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Abstract

Apart from being an extraordinary optical and electronic material, diamond has also found
applications in quantum mechanics especially in quantum sensing with the discovery and research
development of various color centers. Elastic strain engineering (ESE), as a powerful modulation
method, can tune the quantum properties and improve the performance of diamond quantum
sensors. In recent years, deep ESE (DESE, when >5% elastic strain, or >0jgea/2 is achieved) has
been realized in micro/nano-fabricated diamond and shows a great potential for tuning the
quantum mechanical properties of diamond substantially. In this perspective, we briefly review the
quantum properties of diamond and some of the corresponding sensing applications carried out
with ESE, and look at how DESE could be applied for further tuning the quantum sensing
properties of diamond with desired applications and what the critical challenges are.

1. Introduction

Strain engineering is a strategy to tune the physical and chemical properties of a material such as electronic,
magnetic, and catalytic properties by applying strain which changes the lattice parameters and shape [1, 2].
Very often, the strain value does not need to be very high, but can change the material properties
fundamentally and improve the device performance dramatically. For example, a small strain of ~1% can
enhance the carrier mobility of Si-based field-effect-transistor by more than 50% [3, 4], thus improve the
device performance to a greater extent. The implementation of strain engineering relies on the preparation
of material with small size and less defects, that is, with the reduction of sample size, the probability of the
appearance of internal defects is also reduced, making the material properties more uniform and closer to the
theoretical level. Therefore, large strains are more likely to be achieved in nano- and single-crystalline
material, which is also known as ‘smaller is stronger’ [5].

Strain can modulate the quantum mechanical properties of materials by changing energy or breaking
symmetry. Firstly, strain changes the interatomic distance and interaction among different atomic orbitals,
and modulates the relative position of energy levels and spin states of electrons. For example, strain tunes the
energy levels and increase the orbital splitting of the silicon-vacancy (SiV) centers of diamond. By doing so,
the spin coherence of SiV center can be improved [6]. Secondly, since the symmetry of a material is closely
connected to its energy degeneracy, when strain breaks a specific symmetry of a system, some spin
transitions which are not possible without strain can be enabled [7, 8], and more spin manipulation will
become possible, such as the spin-spin interaction change of nitrogen-vacancy (NV)~ [9] and the generation
of spin relaxation path of the transition-metal dichalcogenides [10] through strain-induced symmetry
breaking. In recent years, strain engineering is appearing as an effective method to modulate the quantum
mechanical properties of materials, such as modulating the quantum ferroelectric polar and thus the
superconducting phase and superconducting transition temperature of materials [11, 12], which has been
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accelerating the research of high temperature superconductors [13—15]. Moreover, strain can improve the
quantum emission of materials such as hexagonal boron nitride film [16] and transition metal
dichalcogenides [17-20] and extend their quantum photonic applications.

Diamond is a promising candidate for quantum mechanics and quantum technology applications such
as quantum communication [21, 22], quantum computing [23-25] and quantum electromagnetic sensing
[26—30]. With the development of diamond synthesis and nano-fabrication technologies, Elastic strain
engineering (ESE) and DESE have been achieved in recently years [31, 32], which makes strain engineering
of diamond a hot topic. In this paper, we briefly review the quantum mechanics of diamond and look
forward to how ESE and DESE may accelerate the development of diamond quantum mechanics and extend
its quantum sensing applications.

2. Color centers and quantum applications of diamond

Pure diamond is composed entirely of carbon and is optically transparent from ultraviolet to the far infrared.
However, when diamond is doped by other elements (nitrogen, silicon, boron etc.), point defects form.
Optically active point defects are termed color centers [33], of which many have special quantum features.
Up to now, hundreds of color centers have been studied experimentally or theoretically [34]. Due to the rigid
lattice and chemical stability of diamond, these quantum features can be well protected, even under extreme
conditions [34].

