] .
162n? 45 3n 4n

(2.42)

Here, the last term is the contribution of the gluons to the pressure.
We find that the greatest lower bound on the temperature Tqat p = 0 is,
for o = 1/2 about

Tq = ,83B1/% ~ 160 MeV =~ T, . (2.43)
This result shows the expected order of magnitude. The most remarkable
point is that it leads to a numerically similar value as that which we
will find below in the study of the hadronic gas. Another point worth
mentioning 1is the influence of the strange quarks: they increase the
quark pressure just by the amount needed to counter the effect of the
interaction in eq (2.42). Hence we indeed have T, ~ B!/%, including
the strange quarks (see the discussion after eq (2.46)).

Let us here further note that for T << pu the baryon chemical
potential tends to

2 /4
b= 3ug ==> 381/ [—25—1"" = 1320 MeV [« = 1/2, B/ = 190 MeV].
—S
a-=) (2.44)
In concluding this discussion of the P = 0 line of the quark-gluon

plasma, let us note that the choice @y ~ 1/2 is motivated by the fits
to the charmonium and upsilonium spectra as well as to deep inelastic
scattering data. In hoth these cases space-like domains of momentum
transfer are explored. The much smaller value of @y ~ 0.2 is found in
time-like regions of momentum transfer in ete-+ hadron experiments., We
recall that this was the behavior derived from eq (1.17) (see fig. 1.1).
In the quark-gluon plasma, described up to first order perturbation
theory, both positive and negative g2 occur: the perturbative correc-
tions to the radiative T“ contribution is dominated by time-like momen-
tum transfers, while the correction to the p“* term originates from
space-like quark-quark scattering. Hence it is preferable that two
different values of LR be used in the above expressions,
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Consider now the energy density at p = 0. We find the simple
result, restating again some factors

n2 15 oy 7 50 ag
e(p=10) =B + 35 Th [25x8cx(1 -1 ;t—-) + ZIx25X3C>< z (1 - 37 ;—)]

(2.45)

We note that in both quarks and gluons the interaction conspires to

reduce the effective available number of degrees of freedom, At xg = 0

we find the handy relation

oI % cgev
&g * 5g = (Tgomey) [Fm3l - (2.46)
At «_ = 1/2 we seem to be left with only ~ 50% of the degrees of free-

s
dom, and the temperature "unit" in the above formula drops to 135 MeV,

However, as mentioned above, we rather should use ag ~ .2 in eq (2.45)
in which case the contribution of strange quarks, which is about 30% of
the last term in (2.45) just compensates these interaction effects.
Hence (2.46) is the proper rough estimate to be kept in mind,

We now discuss briefly the influence of the heavy flavors. For a
charm quark with a mass of about 1500 MeV the thermodynamic abundance
is sufficiently low to ignore its influence on the properties of the
plasma. While its production is exceedingly slow, even the influence
of its equilibrium abundance on the thermodynamic properties of the
plasma would be quite negligible. To wit, evaluating the phase-space
integrals we find that the ratio of charm to light antiflavor (either u
or d} is

-(mc-u/3)/T

m
/i = &G = e (%)

rofa |

i (2.47)
Taking as a numerical example m. = 1500 MeV, T = 200 MeV, p = 0 one
finds ¢/q = 7.10-3. Thus the energy fraction carried by the plasma
charm here would be ~ 0.2% and unimportant for the thermodynamic prop-
erties of the plasma, but quite significant in direct charm detection
experiments. However, the approach to chemical equilibrium (see below)
is too slow to saturate in nuclear collisions the phase space even
within the most optimistic scenarios, except in circumstances in which
T~ % m. were reached.
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Clearly, we must turn our attention to strangness. With a current
quark mass of about 150-180 MeV we are actually at the threshold T = m
and indeed one finds that there is quite an appreciable s-abundance.
An explicit calculation [4b] has shown that chemical equilibrium will
be reached during the short time of a heavy ion reaction, The motion
of the particles being already semi-relativistic, the ss productiuon
results in a significant increase in the number of available degrees of
freedom of quarks in eq (2.45), Thus for T > m, we have to increase
the number of flavors to 3 while at T ~ me the effective flavor number
is 2.8. The appearance of strangeness is a very important qualitative

feature and we will return to its discussion in section 3.

As a final aspect of the perturbative quark-gluon plasma we con-
sider now the role of the color charge in the statistical description.
We note that for finite-size bags it is essential to ensure the color
neutrality of the considered states: much of the hadronic structure is
a consequence of the requirement of color neutrality and of the symme-
tries of the quark wave functions in the bags. However, we have not
yet included this effect of color into our considerations. As long as
only very few particles are present, color neutral states can be
constructed explicitly. -But how can we treat an excited, relativistic
many-body system? The answer is quite simple in principle: in
eq (2.12) the trace has to include only color neutral states. That is,
we should consider

‘ -B(H-qu)
z = Tr e . (2.48)

However, in order to arrive at a manageable result we had to allow all
states in the trace., In order to solve this problem [33] we borrow the
main technical idea from the work of Redlich and Turko [34].

Actually, for simple cases, an answer to this problem can be
directly written down [35]. Fach state of the Hamiltonian H can be
classified within the irreducible subspaces according to its transfor-
mation properties under the representations of the SU(3) color group.
In order to compute the singlet contribution eq (2.48) we first intro-
duce the generating functional

7-37L )z (2.49)
Edc XC(¢)1) c
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where the sum 1is carried out over all irreducible representations
characterized by the index ¢. The variables 05 of the coefficient
functions, i.e., group characters Xc will permit the inversion of
eq (2.49) through a relation of the type found when solving for a set
of complete orthogonal functions, i.g.,

%Mo) ao(05) xc (o) = 8. (2.50a)

) x:(¢;) x.(0;) = 8"(e' - 0) (2.50b)
c

Hence dc in eq (2.49) is a suitable normalization constant (dimension
of the representation), while M(xi) is a function defining the Haar
measure [35]. With these relations we have

Zo = do Jd"e MCep) xc (o) Z(BV.usep) . (2.51)

The problem is to obtain a suitable set of functions ¢c(xi) such that

i) Z eq (2.49) can be explicitly computed, e.g., in the particle

number representation, and
ii) eqs (2.50) are satisfied,

A hint of how to proceed is contained in eq (2.12): since the baryon
number operator commutes with the Hamiltonian we could use Q in the
exponent in order to divide the Hilbert space into sectors of given
baryon number, We proceed now in this fashion with the non-abelian
group SU(3). There are two mutually commuting charges; in the standard
representation of SU{3) they are the 3 and 8 directions of the color
space, We therefore consider the following Ansatz for the generating
function
Z=Tr(e o qu)U(¢3,¢8)) (2.52a)

here

U( 63, 68) = e 1030310504 (2.52b)
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where we have introduced the new factor u. Since the norm of U is
bounded by unity we have no trouble to establish the existence of the
generating function (2.52): its absolute value must always be smaller
than Z, which is obtained replacing u by unity.

It is our first aim now to show that eq (2.52) yields the desired
form (2.49). The Hilbert space spanned by H is a direct product of
orthogonal subspaces characterized by the color ¢ of states belonging
to each sector (i.e., transformation properties under the SU(3)c
group). Hence we can write:

-8{H-p Q) . .
7 =7 Trle "7 o=10305-10404) (2.53)
cC C

where the sum ¢ is a symbolic sum over all irreducible representations
of SU(3), usually characterized by two positive integers (p,q) ¢ (0,«).
We can now constrain our discussion to the "good color" subsectors of
the entire Hilbert space of the color space. Within each sector, a
complete orthonormal set of states is generated in the particle number
representation of H:

d
1. = 73 ) Ivc,§c> <§C,vc| (2.54)
C

where dC is the degeneracy, i.e., dimensionality of each color multi-
plet, while 5c denotes all quantum numbers within a given irreducible
representation which are related to the internal symmetry. Ve is a
short-hand notation for the set of states determined by the occupation
numbers n; of the i" momentum state. Inserting eq (2.54) into (2.53)

we find

-B(H-n_Q)
| e g

' 1 'iﬁ¢3Q3'iB¢8QQ‘

x <gl,vl] e 1vc,gc>} . (2.55)
Owing to the assumed exact color symmetry the first factor in eq (2.55)
is diagonal in g. Similarly, the second factor is diagonal in v. Thus
we have both 655' and 6VV. as factors and two of the sums collapse.

Dropping the irrelevant indices we find
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d
-g(H-p Q) c i ¥
7=71{] <vle N R Y N IO AL A AL I T R LT
(Y] ¥ =1
C c
Recalling that by definition
-B(H-qu) -p(H-n Q)

z, = Tr. e =d. ] <vle lv> (2.57)

we find the desired decomposition (2.49) with

C

x (03, 08) = <g | e 10s0siesls g (2.58)

™
O g o

now being recognized as the character of the irreducible representa-
tion. The relations (2.50) are automatically satisfied for all compact
semi-simple Lie groups. Even without the use of methods of group
theory one easily can verify in particular cases that eq (2.58) indeed
defines a suitable set of functions. Returning for a moment to the Lie
group SU(2) we find

J -i6am sin(2J + 1) ¢,
(¢3) = ] e L ——— (2.59)

su(2)
XJ :
-J sin 1/2 ¢4

Hence, with the Haar measure [36]

U2 (45) = Lsinzeysz L ey c- (0,20) (2.60)

equations (2.50) easily are verified. Note that the rank of the
irreducible representation enters in eq (2.59) only via the summation
over the eigenvalues of I,. An equivalent remark holds for SU(3),
eq (2,58).

The crucial point of this approach is the fact that the generating
function Z, eq (2.53) can be explicitly determined! Actually the steps
are identical to those used above, c.f., eqs (2.16)-(2.21). The reader
is invited to repeat the derivation now with complex quantities i¢
instead of the chemical potential. One simply finds for quarks the
analogue of eq (2.21):
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anq = 7 2. % V ] T%%%g 3 oanfl + exp(—s(/EtﬂF? - ub) - iac)] (2.61)
flavor c,b

for colored quarks. Instead of a color factor 3c we now find the sum

over the eigenvalues @y of the charges Q3, Qg; in the triplet

(c % (1,0)) and antitriplet (¢ % (0,1)) representation. 1In the triplet

representation for which b = + 1/3 we have

ap = 01/2 + ¢,/3 (2.62a)
ag = -41/2 + 9,/3 (2.62b)
ap = -2/3 ¢, (2.62c)

where R,B,G, refers to the wusual red, blue, green colors. In the
antitriplet representation in which b = - 1/3 the sign of all the three
angles reverses, We note that except when p = 0, the generating
function Z, eq {2.61) will not be real. Of course, the integration
over the group with the proper Haar measure [36] leads to a real result
for the partition function Zc‘ This measure is for SU(3)

d2eM( ) = d(ﬁ) d(ig)[sin% (ﬁ + 6,) sin 2 ing (- n, )12
$MLe1s00) = 332 447 3 z " % 2 z T %2

015 65 € [-m,7] (2.63)

We note that for massless quarks, i.e., neglecting the strange quark
fraction eq (2.61) can be evaluated analytically following the results
of eq (2.22) and replacing p » p * ia. In order to judge the influence
of the color conservation it is sufficient to consider computationally
the particular case of a baryon-less, p = 0, plasma droplet. 1In this
case we find, substituting u/T » ia in eq {2.22)

lnfq = Rnféo) lnfél) (2.64a)

,anéo) = T3 a2 LI (2.64b)

anél) = VT3 §-2- IRRE (;-i)" - —:1)2] (2.64c)
i=R.G,B
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Here an(U) is the partition function without the color constraint
while Xanl) vanishes at o; = 0.

It is important to appreciate that in the quark-gluon plasma the
projection, eq (2.51) on a good color sector has to be carrjed out for
both quarks and gluons simultaneously. Hence one has to carry out the

integral

z = %‘ J d?e M(¢1a¢2) X

c (6) Zy (BsVsus0) Zy (BsVse) (2.65)
C

c q

where for the singlet, c = 0, the character x, is Jjust unity. [In order
to obtain 7g we have to evaluate the analogue of eq (2.29)

'B‘P|-10¢i
(2.66)

8
d3
xnig =2, izl v Tg;%? am(l - e

where the color sum i runs over the octet of gluons with the eigen-
values of the Q,,Q4 charges in the octet representation (1,1).

