IMPERIAL COLLEGE LONDON

DEPARTMENT OF PHYSICS

New Non-Ergodic Phenomena in

Quantum Many-Body Systems

Author: Supervisors:
Hongzheng Zhao Prof. Johannes Knolle
Prof. Florian Mintert

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy in physics

October 27, 2021



ii

Abstract

The dynamics of generic closed many-body quantum systems is believed to be
ergodic. A paradigmatic example is a quantum quench, which takes the system out of
equilibrium. Local properties relax quickly and then approach the thermal equilibrium
asymptotically, which can be sufficiently described via the eigenstate thermalization
hypothesis (ETH). Alternatively, non-equilibrium dynamics can also be induced by
time-dependent drives. In this setup, as energy conservation is absent, those systems
normally keep absorbing energy and heat up to a featureless "infinite-temperature"
state.

There has been great effort on the last decades to understand how to prevent
many-body systems from thermalization. For time-independent systems, a prominent
example is many-body localization (MBL) where all eigenstates deviate from the ETH
prediction. The recent discovery of quantum many-body scars (QMBS) suggests that
special ergodicity-breaking eigenstates can also appear in an otherwise thermalizing
spectrum. Periodically driven or Floquet systems can also be non-ergodic. The driving
induced heating can either be completely evaded via MBL, or significantly suppressed
by using high frequency driving which can give rise to a transient but long-lived
prethermal phenomenon.

This thesis introduces several new ergodicity-breaking phenomena in closed quan-
tum many-body systems. First, an experimentally feasible protocol will be proposed
to realize QMBS in optical lattices via Floquet engineering. Then I will show that
QMBS in a fractionalized strongly correlated system can demonstrate the coexistence
of persistent oscillations and the volume-law entanglement generation. Such a behav-
ior is very counter-intuitive as within the ETH paradigm, volume-law scaling normally
implies ergodic behavior. Similarly, in all previously identified models demonstrating
persistent oscillations, the underlying QMBS only exhibits sub-extensive entangle-
ment.

The fact that Hamiltonians governing these non-ergodic phenomena always have
time translation symmetry (TTS) naturally raises the question: Can systems without
TTS also exhibit interesting non-ergodic collective phenomenon? Those systems can

be expected to exhibit far richer dynamics, yet are also challenging to study due to
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the lack of Floquet theory. Nevertheless, I will provide affirmative answers to the
above question by investigating both quasi-periodic and structured random drivings.
For continuous quasi-periodic driving, the idea of the Floquet time spiral will be
developed. This leads to a new non-equilibrium phase of matter — the discrete-time
quasicrystal where quasi-T'TS is spontaneously broken. I will finally introduce a new
family of random driving protocols with a n—multipolar structure. Although the T'TS
is completely broken due to the temporal randomness, I will show that a prethermal
phenomenon still exists for high frequency driving similar to Floquet systems. This
provides a sufficiently long time window to host novel non-equilibrium phases, e.g. a

prethermal random multipolar discrete time crystal.
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Chapter 1

Introduction

Understanding the rich behavior of quantum many-body systems is one of the biggest
challenges of modern science. Although the underlying fundamental laws governing
their dynamics can be simple, the macroscopically large number of degrees of freedom
significantly increases their complexity [1]. Fortunately, many interesting features of
interacting many-body systems in or close to thermal equilibrium, e.g. different phases
of matter, are universal and their microscopic details are less important. Instead
of analyzing the behavior of individual particles, we can describe these phenomena
by only using a small number of thermodynamic quantities, such as temperature
and magnetization. However, a true equilibrium phenomena can only be reached
asymptotically and the vast majority of what we observe in our daily life, such as air
cooling, oscillation of pendulums and chemical reactions, are far from equilibrium. In
this thesis, I am particularly interested in the non-equilibrium phenomena of isolated
quantum many-body systems.

Unlike the equilibrium scenario, fewer universal principles have been established in
non-equilibrium settings and many studies can only target specific examples. Perhaps
the most important question to understand is the following: How do closed many-body
systems approach thermal equilibrium after they are taken far from it? For classical
systems, the nonlinearity and chaoticity of the equations of motion provide a plausible
answer. It is believed that all accessible regions, subjected to a few macroscopic
constraints such as energy and particle number, of the phase space are equally likely
to be explored in the long-time limit |2, 3]. This idea is known as the ergodicity
hypothesis, which is pivotal to the current development of statistical mechanics [4].

However, the understanding for quantum systems is more subtle as their dynamics
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is governed by the linear Schrodinger equation, which by itself seems insufficient for
chaos. Additionally, the uncertainty principle [5] indicates that a particle cannot have
a well-defined trajectory in phase space as its position and momentum cannot be
simultaneously determined.

A remarkable breakthrough bridging the gap between microscopic quantum dy-
namics and statistical mechanics was the proposal of the Eigenstate Thermalization
Hypothesis (ETH) [6, 7]. Assuming many-body systems can act as their own bath,
ETH states that each eigenstate of a static Hamiltonian is thermal. Those thermal
eigenstates can be locally described by the microcanonical ensemble constrained by
a set of macroscopic quantities, for instance, energy and particle number. Hence,
generic initial states, which are normally superpositions of a plethora of eigenstates,
will thermalize after a quench. Namely, the expectation values of local observables
equilibrate to the thermal prediction after a sufficiently long time.

The advent of highly controllable experimental techniques permits us to modu-
late quantum many-body systems in a time-dependent fashion [8, 9]. The ensuing
non-equilibrium phenomenon is rightfully expected to be richer than static quench,
yet challenging to analyze. As a special case which preserves TTS, periodic driving
has been widely employed to drastically modify properties of quantum systems which
can be conveniently analyzed by the Floquet theory [10]. However, by Noether’s
theorem [11, 12], generic time-dependent quantum systems do not preserve energy.
Therefore, they are expected to keep absorbing energy from the drive and eventu-
ally heat up indefinitely towards a so-called "infinite temperature state" without any
interesting local features [13].

The exploration of ergodicity-breaking phenomena in closed quantum systems
flourished in the past decades, which is the main focus of the thesis. Apart from
the basic motivation of understanding different paths towards the thermal equilib-
rium, interest also comes from the fact that thermalization poses a serious limitation
to the development of quantum technologies, for instance, quantum computers [14]
or simulators |15, 16]. Prominent mechanisms of ergodicity-breaking include integra-
bility and, more generically, many-body localization (MBL) when strong disorder is

present. These systems have been shown to strongly violate ETH as all eigenstates
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are non-thermal, and the asymptotic states after a quantum quench maintain the lo-
cal memory of the initial states. The recent discovery of quantum many-body scars
(QMBS) significantly enriches this field. Here, ergodicity-breaking phenomenon only
happens for some special eigenstates, which coexist with a sea of thermal eigenstates.

These ergodicity-breaking mechanisms also notably change the thermalization pro-
cedure in Floquet systems and can prohibit Floquet heating. The stability of MBL in
Floquet systems furthermore enables a range of novel non-equilibrium phases of mat-
ter, for example, the discrete time crystals [17] and the anomalous Floquet-Anderson
insulators [18]. Additionally, as a transient ergodicity-breaking phenomenon, prether-
malization has been attracting great attention and extensively studied in Floquet
systems. It appears when using high frequency drives and does not require MBL or
integrability. Instead of monotonically heating up to a featureless state, the system
first relaxes towards a quasi-steady state where the heating is exponentially sup-
pressed [19]. Such prethermal states can be engineered to exhibit sought-after non-
equilibrium properties which might not be obtainable in static systems [8], e.g. the
matter-field couplings in a Z lattice gauge model [8].

Besides quenching and Floquet driving, there are many other ways for taking a
quantum system out-of-equilibrium which are yet to be fully explored, for instance
by using a random drive where T'TS is absent. A crucial question of broad interest is
whether non-ergodic behaviors can still appear without TTS? If so, are there interest-
ing collective phenomena which are long-lived and perhaps unobtainable in Floquet
systems? The intuitive answer should be No as those driving protocols normally in-
volve more complicated driving tones. These additional tones unavoidably open more
resonance channels than Floquet systems which rapidly destabilize any non-trivial
phenomena. Fortunately, it turns out that the absence of TTS does not completely
exclude ergodicity-breaking behaviors. I will briefly review the recent insightful de-

velopments considering both continuous quasi-periodic and discrete drivings.

1.1 Thesis Outline

In the remainder of this Chapter, I will introduce the main concepts used through-

out the thesis. In Sec. 1.2, I will elaborate quantum thermalization and ETH in both
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static and periodically driven systems. I also introduce a few commonly used methods
to diagnose quantum thermalization. In Sec. 1.3, my focus will shift to ergodicity-
breaking phenomena discovered in the past decades, ranging from integrable systems,
MBL to QMBS. I will show that some or all eigenstates in these systems deviate
from the ETH prediction, hence, their dynamics can be either slowly thermalizing or
completely non-thermal. The transient prethermal phenomenon will be introduced in
Sec. 1.4 with the particular focus on Floquet systems. I will also give an explicit exam-
ple illustrating how to use Floquet engineering to realize quantum phase transitions.
The final section of this chapter, Sec. 1.5, concerns the progress in understanding the
dynamics with quasi-periodic drivings without TTS.

I will start introducing my own discoveries in Chapter. 2 where I propose an exper-
imentally feasible model to realize QMBS via Floquet engineering in optical lattices.
In Chapter 3, I investigate a fractionalized model where orthogonal QMBS appear
with novel entanglement properties absent in all previously discovered QMBS. Next
in Chapter 4, I propose the construction of Floquet time spirals in quasi-periodically
driven (QPD) systems. This leads to the discovery of a new non-equilibrium phase of
matter — the discrete time quasi-crystal (DTQC)— which does not have any counter-
part in Floquet systems. In Chapter 5, I introduce a new family of driving protocols
without T'TS, named as random multipolar drivings, and show that they give rise to a
prethermal regime with the notably suppressed heating. Finally, in Chapter 6, I close
this thesis by summarizing my findings and discussing open questions worth exploring

in the future.

1.2 Quantum Thermalization

Let us first define the precise meaning of quantum thermalization by considering
a quench from an initial state |)(0)) by a generic local Hamiltonian H in a lattice.
Normally, we consider the initial state as a simple product state as this is most relevant
for experiments, but the following arguments would still be valid for general initial

states that are not eigenstates of H. One can decompose the initial state over the



1.2. Quantum Thermalization 5

Heat bath

(a)

(TN
36500 800¢

FIGURE 1.1: Schematic diagram of generic interacting many-body systems. (a) Blue spins

denote the subsystem A of interest and the rest system represent subsystem B described by

the reduced density matrix p4 and pp respectively. (b) Subsystem B acts as a heat bath of
p.4 which thermalizes after a sufficiently long time.

eigenbasis |a), as

[(0)) = Aala), (1.1)

where the coefficient is defined via A, = (a|1(0)). Each eigenstate acquires a phase

factor during time-evolution as

(1)) = e Ty (0)) = 3 Age o), (1.2)

«

where E, denotes the corresponding eigenenergy. I am interested in properties of a
subsystem A of size L 4 which is normally small compared with the whole system size

L. Such a subsystem can be described by a reduced density matrix

pa(t) = Trp(|lv)(¢]), (1.3)

and exchanges energy and information with the rest of the system B in the presence of
generic many-body interactions. The subsystem B can be effectively treated as a heat
bath, sketched in Fig. 1.1, and quantum thermalization occurs as p4 evolves towards
the thermal canonical ensemble [20]

lim p4(t) = Tra(pa), (1.4)

t—o00
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where the corresponding density matrix is defined by

po = e, (1.5)

where Z is the partition function and 5 denotes for the inverse temperature associated
with the energy of the initial state. Correspondingly, the expectation value of any
physical observable O, which normally takes the form of a product of local operators,
also approaches its thermal prediction as [20]

lim O(t) = lim (4b(£)|Of(t)) = T {pgo“] . (1.6)

t—o00 t—o00

1.2.1 Eigenstate Thermalization Hypothesis (ETH)

According to Eq. (1.2), the time-dependent expectation value of O can also be formally

expanded in the eigenbasis as

O(t) = > |4al? Oua + Y A5 A50,5¢!(FaEa)t, (1.7)
@ a#B
where Ou5 = (a|O|B). Tts long time behavior converges to the infinite-time average

of the expectation value O(t) as [20]

T—oo T

T
(00 = lim 1/0 Ot =3 paOaa, (1.8)

where nondegeneracy of the eigenvalues is assumed. p, = |A,|? defines the probability
distribution of finding an eigenstate for a given initial state, and the off-diagonal
contributions in Eq. (1.7) oscillate with irregular frequencies hence average out for
large T'.

The assumption of non-degenerate spectrum is indeed reasonable for generic many-
body systems once all symmetries of the Hamiltonian are resolved [2]. Degenerated
eigenstates lead to time-independent off-diagonal contributions in Eq. 1.7, which will
not be averaged out even for a large T'. However, in the thermodynamic limit, as long
as there are not extensively many degeneracies, diagonal contributions still dominate
the dynamics, hence, Eq. 1.8 still gives a good approximation to the expectation value

(0) s
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FIGURE 1.2: Distribution of expectation values of local observables for eigenstates O(E,) =

(a|O|a) as a function of sorted eigenenergies. According to ETH, such a distribution matches

well with the prediction (black line) by Gibbs density matrix. (a) For a generic non-integrable

system, O(E,,) is a continuous function of energy in the thermodynamic limit. The distribu-

tion p, defines the weight of eigenstates for a given initial state, which is normally narrow.

(b) O(E,) becomes independent of energy for Floquet-ETH (see Sec. 1.2.3) as all eigenstates
locally cannot be distinguished from infinite-temperature state peo-

As the distribution of p, versus eigenenergy is normally narrow [20] (sketched as
shaded area in Fig. 1.2 (a)), the natural way to ensure (O)o, reaches its thermal value
for any generic initial state is by assuming that each eigenstate |a) is thermalizing
which forms the central idea of ETH [6, 7]. Therefore, illustrated as a black line in

Fig. 1.2 (a), local expectation values for individual eigenstate follow the canonical

prediction
A 1 A f
(a|O)a) = ETr <Oe_ﬂ°‘H) , (1.9)

where S, defines the inverse temperature for each eigenstate |o). By inserting O = H
in Eq. (1.9), one can determine the inverse temperature 3, for each eigenstate |a) via

the relation

Z’y E’Ye_ﬁa B

Ea ny 6760‘ E

(1.10)
Therefore, according to Eq. (1.9), the expectation value of the local observable («|O]a)
solely depends on the inverse temperature 5, or its energy F,, rather than the local
details of each eigenstate.

More precisely, consider a distribution p, centered around the energy

E

(¥(0)| H [1(0)),
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with a small energy variance A = \/<1/J(O) ‘flz‘ 1/1(0)> — E2 in the thermodynamic
limit. As long as the thermal expectation O(E,) = (|O]a) is a continuous function
and can be approximated as linearly varying within a small energy shell [E—A, E+A]
with N(E, A) number of eigenstates as shown in Fig. 1.2 (a), the late time expectation

can be well approximated as [2]

E+A
: B 1 o
lim O(t) = Ea:paoaa ~ NEA ) _Eb; AOM ~ O(E). (1.11)

This is independent of the details of the initial state but only a function of the mean
energy.
For a better understanding of the approach to thermal equilibrium, the following

formal ansatz for operator O is introduced in Ref. [21]
(@|O|B) = O(Ea)dus + e “BV2R s f(w, E), (1.12)

where E = (E, + E3)/2, w = E, — Eg denotes the energy average and difference
respectively, Rqp is a random number with zero mean and unit variance, O(E,)
is the thermal expectation value as defined in Eq. (1.9), and f(w, F) represents a
spectral function (both O(E,) and f(w,E) are smooth function) and S(E) is the
thermodynamic entropy at energy E which scales as log D for eigenstates in the middle
of the spectrum with D the Hilbert space dimension. Hence, Eq. (1.12) implies that the
width of the distribution of the expectation values of operator O decreases for larger
Hilbert space as 1/+/D, which serves as a standard measure to diagnose ETH [2]. In

addition, Eq. 1.12 also leads to the equation
1 [T _
lim / dt (0(t) — O(E))* = 0 (6—5<E>) —0(p™), (1.13)
0

which bounds the temporal fluctuation at late time which is exponentially suppressed

in system sizes [2].

'We are interested in states which are experimentally accessible and these states normally have a
narrow energy variance A. In principle for the initial state, one can also consider a superposition of
two eigenstates with a large energy difference. This state has a large A and O(E,) might not vary
linearly within the energy shell [E — A, E+ A]. Thus, the diagonal contribution does not match with
the microcanonical prediction. However, such an initial state is normally long-range correlated and
difficult to prepare in experiments.
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1.2.2 Diagnostics of Thermalization

Apart from the fact that the width of the distribution of (a|O|a) decreases for larger
system sizes as a result of ETH, there are some other diagnostics for quantum ther-

malization which will be briefly reviewed in the following.

Entanglement

Bipartite entanglement, normally quantified via the von Neumann entropy, serves as a
good measure for quantum thermalization and has been extensively studied in quan-
tum information research [22, 23|. The entanglement entropy between a subsystem A

and the rest of the system is defined as [22]

Sent(A) = —trpalogpa=—> Ak, (1.14)

)

where \; are eigenvalues of the reduced density matrix p4.

For the ground state of a gapped local quantum many-body system, it is well-
known that the entanglement entropy exhibits an "area-law", namely Sen; ~ L9!
where d denotes the physical dimension and L represents the linear system size [24].
Intuitively, one can understand this behavior as quantum correlations in the ground
state can only be established via local interactions with a finite number of neighbors
at the boundary of the subsystem A. As a special case for d = 1, this boundary does
not increase with the subsystem size, hence, Sepe remains as a constant [25].

As a comparison, for highly excited eigenstates of generic non-integrable systems,
any local observables are thermal and ETH applies. Hence, Sent is equal to the ex-
tensive thermodynamic entropy at the corresponding temperature of the subsystem
pa [26]. Therefore, the entanglement entropy obeys an "volume-law", i.e. scales lin-
early with system volume as Seny ~ L% In a quench setup, starting from a initial
product state, Sent normally increases linearly with time before the finite-size satura-
tion occurs 27, 169].

It is worth noting that although thermal eigenstates necessarily have volume-
law entanglement, it is not always true the other way around. Exceptions include
integrable systems where the usual ETH fails, as detailed in Sec. 1.3.1, in which excited

eigenstates might also have volume-law entanglement but the prefactor of the scaling
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exhibits a dependence on a fraction of the subsystem [28]. Additionally, in Chapter 3,
I introduce a new form of ergodicity-breaking behavior showing that eigenstates can
exist with volume-law entanglement but nevertheless result in non-thermal persistent

oscillations [29].

Level Statistics

The statistical properties of the distribution of eigenenergies are also insightful to pre-
dict whether quantum thermalization happens. Remarkable results have been made
from Wigner [30], Dyson [31] and others for understanding the spectrum of compli-
cated atomic nuclei. Thereafter those results have been further developed to describe
quantum chaos, and nowadays are known as random matrix theory (RMT) [32].

As quantum chaos is tightly related to ETH [2], some of the results predicted from
RMT will also be valid in systems where ETH applies. One important conclusion
obtained from RMT is that, in a given symmetry sector, neighboring energy levels of
generic interacting systems repel each other. More precisely, I focus on the probability

distribution P(s,) of neighboring energy gaps s,, defined as

Sn = (En+1 — En), (1.15)

where FE, denotes the ordered eigenenergies. It has been numerically verified that
P(sy) drops to zero (level-repulsion) for s, — 0 in a number of thermalizing many-
body systems [33]. On the contrary, s, demonstrates a Poisson distribution for
ergodicity-breaking systems where ETH fails. Predominant examples for the latter
include integrable and many-body localized systems which will be further illustrated
in Sec. 1.3.

Alternatively, one can also use the probability distribution P(r) of the ratio be-

tween consecutive energy gaps defined as [34]

min (Sy, Sp+1)
max (Sp, Snt+1)

(1.16)

r =

with r € [0,1]. According to the RMT prediction |35, 36|, for a non-integrable Hamil-

tonian with real symmetric elements, the distribution P(r) matches well with the



1.2. Quantum Thermalization 11

0.0 , ,
0.0 0.5 .0

FIGURE 1.3: Level statistics for a non-integrable spin model which follows the Gaussian
orthogonal ensemble (GOE) prediction exhibiting level repulsion. The ratio between adjacent
energy gaps is defined in Eq. (1.16).

Gaussian orthogonal ensemble (GOE) prediction

27 r 4 72
PGOE(T) = 5/2°

4 (14r+12) (17)

with the average value (r)gor ~ 0.535898 [35]. Whereas for integrable systems, it

follows Poisson statistics (POI)

2

PPOI(T) = m;

(1.18)

with average (r)por ~ 0.386294 [35].

1.2.3 Periodically Driven Systems and Floquet-ETH

Periodically driven systems, or Floquet systems, are receiving growing interest and
tremendous progress has been made during the last decades. For instance, discrete
time crystal (see Sec. 1.3.2) and anomalous Floquet-Anderson insulators 18] are novel
non-equilibrium phases of matter absent in undriven systems [37]. The vast develop-
ments in accurate control of quantum simulators also stimulate studies of Floquet en-
gineering [38] which will be later elaborated in Sec. 1.4.3. However, time-dependence
of the Hamiltonian also implies that the system does not conserve energy. Therefore,
generic Floquet systems can absorb energy from the drive and are expected to keep

heating to a featureless infinite temperature state.
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To understand such a heating phenomenon more rigorously, let us consider a tem-
porally periodic Hamiltonian, H (t) = H (t +T), where T' defines the period of the
driving. In addition, I also assume that the Hamiltonian H (t) is local at each time
t. The time evolution operator over a period from ¢t = 0 to ¢t = T is captured by the

Floquet operator Up defined as
Op = Te~t o ati®), (1.19)

where 7 denotes time ordering. Up is now time independent and one can formally

define the time-independent Floquet Hamiltonian Hp via the relation
Up = e~ tHeT (1.20)

Therefore, as long as we are interested in the dynamics at stroboscopic times t = nT,

the dynamics is governed by the Floquet Hamiltonian as
Un = e~tHrnT, (1.21)

The thermalization processes for Floquet systems can then be understood in a similar
way as for the static systems discussed in Sec. 1.2 by analyzing properties of eigenstates
and eigenenergies of Hp [36].

