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ABSTRACT

HADRON PHYSICS IN TESTS OF FUNDAMENTAL

SYMMETRIES

MAY 2016

CHIEN YEAH SENG

B.Sc., TSINGHUA UNIVERSITY

M.P.H., HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Michael J. Ramsey-Musolf

Low energy precision tests of fundamental symmetries provide excellent probes

for the Beyond Standard Model Physics. Theoretical interpretations of these exper-

iments often involve the application of non-perturbative Quantum Chromodynamics

in the study of hadronic matrix elements that may either serve as signals of new

physics or Standard Model backgrounds. In this work I present a series of studies on

different hadronic matrix elements using various low-energy effective approaches to

Quantum Chromodynamics, and discuss the impact of these studies on our knowledge

of Standard Model and Beyond Standard Model physics.
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(1)
π and independent of the

anomalous magnetic moment coupling. The notation is as in Fig.
4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 One-loop diagram contributing to the nucleon EDM in relativistic
chiral perturbation theory. A square marks a TVPV interaction,
other vertices representing the T- and P-conserving interactions in
Eqs. (4.27) and (4.28). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 One-1oop contributions to the nucleon EDM. Each round dot denotes
a |∆S| = 1 weak insertion. Fig. 1(a)-(c) (and reflections)
contribute to both neutron and proton EDM; while Fig. 1(d) (and
reflection) contributes only to proton EDM. . . . . . . . . . . . . . . . . . . . . . 113

5.2 (with reflections) Class I pole diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 (with reflections) Class II pole diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1 Kinematics of e-D PVDIS: a deuteron of momentum P interacts with
an incoming electron of momentum k via an exchange of a single
photon or Z-boson, and breaks into hadrons which are denoted
collectively as X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 (Color online) Top panels: full results for lz ± 1 contributions to
Q̃p(xB). Bottom panels: behavior of Q̃∓

p (xB) ignoring the details
of nucleon wavefunction amplitudes. The constant C is defined in
Eq. (6.32). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 (Color online)The Twist-4 correction to R1 at Q2 = 4GeV2. The blue
dashed curve shows the lz = 0 contribution; purple dot-dashed
curve shows the lz = 1 contribution; brown dot-dashed curve
shows the lz = −1 contribution; the red solid curve is the sum of
all. lz = 2 contribution is negligible and therefore not
included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xvi



6.4 (color online)The unnormalized QDF of spin-up proton, splitted into
contributions from different lz components. Blue thick-dashed
curve shows contribution from lz = 0 component; purple
dot-dashed curve shows contribution from lz = 1 component;
brown dot-dashed curve shows contribution from lz = −1
component; green thin-dashed curve shows contribution from
lz = 2 component; red solid curve is the sum of all
contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

C.1 Diagram 1: The probe interacts with a quark within the proton and
the 0+ diquark is a bystander. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

C.2 Diagram 3: The probe interacts with the 0+ diquark within the
proton and the dressed-quark is a bystander. . . . . . . . . . . . . . . . . . . . . 160

C.3 Diagram 5: The probe is absorbed by a 0+-diquark, which is thereby
transformed into a 1+ diquark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

J.1 1-loop diagrams that vanish at LO HBchPT. The weak vertices could
be placed at any allowed position and therefore are not explicitly
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

xvii



INTRODUCTION

Searches for Beyond Standard Model (BSM) physics are usually classified into

three categories, namely the energy frontier, the precision frontier and the cosmic

frontier. The energy frontier generally involves collision of particle beams which are

energetic enough to create new states of matter. Countless achievements have been

made at this frontier and are impossible to be summarized in a few pages. Among

them are the discovery of the W and Z boson [1, 2], the charm [3, 4], bottom [5]

and top quark [6, 7] and most recently the Higgs-like scalar [8, 9]. On the other

hand, researches at the cosmic frontier involve studies of large scale structures of

the universe. In fact it is fair to say that most of the evidences that point towards

the existence of a BSM theory come from observations at this frontier. Examples

include the discovery of the solar neutrino deficit that gave the first hint for neutrino

oscillation [10, 11], the study of galaxy rotation curves [12, 13] and the gravitational

lensing of Bullet Clusters that provide proofs for the existence of dark matter [14]

and the study of the Cosmic Microwave Background (CMB) together with large scale

structure measurements which reconfirms the matter-antimatter asymmetry in cosmic

scale [15, 16] in addition to our daily experience.

In this work, we will however concentrate on the third frontier, namely the pre-

cision frontier. Complementary to the two frontiers above, researches carried out at

the precision frontier involve measuring physical quantities to a very high precision

and comparing theoretical predictions with experimental measurements. A typical

example is the measurement of the anomalous magnetic dipole moment (AMDM) of

the electron to one part in a trillion [17] which agrees with the prediction of Quantum

1



Electrodynamics (QED) [18], showing that the theory works with high accuracy. Be-

side that, the study of the left-right asymmetry in the electron-deuteron deep inelastic

scattering (DIS) provided the value of the weak mixing angle θw in Standard Model

(SM)[19]. The measurement of Z-mass and width gave a range of possible Higgs mass

even before the direct measurement from LHC [20]. Recently, the anomaly in the

muon g−2 experiment provides interesting but not yet definite signal for the possible

existence of BSM physics [21].

Among all experiments at the precision frontier, tests for fundamental symmetries

are of particular interest for us. Symmetry is one of the basic ingredients of the

quantum field theory (QFT) which is believed to be the correct language to describe

the microscopic world. There are discrete symmetries such as charge conjugation (C),

parity (P), time reversal (T) and also continuous symmetries such as the invariance of

the theory under global and local phase transformations which lead to conservation

laws such as the charge conservation. The study of how fundamental symmetries

are conserved or broken in basic laws of nature is a persistent theme in modern

physics. The first definite sign for the violation of a particular discrete symmetry,

namely parity, was observed by Wu and her company in the β-decay of 60Co[22]. This

observation was an essential input in the formulation of the charged weak interaction

theory in terms of left-handed fermions. It was found later through neutral kaon

decays that even CP is violated in the weak interaction [23] due to the existence of

the complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix [24]. Tests of

conservation laws also play crucial roles in the search of BSM physics. As an example,

the experimental confirmation of neutrino oscillation proved that lepton flavors are not

conserved and unavoidably pointed us to the need of a BSM explanation [25, 26, 27].

Besides, many BSM scenarios predict large violation of discrete symmetries such as

C and CP-violation which could be tested in low energy precision experiments.
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Since there are many possible candidates for the BSM theory, it may sound compli-

cated if we have to study each of them separately. One could therefore take another

approach (namely the “bottom-up approach”) following the language of Effective

Field Theory (EFT) [28]. In this approach the only assumption is that the new de-

grees of freedom (DOFs) in the BSM physics are heavy and can be integrated out

to produce higher-dimensional effective operators consist of SM DOFs. As a result,

one just need to write down the most general Lagrangian consists of all SM DOFs

and respects the SM gauge invariance. There is an infinite tower of operators satis-

fying these two criteria, but operators with higher dimensions are more suppressed

by inverse powers of the energy scale of the unknown BSM physics. Therefore, to

achieve a level of finite precision one only needs to retain a finite number of opera-

tors. To such extent the effective theory is still predictive despite the fact that it is

non-renormalizable in the conventional sense. There is only one dimension-5 operator

that respects SM gauge symmetry and it gives the Majorana mass term for neutri-

nos. In dimension 6 there are 59 operators (barring flavor structures and Hermitian

conjugations) that respect SM gauge symmetry and conserve baryon number [29].

Currently we do not find any significant deviation from SM so precision tests of

fundamental symmetries are placing bounds on the Wilson coefficients of the effec-

tive operators. However, once our experiment is precise enough to discover a finite

deviation from the SM prediction, then we immediately face the problem of which

linear combination of operators is responsible for the observed result. It is there-

fore necessary to perform symmetry tests in different particle systems to disentangle

contributions from different operators. Note that apart for elementary particles such

as electron, systems at which precision experiments are performed are usually low-

energy bound states of the strong interaction. We must be able to accurately evaluate

matrix elements of the effective operators with respect to these bound states in or-

der to draw accurate bounds on the Wilson Coefficients of these operators from our
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results of precision experiments. However, when we try to proceed in this direction

we immediately run into the difficulty in performing analytic calculations involving

bound states of the strong interaction from first principle.

Quantum Chromodynamics (QCD) is a gauge theory that describes the strong

interaction between quarks through the exchange of gluons which are SU(3)C gauge

bosons. Even though there are many evidences that it is indeed the correct the-

ory of the strong interaction, only very limited analytical results using perturbation

theory at high energy can be derived from first principle, thank to its asymptotically-

free behavior at high energy [30, 31]. On the other hand, the theory becomes non-

perturbative at energy < 1 GeV so the conventional perturbation theory based on the

expansion in powers of the strong coupling constant αs fails. Some very interesting

emergent features of theory in this energy regime such as confinement and dynamical

chiral symmetry breaking (DCSB) are still not well understood. Although lattice

QCD [32] provides a promising way to extract numerical results from first principle

calculations, but it is subject to numerous technical difficulties and therefore has a

limited range of application. Furthermore, not just satisfied by just obtaining numeri-

cal answers, we need a more intuitive understanding of how low-energy QCD behaves.

For the latter purpose and also practical reasons, many effective approaches to low

energy QCD are formulated that allow studies of hadronic or nuclear properties, and

each of them tries to capture some known behaviors of the original theory such as

confinement and chiral symmetry breaking. Among them are the Chiral Perturbation

Theory (ChPT), constituent quark model, Regge Theory, Dyson-Schwinger Equation

(DSE), QCD sum rules and others.

We have two main tasks in this work. On the one hand, we will introduce a number

of effective approaches to QCD which allow us to perform analytical and numerical

studies of both static and dynamical properties of hadrons. On the other hand, we will

apply these effective approaches in the calculation of hadronic matrix elements and the
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determination of specific SM backgrounds that enter various precision experiments in

tests of fundamental symmetries. In particular, we will concentrate on EDM searches

in hadrons, precision experiments involving the neutron β-decay and the study of

P-violation in the electron-deuteron parity-violating deep inelastic scattering (e-D

PVDIS).

EDMs And Hadronic Matrix Elements

Ever since the discovery of P-violation in the weak interaction, people are puzzled

by the fact that discrete symmetries such as P and CP are violated only in the weak

interaction and not in other interactions. Various experiments have been carried out

to test the conservation of these discrete symmetries in strong and electromagnetic

sector. Back in the 50s, Smith, Purcell and Ramsey had suggested the test of P-

invariance in the strong interaction by searching for intrinsic electric dipole moment

(EDM) of the neutron [33]. Since then, experimental techniques have improved much

and searches of permanent EDMs in different particle systems have been carried out

but so far all of them have returned null results. This raised another interesting

question known as the strong CP-problem, namely: due to the non-trivial vacuum

structure of QCD, one can write down a term in the Lagrangian which is P and CP-

violating and is characterized by the parameter θ̄. In general there is no constraint

on the value of θ̄ by the theory itself so it could be of order one by naturalness.

However, the (so-far) vanishing of EDMs in all hadronic systems indicates that the

value of θ̄ has to be fine-tuned to an extremely small number, which makes the whole

theory seems unnatural. There have been several proposed solution to this problem.

Among them are the massless up quark solution [34], the Peccei-Quinn symmetry [35]

and the Nelson-Barr mechanism [36, 37] but so far none of them seems completely

satisfactory.
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Particle Current upper bound on EDM (e cm)

e 8.7 × 10−29

Hg 3.1 × 10−29

p 7.9 × 10−25

n 2.9 × 10−26

Table I.1. Examples of current upper bounds on EDM of particles

Apart from mere curiosity, searches of permanent EDMs are also essential in the

understanding of the baryon asymmetry of the universe (BAU). According to the

three Sakharov criteria, a necessary condition for the BAU to occur is the existence

of C and CP-violating interactions [38]. It is well-known that the amount of CP-

violation provided by the CKM matrix in SM is too small to explain the amount of

asymmetry we observed [39, 40], so BSM theories with extra sources of CP-violation

are very much desired. These theories are usually subject to constraints from low

energy precision measurements such as EDM searches. In this sense, EDM searches

provide very sensitive probes to BSM theories which are relevant to the understanding

of baryogenesis, namely the mechanism which is responsible for the generation of the

current BAU.

Table I.1 gives examples of current upper bounds on EDMs for some representative

particles (more about the current and future experimental status of EDM searches

will be described in the following chapters). In terms of EFT, if we restrict ourselves

to the first generation of quarks and leptons, then there are altogether 13 operators

which are CP-odd and with dimension less than or equal to 6. They could induce

CP-violating observables such as EDMs at low energy systems therefore the search of

EDMs in hadronic and nuclear systems is a very efficient way to constrain the Wilson

coefficients of these operators. However, in order to construct a precise formula which

links the Wilson coefficients of the 13 operators to the EDMs we probe at hadronic
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systems we must be able to reduce the theoretical uncertainty in the calculation of

relevant hadronic matrix elements.

In this work we will present several case studies on EDMs induced by BSM physics

in different hadronic systems. First we will work with the ρ-meson which is the

simplest possible hadron that could possess an EDM. The aim of this work is to

find a single framework that can deal with the hadronic matrix elements of different

sources of CP-violation in a unified and coherent manner. We will show that the

Dyson-Schwinger Equation is good choice for this purpose. Within the framework

of DSE we will compute the ρ-EDM induced by the quark EDM, the quark chromo-

EDM, the QCD θ-term and the four quark operator (which covers most operators

of P and CP-violation up to dimension 6). This work shall serve as a prototype for

future studies of more realistic systems such as nucleon within the same theoretical

framework.

On the other hand, it is known that a significant amount of BSM-induced nucleon

EDM enters in the form of long-distance contribution, namely the contribution via

effective P and CP-odd pion-nucleon couplings. Chiral Perturbation Theory provides

a model-independent description of the properties of QCD in this regime as it is

simply the most general theory at low energy which is consistent with the exact

and approximate symmetries of QCD. With the aid of ChPT we will perform an

investigation on the pion loop correction to the nucleon EDM induced by the P and

T-odd pion-nucleon coupling ḡ
(i)
π .

Finally, we would like to mention that although it is commonly understood that

SM-induced EDMs are too small to be observed with the current experimental preci-

sion, it is still worth a detailed study since the complex phase in the CKM matrix is

currently the only experimentally-confirmed source of CP-violation in nature. For this

purpose we will also present an updated work on the SM-induced nucleon EDM. We

will show that previous studies on this topic were based on a flawed effective theory
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of hadrons that does not posses a valid expansion scheme at low energy. Also, their

results face large uncertainties due to poorly known physical constants in the weak

sector at that time. Our updated study will try to fix these two problems and obtain

a better determination of the nucleon EDM with a smaller theoretical uncertainty.

Scalar And Tensor Charges In The Neutron β-Decay

The β-decay of nuclei became an excellent playground for the test of fundamental

symmetries since the discovery of parity violation in the β-decay of 60Co which led

eventually to the V-A structure of the charged weak interaction. Recently nuclear

β-decays have been studied extensively for the purpose of BSM searches [41]. In

the language of EFT, the most general effective Lagrangian without derivatives that

triggers the nuclear β-decay can be parameterized as [42]

Lβ = −4GFVud√
2

∑

α,β,γ

aγ
αβ ēαΓγνeūΓγdβ + h.c. (1)

Here α, β = L,R denote the chirality of fermions while γ = S, V, T labels the Dirac

structure of Γ which can be either scalar, vector or tensor.

If we concentrate on the β-decay of neutron, then the differential width of this

process can be parameterized as [43]

dΓ

dEedΩedΩν

∝ |~pe|EeE
2
ν(1 +

~pe · ~pν

EeEν

+ ŝ · (A ~pe

Ee

+B
~pν

Eν

+D
~pe × ~pν

EeEν

)). (2)

In particular, any non-zero value of the coefficient D will be a signature of T-violation

(which implies CP-violation assuming that CPT is a good symmetry) in the neutron

β-decay. The current best experimental determination of the neutron D-coefficient

is given by D = (−0.96 ± 1.89 ± 1.01) × 10−4 which is consistent with zero [44].

Effects of T-violation in many BSM scenarios can therefore be tested by more precise

experimental determination of the D-coefficient.
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In terms of the parametrization in Eq. (1), the value of D is related to the

imaginary part of aγ
αβ which depends on the specific BSM realization. However the

application of Eq. (1) in the computation of the neutron D-coefficient given in Eq.

(2) requires the evaluation of the hadronic matrix element 〈p| ūαΓγdβ |n〉 at small

momentum transfer. When γ = V , the relevant matrix elements are called the vector

(gV ) and axial (gA) charges. They can be determined quite precisely by experiment.

On the other hand, when γ = S or T the corresponding hadronic matrix elements

are called scalar (gS) and tensor (gT ) charges respectively. The current experimental

values of these charges suffer from very large uncertainty [45] so theoretical modelings

are needed.