Among those color centers, the most widely studied one is NV center, which contains a substitutional
nitrogen atom and a vacancy at adjacent site. NV centers can be prepared via nitrogen implantation,
irradiation of nitrogen-doped diamond with electron beam to create vacancies and a subsequent
high-temperature annealing to combine the vacancies and nitrogen atoms into high-density NV centers, or
vacancy creation and NV center formation via ultrahigh temperature annealing [34, 35]. The energy levels of
a NV center at room temperature are shown schematically in figure 1(a), with the m; = 0 and m; = 1 states
separated by the zero-field splitting parameter (D), which can be affected almost linearly by external strain
[36]. NV center can exist in various charged states, i.e. negative (NV") or neutral charge (NV?) states. The
zero-phonon line (ZPL) of NV~ and NV center are at 637 nm (1.945 eV) and 575 nm (2.156 eV),
respectively and the NV~ center has a broad band from 650-750 nm [37-40]. The spin state of NV~ is
sensitive to magnetic and electric field change and mechanical strain, and such change will reflect in its
fluorescence signals [41-43]. Moreover, NV~ center has a long spin coherence time (T, the time duration
that a qubit maintains its quantum state), which can reach a few milliseconds using the Hahn echo in
ambient conditions [44, 45], and can be extended to one second or over using dynamical decoupling under
cryogenic conditions [46, 47]. Such a long coherence time facilitates NV~ center to be initialized,
manipulated and read out, often by using the optically detected magnetic resonance (ODMR). Therefore,
diamond with NV center is an excellent material for quantum memory (figure 1(b)) [48-50], magnetic and
electric field sensing (figures 1(c) and (d)) [43, 51-56], and computing [23, 25]. For example, as shown in
figure 1(b), in a quantum memory protocol, a horizontally polarized photon with a wavelength of 723 nm
(green light) is written with a vertically polarized write pulse with a wavelength of 800 nm (red). After a delay
of 7, a horizontal read pulse recalls a vertical phonon. Although the spin coherence of NV center can also be
affected by environmental sources of noise and disorder such as temperature, some strategies such as the
local manipulation of the electron spin bath has been proposed to enhance the coherence and help read out
signals [57, 58].

In addition to NV center, other color centers such as SiV, germanium-vacancy (GeV) and tin-vacancy
(SnV) have also been investigated and found potential applications in quantum sensing. In the SiV structure,
the Si occupies the center of two adjacent vacancies. SiV is a well-studied color center only second to NV
center. Compared with the NV center, SiV center has a higher proportion (~70%) of its emission in ZPL (at
738 nm) and therefore allows a sharp ZPL to be detected, making SiV center advantageous in labeling [34,
59, 60], quantum communication [61] and quantum repeater [62]. Unfortunately, the coherence time of SiV
center is too short (under no strain condition) and coherence spin control can also be realized by cooling
down to low temperature [62]. GeV and SnV centers have geometric structures similar with SiV (that is, both
Ge or Sn takes the place between two adjacent vacancies), as well as similar optical properties [63], but SnV
has a longer spin coherence time than SiV and GeV at higher temperatures [64, 65]. Nevertheless, due to the
large atomic size of Si, Ge and Sn, their correspondent color centers will bring more lattice distortion than
the NV center does.
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Figure 1. (a) Schematic of energy levels of NV center at room temperature; Reprinted figure with permission from [36], Copyright
(2014) by the American Physical Society. (b) Energy levels of diamond quantum memory and protocol of a diamond quantum
memory, where a horizontal green photon is written with a vertically polarized red pulse. After a delay of 7, the horizontal pulse
recalls a vertical photon. Reprinted figure with permission from [50], Copyright (2015) by the American Physical Society; (c) NV
center for measuring of magnetic field in a high-pressure condition From [43]. Reprinted with permission from AAAS; (d) NV
center for electrical field sensing. Reprinted figure with permission from [56], Copyright (2020) by the American Physical Society.

3. Strain engineered quantum properties of diamond

Naturally, the orientations of NV centers (i.e. the direction NV axis is parallel with) are random, which
would greatly compromise the device performance in quantum computing and sensing [69]. The alignment
of NV centers can be achieved by carefully adjusting the parameters of the diamond growth during chemical
vapor deposition (CVD) process, and of nitrogen implantation and high-temperature annealing [69-71].
ESE is a potentially alternative approach to modulate the atomic structure and align the orientations of the
color centers. First principles calculations predicted that applying strains along some selected directions
would make these orientations of the NV centers more energetically favorable over others, e.g. a compressive
biaxial strain of 2% perpendicular to [111] direction or a small scale of tensile strain along [111] in
high-temperature environment could make ~90% of NV centers align along the [111] directions

(figure 2(a)) [66]. Such strategy could be employed to modulate the qubit coupling of NV centers already
formed in diamond in order to make them ideal for quantum sensing and computing [72]. Moreover,
diamond with well-aligned NV centers is also an excellent candidate for stress imaging [73] and
high-accuracy magnetometry [74, 75]. Therefore, straining engineering can be employed as part of the
post-processing treatments for the geometry optimization of the NV color center.