As the octet results from the product of the triplet and anti-
triplet representations of SU(3), omitting the singlet, we have simply

a$ = a5 - a5 3.k e (R,B,G) . (2.67a)
In detail,
a? = (aR - ag, GG - g, @p - OGp,
- (aR - aG), - (th - aB), - (aB - aR), 0,0) . (2.67b)
We therefore find
= (o) (1)
XnZg XnTg + 1n79 (2.68a)
lnzéo) - T3 2 %E (2.68b)
g g
2 3 1 |z ] 2 q o3l y
Jmzél) = VT3 g_ Z [- 3+ ( n‘ -1)" -3 (—;l— - 1) ] (2.68¢c)



396

We note that the color sum in eq (2.68) was simplified and now includes
only the first three terms of eq (2.67b). Again, ZéO) is the partition
function without the color constraint eq (2.30), while an(l) vanishes
at «J = 0. K

i

From the preceeding derivations the seemingly enormous influence
of color neutrality is apparent. Practically all states have to be
rejected when evaluating the trace (2.48) <constrained to color
singlets. A global quark-gluon color correlation is introduced in view
of eq (2.65). Both quark and gluon fractions of the plasma separately
can have color as long as overall neutrality is assured. However, in
the limit V » « one can see that color neutrality actually should not
be that important. To wit, color fluctuations should go only as the
square root of n, hence, the influence of the requirement of exact
color conservation should not be felt. While this argument easily can
be proven analytically it turns out [33] that the limit V » « actually

means
1 - .
O_Deﬁ‘E/WTL

VT3 > 10 (2.69) I

To illustrate this point 05— 7

we show in figure 2.1 L

the energy density as -

derived from eq (2.65) oL | . 1 Ve

and divided by oT*: 0.5 10 15 2.0 25 3.0

Fig. 2.1 Relative degeneracy Deff of the
guark-gluon plasma, as a function

of Tvl/3,
= y
Deps = /o (2.70a)
6= (2x8+2x2x2x3x %) 72/30 (2.70b)

for a quark-gluon plasma, c.f., eq {(2.45). On the other hand we
observe that at TV1/3 ~ 1.5 only half of the expected number of excita-
tions is available.
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We also can evaluate Deff at finite u, in which instance we expect
to obtain a less stringent constraint: The larger number of the avail-
able particles per unit volume reduces the importance of the con-
straint, The constraint can only become relevant when in the available
volume the number of charge carrying quanta is of the order of one per
degree of freedom. In figure 2.2 we display Deff for p = 0 and p = =T
as function of the volume. The dot-dashed line shows the influence of
the perturbative QCD corrections,

A Deff Stefan-Boltzmann-Limit

U ||||I1|1|l|||1111|x]1_11|llllﬁlcl=

0 1 2 3

Fig. 2.2 The effective relative degeneracy Deff of single particle

energy levels.

We can thus conclude that the color constraints will alter the
properties of quark-gluon plasma droplets, whenever they have b < 4,
In particular this observation concerns the study of the phase transi-
tion from the plasma state to the hadronic gas; color configurations
and correlations here will be of great relevance. However, in such an
approach to the phase transition the inclusion of the effects of the
interaction together with the color constraints is of essence. There-
fore, no analytical understanding of the properties of the plasma near
to the phase transition limit is available as of now. Though lattice
gauge calculations have recently been carried out for such cases, no
conclusions have been reached in view of the formidable numerical
difficulties. The understanding of the phase transition region from
the quark-gluon plasma to the hadronic gas phase is at present an open
physical question,
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3. STRANGENESS IN THE QUARK-GLUON PLASMA

We now show in some detail why the strange particle abundances are
so helpful [4] in observing the formation and the properties of the
quark-gluon plasma. First we note that at a given temperature the
quark-gluon plasma will contain an equal number of strange (s) quarks
and antistrange (S) quarks. Thus, assuming chemical and thermal egui-
librium in the quark plasma we find the density of the strange quarks
to be (two spins and three colors):

_ d3p 1 Tm, 2

s/V =535/V =06 = 3
3 /Dz+m 2/T

(211:) (e S + 1) T

Kp(m /T)  (3.1)

neglecting, for the time being, the QCD perturbative corrections. We
recall that the mass of the strange quarks, me s in the perturbative
vacuum is believed to be of the order of 140-200 MeV [18]. In eq (3.1)
we were able to use the Boltzmann 1limit since the phase space density
of strangeness is not too high., Similarly, the light antiquark .density
(g stands for either u or d) is:

_ d3p 1 -uq/T 6
CI/V =6 'r |D|/T+|.L 7T s e Ta—" . (3.2)
(27)3 e q + 1) 72

The chemical potential of the quarks surpresses the g density. This
phenomenon reflects on the chemical equilibrium between g-g and the
presence of a light-quark density associated with the net baryon
number: the q are easily destroyed by the abundant g's when the q-
density is large.

We now intend to show that often more s quarks are present than
antiquarks of either light flavor., Indeed:

=

542

37 Ko (35) /3T (3.3)

wi
~
Eal}
W
roje—

This ratio is shown in figure 3.1. We notice that in our case of
interest, i.e., by ~ T the abundances of s and @ quarks are comparable
and, in many cases of interest, s/ ~ 5., For p >0 at T » m. there are
about as many u and d quarks as there are s quarks.



399

—~
[7,]]
~

l

—~
Ee]
~

T [MeV]-120
mg [ Mev]-150

1 1 1 ua[ﬂe!l
400 600 800

|

1 1
UU 200

Fig. 3.1 Abundance of strange (or antistrange) quarks relative to the
Tight quark abundance as function of p for several choices of
the temperature T and of the strange quark mass mg .

When the quark matter hadronizes some of the numerous s and S may
form strangness clusters such as E, @, and their antiparticles, and
also exotic strange objects instead of being bound in kaons. The prob-
ability for this process seems to be of similar magnitude as the
production by the quarks of the s carrying antibaryons. It is particu-
larly noteworthy that conventionally, i.e., in pp collisions, they can
be produced only in direct pair production reactions, This process is
suppressed by energy-momentum conservation and phase space considera-
tions up to high energies since the final state has to contain four
particles, This leads to the argument that a study of the 1, E, é, Q
in high-energy nuclear collisions could shed 1ight on the early stages
of the reaction in which a quark-gluon plasma may have been present,
However, these antibaryons have a large transformation probability into
kaons. To wit, the abundance of Q would be equal to @ if the plasma
state would freeze out directly into a low density hadron gas. In
contrast, in a long collision process the o abundance may be depleted
by a number of transfer, i.e., exchange, processes, in particular by

Q + p > KKK + X
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owing to the strongly exothermic character of this reaction. As these
remarks demonstrate, strangness is not only a tag of the plasma state
but also a diagnostic tool for the transition, plasma = hadronic gas,
and for the evolution of the hadronic gas.

The crucial aspects of the proposal to use strangeness as a signa-
ture for the quark-gluon plasma involve:

i) assumption of thermal and chemical equilibrium

ii) comparison between results anticipated in both hadronic phases
at given T and up, where the chemical potential must be deter-
mined by other considerations.

We now turn to the discussion of both these points and begin by calcu-
lating the abundance of strangeness as function of the lifetime and
excitation of the plasma state [4b].

In lowest order in perturbative QCD, sS-quark pairs can be created
by annihilation of 1light quark-antiquark pairs (fig. 3.2a) and in

collisions of two gluons (fig. 3.2b). The averaged total cross
sections for these processes were calculated by Combridge [37]. For
fixed invariant mass-squared s = (kl + k2)2, ghere k1 are the four-
momenta of the incoming particles {w(s) = (1 - i%—)l/z) we have:
a)
k;x.\ q1
kz ,X/ . —qz
ky q,
k2 -q;
b)

Fig. 3.2 Lowest order QCD diagrams for ss production: a) qq - sg;
b) gg » ss.

_ 8nasz 2m2
o _ _ = (1 +—) w(s) (3.4)
qq->ss$ 27s 3




401

211:(12 2
R Sl (R S

gg+ss s

y

=

31 M2

} tanh-1 w(s) - (5 + 3 ) wis)] . (3.5)

A
cof~t

For the mass of the strange quark we will assume, a) the value [10]
fitted within the MIT bag model: mg = 280 MeV and, b) the typical
value [18] found in the study of quark currents: mg = 150 MeV, When
discussing light quark production below we will use mq = 15 MeV, The
effective QCD coupling constant xg = g2/4n is an average over space-
like and time-like domains of momentum transfers in the reactions shown
in figure 3.2 as discussed in section 1. We use: (a) x, = 2.2, the
value consistent with mg = 280 MeV in the MIT bag model, and (b) the
value ag = 0.6, expected at the momentum transfers in this process., We
believe the choice {b) of the parameters to be realistic and to be
consistent with the spirit of this work. The choice (a) is used as a
reference; even when me = 280 MeV we will see that the chemical equili-

brium will be reached.

Given the averaged cross sections it is easy to calculate the rate
of events per unit time, summed over all final and initial states:

d3k d3k
dN 1 2
D= [ a3 | ————— 7 p.(ky,x) [ ———
av = L] (27) 31k, | beilkan) ] (27) 31k,
x 12 p; (Kp5x) L{Mzds 8(s - (ky + kp)2) kiky, a(s) (3.6)

The sum over initial states involves the discrete quantum numbers i
(iolor, spin, etc.) over which eq (3.5) was averaged, The factor
TF%TTF;T is the relative velocity for massless particles, and we have
introduced a dummy integration over s in order to facilitate the calcu-
lations. We now rep]acg the phase space densities pi(k,x) by momentum
distributions fg(k), fq(k), fq(k) of gluons, quarks, and antiquarks
that can still have a parametric x-dependence through a space-
dependence of the temperature T = T(x) and the chemical potential
po= oup{x). The invariant rate per unit time and volume for the
elementary processes shown in figure 3.2 is then:
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dn 1. d3k, 43k,
A = =§J'sdsé(s-(kl+k2)2)
dtd3x 4M2 (2n) 31k, (27) 31k,
x {(2 x 8)2 f_(k,) fg(kz) P _(s)
gg-=>ss
+2x(2 x 3)2 f (k) f (k,) & (s)} (3.7)
q g qg-+ss

where the numerical factors count the spin, color and isospin degrees
of freedom,

Assuming that in the rest frame of the plasma the distribution
functions f depend only on the absolute value of the momentum,

[kl = k; = k, we can evaluate the angular integrals in eq (3.7):
8 - ® i
A== ] sds o [f7 dk; [ dk,@(4k,k, - s) f (k) f (ky)]
ER ggrsi o 1)y 2 182 g 1 g\"2
] @ - o o
- s ds © dk dk {4k ,k, - s) f_(k f (k , (3.8
+ 4 {MZ qc-|~>3§[f0 1 fO 2 12 ) q( 1) a( 2)] ( )

where the step function © requires that k,k, > % > M2, We now turn to
the discussion of the momentum distribution and related questions. The
anticipated lifetime of the plasma created in nuclear collisions, as
discussed below in section 5, is about 6 fm/c = 2 x 10-23 sec., After
this time the high internal excitation will most likely have dissipated
to below the energy density required for the quark-gluon plasma, We
recall again that the transition between the hadronic and the quark-
gluon phase is expected at an energy density of approximately 0.6 -
1 GeV/fm3, Under these conditions each perturbative quantum (light
quark, gluon) in the plasma state will rescatter several times during
the lifetime of the plasma: Hence the momentum distribution functions
f(p) can be approximated by the statistical Bose or Fermi distribution
functions, regardless of the shortness of time:

fo(p) = (PP - 1)-3, (gluons) (3.9a)

f (p) = (eﬁ'p AT+ 1)-1, (quarks-antigquarks) (3.9b)



403

where p is the covariant temperature, Bep = solﬁl - E-B for massless
particles, (B+p)-1/2 = T is the temperature and At is the baryon number
(antibaryon number) fugacity. In the rest frame of the plasma,
Bep = |Ppl/T. The distributions (3.9) can be taken seriously only for
Ipl not very much larger than T; to populate the high energy tail of
the distributions too many collisions are required for which there may
not be enough time during the lifetime of the plasma. Furthermore, we
note that while in each individual nuclear collision the momentum dis-
tribution may vary, the ensemble of many collisions may have a better
statistical distribution.

Finally, consider the values of the fugacities At in eq (3.9b).
As we will show the gg = qg reaction time is much shorter than that for
qq - ssS production since the 1light quark masses are only of the order
of ~ 15 MeV., Consequently we may assume chemical equilibrium between g
and @, i.e.,

At o= %: e U 4= 3y (3.10)

and the baryon density is given by eqg (2.35) omitting for the present
the O(«) corrections, d.e.;

- 2 3 2
v(Toug) = 32 (uq g (#T) ) .
We note that since gluons dominate the sS production in the plasma
state, the conditions at the phase transition, such as the abundances
of g and g, will not matter for the ss abundances at times comparable
to the lifetime of the plasma.