However, the determination of the Floquet Hamiltonian is a highly-nontrivial task,
and only few results are known in a closed form, for instance a two-level system subject
to special driving fields [39, 40]. For generic many-body systems, one can instead
construct Hp perturbatively if the system is in the rapid driving regime, i.e. the
driving frequency w = 27/T is the dominant energy scale. Following Ref. [41], let me

expand the Floquet Hamiltonian as

Hp =) Ty, (1.22)

n=0
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with a small driving period T'. The contribution to each order can be obtained via a

Floquet-Magnus expansion as >

AN (_1)n9[0}0[‘7}!(7@_9[0])!/T /tn+1 /tz
Q"_EU: g et f, G [ dbees [ dh

X (totrn) s [ (to) o [ (t0) 1 (1) | -]

(1.23)

where o denotes one permutation of {1,2,...,n+1} and f[c] = Y1, 0(c(i+1)—0o(i))
with the unit step function (-) [41]. All possible permutations will be summed over
in the above equation. The lowest order contribution is simply the temporal average
as (U = fOT dtH (t). Suppose the Floquet-Magnus expansion converges, due to the
locality of H (), the Floquet Hamiltonian Hp becomes quasi-local® which can be
sufficiently approximated via a few lowest orders of the expansion. Consequently,
the Floquet dynamics thermalizes similar to a static system governed by the quasi-
local Hamiltonian Hp, and its local properties of which can be predicted by the
corresponding microcanonical ensemble.

For generic interacting many-body systems, it is believed that the Floquet-Magnus
expansion diverges. To see this, the following upper bound of the operator norm

||T7€2,|| can be calculated [13]

n

i< (¢ [ ' lerolar) (1.24)

where ¢ is a universal constant. The norm of the Hamiltonian ||H (¢)|| increases with
the system size and diverges in the thermodynamic limit. Therefore, the convergence
condition of the Floquet-Magnus expansion, fOT [|H(t)||dt < &, cannot be satisfied
unless the driving period T also scales with the system size. The Floquet Hamil-
tonian Hp now contains highly non-local many-body operators. The dynamics is
not restricted to any energy shell and it is then suggested that any subsystem A for
all eigenstates |a) of Hp, can be treated as an infinite-temperature density matrix

foo = 1/D with D the Hilbert space dimension. As shown in Fig. 1.2 (b), the local

2Note, other perturbation expansions of the Floquet Hamiltonian have also been proposed, see
details in Ref. [42-45].

3"Quasi-local" here means that a term in the Hamiltonian can involve local operators distant in
space but the associated amplitude rapidly decays in space.
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expectation value for each eigenstate also becomes trivial, given by [46]

(a]Ola) p = %Tr (06s) = %TYO. (1.25)
Such a behavior is also named Floquet-ETH which has been verified numerically [36,
46] and also experimentally [47] in many systems. It is thus implied that for a generic
interacting Floquet many-body system, initial states will eventually approach the same
infinite-temperature state and lose all interesting local features. The entanglement
entropy also reaches the average value S, of a random state in the Hilbert space [48],
which, for a Spin*% chain of length L reads

_ Llog2—1

= 1.2
S 5 (1.26)

1.3 Violation of ETH

Now I start introducing non-ergodic systems where all or some eigenstates violate
the canonical ETH prediction. These systems can thus maintain the memory of local

properties of the initial states either permanently or for an exceptionally long time.

1.3.1 Integrable Systems

As the first example, I focus on integrable systems. Although a precise definition
is still under debate, here by "integrable systems" I mean there exists an extensive
number of local integrals of motion I, which commute with each other as well as the
Hamiltonian. Note that the projector |a) (a| on each eigenstate |«), also commute
with the Hamiltonian H, however, they are normally highly non-local hence do not
imply integrability. The statistics of the level spacing is thus expected to follow
Poisson distribution due to the presence of degeneracy in the spectrum induced by
I, [33].

As the fk commute with the Hamiltonian, their expectation values at any given
time are fixed by the initial state |tg), hence, deviate from the canonical ensemble
prediction as reviewed in Sec. 1.2. Therefore, apart from the regular energy or mo-
mentum conservation, these new conserved quantities impose additional constraints

on the thermal equilibration. To capture the thermal relaxation of local observables
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for integrable systems, the generalized Gibbs ensemble (GGE) was proposed [49] and

its density matrix reads

exp (— Dk )\kfk>
Tr {exp (— >k )\kfkﬂ 7

PGGE = (1.27)
which maximizes the entropy S = kg Tr[pln(1/p)] subject to the additional con-

straints. The values of the Lagrange multipliers are determined by requiring

Tr [ﬁGGEfk] = (ol Ik |ho) - (1.28)

The validity of the GGE has been verified in many integrable models, for instance

hard-core bosons |50] and transverse field Ising models [51].

Floquet Systems Integrability significantly changes the heating behavior for Flo-
quet systems. Instead of heating to the infinite temperature, it is shown that after
a sufficiently long time, a steady state is obtained which can be described by the

periodic Gibbs ensemble (PGE) proposed in Ref. [52] as

ﬁpGE(t) = ZﬁleXp <— Z )\kfk(t)> , (1.29)
k

where Z is the time-independent normalization factor. The operators

~ A A

Ii(t) = UL U (1),

where U (t) denotes the time evolution operator for Floquet systems at time ¢, are
temporally periodic integrals of motion, the expectation value of which defines time
independent conserved quantities [52]. Therefore, the PGE ensemble is also periodic,

hence, the expectation values of local observables synchronize with the drive.

1.3.2 Many-Body Localization

Another important mechanism to evade quantum thermalization is many-body local-
ization (MBL) [53-55]. It is a generalization of Anderson localization [56] by including

many-body interactions. The XXZ spin model serves as a paradigmatic model for
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(b)‘a>:‘...§§g...>

FIGURE 1.4: (a) Local integrals of motion [—bits 7; can be transformed from physical qubits
0; via a local unitary transformation V. Support of 7; decays exponentially away from site
i. (b) Eigenstates |a) of a MBL Hamiltonian are products of the eigenstate of 77.

MBL captured by the Hamiltonian [57, 58]

Hypr =Y _J (ofoly, +ololy) + J.ojof,y + hio}, (1.30)

i=1
where o represents pauli operators for spin—% operators at site ¢, J and J, denotes
interaction strength and h; defines a random field on each site. Via the Jordan-Wigner

transformation [59], the XXZ model can be mapped to a fermionic model as

Avpr=Y 27 (éjém n H.c.) (20— 1) (201 — 1) + Y hi (20 — 1), (1.31)
i i

where éj defines standard fermionic creation operator at site ¢ and n; = éjél denotes
the occupation number. For a vanishing interaction J, = 0, Eq. (1.31) describes the
Anderson localized model where all single-particle eigenstates become localized for
any nonzero disorder potential. Such localization generalizes to MBL in the presence

of weak interaction J, # 0 as long as the disorder strength is sufficiently strong.
Many properties of MBL in spin systems can be understood via the phenomenolog-
ical degrees of freedom (d.o.f.) 7; as illustrated in Fig. 1.4 (a) [60]. They are known as
[—bits, which can be transformed from the physical qubit of ¢ via a local transforma-
tion V as 7; = V1o;V. Crucially, they commute with other I—bits as [r;, 7;] = 0 [61].

In the localized phase, the original Hamiltonian take the general form
[:[MBL = Z FLZTZZ + Z JijTZ-ZTjZ + Z JijkTiZTng + - y (1.32)
i ij ijk

where ﬁ, denotes an effective random field, and J;; and J;;;, characterize interaction
between [—bits which decays exponentially with distance |i — j|. As the Hamilto-

nian is purely diagonal in the new basis, all [—bits commute with the Hamiltonian
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FIGURE 1.5: (a) Local expectation values for (Floquet-)MBL eigenstates fluctuate chaoti-

cally. (b) Level statistics of a Floquet model with disorder. The average value of the ratio of

consecutive quasi-energy gaps detects the Floquet-MBL to thermal phase transition, which
occurs for a large driving period T. Figure is adapted from Ref. [62]

[Ti,ﬁMBL] = 0 and they are regarded as emergent local integrals of motion, which
makes the system similar to an integrable model. The level statistics therefore obeys
POI distribution stemming from the lack of level repulsion, which has also been em-
ployed as a signature to probe the MBL-thermal phase transition [58].

All eigenstates of MBL are simply products of 7;, as shown in Fig. 1.4 (b), which
maintain locality even when transformed back to the physical d.o.f. It results in
the area-law scaling of the entanglement entropy as localized bits cannot establish
correlations throughout the whole system [58|, in sharp contrast to the volume-law
scaling expected for ETH-obeying excited eigenstates. Likewise, the system cannot act
as its own thermal bath. Hence, eigenstates are not thermal and their local properties
fluctuate chaotically even for eigenstates close in energy as shown in Fig. 1.5 (a). In
a quench setup, the expectation values of each [—bit are determined by the initial
condition and remain conserved during the time evolution. Therefore, the memory
of initial states is preserved for an infinitely long time [63] as verified in recent cold

atoms experiments [64, 65].

Floquet MBL

MBL has also been shown to evade heating when the system is subject to a periodic
drive [66], which again can be intuitively understood via the [—bits representation [62].
Without loss of generality, here I consider a generic MBL system driven by a local

field D which oscillates monochromatically as

H(t) = Hypr, + D cos(wt), (1.33)
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where w determines the driving frequency. As the eigenstates of Hypr, are products
of [—bits, a local drive can only modify a group of [—bits in a finite spatial region.
These [—bits span a typical local energy bandwidth W. In the rapid driving regime,
as long as w > W, there are no transition channels between different many-body
eigenstates to absorb an energy quanta w. Therefore, MBL remains stable in Floquet
systems (Floquet-MBL) [62]. Formally, although there is no rigorous proof, such
a non-thermal behavior suggests that the Floquet-Magnus expansion introduced in
Eq. (1.23) converges for sufficiently rapid driving and strong disorders [67]. The
resulting Floquet Hamiltonian Hp defined in Eq. (1.22) is also many-body localized
associated with a new set of dressed [—bits different from the ones for the undriven
Hamiltonian EIMBL. The late time relaxation in such a system will be similar to the
Floquet integrable systems discussed in Sec. 1.3.1, namely synchronizing with the
driving and the stroboscopic time evolution is purely captured by Hp.

When the driving frequency is reduced, a transition from Floquet-MBL to the
thermal phase happens, illustrated in Fig. 1.5 (b), as energy absorption via many-
body resonances is restored for w < W. In other words, higher order contributions
obtained from the Floquet-Magnus expansion become dominant for smaller driving
frequency. These highly non-local processes eventually destabilize MBL and heat up

the system.

Floquet Time Crystals

The stability of MBL in Floquet systems permits the existence of non-equilibrium
phases of matter without any counterpart in static systems. There are many of
them [18, 37, 68], but here I focus on discrete time crystals (DTC) which have at-
tracted great attention in recent years. As discussed in previous sections, the late-time
steady state p(t) of a Floquet many-body system either synchronizes with the peri-
odic drive for integrable models or completely thermalizes. These two types of steady

4

states are both periodic in time with the same frequency as the driven Hamiltonian®,

hence preserving the discrete time translation symmetry (TTS). A natural question

“Infinite temperature state is indeed time-independent but can still be regarded as periodic in
time
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arises, namely is it possible to realize a time crystal with spontaneous time transla-
tion symmetry breaking (T'TSB) in a similar way to the spatial symmetry breaking in
crystals? To be precise, for a simple initial state subject to a driving H (t) of period
T, is it possible that the expectation value of at least one local observable O(t) of the
steady state exhibits persistent regular dynamics? For instance, periodic oscillations
as O(t+T') = O(t) where T" is different from T hence breaking TTS of the original
Hamiltonian.

There are lots of models identified to demonstrate TTSB and the so-called m—
spin glass (SG) serves as an exemplary one with period-doubling time crystalline
dynamics [69], i.e. the observable oscillates with a doubled period T = 2T T first
focus on the soluble limit where the driving protocol consists of two steps captured

by the Floquet operator
Ur = e_iﬁ“e_mz, (1.34)

where i, = SV gio% and H, = ¢ Jiojo?, 1, here L is the system size. Both of them
commute with a global Z, Ising symmetry generated by the operator P, = [], o7.
The coupling strength J; is randomly chosen and results in a spin glass phase, see

details in [17, 69]. For g; = w/2, the second driving step reduces to

LTt o N
exp —252035 = (—1) Ha;;, (1.35)
j j

which is proportional to the Ising symmetry operator P, up to a phase.

Time crystalline behavior appears for any Ising symmetry broken state. For in-
stance, after the first half of the drive, the state |11 ... 7)) only gains an additional
phase induced by H, as such the spin configuration remains invariant. The Ising sym-
metry operator then performs a spin flip on all of the sites, thus, after a single period

one obtains

Op 1L 1) o (LA 41 (1.36)
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The initial spin configuration can be restored after two periods hence the magnetiza-
tion exhibits period-doubling behavior as (0;)(t+2T") = (0;)(t). Likewise, the Floquet

Hamiltonian of the Floquet operator for two periods reads
U3 = [(—i)FPpeH=]"" = ¢=i2nH= (1.37)

suggesting the dynamics after even periods is fully governed by H..

Surprisingly, thanks to the stability of Floquet-MBL, the period-doubling behavior
described above is not merely a fine-tuned phenomenon, but rather defines a non-
equilibrium n—DTC phase of matter with n = 2. It remains infinitely long lived
with a period rigidly locked at 27" even when deviating from the soluble limit |[70], for
instance, in the presence of rotation imperfections during the spin flip, or perturbations
which break the Ising symmetry of H, as long as the perturbation strengths are small.

Nowadays the zoo of DTCs keeps growing and developments include, for instance,
the ones with higher (n = 4) [71]| or fractional (n = 8/3) orders [72] and also in
higher dimensions [73|. I am particularly interested in time crystalline dynamics in
time-dependent systems which cannot be simply captured by the Floquet framework.
For instance in Chapter 4 and 5, I will show the TTSB can also appear in systems

driven by quasi-periodic and structured random drivings.

1.3.3 Quantum Many-Body Scars

Both the integrability and MBL strongly violate ETH as all eigenstates are non-
thermal. An interesting phenomenon observed experimentally on a Rydberg atom
platform as seen in Fig. 1.6 (a) [74] suggested that ergodicity-breaking can also happen
in non-integrable systems in a weak manner [75-79|. Persistent coherent oscillations
appeared only for certain special initial states, while most of the other generic initial
states rapidly thermalize. It turns out that a special band of non-thermal eigenstates,
named quantum many-body scars (QMBS) as seen in Fig. 1.6 (b), play a key role
in the appearance of the non-ergodic dynamics. QMBS have dominant support in a
small portion of Fock space and are decoupled (either approximately or exactly) from
the sea of thermalizing eigenstates obeying ETH. Therefore, any initial states with a

large overlap with QMBS display non-ergodic behavior that manifests itself through
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FIGURE 1.6: (a) Coherent oscillations of the domain wall density observed when Rydberg-
atoms are quenched from the |Zs) initial state. The exceptionally slow thermalization persist
in large systems of 51 atoms, and the dynamics can be captured using matrix product state
(MPS) simulation. Figure is adapted from Ref. [74]. (b) Overlap between the initial states
and eigenstates proposed in Ref. [75]. The slowly thermalizing dynamics in (a) is attributed
to a band of non-thermal eigenstates, namely the quantum many-body scars which weakly
break the ergodicity. The color scheme represents the density of eigenstates. This figure is
adapted from Ref. [75]

persistent coherent oscillations. A key characteristic of QMBS is their sub-volume
entanglement entropy [80, 81] whereas other ETH-obeying eigenstates are volume-
law entangled. This property is also commonly used for the diagnosis of QMBS as
entropy-outliers which clearly separates them from other thermal eigenstates in the
bulk of the spectrum as shown in Fig. 1.7 (a).

Many different mechanisms have been discovered so far to realize the decoupling
between the scared subspace with the thermal ones [82], for instance, spectrum-
generating algebra [83], projector embedding [84] and Hilbert space fragmentation
(HSF) |77, 79, 85] which will be covered in Chapters 2 and 3 of the thesis. For a
Hamiltonian H and some arbitrary state in the Hilbert space |t¢g), one can define
the Krylov subspace K by repeatedly applying the Hamiltonian on the state as [82]
K = span {]1/}0> JH o), H? o), ... H™ o) . . . } For a given system size, HSF hap-
pens when the Krylov subspace stops growing for larger n and its dimension is much
smaller than the total Hilbert space. I also restrict the state |¢g) in a given symmetry
sector to ensure the disconnection of different Krylov subspaces is not due to obvious
symmetry reasons as sketched in Fig. 1.7 (b). For instance, K does not involve states
with different particle numbers if the starting state |¢o) and the Hamiltonian H both
preserve the particle number.

The dimension of K has a strong dependence both on the Hamiltonian H and
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FIGURE 1.7: (a) Entanglement entropy S, for all eigenstates versus eigenvalues E, [86].

QMBS manifest themselves as entropy-outliers highlighted via blue or red circles whereas

others are mostly volume-law entangled. Figure is adapted from Ref. [86]. (b) Schematic

diagram for Hilbert space fragmentation. The Hilbert space is block-diagonalized due to

symmetry reasons (gray), but can be furthermore fragmented into isolated Krylov subspaces
K (green).

the starting state |¢g). It can scale exponentially versus system size or even remain
constant [77]. Special subspaces K may have a small dimension that is insufficient for
thermalization hence hosting QMBS and violate ETH. Time evolution of a state within
a small K will always remain in the same subspace and exhibit coherent oscillations.

HSF has been proposed in systems with strong kinetic constraints induced by, for
instance, higher momentum conservation laws [77, 87] and a strong tilt in optical lat-
tices [88]. In Chapter 2, I will employ the idea of Floquet engineering (see details in
Sec. 1.4.3) for the realization of QMBS in optical lattices. By periodically modulating
the on-site interaction of the Bose-Hubbard model, I show that the so-called density-
assisted tunneling emerges. This can be tuned to significantly constrain the dynamics
of cold atoms. These kinetic constraints induce QMBS, and they will be further veri-
fied via the spectrum properties of the Floquet operator and the long-lasting coherent
oscillations for special initial states.

In Chapter 3, I will address the intriguing question of whether long-lived coherent
oscillations can coexist with rapid volume-law entanglement generation in a standard
quench setup. I confirm its existence by imposing kinetic constraints to a multi-
component strongly correlated system, which naturally hosts two fractionalized d.o.f.
It turns out that the kinetic constraints result in HSF in one component, hence,
persistent oscillations appear and break the ergodicity. However, the other emergent

d.o.f. is thermal and generates volume-law entanglement.
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1.4 Prethermalization

Instead of focusing on the asymptotic long-time behavior of a quantum system, I am
also interested in a transient non-ergodic phenomenon, dubbed as prethermalization.
When there are several well-separated time scales in a many-body system, the state
might first relax to a prethermal quasi-steady state of a finite lifetime instead of
thermalizing monotonically towards the eventual equilibrium. This behavior has been

identified in both static or Floquet systems as elaborated in this section.

1.4.1 Static Systems

Consider a time-independent Hamiltonian consisting of two parts
H = Hy+ \V, (1.38)

where A is dimensionless and controls the separation of different time scales. If A
is very small, the short time evolution is thus mainly governed by H,. Hence, the
system quickly relaxes to a prethermal state at some timescale which we call 7.q.
According to ETH as reviewed in Sec. 1.2, its local expectation values of operator
O can be predicted as Tr [ﬁpreOA}, where the density matrix ppre corresponds to the
microcanonical ensemble for Hamiltonian Hy. However, such a prethermal state is
not stable as V will introduce slow processes which, in many cases, become notable
at a time scale 1 = O ()\*2). Thereafter the prethermal state evolves towards the
final steady state [41] captured by the microcanonical ensemble p for H.

However, for generic non-integrable systems and a small A, the density matrix
Ppre is similar to the p. Hence, distinguishing the prethermal value Tr [f)preOA} and
the asymptotic value Tr [pAOA} can be difficult and prethermalization might be invisi-
ble. For this reason, prethermalization in static systems normally happens when the
Hamiltonian ﬁo preserves a number of conserved quantities until the time scale Tpre.
Then the perturbation V breaks one of these conservation laws and leads to eventual

thermalization [89-91].
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Prethermalization
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FIGURE 1.8: Thermalization of the state |1(¢)) in Floquet systems with rapid driving (red) or
relatively slow driving (gray). (a) For w >> Jog, after a transient period, expectation of a local
observable O first saturates to a prethermal plateau before heating to infinite temperature
state poo. Whereas for slower driving, the state evolves to po rapidly. (b) Likewise the
dynamics of entanglement entropy Sept also exhibits prethermal plateau before reaching the
maximum value S... For a spin-1 chain of length L it reads S = (Llog2 —1)/2 [48].