Strain often inevitably exists from intrinsic defects and can be caused by external stress as well. In some
cases, strains are unwanted since they bring extra broadening of optical and spin spectra of NV centers [76].
But strain can be a powerful tool if used properly. For example, strain can modulate the orbital states and
spin levels of NV center by shifting the spin states or inducing state mixing, such as the global shift of excited
state, as shown in figure 2(b) [67, 77], or the coupling between the |m; = £1, which is an important effect of
strain engineering tuning the quantum properties of diamond. For the NV~ center, the ZPL is highly
dependent on strain field, which can split the *E fine structure into two branches [40]. Based on these effects,
strain susceptibilities can be obtained in a strain sensor for plotting the strain profile, which may find
applications in hybrid quantum sensing devices such as nanomechanical resonators [78—81]. Since strain can
shift the optical transition frequency of each electron spin, a strain field can be introduced for individually
tuning the transition frequencies of NV centers embedded in a diamond cantilever, which enables
manipulation of individual qubits and help to achieve high-fidelity quantum operations [82]. In addition,
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Figure 2. (a) Alignment of NV centers along z direction with tensile strain along z axis applied. Reprinted from [66], with the
permission of AIP Publishing; (b) Strain modulates energy level and spin population difference of NV center embedded in a
cantilever and a green laser is used for initialization and readout. Reproduced from [67], with permission from Springer Nature;
(c) Reduced linewidth of coherent population trapping (CPT) spectra with increasing ground state splitting indicates the
improved spin coherence of a SiV- NEMS with increasing strain. Reproduced from [6]. CC BY 4.0; (d) Alignment of emission
spectra of two GeV emitters by introducing small values of strain gradient in a cantilever. Reprinted figure with permission from
[68], Copyright (2018) by the American Physical Society.

strain effect can also be used for tuning the nuclear spins in diamond lattice such as nitrogen or C'? atoms,
which are useful for qubit registers and sensors [83, 84]. Since strain influences the distance and distribution
of NV centers, which is strongly related to ODMR spectra, applying straining can be a way to facilitate the
readout of nuclear spin. Moreover, by coupling the surface acoustic wave to the NV spin states through a dark
state, it is possible to tune the NV spin states while without populating the excited state, therefore avoiding
the unwanted decoherence [85]. Since strain fields can enhance the spin coherence of NV center, strain
engineering could be employed together with electrical field tuning, which may bring noise and decoherence
[86]. In addition, the coupling between strain and the NV spin could be used to facilitate the coherent
spin-phonon interactions, which are important for quantum control and long-range spin-spin interactions
[87, 88]. Apart from applying mechanical vibrations, using diamond anvil cell (DAC) is another way to
introduce strain into diamond. In this way, compressive strain decreases the distance between atomic orbitals
and makes the localized electrostatic potential of NV centers deeper. As a result, the electron density becomes
more concentrated in the inner neighbor shells of the NV centers, which favors the spin-spin interaction [89].

In addition to the modulation of the quantum properties of NV center, strain engineering can also tune
the properties and improve the performance of other color centers. For example, the electronic level
structure of SiV™ center in a nano-electro-mechanical system (NEMS) can be modulated by applying static
strain, which can be used for tuning the optical and spin transition frequencies [90]. Moreover, the
thermal-induced quantum decoherence of SiV™ center in a NEMS can be effectively suppressed by applying
a slight static strain (as shown in figure 2(c)), which provides a feasible way to control the phonon-induced
decoherence of color centers in quantum emitters without lowering the operating temperature [6]. Similarly,
static tensile strain, even of a small scale (0.05%-0.1%), can suppress the electron-phonon interaction of SnV
in diamond at elevated temperatures effectively and improve the coherence time considerably [91]. For
multiple GeV centers in a diamond cantilever, applying a strain gradient can tune the emission spectra of
these GeV centers and achieve spectral alignment (as shown in figure 2(d)), which can promote the
development of spectrally identical quantum emitters.
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Figure 3. (a) Schematic diagram of SiV and GeV in DAC high pressure environment and (b) the corresponding
photoluminescence (PL) spectra. Reprinted figure with permission from [95], Copyright (2022) by the American Physical
Society.; (c) Schematic of strained diamond membrane with SnV on fused silica. Reproduced from [91]. CC BY 4.0; (d) Strained
diamond embedded with SiV centers and deposited on SiN, and the PL spectra before and after SiN deposition, which shows an
increased ground state splitting by strain. Reprinted from [96], with the permission of AIP Publishing.
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4. Deep strain engineering

Although strain engineering has been considered as a potential approach to modulate the quantum
mechanical properties of material, in most cases, the strains applied are of small values (<1%) [1, 5]. Due to
the unavoidable existence of defects (vacancies, interstitials, dislocations, cracks etc.), the mechanical
performance of a material is often compromised such that it can hardly reach the ideal level. With the
reduction of the material size to micro and even nano scale, the probability of the appearance of these defects
can be reduced to lower level and the mechanical performance will be improved substantially. For example, it
has been demonstrated that high-quality silicon nanowires can be stretched elastically above 10%, which is
more than half of its theoretical limit (17%—-20%) [92]. Accordingly, first principles calculations predicted an
indirect to direct bandgap transition and a metallization transformation with ultra large strain of Si [93, 94],
indicating the great potential of DESE, and one may think about what DESE can do for further tuning the
optical, electronic and even quantum mechanical properties of more materials.