We now return to the evaluation of the rate integrals, eq (3.8).
In the gluon part of the rate A, eq (3.8), the k,,k, integral can be
carried out exactly by expanding the Bose function in a power series in
exp(-k/T):

P T ds s2T (s) S (nnvy-1r2 ¢ (QAniS)Ey g g

gg-~>ss n,n'=1 T
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In the quark contribution an analytic treatment of the Fermi function
is not feasible and the integrals must be evaluated numerically. It is
found that the gluon contribution, eq (7.11), dominates the rate A.
For T/M > 1 we find:

7 “2M/T 51 T
A = Ag =32 asz MT3 e / (1 + 17 M + ol (3.12)

The abundance of sS-pairs cannot grow forever; at some point the
ss-annhilation reaction will deplete the strange quark population. The
loss term of the strangeness population is proportional to the square
of the density ng of strange and antistrange quarks., With ns(w) being
the saturation density at large times, the following differential
equation determines ng as function of time:

o

n
t

llh

“ AL - (ng(t)/ng(=))?] (3.13)

[=%

We note that eq (3.13) in principle should also include a term linear
in ns(t). Namely, when the plasma density is sufficiently high the
produced strange quarks have difficulty to quickly get away from each
other. With a scattering 1length of the order of 1/3 fm in extreme
cases one has to consider diffusion rather than free motion. Hence in
this limiting case we have always a sS pair in a given unit volume,
leading to

dns
rrali A(l - ns(t)/ns(w)) . (3.13b)

The solutions of eq (3.13) are, respectively

ns(t) = ns(w) tanh(t/ <) (3.14a)
n(t) = n (=) (1 - et/ (3.14b)

with
T =n_{=)/A . (3.14c¢)
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Both solutions are monotonically rising saturating functions with
similar behavior, controlled by the characteristic time constant . In
a thermally equilibrated plasma the asymptotic strangeness density,

ns(w), is that of a chemically unconstrained relativistic Fermi gas

(» = 1):
w n-1
n(=) = 23 1 w2 5 L)y ommy (3.15)
n:

We find for the relaxation time (3.14c) from eq (3.12), (3.15)

9 - M/T 99 -
T T =7(%)1/2 as'z Ml/2T3/2e/ (1+‘5-g—+...)1 (3.16)

=l

which falls rapidly with increasing temperature,.

! T [~ T T T
: Alc-fm*) T :Isec]\\\
-22
10 0
f E_
b 07
/ -2
001 / 410
i |./n/1||/‘1}||11111.![1M?Y_|]__ E][lll] ljlnyuTlvey]
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Fig. 3.3 Chemical relaxation times as functions of the temperature T.

Full lines: gq » sS and gg + ss; dashed lines qq » sS;
dotted lines gg > qg (mq = 15 MeV). Curves marked I are for
a. = 2.2 and m_ = 280 MeV, those marked II are for «_ = 0.6

3 s
and me = 150 MeV: a) rates A; b) time constants =.

S

We now discuss the numerical results for the rates, time con-
stants, and the expected strangeness abundance. In figure 3.3a we
compare the rates for strangeness production by the processes depicted
in figure 3,2 for the two different choices of parameters discussed

above, after eq (3.5). The rate for qgq - ss alone (shown separately)
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contributes less than 10 percent to the total rate, In figure 3.3b we
show the corresponding characteristic relaxation times toward chemical
equilibrium, =, defined in eq (3.14). While our results for strange-
ness production by light quarks agree only in order of magnitude with
those of Bird and Zimdnyi [38] owing to the difference in the chosen
values of the parameters, it is obvious from our results that gluonic
strangeness production, which was not discussed initially by these
authors [39], is the dominant process. If we compare the time constant
v with the estimated lifetime of the plasma state we find that the
strangeness abundance will be chemically saturated for temperatures of
160 MeV and above, i.e., for an energy density above 1 GeV/fm3, We
note that © is quite sensitive to the choice of the strange-quark mass
parameter and the coupling constant g which must, however, be chosen
consistently. A measure of the uncertainty associated with the choice
of parameters is jllustrated by the difference between our results for
the two parameter sets taken here,

Also included in figures 3.3a, and 3.3b are our results for gluon
conversion into 1light quark-antiquark pairs. The shortness of < for
this process indicates that gluons and 1ight quarks reach chemical
equilibrium during the beginning stage of the plasma state, even if the
quark/antiquark, i.e., baryon/meson ratio was quite different in the
prior hadronic compression phase.

The evolutijon of the density of strange quarks, eg (3.14), rela-
tive to the baryon number content of the plasma state, is shown in
figure 3.4 for various temperatures. The saturation of the abundance
is clearly visible for T > 160 MeV, To obtain the experimentally
accessible abundance of strange quarks, the corresponding values
reached after the typical lifetime of the plasma state, 2 x 10-23 sec,
can be read off in figure 3.4 as a function of the temperature. The
strangeness abundance shows a pronounced threshold behavior at
T ~ 120 -160 MeV.

We thus conclude that the strangeness abundance saturates in a
sufficiently excited quark-gluon plasma with T > 160 MeV, ¢ > 1 GeV/fm?
owing to the high gluon density. This allows strangeness to be an
important observable indicating the presence of gluons in the reaction,
We hence turn to the study of the strangeness in normal nuclear matter
in order to gain insight into the relevance of strangeness as a charac-
teristic signature of the quark-gluon plasma.
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Fig. 3.4 Time evolution of the relative strange quark to baryon number
abundance in the plasma for various temperatures T.
mg = 150 MeVv, ag = 0.6,

To this end we must first establish [4c, 40] the relevant relative
strange particle rates originating from highly excited matter consis-
ting of individual hadrons, the hadronic gas phase, The main hypo-
thesis which allows us to simplify the situation is to postulate the
resonance-dominance of hadron-hadron interactions (see section 4)., In
this case the hadronic- gas phase is a superposition of different
hadronic gases and all information about the interaction is hidden in
the mass spectrum <(m2,b) which describes the number of hadrons of
baryon number b in a mass interval dm2?. When considering strangeness
carrying particles, all we then need to include is the influence of the
non-strange hadrons in the baryon chemical potential established by the
non-strange particles. The total partition function is approximately
additive in these degrees of freedom:

7 = gn zhON-strange

n + gn zStrange (3.17)

In order to determine the particle abundances it is sufficient to 1list
the strange particles separately and we find
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;strange

= -1 -1
an (T,v,xs,x ) C {ZW(xk) [xsx + g xq]

q q

+ 2[W(x,) + M (x5)] [A A2 + x;lx-z]} (3.18a)

A) q q

m.
2 Ky(74) - (3.18b)

W o
(xi) = (T—)
We have C = VT3/2%x2 for a fully equilibrated state. The case of chemi-
cal non-equilibrium can be effectively taken care of by using smaller
values of C. Since the strangeness-exchange cross sections are very
large, strangeness always will be distributed among all particles in
(3.18a) according to the values of the fugacities xq = x81/3 and .
Hence we can speak of relative strangeness chemical equilibrijum, see
below. We have neglected to write down quantum statistics corrections
as well as the multi-strange particles, E and Q-, as our considerations
remain valid in this simple approximation [40]. Interactions are
effectively included through explicit reference to the baryon number
content ~of the strange particles as Jjust discussed. Non-strange
hadrons influence the strange fraction by establishing the value of kq
at the given temperature and baryon density.

As introduced here, ks controls the strange quark content while
the up- and down-quark content is controlled by M KBlla'

Using the partition function eq (3.18a) and (3.18b) we calculate
for given ugs T, and ¥ the mean strangeness by evaluating

- d strange
<n - n > Mg EI; an Z (T,V,xs,xq) . (3.19)

which is the difference between strange and anti-strange components.
This expression must be equal to zero since strangeness is a conserved
quantum number with respect to the strong interactions, From this
candition we get:

W(x,) + gt TN ,) + W) T]372
M T Mg [WTx ) ¥ A TW(x,) * 3W(x,)] = Agv . (3.20)
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We notice a strong dependence of y on the baryon number, For large MR
the term with AB'I will tend to zero and the term with KB will dominate
the expression for Ao and y, As a consequence the particles with fuga-
city xs and strangeness S = -1 (note that by convention strange quarks
carry S = -1, while strange antiquarks carry S = 1) are suppressed by a
factor y which is always smaller than unity. Conversely, the produc-
tion of particles which carry the strangeness S = +1 will be favored by
y=1. This is the consequence of the presence of nuclear matter; for
p = 0 we find vy = 1.

In order to calculate the mean abundance of strange particles we
must introduce for each species its own fugacity which subsequently
must be set equal to unity since all different strange particles are in
mutual chemical equilibrium by assumption. This assumption is made as

a consequence of the 1large strangeness exchange cross sections, in
reactions such as

N+ K<Y + g (3.21a)

here Y stands for a hyperon A,Z. These are much larger then the
strangeness production cross sections, such as

N+ N>N+A+K (3.21b)
or even
T+ N> + K (3.21c)

when considered at moderate temperatures (energy threshold > 500 MeV).
Hence in nuclear collisions the mutual chemical equilibrium, that is, a
proper distribution of strangness among the strange hadrons, most
likely will be achieved. By studying the relative yields we can
exploit this fact and eliminate the absolute normalization, C,
eq (3.18a) from our considerations. We recall that the value of C is
uncertain for several reasons: (i) V is unknown, (ii) T? is strongly
T(t,r)-dependent, and (iii) most importantly, the absolute normaliza-
tion assumes chemical saturation which is not achieved owing to the
shortness of the collision., Indeed we have (cf., eq (3.3))

4=, (1 - c(r)2/ei(e)) (3.22)
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and the time constant Ty = C(w)/AH for strangness production in
nuclear matter can be estimated to be 10-2! sec. [41]. The generation
of strangeness is most likely driven by reaction (3.21c). Thus C does
not reach C(«) in plasma-less nuclear collisions, If the plasma state
is formed, then the relevant C > C{«). Details of the time dependence
of the chemical composition of the hadronic gas are being studied [42].

We now compute the relative strangness abundances. Using

eq (3.20) we find from eq (3.18) the grand canonical partition sum for
zero average strangeness:

n Zztrange = C {ZW(X ) [Y v+ Y-1 N ] + 2W(x ) {YK A+ Y-lx-lh_]
K K 4 A B A B &

+ 6W(x ) [ya n + y=ia-In 3} . (3.23)
z B = B %

The strange particle multiplicities follow from (i = K,E,A,K,Z,i):

. 3 strange
<ni> = M T AN Iy i . (3.24)
i A =1
1
Explicitly we find
n g ¢ vl uxy) (3.25a)
tpo /T
o >=cythuxg,) e " (3.25b)
AE

and hence the ratio <nK+>/<nK_> = y=2, This is shown in figure 3.5 as
function of the baryo-chemical potential bp for several temperatures.

We note that this particular particle ratio is a good measure of
the baryon chemical potentijal in the hadronic gas phase, provided that
the temperatures are approximately known. The mechanism for this
process is: the strangeness exchange reaction (eq (3.21a)) tilts to the
left (K-) or the right (abundance y ~ K%*) depending on the value of the
baryo-chemical potential,.
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Fig. 3.5 The ratio <nK+><nK_> = y=2 as a function of the baryo-chemical
potential for several temperatures,

We turn our further interest to the rarest of all singly strange
particles, and show in figure 3.6 the ratio <n_>/<n >, We notice an

- A A
expected suppression of A due to the baryo-chemical potential as well
as the strangeness chemistry. This ratio exhibits both a strong

temperature and kg dependence. The remarkably small abundance of K,
€.9., 10-*4, under conditions likely to be reached in an experiment at
the end of the hadronization phase (T ~ 120 - 180 MeV, g ~ (4-6)T) s
characteristic of the nuclear nature of the hot hadronic matter phase.
Qur estimates for the quark-gluon plasma based on flavor content are
two to three orders of magnitude higher, One may observe that the
formation of A in nuclear matter will probably be even much less than
shown here since A will be much further away from the equilibrium
abundance than A's., Hence the ratio of figure 3.6 may be viewed as an
upper limit for the case of hot hadronic matter.