1.4.2 Floquet Systems

As discussed in Sec. 1.2.3, a generic interacting many-body system heats indefinitely to
infinite temperature unless the system is integrable or exhibits MBL. Here I show that
prethermalization also appears in Floquet systems for high frequency drivings, which
can be treated as a generic method to suppress drive induced heating in non-integrable
systems. When the driving frequency w is much larger than the local bandwidth Jeg
of the effective Hamiltonian governing prethermal dynamics, energy absorption can
only happen via many-body resonances. For instance, simultaneous flips of multiple
spins, the number of which scales as ngi, = w/Jeg. The probability for such an event
to happen is exponentially small in ngj,, hence, resulting in an exponentially long
lifetime of prethermalization as illustrated in Fig. 1.8. Such an intuition has been
verified in many setups both numerically [92] and experimentally [47, 93]. In fact, it
can also be rigorously proved via bounding the heating rate |19, 94| obtained by the
Floquet-Magnus expansion introduced in Sec. 1.2.3.

Let us consider a non-integrable system described by the time-dependent Hamil-
tonian H(t) = H(t + T). The stroboscopic dynamics after each period is governed
by the time-independent Floquet Hamiltonian Hp which can be perturbatively deter-

mined by the Floquet-Magnus expansion [Eq. (1.23)]. One can then define an effective
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Hamiltonian by truncating the expansion up to a finite order n as

n
Al =3 1m0, (1.39)
m=0

which remains local if the original driven Hamiltonian H(t) is local, hence, does not
obey Floquet-ETH introduced in Sec. 1.2.3. Instead, the effective Hamiltonian ﬁén)
obeys the usual ETH, thus, the system approaches the prethermal state captured by

the microcanonical ensemble ppre = e‘ﬁﬁéﬂ) as shown in Fig. 1.8.
For a short-ranged interacting system, rigorous results have been established in
Ref. [19, 41]. The upper bound for the distance between a local operator O propagated
either by the Floquet Hamiltonian or the effective Hamiltonian at stroboscopic time

t is given by [41]

it ) —ilst _ 6iﬁ§"0)tOA€—z’H§"0)t

| <10 ]lukge= O/ k), (1.40)

where ||-|| denotes the operator norm, ng defines the optimal order beyond which the
Floquet-Magnus expansion starts to diverge. The optimal order scales linearly in
frequency as ng ~ O(1/(kgT')), where k measures the maximum interacting range of
H (t) and the absolute energy per site is bounded above by g. The above inequality
indicates that the local property of the Floquet dynamics can be well-approximated
by the truncated Hamiltonian up to the prethermal time scale 7pe ~ O/ (kgT))
One can further show that the effective Hamiltonian can be regarded as a conserved
quantity during prethermalization by inserting 0= PIPQ”) in Eq. (1.40) for 0 <n < nyg
as

6iﬁptﬁfgn)6—iﬁFt . ﬁl(?n) < tkg26—(’)(1/(kgT)) +0 (Tn+1) , (1.41)

where V' denotes the system size and O (T”H) measures the fluctuation which is
time independent. The expectation value of ﬁlg)) is normally interpreted as the mean
energy of the state, which remains conserved up to an exponentially long time as
suggested by Eq. (1.41) for n = 0. Therefore, the heating rate of the system, whose
energy grows towards the infinite-temperature value Tr <ﬁ§0) ﬁoo), is exponentially

small in frequency. Hence, the change in the energy only becomes notable after an
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exponentially long time.

1.4.3 Floquet Engineering

Floquet driving allows us to drastically modify the dynamical properties of quantum
many-body systems and create effective physical processes which are otherwise difficult
to obtain. Although for generic non-integrable systems these driving induced effects
ultimately disappear, prethermalization allows us to observe them in a sufficiently
long time window. Such an idea is also called Floquet engineering [38], which is
broadly applied not only in cold atoms in optical lattices [95, 96], but also in electronic
systems [38]. However, according to the rigorous results of the last section, Floquet
heating is only well controlled when the driving frequency is the dominating energy
scale of the system and crucially the driving amplitude should not be too strong. As
such, the resulting effective Hamiltonian ﬁ}n) can be well approximated as H ](;n) ~
because higher order corrections are negligible. It indeed poses a strong limitation
to Floquet engineering as the induced dynamics remain close to the undriven ones
trivially generated by Qo. One exception happens when Qo vanishes, in which the

effective Hamiltonian is dominated by the first order process
HY ~ T4, (1.42)

this can be very non-trivial as presented in Ref. [97].

Alternatively, strong driving is commonly used to significantly modify the Hamil-
tonian by using a driving amplitude comparable to, or even much larger than, the
driving frequency. Although the standard Floquet-Magnus expansion becomes invalid,
one might find a properly defined rotating frame in which the driving amplitude does
not contribute to the amplitude of the Hamiltonian. Therefore, the driving frequency
is still the largest energy scale permitting a perturbative expansion in the new frame.

For concreteness, I will illustrate the idea of Floquet engineering through the

periodically driven 1D Bose-Hubbard system described by the Hamiltonian

N R . U A .
H(t)= E CLJquq + B g np(ny, — 1) + F(t) E epTp, (1.43)
(pq) p p
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where ép(é;)) annihilates (creates) a boson at site p, and 7, = é;ép is the occupation
number operator. This Hamiltonian has been discussed in Ref. [98] and describes
a system of spinless bosons in the lowest band of 1D driven optical lattices. The
first term on the right hand side indicates that particles can hop to its neighboring
sites with the bare hopping rate J,, = —J. The second term represents the on-site
interaction with the amplitude U, tunable by modulating a magnetic field inducing a
Feshbach resonance [99]. The sign of U can be either positive or negative, generating
repulsive or attractive forces between particles if more than two of them are occupying
the same site. The final term defines a tilted potential with €, = —p, and its amplitude
F(t) is a temporally periodic function with a period 7. Experimentally, the time
dependence can be achieved via a periodic tilt or acceleration of the lattice [100].

For the static system with F'(¢) = 0 and positive U, the dimensionless quantity
U/J drastically changes the groundstate property [101]. For U/J < 1, where hopping
dominates, the groundstate features superfluidity (SF) where all particles are free to
move. On the contrary for U/J > 1, the system enters a Mott insulator (MI) phase
where particles fix their position on each lattice site to avoid on-site repulsion. The
SF to MI phase transition has been realized experimentally in optical lattices by
increasing the lattice depth [102, 103].

The SF-MI phase transition can also be realized by periodically shaking the lattice
with a continuous driving profile, e.g. F(t) = F cos(wt), with a large amplitude i.e.
F; 2 w. In this case, the lowest order contribution to the effective Hamiltonian Qo
is the time average of H (t) which trivially gives the static Bose-Hubbard model, and
the higher-order expansion of the Hamiltonian quickly diverges. To resolve this, the

time dependent unitary transformation R(t) was employed in Ref. [98] as
R(t) = exp !z > 9p(t)ﬁp] : (1.44)
p

where 6,(t) = ¢, fot drF(7). The Hamiltonian H(t) = RH(t)R" —iRR' in the rotating

frame reduces to

- oA R U o
H(t) = E ;qu(t)cq + 3 g (e — 1), (1.45)
(pq) p
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where the hopping term is modified to
Apg(t) = Tpge! O~ 0alt)), (1.46)

and the driving profile F(t) contributes a time-dependent phase factor. The Hamilto-
nian in the rotating frame now permits a perturbative expansion in the rapid driving

regime, i.e. w > J,U, and the lowest order contribution reduces to
Qo= —Jog Y ehé +g2ﬁ(ﬁ —1) (1.47)
£ a5 . p\Tp )
Pq

where the hopping rate is now renormalized as Jog = JBo(F}/w), here By(z) denotes
the zero-th order Bessel function [98]. Consequently, the ratio between the renor-
malized hopping and the on-site interaction Jeg/U can be tuned in a wide range by
varying F/w, enabling the SF-MI phase transition [98].

There has been a vast amount of research on Floquet engineering and many the-
oretical proposals have already been experimentally realized [38]. Besides the above-
mentioned renormalization of hopping rates [100], artificial gauge fields [95, 96] and
a basic Zs lattice gauge model [8] have been simulated by Floquet engineering. In
Chapter 2, I will further modulate the on-site interaction of the Bose-Hubbard model
|[Eq. (1.43)] and investigate the interaction induced process - the density-assisted tun-
neling. For special driving profiles, this process constrains the dynamics notably and

results in QMBS.

1.5 Quasi-Periodically Driven Systems

By now I have discussed non-ergodic systems exhibiting either non-thermal or slowly
thermalizing dynamics caused by a static quench or Floquet driving. Hamiltonians
in both situations possess TTS, thus both the eigenstates and eigenvalues of either
the time-independent Hamiltonians or Floquet operators are well-defined. Based on
ETH, properties of these eigenstates provide useful information to infer whether the
quantum system thermalizes, and if so, how they approach thermal equilibrium.
However, there are many other ways for taking a quantum system out-of-equilibrium

which are yet to be fully explored, for instance, by applying driving fields following
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quasi-periodic (or aperiodic) sequences. Quasi-periodic drives (QPD) are determin-
istic and structured in time whereas TTS is absent, hence, such setups interpolate
between perfectly periodic and purely random protocols. As those systems are not re-
stricted by TTS, it is expected that they can give us more flexibility and controllability
to engineer exotic physical processes or new non-equilibrium phases of matter [104—
106]. On the other hand, the absence of TTS also implies that Floquet theory funda-
mentally does not work which makes both the numerical simulations and analytical
investigations of these non-equilibrium phenomena very difficult.

Although there is not yet a well-established universal theoretical framework for
studying aperiodically driven systems, interesting properties have been proposed for
special types of drivings. I will first briefly review the up-to-date findings in the
following section and later introduce my new discoveries of non-equilibrium phases of

matter and prethermalization in aperiodically driven systems in Chapters 4 and 5.

1.5.1 Continuous Driving

There are two commonly used approaches to achieve a quasi-periodic driving, either
in a continuous or a discrete manner. I first consider the Hamiltonian of a contin-
uous QPD system with a finite number of driving frequencies defined via a Fourier

expansion [107-109]

~

H(t) =) Hze™", (1.48)

with @ = (n1,n9,n3,...) C Z" and 0;i = wit. The system is QPD if all or a subset
of the IV frequencies w; are incommensurate, i.e. their mutual ratios are irrational.
Indeed, investigations of QPD systems actually started decades ago focusing on simple
two level systems. For instance in Ref. [110], it was shown that even a two-level system
driven by two incommensurate frequencies can exhibit quantum chaos.

Recently there is a resurgence of interest in studying such QPD systems and an el-
egant generalization of Floquet theory facilitates the investigation. There, the system
is transformed into a higher-dimensional synthetic Floquet lattice where the time-
dependent QPD Hamiltonian now becomes static. The dimension of the Floquet

lattice equals the incommensurate quasi-periodic tones [108, 111]. For some special
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QPD protocols, one can then treat the spatial and synthetic dimensions on equal foot-
ing, which has been further applied to realize higher dimensional topological phases
in QPD low-dimensional systems [112, 113].

Although the idea of a Floquet lattice is in principle valid for any QPD system
with a finite number of incommensurate tones, simulations of the dynamics quickly
become unfeasible for interacting many-body systems. Indeed, most of the recent
findings [112-115] are mainly focusing on two-level systems or one dimensional tight-
binding models.

Compared with Floquet systems, many-body QPD systems are also expected to
suffer from a more drastic heating issue. To see this, let us consider a bichromatic
driving with incommensurate frequencies w; and ws. A generic many-body system
can absorb the amount of energy AFE = |njw; £ nows| for an arbitrary integer photon
number n; /5 via multi-photon events. It has been shown that AE can be arbitrarily
small if the photon number is sufficiently large [104]. Such a property makes QPD
systems manifestly different from Floquet systems where AF is strictly bounded from
below. Therefore, simply increasing the driving frequency does not necessarily sup-
press heating as it can still happen via multi-photon events instead of many-body
resonances which is the main reason for Floquet heating as introduced in Sec. 1.4.2.
It is thus expected that heating in generic QPD many-body systems is inevitable
and, non-equilibrium phases like MBL cannot be stable for an infinitely long lifetime.
Very recently, it has been proposed that heating can still be controlled by suppressing
the probability of multi-photon events [104]. Consequently a transient but long-lived
prethermal regime can appear if the QPD protocols satisfy some restrictive condi-
tions [104].

Despite the lack of a generic framework to investigate QPD systems, in Chapter 4,
I will show a specific example, e.g. the Floquet time spiral (FTS), which can be
mapped to Floquet system via a time-dependent unitary transformation. Hence, a
FTS can be efficiently treatable within the known Floquet framework. A QPD two-
level system is first studied as a pedagogical example, followed by a generalization
to a disordered many-body system. It further leads to the discovery of a new non-
equilibrium phase of matter, the discrete time quasi-crystal, which remains stable even

when the equivalence to its Floquet counterpart is absent.
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1.5.2 Discrete Driving

Another approach to induce quasi-periodic driving is by stepwise protocols following
aperiodic sequences generated by recursive relations [116-119]. For instance, the ape-
riodic Thue-Morse sequence involving an infinite sequence of s; = +1 can be obtained
as follows: One first starts from the element s; = —1, then sequentially appends a
sequence containing all elements in the previously obtained sequence but with the
opposite sign, e.g. s1,82 = —1,—(s1) = —1,+1. One can repeat this procedure and

get the following sequence recursively

S81,52,83,54 = _17+17 +17 _L
S1yennnn. ss = —1,+1,+1,—1,+1,—1,—1,+1, (1.49)

Slyennnn. . s16=—1,41,41,—1,41,-1,—1,+1,+1, -1, —1,+1,—1,+1,+1, —1.

To perform the corresponding driving protocol, one can define two operators Uy and
U_ and apply them to an initial state according to the sequence above. Compared
to the continuous quasi-periodic functions [Eq. (1.48)] whose Fourier decomposition
is a simple collection of delta functions, these aperiodic sequences can have a more
complicated and perhaps continuous frequency spectrum [120]. A large number of
frequency components also implies that the above-mentioned Floquet lattice has an
infinite dimension, thus cannot provide useful insights for the understanding of the
resulting dynamics.

The recursive relation used for the generation of Eq. 1.49 indeed permits us to
efficiently simulate the time evolution of a quantum system [117]. Starting by defining

the matrices

Uy=U,, Ug=U_, (1.50)

one can construct the time evolution operator U, after exactly 2" drives recursively

as

Un = ~TL*1UTL717 Un = nflfjnfla (151)

with an integer n. For instance, after 2 steps, the time evolution operator is Uy =
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UOUO, and after 4 steps, Us = U,U, = UOIJ'OU()UO. It is worth noting that only
a linearly increasing number O(n) of matrix multiplication is needed to simulate
exponentially long times O(2"). Similar ideas have been employed to analyze the
slow relaxation or non-thermal behavior in some integrable or MBL systems subject
to aperiodic drives [105, 117-119, 121].

In Chapter 5, I propose a family of discrete driving protocols, the nth order random
multipolar driving (RMD), to further investigate the effect of the quasi-periodicity
in heating suppression for generic non-integrable systems. For n — oo, n—RMD
corresponds to the quasi-periodic Thue-Morse driving. The non-negative integer n
quantifies the temporal correlation in the protocol which leads to a polynomially
suppressed low frequency spectrum. For n > 1, prethermalization appears and its
lifetime follows a surprisingly simple algebraic scaling versus the driving rate with
exponent 2n+ 1. A simple theory based on Fermi’s golden rule is sufficient to explain
this behavior. In spite of its eventual heat death, I will demonstrate that the time

crystalline behavior can exist even the driving protocol does not have TTS.
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Chapter 2

Floquet Engineering of Quantum

Many-body Scars

QMBS have been recently discovered as a novel mechanism to weakly break ergodicity.
These special eigenstates violate ETH and have sub-extensive entanglement whereas
most of other eigenstates are thermal. Any initial state with a dominant overlap with
QMBS exhibits non-thermal coherent oscillations and low entanglement generation.
By now, QMBS have been identified in several theoretical proposals, mostly in spin
models [75-78, 122-130] and fermionic models [88, 131|. One common feature of these
models is the finite local Hilbert space dimension. A crucial question I want to address
is whether QMBS can also occur in experimentally realizable settings with bosons.
In this Chapter, by periodically modulating the on-site energy and interaction, I
propose an experimentally feasible driving protocol to engineer the density-assisted
tunneling for bosonic atoms trapped in an optical lattice. As shown in Sec. 2.1 and
Sec. 2.2, this tunneling process appears as a dominant effective process of the mod-
ulated BHM for high frequency drivings. Hence, the rate for a particle to tunnel
depends on the number of particles on its local site and neighboring sites. By tuning
the driving amplitudes and frequencies, these hopping rates also change accordingly. I
find the optimal driving parameters such that some tunneling channels are suppressed
to zero between Fock states that are connected without the driving. Consequently,
HSF happens for the effective model even though the local Hilbert space for bosons
can be infinitely large. In Sec. 2.3, I confirm the appearance of QMBS in the rapid
driving regime by analyzing the properties of the Floquet operator. In Sec. 2.4, I

further demonstrate that QMBS can be experimentally probed by preparing selected
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initial states and detecting the long-lived coherent oscillations. Later in Sec. 2.5, I
compare these coherent oscillations with Bloch oscillations that can appear without
the need of driving. Finally, potential experimental realizations and open questions

will be discussed.

2.1 Bose-Hubbard Model with Doubly Modulation

Let me focus on a system of spinless bosons occupying the lowest band in the 1D

optical lattice described by the BHM,

- . . U(t) R .
H(t) = ehpglq + =57 D ip(ity = 1) + F(8) D epip (2.1)
(pq) p p
€p = —p represents the tilt potential, F'(t) is the shaking amplitude, U(t) is the
amplitude of the on-site interaction, and J,, = —J is the bare tunneling rate between

adjacent sites. The same model with a static on-site interaction has been discussed
in Sec. 1.4.3 where the hopping rates can be dynamically suppressed by tuning the
shaking profile F'(t). Here, I also periodically drive the on-site interaction U(t) and
its time dependence can be experimentally achieved via modulating the magnetic field
which induces a Feshbach resonance [99, 132].

Let me now show that this driving can lead to density-assisted tunneling which
does not exist in the bare Hamiltonian. For a suitably chosen set of driving pa-
rameters, such tunneling processes can effectively introduce kinetic constraints to
the system, hence, breaking the ergodicity of the dynamics. A monochromatically
varying on-site interaction U(t) = Ujcos(wt) and a bichromatic shaking F(t) =
F5 cos(2wt) + Fy cos(4wt) are sufficient for my purpose. In the following, I intro-
duce the dimensionless quantities U, = Ug/w, F = F5/2w and Fy, = Fy/4w for

simplification.

2.2 Floquet Engineering of Density-Assisted Tunneling

Following the discussion in Sec. 1.4.3, I employ a strong driving in both the interaction
and the shaking to dramatically modify the dynamics, namely Uy, F» and Fy are

not necessarily small. Therefore, I first need to perform a time-dependent unitary
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transformation, such that in the rotating frame, the strong driving amplitude does
not contribute to the amplitude of the Hamiltonian. For the model in Eq. 2.1, 1

consider a unitary transformation which has been previously used in Refs. [133, 134]

R(t) —exp[<29 )iy ;an —1>] (2.2)

where I(t) = [ drU () and 0,(t) = €, [ dTF(7). The Hamiltonian H(t) = RH (t)Rf—

iRR' in the rotating frame reduces to
H(t) =l Ap(t)é,, (2.3)
where the hopping term modifies to
Apg(t) = JpgetOr(H=0a(t) gl (Ap—q) (2.4)

The detailed derivation is illustrated in the Appendix. A. The fact that strong driving
amplitudes now only contribute to the time-dependent phase factor permits us to de-
rive an effective Hamiltonian to approximate the dynamics. Importantly, modulation
of the interaction leads to a phases which depends on particle number 7,. The lowest
order contribution to the high-frequency expansion (Eq. (1.23)) is the time average

HY = T fOT dtH (t), which reduces to the so-called density assisted tunneling [133]

€
ff = Z Cp pq (Mps T1g)Cq- (2.5)

The hopping process now depends on the occupation number, which is contained in

the operator
A8,y 1q) = =150 (Ualivy = 1), Falp = 0), Fa(p = )) - (2.6)

in terms of the zeroth order three-dimensional Bessel function Jy, see details in Ap-
pendix. A. The existence of the term 7, — 7, in the operator qu suggests that
the hopping rates explicitly depend on the occupation number difference of specific

initial and final states. More concretely, I consider the one-dimensional Fock state
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|t;) = |n1...nN) as initial state and obtain

At 40 A L At a
CIJEAp,p—I—leH i) = hnp,anC;CpH Vi) (2.7)
where the prefactor is in the form of the Bessel function

hL = —Jjo(Ud(—np + Npyr1 — 1), FQ, F4) . (28)

Np,Mp4-1

It can be regarded as the tunneling rate for a particle to transit from site p + 1 to p,
or in order words, to the left. Similarly for a particle to tunnel to the right from site
p to p+ 1, the rate reads

hE = —Jjo(Ud(—np + Npy1 + 1), FQ, F4) , (2.9)

Np,Mp4+1

and explicitly depends on the occupation number difference on neighboring sites. Here
I will mainly focus on systems with a low particle density because they are experimen-
tally most relevant and can be sufficiently simulated via exact diagonalization. More
interesting features can appear at a larger filling which will be further explored in
the future. At a low filling, the following rates for different hopping channels become

particularly relevant

h(LOJ) - hg,o) - hgl) = h(Ll,2) = —JJO(O,F2,F4) )
h(Ll/f) - hg,O) = h(Lo,z) = _JJO(UchQ,FzL) , (2.10)

his, 1) = h{ia) = Moz = hise) = = Jo(20a, o, Fa) ,

which are crucial for the formation of Hilbert space fragmentation and QMBS.