For diamond, due to its high brittleness, it is extremely difficult to achieve high elastic strain
experimentally [97]. One of the most straightforward methods is to use DAC to generate ultrahigh static
pressure. For example, with applying hydrostatic pressure of up to 180 GPa, large deformation of diamond
can be obtained and blueshifts of ZPL of SiV and GeV can be observed and the shift becomes slower at high
pressures, as shown in figures 3(a) and (b) [95]. Such a blue-shifting trend can also be observed in NV center
under DAC [98]. Such work should be meaningful for carrying out quantum sensing at ultrahigh pressures.
However, strain values cannot be measured with such a configuration and it is hard to guarantee a well
uniform strain or to realize a controllable strain gradient. Therefore, the application of DAC tuning the
quantum sensing properties is limited.

With the development of diamond synthesis and nanofabrication technology, high-quality single crystal
diamond nano needles and bridge structures can be prepared by CVD followed by reactive/focused ion beam
etching [31, 32, 99]. It was also found that diamond structure of such small size can sustain much higher
elasticity compared to their bulk counterparts. For diamond nanoneedles, the highest elastic tensile strain
reported was 13.4% and the compressive strain was even higher [99]. Moreover, diamond nano bridge
structures exhibited a uniform elastic tensile strain of up to 9% and such structure may be applied for
electronic, photonic and quantum devices [31]. Bandgap reduction and indirect to direct bandgap
transformation were predicted by first principles calculations. Compared with indirect bandgap material, the
direct bandgap materials can emit photons with higher efficiency, therefore, the strain-induced evolution of
bandgap from indirect to direct makes DESE a potential approach to apply diamond to optoelectronic
devices, such as laser diodes. Moreover, considering the deep-strain-induced bandgap reduction and indirect
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to direct bandgap transition, for the NV center, we may imagine ZPL peak shift under the deep straining,
opening new potential for highly efficient photonic device with reversible, modulated emission wavelength.
Deep strain engineering is also a potential approach to turn the band structure and spin states of
nitrogen-doped diamond. In addition to the predicted bandgap reduction, we also predicted symmetry
breaking, band degeneracy and a reduction of total spin with applying deep compressive strain [100]. Since
symmetry, energy degeneracy and spin transition are closely correlated, we would expect DESE to change the
quantum properties of nitrogen doped diamond (and even NV center) substantially.

While diamond has been studied mostly as a bulk material, it can also be used in the form of membrane
and bonded with various substrates for quantum applications [101]. Such deformation mode is similar with
that of the two-dimensional material. Due to the thin thickness nature, large strain is more likely to be
achieved and such a structure is suitable for flexible optoelectronic devices. This deformation process relies
on the stable bonding between diamond and another different material as substrate [102, 103], and strains
can be introduced via bending, stretching and pre-strain of the substrate material, such as the straining of
diamond membrane with SnV center on fused silica [91], or diamond with SiV center on SiN [96], as shown
in figures 3(c)—(e). In these two examples, strain plays an important role in increasing the ground state
splitting (Agss), which is useful for improving the coherence time, especially for the high-temperature
operation. Although only small strains (<1%) are introduced in the two examples, such protype is expected
to generate high static strain and enhance the spin coherence and improve the detection accuracy for more
color centers of diamond.

5. Summary and outlook

With the development of diamond synthesis techniques and research on diamond nanomechanics and color
centers, more and more quantum mechanical properties of diamond are being revealed and find applications
in quantum sensing. Strain engineering is an emerging approach for tuning the quantum mechanical
properties of diamond, but for most of the current studies, only small values of strain have been considered.
Until now, deep strain has been achieved in diamond nano structures, laying solid foundation for deep strain
induced physical properties modulation. Theoretical studies have predicted the great potential of deep strain
engineering of diamond such as the bandgap reduction, indirect to direction bandgap transition, and
symmetry-breaking induced spin degeneracy. We are expecting to see DESE induced wider ZPL shift and
increase of spin coherence of more color centers of diamond, which should improve the detection accuracy,
make more color centers useable and bring diamond to wider quantum sensing applications. Moreover, one
may also expect the combination of strain and electrical fields, to tune the diamond quantum sensing
performance together. Nevertheless, for the modification of quantum sensing properties of diamond by deep
strain engineering, it is still a relatively new topic. In terms of the quantum application of deep strained
diamond, there are still many challenges to be addressed such as how to generate and fix the high strains. We
hope that more experimental and theoretical work will be conducted to shed more light on this topic in the
near future.
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