We will present a calculation of the nucleon scalar and tensor charges using the

Dyson-Schwinger Equation formalism with a simplified vector-like interaction be-

tween quarks. This simplified model has been shown to give identical results with

more sophisticated truncation schemes of DSE when dealing with static behaviors of

hadrons. The application of this formalism allows us to compute hadronic matrix

elements using the conventional Feynman diagram approach with dressed propaga-

tors and vertices while only very little amount of numerical calculation is required.

In particular, we will show that the inclusion of an axial-like diquark correlation in

the nucleon is essential to reproduce a nucleon tensor charge that falls within current

range of uncertainty of the current experiment. This work therefore contributes to

both the search of BSM physics and also the understanding of quark correlations in

the nucleon.

Higher-Twist Correction And The Study of Nucleon Spin In

Parity-Violating Deep Inelastic Scattering

A good way to study the parity violation in the weak interaction is to perform

deep inelastic scattering between on the deuteron target with longitudinally-polarized
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electrons. The left-right symmetry ARL of this process is defined as:

ARL ≡ dσR − dσL

dσR + dσL

(3)

where dσR(L) is the differential cross section of the process with right (left)-handed

electron. If one neglects sea quark effects and assume charge symmetry, then it turns

out that the leading-order SM prediction to ARL is completely free from any influence

from the low energy QCD. It thus provides an accurate measure to the weak mixing

angle θW of the electroweak theory.

The 12GeV upgrade of the Jefferson Lab and the usage of the SoLID spectrometer

enable a 0.5% precision measurement of ARL in the e-D PVDIS over a broad range of

kinematics [46]. A precise measurement of ARL and the search of its deviation from

the SM-prediction provide sensitive probes or constraints for many BSM scenarios.

However, at this level of precision many SM background effects have to be appro-

priately taken into account in order to disentangle them from BSM signals. Among

them is the “higher-twist” effect which originated from QCD interactions between

partons. It will add corrections that scale as inverse powers of q2 on top of the free

parton picture where q is the momentum change of the electron.

Previous studies of the higher-twist effects made use of effective quark models that

assume isotropic (polar-)angular distribution of quarks in the nucleon. Examples of

them are the QCD bag model [47] and the isotropic light-cone wavefunctions [48]. In

our work, we would like to find out how things may change if a particular component

of the parton angular momentum which, with a specific choice of gauge, can be inter-

preted as the orbital angular momentum of the quarks in the nucleon, is taken into

account. This is motivated by the yet unsolved problem about how one could decom-

pose the spin of a nucleon in terms of different components of angular momentum of

quarks and gluons. We will show in this work that, apart from resolving one of the

many SM backgrounds to the search of BSM physics in e-D PVDIS, the study of the
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higher-twist matrix element is interesting by itself as it sheds new lights on the study

of the rule of angular momentum in the structure of the nucleon.

The Arrangement Of The Contents

The contents of this thesis are arranged as follows: in Chapter 1 I will provide

a brief introduction to the Dyson-Schwinger Equation and describe the “contact-

interaction” approximation and apply the DSE formalism to compute the EDM of the

ρ-meson induced by various CP-violating effective operators. In Chapter 2 I apply the

same formalism in the calculation of the scalar and tensor charges of the nucleon. In

Chapter 3 I will introduce some essential concepts of the Chiral Perturbation Theory

and its heavy baryon reduction. In Chapter 4 I apply the two-flavor ChPT to compute

the nucleon EDM induced by the P,T-odd pion-nucleon coupling. In Chapter 5 I will

apply the three-flavor ChPT to study the SM-induced nucleon EDMs. In Chapter 6

I study the higher-twist correction to the e-D PVDIS and draw connections with the

nucleon spin problem. In the last chapter I will present some general discussions and

draw my conclusions.
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CHAPTER 1

ELECTRIC DIPOLE MOMENT OF THE ρ-MESON

1.1 Introduction

The action for any local quantum field theory is invariant under the transformation

generated by the antiunitary operator CPT , which is the product of the inversions:

C, charge conjugation; P , parity transformation; and T , time reversal. The combined

CPT transformation provides a rigorous correspondence between particles and an-

tiparticles, and it relates the S matrix for any given process to its inverse, where all

spins are flipped and the particles replaced by their antiparticles. Lorentz and CPT

symmetry together have many consequences, amongst them, that the mass and total

width of any particle are identical to those of its antiparticle.

It is within this context that the search for the intrinsic electric dipole moment

(EDM) of an elementary or composite but fundamental particle has held the fasci-

nation of physicists for over sixty years [49]. Its existence indicates the simultaneous

violation of parity- and time-reversal-invariance in the theory that describes the par-

ticle’s structure and interactions; and the violation of P - and T -invariance entails

that CP symmetry is also broken. This last is critical for our existence because

we represent a macroscopic excess of matter over antimatter. As first observed by

Sakharov [38], in order for a theory to explain an excess of baryon matter, it must

include processes that change baryon number, and break C- and CP -symmetries;

0Reprinted article with permission from M. Pitschmann, C. Y. Seng, M. J. Ramsey-Musolf,
C. D. Roberts, S. M. Schmidt and D. J. Wilson, Phys. Rev. C 87 (2013) no.1, 015205, Copyright
(2013) by the American Physical Society. DOI: http://dx.doi.org/10.1103/PhysRevC.87.015205
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and the relevant processes must have taken place out of equilibrium, otherwise they

would merely have balanced matter and antimatter. (Alternately, the presence of

CPT violation can circumvent the out-of-equilibrium environment.)

The electroweak component of the Standard Model (SM) is capable of satisfying

Sakharov’s conditions, owing to the existence of a complex phase in the 3 × 3-CKM

matrix which enables processes that mix all three quark generations. However, this

high-order process is too weak to explain the observed matter-antimatter asymmetry

[50, 51, 52]. Hence, it is widely expected that any description of baryogenesis will

require new sources of CP violation beyond the SM. This presents little difficulty,

however, because extensions of the SM typically possess CP -violating interactions,

whose parameters must, in fact, be tuned to small values in order to avoid conflict

with known bounds on the size of such EDMs [52, 53, 54, 55, 56]. (For recent analyses,

see, e.g., Refs. [57, 58, 59] and references therein.)

The question here is how such bounds should be imposed. That is not a problem

for elementary particles, like the electron. However, it is a challenge when the SM

extension produces an operator involving current-quarks and/or gluons. In that case

the CP violation is expressed as an hadronic property and one must have at hand a

nonperturbative method with which to compute the impact of CP -violating features

of partonic quarks and gluons on the hadronic composite.

To elucidate, extensions of the SM are typically active at some large but unspeci-

fied energy-scale, Λ, and their effect at an hadronic scale is expressed in a low-energy

effective Lagrangian:

Leff ∼
∑

j,k

Kj O(k)
j Λ4−k, (1.1)

where O(k)
j are composite CP -odd local operators of dimension k ≥ 4 and {Kj}

are dimensionless strength parameters, which monitor the size of the model’s CP -

violating phases and commonly evolve logarithmically with the energy scale. The

calculation of an hadronic EDM therefore proceeds in two steps. The first, easier,
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part requires calculation of the coefficients {Ki} in a given model. This involves the

systematic elimination of degrees-of-freedom that are irrelevant at energy-scales less

than Λ. The second, far more challenging exercise, is the nonperturbative problem of

translating the current-quark-level interaction in Eq. (1.1) into observable properties

of hadrons.

We illustrate the procedure in the case of the ρ-meson. Not that there is any hope

of measuring a ρ-meson EDM but because the nonperturbative methods necessary

can most readily be illustrated in the case of systems defined by two valence-quark

degrees-of-freedom. In taking this path, we follow other authors [60, 61, 62] but

will nonetheless expose novel insights, especially because we consider more operator

structures than have previously been considered within a single unifying framework.

It is worth remarking here that particles with spin also possess a magnetic dipole

moment. That moment is aligned with the particle’s spin because it is the only

vector available. The same is true of the expectation value of any electric dipole

moment.

Herein we shall estimate the contribution of some dimension four, five and six op-

erators to the EDM of the ρ+-meson; viz., the impact on the ρ of the local Lagrangian

density

Leff = −iθ̄ g2
s

32π2
Ga

µνG̃
a
µν −

i

2

∑

q=u,d

dq q̄ γ5σµνq Fµν

− i

2

∑

q=u,d

d̃q q̄
1
2λ

aγ5σµνq gsG
a
µν +

K

Λ2
iεjk

[

Q̄jd Q̄kγ5u+ h.c.
]

, (1.2)

where: latin superscripts represent colour; gs is the strong coupling constant; Fµν and

Ga
µν are photon and gluon field-strength tensors, respectively, and G̃a

µν = (1/2)ǫµνλρG
a
λρ;

{Q̄i|i = 1, 2} = {ūL, d̄L}, with the subscript indicating left-handed; θ̄ is QCD’s effec-

tive θ-parameter, which combines θQCD and the unknown phase of the current-quark-

mass matrix; and {dq}, {d̃q} are quark EDMs and chromo-EDMs, respectively.
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We note that Eq. (1.2) is expressed at a renormalisation scale ζ ∼ 2 GeV, which

is far below that of electroweak symmetry breaking but still within the domain upon

which perturbative QCD is applicable. Moreover, we have chosen to include just

one dimension-six operator in the Lagrangian; i.e., a particular type of four-fermion

interaction. There is a host of dimension-six operators, Weinberg’s CP-odd three-

gluon vertex amongst them [63]. However, for our illustrative purpose, nothing is lost

by omitting them because the potency of the one operator we do consider can serve

as an indication of the strength with which each might contribute.

One merit of our analysis of the contribution from Eq. (1.2) to the EDM of the

ρ+-meson is the connection of these EDM responses with values of a vast array of

hadron observables that are all computed within precisely the same framework using

exactly the same parameters [64, 65, 66, 67, 68, 69]. We explain this framework in

Sec. 1.2. In addition to providing the first such comprehensive treatment, our study is

novel in considering the impact of a dimension-six operator on the ρ+-meson’s EDM.

We introduce the ρ-meson electromagnetic form factors in Sec. 1.3. The effects

of Eq. (1.2) on the ρ-meson bound-state are analysed in Sec. 1.4. Each interaction

term is considered separately, so that we present a raft of algebraic formulae that

are readily combined, evaluated and interpreted. Numerical results are provided in

Sec. 1.5 and placed in context with previous studies. Section 1.6 is an epilogue.

1.2 ρ-meson as a Bound State

1.2.1 ρ-γ Vertex

The ρ+-meson is a composite particle and thus its EDM appears in the dressed

vertex that describes its coupling with the photon; viz.,
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P T
αα′(p)Γα′µβ′(p, p′)P T

β′β(p′) = P T
αα′(p)

{

(p+ p′)µ[−δα′β′E(q2) + qα′qβ′Q (q2)]

−(δµα′qβ′ − δµβ′qα′)M (q2)

−iεα′β′µσqσD(q2)
}

P T
β′β(p′) , (1.3)

where: pα is the momentum of the incoming ρ-meson; p′β, that of the outgoing ρ;

qµ = p′µ − pµ; and

P T
αβ(p) = δαβ − pαpβ

p2
. (1.4)

The vertex involves four scalar form factors whose q2 = 0 values are understood as

follows: E(0), electric charge, which is “1” in this case; M (0), magnetic moment,

µρ, in units of e/[2mρ], where e is the magnitude of the electron charge; Q (0) =

(2/m2
ρ)(Qρ + µρ − 1), with Qρ the meson’s electric quadrupole moment; and D(0) is

the meson’s electric dipole moment, in units of e/[2mρ].

1.2.2 Contact Interaction

Our goal is calculation of the last of these, D(0), and for this we choose to

work within the continuum framework provided by QCD’s Dyson-Schwinger equa-

tions (DSEs) [70, 71, 72]. To be specific, we perform the computation using a

global-symmetry-preserving treatment of a vector×vector contact-interaction because

that has proven to be a reliable explanatory and predictive tool for hadron proper-

ties measured with probe momenta less-than the dressed-quark mass, M ∼ 0.4 GeV

[64, 65, 67, 66, 68, 69].

To expand upon the reasons for this choice of interaction we note that DSE kernels

with a closer connection to perturbative QCD; namely, which preserve QCD’s one-

loop renormalisation group behaviour, have long been employed in studies of the

spectrum and interactions of mesons [73, 74, 75]. Such kernels are developed in the

rainbow-ladder approximation, which is the leading-order in a systematic and global-

symmetry-preserving truncation scheme [76, 77]; and their model input is expressed
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via a statement about the nature of the gap equation’s kernel at infrared momenta.

With a single parameter that expresses a confinement length-scale or strength [78,

79], they have successfully described and predicted numerous properties of vector

[79, 80, 81, 82, 83] and pseudoscalar mesons [79, 82, 83, 84, 85, 86, 87] with masses

less than 1 GeV, and ground-state baryons [88, 89, 90, 91]. Such kernels are also

reliable for ground-state heavy-heavy mesons [92]. Given that contact-interaction

results for low-energy observables are indistinguishable from those produced by the

most sophisticated interactions, it is sensible to capitalise on the simplicity of the

contact-interaction herein.

The starting point for our study is the dressed-quark propagator, which is obtained

from the gap equation:

S(p)−1 = iγ · p+m+

∫

d4q

(2π)4
g2Dµν(p− q)

λa

2
γµS(q)

λa

2
Γν(q, p), (1.5)

wherein m is the Lagrangian current-quark mass, Dµν is the vector-boson propagator

and Γν is the quark–vector-boson vertex. We use

g2Dµν(p− q) = δµν
4παIR

m2
G

, (1.6)

where mG = 0.8 GeV is a gluon mass-scale typical of the one-loop renormalisation-

group-improved interaction introduced in Ref. [83], and the fitted parameter αIR/π =

0.93 is commensurate with contemporary estimates of the zero-momentum value of a

running-coupling in QCD [93, 94]. Equation (1.6) is embedded in a rainbow-ladder

truncation of the DSEs, which is the leading-order in the most widely used, symmetry-

preserving truncation scheme [77]. This means

Γν(p, q) = γν (1.7)
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in Eq. (1.5) and in the subsequent construction of the Bethe-Salpeter kernels. One

may view the interaction in Eq. (1.6) as being inspired by models of the Nambu–Jona-

Lasinio (NJL) type [95]. However, in implementing the interaction as an element in

a rainbow-ladder truncation of the DSEs, our treatment is atypical; e.g., we have a

single, unique coupling parameter, whereas common applications of the NJL model

have different, tunable strength parameters for each collection of operators that mix

under symmetry transformations.

Using Eqs. (1.6), (1.7), the gap equation becomes

S−1(p) = iγ · p+m+
16π

3

αIR

m2
G

∫

d4q

(2π)4
γµ S(q) γµ , (1.8)

an equation in which the integral possesses a quadratic divergence, even in the chiral

limit. When the divergence is regularised in a Poincaré covariant manner, the solution

is

S(p)−1 = iγ · p+M , (1.9)

where M is momentum-independent and determined by

M = m+M
4αIR

3πm2
G

∫ ∞

0

ds s
1

s+M2
. (1.10)

Our regularisation procedure follows Ref. [96]; i.e., we write

1

s+M2
=

∫ ∞

0

dτ e−τ(s+M2)

→
∫ τ2

ir

τ2
uv

dτ e−τ(s+M2) (1.11)

=
e−(s+M2)τ2

uv − e−(s+M2)τ2
ir

s+M2
, (1.12)

where τir,uv are, respectively, infrared and ultraviolet regulators. It is apparent from

Eq. (1.12) that τir =: 1/Λir finite implements confinement by ensuring the absence of
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quark production thresholds [70, 97]. Since Eq. (1.6) does not define a renormalisable

theory, then Λuv := 1/τuv cannot be removed but instead plays a dynamical role,

setting the scale of all dimensioned quantities.