2.2.1 Hilbert Space Fragmentation

Specific choices of the hopping rates in Eq. (2.10) can result in different connectivity
of the Hilbert space. To understand how Hilbert space fragmentation happens, I start
from the following insightful example of three lattice sites with periodic boundary
condition as illustrated in Fig. 2.1. Fock states are connected via solid and dashed

lines, which represents different hopping channels, and processes that occur with the
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FIGURE 2.1: Fragments for a system of 3 sites. Connections are assigned with hopping rates.
If all dashed ones are forbidden for conditions in Eq. (2.11), four blocks of states appear.
For clarity one of these is shadowed in gray.

same rate are depicted with the same color.

Suppose that the all rates of processes depicted with dashed line are suppressed
to zero, the Hilbert space is being separated into four fragments — one involving three
states |012), |102), |003), two blocks containing their cyclic permutations, and the
one-dimensional fragment |111). Such fragmentation happens if hopping channels
specified in Eq. (2.10) fulfill the conditions

R _ L __3L/R L 4R .
hz,0) = Mo2) =iy =0, hiig =hey =0 (2.11)

In practice, these rates do not need to vanish exactly. Notable deviation from ETH as
a signature of ergodicity breaking can also be observed when small but finite values
of these hopping rates are present, which can be thought of as leaking channels.

Fragmentation also arises in large systems of any number of sites and filling factor
via combing elementary building blocks of few sites. The simplest ones for unit filling
would be the Mott state [111...1) as well as the density wave state |2020...20),
which are generated from the building block |1) and |20) respectively. Since no dy-
namics are permitted for these two states, they are also the eigenstates of the effective
Hamiltonian.

I am more interested in building blocks where dynamics are allowed. One example
containing the Fock states |ninansgngnsng) for a system of six sites at unit-filling is
illustrated in Fig. 2.2, where the dashed line connects the mirror symmetric states.
Notice that the ny and ny always has a particle number smaller than or equal to 2,

hence according to the condition in Eq. (2.11), no particle is permitted to move to
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014010 hf 5,

FIGURE 2.2: Fragments for a system of 6 sites where both ends are empty. Connections are
assigned with hopping rates and doted lines connect mirror symmetric states.

the boundary sites. Therefore, starting from any initial state within this fragment,
the vanishing occupation on sites 1 and 6 is conserved throughout time evolution.
Additionally, a product form of such 6-site states also retains, simply because no
particles can hop across different blocks. As such, it generates a fragment which has a
much smaller dimension than the total Hilbert space. This product form also implies
that only area-law entanglement can be established as a typical behavior of QMBS.
There are many other building blocks resulting in a substantial number of QMBS in

large systems.

2.2.2 Optimal Control

To achieve the Hilbert space fragmentation experimentally, the driving parameters

need to be chosen such that
Jo(Uq, Fo, Fy) =0, Jo(0,Fs, Fy) =0, (2.12)

to satisfy the conditions given in Eq. (2.11).

In general, according to Eq. (2.10), a large ratio of Uy/w is needed for a notable
difference between hopping rates with different occupation numbers. For concreteness,
from now on I fix the parameters Uy/J = 12, w/J = 6. I will use the ratio between

dominant leaking rates and the leading hopping rate within the fragment

R

Wl

to measure how well the fragmented subspace can be disconnected with others. Phys-

ically, it serves as a suitable quantity to indicate the existence of long-lived coherent
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FIGURE 2.3: Left: Figure of merit for the appearance of quantum many-body scars given

by the ratio (log scale) of leaking and hopping channels for a Hilbert space fragment. The

red region labels the best parameter space with ratios lower than 10~4. Right: Hopping rate
as a function of Fy. Two leaking channels cross zero at the same time.

oscillations because its inverse indicates the time scale for the leaking effects to be-
come notable. In the left panel of Fig. 2.3, I plot the ratio r as a function of the
shaking amplitude Fy, Fy . A sweet spot in black can be identified around (28.8,2.8)
with the ratio » < 107%. The right panel illustrates the rates for a fixed shaking
amplitude Fy = 2.8J, where two leaking rates cross zero at the same point. As such
these two leaking channels can be suppressed to strictly zero where perfect fragmented
subspaces appear.

So far our discussion focus on the conditions for fragmentation of the Hilbert
space of the effective Hamiltonian I:Ig , which significantly modifies the stroboscopic
dynamics for rapid driving, but higher order processes of magnitude O(1/w) will play
an increasing role for smaller frequencies. Therefore, leaking channels will inevitably
exist for any finite frequency and the transition to an ergodic system without scars is
expected. In the following, I use exact diagonalization implemented via the Quspin
package [135] to analyse higher order effects through the spectrum of the Floquet
operator, U(T) = TfOT exp <—if](t)dt>. The ratio between the driving amplitude

Uy, 3, Fy and frequency w is fixed to the optimal point determined in this section.

2.3 ETH Violation in Spectrum

Unlike the smooth dependence of expectation values of local observables versus eigenen-

ergies for ETH-obeying eigenstates as reviewed in Sec. 1.2.1, QMBS typically lead to
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FIGURE 2.4: Violation of ETH as a function of driving frequency in units of J. (a) Expec-

tation value of the local particle number operator, with respect to eigenstates of the Floquet

operator as function of the quasienergy for system size L = 8. (b) Width of the distribution
of (fir,/2) as a function of frequency for different system sizes .

very different values even for states close in energy. Fig. 2.4 (a) illustrate the ex-
pectation value of the local particle number (ny9) for eigenstates of the Floquet
operator versus quasienergy €,. For slow driving (red), the local particle number is
close to one for all values of quasienergy. As a comparison, for faster driving (blue),
the local expectation fluctuates notably from one eigenstate to the next. The range of
the quasienergies also indicates the formation of scared states in fast driving regime:
the full interval [—w/2,w/2) is occupied outside the fast driving regime (w/J = 1),
whereas the occupied interval hardly increases with larger w for w/J > 4.

The width of the distribution of local particle numbers can be characterized via
the difference between the largest and smallest values. Fig. 2.4 (b) depicts the width
Al 2) = (fip2)max — (Rp/2)min, Where (fif/2)max/min i the average over the 20
largest /lowest local particle numbers. The error bars are estimated from the variances
of these averages. The dependence of A(fy 5) on the driving frequency w shows a
well-pronounced increase suggesting the formation of scared states on the transition
to the high-frequency regime.

After confirming the existence of scared eigenstates in the spectrum, I will con-
centrate on the crucial question: how to experimentally realize and detect them from

the dynamics?
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(a) of

FIGURE 2.5: (a) Dynamics of correlation function for optimal driving parameters. Coher-

ent oscillation with fast driving (orange) can be well approximated via subsystem dynamics

(blue), suggesting the existence of scared states. As a comparison, correlation rapidly satu-

rates in the ergodic case with w = 2J where higher order effects induce deleterious leaking.

(b) Deviation between real dynamics and subspace approximation log,,(R(t)) [Eq. (2.13)]

for different driving frequencies. Some blue spots appear within the red region at longer
times because of the accidental similarity between Creai(t) and Cyup (2).

2.4 Coherent Oscillation

For the optimal driving parameters and in the high-frequency limit, a properly selected
initial state can always remain within a perfectly isolated subspace. If the subspace
has a small enough dimension such that ETH does not apply, persistent oscillations
will appear and the system does not thermalize. For a finite but sufficiently large
driving frequency, the leaking rates will be non-zero but can be tuned to be much
smaller than the tunneling rates within the subspace. In this case, coherent oscillation
will persist for a finite but long lifetime with an overall damping before the eventual
thermalization.

Many initial states can be used to demonstrate the coherent oscillations. For
concreteness, I consider the initial Fock state |[1100330011) of ten sites with periodic
boundary condition and simulate their stroboscopic dynamics. This state is a compo-
sition of the Mott state [1111) and a state of six sites |[003300) where the oscillating
dynamics is permitted on the middle two sites. As shown in Fig. 2.5 (a), I use the
two-point correlation function, Cs6(t) = (n5(t)n6(t)) — (5(t)) (6 (t)), of the two cen-
tral sites which exhibits coherent oscillations. The actual system dynamics Chea(t)
obtained by the Floquet operator are depicted in orange and compared to the dynam-
ics Cyup(t) generated by the subsystem Hamiltonian where all leaking channels are

suppressed to zero. For slow driving (green), driving induced higher order effects are
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notable even at early times, hence, the dynamics is ergodic with the correlation sat-
urating rapidly on a time-scale t ~ O(1/J). Although the deviation between the real
dynamics and the effective subsystem dynamics indicates the inevitable leakage, the
lifetime of the coherent oscillation still clearly exceeds the time-scale of thermalization
O(1/J).

To quantify the lifetime of the coherent oscillations, I define the difference between

the two correlation functions

R(t> = ’Creal(t) - Csub(t)’7 (213)

comparing the actual dynamics and the effective subsystem dynamics. Fig. 2.5 (b)
depicts the difference R(t) in log scale versus time ¢ and driving frequency w. Clearly,
at a fixed driving frequency, in the blue region, the difference remains small for short
times with R(t) smaller than 0.1. However, for longer times the deviation notably
increases as seen in the red area. As suggested by a dashed black line, the transition
between these two areas happens at a time which grows linearly with w. It further
permits us to define the lifetime for QMBS, which thus become increasingly stable by

increasing the driving frequency.

2.5 Comparison to Bloch Oscillation

The long-lived coherent oscillation can also appear in the form of Bloch oscillations
(BO) as a non-interacting effect. It normally appears after quenching the bosonic
gases with a static tilted lattice instead of using periodic driving [136, 137]. Here I
discuss several crucial differences between BO and the coherent oscillation induced by
QMBS, such that one can experimentally distinguish these two phenomenon.

First, in contrast to BO, coherent oscillation observed in the previous section only
happens for properly prepared initial states, e.g. Fock states constructed with building
blocks of small dimension. The dimension also needs to be larger than one otherwise
the Fock state itself becomes an eigenstate such as the Mott state. However, the
superfluid state as a counter example, will thermalize very quickly. Moreover, the
oscillating frequency of BO is fixed by the tilted potential [136], while for the scared

dynamics, it can differ for different initial states.
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Second, in the presence of additional density-density interactions (of energy scale
U comparable to bare tunneling J), BO are very sensitive to interaction-induced de-
phasing and instabilities thus decay rapidly [137]. However, this is not true for scar
dynamics. The unitary transformation to the rotating frame as defined in Eq. 2.2 com-
mutes with density-density interaction, which can thus be simply introduced to the
lowest order effective Hamiltonian (Eq. 2.5) in the same form. Therefore, the density
assisted tunneling will not be impacted and resulting fragmented Hilbert space struc-
ture remains untouched. Even for a finite driving frequency, our previous work [133]
suggested that only negligible (1/w?) interaction-induced effects appear, therefore the
coherent oscillation will still have a long lifetime for fast driving before thermalization.

Third, the correlation between different building blocks serves as a good mea-
sure since no tunnelling is permitted in-between in the effective Hamiltonian. As
an example, for the initial state |1100330011), the correlation function Ci5(t) =
(R1(t)ns(t)) — (1 (t))(ns(t)) remains zero for a sufficiently long time with fast driving.
On the contrary, BO will build up such a spatial correlation after a short period.

All these three aspects exploit the many-body character of the density assisted
tunneling which does not have a counterpart in non-interacting systems. Importantly,
they are experimentally verifiable via local occupation number or two-point correlation

functions as discussed in the last section.

2.6 Experimental Realization

The doubly modulated Hubbard system in cold atomic gases and the required initial
states can be constructed via existing experimental techniques. The driving can be
realized via a periodically modulating external magnetic field in the vicinity of Fes-
hbach resonances [99] and lattice shaking [138|. Indeed, density assisted tunneling
has already been successfully realized by Floquet engineering in 2016 [139] but they
are not sufficiently fine-tuned to impose kinetic constraints. Therefore, it has been
experimentally demonstrated that bosonic systems can be modulated up to 0.2s, corre-
sponding to around 5 tunneling times, which is enough to observe a complete coherent
oscillation as seen in Fig. 2.5. During the last years, the tunneling time scale has been

significantly increased; for instance, Refs. [9] and [140] show that systems of fermionic
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cold atoms remain stable with Floquet driving up to 1s, i.e. several hundreds of tun-
neling times. Even though experimental achievements with fermions do not directly
verify feasibility with bosons, these results give good reasons for confidence that the
coherent dynamics in my proposal can persist for more than 30 tunneling times in the
near future. Such a time scale allows one to show at least five coherent oscillations
as in Fig. 2.5 and to explore the more subtle higher-order effects, i.e. the coupling
between blocks, by scanning driving frequencies.

An additional, typically harmonic trapping potential will be involved in experi-
ments. However, as it commutes with the driving term in the Hamiltonian [Eq. (2.1)],
Hilbert space fragmentation happens in the same manner although the oscillating
frequency might change.

The remaining challenge is thus to prepare fine tuned initial states. The easiest
states to verify fragmentation and violation of ETH are the Mott insulator state and
the density wave state with two particles on every second site. Both of them are
eigenstates of the effective Hamiltonian, therefore, they will be frozen for a long time
in the high frequency regime until higher order leaking effects become notable. For
more interesting cases discussed in Sec. 2.4, one can first prepare Mott states with three
bosons per site [141] and then apply the single-spin addressing scheme [142] to remove
unwanted particles on selected sites to obtain, for instance |...003300003300. . .). Such
a state will result in coherent oscillations with an exceptionally long lifetime before

reaching the final thermal death.

2.7 Discussion

The proposal permits the experimental realization of QMBS in a bosonic system,
enabling the investigation of quantum thermalization and lack thereof in systems un-
reachable by classical means of numerical simulation. The emergent density-assisted
tunnelings by Floquet engineering are realizable independently of the dimensionality
and geometry. Therefore, it paves the way for further investigations of different ther-
malization approaches in higher dimensional systems with different lattice geometries.
It is also interesting to explore the topological properties of QMBS in bosonic systems

in higher dimensions [143].
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The suppression of leaking channels, as well as the density assisted hopping in
general, is not limited to realize QMBS. It can also be potentially useful to control
Floquet heating as discussed in Secs. 1.2.3 and 1.4.2 which impedes the development
of quantum simulation with driven cold atomic gases. Furthermore, the controlability
of the hopping channels between selected Fock states also provides new insights for
the states preparation. For instance, one can use it for the accurate creation of co-

herent superposition of multiple Fock states [144] as required e.g. for precision sensing,.

By now, all of the QMBS discovered are sub-extensively entangled, i.e. the entangle-
ment entropy scales as an area- or subvolume- law. It is also clear that the fragmented
Hilbert space considered in Sec. 2.2.1 are spanned by products of building blocks of
small finite sizes, hence, cannot host eigenstates with volume-law. In the next chapter,
I will construct a minimal model demonstrating QMBS with volume-law entanglement

which are still non-thermal and violate ETH.
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Chapter 3

Orthogonal Quantum Many-body

Scars

QMBS generally exhibit an area-law or sub-volume law entanglement scaling. Such
a characteristic low entanglement behavior has also been employed routinely to de-
tect QMBS in the spectrum [82]. In this chapter, I propose a clean non-integrable
many-body system exhibiting QMBS with a volume-law entanglement scaling. They
lead to the intriguing phenomenon of the coexistence of long-lived coherent oscilla-
tions and rapid volume-law entanglement generation after quenching a simple initial
state. Such a counter-intuitive behavior has never been proposed because within the
ETH (or generalized ETH for integrable systems) paradigm volume-law entanglement
of eigenstates normally goes hand-in-hand with ergodic dynamics. Likewise, the fact
that persistent oscillations always appear together with an area-law scaling of entan-
glement has been thought to be governed by a much more fundamental principle of
quantum thermalization. This novel phenomenon is also in sharp contrast to non-
ergodic MBL systems, where the volume-law entanglement can be generated after
a quench but no coherent oscillations persist after averaging over disorder. How-
ever, strongly correlated multi-component systems can violate ETH in unexpected
ways. Here, I construct a concrete counter-example exhibiting the surprising form of
ergodicity-breaking dynamics.

It has been suggested that multi-component systems can evade or slow down ther-
malization via the inter-component interactions, for instance in the heavy-light par-
ticle mixtures [145-147]. There, quenched disorder is not present yet the slow heavy

particles in thermal equilibrium effectively generate the disordered background. Light
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particles can localize on this disordered background for a long time, thus slow down
thermalization. Thereafter, quantum disentangled liquids (QDLs) were proposed as
an ergodicity-breaking phase of matter [148|, where certain d.o.f. exhibit a volume-law
while others show an area-law scaling of entanglement. By now, QDL-like behavior
has been identified in a number of strongly correlated systems, such as the Hubbard
model at half-filling [149], lattice gauge models [150-155] and frustrated quantum
magnets [156, 157]. However, none provide the intriguing phenomenon that I want to
achieve.

I will present a basic construction of a QDL where infinitely long-lived persistent
oscillations and rapid volume-law entanglement generation can coexist. The starting
point is the Orthogonal Metal (OM) model which was initially introduced in Ref. [158]
as a particularly simple example of a non-Fermi liquid. The original physical d.o.f. of
OMs can be decomposed into fractionalized d.o.f. which are decoupled, each carrying
fractions of the original quantum numbers. OMs were named orthogonal because the
physical charge carriers can be insulating despite of the presence of a well defined Fermi
sea. In the following, I will first follow Ref. [158] to briefly review the basic solvable
OM model in Sec. 3.1. Then I will elaborate how to impose kinetic constraints to the
OM for the realization of orthogonal QMBS in Sec. 3.2 which leads to the sought-after
coexistence of extensive entanglement and persistent oscillations. These oscillations
turn out to have a finite but long lifetime in the presence of generic perturbations as

verified at the end of this chapter.

3.1 The Orthogonal Metal

I first review the one-dimensional model containing two types of particles as proposed
in Ref. [158]:
HOM = — Z <h0'ir_1,i0'$i+1<—1)ﬁi =+ ‘]o—il‘i‘l) —1 Z (CIJii+1ci+1 + HC) s (31)
i i

The c;-r operators create physical spinless fermion d.o.f. at site ¢ and n; = czci denotes
the occupation number. Note, the notation 7 is used to distinguish it with the integer

number n. The o; ;41 operators represent a spin-% background field, and the subscripts
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FIGURE 3.1: Schematic picture of the multi-component model, with o—spins positioned on

the bonds between c—fermions. Occupied fermionic site is represented by the filled black cir-

cle. This model can be decomposed into mutually commuting dual 7—spins and f—fermion.

Dynamics in each sector is described by the transverse field Ising model (TFIM) and the free
fermion Hamiltonian respectively.

{i,i+ 1} indicates that these spin d.o.f. are positioned on the links between site i and
i + 1 of a one dimensional lattice as sketched in Fig. 3.1. Unlike models with a single
component of particles, here I also have inter-component interactions, for instance the
first term o7y ;07 H(—l)ﬁi where the coupling rate between adjacent spins has an
explicit dependence on the parity of the middle fermionic site. Similarly, the hopping

processes of c—fermions also couple to the background spin via cjaf,i 11Cit1-

3.1.1 Duality Mapping of the Hamiltonian

Although the original d.o.f. are strongly coupled, as illustrated in Fig. 3.1, here I
demonstrate explicitly how the different sectors emerge to simplify the model. First,

a duality transformation [159, 160| maps the link-spins o to a site-spin 7 as

zZ __ X x r_xr __ .z
Ty = 04-1405i+1> Ti Tit1 = 04415 (3.2)

such that the Hamiltonian reduces to

H=- Z (JTfoH + hrf(—l)m) - tZ (CITfoHCiH + H.c.) . (3.3)
(2

)

Next, I introduce new d.o.f. for fermions f; = 7;"¢; and dual spins

FE = T;(_1)f3fi, =1 (3.4)

7
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Note, both of them are compositions of the physical spins and fermions. Finally, in

the new variables the Hamiltonian separates into two components H = Hz + Hy
Hf' = - Z J%z:(p%za-l + h%iza Hf =—t Z f;fi-‘rl + Hec. . (35)
i i

Most importantly, these two fractionalized d.o.f. commute with each other as [77, fi(ﬂ] =
0 for o = x,y, z, thus, the original model is now completely decoupled. This sepa-
rability can remain in the presence of certain types of interactions, for instance, the
density-density interaction between fermions can be introduced without influencing
the 7 d.o.f. However, I will first focus on the simplest model which already provides
useful physical insights before involving more complicated interaction.

It is worth noting that the 7—spin is now described by the transverse field Ising
Hamiltonian [161] meanwhile the fermionic sector becomes a simple free-fermion model.
This is in sharp contrast to some other models hosting emergent d.o.f, e.g. the Kiteav
honeycomb model [162] or lattice gauge models demonstrating disorder-free localiza-
tion [150] where the gauge d.o.f. is static. Both sectors are exactly solvable and the
f—fermion is clearly in a metallic phase and conducting [163]. For the 7—spin, one can
perform the well-known Jordan-Wigner transformations [164] to analyze the ground
state phase transition between the ordered (anti-)ferromagnetic with (7*) # 0 to dis-
ordered paramagnetic phase with (7") = 0 by tuning the ratio J/h, as well as their
non-equilibrium properties induced by a quench [165] or periodic drivings [166]. To
bridge the gap between these solvable properties of the emergent components and the
physically detectable phenomenon, I further illustrate the transformations of initial

states and observables in different representations.