We have already shown that the strangeness abundance is chemically
equilibrated in the quark-gluon plasma phase and indicated that this is
not the case in the hadronic gas phase, We now further note that even
assuming, probably much too optimistically, absolute chemical equilib-
rium in the gas phase, we find 3 to 5 times more strangness in the
plasma at comparable thermodynamic parameters, i.e., equal ,T. This
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Fig. 3.6 The ratio <n_>/<n > as a function of ug for several tempera-
A A -
tures as an upper limit for A abundance in the hadronic gas

phase.,

is shown in figure 3.7 as function of p at some selected values of T
and mes where the conversion from p as a variable to baryon density has
been done using perturbative QCD. Thus the simplest of all observa-
tions pointing to the quark-gluon plasma is the measurement of an
anomolously high strange particle abundance as function of CM energy in
the co]liding_nuc1e1, i.e., preferably at high P~ Furthermore we have
argued that A are strongly suppressed in the nuclear gas. Thus an
anomalous yield of A's is an even more characteristic observable of the
plasma.

More speculative is the observation that strangeness may cluster
in the dilute plasma to form strangeness impurities such as ss, sss,
etc., owing to the attractive QCD-Coulomb interaction., Although the ss
state would be more bound than S5 or ss state, its statistical weight
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associated with the color selec-
tion factors is so much smaller i
that we believe the latter state
to be the dominant strangeness

cluster. This coagulation of ok e 1o 120 M

m3= 150 MeV
strangeness can proceed even

T = 120 Me¥

further with S35 or sss states A
= 180 Hev

(free @'s) being formed. It is

07 NO\ T - 160 Mev
very hard to make a quantitative 56

m3= 150 Mev

prediction of this process, but £ SN N - TaMeY

ng- 280 be¥

—

clearly one must look out to .
measure the abundances of such

rare baryons as 5, possibly on 2t
event by event basis. However

we observe that hadrochemical 0

calculations, i,e., those in hot

nuclear matter eg (3.18) also

lead to anomalous abundances of Fig. 3.7 Ratio of strangeness

multistrange baryons [42, 43] along the transition line

quite similar to the results of between the plasma and

a recent hyperon beam experiment the hadronic gas phase as

[44]. a function of assumed
baryon density on the
plasma side.

In the above discussion, the rapid production of strangeness in
the plasma phase and its higher statistical abundance as compared with
the hadronic gas phase, are the central features of strangeness as a
characteristic observable for the quark-gluon plasma, We have
discussed the 1large plasma domains. Now we turn our attention to
"small" plasma droplets which may be either created in collisions of
1ight nuclei [45]1 or perhaps in antiproton annihilations on nuclear
targets [2h], [46]. Before turning to these phenomenological details
we first derive another effect that further enhances the role of
strangeness as a signature for plasma droplets,

As we have described at length in section 2, exact conservation of
quantum numbers, here of the total strangeness, greatly influences the
actual partition function. Rewriting egq (2.61) for strange quarks we
have the generating partition function
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a7 = gsv f _d%p {an(1 + exp[-gvp2+m2 - g& + ie])
s (27)2
+ an(1 + exp[- p/p2*mZ + gﬂ - ie])} (3.26)

where the statistical degeneracy of strange quarks is 9g = ZS X 3C = 6,
In eq (3.26) we have included the baryochemical potential associated
with strange quarks. The angle ¢ is associated with the U(1l) group and
will allow to ensure exact strangeness conservation.

From eg (3.26) we can extract the partition function of given
strangeness s by a simple integration

2r -i¢n
2, (TVow) = [ gty e 7 (T,V,u50) (3.27)

) S

which in the Boltzmann 1imit can be carried out analytically. We have
in this case

d3 —r i
&n qu =gV [ TE;%g exp[-gv/pZmZ - gﬂ] e'?

+

, y
9V J 1335 expl-p/p7mZ + &) o710

= 9 %%; W(m/T) [e's”/3 eicb + eB”/3 e'i¢] (3.28)

where as usual W(x) = x2K,(x).

We now recall the generating series of the modified Bessel
functions Ik(z)

eZ(t"‘]/t)/Z = 2 tk Ik(z)’ t £0 . (3.29)

We introduce the definitions

£ = e"BB/3+i¢ . (3.30a)
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L 20, g_}; (%)2 K,(8) (3.30b)

=

l "
where Z( ) is the one-particle partition function., For the generating
partition function in the Boltzman approximation we have hence

+ .
7; = 3 o BRK/3 ike Ik(ZZ(l)) . (3.31)
s z-o

The integral (3.27) can now be carried out:

-ppn_/3
15 = e 8T (22(1)) . (3.32)
S S

For finite ng the chemical potential regulates the particle abundances
in the conventional fashion. For ng = 0 we have a very interesting
special case [35]

2,(1,v) = 1,228 (1,0) (3.33)

ZU(T,V) is now p-independent and describes an arbitrary number of sS
pairs in the volume V and at temperature T, but with the number of s-
guarks being exactly equal to that of S quarks. However, having used
the Boltzman limit, we have constrained the validity of egq (3.33) to
temperatures not much larger than the strange quark mass; only then is
the expression (3,28) valid, i.e., the phase space sufficiently thinly
populated allowing the neglect of gquantum symmetry effects.

Next we notice that the argument in the I, function is the number
of strange and antistrange quarks, computed as if we had neglected the
influence of exact strangeness conservation. In the 1imit that this
number is large we can employ the asymptotic expansion

Io(z) ~=S= (1 + 45 + ...) (3.34)

to recover the usual result
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In the above equation we have the volume V as the only quantity that
controls the argument of the partition function at fixed temperature.

The actual number of s-pairs present in the plasma is

> =& (2220 - ez ) 71,0y (3.36)
s on T o A=l 1,(2z0)) ’ '

where we note the appearence of a suppression factor

11(22(1))
n(T,V) = T - (3.37)
I,(228 )

This factor is shown in figure 3.8
for T = 160 MeV and strange quark
mass m_ = 160 MeV as a function of I

S
the volume. The volume is measured

ms =160 MeV

in t f th i
in terms o e elementary hadronic T - 160 Moy

volume V= %ﬁ (1 fm)3. The impor-
tant aspect of this result is that
0.5

as the volume goes from 1/2 Vh to
3 Vh’ n more than triples. Hence,
we expect that in the plasma droplet
strangeness would be enhanced by the

relaxation of phase space con- 0 ! ? 3 4
straints arising for small volumes
from the fact that strangeness is Fig. 3.8 Suppression factor for

generated in s$ production which is strangeness production
the physical fact expressed by the as a function of the
quenching factor (3.37). reaction volume .

This way we have two effects leading to a significant increase in
the strangeness abundance even in small plasma droplets:

(a) The nonlinear volume effect: the abundance of strangeness is
not only proportional to V through Z(l) eq {(3.35), but in addition
there is the disappearance of the phase space quenching factor =n
eq (3.37) for volumes exceeding VH. Even for small droplets with
V o~ 2V, this effect leads to an enhancement by a factor ~ (V/Vh)2 = 4,
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(b) The word "plasma" implies the eguidistribution of the energy
into the available degrees of freedom and a lifetime of the droplet of
more than 10-23 sec. As the QCD cross sections indicate (see preceed-
ing sections) this time almost allows the chemical equilibrjum state to
be reached. As discussed in section 7 this means that the strangeness
abundance found would be 1larger by a factor of 2 to 4 than in the
equilibrated hadronic gas phase. As the equilibration is also unlikely
in the gas phase, we must also expect at least a factor 5 or so more
strangeness from the plasma droplet than from the gas phase.

Taken together, both (a) and (b) imply that the strangeness origi-
nating from plasma droplets is more than ten times as abundant than
that expected from the hadronic gas phase, making the appearance of a
plasma easily visible as the plasma production threshold is passed in
suitable experiments. Actually, this factor very likely will be more
than 100 rather than 10, since in the hadronic gas phase the phase
space of strange hadrons is not going to be saturated,

While no systematic experimental information is available as of
now, we have found one piece of data which seems to confirm these con-
siderations. Namely, instead of using high-energy nuclear collisions,
one can employ antiproton annihilation in nuclei in order to produce a
local plasma droplet [46]. We would like to argue that when slow,
i.e., LEAR antiprotons penetrate into a nucleus the first step in the
annihilation process will be the formation of a baryon-number zero
fireball, filled with colored gluons and quark-antiquark pairs. As it
turns out, this picture allows us to describe satisfactorily the
m-multiplicities in annihilations where it is important to consider the
conservation of isospin [47]. 1In pp reactions such a state would then
break up into several mesons, a process that may last sufficiently long
to allow the fireball to sometimes collide with one or more of the
nearby nucleons in a nucleus. Very likely, this will lead to the
dissolving of some as yet unspecified number of nucleons into the
fireball, What do equations of state, cf. section 2, tell us about the
physical properties of such a state? We have the energy density of a
(relaxed) droplet, eq (2.6):

48 = E/v = (E/b)(b/V) , b = A -1 (3.38)
where b is the baryon number of the droplet, i.e., one less than the

total number of nucleons A that have reacted with the incoming anti-
proton, MWe also know the total energy E of the fireball,
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E = (A+ Lmy + E P

Kin (3.39)

and hence can solve eq (3.38) for the baryon density v of the droplet:

~

B
N

=

-1

Aep -1
o s mr el m) (3.40)
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At low energy the last factor containing ZAV/%

the kinetic energy of p may be dropped. | _________
Figure 3.9 shows the "compression" v/v,
as function of A, where v, as usual is 1
the normal nuclear density in heavy
nuclei, vy = .145/fm3,
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We see that the baryon density of lp) &) 3(Ic;)
the droplet remains similar to that of Fig. 3.9 Nuclear matter
the normal nuclear matter, i.e., we find compression as a
no appreciable compression [46b]. function of A.

Certainly, the quark droplet will disintegrate into A-1 baryons
and several mesons, Our understanding of this process is still unsat-
isfactory but some properties of the emerging particles nonetheless can
be estimated. First we observe that inside the low density droplet a
temperature of the order of about 160 MeV (A = 1) prevails. This value
is actually slightly A-dependent but will be about 140 MeV even for
large A, owing to the low baryon density. Particles originating from
the disintegration of the droplet will in the event-ensemble show a

momentum distribution with characteristic slope (~ 1/T). Paraliel to
this effect we should expect a significant enhancement of the strange
particle abundance, as just described.

Apparently, an experiment to observe a plasma droplet would
consist of using a strangeness trigger and measuring the momentum

distribution of high-momentum so called spectator protons. Such an
experiment has actually been carried out for the lightest nuclei. In
figure 3.10 we show the results of the p-d annihilation taken from
reference [48]. Here the event rate as a function of the recoiling
proton momentum is shown if the annihilation is accompanied by KK
production.
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Indeed we see a strong enhance-
ment at proton momenta p > .3 GeV
which nicely follows a T = 160 MeV
slope. It is very interesting to
note that this clear signal seems to
disappear in the background when the
KK trigger is not used (see fig. 2
of reference [49]). Another confir-
mation of this interpretation s
obtained by considering the
reaction

T T T Y T

(0) D~ (pyp) KK7's
momenium of pyg

§\
i jente

Number of Events

S

pd > A + X (3.41)

A

h trangen is now attached to oz 04 06 08 10 12
The strangeness is che Mom. of Spectator P (Gev/c)

the nucleon and the reaction is
self-analyzing in the sense that the Fig. 3.10 Momentum distribution

recoiling particle has the trigger of spectator protons
gquantum number, Indeed, in in coincidence with
reference [50] Oh and Smith record strangeness production,

that the A P, spectrum is identical

to their p spectrum in the bump above P, > .3 GeV. Recent measurements
of the reaction (3.41) [51] attempt also an alternative interpretation
in terms of on-the-mass-shell k-exchange which, however, seems to fall
short of the data. Another experimental evidence against the
k-exchange mechanism is the anomalous enhancement of "K-d reactions"
when the spectator momentum exceeds 200 MeV/c [52]. In favor of our
present interpretation is the recent result that a hadronic gas with
conserved charge and strangeness leads quantitatively to the observed
momentum distribution and absolute normalization for the p-d spectators
at p = 200 MeV/c [53]. This indicates a very high degree of thermali-
zation which would require an intermediate plasma state.

We can thus conclude that a first signal for the annihilation on
two nucleons leading to a b = 1 plasma droplet may have been seen in
the p - d reaction. It would be of great interest to see if a similar
signal can be obtained, e.g., in p - « annihilations. Here in particu-
lar a 4n geometry would be of great help in order to select events in
which all three remaining nucleons share the annihilation energy. A

simultaneous enhancement of the s-yield would give a confirmation of
the presented arguments,
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4. THERMODYNAMICS OF THE INTERACTING HADRONIC GAS

The description of the hadronic gas can be very much simplified by
the hypothesis that the hadron-hadron interaction is dominated by the
hadron resonances [8]. In this case the hadronic gas phase is essen-
tially a superposition of different hadronic gases and all the informa-
tion about the interactions is hidden in the mass spectrum <(m2,b)
which describes the number of hadrons of baryon number b in a mass
interval dm2 [9].