Using Eq. (1.11), the gap equation becomes

M = m+M
4αIR

3πm2
G

C iu(M2) , (1.13)

where

C iu(M2) = M2C
iu
(M2) (1.14)

= M2
[

Γ(−1,M2τ 2
uv) − Γ(−1,M2τ 2

ir)
]

, (1.15)

with Γ(α, y) the incomplete gamma-function, and, for later use, we define

C iu
1 (z) = −z(d/dz)C iu(z). (1.16)

In rainbow-ladder truncation, with the interaction in Eq. (1.6), the homogeneous

Bethe-Salpeter equation for the colour-singlet ρ-meson is

Γρ
µ(k;P ) = −16π

3

αIR

m2
G

∫

d4q

(2π)4
γσχ

ρ
µ(q;P )γσ , (1.17)

where χρ
µ(q;P ) = S(q + P )Γρ

µ(q;P )S(q) and Γµ(q;P ) is the meson’s Bethe-Salpeter

amplitude. Since the integrand does not depend on the external relative-momentum,

k, then a global-symmetry-preserving regularisation of Eq. (1.17) yields solutions that

are independent of k. With a dependence on the relative momentum forbidden by
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Eπ Fπ Eρ M κ
1/3
π mπ mρ fπ fρ

3.639 0.481 1.531 0.368 0.243 0.140 0.929 0.101 0.129

Table 1.1. Results obtained with αIR/π = 0.93 and (in GeV): m = 0.007, Λir = 0.24 ,
Λuv = 0.905 [66]. The Bethe-Salpeter amplitudes are canonically normalised; κπ is
the in-pion condensate [98, 99, 100]; and fπ,ρ are the mesons’ leptonic decay constants.
Empirical values are κπ ≈ (0.22 GeV)3 and [101] fπ = 0.092 GeV, fρ = 0.153 GeV.
All dimensioned quantities are listed in GeV.

the interaction, then the rainbow-ladder vector-meson Bethe-Salpeter amplitude takes

the form

Γρ
µ(P ) = γT

µEρ(P ), (1.18)

where Pµγ
T
µ = 0, γT

µ + γL
µ = γµ. We assume isospin symmetry throughout and hence

do not explicitly include the Pauli isospin matrices.1

Values of some meson-related quantities, of relevance herein and computed using

the contact-interaction, are reported in Table 1.1. We quote pion properties in order

to provide a broader picture: the pion’s Bethe-Salpeter amplitude is

Γπ(P ) = γ5

[

iEπ(P ) +
1

M
γ · PFπ(P )

]

. (1.19)

1.3 ρ-meson Form Factors

At this point we can proceed to computation of the form factors. In order to

ensure a symmetry-preserving treatment, one must calculate the vertex in Eq. (1.3)

at the same level of approximation as used for the dressed-quark propagator and

meson Bethe-Salpeter amplitude; i.e., the generalised impulse approximation:

Γαµβ(p, p′) = Γu
αµβ(p, p′) + Γd

αµβ(p, p′) , (1.20)

1Note, too, that we use a Euclidean metric: {γµ, γν} = 2δµν ; γ†
µ = γµ; γ5 = γ4γ1γ2γ3,

tr[γ5γµγνγργσ] = −4ǫµνρσ; σµν = (i/2)[γµ, γν ]; a · b =
∑4

i=1
aibi; and Pµ timelike ⇒ P 2 < 0.
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p p′

q

k−+ k++

k−−

Γα Γβ

Γµ

Figure 1.1. Impulse approximation to the ρ-γ vertex, Eq. (1.21): solid lines –
dressed-quark propagators; and shaded circles, clockwise from top – Bethe-Salpeter
vertex for quark-photon coupling, and Bethe-Salpeter amplitudes for the ρ+-meson.

Γf
αµβ(p, p′) = 2

∫

d4k

(2π)4
TrCD

{

iΓ
ρj

β (k;−p′)S(k++)

×iΓf
µ(k−+, k++)S(k−+)iΓρj

α (k − q/2; p)S(k−−)

}

, (1.21)

wherein the trace is over colour and spinor indices and kαβ = k + αq/2 + βp/2. We

illustrate Eq. (1.21) in Fig. 1.1.

In evaluating Eq. (1.20) we write:

Sf = S + δCP Sf , f = u, d, (1.22)

where S is given in Eq. (1.9), with the dressed-mass obtained from Eq. (1.10), and the

broken-CP corrections δCP Sf are detailed below; and the ρ-amplitude

Γρj
α = γT

αEρ(P ) + ΓρjCP
α , (1.23)

with Eρ(P ) explained in connection with Eq. (1.18) and the broken-CP corrections

Γ
ρjCP
α explained below. Our computed values for the dressed-quark mass, M , and Eρ

are listed in Table 1.1.
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The remaining element in Eq. (1.20) is the dressed-quark–photon vertex. We are

only interested in the q2 = 0 values of the form factors and hence may use

eΓµ(p1, p2) = eQ̃ γµ + iD̃γ5σµν(p2 − p1)ν (1.24)

=: e diag[euΓ
u
µ(p1, p2),−edΓ

d
µ(p1, p2)], (1.25)

where e is the positron charge, Q̃ = diag[eu = 2/3,−ed = 1/3] and D̃ = diag[du,−dd],

with df the EDM of a current quark with flavour f . N.B. The second term in Eq. (1.24)

describes the explicit current-quark EDM interaction in Eq. (1.2). In Sec. 1.4 we show

that the other terms in Eq. (1.2) generate additional contributions that interfere with

this explicit term.

Note that both structures in the vertex, Eq. (1.24), are in general multiplied by

momentum-dependent scalar functions. Naturally, the vector Ward-Takahashi iden-

tity ensures that the coefficient of the Q̃ γµ term is “1” at q2 = 0. In connection with

the tensor term, one knows from Ref. [66] that a tensor vertex is not dressed in the

rainbow-ladder treatment of the contact interaction. However, with a more sophisti-

cated interaction, strong interaction dressing of the γ5σµν part of the quark-photon

vertex might be significant, given that the dressed-quark-photon vertex certainly pos-

sesses a large dressed-quark anomalous magnetic moment term owing to dynamical

chiral symmetry breaking [102]. At q2 = 0, this could enhance the strength of the D̃

term by as much as a factor of ten. If so, then sensitivity to current-quark EDMs is

greatly magnified. It is worth bearing this in mind.

Working with Eq. (1.3), it is sufficient herein to employ three projection operators:

P 1
αµβ = P T

ασ(p)PµP T
σβ(p′) , (1.26a)

P 2
αµβ = P T

αα′(p) P T
β′β(p′)

(

δµβ′qα′ − δµα′qβ′

q2
+
Pµδα′β′

6p2

)

, (1.26b)

P 3
αµβ =

1

2iq2
P T

αα′(p)εα′β′µσqσP T
β′β(p′) , (1.26c)
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with p′ = p+ q, P = p+ p′, for then

E(0) = lim
q2→0

1

12m2
ρ

P 1
αµβΓαµβ , (1.27a)

M (0) = lim
q2→0

1

4
P 2

αµβΓαµβ , (1.27b)

D(0) = lim
q2→0

P 3
αµβΓαµβ , (1.27c)

and µρ = M (0) e/[2mρ], dρ = D(0) e/[2mρ]. So long as a global-symmetry-preserving

regularisation scheme is implemented, E(0) = 1; the value of M (0) is then a predic-

tion, which can both be compared with that produced by other authors and serve as

a benchmark for our prediction of D(0).

At this point one has sufficient information to calculate the ρ-meson’s magnetic

moment. We simplify the denominator in Eq. (1.20) via a Feynman parametrisation:

(

k2
++ +M2

)−1 (
k2
−+ +M2

)−1 (
k2
−− +M2

)−1

= 2

∫ 1

0

∫ 1−x

0

dx dy

[

k2 +M2 +
1

4

[

p2 − 2 (1 − 2x− 2y) p · q + q2
]

−(1 − 2y) q · k + (1 − 2x) p · k
]−3

. (1.28)

This appears as part of an expression that is integrated over four-dimensional k-

space. The expression is simplified by a shift in integration variables, which exposes

a denominator of the form 1/[k2 + M̃2]3, with

M̃2 = M2 + x(x− 1)m2
ρ + y(1 − x− y)Q2 . (1.29)

One thereby arrives at a compound expression that involves one-dimensional inte-

grals of the form in Eq. (1.10), which we regularise via Eq. (1.11) and generalisations

thereof; viz.,
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Figure 1.2. Evolution of ρ-meson magnetic moment with current-quark mass. m =
170 MeV corresponds to the mass of the s-quark in our treatment of the contact
interaction [69], so the difference between Mρ(0) and Mφ(0) is just 1%.

∫

ds
s

[s+ ω]2
= − d

dω
C iu(ω) =: C

iu

1 (ω) , (1.30a)

∫

ds
s

[s+ ω]3
=

1

2

d2

dω2
C iu(ω) =: C

iu

2 (ω) , (1.30b)

∫

ds
s2

[s+ ω]3
= C

iu

1 (ω) − ωC
iu

2 (ω) , (1.30c)

etc. Details for this component of our computation may be found in Ref. [66] and

pursuing it to completion one obtains the magnetic moment listed in Table 1.2.

We depict the evolution of M (0) with current-quark mass in Fig. 1.2: M (0) is

almost independent of m. This outcome matches that obtained in Ref. [81] using a

renormalisation-group-improved one-gluon exchange kernel and hence a momentum-

dependent dressed-quark mass-function of the type possessed by QCD [103, 104, 105,

106]. The behaviour in Fig. 1.2 will serve to benchmark that of the ρ-meson’s EDM.

1.4 ρ-meson EDM: Formulae

We now turn to computation of the effect of the interaction terms in Eq. (1.2) on

the ρ-meson. There are three types of contribution, which arise separately through

modification of: (1) the quark-photon vertex, Eq. (1.24); (2) the ρ-meson Bethe-

Salpeter amplitude, Eq. (1.23); and (3) the dressed-quark propagator, Eq. (1.22).
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q
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P

ℓ

α

ℓ

Figure 1.3. Top – Correction to the quark-photon vertex generated by the four-
fermion operator in Eq. (1.31). The unmodified quark-photon vertex is the left dot,
whereas the right dot locates insertion of L6. If the internal line represents a circu-
lating d-quark then, owing to the L6 insertion, the external lines are u-quarks, and
vice versa. Middle – Analogous correction to the ρ-meson Bethe-Salpeter amplitude.
The unmodified amplitude is the left dot, whereas the right dot locates insertion of
L6. The lower internal line is an incoming d-quark and the upper external line is an
outgoing u-quark. Bottom – L6-correction to the dressed-quark propagator, with the
dot locating the operator insertion. If the outer line is a u-quark, then the internal
line is a d-quark; and vice versa.

1.4.1 Four-fermion interaction

We begin with the dimension-six operator, which can be written explicitly as

L6 = i
K

2Λ2

[

ūadad̄bγ5u
b + ūaγ5d

ad̄bub − d̄adaūbγ5u
b − d̄aγ5d

aūbub
]

, (1.31)

with summation over the repeated colour indices. This operator generates all three

types of modification.
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1.4.1.1 L6 – quark-photon vertex

This contribution is depicted in the top panel of Fig. 1.3. Consider first the case

of d-quarks circulating in the loop, then straightforward but careful analysis of the

induced Wick contractions produces the following result:

Γ
γ

Ld
6

µ = −iK

Λ2

ed

eu

∫

d4ℓ

(2π)4

[

I 12
µ +NcI

3
µ

]

, (1.32a)

I 12
µ = −PRS(ℓ+ q)γµS(ℓ)PR + PLS(ℓ+ q)γµS(ℓ)PL , (1.32b)

I 3
µ = PL tr{S(ℓ+ q)γµS(ℓ)PL} − PR tr{S(ℓ+ q)γµS(ℓ)PR} , (1.32c)

where PR,L = (1/2)(1±γ5). These right- and left-handed projection operators satisfy

PR + PL = ID.

Further simplification of the integrand reveals

I 12
µ = I 1

µ + I 2
µ

=
iγ · q

(ℓ+ q)2 +M2
γµ

M

ℓ2 +M2
γ5 + 2i

ℓµ
(ℓ+ q)2 +M2

M

ℓ2 +M2
γ5 , (1.33a)

I 3
µ =

2i(2ℓµ + qµ)

(ℓ+ q)2 +M2

M

ℓ2 +M2
γ5 , (1.33b)

so that one may subsequently obtain

∫

d4ℓ

(2π)4
I 1
µ = (qµ + iσµνqν)γ5

iM

16π2

∫ 1

0

dxC
iu

1 (ωq) , (1.34a)

∫

d4ℓ

(2π)4
I 2
µ = −qµγ5

iM

8π2

∫ 1

0

dx xC
iu

1 (ωq) , (1.34b)

∫

d4ℓ

(2π)4
I 3
µ = qµγ5

iM

8π2

∫ 1

0

dx (1 − 2x) C
iu

1 (ωq) , (1.34c)

where ωq = x(1 − x)q2 +M2. Combining the terms, Eq. (1.32a) becomes

Γ
γ

Ld
6

µ =
K

Λ2

ed

eu

M

16π2

∫ 1

0

dxC
iu

1 (ωq)[(1 + 2Nc)(1 − 2x)qµ + iσµνqν ]γ5 (1.35)

q2=0
=

K

Λ2

ed

eu

M

16π2
C

iu

1 (M2)iσµνqνγ5 . (1.36)
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In the other case, with a u-quark circulating in the loop, one obtains

Γ
γLu

6
µ

q2=0
=

K

Λ2

eu

ed

M

16π2
C

iu

1 (M2)iσµνqνγ5 . (1.37)

Plainly, the net correction to the quark-photon vertex can now be cast in the form

of the second term in Eq. (1.24) and hence is readily expressed in D(0).

1.4.1.2 L6 – Bethe-Salpeter amplitude

This correction is depicted in the middle panel of Fig. 1.3. Each of the four terms

in Eq. (1.31) generates a distinct contribution. That from the first and second are:

ΓρL1
6

α = −iK

Λ2
NcEρ PR

×tr

∫

d4ℓ

(2π)4
S(ℓ)PRS(ℓ+ P )γT

α , (1.38a)

ΓρL2
6

α = −iK

Λ2
Eρ PR

×
∫

d4ℓ

(2π)4
S(ℓ+ P )γT

αS(ℓ)PR . (1.38b)

The third and fourth terms are identical, up to sign-change and the replacement

PR → PL; and hence

ΓρL6

α = i
K

Λ2
Eρ

∫

d4ℓ

(2π)4

[

I 12T
α +NcI

3T
α

]

, (1.39)

where the superscript “T” indicates that γT
α is here used in the expressions for I 12,

I 3.

Now, using the formulae of Sec. 1.4.1.1, one arrives at

ΓρL6

α = −iK

Λ2

MEρ

16π2
γ5σανPν

∫ 1

0

dxC
iu

1 (ωP ) , (1.40)

where ωP = x(1 − x)P 2 +M2, P 2 = −m2
ρ. This is one of the additive corrections to

the Bethe-Salpeter amplitude anticipated in Eq. (1.23).
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1.4.1.3 L6 – quark propagator

The final modification arising from the dimension-six operator is that depicted

in the bottom panel of Fig. 1.3. So long as the correction is small, it modifies the

dressed-quark propagator as follows:

S(k) → S(k) + δL6
S(k) = S(k) + S(k)iΓSL6S(k) , (1.41)

where, once again, each of the four terms in Eq. (1.31) contributes. Their sum is

ΓSL6 =
K

Λ2

∫

d4ℓ

(2π)4

[

PRS(ℓ)PR − PLS(ℓ)PL

+NcPR tr{S(ℓ)PR} −NcPL tr{S(ℓ)PL}
]

. (1.42)

Now

PRS(ℓ)PR − PLS(ℓ)PL =
M

ℓ2 +M2
γ5

=
1

2

[

PR tr{S(ℓ)PR} − PL tr{S(ℓ)PL}
]

, (1.43)

so that with little additional algebra one arrives at

δL6
S(k) =

i

k2 +M2
(1 + 2Nc)

K

Λ2

M

16π2
C iu(M2)γ5 . (1.44)

1.4.2 Quark chromo-EDM

The term in the middle line of Eq. (1.2) also generates all three types of modifi-

cation described in the opening lines of this Section. Notably, owing to dynamical

chiral symmetry breaking, the dressed-quark-gluon coupling possesses a chromomag-

netic moment term that, at infrared momenta, is two orders-of-magnitude larger than

the perturbative estimate [102]. One may reasonably expect similar strong-interaction

dressing of a light-quark’s chromo-EDM interaction with a gluon, in which case sen-

sitivity to the current-quark’s chromo-EDM is very much enhanced.
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Figure 1.4. Correction to the quark-photon vertex generated by the quark chromo-
EDM operator in Eq. (1.2): the incoming and outgoing quark lines have the same
flavour, f . The dot in the left two diagrams locates insertion of LCEDM , whilst that
in the rightmost diagram indicates the second term in Eq. (1.24); i.e., the explicit
quark EDM.

1.4.2.1 LCEDM – quark-photon vertex

This contribution is depicted in Fig. 1.4. After a lengthy analysis, in which we

represent the exchanged gluon via Eq. (1.6), the sum of the two leftmost diagrams

produces

Γγ(g)
µ =

1

6iπ

d̃fαIR

m2
G

∫ 1

0

dx
[

C iu(ωq) − C iu
1 (ωq)

]

{

2qα σµαγ5

−6i
[

3(x− 1/2)qµ − pµ

]

γ5

}

− 1

3π

d̃fαIR

m2
G

∫ 1

0

dxC
iu

1 (ωq) ×
{

6
[

ωq − 2M2
]

pµγ5 − 6
[

(x− 1/2)ωq + 2x(1 − x)q · p
]

qµγ5

+M
[

((x− 1/2)q + p) · γ
]

qασαµγ5

+Mqασαµγ5

[

((x− 1/2)q + p) · γ
]

}

, (1.45)

where, again, d̃f is the chromo-EDM of a quark with flavour f .