3.1.2 Transformation of Observables

Dynamics of the physical variables is a combination of these separate sectors [158].
For instance, consider simple product states as initial states, the physical correlation
function and magnetization for the background o—spin can be obtained according to

Egs. (3.2) and (3.4) as

<U§c—1,1‘7$i+1> = (77)(1 = 2(ny)), <UZi+1> = <7~'f7~'f+1>- (3.6)
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Similarly, the correlation function of the physical c—fermions is a product of correla-

tion functions of the two emergent sectors

(clej)y = (T )R, (3.7)

where I use ¢; = 77 f;. The f—fermions are governed by the free theory as in Eq. (3.5),
therefore, they are obviously in a metallic phase with a power law decaying correla-
tion ( fiT fj). However, the correlation function (cj-cj> of the physical charge carrier
c—fermions can vanish which strongly depends on the 7—spins. In the ordered phase
of 7 where (7 Ty ) # 0, f—fermions have a non-zero overlap with the physical fermions,
hence the groundstate of which is also conducting and corresponds to a Fermi liquid.
In contrast, in the disordered phase with <7~'f7~'f) vanishing exponentially in distance
li — j|, f— and c—fermions are orthogonal to each other, thus, the system enters the
so-called orthogonal metal as a simple non-Fermi liquid. Its transition to the Fermi
liquid phase is determined by the Ising transition of 7. More discussion regarding
OMs and non-Fermi liquid can be found in Refs. [158, 167].

Lastly, as a special case, by setting i = j , the local density for c— and f— fermions

are identical as (7%)% = 1.

3.1.3 Transformation of States

I will mainly consider the initial state in the product form |0) = [¢).® |S), with peri-
odic boundary condition, where |.S), denotes the state for c—spin and |¢). represents

the fermionic Fock state as [1)). = c;rc;cl ... ]0), which takes the same form in the new

fermionic basis as fiT fi= c!

i Ci-

Global constraint In order to identify the transformation between two spin d.o.f.,
it is crucial to realize the global constraint imposed by the duality transformation in

Eq. (3.2)

HTiZ = Haf—ugfiﬂ =1, (3.8)
i i

which trivially works for o—spin as the o} ; operator on each bond appears twice for

system with periodical boundary condition and the product of which automatically
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gives identity. However, such a constraint becomes non-trivial for 7—spin as well as

T—spin as

HTiZ _ H%z'z(*l)f;rfi — (fl)Nf Hﬁf =1, (3.9)

where Ny = ) .7, represents the total fermionic number. Thus, the product of 77

depends on the fermionic parity as

17 =D, (3.10)

all ¢

I will consider the spin state polarized in z direction as |S)s = |11 ... 1),. According
to the duality transformation [Eq. (3.2)], the definition of dual spin [Eq. (3.4)] and

the global constraint [Eq. (3.10)], I derive the set of conditions

ARl Mg = 111 don [TRIM ) = CDM 1 )ee (312)

all @

The left set of conditions leads to the parameterized state | ™1 -+ )y = a] —>—
-+ )7 + B| <= ---)#, and the right set of condition fixes the state up to a global

phase as

mv--)a:\%(! =)+ (FD)M e )5) (3.12)

In the following discussions, for my purpose, different initial states for o—spins yield
qualitatively the same results hence I will fix the initial state as |11 ... 1), without

loss of generality. On the contrary, the dynamics of the composite system strongly

depends on the initial fermionic states as elaborated in detail later.

3.2 Kinetically Constrained Orthogonal Metal

The exactly solvable model becomes non-integrable once generic perturbations are
introduced. I would first consider perturbations which breaks the integrability but
preserve the separability of the model, therefore, the previous discussion of the trans-
formation of states and operators are still valid. Consequently, in each emergent
sector, the state will follow ETH’s prediction and thermalize quickly meanwhile gen-

erating extensive entanglement, but cannot exhibit any persist oscillations [168, 169].
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FIGURE 3.2: Schematic picture of the multi-component model with kinetic constraints, with

o —spins positioned on the bonds between c—fermions. Occupied fermionic site is represented

by the filled black circle. In the emergent sectors, dynamics is governed by a non-integrable

spin Hamiltonian and a kinetically constrained fermionic model respectively. Fermionic

dynamics strongly depends on the configuration of initial states, and in the current case
dynamics is only permitted on the central two active sites.

To resolve this, I further introduce kinetic constraints to the physical fermions which
eventually lead to the coexistence of persistent oscillation and volume-law entangle-

ment.

3.2.1 The Model

Let me introduce density-dependence to the hopping

H=— Z (haf—l,iazqii-i-l(_l)m + gzaii+1(7iz+17i+2 + JO’ii+1)
' (3.13)
_ tz <nz 1c 07 it1Ci+1Mi42 + Hee. )

I also consider the interaction g.o7, 107, ;.o between adjacent spins which preserves
the separability of the model but breaks the integrability. This model is sketched in
Fig. 3.2.

Using the same mapping employed in the last section, the full Hamiltonian can be

decomposed as H = Hz + H; where

Hq::—z JTT+1+hT +gz Z )7
' (3.14)
Hy = —tz <ﬁi—1f;rfi+1ﬁi+2 + H-C~> :

The newly introduced spin interaction o7, .07 ; ;4 was shown to only enter the 7

d.o.f. via using o7, = 7,7, and break the integrability of TFIM. The hopping

(2

process for f—fermion now depends on the local fermionic particle number 7;. This
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operator has the same form in both ¢c— and f—representations as f;r fi= czci(rf)Q =

1
C,; Ci.

3.2.2 Hilbert Space Fragmentation in Fermionic Sector

The density-dependent hopping processes in H; significantly restrict the dynamics
of f-fermions, i.e. hopping is only permitted when two sites are both surrounded
by occupied ones. For example, applying one term of Hy on the Fock state |¢) F=

|ng, ... ,nN>f, one obtains

—tivi 1 f] frarfiga ) = —tni_iniga f] fi Ina, - N 4 (3.15)

which gives non-zero value only when the sites ¢ — 1,7 + 2 are both filled. More con-
cretely, I consider the Fock state of six fermionic sites [010110) ¢ with periodic bound-
ary condition as depicted in Fig. 3.2. The middle two sites are active where hopping

is permitted
H71010110); = —Ht[011010) , = £*[010110) / . (3.16)

Other sites are frozen and the two ends always remain empty since particle on site 2
or 5 is forbidden to move due to the density-dependence in the hopping. As such, I
obtain a fragmented Hilbert space of dimension 2. Following the ideas developed in
Sec. 2.2.1, one can treat this state as an elementary building block to construct states
of large sizes, e.g. the product of the same state ...[010110) ,®[010110) ;... at a finite
fermion density. As there is no hopping events permitted between different blocks, the
tensor product form is retained during time evolution. The dimension of the reduced
subspace, 2L/6 for a chain of length L which is a multiple of 6, becomes substantially
smaller than the total Hilbert space |80, 170]. Therefore, quenching this initial state
by the constrained model H; only results in dynamics in a small isolated subspace,
where persistent oscillations appear'. As discussed in Sec. 3.1.2, the local density for
c— and f— fermions are identical thus the movement for the physical fermion is also

highly restricted. On the contrary, for a non-vanishing g,, the spin Hamiltonian H;

In Appendix B, I show that for properly chosen initial states, the dynamics still persist in
the presence of fermionic density-density interaction. I also give one example with non-integrable
fermionic subspaces where the fermionic dynamics rapidly thermalizes.
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FIGURE 3.3: Dynamics of local observables (orange) and nearest neighbor correlation (blue)
after a quench for physical c—fermions and oc—spins in panel (a) and (b) respectively (L =
20,h=1,J =0.7,t = 0.2, g, = —0.4).
is non-integrable and the dynamics is ergodic. In this case, local observable quickly
saturates to its thermal equilibrium and volume-law entanglement is established [171].
In the following, I will support the analysis via numerical calculation by exact

diagonalization, confirming the coexistence of persistent oscillations and volume-law

entanglement in the physical d.o.f..

3.3 Coherent Dynamics with Volume-Law Entanglement

The initial state |0) is a tensor-product of c—fermions and o—spins as |0) = [¢).®]|S),
where |S)s = 11 ... 1), and |¢). represents the fermionic Fock state. For simplicity,
I focus on a chain of length L with three fermions, and the initial state involves

one building block [010110), and empty sites [0...0), of length L — 6, i.e., [¢). =

¢
|0101100...0) with periodic boundary conditions. For a finite density of fermion, as
long as the the kinetic constraints result in small isolated active regions, e.g. here sites
3 and 4, which are separated by frozen segments, the qualitative behavior remains the
same.

In Fig. 3.3, I depict the dynamics of local observables (orange) and nearest neigh-
bor correlations (blue) for physical c¢—fermions and o—spins in panel (a) and (b),
respectively. Note that the separability of the model enables us to simulate the dy-
namics of a large system size,

By construction, coherent oscillation of the fermionic occupation (n;) appears
only for ¢ = 3,4, while no dynamics is observed on other sites. Let me project

the Hamiltonian Hy to the reduced basis [01),, [10) ; where only the active sites are

involved. The effective Hamiltonian can be easily obtained as Hy = —t( f; fa+ fl f3).
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FIGURE 3.4: Dynamics of the half-system entanglement entropy which rapidly saturates
to a volume-law plateau. (inset) Average entropy for the plateau for varying system sizes.
h=1,J=0.7t=0.2g, = —0.4
The initial state [01) f hence starts evolving coherently within the isolated subspace,
resulting in the time-periodic occupation (n3)(s) = sin?(ts) where s stands for time
with frequency 2t. The nearest-neighbor correlation function (c§04> oscillates as well

because my choice of quench parameters leads to (7577) # 0.

In Fig. 3.3 (b), the local magnetization (orange) rapidly saturates, but surprisingly
the correlation (blue) between adjacent spins (05 305 ;) exhibits persistent oscillations.
Indeed, according to Eq. (3.6), it synchronizes with the local fermionic occupation if
(77) equilibrates at a non-vanishing value, which normally happens for quenches within
the disordered phase of Hx.

The entanglement behavior of the composite model strongly depends on the choice
of partition of the system. In Fig. 3.4, I depict the half-system entanglement Sy 5 =
—Tr [ﬁL/Q log ﬁL/Q} where pr,/; is the reduced density matrix for the whole system
defined by the physical d.o.f. of c—fermions and o—spins. Entanglement quickly
grows before equilibrating around a plateau, the value of which is depicted as a grey
dashed line. As seen in the inset of the figure, this averaged entropy scales linearly
with system size, confirming the volume-law behavior of the entanglement. Note,
this volume-law entanglement is much smaller than the thermal value as only one
component thermalizes: In terms of the separable d.o.f., the non-intergrable 7—spins

are also volume-law entangled, whereas the f—fermions are only area-law entangled
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FIGURE 3.5: (a) Overlap between the initial state and eigenstates for L = 18. Eigenstate

pairing with energy difference 2t are visible for all eigenstates. The red dashed line denotes

the energy of the initial state. (b) Half-system entanglement entropy for each eigenstate for

L = 12. Eigenstates with a large overlap with initial state are highlighted in red. Compared

with panel (a), the width of the distribution of energy reduces since a smaller system size is
used for exact diagonalization. (h=1,J = 0.7,t =0.2,g, = —0.4).

as the spreading of correlation is prohibited by frozen sites. Indeed, the active and
frozen regions also retain for the physical c—fermions, thus for which only area-law
entanglement can be established. Such an exotic behavior of entanglement between
different species of particles is precisely the defining characteristic of the QDLs. Here

on top of that, persistent oscillations also appear owing to the kinetic constraints.

3.4 Eigenstate Pairing in Spectrum

In this section I discuss the peculiar features of orthogonal quantum many-body scars

via analysing the overlap F,, = |(0|E,)|? between the initial state |0) and eigenstates
|Eq). According to the separability of the model, one can decompose the eigenstate

as |E,) = |Ef) ® |Ez) and the eigenenergy reads

E,=FE;:+ Ef (3.17)

where Ez/; denotes eigenvalues for 7—spins and f—fermions respectively 2. The

quantity F, can be obtained by products of the overlap between initial state and

2Note, cigenstates |F;) of Hamiltonian for #—spins [Eq. (3.5)] does not automatically preserve
the global constraint [Eq. (3.10)]. However, eigenstates with proper global constraint can be selected
out by requiring F, is non-zero, where the initial state has a well-defined global constraint as in
Eq. (3.19).
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eigenstates in each sector as
Fo = (e ® (So| By) ® | B)[* = [(e| Ef) P [{So | B7) [, (3.18)

to compute which one needs to follow the rules as explained in Sec. 3.1.3 to transform

the initial state into the emergent d.o.f. as

) @ |S)y = [0101100...0), @ |11 ... 1),
(3.19)

1

where I used Ny = 3 to determine the fermionic parity required in Eq. (3.12).

The numerical results for the overlap is depicted in Fig. 3.5 panel (a) on a log scale
versus the eigenenergy E,, and the color indicates the density of eigenstates. Unlike
the previous work about QMBS where the initial state has dominate overlap with a
few number of scared eigenstates as seen in Fig. 1.6 (b), here the initial state overlaps
with an extensive number of eigenstates. The initial state energy can be obtained as
E = (0|H|0) = —5.4 locating at the bulk of the spectrum as indicated via the red
dashed line in panel (a). Therefore, generic thermalizing behavior would be expect
if the kinetic constraints are absent. However, as seen in Fig. 3.3 thermalization
does not occur, thus indicating the violation of ETH which can be understood by
the decomposition as in Eq. (3.17). In the reduced subspace, eigenenergy for the
emergent f—fermion Ey only takes value 4, thus all eigenstates shown in Fig. 3.5
(a) are paired with another one with the same overlap but with energy separation 2t.
These eigenstate pairs have different expectation values for the fermion number and
the energy separation 2t is directly related to the frequency of persistent oscillations.

Although ETH is strongly violated, entanglement can still be largely generated
for most of the eigenstates through the background spins. Fig. 3.5 (b) depicts the
entanglement entropy for the half-system Sy, /5 for all eigenstates in the reduced Hilbert
space’®, which increases towards the bulk of the spectrum. Note that the distribution

of energies is different from Fig. 3.5 (a) due to a smaller system size, but in both

3Due to kinetic constraints, for the initial state in Eq. (3.19), two active sites contribute to
the dynamics, hence only two fermionic Fock state are needed for exact diagonalization |¢). =
[0101100...0) and [¢)). = |0110100...0). One can use such reduced basis even in the presence of
separability breaking perturbation, as long as the kinetic constraint remains unperturbed.
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FIGURE 3.6: (a) Overlap between the initial state and eigenstates E,. (b) Damping of the

local dynamics and correlation function. Parameters are chosen as L = 14,J = 0.7,h =

1,t = 0.2,9, = —0.4 with an additional interaction g, = 0.1 which breaks the fine-tuned
construction and separability into to independent sectors.

cases the energy of initial state locates in the bulk of the spectrum. The states with
dominant overlap with the initial state (log|(0|E,)|?> > —3) are highlighted in red,
and most of them are highly entangled with S, /o 2 3.5. This is in sharp contrast to
known quantum many-body scars, which normally exhibit exceptionally low entropy

in accordance with their non-ergodic dynamical behavior.

3.5 Thermalization through Separability Breaking

The long-lived oscillation and volume-law entanglement generation also appear in the
presence of generic perturbations which break the separability of the Hamiltonian
into separate terms Hy and Hz. This can be demonstrated with the example of
the perturbation g, ), 07 1 ;07 without the coupling to fermion (—l)cjci as in
the original model Eq. (3.13). As such, although the mobility of c—fermions remains
restricted to two active sites, their dynamics cannot be decoupled from the background
o—spins. These spins can then act as a thermal bath for the fermions.

In Fig. 3.6 (a), I depict the overlap between initial states and eigenstates |(0| E,)|?,
and the mean energy E = —4.2 (red dashed line) still locates in the bulk of the spec-
trum. The typical eigenstate pairing as seen in Fig. 3.5 is absent as the perturbation
violates the separability. The dynamics of local observables (orange) and correlation

functions (blue) of c¢—fermions is illustrated in Fig. 3.6 (b) for a finite perturbation
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FIGURE 3.7: (a) Damped oscillations of the local fermionic dynamics. Parameters are chosen
ash=1,J=0.7t=0.2,g, = —04. (b) Lifetime ¢, of the oscillation versus the separability
breaking perturbation g,, which fits well with ¢;, ~ ¢g=2 .

strength g, = 0.1. The oscillations of the fermionic occupation is not infinitely long-
lived but decays with a finite lifetime eventually saturating to the thermal average
0.5.

To quantify the dependence of the lifetime #;; on the perturbation strength g,
in panel (a) of Fig. 3.7, I depict the deviation between the occupation number on
e
0) for L = 14. Similar as in Fig. 3.6, the oscillation is damping and I

site 3 and its thermal equilibration 0.5 starting from the initial state |11 ...
|010110010. ..
fit the envelop as an exponential function 0.5 */* as indicated as the black dashed
curve. In panel (b), the lifetime ¢y, is plotted versus the inverse of the separability
breaking perturbation g;! which scales approximately as t;, ~ g, 2 as predicted by
the Fermi’s Golden rule [172].

The same behavior also appears for correlation functions, which decay towards
zero at long times. Therefore, in the presence of generic perturbations, the perfect

orthogonal QMBS turn into orthogonal scars demonstrating long-lived but not per-

sistent oscillations.

3.6 Discussion

By combining kinetic constraints with the fractionaliztion mechanism of the OM, I pro-
pose a simple model of orthogonal QMBS demonstrating the sought-after ergodicity-
breaking dynamics with the coexistence of persistent oscillations and extensive entan-

glement generation after a quench.
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This work motivates many future directions to explore and perhaps the obvious
one would be whether the orthogonal QMBS can appear in other correlated multi-
component systems. For example, one can consider introducing kinetic constraints to
the multi-orbital Hubbard systems which can host the OM as a low energy feature cap-
tured by slave-particle descriptions [158]. Furthermore, the current one-dimensional
example can be generalized to higher dimensions where both the conventional OM
and the kinetic constraints still exist [173]. Properties of the models in higher dimen-
sions are considerably richer because the background spin sector can be topologically
ordered [158|. Alternatively, another possible direction for future study is to explore
the interplay between kinetic constraints and local gauge symmetry. For example,
combining the disorder-free localization mechanism [150-155] with kinetic constraints
could potentially result in ergodicity-breaking dynamics of the gauge d.o.f..

The key elements of my model are potentially realizable on controllable quantum
simulators. The experimental tool boxes in development for lattice gauge theory sim-
ulations permits the coupling between the spin background and the fermions |8, 16,
174, 175]. The density-assisted tunneling for fermions can appear in the presence of
dominant nearest-neighbor density-density interactions [176]. Alternatively, it also

appears in cold atomic gases via periodic drives as previously illustrated in Chapter 2.

Up to now I have introduced several new non-ergodic behaviors related to QMBS
in both static and periodically driven systems. Hamiltonian in static systems is man-
ifestly time translation invariant as there is no time-dependence in the protocol after
the quenching. For Floquet systems, the Hamiltonian also has a discrete form of TTS
since the driving protocol repeats itself after a complete period. The existence of T'TS
is essential for the definition of eigenstates and eigenvalues of the static Hamiltonian
or Floquet operators. They further allow us to determine whether and how many-
body systems thermalize according to different well-established measures, such as the
existence of QMBS, the level statistics of the spectrum or entanglement entropy of
eigenstates.

There are naturally many questions regarding the precise role of T'TS in isolated

quantum systems: Does thermalization always occur asymptotically when TTS is
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absent, for instance in a QPD system? Is T'TS a prerequisite condition for the ap-
pearance of stable non-equilibrium phases of matter in driven systems? Are there
any transient many-body phenomenon exhibiting interesting universal features in the
absence of T'TS? Understanding these questions is not only for the theoretical interest
but also experimentally relevant. For instance, highly accurate temporal control which
does not preserve TTS can be readily implemented on superconducting qubits [115]
and nitrogen-vacancy center in diamond [114]. The remainder of the thesis will fo-
cus on these questions and provide concrete examples demonstrating either stable

non-equilibrium phases or transient prethermalization of a long lifetime.
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Chapter 4

Floquet Time Spiral in

Quasi-Periodically Driven Systems

For quantum systems with TTS, whether they thermalize or not in the long-time
limit can be diagnosed by properties of eigenvalues or eigenstates. These properties
can be numerically obtained via diagonalizing the static Hamiltonians or the Floquet
operators. Here I will address the following question: Can many-body systems driven
by protocols without TTS evade thermalization and demonstrate nontrivial steady
states, for instance, the time crystalline behavior? As reviewed in Sec. 1.5, the gen-
eral expectation is that non-integrable systems without TTS generically heat up to
featureless infinite-temperature states owing to the seemingly inevitable multi-photon
processes.

Although theoretically interesting and experimentally relevant, this question is
indeed generically difficult to answer. One obvious reason is that the lack of Floquet
theory significantly increases the numerical cost for the simulation of the dynamics.
It is also challenging because no well-defined eigenstates or eigenenergies can be used
to verify if ETH applies. In this chapter, I provide an affirmative answer to the
above question by considering a class of QPD systems that can be efficiently analyzed
within the Floquet framework. These systems can exhibit time-crystalline behavior
for special fine-tuned parameters. Its stability to generic perturbations is further
numerically investigated via exact diagonalization.

The main idea is that for special cases of QPD systems, the Hamiltonian H (t) can

be mapped exactly to a periodic counterpart H (t) in a rotating frame by performing
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a time-dependent unitary transformation U (t) as

~ A

H(t)=UHHU" —iUa,U". (4.1)

The dynamics in the rotating frame can be efficiently solved by the Floquet theory,
then the inverse of the unitary maps the time-evolution back to the physical frame.
The basic idea originates from the study of spiral magnetism in doped Hubbard mod-
els [177-180], although in that case site-dependent rather than time-dependent unitary
transformations have been used. For co-planar spirals, by properly rotating the lo-
cal spin axis, the Hubbard model becomes translationally invariant. Therefore, the
system can be efficiently analysed via Bloch’s theorem even if spirals are incommen-
surate. I will elaborate this idea in Sec. 4.1 and translate it to the time domain for
the study of QPD systems, resulting in the construction of FTSs.