Let us first assume that the mass spectrum <(m2,b) is already
known. Then, following the developments of Refs. [8],[9], the grand
canonical 1level density o¢ is given by an invariant phase space
integral. The extreme richness of the spectrum, z(m2,b) ~ exp(m/T,),
enables us to neglect Fermi and Bose statistics above T = 50 MeV and to
treat all particles as "Boltzmannions" in the external volume vex‘ We
find for given P, = (E,p) and baryon number b (6K = Kronecker &-

function)
© 1 N
a(p,Vgysb) = 5"(p)6K(b) ) NT 8% (p - = p;)
N=1 "7 i=1
N N 2A p1.“
x J (b - § by)m —E—— (pZb.)d*, . (4.1)
{b;} i=1 i=1 (2m)3

h term is

Here, the first term corresponds to the vacuum state. The Nt
the sum over all possible partitions of the total baryon number and the
total momentum p among N Boltzmannions, each having an internal number
of quantum states given by r(pf,bi). These Boltzmannions are hadronic
resonances of baryon number bi(’ = < bi < =}, Every resonance can move
freely in the remaining volume A left over after subtracting the proper

volumes Vc of all hadrons from the external volume Vex:
1% N B
AT = V- =Z vE oo, (4.2)

v¥ is a covariant generalization of Vi; in the rest frame Vu = (v,0).



421

The generalization (4.1) of the familiar phase space formula
includes the following three essential features of the hadronic inter-
actions:

a) The dominance of the particle scattering by the dense set of
hadronic resonances via r(m%,bi).
b) The proper natural volumes of hadronic resonances via a".

c) The conservation of baryon number and the clustering of
hadrons into lumps of matter with |b| > 1.

The thermodynamic properties of a hot hadronic gas follow from the
study of the grand partition function Z(B,V,A), as obtained from the
level density o{(p,V,b):

Z(8,Van) = T A [e PP o(p,v,b)d%p (4.3)

)

Here the covariant generalization of thermodynamics with the inverse
temperature four-vector Bu has been used., In the rest frame of the
relativistic baryon the chemical potential p is defined by

A= exp(n/T) (4.4)

it is introduced in order to conserve the baryon number in the statis-
tical ensemble, A1l quantities of physical interest can be derived as
usual by differentiating anZ with respect to its variables,

Equations (4.1)-(4.3) leave us with the task of finding the mass
spectrum t, Experimental knowledge of < is limited to Tow excitations
and/or low baryon number. Hagedorn [8] has introduced a theoretical
model, "the statistical bootstrap," in order to obtain a mass spectrum
consistent with direct and indirect experimental evidence. The quali-
tative arguments leading to an integral equation for <(m2,b) are the
following. When Vex in eq (4.1) is just the proper volume VC of a
hadronic cluster then, up to a normalization factor o in eq (4.1) is
essentially the mass spectrum =. Indeed, one cannot distinguish
between a composite system as described by eq (4.1) compressed to the
natural volume of a hadronic cluster and an "elementary" cluster having
the same quantum numbers. Thus we demand
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o(p,V,b) Iyoy = Hr(p2,b) (4.5)
C

where the "bootstrap constant" H is to be determined below. It is not
sufficient simply to insert egq (4.5) into eq (4.1) to obtain the boot-
strap equation for <; more involved arguments are necessary [9b] in
order to obtain the following "bootstrap equation" for the mass spec-
trum:

Sl
He(p2,b) = Hzy 8 (p? - MZ) +sz v Jot(p -

{g , _ Hr(p%,bi)d“pi . (4.6)
1 1

The first term 1is the lowest one-particle contribution to the mass
spectrum, z, is its statistical weight (21 + 1) (2J + 1). The index
"o" restricts the 8 function to the positive root. Only terms with
b = 0, £+ 1, corresponding to lowest energy qa (pion) and qqgq (nucleon)
states contribute in the first term of eq (4.6). All excitations are
contained in the second term since arbitrary quark configurations can
be achieved by combining [(qa)n (qqq)m]. The small influence of heavy
flavors is ignored at this point but easily can be introduced.

In the course of deriving the bootstrap egquation (4.6) it turns
out that the cluster volume Vc grows proportionally to the invariant
cluster mass [9],

Vo(p2) = vp?/(4B) . (4.7)

The proportionality constant has been called 4B in order to establish a
close relationship with the quark bag model [10]. The value of B can
be derived from different considerations involving the true and
perturbative QCD states. While the original MIT-bag fit has been
gl/% = 145 MeV, the (unweighted) average of different fits is today

Bl/4

190 MeV
(4.8)

B 170 MeV/fm3
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As far as the bootstrap is concerned the constant H and the bag
constant B are free parameters. However, as just pointed out, B is
determined from other considerations, while H turns out to be inversly
proportional to B [9b]. Hence, if one wishes to believe the statis-
tical bootstrap approach to the 1last detail there remains no free
parameter in this approach, The implications of this for the transi-
tion, gas to plasma, will now be discussed,

Instead of solving eq (4.6), which leads to the exponential mass
spectrum [8],

+(m2,b) ~e™To (4.9)

we wish to concentrate here on the double integral, i.e., the Laplace
transform of eq (4.6) which will be all we need to establish the phys-
ical properties of the hadronic gas phase. Introducing the transforms
of the one-particle term, eq (4.6)

s(g.n) = 1 P Hz 6 (p? - M,Dz)e'ﬁ'd d*p (4.10)
b‘_m
with pions and nucleons only
M 1 "N
6(B,A) = 2=HT [3m Ky(57) + 4(x + 3)myKy(37)] (4.11)

(Kn is the modified Bessel function), and the mass spectrum:

©

o(8,0) = 1 AP fHe(p2,b)e Pd gup | (4.12)

b=atw
we find for the entire eq (4.6) the simple relation
o(B,A) = 9(B,2) + exp[o(B,2)}] - o(b,n) -1 . (4.13)

To study the behavior of ¢(p,A) we make use of the apparent implicit
dependence:

6(B,r) = G(e(B,7)) (4.14a)
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with the function G being defined by eq (4.13)
v = 26 + 1 ~exp G (4.14b)

This function G(v) is shown in figure 2.1, As is apparent there is a
maximal value v

vy = an(d4/e) = 0.3863 (4.14c)
T L = T
N
Y
— __ \ -1
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o - \ 1
\
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Fig. 4.1 Bootstrap function G(¢). The dashed 1line represents the
unphysical branch.

beyond which the function G has no real solutions. Recalling the
physical meaning of G, eq (4.12, 4.14a) we conclude that eqg (4.1l4c)
establishes a boundary for the values of A, i.g., u, and T beyond which
the hadronic gas phase cannot exist, This boundary is implicitly given
by the relation (4.11):

an(4/e) = 27HT __[3m K (ox ) + 8mK (o) h(=SE)]  (4.15)
n e) = 2= m_K;(s— myK1(—) cosh(=— .

cr T Tcr N Tcr Tcr
shown in figure 4,2. The region denoted "Hadronic Gas Phase" is

described by our current approach. With H correlated to B as given by
eq (4.8) we find that

Tcr(pCr = 0) = Ty ~ 160-170 MeV . (4.16)
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Fig. 4.2 Boundary of the "hadronic gas phase” in the bootstrap model.
In the shaded region quantum statistics cannot be neglected,

However, in view of the uncertainties involved it is more prudent to
argue that the value TCr ~ 160-170 MeV which is required in the
description of hadronic reactions determines the value of the
parameter H, Note that p = 0 implies zero baryon number of the plasma
state. For By = “cr(Tcr = 0) the solution of eq (4.15) is simply
Bep ~ My since no quantum statistics effects have been included. Thus
the dashed region in figure 4.2 "nuclear matter" must be excluded from
our considerations. As we shall see shortly, the boundary to the
hadroric gas phase is also characterized by a constant energy density
e = 4B.

Given the function G(v) = ¢(B,A) we can in principle study the
form of the hadronic mass spectrum. As it turns out we can obtain the
partition function directly from ¢. Namely, the formal similarity
between eq (4.3) and eq (4.12) can be exploited to derive a relation

——

between their integral transforms [9] (from here on: g = /Bus“)

24(V

knz(ﬁyvex’)\) = -

) d
e X

=— &(B, 2 4,17
i (2n) 3 5 (B,7) ( )
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where Vex is the external volume, i.e., the volume not occupied by the
hadrons, Equation (4.17) can also be written in a form which makes
more explicit the different physical inputs:

A(V,,) 86(v)
an(ﬁ$vexa7\) = —_V—;X‘. ) Zl(ﬁ,)\,V) (4'18)

In the absence of a finite hadronic volume and of the interactions
described by the first two terms respectively, we would simply have an
ideal Boltzman gas described by the one-particle partition function Z;:

Zy = 1,5 *+ 2cosh(u/T) Zaqq (4.19)
where
VT M/ 2 Mo/
an/qqq = (21 + 1)(25 + 1) ﬂ‘z ( T ) K2( T ) . (4.20)

The remainder of the discussion of the hadronic gas is an applica-
tion of the rules of statistical thermodynamics. However, when working
out the relevant phyéica] consequences we must always remember that the
fireball is an isolated physical system for which the statistical
approach has been taken in view of the internal disorder (high number
of available states) rather than because of a coupling to a heat bath.
Let us first discuss the role of the available volume, As we have
explicitly assumed, all hadrons have an internal energy density 4B
(actually at finite pressure there is a small correction, see Ref. [4a]
for details). Hence the total energy of the fireball EF can be written
as

- 4) (4.21)
where Vex - A is the volume occupied by the hadrons. We thus find

b=V, - E/4B =V, (1 - /(4B)) . (4.22)

By investigating the meaning of the thermodynamic averages it
turns out that the apparent (p,A) dependence of the available volume A
in eq (4.22) must be disregarded when differentiating anZ with respect
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to B and A. As eq (4.1) shows explicitly, the density of states of
extended particles in Vex is the same as that of point particles in A.
Therefore also

AnZ(B,Vo,sn) = anZ (8, 8,0) . (4.23)

We thus first calculate the point particle energy, and baryon number
densities, pressure, and entropy density

- _Lla -2 02
ept Y, Xant = m -5—6-2 o{ B, A) (4.24)
-1, 2 - 2 02
Yor T & Mow Wpe Tt W(Ze3 M Faep ¢(BsA) (4.25)
= I - 2T . 8
Pot = 3 A py = - W(ZaTS 0% o( B, 1) (4.26)
S = li— (Tinz ) = —P-EI‘. + w (4 27)
pt A T pt T T ‘ ’
From this, we easily find the energy density as
<E> 1 A
€ = g = - === ~— nZ(B,V __,A) = 7 ¢ . (4.28)
Vex Vex 38 ex Vex pt
Inserting eq (4.22) into eq (4.28) and solving for ¢ we find:
) Ept(ﬁa}\) 1.29
LA RN CR VA (4.29)
Hence we can write eq (4,22) also in another form:
Vex = a (1 + spt(ﬂ,h)/48) . (4.30)

Using eq (4.30) we find for the baryon density, pressure, and entropy

density:

v
VTS (4.31)

P
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Pot
- TR (4.32)
_Spt
st TTETE - (4.33)

We now have a complete set of equations of state for the observ-
able quantities as functions of the chemical potential p, the tempera-
ture T, and the external volume Vex' While these equations are semi-
analytic, one has to evaluate the different quantities numerically
owing to the implicit definition of ¢(B,A) that determines 2nZ, How-
ever, when B,A approach the critical curve, figurée 2.2, we easily find
from the sinqularity of ¢ that St diverges, and therefore

e —> 4B
p —> 0 (4.34)
A=—> 0

These Timits indicate that at the critical line matter has lumped
into one large cluster with the energy density 4B, No free volume is
left and as only one cluster is present the pressure has vanished.
However, the baryon density varies along the critical curve; it falls
with increasing temperature. This is easily understood: as the temper-
ature is increased more mesons are produced that take up some of the
available space., Therefore hadronic matter then can saturate at lower
baryon density. We further note here that in order to properly under-
stand the apoproach to the phase boundary one has to incorporate and
understand the properties of the hadronic world beyond the critical
curve, Therefore we now turn to the study of the world of quarks and
gluons and wultimately of the phase of matter consisting of these
quanta.