As we are interested solely in the EDM, we may consider q2 = 0, at which value

the result simplifies greatly:

Γγ(g)
µ =

1

3iπ

d̃fαIR

m2
G

[

C iu(M2) − C iu
1 (M2)

][

γ5σµαqα + 3ipµ γ5

]

+
1

3π

d̃fαIR

m2
G

C
iu

1 (M2)

[

M{γ · p, γ5σµα}qα + 2p · qqµγ5

+6M2pµγ5

]

. (1.46)
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Figure 1.5. Correction to the ρ-meson Bethe-Salpeter amplitude generated by the
quark chromo-EDM operator in Eq. (1.2): the incoming line is a d-quark and the
outgoing line is a u-quark. In each case the dot locates insertion of LCEDM .

Plainly, the net correction to the quark-photon vertex from these two diagrams

can now be cast in the form of the second term in Eq. (1.24), which, in fact, is precisely

the rightmost diagram in Fig. 1.4 because q = p2 − p1.

1.4.2.2 LCEDM – Bethe-Salpeter amplitude

This correction is expressed in Fig. 1.5. Owing to similarity between the Leff-

uncorrected ρ-meson amplitude and quark-photon vertex, the results can be read

from those in Sec. 1.4.2.1; viz., with d̃± = d̃u ± d̃d,

Γρ(g)
α =

1

6iπ

αIR

m2
G

Eρ

∫ 1

0

dx
[

C iu(ωP ) − C iu
1 (ωP )

]

×
{

[

(d̃+ − 3(x− 1/2)d̃−)Pβ − d̃−pβ

]

σµβγ5P T
µα

+3id̃+pµγ5P T
µα − 3d̃−Mγµγ5P T

µα

}

− 1

3π

αIR

m2
G

Eρ

∫ 1

0

dx C̄ iu
1 (ωP )

{

3d̃+

[

ωP − 2M2
]

pµγ5P T
µα

−d̃−
(

[ωP − 2M2][(x− 1/2)Pβ + pβ]
)

iγ5σβµP T
µα

+Md̃d

[

((x− 1/2)P + p) · γ
]

Pβσβµγ5P T
µα

+Md̃uPβσβµγ5P T
µα

[

((x− 1/2)P + p) · γ
]

}

. (1.47)
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+

Figure 1.6. Correction to the dressed-quark propagator generated by the quark
chromo-EDM operator in Eq. (1.2). In each image the dot locates insertion of LCEDM .

In computing the vertex in Eq. (1.20) one must employ Fig. 1.5 and also its charge

conjugate, the form of which is obtained from Eq. (1.47) via the interchange d̃u ↔ d̃d,

and p→ −p, P → −P .

1.4.2.3 LCEDM – quark propagator

The last modification generated by the chromo-EDM term in Eq. (1.2) is that to

the quark propagator, Fig. 1.6. The self-energy insertion is readily evaluated:

ΓS(g) = d̃f
8

π

αIR

m2
G

D iu(M2)γ5 , (1.48)

where

D iu(ω) =

∫

ds
s2

s+ ω
→
∫ τ2

ir

τ2
uv

dτ
2

τ 3
exp(−τω), (1.49)

so that, with f = u, d,

δ(g)Sf (k) =
i

k2 +M2
d̃f

8

π

αIR

m2
G

D iu(M2)γ5 . (1.50)

1.4.3 θ-term

Owing to a connection between the Higgs mechanism for generating current-quark

masses in the SM and CP violation in the weak interaction, the effect of the θ-term

can completely be expressed through a UA(1) rotation of the current-quark mass-

matrix. We consider the s-quark to be massive and mu = md, in which case the effect
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of the first term in Eq. (1.2) is expressed simply in a modification of the dressed-quark

propagator:

S(k) → 1

iγ · k +M + i
2
m θ̄ γ5

(1.51)

mθ̄ small≈ S(k) − 1

k2 +M2

i

2
m θ̄ γ5 . (1.52)

1.4.3.1 Dressed-quark anomalous chromomagnetic moment

In our global-symmetry-preserving rainbow-ladder treatment of the contact in-

teraction, the general form of the ρ-meson’s Bethe-Salpeter amplitude is given in

Eq. (1.18). The absence of a term σµνPνFρ(P ) is an artefact of the rainbow-ladder

truncation: even using Eq. (1.6), a Bethe-Salpeter amplitude with Fρ(P ) 6= 0 is ob-

tained in any symmetry-preserving truncation that goes beyond this leading order

[77]. One material consequence of this omission is complete cancellation of all terms

at leading-order in θ̄, so that the θ-term’s contribution to the ρ-meson’s EDM is

anomalously suppressed in rainbow-ladder truncation. This defect may be amelio-

rated by acknowledging that the dressed-quark-gluon vertex possesses an anomalous

chromomagnetic moment coupling which is enhanced by dynamical chiral symmetry

breaking [102]. We therefore include an effect generated by

Γacm
µ (pi, pf ) =

µacm

2M
σµν(pf − pi)ν , (1.53)

where [107] µacm ∼ (−1/4).

In order to explicate the effect we find it convenient to first express collectively the

corrections to the dressed-quark propagator computed above; viz., from Eqs. (1.44),

(1.50), (1.52),
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S(k) → S(k) − iγ5
λ

k2 +M2
, (1.54)

λL6
= −(1 + 2Nc)

K

Λ2

M

16π2
C iu(M2) , (1.55)

λ(g) = −d̃f
8

π

αIR

m2
G

D iu(M2) , (1.56)

λθ̄ =
1

2
mθ̄ . (1.57)

Our corrections are now obtained via the diagrams in Fig. 1.5, except that here the

dots represent Eq. (1.53), and one simultaneously adds the correction to one and then

the other propagator. In this way, careful but straightforward computation yields

Γλ,acm
µ =

αIR

2iπm2
G

λ1µacm
2 − λ2µacm

1

2M

∫ 1

0

dx
[

C iu(ωP ) − C iu
1 (ωP )

]

γµγ5

+
αIR

6iπm2
G

1

M

∫ 1

0

dx C̄ iu
1 (ωP )

{

3µacm
− γ · (p+ (x− 1/2)P )

×[(1 − x)λ1 − xλ2]Pµ + i
[

(1 − x)λ1 + xλ2
)

]
[

µacm
1 γνPασαµ

−µacm
2 Pασαµγν

]

(p+ (x− 1/2)P )ν − λ−M
[

µacm
+ (p+ (x− 1/2)P )βσµβ

+3iµacm
− (p+ (x− 1/2)P )µ

]

}

γ5 , (1.58)

where µacm
± = µacm

1 ± µacm
2 , and {λi, i = 1, 2} represents the quark propagator correc-

tion on each leg with λ± = λ1 ± λ2.

One can now adapt the general expression in Eq. (1.58) to the particular cases of

relevance herein. The first is the ρ-meson Bethe-Salpeter amplitude. Capitalising on

isospin symmetry, which entails µacm
u = µacm

d =: µacm, one finds

Γρ acm
α =

αIR

2iπm2
G

µacmλ−

2M
Eρ

∫ 1

0

dx
[

C iu(ωP ) − C iu
1 (ωP )

]

γµPµαγ5

+
αIR

3iπm2
G

µacm

2M
Eρ

∫ 1

0

dx C̄ iu
1 (ωP )

{

i
[

(1 − x)λ1

+xλ2
](

γβPνσνα − Pνσναγβ

)

(p+ (x− 1/2)P )β

−2λ−MPµα(p+ (x− 1/2)P )νσµν

}

γ5 , (1.59)
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where “λ” is constructed from the correction specified in one of Eqs. (1.55) – (1.57).

The other case is the quark-photon vertex, for which the correction is found with

λ1 = λ2 = λ, since the quark flavours are identical, and we need only consider q2 = 0:

Γγ acm
µ =

αIR

3πm2
G

µacmλ

2M
C̄ iu

1 (M2)γ5

[

γ · p , σµαqα
]

. (1.60)

1.5 ρ-meson EDM: Results

1.5.1 Analysis without Peccei-Quinn symmetry

In order to obtain a result for the ρ-meson’s EDM, dρ, it remains only to sum the

various contributions derived in Sec. 1.4 as they contribute to Eq. (1.20), evaluated

with the parameter values in Table 1.1:

dρ = −2.88 × 10−3 µacm eθ̄/s

+0.785 (du − dd)

+(1.352 + 0.775µacm)e(d̃u − d̃d)

−(0.091 − 2.396µacm)e(d̃u + d̃d)

−esK

Λ2
(2.696 − 6.798µacm) × 10−3 . (1.61)

In this formula, df , d̃f carry a dimension of inverse-mass and s = 1 GeV.

A nugatory transformation allows one to rewrite Eq. (1.61) in terms of dimension-

less electric and chromoelectric quark dipole moments; viz.,

dρ = −2.88 × 10−3 µacm eθ̄/s

+
vH

Λ2

[

0.785 (Du −Dd)

+(1.352 + 0.775µacm)e(D̃u − D̃d)

−(0.091 − 2.396µacm)e(D̃u + D̃d)

−(1.096 − 2.763µacm) × 10−5 eK

]

, (1.62)
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Figure 1.7. Evolution of the quark-EDM component of the ρ-meson’s EDM with
current-quark mass, assuming d− is independent of m. m = 170 MeV corresponds
to the mass of the s-quark in our treatment of the contact interaction [69], so the
difference between dγ

ρ and dγ
φ is 10%.

where vH = 246 GeV is the cube-root of the phenomenological Higgs vacuum expec-

tation value. In a class of models that includes, e.g., Ref. [108], one finds

Df ∼ mf

vH

∼ 2 × 10−5, (1.63)

a result which may be used to inform expectations about the “natural” magnitude of

the terms in Eqs. (1.61), (1.62).

There are four distinct types of contribution to dρ in Eq. (1.61). The first is

associated with the θ-term; and it is notable that this contribution vanishes in the

absence of a dressed-quark anomalous magnetic moment, a feature which emphasises

the connection between topology and dynamical chiral symmetry breaking that is

highlighted, e.g., in Eq. (21) of Ref. [87]. Our result may directly be compared with

that obtained in a sum rules analysis; viz.,

herein : −2.9 × 10−3 µacm eθ̄ ∼ 0.7 × 10−3 eθ̄

Ref. [62] : 4.4 × 10−3 eθ̄ .
(1.64)

The second contribution owes to an explicit dressed-quark EDM. It has been

computed via a number of methods, so that a comparison with our results is readily
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compiled:

herein DSE [60] BM [60] nrQM [60] sum rules [62]

0.79 0.72 0.83 1.00 0.51 ,
(1.65)

where each entry is multiplied by d− = (du − dd); and DSE [60] summarises results

obtained from momentum-dependent DSE input, BM [60] reports a bag-model re-

sult, and nrQM [60] is the non-relativistic constituent-quark value. We depict the

current-quark mass dependence of this contribution in Fig. 1.7. It is notable that the

magnitude of these results matches an existing DSE estimate of the analogous con-

tribution to the neutron’s EDM [109]. Moreover, based on Ref. [110], a perturbative

analysis would yield 2mρd
pert
ρ = 2md−, where m is the current-quark mass. With the

parameter values employed herein, this is dpert
ρ = 0.014 d−, which is just ∼ 2% of the

order-of-magnitude specified by the values in Eq. (1.65).

The third contribution to dρ is generated by the quark’s chromoelectric dipole

moment. Its subcomponents are detailed in Table 1.3. The net result is comparable in

magnitude and sign with that produced by the quark EDM, Eq. (1.65). In comparison

with a sum rules computation [62], however, our result is an order of magnitude larger,

has the opposite sign and contains a sizeable d̃+-term. At least the first two of these

marked discrepancies are insensitive to reasonable variations in µacm. It is worth

emphasising here that our calculation has no other variable parameters: the two

specifying our model, listed in Table 1.1, were fixed in prior studies of an array of

meson and baryon observables [64, 65, 67, 66, 68, 69]. This mismatch will receive

further attention in future work.

The four-fermion interaction is responsible for the final contribution in Eq. (1.61).

Its subcomponents are detailed in Table 1.4. As ours is the first estimate of the

contribution from a dimension-six operator to the ρ-meson’s EDM, there is no ready

substantial comparison. On the other hand, the result in Table 1.4 is quickly seen to

be “natural” in size. The dimension-six operator is associated with a coupling K /Λ2,
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which has mass-dimension “−2”. In order to obtain a quantity with mass-dimension

“−1”, this coupling must be multiplied by another energy scale. We are interested

in an hadronic EDM, so that scale should be typical of hadron physics; e.g., the

dressed-quark mass “M”. Finally, a loop correction is required for the generation of

an EDM, and loops are characterised by a factor 1/(16π2). Putting these quantities

together yields an expectation based on naive dimensional analysis; viz.,

dD=6
ρ ∼ e

1

16π2

M

vH

vHK

Λ2
∼ 1 × 10−5 evHK

Λ2
, (1.66)

in agreement with the magnitude of the final row in Table 1.4. Comparison with

Eq. (1.63), furthermore, indicates that in our computation the quark-EDM and dimension-

six contributions are naturally related via

dqEDM
ρ K ∼ dD=6

ρ . (1.67)

1.5.2 Peccei Quinn Symmetry

The leading term in Eq. (1.62) is that associated with θ̄. Arising from a dimension-

four operator, this contribution is not suppressed by a large beyond-SM mass-scale.

One may furthermore expect that, absent any symmetry to prevent it, a typical non-

SM for CP-violation will produce large corrections to θ̄. In order to reconcile this

with the remarkably small upper-bound on θ̄ placed by the neutron’s EDM, one must

accept that the initial value of θ̄ is very finely tuned. There is nothing to prevent

this from being simply an accident of Nature. However, some view that possibility as

aesthetically displeasing and prefer to introduce a new dynamical degree of freedom,

the axion, a pseudo-Goldstone boson, whose role is to cancel the effect of θ̄ [35]. It is

notable that there is currently no empirical evidence in favour of the axion’s existence

and the remaining domain of parameter space is small [115].
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Notwithstanding this, in the context of EDM estimates it is customary to expose

the possible effect of axion physics on the results in Eq. (1.61) or (1.62). Here there is

a complication. If one considers an extension of the SM with a collection of CP-odd

operators that may mix with the θ̄-term, then the effective potential describing axion

physics at the hadronic scale can plausibly acquire terms that shift its minimum to

a nonzero value of the effective θ̄-parameter, θ̄induced [55]. The quark chromoelectric

dipole moment interaction is one such operator. In its case, within a sum rules

calculation [62], the net effect of this mixing is elimination of θ̄ in favour of a modest

enhancement in magnitude of the coefficients of d̃± in Eq. (1.61), with no change in

sign.

The implications for our study are plain. Allowing an axion-like mechanism to

play a role, then θ̄ disappears from Eqs. (1.61) and (1.62), and any measurement of

an hadron EDM, here that of the ρ-meson, places a little more stringent constraint

on d̃± in particular but also on d± and K .

This is, perhaps, particularly relevant to K , since the high-scale physics that

generates this operator will typically also produce a complex phase for the quark

masses. Within the low-energy effective theory of Eq. (1.2), this phase will arise

from one-loop contributions to the quark propagator containing one insertion of the

CP-violating four-quark operator and the quark Yukawa interaction. Consequently,

constraints on θ̄ imply a bound on K . On the other hand, with the elimination of θ̄

via an axion effective potential, the term modulated by K is exposed to independent

constraint [56]. Computing the contribution of the four-quark CP-violating operator

to the axion potential, determining the resulting dependence of θ̄induced on K , and

deriving the expression corresponding to Eq. (1.62) will be the subject of future work.
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1.6 Epilogue

Using the leading-order in a global-symmetry-preserving truncation of QCD’s

Dyson-Schwinger equations, we computed the electric dipole moment of the ρ-meson,

dρ, that is generated by the leading dimension-four and -five CP-violating operators

and an example of a dimension-six operator. We employed a momentum-independent

form for the leading-order kernel in the gap- and Bethe-Salpeter equations. This is

known to produce results for low-energy pseudoscalar- and vector-meson observables

that are indistinguishable from those obtained with the most sophisticated interac-

tions available when they are analysed using the same truncation. Since the dipole

moment is a low-energy observable, our predictions should be similarly reliable, in

which case the framework we employ and elucidate can usefully be adapted to the

more challenging task of computing the neutron’s EDM, dn.

We find that the two dimension-five operators; namely, quark-EDM and -chromo-

EDM, characterised by dq and d̃q, respectively, produce contributions to dρ whose

coefficients are of the same sign and within a factor of two in magnitude. This

contrasts with an extant sum rules evaluation, in which the coefficients of the contri-

butions have the opposite sign and differ by a factor of four in magnitude. Since all

studies agree within a factor of two on the quark-EDM coefficient, the discrepancy

resides with the chromo-EDM contribution. These differences invite further analysis

and guarantee relevance to a DSE evaluation of the impact of d̃q on the neutron’s

EDM.