For pedagogical reasons, in Sec. 4.2 I will first demonstrate a FTS via a simple
two level system in the presence of two incommensurate driving tones. Thereafter in
Sec. 4.3, this idea is generalized to many-body systems. I construct a minimal model
showing a DTQC which exhibits a generalized version of TTSB. Most importantly,
in Sec. 4.4, it will be shown that the appearance of DTQC is not limited to models
equivalent to a Floquet problem. Instead, the many-body localized system can still
demonstrate the DTQC behavior even when this equivalence is absent when generic
perturbations are present. Therefore, the exactly solvable models constructed based
on FTS enable us to gain important lessons which are more fundamental than these

special fine-tuning cases.

4.1 Mapping Quasi-Periodic to Periodic Systems

The basic idea of mapping quasi-periodic to periodic systems from the studies of
magnetic phases in Mott-Hubbard insulators, where incommensurate spiral magnetic
states can be induced by doping [177-179]. To describe the spin-symmetry broken
phases within the single band Hubbard model, one convenient approach is by using

site-dependent unitary transformations to locally rotate the spin quantisation axis,
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e.g. a unitary transformation

R(Q) = e~ i(¢i/2)0z ,—i(0i/2)0y

with the spherical angles ¢;,6; for each fermionic operator dj’n = ZO[R<Qi)]nJCIU
T

(with the standard fermionic operator ¢ to create a particle at site r; with spin o).
In the rotating frame, the Hamiltonian (with nearest neighbor tunneling ¢, chemical

potential 4 and onsite interaction U) has a new form as

H=—t Z {d;‘r,m [RT(Qi)R(Qj)]U102dj702 + h.C.}
<ij>,a’10’2

(4.2)

+U S dldigd] i+ 1y dlds.
i io

Under the spin rotation, the Hubbard interaction and chemical potential remain in-
variant. The important question here is whether I can still use Bloch’s theorem and
momentum as a good quantum number despite the site-dependent unitary transfor-
mation? It turns out that one can still efficiently describe the homogeneous co-planar
spirals. Their oscillatory spiral spin order can be written as (S;) = m(sin6;, 0, cos;),
with ; = Q- r; defining the spiral wave number Q and m representing the magnetiza-
tion. For incommensurate spirals, the ratio (Q, Qy)/(2) is irrational hence resulting
in a infinitely large unit cell. By choosing ¢; = 0 and §; = Q - r; in Eq. (4.2), the spin

axis becomes aligned with the spiral after the rotation and the kinetic term
RI(Q)R() = ¢/ Qrmn/?

now only depend on the relative displacement r; —r; and not on r;, r; independently.
Hence, as indicated in Fig. 4.1 (a), the co-planar spiral maps to a ferromagnet (FM)
in the rotating frame. Importantly, the new Hamiltonian H becomes translationally
invariant thus momentum serves as a good quantum number. The system can then
be conveniently analyzed, e.g. in a mean-field treatment of the interaction [178].

I generalize the same idea to the time domain: There are instances of Hamiltonians
H(t) which are temporally aperiodic such that H(t) # H(t + T) for any T, but the

time evolution of states |¢(t)) = U(t)|$(t)), which, in a rotating frame defined via
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FIGURE 4.1: (a) Incommensurate magnetic spiral can be mapped to a periodic ferromagnet

via a site-dependent rotation. (b)Two components of the QPD Hamiltonian are sketched on

the Bloch sphere. Two driving fields in opposite directions with distinct frequencies w, /, are

illustrated by two vectors. At stroboscopic times nT}, the blue vector returns back to the

original configuration. However, the red vector with frequency ws never comes back with
the mismatched angle nA#g.

a time-dependent unitary transformation U (t), is governed by a new Hamiltonian
periodic in time with H(t) = H(t + T). Here the wavefunction |$(t)) is the solution
of the Schrodinger equation in the lab frame and the rotated Hamiltonian H can be
determined via Eq. (4.1) [181].

Practically, starting from a generic quasi-periodic Hamiltonian and identifying
the proper mapping to a Floquet Hamiltonian is very difficult. Therefore in the
following, I will construct the model in reverse such that any Floquet Hamiltonian
helps to define specific instances of aperiodic Hamiltonian through a time-dependent
unitary transformation, and to understand their dynamics. Importantly, these specific
instances result in exotic non-equilibrium phenomenon persisting even in the absence
of a perfect mapping between periodic and quasi-periodic systems. Consequently,
Floquet theory can still provide valuable physical insights for systems to which Floquet

theory fundamentally does not apply.
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FIGURE 4.2: Fourier transform(FT) of the dynamics of observables computed for the QPD

two-level system with parameters A = 1,w = 1,Q = 1/2/4. Fourier peaks of S*(t) appearing

at kw £ ) for odd integer k suggests that the system synchronizes with the external drive.

Frequencies of observables in the rotating frame are labels as black dashed lines. The inset
depicts the real time behavior.

4.2 Floquet Time Spiral of a Two-Level System

The simplest example to demonstrate F'TS would be a QPD two-level system with
two frequencies w1, wo. I focus on the time-dependent Hamiltonian with two circular

drivings , H(t) = Hy(t) + Ha(t) as

ﬁl(t) =3 cos(wit)o, + gsin(wlt)ay, 3
4.3

A~ A Q
Hy(t) = —3 cos(wat)o, — 3 sin(wat)oy + 5w

with Pauli matrices o, for a = x,y, z and the last term of H, represents a constant
field in x direction of strength /2. As illustrated intuitively in Fig. 4.1 (b), these
two time-dependent components of the Hamiltonian behave as two conversely rotating
vectors on the Bloch sphere. The driving component with w; is chosen to determine
a discrete time coordinate (blue) which now plays the role of a lattice. If the ratio
between the two frequencies is irrational, the other rotating vector (red) with frequency
ws in Fig. 4.1 is aperiodic with a mismatched phase angle nAf = TL%QT( at discrete
times n7T}. Based on the definition given in Eq. (1.48), the Hamiltonian is certainly

quasi-periodic hence Floquet theory in principle does not apply. By employing the
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following time-dependent unitary transformation

~

U(t) = e'lwimwn)ton/d, (4.4)

one can rotate the system around the z-axis, and according to Eq. (4.1), the Hamil-

tonian in the rotating frame reads

H(t) = —Acos(wt)o, + (% _ ;w2

This Hamiltonian now describe a periodically driven two-level system with frequency
w = (w1 +w2)/2, which has been well-studied within the Floquet framework [39, 40].
For simplicity, I use Q = (w1 — w2)/2 such that the static field vanishes. One can

exactly solve the time evolution operator as

V(t) = Texp [—i /0 t dsﬁ(s)] ~ exp [iﬁsin(wt)az} , (4.6)

and further more derive the time-dependent wavefunction as

B(1) = et =0)exp [isgn[a]é sinwt) | |o), (4.7)

[

where o =7, | and sgn[o] gives +, — respectively. Consider an initial state with ¢, (t =

0) = 1/v/2, the magnetization in the z direction thus reads

S2(t) = (p(t)|o7|6(t)) = (b(t)|U(£)a™ T (t)|(1))
} (4.8)

2A
= —sin(Qt) sin [ sin(wt)
w

where two independent frequencies appear in the time evolution, as indicated in the

inset of Fig. 4.2. The non-equal time correlation function

w

S#(t,0) = (p|lo*(t)o*(0)|p) = cos(Qt) + i sin(Qt) cos [2A sin(wt)] ,

can also be obtained and its imaginary part serves as a suitable measure for the
quasi-periodicity.

The dominating peaks in the frequencies spectrum of the magnetisation S* (blue
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line of Fig. 4.2) locate at %wl + %wg or equivalently kw 4 € for odd integer k.

Therefore, only integer multiples of w;/, appear in the spectrum like the first two
blue peaks at wi,ws, implying that the observable synchronises with the external
driving field. The fact that the peaks of the Fourier spectrum of the observables
coincide with the driving spectrum of the Hamiltonian, signifying that the resulting
dynamics preserves the long-range quasi-periodic temporal order originated from the
external drive. Such a phenomenon is analogous to observables of well known spatial
quasi-crystals, where the translation symmetry is lacking while still remain long-range
ordered [182]. In the following section, I will discuss the intriguing possibility to break
such long-range quasi-periodic order, i.e. peaks at half integer multiples of the driving

frequencies may appear in the Fourier decomposition.

4.3 Discrete-Time Quasicrystal

Here I generalize the idea of FTS to study QPD many-body systems, e.g. interacting
spin chains. I will focus on a new type of DTQC and discuss its rigidity which shows
that it is robust beyond my method of construction.

To formally define the meaning of the breaking of long-range quasi-periodic tempo-
ral order, let us first recall the usual definition of discrete time translational symmetry
breaking (TTSB) [183]. For a PD system with period T, there exists an operator O
signalling TTSB if <O>t is only invariant under time translation by nT for n > 1. As
a comparison, QPD systems do not have a well defined period but, loosely speaking,
one can still define quasi-periodic time translation symmetry breaking (QTTSB) via

the frequency. For instance, consider a quasi-periodic driving defined by Eq. (1.48),

QTTSB happens if there exists an operator (O)t with Fourier decomposition as
(O) = Opel Zimwilpit, (4.9)
7

with at least one of the non-negative integers p; larger than 1. Similar definitions
have also been proposed in [104, 105]. Strictly speaking, such phenomenon is not
the breaking of a symmetry but rather the long-range quasi-periodic order in time

imprinted by the Hamiltonian drive. However, in analogy with the widely used TTSB
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we use the term QTTSB. Basic TTSB in Floquet system is a special case of the
definition, i.e. period doubling with only one wy and pg = 2 [183]. There is no general
agreement on the definition of QTTSB, and the behavior proposed here differs from the
previous observation of the time quasi-crystals in bosonic systems [71, 184]. There, the
frequencies of the time-dependent Hamiltonian and of the observable are not simply
related, which is similar to other DTQCs identified before [185-187].

The combination of a standard Floquet DTC with the idea of FTS permits us to

construct a QPD model realising QTTSB. The Hamiltonian is given by
H(t) = Hypr(t) + Hy(t) Za], (4.10)
where the first term involves Ising interaction and local fields in the same direction as
N
Hypi(t )Y [Jjof07,, — hioT], (4.11)
7=1

where the disordered prefactors J;, hj are selected from uniform distributions. A QPD

field is introduced to each site as

Hy(t) = ha(t) Z [COS(Qt)Jj - sin(Qt)a;’] . (4.12)
J

The driving terms in the Hamiltonian are switched on and off periodically such that

the stepwise functions within one period t € (=7/2,7/2) read

L ft < 0, [t[<
ha(t) = . ha(t) = : (4.13)

0, [t|> g, t|>7%

[
=[N

=N

ensuring that the time evolution governed by H ds H M BL happens in two different time
windows. According to the definition in Eq. (1.48), the combined driving in Eq. (4.12),
ha(t) cos(§2t) or ho(t) sin(§2t) is quasi-periodic in time, which can be verified by using

the Fourier expansion of the box function, e.g.

ha(t) cos(Q2t) Z Z Cpy €2 (4.14)

ni=—oong==x1
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FIGURE 4.3: Fourier transformation (FT) of the average magnetization in y direction of the
DTQC, simulated by exact diagonalization with 10 sites for different interaction perturba-
tions J,. 300 different disorder realizations are averaged over to get the real time dynamics
as shown in the inset with J, = 0.02,0.055. FT is done in a window 200-400 T'. At the
fine-tuning point, in the rotating frame, subharmonic responses appear at kw/2 with an odd
integer k labelled by the dashed line. In the original frame, peaks are fixed at kw/2 £+ even
when perturbations are present, indicating the existence of the robust time quasi-crystal.

with w = 27 /T and coefficients ¢, =0 = ¢g/2, and —g sinc(n1/2)/2 for non-zero ny. By
~ -Q N
using the unitary transformation U(t) = 2t % , I can derive the new Hamiltonian

H(t) = Hypr(t) + Hy(t) in the rotating frame as

N
H(t)=Mm(t)Y [Jjofof, —hioT] + ha(t) Y o7, (4.15)
J J
which reduces to a standard model of DTC with a well-defined period T. As intro-

duced in Sec. 1.3.2, robust TTSB is predicted for g &~ w/2 in the rotating frame, which

further translates into QTTSB in the original physical frame.

4.4 Signature of QTTSB, Rigidity, and Thermalization

I will detect QTTSB via measuring expectation values of the magnetization in y
and z directions S¥#(t). However, such a behavior does not appear in S*(t) as
it commutes with the unitary transformation. Hence, even in the physical frame,
S%(t) only exhibits the same period-doubling behavior as in the rotating frame. In
the following, exact diagonalization is used to simulate the dynamics for parameters
Ji € [1/2,3/2],h5 € [0,1},w = 1,Q = v/2/4 with periodic boundary condition and

trotter step At = T7'/300. Fig. 4.3 and Fig. 4.5 depict the real time dynamics of the
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FIGURE 4.4: (a) Height of the first subharmonic peak of the Fourier spectrum of S, (t)
for the DTQC on a log scale, as a function of increasing time windows (averaged over 300
disorder realizations) for different interaction perturbations with J, and L = 10. Slope of
the linear fit defines the decay rate 7. (b) Decay rate v versus J, for different system sizes.

magnetization SY(t) and its Fourier transformation. Clearly, the comparison between
the subharmonic response of the dynamics (sharp peaks appear at kw/2 4+ Q for odd
integer k) and the Fourier spectrum of the drive [Eq. (4.14)| confirms the existence of
QTTSB.

The observed DTQC trivially mains stable in the presence of small perturbations
which does not break the mapping to the Floquet systems. In the rotating frame,
these perturbations become periodic and the level statistics to examine whether they
induces the Floquet MBL to thermalization phase transition [69]. However, it is highly
non-trivial to rigorously argue the stableness of DTQC when generic perturbations are
present which do not commute with the unitary transformation U(t). This question
is also closely related to the stability of Anderson localization (or MBL) in QPD sys-
tems which have been recently investigated numerically [112] yet there is no rigorous
theoretical proof. In the following, I will provide numerical evidences demonstrating
that DTQC can still remain stable within the numerically accessible time for generic
perturbations. It is then suggested DTQC is more fundamental than the fine-tuning
FTS construction. For concreteness, the interaction perturbation hi(t)>_; J.o%07 4
of uniform strength J., or rotation imperfection —hs(t)e, 3 ; cos(Qt)os of uniform
strength e, will be individually added to Hy/pr [Eq. (4.11)] and Hy [Eq. (4.12)] re-
spectively. They do not commute with the rotation, therefore even after the unitary

transformation the driving remains quasi-periodic.
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FIGURE 4.5: Fourier transformation of the average magnetization in y direction of DTQC,

computed by ED with 10 sites (300 disorder configurations) for different €,. FT is done with

200-400 T. Peaks are locked at kw/2 + €, indicating robustness of DTQC w.r.t. rotation
imperfection. Inset is the dynamics for €, = 0.04,0.11.

4.4.1 Interaction Perturbation

First I analyse the effect induced by a perturbative interaction. The Fourier spectrum
is shown in Fig. 4.3 for various values of J,. Robust peaks are locked at kw/2 + ) as
in unperturbed case, but now with descending heights for increasing perturbations.
The long time stability of the DTQC phase is examined in panel (a) of Fig. 4.4
by extracting the amplitude of the first subharmonic peak as a function of shifting
time windows for different perturbation strength. The Fourier transformation is done
within 7 equally divided time windows in the domain [3007",10007]. The error bars
are determined via the standard deviation of mean, o/v/N with N being the number
of disorder realizations. Linear fits are plotted as dotted line, the slopes v of which
capture the decay rate of the signal, and a non-zero value suggests thermalization. In
panel (b), the decay rate  is depicted w.r.t. J, for different system sizes to investigate
the thermalisation transition induced by J,. Each data point is obtained by averaging
~ calculated with varying lengths of time window from 707" to 1007". The standard
deviation is presented as error bar. Importantly, there is a stable regime J, < 0.04 for
L > 8 where the decay rate v remain zero, implying that the DTQC is robust w.r.t.
small perturbative interaction. For perturbations larger than certain critical value, v
is non-zero indicating thermalization already occurs for ¢ < 10007". Note, the critical
value of the phase transition is still size dependent, but interestingly it enlarges with

increasing system size. A precise determination of the transition point is beyond the



74 Chapter 4. Floquet Time Spiral in Quasi-Periodically Driven Systems

(a) (b)o 00 i-::,i:;‘:;—Z::i———;‘:>f"->1~
16 : b : * A s h:i“‘i\\E_V:ii\i:\
: R
2y i —-0.02 “y AN
------ R i \ AN
- . N o L o L . \1\\ 'y
gl I S— . Y -0.04
. T o . .
X
¥ =000 ¥ ¢.=0.06 T
61 § =001 § €=0.07-__ Foe —0.06 *- L=6 §\
¥ =002 § =008 TEg L=8 y
: €.=0.03 % =000 ; -%- L=10 5
=004 ¥ =010 "TEz T \
41 7 =005 T e.=011 g _008! ~#- L=12 b
0 1 2 3 4 5 6 0.00 0.02 004 006 008 0.10
time €

FIGURE 4.6: (a) Amplitudes of the first subharmonic peak of the Fourier spectrum of

Sy (t) for the DTQC on a log scale, as a function of increasing time windows (300 disorder

configurations) for different rotation imperfections with e,. The linear fit gives the decay
rate v. (b) Decay rate v versus €, for varying system sizes.

scope of this work.

4.4.2 Imperfect Rotation

Rotation imperfection induced effects can be analysed in the same way. In Fig. 4.5,
the Fourier spectrum of S¥(t) is presented for different €,. Similar as in previous case,
subharmonic peaks are locked at kw/2 +  with descending heights for increasing
€,. I confirm that the oscillation persists without thermalizing to at least 10007 for
€, = 0.04. As a comparison, it rapidly decays with e, = 0.11 as depicted in the inset
of Fig. 4.5 suggesting the deleterious thermalization.

Fig. 4.6 shows the long time behavior of the first subharmonic peak and the relation
between the decay rate v and €,. The same method to obtain average and error bar is
applied here, and the stable regime with zero v can be observed. The critical value of
the thermal phase transition also tends to increase for larger system sizes and converge

approximately at €, ~ 0.06 for L > 8.

4.5 Discussion

Inspired by the co-planar spiral magnets, I have shown that certain QPD quantum
systems can be transformed to Floquet systems via suitably chosen time-dependent
unitary transformations. I generalized the definition of TTSB to QPD systems, and
discovered DTQC as a new non-equilibrium phase of matter. The subharmonic re-

sponse has also been verified to survive the presence of power-law decaying long-range
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interactions, suggesting that the DTQC should be implementable on current experi-
mental setups of ion-trap quantum simulators [188-190].

The QPD Hamiltonian and the unitary transformation considered here are easiest
obtained via backwards-engineering, namely one first starts from a periodic system
of choice, then apply a time-dependent unitary and arrive at the QPD system. The
inverse mapping ensures that it can be transformed back. As the soluble limit is
arguably fine-tuned, it is important to show that the DTQC can persist in the presence
of perturbations that do not permit a transformation to its Floquet counterpart.
Therefore, the discovery of DTQC is more fundamental than the FTS construction.
I admit that the stability of DTQC is currently examined via a small system and
in a finite time window. Therefor, extensive numerical studies in the future would
be worthwhile to check whether it is a prethermal phenomenon of exceptionally long
lifetime [104] and to determine the phase diagram.

Examples discussed here are limited to unitary transformations of spin rotations
changing linearly in time, but it would be interesting to consider QPD systems with
more generic time- and site-dependent transformations. Furthermore, although the
QTTSB is expected to happen with subharmonic responses associated with all primary
incommensurate frequencies, e.g. w and {2 in my case, here QTTSB only appears with
w/2 but not © due to the special FTS construction. It will be fascinating to discover
more general QTTSB and other DTQCs in the future.

A more ambitious goal would be to investigate the existence of possible mappings
to Floquet systems for generic QPD systems. Establishing the connection between
FTS of two-level systems and its topological classification via Floquet lattice might
be insightful [107]. Moreover, it is also interesting to explore the fundamental idea of
mapping between aperiodic and periodic systems in other contexts beyond the original

spiral magnets or the F'TS.

Although at the fine-tuned point the dynamics can be simulated efficiently due to
the equivalence to Floquet systems, the computational cost quickly becomes unfeasi-
ble when generic perturbations are introduced. Alternatively, quasi-periodic driving

can also be induced via discrete aperiodic sequences, e.g. Thue-Morse sequence where
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the T'TS is also absent. The recursive structure of the sequence significantly facilitates
the simulation. In the next chapter, I will show that a long-lived prethermal regime
appears in the rapid driving regime similar to Floquet systems (see Sec. 1.4.2). More
surprisingly, the randomized version of the Thue-Morse drive also yields slow heating,

hence, prethermalization appears even when the driving is not deterministic.



7

Chapter 5

Prethermalization with

Random-Multipolar Driving

The existence of a prethermal regime in Floquet systems is now well-established as
a long-lived transient period before heating to infinite temperature as described in
Sec. 1.4.2. In this chapter, I will show that prethermalization can also appear in
driven systems without T'T'S. For continuous quasiperiodic drivings, slow heating has
been suggested to exist in Ref. [104] but its numerical verification in many-body
systems remains a challenging task.

The focus of this chapter is discrete drivings and I will demonstrate that prether-
malization can occur for generic quantum many-body systems even when the drive is
random. I introduce a new family of random but structured drives — random multi-
polar drives (RMD) — which interpolate between a deterministic quasiperiodic and a
fully random drive. The temporal correlations of the protocol can be parameterized
via a non-negative integer n: n = 0 corresponds to the uncorrelated random driving,
while n — oo corresponds to the quasi-periodic Thue-Morse driving. Fig. 5.1 com-
pares different driving protocols and the precise definition of RMD will be given in
Sec. 5.1.