5. FORMATION AND COOLING OF A BARYON RICH QUARK-GLUON PLASMA
IN NUCLEAR COLLISIONS

Two extreme pictures of a high energy collision between two heavy
nuclei suggest themselves:

(a) collision between two rather transparent bodies where the
reaction products remain essentially in the projectile and the
target reference frames respectively,
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(b) collision between two rather absorbent bodies in which matter
piles up in the collision and where therefore the reaction
products appear in the central rapidity region.

Off hand picture (a) would seem to be the more reasonable one
considering the rather small high energy hadron-hadron cross sections,
This is the basis of a number of wmodels purporting to describe high
energy nuclear collisions [11]. However, recent experimental evidence
from p-nucleus collisions and cosmic ray data indicate that case (b) is
a more frequent reaction channel for the formation of a quark-gluon
plasma. In particular, according to the analysis of Busza and
Goldhaber [54], the recent 100 GeV p-nucleus experiment of Barton
et al. [54b] indicate that the pp-data seriously underestimate the
extent to which heavy nuclei slow one another down., Instead of losing
one unit of rapidity in traversing the other nucleus, they find that a
heavy nucleus would lose perhaps 2.8 units of rapidity. Thus there
would be nothing left of the central baryon-free region, While this
substantial collective slowing effect is verified experimentally only
in 100 GeV 1lab energy collisions, the cosmic ray data indicate a
similar phenomenon at ultra-high energies [55]. We further recall the
recently observed rather narrow rapidity distributions at /s = 540 GeV
from the CERN pp collider [56] which indicate hadronic non-transparency
at a Tevel not anticipated before.

We conjecture here, that in order to create a large size high-
density region a quark-gluon plasma seed [12] must have been formed by
a statistical fluctuation. Thereafter the plasma can begin to grow by

capture of the trailing nucleons of the colliding nuclei. In such a
scenario, the densest plasma will result when the seed is formed early
in the collision, i.e., in the central rapidity region for symmetric
collisions (Ap = At)' However, plasma production will occur according
to this mechanism with a non-negligible distribution towards projectile
and target rapidity limits, In events with an early plasma seed the
baryon number content of the plasma would be appreciable for large
nuclei, peaking in the central rapidity region.

In order to fulfill its role the above jintroduced seed must indeed
be a high particle density region similar to the quark-gluon plasma,
albeit small in size, with sufficiently thermalized momentum distribu-
tions and with some color deconfinement; however, chemical equilibrium
between different particle species, i.e., quark flavors, 1is not
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required. In such a case the quark mean free path, A, can become
comparable to the seed size, R, and we can have R/A > 1. Occasional
formation of such seeds is assured by inspection of actual numerical
results obtained with relativistic cascade calculations [57]. We have
good reason to believe not only in occasional, but perhaps even in
relatively frequent, creation of such a seed,. through an accidental
local large fluctuation of particle density in a region of the size of
a hadronic volume.

The energy influx to the plasma seed is controlled by the nuclear
matter inflow. We consider here a) the kinematijc conditions for the
bcpurrence of the instability, seed -+ plasma; and b) the maximum
achievable temperature in the most favorable case. For this purpose we
do not need to consider the influence of the likely increase of the
energy and particle density of the projectile or target in their rest
frames arising from the entrance channel interactions. In order to err
on the conservative side we compute as if all of the interacting region
would instantly turn into the plasma state without compressions of
nuclear degrees of freedom. Namely, if the formation of the seed is
delayed, the increase of the densities would make the environment even
more suitable for the occurrence of the plasma seed. However, the
crucial condition to be respected follows from the observation that
once the seed is there it can lead to a large-scale plasma state only
if the energy loss of the seed is exceeded by its energy gain. Even
below this "sharp" boundary defined as the instability without nuclear
compression in target or projectile, occasional formation of plasma
drops in the dense regions of compressed nuclear matter will occur,
These precursor phenomena will smear out the kinematic limit, otherwise
already spread out by fluctuations of the seed location, range of the
impact parameters, etc, We believe that a detailed discussion of these
effects is premature. Therefore we now determine the conditions which
must be fulfilled for the ignition of a large-scale central plasma
state,

While the plasma receives energy and baryon number by the nucleons

impacting on it, it also inevitably loses energy by thermal radiation,
Thus, in order to grow there must hold for the total plasma energy E,

4 _dE _dE ., (5.1)
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where dEA/dt is the heating by the incoming nucleons absorbed in the
seed, and dER/dt is the energy loss by thermal radiation., [If dE/dt is
negative the plasma will fizzle rather than grow. We now discuss the
two terms, beginning with the gain term.

The energy influx into the plasma is controlled by the nuclear
four-velocity, ¥ = y(l,?); the plasma surface normal vector as seen
from the CM-frame, n* = (0,n); the nuclear energy-momentum tensor,
Tpv; and the probability for the absorption of an incoming nucleon by
the plasma, a. Thus we have, with d2A the surface element,

de?
T fdzA(- Tuv u“nva) . (5.2)

As is well known

Tuv = gy uu u, (5.3)
where e, is the energy density in the rest frame of the projectile or
target nucleus, respectively. Hence we have

p_ v o_ - >
Tuv ut nt = pgmoyn e v (5.4)
where p, is the equilibrium nuclear density, i.e., pg = 1/6 fm-3,
Furthermore, seen from the CM frame and expressed in terms of the

projectile laboratory energy per nucleon, E we have

p’

E - m\i/2
v = (ER_:—E> (5.5a)
p

(ZED m + 2m2)i/2
Yy = 5m (5.5b)

The absorption coefficient a is assumed, as usual, to be
alz) = 1 - e 2/* (5.6)
where z is the thickness of the plasma region and A is the absorption

length of a hadron in the plasma. When weighted with B e V over the
plasma surface this leads to
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iR) =g (12N e 3021 - 202 . (5a)

The overall factor 1/2 reflects the ratio between the surface of a
circle with radius R and a half sphere, for A/R = 0. The absorption
coefficient a(R) is indeed the average absorption probability. Through

A it depends on the particle density in the plasma, i.e., temperature
and baryon density. The final expression is, in detail,

E - m\l/2
0o <f§-:—.g> (26, m + 2m2)1/2

43gh

d2adt

S [

[1+2e720% (v (312) - 23p)2] - (5.8)

>
MOfe—

We now turn to the description of the energy loss term of eq (5.1). In
general, two mechanisms for the cooling of a plasma are possible, viz.,
adiabatic expansion and thermal radiation, At least in the beginning,
i.e., at the time of decision between ignition and fizzle, the expan-
sion should play no role as the impacting nucleons provide an inertial
confinement for the plasma. However, pion evaporation from the plasma
is still possible, and the <cooling associated with this process
provides the energy loss of eq (5.1). Of course, some of the emitted
pions will be returned to the plasma by the idncoming nucleons.
However, this return will be too late to have an impact on the question
fizzle or grow: once the process has fizzled, i.e., the plasma seed
has hadronized, the collision is back to the hadron cascade regime, On
the other hand, if plasma growth has taken place the returning pions
will of course return their evaporation energy to the plasma and
contribute to the ultimate energy density of the plasma. Also,  the
influence of the plasma expansion has to be reconsidered then,

We now develop a quantitative model [14] suitable for surface
temperatures of 150 - 220 MeV and moderate baryon densities, such that
the particle density is less than ~ 10 particles/fm3. Under these
circumstances surface collisions involving more than one particle per
fm2 are rare, Hence we can limit ourselves to consider sequential one-
particle events., 1In such instance, the emission of pions from a large
and highly excited quark bag is described by bag models incorporating
the chiral symmetry [58]. In such a model the pions are supposed to
interact linearly with the pseudoscalar quark density at the bag sur-
face. This is described by the Lagrangian
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i .
an =5F 4 vy T o0 ¥4 A (5.9)

where As is the surface 6-function and f is the pion decay constant
(f = 93 MeV). Equation (5.9) describes the following processes:

(a) a gquark or antiquark hits the plasma surface and emits a
bremsstrahlung pion while being reflected back

(b)) a quark-antiquark pair hits the surface and converts into a
pion,

As the pion emission by plasma surface is a direct process the result-
ing pion spoectrum intensity is non-thermal, while the spectral form is
determined by the thermal quark spectra [59]. Consequently, the
surface pion radiance can substantially exceed the black body limit.

This treatment, however, must be viewed as being semiphenomeno-
logical, as the true approach would have to be based on QCD and would
at least require the proper understanding of the pion formation. An
attempt at this is -terms of color flux tubes was made by Glendening
et al. [60]. However, the strong quark binding in the pion in the bag
model is difficult to account for, and, also, the role of the pion as
the Goldstone meson of chiral symmetry is ignored in such a treatment.
In contrast, these features are emphazied in the form (5.9) of the
interaction,

For the purpose of estimating the importance of the pion radiation
process we consider a model based on kinematics only: in order for the
surface collision to lead to pion emission the particle momentum normal
to the surface must exceed a certain threshold. In particular, this
momemtum has to be larger than the normal momentum of the emitted pion.
We take this threshold momentum to be of the order of 1/4 GeV/c for
quarks leading to pions; our results are quite insensitive to the pre-
cise choice, as well as to the actual shape, of the threshold function
6 describing the probability of pion emission. Hence we will use:

1, p, 2 py ~ 1/4 Gev
e(p) = . (5.10)
0, 0 < P, < Py
We note that the average energy of the practically massless quarks is
about 3T ~ 500-650 MeV and that the particle densities peak at ~ 2T,
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Hence almost half of all quarks and antiquarks can participate in the
radiation cooling. We also include the pion bremsstrahlung by gluons
impinging on the surface.

The energy per unit surface and unit time that leaves the quark-
gluon plasma is now simply given by

dE . gy =20 o(p)f(E) E(p)e(p) —L2L (5.11)
d2Adt (2%)3 d2pdt

where g are the degeneracies. As only light quarks lead to the domi-

X 8c = 16.

nant pion channel we have gq = 3Cx25x2f = 12, and 9g = 2S

Here p(p) is the phase space density of colored particles,
p(p) = g {lexp((p - u)/T) + 111 + [exp((p *+ pg)/T) + 111}
+ gglexp(p/T) - 11°1 . (5.12)

The differential in (5.11) is simply the normal velocity of particles
impinging on the plasma surface

d3v d2Adz  dz P, Py
G — =y = - (5.13)
d2adt  d2Adt  dt E(p)  (p, 2+ p,2)1/2

Since the energy leaving the plasma region is not the total energy
contained in the leading particle we have in (5.11) included the effi-
ciency factor f. In the present case only one pair is created to form
the emitted pion., A naive degree-of-freedom counting leads to f =~ 2/3.
f probably approaches unity for very high energy leading particles. We
disregard the energy dependence of f; choosing the value f = 2/3 we
obtain a lower limit on the energy transfer.

In view of the qualitative nature of our model it is sufficient to
expand in eq (5.12) the quantum distributions and to retain only the
Boltzmann term for the q,q,G distributions:

-/p"2+pl2/T
p(p) = (g, n(3) 2cosh(p/T) + g5 &(3)] e
-/p, %¥p 2/T
2 R , (5.14)
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where we have corrected the counting of the Bose and Fermi degrees of
freedom by indlucing the phase space integral weights n(3) =~ 0.9 and
£(3) = 1.2 in the above. Finally, we must still account for the
requirement that the color and spin degrees of freedom of the emitting
particles, i.e., the quarks or the gluons, must be coupled to the quan-
tum number of the emitted pions. This introduces a factor which is 3/8
for both cases., We already have included this factor in the definition
of g; hence the factor 8/3 in (5.14). Collecting all factors we see
that the effective number of Boltzmann degrees of freedom of quarks and
antiquarks at “q = T is 12.5 while that of gluons is 7.5. At ”q =0
the number of quark degrees of freedom (22) is about that of gluons.
Thus g varies between 16 and 21 as function of B

Combining egs (5.11) and (5.13) with eq (5.14) we obtain the
generalized Stefan-Boltzmann law:

d3E . = dp ®p,dp, -/p 2¥p 27T
~ 1 g 1 L
: = fg [ p, ] — e
d2Adt Py (2m) 0 (2m)
- g -py,/T p p
=f—1rze "G (2o 1) (5.15)
252 T T

In figure 5.1 we show the cool-
ing rate calculated from eq (5.15)
as a function of the surface temper- T T T

3
ature T, choosing uq/T = 1., For ﬁfﬁ [%%4&%4]

p. = 0 the values are lower by about
] R Y B
20%, Qur current values for the wil=

radiance of the plasma about half of Py = 025,703 eV
those given by us earlier in Ref.
[12] where the pion radiation by
gluons and the coupling to the pion

quantum numbers had not yet been

included. From figure 5.1 we T[MeV]
further see that the precise value (] 1t 1 T
of PM’ or, said differently, the 140 160 160 200 220
precise form of the threshold

function 8, eq (5.10), does not Fig., 5.1 Pion radiation surface
matter., However, we note here that brightness as function

our estimate may be uncertain by of temperature,.
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perhaps a factor 2 considering the qualitative nature of our considera-
tions., We see that indeed the precise value of PM’ or, said differ-
ently, the precise form of the threshold function 6, eq (5.10), does
not matter. Concerning the choice of.uq we note that even though
equilibrium baryon density does not very 1likely prevail, the best
choice for Mg in the initial stages of the plasma formation would be

Bq < MN/3 =~ 2T, consistent with the non-degeneracy assumption for
T~ % MN. As local thermalization occurs, by diminishes and approaches

T.