Absent a mechanism that suppresses a θ-term in any beyond-Standard-Model

action, the tight constraints on the magnitude of a contribution from this term to

the neutron’s EDM also apply to contributions from a dimension-six four-fermion

operator to this or another hadron’s EDM. Should such a mechanism exist, however,

we find that a dimension-six operator can match the quark-EDM and chromo-EDM

in importance.
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Using the techniques described herein, calculation of the neutron’s EDM is un-

derway.
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This work and Ref. [66] 2.11
DSE: RL RGI-improved [81] 2.01
DSE: EF parametrisation [111] 2.69
LF CQM [112] 2.14
LF CQM [113] 1.92
Sum Rules [114] 1.8 ± 0.3
point particle 2

Table 1.2. Magnetic moment of the ρ-meson calculated using our framework; and
a comparison with other computations. Legend: RL RGI-improved, treatment of a
renormalisation-group-improved one-gluon exchange kernel in rainbow-ladder trunca-
tion; EF parametrisation, entire function parametrisation of solutions to the gap and
Bethe-Salpeter equations; and LF CQM, light-front constituent-quark model. The
results are listed in units of e/[2mρ].

qγq −0.066 d̃e
− − 0.199 d̃e

+

BSA −0.120 d̃e
− + 0.108 d̃e

+

S(k) 1.538 d̃e
−

acm (×µacm) 0.775 d̃e
− + 2.396 d̃e

+

our CEDM (1.35 + 0.78µacm) d̃e
− − (0.09 − 2.40µacm) d̃e

+

total 1.16 d̃e
− − 0.69 d̃e

+

sum rules [62] −0.13 d̃e
−

Table 1.3. Contributions to the ρ-meson EDM associated with a quark chromoelec-
tric dipole moment, with d̃e

∓ = e(d̃u ∓ d̃d). Row 1: quark-photon vertex correction,
Sec. 1.4.2.1; Row 2: ρ-meson Bethe-Salpeter amplitude correction, Sec. 1.4.2.2; Row 3:
dressed-quark propagator correction, Sec. 1.4.2.3; Row 4: anomalous chromomagnetic
moment contributions, Sec. 1.4.3.1; Row 5: sum of preceding four rows; Row 6: Row 5
evaluated with µacm = −1/4; and Row 7: sum rules result from Ref. [62], evaluated
here with a heavy s-quark.
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qγq −1.005 × 10−5

BSA −9.114 × 10−7

S(k) 0
acm (×µacm) 2.763 × 10−5 µacm

our D = 6 total −(1.096 − 2.763µacm) × 10−5

Table 1.4. Contributions to the ρ-meson EDM associated with the dimension-six
operator in Eq. (1.2). Each row should be multiplied by evHK /Λ2. Row 1: quark-
photon vertex correction, Sec. 1.4.1.1; Row 2: ρ-meson Bethe-Salpeter amplitude cor-
rection, Sec. 1.4.1.2; Row 3: dressed-quark propagator correction, Sec. 1.4.1.3; Row 4:
anomalous chromomagnetic moment contributions, Sec. 1.4.3.1; and Row 5: sum of
preceding four rows.
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CHAPTER 2

SCALAR AND TENSOR CHARGES OF THE NUCLEON

2.1 Introduction

In recent years a global approach to the description of nucleon structure has

emerged, one in which we may express our knowledge of the nucleon in the Wigner

distributions of its basic constituents and thereby provide a multidimensional general-

isation of the familiar parton distribution functions (PDFs). The Wigner distribution

is a quantum mechanics concept analogous to the classical notion of a phase space

distribution. Following from such distributions, a natural interpretation of measured

observables is provided by construction of quantities known as generalised parton dis-

tributions (GPDs) [187, 188, 189, 190, 191, 192, 193, 194] and transverse momentum-

dependent distributions (TMDs) [195, 196, 197, 198, 199, 200, 201]: GPDs are linked

to a spatial tomography of the nucleon; and TMDs allow for its momentum tomog-

raphy. A new generation of experiments aims to provide the empirical information

necessary to develop a phenomenology of nucleon Wigner distributions.

At leading-twist there are eight distinct TMDs, only three of which are nonzero

in the collinear limit; i.e., in the absence of parton transverse momentum within the

target, k⊥ = 0: the unpolarized (f1), helicity (g1L) and transversity (h1T ) distribu-

0Reprinted article with permission from M. Pitschmann, C. Y. Seng, C. D. Roberts and
S. M. Schmidt, Phys. Rev. D 91 (2015) 074004, Copyright (2015) by the American Physical So-
ciety. DOI: http://dx.doi.org/10.1103/PhysRevD.91.074004
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Figure 2.1. The tensor charge, Eq. (2.1), measures the net light-front distribution
of transversely polarised quarks inside a transversely polarized proton.

tions. In connection with the last of these, one may define the proton’s tensor charges

(q = u, d, . . .)

δT q =

∫ 1

−1

dx hq
1T (x) =

∫ 1

0

dx
[

hq
1T (x) − hq̄

1T (x)
]

, (2.1)

which, as illustrated in Fig. 2.1, measures the light-front number-density of quarks

with transverse polarisation parallel to that of the proton minus that of quarks with

antiparallel polarisation; viz., it measures any bias in quark transverse polarisation

induced by a polarisation of the parent proton. The charges δT q represent a close ana-

logue of the nucleon’s flavour-separated axial-charges, which measure the difference

between the light-front number-density of quarks with helicity parallel to that of the

proton and the density of quarks with helicity antiparallel [202]. In nonrelativistic

systems the helicity and transversity distributions are identical because boosts and

rotations commute with the Hamiltonian.

The transversity distribution is measurable using Drell-Yan processes in which

at least one of the two colliding particles is transversely polarised [203]; but such

data is not yet available. Alternatively, the transversity distribution is accessible via

semi-inclusive deep-inelastic scattering using transversely polarised targets and also

in unpolarised e+e− processes, by studying azimuthal correlations between produced

hadrons that appear in opposing jets (e+e− → h1h2X). Capitalising on these obser-
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vations, the transversity distributions were extracted through an analysis of combined

data from the HERMES, COMPASS and Belle collaborations [45]; and those distri-

butions have been used to produce an estimate of the proton’s tensor charges, with

the following flavour-separated results:

δTu = 0.39+0.18
−0.12 , δTd = −0.25+0.30

−0.10 , (2.2)

at a renormalisation scale ζA = 0.9 GeV. Given that the tensor charges are a defining

intrinsic property of the nucleon, the magnitude of the errors in Eqs. (2.2) is unsatis-

factory. It is therefore critical to better determine δTu, δTd. Consequently, following

upgrades at the Thomas Jefferson National Accelerator Facility (JLab), it is antici-

pated [204] that experiments [205, 206] in Hall-A (SoLID) and Hall-B (CLAS12) will

provide a far more precise determination of the tensor charges.

Naturally, measurement of the transversity distribution and the tensor charges will

not reveal much about the strong interaction sector of the Standard Model unless these

quantities can be calculated using a framework with a traceable connection to QCD.

This point is emphasised with particular force by the circumstances surrounding the

pion’s valence-quark PDF. As reviewed elsewhere [207], numerous authors suggested

that QCD was challenged by a PDF parametrisation based on a precise πN Drell-Yan

measurement [208]. However, the appearance of nonperturbative calculations within

the framework of continuum QCD [209, 210] forced reanalyses of the cross-section,

with the inclusion of next-to-leading-order evolution [211] and soft-gluon resumma-

tion [212], so that now those claims are known to be false and the pion’s valence-quark

PDF may be viewed as a success for QCD [213]. The comparisons between exper-

iment and computations of the pion and kaon parton distribution amplitudes and

electromagnetic form factors have reached a similar level of understanding [214, 215].

Herein, therefore, we compute the proton tensor charges using a confining, symmetry-

preserving Dyson-Schwinger equation (DSE) treatment of a single quark-quark in-
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teraction; namely, a vector⊗ vector contact-interaction. This approach has proved

useful in a variety of contexts, which include meson and baryon spectra, and their

electroweak elastic and transition form factors [64, 65, 66, 67, 68, 69, 216, 217, 218,

219, 220]. In fact, so long as the momentum of the probe is smaller in magnitude than

the dressed-quark mass produced by dynamical chiral symmetry breaking (DCSB),

many results obtained in this way are practically indistinguishable from those pro-

duced by the most sophisticated interactions that have thus far been employed in

DSE studies [221, 70, 71, 222].

It is apposite to remark here that confinement and DCSB are two key features of

QCD; and much of the success of the contact-interaction approach owes to its effi-

cacious expression of these emergent phenomena in the Standard Model. They are

explained in some detail elsewhere [221, 70, 71, 222] so that here we remark only that

confinement may be expressed via dynamically-driven changes in the analytic struc-

ture of QCD’s propagators and vertices; and DCSB is the origin of more than 98%

of the mass of visible material in the Universe. These phenomena are intimately con-

nected; and whereas the nature of confinement is still debated, DCSB is a theoretically

established nonperturbative feature of QCD [223], which has widespread, measurable

impacts on hadron observables, e.g. Refs. [69, 217, 224, 225, 226, 227, 228, 215, 229],

so that its expression in QCD is empirically verifiable.

Apart from the hadron physics imperative, the value of the nucleon tensor charges

can be directly related to the visible impact of a dressed-quark electric dipole mo-

ment (EDM) on neutron and proton EDMs [109]. Novel beyond-the-Standard-Model

(BSM) scalar operators may also conceivably be measurable in precision neutron ex-

periments so that one typically considers both the nucleon scalar and tensor charges

when exploring bounds on BSM physics [230]. The sum of the scalar charges of all

active quark flavours is simply the nucleon σ-term, which we therefore also compute

herein.
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Figure 2.2. Poincaré covariant Faddeev equation. Ψ is the Faddeev amplitude for a
nucleon of total momentum P = pq +pd. The shaded rectangle demarcates the kernel
of the Faddeev equation: single line, dressed-quark propagator; Γ, diquark correlation
(Bethe-Salpeter) amplitude; and double line, diquark propagator. (See Apps. A, B for
details.)

Relying on material provided in numerous appendices, we provide a brief outline

of our computational framework in Sec. 2.2: both the Faddeev equation treatment of

the nucleon and the currents which describe the interaction of a probe with a baryon

composed from consistently-dressed constituents. This presentation scheme enables

us to embark quickly upon the description and analysis of our results for the scalar

and tensor charges, Secs. 2.3 and 2.4, respectively. In Sec. 2.5 we use our results for

the tensor charges in order to determine the impact of valence-quark EDMs on the

neutron and proton EDMs. Section 2.6 is an epilogue.

2.2 Nucleon Faddeev Amplitude and Relevant Interaction

Currents

We base our description of the nucleon’s dressed-quark-core on solutions of a

Faddeev equation, which is illustrated in Fig. 2.2, and formulated and described in

Apps. A, B. In order to determine the scalar and tensor charges of the nucleon

described by this Faddeev equation, the Q2 = 0 values of three interaction currents

are needed: elastic electromagnetic, which determines the canonical normalisation

of the nucleon’s Faddeev amplitude; scalar; and tensor. The computation of these

quantities is detailed in App. C.
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2.3 Sigma-Term

The contribution of a given quark flavour (q = u, d, . . .) to a nucleon’s σ-term is

defined by the matrix element

σq = mq 〈N(p)|q̄Iq|N(p)〉 , (2.3)

where |N(p)〉 is the state vector of a nucleon with four-momentum p. The σ-term is

independent of the renormalisation scale used in the computation, even though the

individual pieces in the product on the right-hand-side (rhs) are not. As explained

in App. E, the scale appropriate to our symmetry-preserving regularisation of the

contact interaction is ζH ≈M , where M is the dressed-quark mass.

Our computed value of the nucleon’s σ-term is reported in Eq. (C.49); viz.,

σN = σu + σd = m 3.05 = 21 MeV. (2.4)

This result is consistent with that obtained using the Feynman-Hellmann theorem

in connection with the results from which Ref. [67] was prepared. An interesting

way to expose this is to recall Eq. (B.28), which states that our analysis describes a

nucleon that is 77% dressed-quark + scalar-diquark and 23% dressed-quark + axial-

vector diquark. In the isospin symmetric limit, which we typically employ, it follows

that

σN = 0.77 [σQ + σqq0 ] + 0.23 [σQ + σqq1 ] (2.5)

= σQ + 0.77σqq0 + 0.23σqq1 , (2.6)

where
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σQ = m
∂M

∂m
= 9.6 MeV, (2.7a)

σqq0 = m
∂mqq0

∂m
= 16 MeV, (2.7b)

σqq1 = m
∂mqq1

∂m
= 10 MeV, (2.7c)

again computed using material in Ref. [67]. Inserting Eqs. (2.7) into Eq. (2.6), one

obtains σN = 24 MeV.1 Apparently, so far as the contribution of explicit chiral sym-

metry breaking to the mass of the nucleon’s dressed-quark core is concerned, the

contact-interaction nucleon is a simple system. This analysis also shows that our

diagrammatic computational method is sound; and hence Eq. (2.4) is the rainbow-

ladder (RL) truncation2 prediction of a vector⊗ vector contact-interaction treated in

the Faddeev equation via the static approximation. (Inclusion of meson-baryon loop

effects will increase the result in Eq. (2.4) by approximately 15% [231].)

In addition, the fact that Eqs. (2.4) and (2.6) yield similar results emphasises the

important role of diquark correlations because if the nucleon were just a sum of three

massive, weakly-interacting dressed-quarks, then one would have

σ3M
N = 3σQ = 29 MeV , (2.8)

which is 21% too large.

Adopting a different perspective, we note that the value in Eq. (2.4) is roughly

one-half that produced by a Faddeev equation kernel that incorporates scalar and

axial-vector diquark correlations in addition to propagators and interaction vertices

that possess QCD-like momentum dependence [231]. It compares similarly with the

1The origin of the 11% mismatch is explained in Sec. C.1.7.

2The rainbow-ladder truncation is the leading-order term in the most widely used, global-
symmetry-preserving DSE truncation scheme [76, 77].
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value inferred in a recent analysis [232] of lattice-QCD results for octet baryon masses

in 2 + 1-flavour QCD:

σN = 45 ± 6 MeV . (2.9)

In order to understand the discrepancy, consider Eqs. (2.7). The value of σQ

matches expectations based on gap equation kernels whose ultraviolet behaviour is

consistent with QCD [231, 233]. On the other hand, with such interactions one

typically finds σqq0 & σqq1 & σρ = 25 MeV. We therefore judge that Eq. (2.4) un-

derestimates the physical value of σN ; and that the mismatch originates primarily

in the rigidity of the diquark Bethe-Salpeter amplitudes produced by the contact in-

teraction, which leads to weaker m-dependence of the diquark (and hence nucleon)

masses than is obtained with more realistic kernels.3 Notwithstanding this, Eq. (2.4)

is a useful benchmark, providing a sensible result via a transparent method.

Further valuable information may be obtained from the results in App. C.2 if

one supposes that the ratio of contact-interaction d- and u-quark contributions is

more reliable than the net value of σN . In this connection, note that for a proton

constituted as a weakly interacting system of three massive dressed-quarks in the

isospin symmetric limit
σ3M

N,d

σ3M
N,u

=
1

2
. (2.10)

Comparing this with our computed value

σN,d

σN,u

= 0.65 , (2.11)

one learns that diquark correlations work to accentuate the contribution of the singly-

represented valence-quark to the proton σ-term relative to that of doubly-represented

valence-quarks: the magnification factor is 1.3.

3Consider that if one uses σqq0 = σqq1 = 30MeV, then σN ≈ 40MeV.
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Let’s take this another step and assume that σ̂N,u, σ̂N,d in App. C.2 respond weakly

to changes in m. This is valid so long as solutions of the dressed-quark gap equation

satisfy

dM

dm

∣

∣

∣

∣

(mu+md)/2

mu,md≪M≈ dM

dm

∣

∣

∣

∣

mu,md

, (2.12)

which is found to be a good approximation in all available studies (see, e.g., Refs. [234,

235]). One may then estimate the effects of isospin symmetry violation owing to the

difference between u- and d-quark current-masses. Taking the value of the mass ratio

from Ref. [181], one finds

mu

md

= 0.48 ± 0.1 ⇒ md σ̂N,d

mu σ̂N,u

= 1.35+0.47
−0.30 . (2.13)

Alternatively, one might use the mass ratio inferred from a survey of numerical sim-

ulations of lattice-regularised QCD [236], in which case

mu

md

= 0.47 ± 0.04 ⇒ md σ̂N,d

mu σ̂N,u

= 1.38+0.17
−0.14 . (2.14)

We predict, therefore, that the d-quark contribution to that part of the proton’s

mass which arises from explicit chiral symmetry breaking is roughly 37% greater

than that from the u-quark. This value is commensurate with a contemporaneous

estimate based on lattice-QCD [237]. It is noteworthy that if the proton were a

weakly interacting system of three massive dressed-quarks, then Eq. (2.14) would

yield 1.06+0.13
−0.11; and hence one finds again that the presence of diquark correlations

within the proton enhances the contribution of d-quarks to the proton’s σ-term.