The basic motivation for considering RMD is the observation that the bound of the
suppressed heating rate underpinning Floquet perthermalization also applies for RMD
without the need of perfect Floquet periodicity as discussed further in Sec. 5.2. As the
central finding, I discover that energy absorption associated with RMD slows down
algebraically with n, with the prethermal lifetime growing as 7 ~ (1/7)2"*! where

T denotes the characteristic driving period. The quasiperiodic n — oo limit leads
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FIGURE 5.1: Left: schematic figure for different driving protocols. Two types of dipolar
operators can be constructed from the unitaries Uy = exp(—iTHy) as ULU_ or U_U,.
Floquet drivings are implemented by repeatedly using a single type of dipole whereas a
uncorrelated random succession of both dipolar operators corresponds to a random dipolar
drive (or 1-RMD). Right: Sketch of entanglement entropy dynamics. For a random drive
(n = 0) the system heats rapidly to the featureless infinite temperature state with the inverse
temperature 8 = 0, whereas for n—RMD (n > 1) a prethermal plateau emerges with a long
lifetime.

Clin(T=1/N)?

to an scaling as 7 ~ e with a constant C' and a typical local energy scale

A. This unfamiliar scaling is faster than any power law but slower than exponential.
Numerical verification of prethermalization will be presented in Sec. 5.3.

n—RMD represent a form of spectral engineering as the envelop of the Fourier
coefficients of the correlated random time sequence vanishes algebraically as (1/7")"
for decreasing frequency 1/T', which effectively converts to a pseudogap in the limit
n — oo. This characteristic frequency suppression justifies a simple Fermi’s golden
rule (FGR) calculation [89, 191, 192]. It further explains the observed slow heating
behavior and the dependence on a finite n as detailed in Sec. 5.4. I will also comment

on a rigorous and non-perturbative theory, which predicts the correct scaling for the

n — oo limit that is otherwise difficult to obtain via the linear response theory.

5.1 Driving Protocol

To start with, I first consider the two elementary time evolution operators as

Uy =exp(—iTH,.), U- =exp(—iTH_), (5.1)

where Hy is a time independent Hamiltonian and T' defines the characteristic time
scale. For periodic driving, the dynamics is governed by the Floquet operator U; =

U_U,, and the Floquet Hamiltonian Hp is defined as U; = e~ 2THr Tt is well
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established how to construct a perturbative Floquet-Magnus (FM) expansion for a
small period T', Hp =Y, ((2T')"H} as seen in Eq. (1.23).

Random multipolar driving is performed via randomly driving the system with
two multipolar operators U, and U, parametrised by an integer n. As illustrated in

Fig. 5.1, for n = 0, it involves a fully random sequence of operators

Uy=Uy, Ug=U_, (5.2)

while for n = 1 it is made up of ‘dipoles’, i.e. of terms

Uy = UyUy = U, U_,
~ (5.3)
Uy = UyUy = U_Uy,

and in turn n = 2, ‘quadrupolar’ sequences, are made up of antialigned dipoles as

Uy=UU, =U_UULU_,
(5.4)

Uy=UU, =U,U_U_Uy,
and so on for higher n as

Un+1 = Unﬁn’ Un+1 = UnUn (55)

The recursively defined limit n — oo of such a driving thus corresponds to the Thue-

Morse quasiperiodic drive as introduced in Sec. 1.5.2.

5.2 Rigorous Bound on Heating

Here I establish the rigorous bound on heating of RMD systems by generalizing the
results of Floquet driving. The lowest order contribution to the Floquet Hamiltonian,
HY = (Hi + H_)/2, is already insightful and most relevant for my purpose. The
following rigorous bound for the difference between the dipolar operator U_U, and

the approximated time evolution operator for a single period has been obtained as
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Corollary 1 in Ref. [19]:
|U-Uy = e 2T < v [6 x 27 + AT 2T, (5.6)

where V) is proportional to the driving amplitude, A captures the local typical energy
scale of the system, and ng ~ O(T~!) denotes the optimal order before the FM
expansion diverges. Formal definitions of these quantities can be found in Sec. C.1 as
well as in [19]. Crucially, I notice that the bound in Eq. (5.6) is independent of the
order of Uy and U_ as the dipolar operators U;U_ and U_U, have the same zeroth
order contribution H%. This observation further motivates me to use the triangle

inequality
|w-vn vy - 4T < ||W-v) - 2T 1 ||y U - R (5.7)

and insert Eq. 5.6 to the right hand side. By repeating the above equation m times,

the following bound can be obtained

< Vo [6x27™0 + AT ¢. (5.8)

| e
m dipoles

with the time t = 2mT'. This bound estimates the deviation which accumulates by a
constant error after each application of the dipolar operator. Importantly, the bound
is not limited to the periodic driving and, the dipolar operators can appear randomly.
For the quadrupolar operators Us and Us, I realize that the first order contribution

to their magnus expansion vanishes. Therefore, both the operators have the same
effective Hamiltonian up to the order O(T") and, again by using Corollary.1 in Ref. [19],

I improve the bound as

) | .4
HUQ/UQ - e—lH%‘*TH < [6 X 27 4 S(ATA)? | VodT, (5.9)
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with the exponent nf, := |1/16A(4T)| = O(T~!). At later times t = 4mT, the

accumulated error can be estimated as

H Usy UQ *e_iH%t
—_—

m quadrupoles

.4
<W [6 x 270 + §(4T)\)2 t. (5.10)

For n > 2, the bound has been rigorously analysed and significantly improved by
Takashi et al. in Ref. [193], demonstrating that the multipolar operator U,, and U,
have the same effective Hamiltonian up to the order O(T(™~1).

Although the rigorous bound is not tight, Eq. (5.8) and Eq. (5.10) suggest that, in
the fast driving regime, the error only becomes notable after a sufficiently long time.
Therefore, similar to Floquet systems, a long-lived prethermal state should appear in
the rapid driving regime and can be approximated by the micro-canonical ensemble
of H%. The mean energy of the effective system <H%> is thus also a quasi-conserved
quantity.

In the following, by using exact diagonalization, I substantiate the existence of
the prethermalization in the rapid driving regime. Surprisingly, I discover that the
prethermal lifetime follows a simple algebraic scaling versus frequency, and such a

relation can be explained via a simple Fermi’s golden rule calculation.

5.3 Prethermalization

Let me focus on a generic spin model described by the Hamiltonian

He =) Jeofof, + J.oiof\, + (Bo + By)o} + B.o}, (5.11)

7

where J,, J, are the nearest-neighbor exchange interactions, By, B, are static fields,
and B, denotes the driving amplitude. Periodic boundary condition is used such
that translation invariance of the Hamiltonian permits us to access the longer time
simulation for larger system sizes. Although not shown here, I also verify that the
following numerical observations maintain qualitatively the same in other systems,
e.g. Bose-Hubbard model or Anderson localized system.

I use the mean energy of the effective system <H%> a measure for thermalization,

which should remain constant during prethermalization before dropping to zero once
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FIGURE 5.2: (a) Dynamics of mean energy with Thue-Morse driving as a function of charac-
teristic time T, using parameters {.J,, J,, B;, B, Bo} = {1,0.72,0.61,0.49,0.21} and system
size L = 20. Prethermalization appears and the energy absorption is significantly suppressed.
Panel (b) and (c) show the semi-log and log-log plot respectively of the thermalization time
versus driving rate (blue circles). Straight lines in panel (b) (green squares) and (c) (pink
diamonds) are obtained by an exponential fit and an algebraic fit, respectively. The numeri-
cal data (blue circles) curves down from an exponential fit as shown in panel (b) whereas in
panel (c), it curves up from an algebraic fit.

the system heats up to infinite temperature. The quasiperiodic Thue-Morse driving is
first studied. According to Eq. (5.1) and Eq. (5.5), I can recursively obtain the time
evolution operator U,, U, of time length 2"T. This recursive construction enables
the simulation of the dynamics for an exponentially long time by only computing a
linearly increasing number of matrix multiplications, i.e. |1(2"T)) = U, |1(0)).

Fig. 5.2 panel (a) depicts the dynamics of the mean energy density for different
driving rates 1/7T at stroboscopic time 2"7T'. The initial state is taken with all spins
pointing up. The mean energy remains constant over a large time window indicating
the existence of prethermalization. In between stroboscopic times, I also verify that
the mean energy remains quasi-conserved. After a long time scale 7z, the system
finally evolves to the thermal death and the mean energy drops to zero.

Next, I analyse the scaling of the thermalization times as a function of frequency.
Numerically, the heating time 7g is extracted by averaging the times such that
(HY),/ (H%), = 0.75,0.75 £ 0.03,0.75 £ 0.06, see details in Appendix C.3. Fig-

=

ure 5.2 (b) and (c) show a semi-log plot and a log-log plot of the heating time 7z,
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FIGURE 5.3: Dependence of the modified thermalization time v/In g against frequency Inw.
Numerical data (blue circles) fits well with a straight line of slope v/C' = 1.1, which implies

that the heating time behaves like 75 ~ eClIn@/NI* a5 suggested in [193].

respectively. In the semi-log (log-log) plot, numerical data curves down (up) from a
straight line, which indicates that the heating time is shorter than exponential but
longer than algebraic in w = 27/7. This is consistent with the prediction of the

heating time for TMS driving proposed in Ref. [193] !,

75 ~ S/, (5.12)

In Fig. 5.3, I plot the function \/In7g against Inw. A straight line of slope v/C
would appear if Eq. (5.12) predicts the correct dependence on the driving frequency.
Numerical data fits well with a straight line of slope v/C' = 1.1, which does not depend
on initial state and converges for L = 20 as shown in the Appendix C.3.

I verified that the prethermal regime also exists for RMD with finite n and not
only for the Thue-Morse limit but with a different scaling behaviour. Panel (a) of
Fig. 5.4 depict the dynamics of mean energy for a random quadrupolar drive with all
initial spins pointing down, where a similar lack of energy absorption can be observed.
In Fig. 5.4 (b), the dynamics of entanglement entropy Sy is plotted for different
frequencies. It first saturates to a prethermal plateau which is well captured by the
zeroth order effective Hamiltonian. The entropy grows rapidly to the final value S as

introduced in Eq. (1.26), confirming that the system heats up to infinite temperature.

T contributed to the conceptual ideas for the derivation of Eq. (5.12) in Ref. [193] but did not
derive this analytical form. The numerical verification presented in Figs. 5.2 and 5.3 are my own
work.
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FIGURE 5.4: Evolution of (a) mean energy and (b) entanglement entropy with quadrupolar
random driving, with parameters {.J,, J,, By, B, Bo} = {1,0.71,3.2,0.25,0.21}, L = 16.
Prethermal plateau of entanglement entropy appears for 1/7 > 20.

As before, I determine thermalization time by the thresholds (H%);/(H%)o ~
0.96 £0.01. In Fig. 5.5 (a), I show the scaling of 75 on a double log plot for different
RMD structures with n = 0,1,2,3. In contrast to the scaling observed for the Thue-

Morse driving, I identify an algebraic dependence
E o (1/T)" with a~~2n+1, (5.13)

for n > 1. Interestingly, the fitted exponent strongly depends on the multipolar order
and is to a good accuracy a simple function of n. I have verified that the scaling
exponent is robust to change of parameters. In Fig. 5.5 (b), as a comparison, I also
plot the same result on a log scale showing a clear deviation from an exponential fit
towards larger 1/T, especially for n > 2.

The thermalization time of the n = 0 RMD is short (75 < 1 as seen in Fig. 5.5)
and independent on the driving rate, suggesting a qualitative improvement for heating
suppression by the multipolar structure. Indeed, I identify that Eq. (5.13) may also
work for n = 0 with exponent @ = 1. However, the crucial difference to the case of
n > 0 is that such scaling is only observed in the perturbative regime for small driving

amplitudes.
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FIGURE 5.5: Thermalization time dependence on 1/T in log-log (c) and log scale (d) for
n—multipolar drivings which confirms the algebraic dependence (1/7)* with a ~ 2n + 1 for
n>1

5.4 Linear Response Theory

Although the bound in Eq. (5.8) implies the existence of a prethermal regime, it is
not tight and insufficient to predict the n—dependent scaling behavior of the ther-
malization time. As an alternative, in the following, I show that the characteristic
scaling can be understood via a simple generalization of Fermi’s golden rule (FGR)
as applied to Floquet systems [191, 192, 194-196].

I first follow Ref. [191] to review the FGR for Floquet systems described by the

Hamiltonian H(t) = Hy + g(t)K, where g(t)K denotes a weak periodic driving with
g(t) = gmsin(mQt) (5.14)
m

with Q = 27 /T and g,,, the strength of the Fourier components. In the linear response
regime, after the short transient period, the system starts absorbing energy quanta
independently from each Fourier mode m as illustrated in Fig. 5.6. The average rate

of energy absorption over a driving period reads

E(t)=Y_ En(t), (5.15)

m>0
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KT 17 DA 1 12 5

FIGURE 5.6: In the linear response regime, the dominant heating resource is the single-
photon absorption. Multi-photon events rarely happen hence are neglected in the FGR
calculation.

where E,,(t) is expected from Fermi’s golden rule [191]

. ~ 2
En(t) = 272 5, [ EQIRIES)|” (B9 - E9) PO(1)

x5 (BY — B9 £ ma), (210

where |E?> are the eigenstates of the static Hamiltonian JEIO and, the probability of
finding the eigenstate |EY) in the density matrix p(¢) at time ¢ is defined as P?(t) =

(E?|p(t)|EY). The thermalization rate can be written as

D) = 3 En(t)/ [ — B(O)], (517

where F, represents the energy of the system at infinite temperature which turns to be
zero in our case. It has been shown in Ref. [191] that this rate remains almost constant
in the linear response regime. For fast drivings, extensive numerical evidence [191,
197] and theoretical analysis [13, 198-202] indicates that the thermalization rate is

exponentially suppressed

= Zg;Ae—mQ/f, (5.18)

where A, e are both model dependent parameters. Accordingly, the inverse of the
heating rate permits us to approximately estimate the prethermal life-time as 7
1/T ~ €% for Floquet systems.

To extend the FGR to the n—RMD, the first task is analyzing the Fourier spec-
trum of the random multipolar sequence to generalize Eq. (5.14). Due to the temporal
randomness of the driving, the frequency spectrum now becomes continuous and I ap-
proximate RMD by a continuous function as g(t) = [ dzg, sin(zQ2¢). In Appendix C.2,

by establishing the connection between the auto-correlation relation of the multipolar
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sequence and its Fourier decomposition, I obtain the following
gz X 2", (5.19)

suggesting an algebraic suppression at low frequencies.
Similar to the Floquet case, in the linear response regime it is assumed that the
system absorbs energy from each frequency mode independently. As such, Eq. (5.18)

needs to be modified as a continuous integral as

Foc/ dxx%e_m:/ d(zQ) (zQ) e o021

0 - 0 (5.20)

— Qin/ dyy2nefy — 972n71(2n)!7
0

where I use the formula

n
ol ,
/ynecydy = %Y Z(_l)n ZWZJZ' (521)
=0

2n+1 45 accordance with the

Correspondingly, the thermalization time scales as (1/7)
numerical results as presented in Fig. 5.5 (a).

The Fourier spectrum of the quasiperiodic TMS driving vanishes as (") for
x — 0, therefore I expect the scaling behavior will be faster than any algebraic func-
tion. One can also approximate such low frequency suppression as a pseudogap in the
Fourier spectrum, the size of which is proportional to €2, see details in Appendix C.2.

Therefore, the most dominating heating rate is given by the smallest allowed frequency

and I can simply model g, « §(z — xg) to obtain
o0
Trarg o / dzd(x — ulco)Ae*xQ/E oc e~ wos/e, (5.22)
0

with xo€2 the gap size. Therefore, an exponential scaling of the thermalization time
O(e"T) is expected similar to Floquet systems. However, such an approximation
overestimates the suppression of energy absorption hence heating happens at an earlier
time. Therefore, based on the linear response theory, the heating time should be

shorter than exponential but longer than algebraic in accordance of the numerical
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results in Fig. 5.2 2.

Overall, the fact that FGR rate Eq. (5.20) agrees with numerical results implies a
surprisingly simple picture, that the heating is dominantly induced by the independent
absorption of modes at low energies even for the continuous spectrum. Higher order
effects deserves more investigation as the typical algebraic scaling persists even in the
non-perturbative regime for which FGR is not expected to work generically. It implies
that the multipolar structure also suppresses multi-modes heating channels which can

be potentially analysed via the 2nd order time-dependent perturbation theory.

5.5 Random Multipolar Discrete Time Crystal

Finally, I provide a concrete example of a prethermal non-equilibrium phase for the

family of RMDs. I extend the idea of Floquet DTCs to a situation where the drive

contains temporally random components between the spin flips. To be precise, I in-
X

troduce the global spin flipping operators, X = exp (zg > a-) ~ [I; o7 in between

171

the dipolar operators as
Ul = e~ H-TemiH T x (1 = o=iH4To=iH-T x (5.23)

According to Eq. (5.6), both dipolar operators can be approximated by the effective

Hamiltonian as
U, Ul ~ e /H++HIT x (5.24)

Ideally, if the effective Hamiltonian, HY% = (H, + H_)/2, preserves the Zy Ising sym-
metry, products of U7, (7{ can be approximated as (e_iHbo”zTX )2 = e~ tHpAT analogous
to the Floquet DTC [see Eq. (1.37)]. As a consequence in the prethermal regime, the
time evolution at stroboscopic times 47" can be well-captured by the effective Hamito-
nian H%. Therefore, for a Zs symmetry broken initial state, the local magnetization
will persistently oscillate between £1 with period 47", doubling the period 27" of spin

flips. Such a random prethermal DTC should still persist if the Zo symmetry of H%

2 A non-perturbative calculation based on Magnus expansion and the self-similarity of Thue-Morse
sequence was performed in Ref. [193], where the rigorous bound for heating was obtained as Eq. (5.12)
for TMS driving.
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FIGURE 5.7: Dynamics of the magnetization of the central spin induced by a ran-

dom dipolar drive with additional spin flips, using parameters {J,, J,, B,, Bo, By} =

{1,0.315,0.21,—0.05,0.75}, L = 18. A long-lived prethermal DTC exists with n = 1 RMD
driving (a), while heating is inevitably fast for the n = 0 random case (b).

is weakly broken, the lifetime of which will nevertheless decrease depending on the
perturbation.

In Fig. 5.7 (a), I have numerically verified the existence of a prethermal DTC
with 1—RMD starting from a fully polarized initial state *. The lifetime significantly
increases for larger driving frequency, in particular for 7= = 50 the amplitude of the
period-doubling magnetization does not decrease appreciatively up to ¢t = 200. I also
verify the robustnes of the prethermal DTC for weak imperfect spin flip operations.
Fig. 5.7 also contrasts the prethermal nature of RMD to the one of a purely random

drive (shown in panel (b)) built from

Ui :efiH_‘_TX’ U,, :efiH_TX. (525)

As U!, U’ also perform perfect spin flips, period-doubling oscillations appear but only
for a short transient period (¢ < 10). Thermalization is inevitably fast and prethermal
DTC does not exist.

Beyond Floquet DTC or discrete time quasi-crystals, the random drives completely
break discrete time translation symmetry, thus enriching the growing zoo of non-

equilibrium phases of matter.

3Strictly speaking, uniform nearest-neighbour interaction is insufficient to stablize ferromagnetism
in 1D at finite temperature. The presence of disorders or long-range interactions is necessary for DTC
for generic symmetry-broken initial states. The persist period-doubling behaviour observed here is
mainly because of the special fully polarized initial state. See more discussions in Ref. [73, 203].
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5.6 Discussion

RMD present an elementary and controlled way to introduce temporal randomness
to driven systems. The resulting tunable algebraic prethermalisation adds a new as-
pect to our understanding of paths towards thermalization. There are some direct
extensions of the current RMD protocol. First, instead of considering the elemen-
tary operators constructed via static Hamiltonians as in Eq. (5.1), one can consider
the time-dependent Hamiltonian H (t) and the operator Uy = Te~ilo dtHe®  The
additional time dependence permits us to engineer the prethermal non-equilibrium
phases with rich properties, for instance the anomalous Floquet-Anderson insulator
with quantized charge pumping [18].

Second, RMD and the Thue-Morse driving can be generalized to involve more
elementary unitaries. For example, one can start from three distinct unitaries Uy =
e*iHoT, U, = e*"HlT, and Us = e 2T ¢congtructed from local Hamiltonians H,
(0 =0,1,2). Similar as Eq. (5.5), U7 are defined cyclically as U7 = gfogfll 7 1
where the sums 041 and o 4 2 are defined modulo 3. Fourier spectrum of the driving
sequence might exhibit different types of frequency suppression, hence, leading to
other interesting scaling behavior of the thermalization time.

RMD represents a simple form of spectral engineering in driven systems and it is
worth to explore more general method to design the spectrum of driving protocols.
For instance, one possible approach would be first to sample a pre-defined frequency
spectrum with desired properties, then convert it back to a correlated sequence in
time via the inverse Fourier transformation [204]. It would be interesting to establish
connections between dynamical response of quantum many-body systems and the

engineered temporal correlation.
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Chapter 6

Conclusion and Outlook

This thesis explored several new forms of ergodicity-breaking phenomena, with a par-
ticular focus on QMBS in both static and Floquet systems with TTS, as well as
prethermalization in aperiodically driven systems when TTS is absent.

In Chapter 2, I introduced an experimentally feasible proposal for the realization
of QMBS via Floquet engineering in optical lattices. Hopping channels between par-
ticular Fock states can be suppressed to zero and HSF naturally appears. Compared
with Rydberg atomic arrays where QMBS were first discovered, bosonic systems have
a much larger local Hilbert space and substantially more initial states accessible in
optical lattice experiments. For example, systems with different fillings, which can
be easily controlled physically, feature a great variety of scars. One can exploit such
freedom to explore versatile paths towards thermalization by suppressing different
hopping channels in a controllable manner.