Before returning to the ignition condition given by the inequality
(5.1) we discuss our result in terms of a numerical example chosen to
represent a typical case of a quark-gluon plasma. OQur example is a
spherical plasma droplet of R = 4 fm, a surface temperature of
T = 180 MeV, and u/T = 1. The energy density then is 2.1 GeV/fm3
according to eq (2.34) and recalling that strange quarks compensate for
a large part of the interaction which is of order O(as). The baryon
density is according to eq (2.34), ~ .5/fm3, i.e., about 3 p,. The
baryon number exceeds 150 if T is 1larger in the interior. Since
0.7 GeV/fm3 is needed for creation of the final baryons implied by the
assumed value of p, the available energy density is about 1.4 GeV/fm3
and the total available energy is ca. 400 GeV. For this example we
find for the rate of energy loss through the surface A

[=9
rr

A 0.5 989 10%23 sec-1 .

[
&l
"
p
-1
[«
N
&
=)
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=3
"

We note that this confirms the assumption of a sequential individual-
particle process: when one particle of 0.430 MeV impinges on a surface
area of 1 fm? the next particle following it with light velocity would
be behind by a distance of about 1 fm (i.e., several mean free paths).
On the other hand, this indeed is a very large energy loss rate, In
our example, the energy loss in the first 10-23 sec is (A = 200 fm?2)

o
rn

At = 120 GeV ,

[« %

t

which represents a substantial fraction of the total available energy
of about 400 GeV. Clearly the smaller the plasma droplet, the more
relevant becomes the radiation loss for the lifetime of the plasma. As
the available excitation energy scales with R3 and the radiation loss
with R, a small plasma droplet of b ~ 18, R ~ 2 fm and available energy
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40 GeV radiates 30 GeV in the first 10-23 sec, Hence we are led to
urge that experiments involving very heavy nuclei be performed to allow
for the <creation of sufficiently longlived (i.g., large) plasma
regions.

We now return to the discussion
of the ignition conditions: we set

9L - 0 in eq (5.1). In figure 5.2
we show the minimum size a plasma AR/

seed must have in order for it to
grow, 1i.e., the minimum seed size
for plasma ignition, as a function
of projectile energy for a selection
of plasma ignition temperatures, TI’
computed taking u/T = 2. In the
initial stages of the nuclear colli-
sion this is the more likely nature
of the parameters. gq dominate g and

we err on the conservative side by

enhancing the radjation Jlosses by 0 N — | ElP[Gey]|~==
that choicé. While at density of 2 5 0 20

2 GeV/fm3 in the plasma the particle

density is about 4/fm3 1leading to Fig. 5.2 Minimum size of a
A~ % - % fm, we anticipate that in plasma seed as function
the initial stages of the collision of beam "laboratory

we have a particle density of about energy for different
1/fm3 and hence » ~ 1 - 1.5 fm. radiation temperatures.

For R/A ~ 1 we notice that at TI ~ 150 - 160 MeV beam energies of
10 to 20 GeV/nucleon should suffice to lead to plasma ignition with
R ~ A, We note that the seed size considered is of the order of the
nucleon size., We note that the obtained lower limits for the heavy ion
kinetic energy is above the kinematic 1limit obtained neglecting the
loss term in eq (5.1) and requiring an ignition termperature of 160 MeV.
On the other hand, it seems rather unlikely that ignition can be
achieved at much 1lower beam energies if the phase transition is of
first order. Thus below our 1limit the collision will fizzle and we
just achieve a superheated nucleon gas.

Once the plasma has ignited the temperature of the plasma will
grow until the nuclear collision terminates or wuntil the temperature
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has risen to a level at which the pion radiation overwhelms the energy
influx. At this point one must re-examine the question of the cooling
mechanism, i.e., first, whether the evaporation of pions will lead to a
cooling off of the surface and hence to a shut-off of the evaporation
process, or whether the plasma heat conductivity is sufficiently large
to maintain a surface temperature high enough for pion radiation to
continue; second, whether other processes, principally expansion, con-
tribute substantially to the cooling process.

We begin by considering the heat conductivity. Since the plasma
consists of rather free particles the naive expectation is that a
sufficently high conductivity obtains. Indeed, the basic relation
between the heat flow 6 and the energy density e is

§ =27 e(T;uq/T) (5.16)

where & is the mean free path, Assuming that only a radial gradient of
T exists, with pq/T ~ const over the volume, the radiation equilibrium
requires

d3E - ¢ T deg . , 13T
TRt - & T A or aT T A T oor de (5.17)

In our numerical example the required temperature gradient at the
surface is, with £ in the range 1/2 - 1/3 fm:

o1 .1 _0.215 GeV/fm3 _ (o _ g MeV
ar L 4 x 2.1 GeV/fm fm *

It appears that this temperature gradient is Jjust within sensible
bounds, leading for a plasma radius of 4 fm to a temperature differen-
tial between the origin and the surface of ~ 15-20 Mev, We further
note that unlike in non-relativistic gases, the mean free path 2 here
is inversely proportional to de/dT since it is finversely proportional
to the particle density. For uq/T < 2 the energy per particle in the
plasma is Jjust 3T and hence the particle density p = e/3T. Therefore
the necessary temperature gradient, eq (5.17), turns out to be

_ d3F 1 -
* I7%dt 70 © (5.18)

[ed [=4
Sh=
N

where o is the average particle-particle cross section, The range of

values given above for %} corresponds to o ~ % to % fm2.
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We now turn to the discussion of the adiabatic expansion of the
plasma, To begin with one must recognize that in contrast to the above
discussed pion radiation process the expansion requires a collective
flow, i.e., a flow in which a hydrodynamic velocity is superimposed
over the random thermal motion of all the quarks and gluons. Therefore
the relevant time constant is given by the speed of sound and thus is
about three times larger than the radiation time constant. Further-
more, the expansion is driven by the excess of the internal pressure
over that exerted on the surface by the physical vacuum. Now, the
effect of the internal pressure on the surface is reduced by the pion
radiation., The point is that those particles which penetrate the sur-
face do not exert their full force on the surface. We now demonstrate
that they are responsible for a substantial fraction of the internal
surface pressure, Balancing the momenta at the surface we find that
instead of 2pl the momentum transferred to the surface is

2p, : p, < p
Ap = Lo (5.19)
2p (1 - f) : p, > py

where f is the fraction of the normal momentum carried away by the
emitted pion. We now recompute the effective pressure on the plasma
surface:

. Pm dp p,dp
Py = 3 (I (Z;Zplvl(—;'-—)—i (p)
® dp » p dp
(1 - ) J Lop v, =L o(p)] (5.20)
oy (2m) 170 (2m2

where we have used eq (5.13). Also, §q is the effective number of
degrees of freedom for the quarks as devined in eqg (5.14). We notice
that the effective quark pressure Eq is equal to the expected gquark
pressure Pq = 1/3 £q> reduced by the contribution of high normal
momentum particles, weighted by the factor f:

2p v, [ —— olp) . (5.21)
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The important point to realize is that the contributions of particles
with Py > Py to the particle pressure Pq are dominant., To see this we
evaluate, in obvious notation,

» « p.dp ® -p /T
J dpp 2 —=Lo(p) [ dpp2e *
WPy —— 171
PalPy > Py) Py /P AP _ _Pu
p © @ p, dp © -p. /T
q d 2 [l d 2 L
[, P2 ] J olp) [ dpyp?e
=1 [
-py/T P P
= e (% (TM)Z + (TM) +1) (5.22)

This is a monotonically falling function of pM/T; for pM/T ~1 - 1.5 we
find that the ratio eg (5.21) varies between .92 and .81, Hence,
inserting eq (5.22) into eq (5.21) we find for f ~ 2/3

PP, > py)
1 - f My 0,40
. q

. (5.23)

A similar calculation can be carried out for the gluons with a similar
outcome for the reduction at the pressure. The overall result is that
only about half of the internal pressure acts on the surface. Thus, in
effect, the time constant relevant for the cooling process through
expansions is extended by a factor of almost two. Thus we are led to
the conclusion that the expansion contributes only about 10-20% to the
cooling of the plasma. Even though this effect is somewhat reduced for
a baryonless plasma, i.e., p = 0, it still relieves 1/3 of the total

pressure,

The physical distinction between the cooling of the plasma by pion
radiation vs. by expansion resides in that the former leads to a reduc-
tion of the plasma temperature without a significant increase of the
plasma volume. This, of course, has important consequences in the
dynamics of the plasma development, and, in particular, eventually on
the observable quantities. In particular, cooling by radiation seems
to convert the internal energy more efficiently into pions than the
expansion mechanism. In an expansion this energy is converted into
collective motion and is manifested in the form of additional kinetic
energy of the produced particles. Hence in the radiation cooling the
available entropy is used to create more new particles, j.e., pions,
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while in the adiabatic expansion it is essentially contained in the
kinetic motion, In both instances cooling is approximately adiabatic.

We next discuss the maximally obtainable plasma temperature,
neglecting the effect of the <cooling by expansion, As already
remarked, once the plasma has ignited a fraction of the radiated pions
will be swept along by the incoming nucleons and re-enter the plasma.
This process introduces a dependence of the 1loss term on the beam
characteristics., Even though this turn-around of the pions does not
change the ignition conditions it influences the maximal achievable
plasma energy density. Since the thermal radiation is isotropic the
returned fraction, n, will be of the order n < 1/2. To obtain an esti-
mate of this maximum plasma energy density one has to multiply the
energy radiation term, eq (5.15), with (1 - n) and balance it with the
unmodified gain term, eq (5.8). We recall that in the derivation of
eq (5.15) a non-degenerate quark-gas has been assumed, and u /T is
expected to be less than 2. As the collision process continues the
temperature of the plasma will grow until the nuclear collision termi-
nates or until the temperature has risen to a level at which the pion
radiation overwhelms the energy influx. This maximum achievable
temperature is shown in figure 5.3 for a few choices of the pion turn-
around coefficient n, as a function of projectile beam energy. 1In view
of high plasma density here we have used R/A = 5, u/T = 1. As one can
see the maximal temperature achievable in the collision does not depend

300¢jmux[MeV]

u/T=1

250

gp [GEV]

1 I | 1 1 1.1 o

10 50 100

Fig. 5.3 Maximum achievable plasma temperature as function of beam
laboratory energy for two values of the pion turn-around
coefficient,




442

too sensitively on the choice of the parameters and reaches for 50 GeV
a value around 230 MeV, Hence, once a plasma has ignited one can
expect that a full-fledged quark-gluon plasma event will take place,
with energy density reaching 4-5 GeV/fm3, However, we note that under-
lying this scenario is the requirement that the collisions take place
between two quite heavy nuclei.

After the end of the build-up phase, i.e., at the termination of
the nuclear collision, the dynamics is governed by a collaboration of
pion radiation and hydrodynamic expansion of the plasma, At this point
one must ask whether the density of the radiated pions is large enough
for them to undergo multiple scattering, so that a pion gas cloud could
be formed which would exert a back—pressure on the radiated pions, and
thus could slow down the radiative energy loss of the plasma, and also
the expansion,

Considering that here we deal with hadronic (rather than QCD)
cross sections and moderate particle densities one should think that
the effect of the surrounding pion gas on the radiation should not be
too large.