2.4 Tensor Charge

The tensor charge associated with a given quark flavour in the proton is defined

via the matrix element (q = u, d, . . .)
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〈P (p, σ)|q̄σµνq|P (p, σ)〉 = δT q ū(p, σ)σµνu(p, σ) , (2.15)

where u(p, σ) is a spinor and |P (p, σ)〉 is a state vector describing a proton with

momentum p and spin σ.4 With δTu, δTd in hand, the isoscalar and isovector tensor

charges are readily computed:

g
(0)
T = δTu+ δTd , g

(1)
T = δTu− δTd . (2.16)

Importantly, the tensor charge is a scale-dependent quantity. Its evolution is discussed

in App. F.

Our analysis of the proton’s tensor charge in a symmetry-preserving RL-truncation

treatment of a vector⊗ vector contact-interaction is detailed in App. C.3. At the

model scale, ζH , which is determined and explained in App. E, we obtain the results

in Table C.3, which represent a parameter-free prediction: the current-quark mass

and the two parameters that define the interaction were fixed elsewhere [66], in a

study of π- and ρ-meson properties.

It is natural to ask for an estimate of the systematic error in the values reported

in Table C.3. As we saw in Sec. 2.3, the error might pessimistically be as much

as a factor of two. However, that is an extreme case because, as observed in the

Introduction, one generally finds that our treatment of the contact interaction pro-

duces results for low-momentum-transfer observables that are practically indistin-

guishable from those produced by RL studies that employ more sophisticated inter-

actions [64, 65, 67, 66, 68, 69, 216, 217, 218, 219, 220]. It is therefore notable that

analyses of hadron physics observables using the RL truncation and one-loop QCD

renormalisation-group-improved (RGI) kernels for the gap and bound-state equations

produce results that are typically within 15% of the experimental value [221]. We

4In the isospin symmetric limit: δp
T u := δT u = δn

T d, δp
T d := δT d = δn

T u.
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therefore ascribe a relative error of 15% to the results in Table C.3 so that our pre-

dictions are:

δTu δTd g
(0)
T g

(1)
T

ζH ≈M 0.69(10) −0.14(2) 0.55(8) 0.83(12)
. (2.17)

One means by which to check our error estimate is to repeat the calculations

described herein using a modern RGI kernel [83] in the gap and bound-state equations.

That has not yet been done but one may nevertheless infer what it might yield.

Consider first Ref. [238], which computes the dressed-quark-tensor vertex using a RL-

treatment of a QCD-based kernel: one observes that the dressed-quark’s tensor charge

is markedly suppressed; namely, with a QCD-based momentum-dependent kernel,

a factor of approximately one-half appears on the rhs of Eq. (C.50). This DCSB-

induced suppression would tend to reduce the values in Eq. (2.17). On the other

hand, the use of a more sophisticated momentum-dependent kernel in the bound-

state equations increases the amount of dressed-quark orbital angular momentum in

the proton, an effect apparent in the reduction of the fraction of proton helicity carried

by dressed u- and d-quarks when one shifts from a contact-interaction framework to

a QCD-kindred approach [226, 229]. Hence, the tensor charges are determined by

two competing effects, the precise balance amongst which can only be revealed by

detailed calculations.

In this context, however, it is worth noting that similar DCSB-induced effects

are observed in connection with gA, the nucleon’s axial charge. The axial-charge

of a dressed-quark is suppressed [202], owing to DCSB; but that is compensated in

the calculation of gA by dressed-quark orbital angular momentum in the nucleon’s

Faddeev wave-function, with the computed value of the nucleon’s axial-charge being

20% larger than that of a dressed-quark. The net effect is that a computation of gA

53



using the framework of Refs. [229] can readily produce a result that is within 15% of

the empirical value [221, 202]. This suggests that our error estimate is reasonable.

The predictions in Eq. (2.17) are quoted at the model scale, whose value is ex-

plained in App. E. In order to make a sensible comparison with estimates obtained

in modern simulations of lattice-regularised QCD, those results must be evolved to

ζ2 = 2 GeV. We therefore list here the results obtained under leading-order evolution

to ζ2 = 2 GeV, obtained via multiplication by the factor in Eq. (F.4):

δTu δTd g
(0)
T g

(1)
T

ζ2 0.55(8) −0.11(2) 0.44(7) 0.66(10)
. (2.18)

The error in Eq. (F.4) does not propagate significantly into these results.

Notably, the dominant contribution to δTu arises from Diagram 1: tensor probe

interacting with a dressed u-quark with a scalar diquark as the bystander. The tensor

probe interacting with the axial-vector diquark, with a dressed-quark as a spectator,

Diagram 4, produces the next largest piece. However, that is largely cancelled by the

sum of Diagrams 5 and 6: tensor probe causing a transition between scalar- and axial-

vector diquark correlations within the proton whilst the dressed-quark is a bystander.

It is a large negative contribution for both δTu and δTd: indeed, owing to a significant

cancellation between Diagrams 2 and 4 in the d-quark sector, which describe the net

result from quark + axial-vector-diquark contributions, the sum of Diagrams 5 and 6

provides almost the entire result for δTd.

A particularly important result is the impact of the proton’s axial-vector diquark

correlation. As determined in App. C.3.6, with a symmetry-preserving treatment

of a contact interaction, δTd is only nonzero if axial-vector diquark correlations are

present. Significantly, in dynamical calculations the strength of axial-vector diquark

correlations relative to scalar diquark correlations is a measure of DCSB [69]. In the

absence of axial-vector diquark correlations [Eqs. (C.73), Eq. (F.4)]
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Figure 2.3. Flavour separation of the proton’s tensor charge: “1” – illustration of
anticipated accuracy in planned JLab experiment [205], with central values based
on Eq. (2.2); “2” – results in Eq. (2.2), drawn from Ref. [45]; “3” phenomenological
estimate in Ref. [239] “4” – prediction herein, Eq. (2.18); “5” – result obtained herein
with omission of axial-vector diquark correlations, Eq. (2.19); “6-13” – estimates from
Refs. [109, 240, 241, 242, 243, 244, 245, 246], respectively. By way of context, we note
that were the proton a weakly-interacting collection of three massive valence-quarks
described by an SU(4)-symmetric spin-flavour wave function, then [246] the quark
axial and tensor charges are identical, so that δTu = 4/3 and δTd = −1/3 at the
model scale. These values are located at “14”.

δT6 1u δT6 1d g
(0)
T6 1 g

(1)
T6 1

ζ2 0.61(9) 0 0.61(9) 0.61(9)
; (2.19)

i.e., δTd vanishes altogether and δTu is increased by 11%. We expect that the influ-

ence of axial-vector diquark correlations will be qualitatively similar in the treatment

of more sophisticated kernels for the gap and bound-state equations. A hint in sup-

port of this expectation may be drawn from the favourable comparison, depicted in

Fig. 2.3, between the predictions for δTu in Eq. (2.19), “4”, and the result of Ref. [109],

“5”. The latter employed a proton and tensor-current that suppressed but did not

entirely eliminate the contribution from axial-vector diquark correlations. This same

comparison also supports the verity of our error estimate.

Additionally, it is valuable to note that the magnitude of δTu is a direct probe of

the strength of DCSB and hence of the strong interaction at infrared momenta. This
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could be anticipated, e.g., from Eqs. (C.55), (C.64), the expressions for Diagrams 1

and 4, which produce the dominant positive contributions to δTu: both show a strong

numerator dependence on the dressed-quark mass, M ; and M/m ≫ 1 is a definitive

signal of DCSB. To quantify the effect, we reduced αIR in the gap and Bethe-Salpeter

equations by 20% and recomputed all relevant quantities. This modification reduced

the dressed-quark mass by 33%: M = 0.368 → M< = 0.246 GeV. Combined with

knock-on effects throughout all correlations and bound-states, the 20% reduction in

αIR produces [Table C.4 and Eq. (F.4)]

M →M< δTu δTd g
(0)
T g

(1)
T

ζ2 0.44 −0.12 0.32 0.56
, (2.20)

which expresses a 20% decrease in δTu. As we signalled, the greatest impact of the

cut in αIR and hence M is a reduction in the size of the contributions from Diagrams 1

and 4: the former describes the tensor probe interacting with a dressed-quark whilst

a scalar diquark is a spectator; and the latter involves a tensor probe exploring an

axial-vector diquark with a dressed-quark bystander.

As remarked in the Introduction, the tensor charge is a defining intrinsic prop-

erty of the proton and hence there is great interest in its reliable experimental and

theoretical determination. In Fig. 2.3 we therefore compare our predictions with re-

sults from other analyses [109, 239, 240, 241, 242, 243, 244, 245, 246]. Evidently, of

all available computations, our contact-interaction predictions are in best agreement

with the phenomenological estimates in Eq. (2.2).

Another interesting point is highlighted by a comparison between our predictions

and the values obtained when the proton is considered to be a weakly-interacting

collection of three massive valence-quarks described by an SU(4)-symmetric spin-

flavour wave function [246]: δ
SU(4)
T u = 2eu and δ

SU(4)
T d = ed cf. our results, Eq. (2.17),

δTu = 0.52(2eu), δTd = 0.42(ed). The presence of diquark correlations in the pro-
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ton amplitude significantly suppresses the magnitude of the tensor charge associated

with each valence quark whilst simultaneously increasing the ratio δTd/δTu by ap-

proximately 20%.

2.5 Electric Dipole Moments

In typical extensions of the Standard Model, quarks acquire an EDM [55, 56]; i.e.,

an interaction with the photon that proceeds via a current of the form:

d̃q qγ5σµνq , (2.21)

where d̃q is the quark’s EDM and here we consider q = u, d. The EDM of a proton

containing quarks which interact in this way is defined as follows:

〈P (p, σ)|J EDM
µν |P (p, σ)〉 = d̃p ū(p, σ)γ5σµνu(p, σ) , (2.22)

where

J EDM
µν (x) = d̃u ū(x)γ5σµνu(x) + d̃d d̄(x)γ5σµνd(x) . (2.23)

At this point it is useful to recall a simple Dirac-matrix identity:

γ5σµν =
1

2
εµναβσαβ , (2.24)

using which one can write

J EDM
µν =

1

2
εµναβ

[

d̃u ūσαβu+ d̃d d̄σαβd
]

. (2.25)
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It follows that

〈P (p, σ)|J EDM
µν |P (p, σ)〉

=
1

2
εµναβ

[

d̃u δTu + d̃d δTd
]

ū(p, σ)σαβu(p, σ) (2.26)

=
[

d̃u δTu + d̃d δTd
]

ū(p, σ)γ5σµνu(p, σ) ; (2.27)

namely, the quark-EDM contribution to a proton’s EDM is completely determined

once the proton’s tensor charges are known:

d̃p = d̃u δTu + d̃d δTd . (2.28)

With emerging techniques, it is becoming possible to place competitive upper-limits

on the proton’s EDM using storage rings in which polarized particles are exposed to

an electric field [247].

An analogous result for the neutron is readily inferred. In the limit of isospin

symmetry,

〈N(p, σ)|ūσµνu|N(p, σ)〉 = 〈P (p, σ)|d̄σµνd|P (p, σ)〉 ,

〈N(p, σ)|d̄σµνd|N(p, σ)〉 = 〈P (p, σ)|ūσµνu|P (p, σ)〉 ; (2.29)

and hence

d̃n = d̃u δTd + d̃d δTu . (2.30)

Using the results in Eq. (2.17), we therefore have

d̃n = −0.14 d̃u + 0.69 d̃d , d̃p = 0.69 d̃u − 0.14 d̃d . (2.31)

It is worth contrasting Eqs. (2.31) with the results one would obtain by assuming

that the nucleon is merely a collection of three massive valence-quarks described by
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an SU(4)-symmetric spin-flavour wave function. Then, by analogy with magnetic

moment computations, a procedure also made valid by Eq. (2.24):

d̃n = −1

3
d̃u +

4

3
d̃d , d̃p =

4

3
d̃u −

1

3
d̃d , (2.32)

values which are roughly twice the size that we obtain.

The impact of our predictions for the scalar and tensor charges on BSM phe-

nomenology may be elucidated, e.g., by following the analysis in Refs. [230, 248].

2.6 Conclusion

We employed a confining, symmetry-preserving, Dyson-Schwinger equation treat-

ment of a vector⊗ vector contact interaction in order to compute the dressed-quark-

core contribution to the nucleon σ-term and tensor charges. The latter enabled us to

determine the effect of dressed-quark electric dipole moments (EDMs) on the neutron

and proton EDMs.

A characteristic feature of DSE treatments of ground-state baryons is the predicted

presence of strong scalar and axial-vector diquark correlations within these bound-

states. Indeed, in some respects the baryons can be viewed as weakly interacting

dressed-quark + diquark composites. The diquark correlations are active participants

in all scattering events and therefore serve to modify the contribution to observables of

the singly-represented valence-quark relative to that of the doubly-represented quark.

Regarding our analysis of the proton’s σ-term, we estimate that with a realistic

d-u mass splitting, the singly-represented d-quark contributes 37% more than the

doubly-represented u-quark to that part of the proton mass which owes to explicit

chiral symmetry breaking [Eqs. (2.13), (2.14)].

Our predictions for the proton’s tensor charges, δTu, δTd, are presented in Eq. (2.18).

In this case, compared to results obtained in simple quark models, diquark correla-

tions act to reduce the size of δTu, δTd by a factor of two and increase the ratio
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δTd/δTu by roughly 20%. Two additional observations are particularly significant.

First, the magnitude of δTu is a direct measure of the strength of DCSB in the Stan-

dard Model, diminishing rapidly with the difference between the scales of dynamical

and explicit chiral symmetry breaking. Second, δTd measures the strength of axial-

vector diquark correlations in the proton, vanishing with P1+/P0+ ; i.e., the ratio of

axial-vector- and scalar-diquark interaction probabilities, which is also a measure of

DCSB.

Our analysis of the Faddeev equation employed a simplifying truncation; viz., a

variant of the so-called static approximation. A natural next step is recalculation of

the tensor charges after eliminating that truncation. Subsequently or simultaneously,

one might also employ the approaches of Refs. [249, 229] in order to obtain DSE

predictions with a more direct connection to QCD.
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CHAPTER 3

AN INTRODUCTION TO THE CHIRAL

PERTURBATION THEORY

In this chapter we provide a brief introduction to the Chiral Perturbation Theory

(ChPT) which is a low-energy effective theory of Quantum Chromodynamics (QCD)

that describes the strong interaction governing interactions between hadrons. There

are many pedagogical articles of this topic and here we mainly follow the logic and

notations in Ref. [172].

3.1 The motivation

QCD is long believed to be the appropriate theory for the strong interaction.

It is an SU(3)c non-Abelian gauge theory that can be described by the following

Lagrangian:

L =
∑

q

{q̄iD/ q −mq q̄q} −
1

4
Ga

µνG
aµν (3.1)

where q is the quark field and iDµ ≡ i∂µ − gsT
aAa

µ is the SU(3)c covariant derivative.

The free parameters in the theory are the strong coupling constant gs and the quark

masses {mq}.

As we have explained in the introduction, QCD is perturbative at high energy and

is extremely successful in this regime, examples including the prediction of scaling

violation behavior in deep inelastic scattering (DIS). On the other hand, the theory

becomes highly non-perturbative when the energy scale is lowered to the mass of

light hadrons as the running coupling constant gs(µ) diverges in the infrared limit.
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Therefore conventional perturbative treatment to QCD is not applicable for the study

of the low-energy properties of hadrons.

Lattice QCD (LQCD) is currently the only promising way to tackle this problem

from the first principle. It involves numerical evaluations of the QCD path integral in

a discretized spacetime using Monte Carlo method. This method is proved to be ex-

tremely successful in many areas, for example the precise reproduction of the hadronic

spectrum. However it applicability is also severely limited by various technical issues

such as the large amount of CPU time. The alternative way to approach is problem

is through the application of effective field theories (EFTs) which are theories that

try to mimic some, if not all, of the properties of QCD in the infrared limit. These

theories are suitably engineered such that calculations in the low energy regime are

tractable.

ChPT is the most general effective field theory at low energy that is constructed

based on one particular symmetry of QCD, namely the chiral symmetry. Instead of

quarks and gluons, the degrees of freedom in ChPT are mesons and baryons. It is

particularly successful in describing the residual strong interaction between hadrons

that involves exchange of light mesons. In this chapter we shall introduce the basic

concepts and ingredients needed for the construction of ChPT Lagrangian without

diving into any specific calculation of Feynman diagrams. These basic concepts are

very helpful for the understanding of most of the contents in the next two chapters.