In Chapter 3, I addressed the intriguing question of whether there are non-ergodic
QMBS with volume-law entanglement in an interacting many-body system. Or from
the perspective of dynamics, can coherent oscillations of local observables in many-
body systems coexist with volume-law entanglement in a standard quench setting? All
previously discovered QMBS can only establish sub-extensive entanglement, which has
also been regarded as a clear indicator of QMBS in the spectrum. I confirm the exis-
tence of this counter-intuitive phenomenon via a minimally coupled multi-component
system — the kinetically constrained orthogonal metal — which naturally hosts two
dynamical fractionalized d.o.f. The emergent 7—spin are thermal and rapidly generate
extensive entanglement, while the other f—fermion exhibit persistent oscillations as

a result of Hilbert space fragmentation. As the orthogonal metal is itself constructed
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from a slave-particle description of strongly correlated phases, the orthogonal QMBS
can potentially exist in non fine-tuned settings.

Kinetically constrained multi-component systems are a largely unexplored but
experimentally relevant field. It is instructive to compare our model to the alternative
Zy lattice gauge model of Ref. [150] which also hosts two emergent d.o.f., the matter
fermions and gauge charges. However, the gauge d.o.f. are static, hence, cannot
generate extensive entanglement if the fermion is constrained. The separability of the
emergent dynamical d.o.f. in my model is also linked to recent works on the disordered
Hubbard model where disorder may appear only for one type of excitation [205, 206].
There, although the disorder only appears for charge d.o.f., the spin transport is
significantly influenced and becomes subdiffusive. On the contrary, in our model,
kinetic constraints only locally enter the emergent fermionic d.o.f. while the 7-spin
dynamics remains ergodic. In the future, a systematic comparison between different
kinetically constrained multi-component systems would be worthwhile.

The discovery of QMBS has significantly enriched our fundamental understanding
of ergodicity-breaking phenomena. On the application side, it is also of great interest
to explore whether they can be helpful for the development of new quantum technolo-
gies. For instance, instead of simply isolating a quantum system as much as possible
to avoid thermalization, one can potentially exploit fragmented Hilbert subspaces,
which can itself be engineered via suitable driving protocols. As such, a quantum
state can naturally evolve to a coherent superposition of Fock states by choice [144],
which are potentially beneficial for precision sensing.

Then I explored possible mechanisms leading to ergodicity-breaking dynamics
when many-body systems are modulated by quasi-periodical drives where TTS of
the driving is explicitly broken. Up to now, there is no universal theoretical frame-
work, e.g. Floquet theory for TT'S-preserving systems, and the numerical simulation
of their time evolution is computationally expensive. In Chapter 4, inspired by spiral
magnets, I proposed the idea of FT'S which can be mapped to usual Floquet systems
via time-dependent unitary transformations.

As a fine-tuned toy model, a FTS is first demonstrated in a two-level system where
an exact solution of the time evolution can be obtained. Then I generalize the idea

to many-body systems with disorder, which has further been shown to host a DTQC
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which breaks the quasi-periodic TTS. Crucially, this intriguing phenomenon persists
up to the longest numerically accessible time scale when generic perturbations are
present which breaks the equivalence between FTS and Floquet systems. Therefore, I
argue that the DTQC is a stable non-equilibrium phase of matter more fundamental
than the fine-tuned F'T'S construction.

To investigate more generic dynamical properties of driven systems without TTS,
I study the so-called RMD systems in Chapter 5. An integer n parametrizes the
temporal correlation of the random sequence, n = 0 and n — oo limit correspond
to the purely random and quasi-periodic Thue-Morse sequence respectively. A long-

lived prethermal regime appears for n > 1, the lifetime of which scales algebraically

2n+1) Clin(1/7)]?

for larger driving frequencies as T~ which converts to the scaling e for
the Thue-Morse driving, in agreement with the numerical simulations.

RMD provides a simple example of spectral engineering as the Fourier decompo-
sition of the correlated sequences of multipoles decreases as a power law T~ with
an integer n, which becomes a pseudogap in the n — oo Thue-Morse limit. Such
suppression of low frequency property underpins a simple theory of FGR explaining
the observed slow heating and the dependence on the multipolar order n. Remark-
ably, the prethermalization also occurs in the strong driving regime for which FGR
is not expected to work. It indicates that not only the single-photon absorption but
also the multi-photon processes which cannot be simply captured by the linear re-
sponse theory are also suppressed. Although the subsequent rigorous results obtained
by generalizing Floquet-Magnus expansion [193] also imply the suppression of higher
order processes, a direction calculation via the higher order FGR [207], which could in
principle provide more physical intuition regarding the heating, would be worthwhile.

The idea of spectral engineering can indeed be generalized to other types of random
sequences. Besides the Thue-Morse sequence, one might search for other aperiodic se-
quences whose randomized version can also lead to prethermalization. Another broad
class of random sequences with hyperuniform correlations [204, 208] would be of great
interest to study. Their fluctuations at large scales are sufficiently reduced resulting in
a suppressed frequency behavior reminiscent of RMD but with a continuously tunable

scaling exponent [204].

A different interesting question regarding RMD concerns what types of non-trivial
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prethermal states can be achieved apart from the random multipolar discrete time
crystalline behavior presented in this thesis. It is naturally expected that (many-
body) localization will not be stable with random driving [209], but how does the
additional multipolar structure protect the localization? Can localization further sta-
bilize the prethermal topologically protected phases [18] and result in a new scal-

(2n+1)7 Another intriguing direction would

ing of prethermal lifetime better than T~
be searching for fundamentally different prethermal phases beyond Floquet, which
emerges particularly because of the temporally correlated randomness.

There are countless ways to drive a system in the absence of TTS. However, identi-
fying protocols that lead to novel universal phenomena and are theoretically tractable
remains a big challenge. Based on the current exploration of FT'S and RMD systems,
the present work shows that aperiodically driven systems are expected to exhibit a
much lower degree of universality compared with Floquet systems. To analyze ape-
riodically driven systems, one cannot rely on the theoretical tools of Floquet theory
and it is fair to say that we are lacking similarly powerful tools for aperiodic systems.
However, the specific examples of this thesis show that many techniques developed
for Floquet systems can still be surprisingly helpful even if TTS is absent. Naturally,
beyond the discrete RMD drive protocols one can expect that there are plenty of
other types which go beyond the scope of the Floquet framework. Therefore, I expect
that formulating new methods and unifying our understanding of aperiodically driven

systems remains a formidable challenge for the future.

With this thesis, I addressed several crucial problems and opened new avenues
in quantum many-body systems. Particularly, I proposed a few simple yet insightful
models demonstrating conceptually new non-ergodic phenomena which substantially
deepen our understanding of quantum thermalization and lack thereof. Most of these
models can already be experimentally implementable. I believe these works will be
of broad interest and can shed further light on the future exploration of quantum

many-body phenomena.
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Appendix A
Derivation of Effective Hamiltonian

A.1 Rotating Frame

Here we explain the details for deriving the effective Hamiltonian of the doubly mod-

ulated Bose-Hubbard model. In the physical frame, the Hamiltonian reads

H(t) =&l Tpglq + US) > (i — 1)+ F(£)> epity. (A1)

(pq) p p

We can only perform high frequency expansion if the driving frequency of U(t), F(t)
is the dominating energy scale, hence, we want to transform to the rotating frame via

the unitary transformation

R(t) = exp [z (Z 0, (t), + Fg) > iy (R — 1))] : (A.2)

p

where I'(t) = f; drU(t) and 6,(t) = €, fo dTF(7). In the rotating frame, the Hamil-
tonian transforms as H(t) = RH (75)RJr — iRR', where the second terms cancels the

time-dependent modulation of energy and interaction. Therefore we obtain
= R(t) Y &l Jpglq BRI (1), (A.3)

The above unitary R(t) can be decomposed as R(t) = Ri(t)Rz(t) where

, Ry(t) = exp [irg)Zﬁp(ﬁp—l)], (A.4)

p

ZO )T

= exp
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and [Ry, Rg] = 0. We first perform the rotation R;(t) as
H(t) =" JpgRa(t)cheqRI(2). (A.5)
(pa)

The following formula is particularly useful to compute the unitary transformation

o0

eXye X = Z M, (A.6)

n!
n=0

where [(X)",Y] = [X, - [X,[X,Y]]---],[(X)°,Y] = Y. In our case, we choose

n times

X=i) , 0niandY = c;r,cq, we obtain

a oty o N (O™ Y] o [10p() = 0" _ ¢ 0,000
Rl (t)C;L)Cqu (t) = nz:o T = CLCq 7;) P o q = CLqu (6p(t) q(t))' (A?)

Similarly one can carry out the second rotation Ry(t), but the algebra can be simplified
by noting that the hopping term é};éq preserves the total particle number Zp p-

Therefore, the unitary transformation of Ra(t) reduces to

Ro(1)ééq R (1) = exp [1“;“ Zﬁ%] Eheq oxp [—FS) > y%]

P (A.8)
2 [iT(t
_ C:L Z;) [iL'( )(”:L! ng)] ce CLezF(t)(np nq)cq_
In the end, in the rotating frame, the Hamiltonian reads
H() =3 & Ap()q, (A.9)
(pa)
where the hopping term modifies to
qu(t) — Jpqei(ep(t)_eq(t))eir(t)(ﬁp_ﬁq)’ (A.lO)

the time average of which will give the lowest order contribution to the effective Hamil-
tonian. It is worth noting that the derivation above can be modified to fermionic
system as well. Moreover, Eq. (A.8) can be generalized to other density-density inter-

actions which do not need to be short-ranged. It will be interesting to explore other
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emergent processes by driving longer-ranged interaction.

A.2 Driving Profile

The following driving profile is used in Chapter 2, U(t) = Uy cos(wt), F(t) = F5 cos(2wt)+

F cos(4wt), therefore we have

T(t) / drU(r) = Uysin(wt),
o, (A.11)
Op(t) = ep/o drF(7) = €, | Fysin(2wt) + Fysin(4wt)|

where U; = Ug/w, B = F5/2w and Fy = Fy/4w for simplification. The modified

time-dependent hopping in the rotating frame reduces to
Apy(t) = Jpgexp [z(q —p) (152 sin(2wt) 4+ F} sin(4wt)> + iUgsin(wt) (7, — ﬁq)] (A.12)

Its time average over one period reproduces the modified hopping rate in Eq. (2.6)

~

AD (R, 1g) = =T To (Ud(ﬁp — fg), Fo(p — q), Fa(p — Q)>, (A.13)

where Jp denotes the zeroth order three dimensional Bessel function defined via nth

order one dimensional Bessel function B,, as [210]

“+oo
jO (ZE, Y, Z) = Z 872327454 (x)BSQ (y)Bs4 (Z) (A'14)

§9,54=—00

Jo has the symmetry Jo(z,y, 2) = Jo(—x,y,2) = Jo(z, —y, —z) which can be proved

by using the symmetry property B_,(z) = (—1)"B,(x).

A.3 Numerical Implementation

For numerical calculation with exact digonalization, normally only single operators or
simple products of them can be easily converted into matrix form [135]|, whereas the
above density-assisted tunneling [Eq. (A.13)] in a highly-nonlinear form is difficult to

implement. However, one can instead use Taylor expansion to approximate the Bessel
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function, and for instance the nearest-neighbor hopping reads

X 77 ~ ~ v
A ) UY (N — Npy1 oY . .
AD i =—do Y il py, 1) 8~”jo <F1,F2,F4)
v=0 ’ Fl

=0

with

8?.';{’ Jo (Fhﬁz,ﬁz;) = Jio 2_1'2”:055%—%252—454 <F1> Bs, <F2> Bs, <F4) , (A.16)

§2,54=—00 k=0

where F is introduced for the calculation of derivative. It is worth noting that
Eq. (A.15) converges badly when the density difference between adjacent sites is large.
Therefore, the maximum bosonic particle filling should be relatively low, e.g. below
12 in our simulation, which physically corresponds to a system with relatively large

static onsite energy penalty either induced by potential or contact interaction.
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Appendix B

Fermionic Dynamics with

Density-Density Interaction

B.1 Non-Thermal Dynamics

The persistent oscillation in fermionic sector is robust in the presence of any per-
turbations which preserves the structure of Hilbert space fragmentation and frac-
tionalization. For example, here we consider fermionic density-density interaction
OV =6> ininit1 + 0.3nn;42 + 0.55n;n;4+3 and plot the dynamics of the initial state
|01110110). Compared with the case in Sec. 3.2.2, here the middle four sites are all
active, hence, spanning an isolated subspace of dimension larger than 2. Therefore the
dynamics becomes quasi-periodic as seen in Fig. B.1. We also depicted the dynamics
in the presence of additional fermionic interaction § = 0.3 (orange), which deviates

from the blue one but maintains the persistent oscillation.

ORI AR

F1GURE B.1: Comparison between the dynamics with or without fermionic density-density
interaction. Coherent oscillation survives although the oscillating patterns are different.
Parameters are the same as in Fig. 3.3.
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FIGURE B.2: (a)Level statistics of a thermal fermionic sector. (b) Local particle number
quickly thermalizes.

B.2 Non-Integrable Fermionic Sector

There are also initial states that thermalize because the dimension of the correspond-
ing fermonic fragmented subspace grows exponentially with system size. For instance,
we consider a fermionic state [111011101101110111011011100) containing 27 sites and
19 fermions, the fragmented subspace involves 9240 fermonic Fock states in the mo-
mentum and positive parity sector. The level statistics (see details in Sec. 1.2.2) in
the subspace is plotted in Fig. B.2 exhibiting Wigner-Dyson (non-integrable) statistics
and clearly shows level repulsion. The quench dynamics of the particle number on
the middle site is illustrated in the right panel for § = 0.3, which equilibrates rapidly

without any coherent oscillations.



101

Appendix C

Appendix for RMD and TMS

Driving

C.1 Proof of the Bound Eq. (5.8)

Here closely following Ref. [19] we derive the bound for the time evolution operators
of the random dipolar drives, which is made up of random sequences of dipoles Uy =

U_U, or U, = ULU_ with
Uy =exp(—iTH,),U_ = exp(—iTH_). (C.1)
The time-dependent Hamiltonian for each dipole can be written respectively as

HAt) = H_(0<t<T),H (T <t<2T), (C.2)

HB(t) = H(0<t<T),H (T <t<2T), (C.3)

which can also be rewritten as HA/B(t) = Hgatic + VA/B(t), with Hgtatic being the
time-independent part. We consider a general few body Hamiltonian involving at

most k-body interactions with finite k:

Hstatic = Z th VA/B(t) = Z v;}/B(t)v (C4)
X<k | X<k
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where X labels the set of interacting sites and | X| is the size of the set. Note, we also

have the property

B0 <t <T) =81 <t <21), (C.5)

which will be used later.
We use the parameter JB/4 to denote the local interaction strength (or single

particle energy) of the system:

A/B A
> (Il + 1% P e)l) < 7475, (C.6)
X: X3
where |[|...|| is the operator norm, and ) y.y5; denotes the summation w.r.t. the

supports containing the spin i. Based on Eq. (C.5), we can easily see J4 = JB :=J
and define \ := 2kJ as the typical local energies of the system. We introduce the

average driving norm as

G TR T ©

where 27" is used because each dipole takes time 271". Moreover by separating the time

integral and using Eq. (C.5), one arrives at

Y= S gl e
|

IX|<k T

- > g [ 1#7] + |47

] o

One can realize that VOA = VOB, which will be denoted as Vj in the following.
According to Ref. [19], both of the dipole operators, U; and Uj, can be approxi-
mated by the same zeroth order effective Hamiltonian H% = (Hy + H_)/2, and the

error is bounded as

HU1 0, — e—iH%”H <[6-270 + AT|Vp2T. (C.9)
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FiGURE C.1: Left: Fourier spectrum of random multipolar sequences for different n. Right:
Log-Log plot for the spectrum. Suppression at low frequencies scales algebraically as w™.

The exponent

ng == {MAEH)J =0T, (C.10)

with the floor function |.|, denotes the optimal order of the Floquet-Magnus expansion
before it diverges [19]. The error accumulates during the time evolution hence the
dynamics deviate from the one HloD predicts. The rigorous bound in Eq. (5.8) can be

obtained by using Eq. (C.9) and the triangle inequality for arbitrary unitaries

[WiWo — ViV = |[(Wy — Vi)Wo + Vi(Wa — V5)]|
< [[(Wh = Vi)Wal| + [[Vi(W2 — Va) | (C.11)

= W1 = Wil[ + [W2 = V2,

where we used that unitary operators do not change the norm in the last equality.

C.2 Algebraic Suppression of Spectrum at Low Frequency

We now can compare the real part of the discrete Fourier transformation of sequences
for different n. As seen in the left panel of Fig. C.1, for a random sequence (blue,
n = 0), the spectrum fluctuates randomly over all frequencies with a flat envelop.
Once imposing the multipolar structure, several suppression of frequencies appears at
different positions, for example at w = 0 for n > 1, and ar w = 7 for n > 2. By
plotting the spectrum on a Log-Log scale in the right panel, we can fit the envelope

of the spectrum and identify the scaling of suppression at low frequencies as w".
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FiGure C.2: Frequency spectrum for the TMS.

The quasiperiodic Thue-Morse sequence (TMS) corresponds to the random mul-
tipolar sequence in the n — oo limit, and practically we use n = 18 to approximate
it. In this limit, the low frequency spectrum scales as W™ thus fast approaching
zero for w — 0. Hence, the algebraic scaling converts to a gap at low frequency as

observed in Fig. C.2.

Analytical Derivation of the Low Frequency Behavior.— The low frequency
scaling can be rationalized by the autocorrelation function of the sequence. The

autocorrelation function for the n—multipolar sequence (™ (t) is defined as
R (t,7) = (™ )z (t + 7)), (C.12)

where (...) denotes the average over both different random realization and ¢. In this
case, R™(t,7) becomes translation invariant in ¢. For the fully random sequence
n = 0, one obtains the standard white noise form R (1) = §,; for the dipolar
sequence n = 1, R(l)(T) =070+ 070 — 071 — 0r,—1 in each dipolar unit cell; etc. The
Fourier transformation R(™ (w), which is also known as the spectral density, can be

defined as
A (W) = / dr R (7). (C.13)

The dipolar sequence has R(V)(w) = 2 — 2cos(w), exhibiting the scaling w? at low
frequencies.
For n > 1, one can derive the scaling in the following way. First, we know the

n—multipolar unit cells are formed by two anti-aligned (n—1)—multipoles of size 27!
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Accordingly, each (n — 1)—multipole contributes R~ (7) to the anticorrelation, and
the interplay between different types of (n — 1)—multipoles gives the negative contri-
bution — R~ (r£27 1), where £2" ! is introduced due to the relative displacement

of the two (n — 1)—multipoles. Therefore we arrive at the following iterative relation

R (r) = 2R V(7)

(C.14)
— R0 (7 —gn=1y — =D (7 4 gn= 1),
corresponding to the following relation for the spectral density
R (w) = R D(w) [2 - 2cos(2"'w)], (C.15)
with the initial condition R(®)(w) = 1. In the end, we arrive at
R™M(w) =27 ﬁ [1 - cos(27'w)], (C.16)
j=1

which has multiple zero points depending on the tunable order n. In particular, one
zero point locates at w = 0, and the nearby suppression scales as w?™. The following
relation [38]

R™(w) = lim <y¢<n> (w)\2> , (C.17)

T—o0

now helps us to identify the scaling behavior of the Fourier transformation of z(™ (t)

defined as

1 [T -

From Cauchy-Schwarz inequality, we have

(lZ @) < (I @)R), (C.19)

suggesting that <|fc(”)(w)]> is upper bounded by 1/ R(™ (w) ox w™ for a n—multipolar
sequence given a long enough time window of integration 7' — oco. Although Eq. (C.19)
is valid for the average of the Fourier spectrum, we also expect it to impose the same

bound w™ for a single sequence realization in accordance with the numerical results
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of Fig. C.1.

C.3 Additional Numerical Results for TMS Driving
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C.3.1 Determination of the Heating Time

As show in Fig. C.3, to determine the thermalization time for L = 20, we first use five

different mean energies, £+28, E+9, E, E—6, E—26, and extract the corresponding

time 1, to, 3,14, 5. In the manuscript we use £ = 0.75 and 6 = 0.03 in Fig. 5.2. The

thermalization time is defined as their average, and the standard deviation defines the

error bar, which is only visible at low frequencies.

C.3.2 Finite Size Effect
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In Fig. C.4, we depict the dynamics of the normalized energy for three different
system sizes, and parameters of the Hamiltonian are the same as in Fig. 5.2. In
panel (a) with 1/T = 20, three curves do not exhibit differences until ¢+ = 10° where
the system already heats to infinite temperature. As a comparison, in the panel
(b) with 1/T = 80, finite size effect can be observed for ¢t > 10% before the system
completely heats up. However, at the mean energy(around 0.75) used to determine
the thermalization time, the dynamics clearly converges for L > 18. In panel (c), the
scaling of thermalization time versus frequency is illustrated for different sizes, and all

three results lead to almost the same slope. Therefore, within the time window that

we are interested in, for instance ¢ < 107 | finite size effect is negligible.

C.3.3 [Initial State Dependence

The heating rate is a general feature of the Hamiltonian therefore the thermalization
time should be independent of the initial state. To verify this, in Fig. C.5, we test
different initial states either with or without translation symmetry for the same pa-
rameters of the Hamiltonian used in Fig. 5.2. All of the dynamics thermalize roughly

at the same time and lead to a similar fitted slope.
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