In order to illuminate this question, consider the case when the

emitted pions would form a density p surrounding the plasma droplet of
the form

o= po®)" . (5.24)

Let us consider that a given pion travels through a gas having the
density distribution (5.24). In that case the scattering probability
is given by (j is the radial current of the considered pion)

2
L% (r2) = - jop = -jop, &) (5.25)

and hence we have

i p2
JoR c(opR)((R/T) - 1) (5.26)

j =
Y'2
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For opyR << 1 we find the unperturbed pion current which behaves like
r=2, The exponential describes the scattering in the gas, Taking for
a numerical example R =~ 4 fm, p, =1 fm-3, and, considering that the
pion-pion scattering peaks at the p-meson mass, which is several
1inewidths above a typical c.m. pion-pion energy, assuming o = 0.2 -
0.5 fm2, we find considering the value of j{(r = =) which represents the
unscattered part of the beam that a pion will scatter one or two times
on the way out to infinity.

We now turn our attention to the nature of the transformation of
the quark-gluon plasma into individual hadrons, We recall here that
we have developed two inherently different descriptions which neverthe-
less leads to the prediction of a qualitatively similar thermodynamic
region for the transition between both phases of hadronic matter. As
we shall see in a moment the physics which went into these theoretical
approaches requires that this is a first order phase transition, How-
ever, of course, we cannot actually deduce the order of the transition
in the presented considerations. We record here that recent Monte-
Carlo simulations on a lattice show phase coexistence in SU(3) gauge
theories which is characteristic of first order phase transitions [6a],
[417. This is contrary to results found in SU{2) simulations [42].

Consider the P-V diagram shown in figure 5.4, Here we distinguish
three domains, The hadronic gas region is simply a Boltzmann gas where
the pressure rajises with reduction of the volume. When the internal
excitation rises, the individual hadrons begin to cluster, This
reduces the increase in the Boltzmann pressure since a smaller number
of particles exercises a smaller pressure. In a complete description
of the different phases we have to allow for a coexistence of hadrons
with the plasma state in the sense that the internal degrees of freedom
of each cluster, i.e., quarks and gluons contribute to the total pres-
sure even before the dissolution of dindividual hadrons, This indeed
becomes necessary when the clustering overtakes the compressive effects
and the hadronic gas pressure falls to zero as V reaches the proper
volume of hadronic matter, At this point the pressure rises again very
quickly, since in absence of individual hadrons we now compress only
the hadronic constituents. By performing the Maxwell construction
between volumes V;, and V, as indicated in figure 5.4 we can in part
account for the complex process of hadronic compressibility alluded to
above., We find this way the most likely path taken by the compressed
hadronic gas in a nuclear collision. This discussion shows that in our
approach we are straightforwardly:'led to a first order phase transi-
tion, as first conjectured in ref. [2g,h].
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Fig, 5.4 P-V diagram for the gas-plasma first order transition.

It is interesting to follow the path taken by an isolated quark-
gluon plasma fireball in the p-T plane, or equivalently in the v-T
plane, Several cases are depicted in figure 5.5. In the Big Bang
expansion the cooling shown by the dashed line occurs in a universe in
which most of the energy is in the radiation. Hence, we have for the
chemical potential pu << T, ' Similarly, the baryon density v is quite
small, In normal stellar collapse leading to cold neutron stars we
follow the dash-dotted 1line parallel to the p-resp. v-axis. The com-
pression is accompanied by i1ittle heating,

wh g vA b
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3 « Plasma .
10004 8 . f
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Fig. 5.5 Paths taken in the (a) p-T plane and (b) v-T plane by differ-
ent physical events,

In contrast, in nuclear collisions almost the entire u-T and v-T
can be explored by varying the parameters of the colliding nuclei. As
we have already argued the most easily accessible region corresponds to
p /T < 2. To appreciate this further consider the baryon density,
eq (2.35). Cattl uq/ﬂT = § < 1. Then the baryon density is
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v =

Zn 20:5
3 (1 - T) (82 + 1) T3s . (5.27)

Since 6 < 1 by assumption, we neglect &2 against 1, that is

"
v =~ 1,4 T3 ;% = 8<1 , a = .55 . (5.28)

At T = 160 MeV we verify that (6.2) leads to v(160) = 3/4&/fm3. Hence
v = 2v, implies & = 2/9 in agreement with our prior assumption of a
small & (v, is the normal baryon density in nuclei, v, = 1/6 1/fm3).
Thus, as long as we are interested in the domain T > 160 MeV,
v/vy ¢ 2.6 we are allowed to use eq (5.28) to replace p (i.e., 8) by v
in the expressions for the energy density, eq (2.34) and entropy
density eq (2.37). We find

2
s = 6,55 2; + 8,12 T (5.29)
T

N

2 2
£~ 9.82 L= + 6.1 T4 + B = 2 (6.55) 2= + % (8.12) T* + B , (5.30)
T2 T2

where in the last equality we emphasise the relation to eq (5.29). It
is interesting to note that at constant v both s and ¢ have a minimum
at the same value of T, which is

o
1
olo
—ljn

> T, = 0.965 v1/3 = 105 Mev (v/vg)t/% (5.31)

Thus we find that both entropy density and energy density decrease as
the temperature decreases from its initial value around 200 MeV, This
supports the proposition of pion radiation from the plasma at constant
baryon density, at least until the minimum value Tv of the temperature
is approached, For v/v0'= 2,5 we have T, o = 142 MeV while apparently
T, = 105 Mev. )

We can further evaluate how much entropy each radiated pion
removes from the plasma and how much must be generated in the radiation
process. Here we recall that each pion carries away about 3T MeV of
energy and as a Boltzman particle carries four units of entropy . From
eqs (5.29) and (5.30) we find
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.1 6.55 v?/13 + 8,12 13
s/e = = 3

T % 6.55 v2/T% + 2 8,12 T3 + 8/T

2
.4 l? (1 - 835 %54 ... 0,094 B/TY]
8.12 T6

w

=4l 10106 624 ee - 0.004 (BI/YTYY] L (5.32)

w

Since Bl/* < T and &2 < 1, to the precision of our approximation
(6 < 1) we find that when lowering the energy of the plasma by 3T
(i.e., by about the energy of the radiated pion) we must lower its
entropy content by about four units, As this is exactly the same as
the entropy content of an emitted pion we conclude that the pion radia-
tion is not a strongly entropy generating process, as it should be, in
order for it to proceed without impediment.

Some information about the evolution of the plasma volume can be
derived from the first law of thermodynamics (b is the baryon number)

dE = -PdV + TdS + pdb .

Let us now finally, but briefly consider the question: is the
transition hadronic-gas <+ quark-gluon plasma in principle a phase
transition or is it only a transformation that is a change in the
nature of hadronic matter, not associated with any kind of singularity
of the partition function in the limit of infinite volume? The spirit
of the theoretical approaches taken here requires a first order
transition, However, this conclusion 1is only preliminary. Contrary
arguments can be found [61] by arguing that only a finite number of
incompressible hadrons can be fitted into a given volume. Here it
turns out that one must very carefully study the meaning of thermo-
dynamical limits (see references [9d] and [62]). Even worse: for
compressible individual hadrons we might find a second order phase
transition. We see that the phenomenological hadronic gas theory and
the quark bag picture have 1little predictive power about the initial
behavior. It is likely that only the experiment will help us under-
stand this important aspect of strong interactions, Numerical digital
experiments concluded recently allow one to believe that we have been
on the right track with our description of the hadronic world. However
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even these elaborate numerical experiments seem fo lose¢ their predic-
tive power when fermions are included on the lattice. Some numerical
experimental groups continue to see a phase transition of first order,
while others claim only to observe a transformation. It is unfortunate
that we probably will have to wait for some years for the needed actual
physical experiments - and we hope that as soon as the just mentioned
required experimental advances occur, we will review and re-analyze its
content hoping to unravel this important question,

6. SUMMARY

These lectures aimed to provide an overview of the theory of
highly excited hadronic matter, By considering matter in kinetic and
chemical equilibrium we have been able to develop a thermodynamic
description valid for high temperatures. In the present work we have
described two physically different domains: the hadronic gas phase, in
which individual hadrons can exist as separate entities, but are some-
times combined to larger hadronic clusters; and the quark-gluon plasma,
where individual hadrons dissolve into one large cluster consisting of
the hadron constitutents, Our emphasis has been on the world of quarks,
which is the more fundamental approach.

In order to obtain a theoretical description of both phases we
have used some "common" knowledge and plausible interpretations of the
currently available experimental observations. The obtained equations
of state of hadronic matter, of course, reflect in certain ways on what
we have included in our considerations., It is the quantitative nature
of our work that allows a detailed comparison with experiment, It is
important to observe that the predicted temperatures and mean trans-
verse momenta of particles agree with the experimental results avail-
able at Ek,]ab/A = 2 GeV [BEVELAC] and at 100 GeV [ISR] as far as a
comparison is permitted [4a].

The internal theoretical consistency of our description of the gas
phase leads us in a straightforward fashion to the postulate of a first
order phase transition to the quark-gluon plasma. In order to describe
this phase in addition to the standard Lagrangian quantum field theory
of "weakly" interacting particles at finite temperature and density, we
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also introduce the phenomenological vacuum pressure and energy density
B. This term is required in a consistent theory of hadronic structure.
It turns out that Bl/% ~ 150 MeV is just, to within 20%, the tempera-
ture of the plasma phase before condensation into hadrons. This is
similar to the well known Hagedorn temperature T, = 160 MeV.

An interesting aspect of our studies is the realization that the
transition to the quark-gluon plasma will occur at a lower baryon
density for highly excited hadronic matter than for matter in the
ground state (T = 0). Using the currently accepted value for B we find
that at v ~2 - 3 vy, T = 150 MeV, the plasma phase may indeed already
be formed.

One of the possible plasma signatures is the enormous strangeness
abundance in the plasma. We show that gluons have a sufficiently large
reaction rate for the strangeness abundance in the plasma to reach
chemical equilibrium during the lifetime of the plasma formed in high-
energy nuclear collisions, The subsequent depletion of the strangeness
during the plasma hadronization as well as its preferred hadronization
channels are currently being studied in detail. However, only if the
plasma hadronization is an extremely slow process, lasting on the order
of 10-22 sec., a significant depletion of the high s-abundance created
at the maximal temperature reached in the collision can be anticipated.
As shown in figure 3.3 the reaction rates drop quite rapidly with
decreasing temperature, leading to a rapid increase of the equilibrium
time constant <. Hence the strangeness abundance decouples from the
equilibrium and remains a witness of the hot collision period. We have
further shown that strangness may be a useful experimental trigger on
plasma formation,

It is apparent from our results that the measurement of production
cross sections of anti-strange baryons already could be quite helpful
in the ohbservation of the phase transition. The high suppression of
these degrees of freedom in the hadronic gas phase is not maintained in
the plasma phase where the S abundance is larger than the ¢,d abun-
dances. A measurement of the relative K*/K- yield, while indicative of
the value of the chemical potential in a hot nuclear gas may carry less
specific information about the plasma. The K/=x ratio may also contain
relevant information. However, since the = originates from diverse
sources its abundance is controlled by the total entropy created in N-N
collisions. Hence, it will be much more difficult to decipher the
message. Perhaps a steep rise of K/=x ratio at high P, could be helpful
here,
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On the other hand it appears that the abundances of otherwise
quite rare strange hadrons will be enhanced, on the one hand by the
relatively high phase space density of strangeness in the plasma, on
the other hand in view of the attractive ss-QCD interaction in the Ec
and Ss in 1C channels, Hence we should sPareh for the strangeness
abundance in the yields of particles like %,%,Q,Q,¢, rather than in the
K-channels, It may be that such experiments would uniquely determine
the existence, and eventually the characteristics, of the phase transi-
tion to the quark-gluon plasma.

It is important to appreciate that the experiments discussed above
would certainly be quite complementary to the measurements utilizing
electromagnetically interacting probes, e.g., di-leptons or direct
photons, Strangeness-based measurements have the advantage over the
measurement of the electromagnetic particles in that they involve the
observation of a strongly interacting particle {s,S5 quark) which
happened to be a direct constituent of the hot plasma phase.

Finally, we have described the radiation cooling of the plasma by
the emission of pions, and the conditions under which a plasma seed
will grow in a high energy nuclear collision. Using the value
T = 150-160 MeV as the phase transition temperature we find that 15 to
20 GeV/nucleon on a fixed target should suffice to lead to a quark-
qluon plasma, The frequency of such events is controlled by the
probability that a plasma seed of adequate size be formed early in the
collision. A plasma seed is needed since the hadron cross sections are
too small to lead to energy confinement for the required length of
time, The cross sections in a plasma can be much larger since the
phase space there is much larger than in the hadronic gas phase owing
to the absence of the color constraint; for example, a 3 quark system
in the plasma has 27 color states while only the color singlet is
permitted in the hadronic phase, We also have briefly discussed the
possibility of a phase transition plasma » hadronic gas.
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