3.2 Chiral symmetry and spontaneous symmetry breaking

3.2.1 Chiral transformation

Apart from the color SU(3), the QCD Lagrangian possesses another symmetry

known as the chiral symmetry in the limit of massless quarks. To be definite let

us consider the QCD with two lightest quark u and d (the discussion below can

be straightforwardly generalized to include the strange quark). We can separate
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each quark field into its left- and right-handed components and define the following

doublets:

QL/R ≡







u

d







L/R

. (3.2)

The two-flavor QCD Lagrangian can then be rewritten as

L = Q̄LiDµQL + Q̄RiDµQR − Q̄RMQL − Q̄LM
†QR − 1

4
Ga

µνG
aµν (3.3)

where M = diag(mu md) is the quark mass matrix. It is clear that if we take the

quark masses to be zero then the quark doublet fields with different handedness do

not mix with each other. In other words, the massless two-flavor QCD Lagrangian is

invariant under the following SU(2)L × SU(2)R transformation:

SU(2)L : QL → ULQL

SU(2)R : QR → URQR (3.4)

where UL/R ≡ exp{i~θL/R·~τ/2} are two independent 2×2 special unitary matrices. This

symmetry is explicitly broken by the quark mass matrix M , however since current

quark masses mu and md are only a few MeV, much lighter than the lightest hadron

mass mπ0 ≈ 135 MeV, so one naively expects the chiral symmetry to be pretty well

respected. It is also extremely useful to realize that the SU(2)L × SU(2)R symmetry

is equivalent to an SU(2)V ×SU(2)A symmetry defined by the following “vector” and

“axial” transformation to the quark doublet:

SU(2)V : Q → exp{i~θV · ~τ
2
}Q

SU(2)A : Q → exp{i~θA · ~τ
2
γ5}Q. (3.5)

In particular, the SU(2)V symmetry is known as the isospin symmetry and it is a

good symmetry even with non-zero quark masses provided that mu = md.
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3.2.2 Spontaneous symmetry breaking

Unlike the isospin symmetry which is proven to be a good approximate symmetry,

nature does not seem to respect the SU(2)A symmetry. A clear evidence is the

following: one can easily prove that if SU(2)A is a good symmetry, then it implies

that for any hadron (made up of light quarks) there must be a corresponding hadron

with the same mass but with the opposite parity. This “parity doubling” effect

is however not observed experimentally. For example, let us consider the lightest

Jp = (1/2)+ baryon (i.e. proton) which has a mass of 938 MeV. If parity doubling

is true, one shall observe a Jp = (1/2)− baryon with approximately the same mass.

Such baryon is however never been observed; the lightest (1/2)− baryon has a mass

around 1535 MeV which can never be interpreted as the parity counterpart of the

proton.

The non-existence of the parity doubling could be explained if the QCD vacuum

|0〉 is non-invariant under the axial transformation, i.e.

Q̂a
A |0〉 6= 0 (3.6)

where Q̂a
A ≡

∫

d3xQ̄γ0γ5
τa

2
Q is the conserved charge of SU(2)A. The non-invariance

of the vacuum under a certain symmetry signifies a spontaneous symmetry breaking

(SSB). According to the Nambu-Goldstone theorem, a SSB implies existence of mass-

less spin-zero bosons known as Nambu-Goldstone (NG) bosons. Indeed, we find that

the lightest pseudo-scalar mesons (i.e. the pion triplet) have masses around 135-140

MeV which are much lighter than all the remaining hadrons. We may then identify

them as the NG bosons due to the SSB of the SU(2)A symmetry. Their non-zero

masses are simply due to the existence of small quark masses that explicitly breaks

SU(2)A. Finally we should point out that even though the non-observation of par-

ity doubling and the existence of very light pions are significant evidence that SSB

indeed happens in QCD, but so far there is no rigorous proof that this is indeed the

64



case based on first-principle calculation. ChPT is therefore an effective field theory

of QCD based on the assumption that SSB takes place at low energy and the pion

triplet are the corresponding NG bosons.

3.3 Non-linear realization of NG bosons

In this section we want to introduce the concept of the non-linear representation

of NG bosons which is crucial in the construction of the ChPT Lagrangian.

3.3.1 Basic idea

In order to easily understand the idea let us consider the following simple example.

Imagine a Lagrangian L(φ) which possesses a symmetry group h1 ×h2, and we know

that the symmetry h1 (say with m generators) is spontaneously broken while h2

remains a good symmetry. Then, we may parameterize the field φ(x) as the following:

φ(x) = R (ξ(x))ρ(x) (3.7)

where R is the transformation matrix of h1 and ξ(x) = (ξ1(x), ξ2(x), ...ξm(x)) are

the “rotational angles” of the symmetry transformation h1, except that now they

are spacetime-dependent fields. Finally, ρ(x) is a field which is invariant under the

transformation h1.

With this parameterization it is clear that the fields {ξi(x)} are automatically the

NG bosons (up to normalization factors) due to the SBB of h1. The way to see this

is very simple: if {ξi(x)} are spacetime-independent, then we can perform another h1

transformation on φ(x):

φ′(x) = R −1(ξ)φ(x) = R −1(ξ)R (ξ)ρ(x) = ρ(x). (3.8)

Now, since L is invariant under h1, so we will have L(φ) = L(φ′) = L(ρ), i.e. the

fields {ξi} will not appear in the Lagrangian. This implies that, if the fields {ξi} are

65



to appear in the Lagrangian then they must be spacetime-dependent. The only way

for this to happen is that every term in the Lagrangian L which involve only {ξi}

must also involve derivatives on {ξi}. This immediately excludes any mass term of

{ξi} as it does not involve derivatives. They are therefore massless bosons and can

be identified as NG bosons due to the SSB of the symmetry group h1.

3.3.2 Example of non-linear realization: SU(2)L × SU(2)R

To elaborate the general idea above and derive one essential building block for

the actual ChPT, let us proceed to the study of non-linear realization of Goldstone

bosons in a simple theory with spontaneously-broken SU(2)L × SU(2)R symmetry.

The fermionic building blocks can be written as ψR and ψL which transform as ψR →

URψR and ψL → ULψL under SU(2)L × SU(2)R. Now, if we want to write down an

SU(2)L×SU(2)R-invariant theory that involves interaction between ψR and ψL, then

it is essential to introduce a 2 × 2 matrix Σ(x) that transforms as:

Σ(x) → URΣ(x)U †
L. (3.9)

With this matrix, terms like ψ̄RΣψL will be invariant.

Recall from the previous section that SU(2)R × SU(2)L is also equivalent to

SU(2)V × SU(2)A. Starting from Eq. (3.9), it is easy to show that Σ(x) should

transform under SU(2)A as

SU(2)A : Σ(x) → exp{i~θA · ~τ
2
}Σ(x) exp{i~θA · ~τ

2
} (3.10)

where ~θA ≡ (~θR − ~θL)/2. Now, assuming that SU(2)A is spontaneously broken, we

may follow the spirit of non-linear realization introduced in the previous subsection

and reparameterize Σ(x) as

Σ(x) ≡
√

U(x)σ(x)
√

U(x) (3.11)
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where
√

U(x) ≡ exp{i~ξ(x) · ~τ
2
} (3.12)

and the field σ(x) is invariant under SU(2)A. By construction, the triplet field ~ξ(x)

plays the role of NG bosons (up to normalization factors). Furthermore, we require

that ~ξ(x) transforms as a triplet under the good symmetry SU(2)V just like what

happens to ordinary pions. One may show that this requirement implies the following

transformation rule of
√

U(x) under SU(2)V :

SU(2)V :
√

U(x) → exp{i~θV · ~τ
2
}
√

U(x) exp{−i~θV · ~τ
2
} (3.13)

(~θV ≡ (~θR +~θL)/2). Combining Eq. (3.10) and (3.13) we immediately see that σ(x) is

an invariant under SU(2)V ×SU(2)A. It is therefore a scalar field instead of a matrix.

Finally, the Σ(x) matrix can now be written as

Σ(x) = σ(x)U(x) (3.14)

where U(x) = exp{i~τ · ~ξ(x)} and transforms under SU(2)L × SU(2)R as U(x) →

URU(x)U †
L. The scalar field σ(x) is a massive excitation and it plays no role in

maintaining the symmetry of the Lagrangian, therefore it can be integrated out in

the effective theory. On the other hand, the matrix U(x) serves as the non-linear

realization of the NG bosons and will be one of the main building blocks of our

low-energy effective theory of QCD.

3.4 ChPT for NG bosons

Now we are ready to construct the effective field theory of QCD based on symmetry

consideration. As we showed in Sec. 3.2, the two-flavor QCD possesses the following

properties:

1. It is invariant under SU(2)V × SU(2)A in the massless quark limit;

67



2. SU(2)A is spontaneously broken at low energy and pions are the NG bosons;

3. SU(2)A is explicitly broken by the insertion of quark mass matrix M .

It is then natural to require our effective theory to obey the properties listed above. In

fact, we want to construct the MOST GENERAL Lagrangian that satisfies these three

requirements. Obviously there are infinitely many terms with arbitrary mass dimen-

sions that may satisfy these three criteria and we shall include all of them in our La-

grangian. This unavoidably makes ChPT an unrenormalizable theory which is a com-

mon feature for most of the effective field theories. Despite its non-renormalizability,

ChPT still possesses finite predictive power due to the following reason. Due to the

non-linear realization, terms involving pions must contain either derivatives or inser-

tions of quark mass matrix M (and we will see later that m2
π ∼ mq). It therefore

exists a “power counting” rule saying that one may arrange terms in ChPT according

to an increasing power of p/Λχ where p is either the pion mass or a small momentum

of pion while Λχ ∼1 GeV is an energy scale related to the chiral symmetry breaking.

Hence, for any given precision level, one only needs to include a finite number of terms

in the chiral Lagrangian as the remaining terms are suppressed by more powers of

p/Λχ. This concept of power counting is essential as it makes calculations in ChPT

tractable.

3.4.1 O(p2): Chiral invariant terms

Let us concentrate on the pure Goldstone terms in ChPT in this section. These

terms can be constructed using the matrix U(x) we discussed in the previous section.

Following standard notations, we define the normalized pion fields ~π(x) through

U(x) = exp{i~π(x) · ~τ
Fπ

} (3.15)

and the parameter Fπ is known as the pion decay constant. In our convention Fπ ≈ 93

MeV but it is also worth knowing that in other conventions Fπ may take different
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values (the most common example is that Fπ ≈ 186 MeV in the SO(4) representation

of ChPT).

We start by constructing the leading order chiral-invariant Lagrangian using U(x).

As discussed in Sec. 3.3, any chiral-invariant term of pions must involve derivatives.

One may easily show that the only chiral-invariant operator in O(p2) is given by:

L (2)
inv =

F 2
π

4
Tr[(∂µU)(∂µU †)]. (3.16)

The prefactor F 2
π/4 serves for the normalization of the pion kinetic term. Expansion

of this Lagrangian according to power of pion fields gives:

L (2)
inv =

1

2
(∂µ~π)2 +

1

6F 2
π

[(~π · ∂µ~π)2 − ~π2(∂µ~π)2] +O(π6) (3.17)

which gives the pion kinetic terms as well as interaction terms involving even number

of pions. The interaction strengths of different terms are all inter-related due to chiral

symmetry.

3.4.2 Spurion and chiral symmetry breaking terms at O(p2)

Eq. (3.16) is not the only available term at O(p2) because we need also to include

chiral symmetry breaking terms at the same order. These terms involve insertions

of quark mass matrix M following definite rules. Before we proceed, it is useful to

introduce the concept of “spurion” which is crucial in constructions of symmetry-

breaking terms in an effective theory. To understand this concept let us consider the

quark mass term in QCD. It has the following form:

Lm
QCD = −Q̄RMQL + h.c.. (3.18)

This term is obviously not chiral invariant, however it “would be” chiral invariant

if we imagine that the constant matrix M would transform as M → URMU †
L under
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SU(2)L × SU(2)R. The matrix M is an example of spurion which is defined as a

constant quantity which would make a given theory invariant under certain transfor-

mation if we imagine that it would transform according to some specific rule.

Since ChPT is an effective theory of QCD it should break chiral symmetry explic-

itly in the exact same ways as QCD does, namely: one should construct operators

involving insertions of the constant quark mass matrix M in such as way that, if

M → URMU †
L under chiral rotation then these operators would be chiral invariant.

There is only one such operator at leading order, namely:

L (2)
m =

F 2
πB0

2
Tr[MU † + UM †]. (3.19)

Here B0 is a free parameter with mass dimension 1. The expansion of L (2)
m gives:

L (2)
m = F 2

πB0(mu +md)(1 − ~π2

2! · F 2
π

+
(~π2)2

4! · F 4
π

) +O(π6). (3.20)

We obtain from L (2)
m a constant term, an isospin-invariant pion mass term and a

series of interaction terms with even number of pions. The squared pion mass is then

identified as m2
π = B0(mu +md). It is interesting to notice that mπ ∼ √

mq, i.e. the

pion mass depends non-analytically to the quark masses.

Finally, combining Eq. (3.16) and (3.19) we obtain the full mesonic chiral La-

grangian at O(p2):

L (2) =
F 2

π

4
Tr[(∂µU)(∂µU †)] +

F 2
πB0

2
Tr[MU † + UM †]

= const +
1

2
(∂µ~π)2 − m2

π

2
~π2 +

1

6F 2
π

[(~π · ∂µ~π)2 − ~π2(∂µ~π)2] +
m2

π

24F 2
π

(~π2)2

+O(π6) (3.21)

3.4.3 Brief discussion of O(p4) Lagrangian

If we restrict our requirement of precision level to O(p2), then what we need is the

application of Eq. (3.21) at tree-level. However, to increase our precision to O(p4)
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one needs to include extra terms in the chiral Lagrangian at this order. If we ignore

the coupling with external fields then the relevant terms are:

L (4) = L1{Tr[(∂µU)(∂µU †)]}2 + L2Tr[(∂µU)(∂νU
†)]Tr[(∂µU)(∂νU †)]

+L3Tr[(∂µU)(∂µU †)(∂νU)(∂νU †)] + L4Tr[(∂µU)(∂µU †)]Tr[MU † + UM †]

+L5Tr[(∂µU)(∂µU †)(MU † + UM †)] + L6{Tr[MU † + UM †]}2

+L7{Tr[MU † − UM †]}2 + L8Tr[MU †MU † + UM †UM †]. (3.22)

The parameter {Li} are low energy constants (LECs) which cannot be determined

by any symmetry argument.

To obtain full results up to O(p4) one needs to apply Eq. (3.21) to one loop as

well as Eq. (3.22) at tree level. In general the 1-loop integrals contributed by the

O(p2) Lagrangian contain UV-divergences and these divergences can be canceled by

the O(p4) low energy constants {Li}. One may define Li = Ai + Lr
i where Ai are

responsible for the cancelation of the UV-divergences of the loop integrals and {Lr
i}

are renormalized LECs which are finite numbers. They have to be either determined

by experiment or fitted to lattice data.

3.5 Baryons in ChPT

So far we have only included pions in our chiral Lagrangian so the next step is

obviously to include baryons. Again we restrict ourselves to a two-flavor QCD so the

ground state baryons are just proton and neutron.

3.5.1 Transformation rule of the nucleon field

It is well-known that p and n form an isospin doublet and can be written collec-

tively as a two-component nucleon field N = (p n)T . Under SU(2)V the nucleon field

should transform as
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SU(2)V : N → exp{i~θV · ~τ
2
}N. (3.23)

On the other hand, it is not clear how N(x) should transform under the full chiral

symmetry SU(2)L × SU(2)R. In fact, this transformation can be chosen arbitrarily

and the only requirement is that it reduces to Eq. (3.23) when ~θR = ~θL. Different

choices will all give the same result as far as physical observables are concerned.

The first and probably most obvious choice one could think about is to let NL/R →

UL/RNL/R under SU(2)L×SU(2)R. This choice is completely fine, but then one could

build chiral-invariant terms such as N̄RUNL which do not involve any derivative. For

these terms it is not totally obvious whether or not the usual power counting scheme

still holds because there seems to be no momentum suppression. To avoid this trouble

one may choose a different kind of chiral transformation for N . The most standard

choice is defined as the following. First we consider the chiral transformation of

u(x) ≡
√

U(x). It can be written as:

u→ URuK
† = KuU †

L (3.24)

where K = K(π(x)) is a 2 × 2 unitary matrix which depends on the pion fields.

The last equality of the equation above comes the fact that U = u · u transforms as

U → URUU
†
L. Following Eq. (3.13), it is obvious that K → exp{i~θV · ~τ

2
} (which is

the isospin transformation matrix) when ~θR = ~θL. Now the transformation rule of

the nucleon field N under chiral rotation can be chosen as:

N → KN (3.25)

which obviously reduces to Eq. (3.23) in the isospin limit.
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3.5.2 Nucleon Lagrangian at O(p1)

We still need several other building blocks for the construction of the baryon ChPT

Lagrangian. First, consider a naive kinetic term of the nucleon field N̄i∂/N . This term

is obviously not chiral invariant because the matrix K is spacetime-dependent. It is

therefore essential to construct a chiral covariant derivative Dµ which transforms

under SU(2)L × SU(2)R as:

Dµ → KDµK
†. (3.26)

One could verify that the correct form of the chiral covariant derivative is

Dµ = ∂µ +
1

2
(u†∂µu+ u∂µu

†). (3.27)

With this, the term N̄iD/N is now chiral invariant. Expansion of this term gives the

nucleon kinetic term and interaction terms involving nucleon and even number of

pions.

It is also possible to construct operators that describe interactions between nucleon

and odd number of pions. For that purpose one should introduce another piece of

building block:

uµ ≡ i(u†∂µu− u∂µu
†). (3.28)

It is an axial vector as it transforms under parity as uµ → −uµ. Also, one can straight-

forwardly show that uµ transforms under SU(2)L×SU(2)R as uµ → KuµK
†. With the

introduction of this axial vector one could construct a new classes of chiral-invariant

operators. The only operator at the leading order has the form of N̄γµγ5uµN , where

the γ5 is included to make the whole term parity-even since we know that QCD

conserves parity.

Finally, one shall not forget that a simple nucleon mass term −mNN̄N is also

chiral invariant so it has to be included in the chiral Lagrangian. Note that this

mass comes from dynamical chiral symmetry breaking and not from quark mass
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insertion, hence it remains non-zero even in the chiral limit. Combining all the terms

we obtained above, we can now write down the nucleon Lagrangian in ChPT to the

order O(p1):

L (1)
N = N̄(iD/−mN +

gA

2
γµγ5uµ)N

= N̄i∂/N −mNN̄N − gA

2Fπ

N̄γµγ5(∂µ~π) · ~τN +
1

4F 2
π

N̄γµ(∂µ~π × ~π) · ~τN

+O(π3) (3.29)

It is interesting to notice that the pion-nucleon coupling constant gA is the same gA

that appears in the neutron beta decay form factor. This is known as the Goldberger-

Treiman relation.

3.6 Heavy Baryon Chiral Perturbation Theory

The nucleon Lagrangian in Eq. (3.29) is pathological not due to any symmetry

consideration but due to the introduction of a large nucleon mass mN that breaks the

chiral power counting. Recall our discussion in Sec. 3.4 that the success of ChPT as

an effective theory relies on the existence of a power counting scheme, where different

terms can be arranged according to an increasing power of p/Λχ and p ≪ 1 GeV.

The introduction of a massive baryon, however, provides a new scale p ∼ mN ∼ 1

GeV to the theory and mN/Λχ ∼ 1 is obviously not a valid expansion parameter.

The breakdown of the power counting rule renders the theory useless because there

can be infinitely many terms in the Lagrangian which are equally important in the

calculation of a given observable and there is no way we can take all these terms into

account simultaneously.

The standard way to get around this problem is to introduce a phase shift to the

nucleon field N that removes the large nucleon mass mN in the theory. The redefined

nucleon field now acts as a massless excitation with a residual momentum k ≪1
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GeV such that k/Λχ ≪ 1 so the chiral power counting is recovered. ChPT with this

treatment is known as Heavy Baryon Chiral Perturbation Theory (HBChPT). In this

section we shall introduce some basic concepts of HBChPT.

3.6.1 The velocity superselection rule

First let us consider a very heavy particle with mass m. Its initial momentum p

can be defined as:

pµ ≡ mvµ + kµ (3.30)

where v can be interpreted as its “velocity” and kµ is a residual momentum where

k ≪ m. Now, imagine that it interacts with another light particle with a typical

momentum much less than m. The final momentum p′of the heavy particle can be

written as:

p′µ ≡ mv′µ + k′µ. (3.31)

The difference between the initial and final momentum is then

p′µ − pµ = m(v′µ − vµ) + (k′µ − kµ). (3.32)

It is clear now that in the largem limit we must have v = v′ in order for the momentum

change to be finite, which means the velocity of a heavy particle is conserved during

a soft interaction even though its momentum is not. This is known as the “velocity

superselection rule”. The picture can be visualized easily: when a light ball bounces

off a very heavy ball, the heavy ball experiences a finite momentum change due to

momentum conservation but its velocity is hardly changed.

Applying this concept to the nucleon in ChPT, we are able to label the nucleon

field N with a four-velocity v which is conserved during interactions involving ex-

change of soft momenta.
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3.6.2 Light and heavy components of the nucleon field

Let us make the discussion above more rigorous in terms of mathematical for-

mulation. First, we define an arbitrary constant vector vµ satisfying the following

relations:

v2 = 1

v0 ≥ 1 (3.33)

and two velocity projection operators

Pv± ≡ 1 ± v/

2
. (3.34)

One can easily verify the following properties for the projection operators:

Pv+ + Pv− = 1

(Pv±)2 = Pv±

Pv±Pv∓ = 0

v/Pv± = ±Pv±. (3.35)

Next, we shall define the “light” component Nv and the “heavy” component Hv

of the nucleon field as the following:

Nv ≡ eimNv·xPv+N

Hv ≡ eimNv·xPv−N. (3.36)

Obviously, the original nucleon field N is related to these two components by N(x) =

e−imNv·x(Nv(x) +Hv(x)). Also, note that this decomposition acts only on the Dirac

space of the nucleon field and has nothing to do with the isospin space.
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3.6.3 The heavy baryon expansion

With this decomposition we are now ready to formulate the heavy baryon expan-

sion of the ChPT Lagrangian. Our goal is to expand the ChPT Lagrangian in powers

of p/mN where p is an energy scale much less than 1 GeV. With this expansion,

the nucleon mass mN can only appear in denominator and not numerator, hence the

power counting of our chiral Lagrangian will be safe. Let us start with the following

nucleon Lagrangian:

L = N̄(iD/−mN + Γ)N (3.37)

where Γ can take any form. Substitution of the decomposed form of N into the

equation above leads to:

L = N̄v(iD/+ Γ)Nv + H̄v(iD/− 2mN + Γ)Hv + N̄v(iD/− 2mN + Γ)Hv + H̄v(iD/+ Γ)Nv.

(3.38)

If we concentrate on the first two terms of the equation above, it seems that Nv

is a massless excitation while Hv is a massive excitation with mass 2mN . One could

then integrate out the heavy field Hv in the Lagrangian and obtain and effective

theory of the light field Nv only. This procedure creates infinitely many terms that

can be arranged by increasing powers of 1/mN and that is exactly the heavy baryon

expansion we are looking for.

There is one further step we need to perform to Eq. (3.38) before Hv can be

integrated out. One should be aware that after the velocity projection Nv and Hv are

effectively two-component spinors although formally they still have four components.

Similarly, the Dirac structure of (iD/−2mN +Γ) also contains redundancies that needs

to be removed otherwise it will have no inverse. The removal of this redundancy

involves sandwiching Dirac matrices between velocity projection operators. Some

useful results are summarized below:
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Pv±A/Pv± = ±A · vPv±

Pv±A/Pv∓ = A/⊥Pv∓ = Pv±A/⊥

Pv±A/γ5Pv± = A/⊥γ5Pv±

Pv±A/γ5Pv∓ = ±A · vγ5Pv∓ (3.39)

with Aµ
⊥ ≡ Aµ−v ·Avµ. For notational convenience, we shall also define for any Dirac

structure Γ, Γij ≡ PviΓPvj (for example, Γ+− = Pv+ΓPv−). With this, Eq. (3.38) can

be rewritten as

L = N̄v(iv · D + Γ++)Nv + H̄v(−iv · D − 2mN + Γ−−)Hv

+N̄v(iD/⊥ + Γ+−)Hv + H̄v(iD/⊥ + Γ−+)Nv. (3.40)

The heavy field Hv can now be integrated out from Eq. (3.40) simply by completing

the square. The effective Lagrangian we obtain is the following:

Leff = N̄v(iv · D + Γ++)Nv

+N̄v(iD/⊥ + Γ+−)(2mN + iv · D − Γ−−)−1(iD/⊥ + Γ−+)Nv. (3.41)

This effective Lagrangian can be easily expanded in powers of 1/mN .

3.6.4 Reduction of Dirac structures

The fermionic degree of freedom in Eq. (3.41) is the light nucleon field Nv which

is effectively a two-component spinor. Recall that for a theory with two-component

Pauli spinors there are only two independent types of matrices in the spin space,

namely 1 and ~σ. We expect the same to happen here, where all the Dirac structures

can be reduced to either 1 or some kind of spin matrix.
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It turns out that the appropriate definition of the spin matrix is given by

Sα
v ≡ i

2
σαβγ5vβ. (3.42)

Some useful relations involving the spin matrix are summarized below:

Sv · v = 0

{Sµ
v , S

ν
v} =

1

2
(vµvν − gµν)

Sµ
v = Sµ

v

[Pv+, S
ν
v ] = 0

[Sµ
v , S

ν
v ] = iεµναβvαS

v
β. (3.43)

Note that the first four equalities hold in arbitrary dimension while the last equality

is only true when d = 4. One can demonstrate that the Sµ
v defined above indeed

possesses well-known properties of spin matrices. For instance, consider a static

nucleon where vµ = (1,~0). Then the last equality becomes [Si
v, S

j
v] = iεijkSk

v which is

indeed the correct commutation rule for spin operators.

One may proceed to show that any Dirac matrix sandwiched between Nv and N̄v

will reduce to either 1 or Sµ
v . A complete list of such reductions is given below:

N̄vγ5Nv = 0

N̄vγ
µNv = vµN̄vNv

N̄vγ
µγ5Nv = 2N̄vS

µ
vNv

N̄vσ
µνNv = 2εµναβvαN̄vS

v
βNv

N̄vσ
µνγ5Nv = 2i(vµN̄vS

ν
vNv − vνN̄vS

µ
vNv). (3.44)

Again, the first three equalities hold in arbitrary dimension while the last two equal-

ities are true only when d = 4.
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3.6.5 Leading order HBChPT Lagrangian

Finally we shall apply the heavy baryon formalism to Eq. (3.29). With Γ =

(gA/2)u/γ5 we have:

N̄vΓ++Nv =
gA

2
N̄vu/⊥γ5Nv =

gA

2
N̄v(u/− u · vv/)γ5Nv = gAN̄vu · SvNv. (3.45)

Therefore, to the leading order in 1/mN expansion one simply gets:

Leff = N̄v(iv · D + gASv · u)Nv +O(
1

mN

). (3.46)

The free-particle EOM derived from this Lagrangian is simply iv · ∂Nv = 0, which

implies the following on-shell condition:

v · k = 0 (3.47)

where k is the residual momentum carried by the light nucleon field Nv. The Feynman

propagator of the light field is given by:

iS(k) =
i

v · k + iǫ
. (3.48)

These are basically all the ingredients we need in the evaluation of Feynman diagrams

using the leading order HBChPT Lagrangian.
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CHAPTER 4

NUCLEON ELECTRIC DIPOLE MOMENTS AND THE

ISOVECTOR PARITY- AND TIME-REVERSAL-ODD

PION-NUCLEON COUPLING

4.1 Introduction

Electric dipole moments (EDMs) of neutral atoms, molecules, and the neutron

provide sensitive probes of new sources of time-reversal (T) and parity (P) violation.

Current upper limits on the EDMs of the 199Hg atom [147], dA(199Hg), and neutron

[148], dn, place tight constraints on the QCD vacuum angle within the Standard

Model (SM) as well as on possible sources of sources of CP-violation (CPV) arising

from physics beyond the SM (BSM)1. The existence of BSM CPV is needed in order

to explain the cosmic baryon asymmetry (for a recent review, see Ref. [52]). If the

asymmetry had been generated at temperatures of order the electroweak (EW) scale,

then dn provides a particularly sensitive probe.

At energies below the scale of BSM interactions Λ but above the EW scale, one

may characterize the effects of BSM CPV interactions in terms of an effective theory

involving only SM fields:

LCPV = LCKM + Lθ̄ + Leff
BSM , (4.1)

where LCKM and Lθ̄ denote the SM Cabibbo-Kobayashi-Maskawa (CKM) [24] and

QCD vacuum angle [34, 265, 264] CPV Lagrangians, respectively, and

1In what follows, we assume CPT conservation, so that the signal for a non-vanishing neutron
EDM would also indicate the presence of CP-violation.
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Leff
BSM =

1

Λ2

∑

i

α
(6)
i O(6)

i + · · · , (4.2)

gives the set of non-renormalizable CPV effective operators at the weak scale v = 246

GeV generated by BSM physics at a scale Λ > v. For brevity, we have indicated only

those entering at dimension (d) six, while the + · · · indicate those of higher dimen-

sion2. Among the more widely considered d = 6 CPV operators are the elementary

fermion EDMs, the quark chromo-EDMs, and the Weinberg three-gluon operator.

In this study, we focus on one particular d = 6 operator that naturally arises in

left-right symmetric model (LRSM) extensions of the SM, that gives rise to EDMs

of nucleons, nuclei, and diamagnetic atoms, and that has received considerably less

attention than the other operators that arise at this order in the effective theory:

Oϕud = i(ϕ̃†Dµϕ)ūRγ
µdR , (4.3)

where ϕ is the Higgs doublet, ϕ̃ = iτ2ϕ
∗, Dµ is the SU(2)L×U(1)Y covariant deriva-

tive and uR (dR) is the right-handed up-quark (down-quark) field. In LRSMs, the

corresponding Wilson coefficient Cϕud is generated by mixing between the left- and

right-handed W bosons in the presence of either spontaenous CPV and/or explicit

CPV in the right-handed quark CKM matrix.

After electroweak symmetry-breaking wherein ϕT → (0, v/
√

2), the exchange of

the W± contained in the covariant derivative with a left-handed quark current leads

to an effective four quark interaction3

Leff
LR, CPV = −iImCϕud

Λ2

[

d̄Lγ
µuL ūRγµdR − ūLγ

µdL d̄RγµuR

]

. (4.4)

2A complete list of dimension six operators may be found in Refs. [29], while those directly
relevant to EDMs are listed in Tables three and four of Ref. [164].

3Corrections due to the evolution of the four quark interaction to hadronic scales are minor, see
the discussion in Ref. [266].
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The interaction in Eq. (4.4) breaks isospin symmetry, thereby giving rise to, among

other interactions, the isovector TVPV πNN interaction:

LTVPV
πN, I=1 = ḡ(1)

π N̄π0N , (4.5)

where N and π0 are the nucleon and neutral pion fields, respectively. This interaction

leads to long-range contributions to the nuclear Schiff moment that induces dA(199Hg)

as well as long-range contributions to dn that can be computed in chiral perturbation

theory. The present limits on these EDMs, thus, imply constraints on the mass MWR

of the right-handed W -boson and associated CPV phases in the LRSM.

Following this line of reasoning, the authors of Refs. [267, 268] have derived con-

straints on MWR
and the strength of spontaneous CPV in the LRSM from the limits

on dn and the corresponding implications of CPV in the neutral kaon sector. The

results imply that MWR
> 10 TeV. In related work, the authors of Ref. [269] ob-

served that Oϕud will also induce a semi-leptonic CPV operator that contributes to

neutron decay. Even without specifying to the LRSM, the dn limits on Cϕud then

constrain the magnitude of possible effects in T-odd neutron decay correlations. In

both cases, the dn constraints relied on an earlier pion-loop calculation performed

by the authors of Ref. [270] using a relativistic meson-nucleon field theory approach.

The results indicate that the leading term in dn resulting from the interaction (4.5)

is proportional to the neutron anomalous magnetic moment κn and is independent of

the pion-to-nucleon mass ratio, mπ/mN . From the standpoint of effective field theory

(EFT), this result is surprising, as the anomalous magnetic moment vertex brings

in an inverse power of the nucleon mass while consistent power counting in chiral

perturbation theory requires that loops only bring in momenta of order of the pion

mass. The absence of any mπ/mN suppression in the computation of Ref. [270] is not

consistent with this expectation.
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In what follows, we repeat the pion loop computation associated with (4.5) using

heavy baryon chiral perturbation theory (HBChPT) [163] and show that the result

proportional to ḡ
(1)
π κn is suppressed by (mπ/mN)2 ∼ 0.02. HBChPT implements

the power counting required by an EFT by expanding about both the static nucleon

(mN → ∞) and chiral (mπ → 0) limits. Our results imply considerably weaker con-

straints on Cϕud from the long-range contribution to dn than obtained in the studies of

Refs. [267, 268, 269]. Presently uncalculable short-distance contributions associated

with loop momenta of order one GeV that reside in the nucleon EDM counterterm

may imply stronger constraints as suggested by näıve dimensional analysis (NDA). In

this context, one may view the relativistic meson theory computation of Ref. [270] as

providing a model estimate of the short-distance contributions. Generally speaking,

however, both the sign and magnitude of NDA and/or model estimates for the short

distance contributions are subject to uncertainty, so the most conservative implica-

tions will be inferred from the calculable long-distance terms.

In this respect, we note that the diamagnetic EDMs provide an in principle more

robust benchmark than dn, as the nuclear Schiff moment arises from tree-level pion

exchange between two nucleons and is relatively free from the uncertainties associated

with short-distance contributions. In practice, the many-body nuclear theory uncer-

tainty associated with the interaction (4.5) are substantial [164], with the situation

for 199Hg being particularly unsettled. Looking to the future, storage-ring searches

for EDMs of light nuclei such as the deuteron or 3He nucleus [247] would provide the-

oretically cleaner probes of Oϕud since the short-distance contributions to such EDMs

are relatively minor and since the few-body nuclear theory is well under control [271].

In the immediate term, however, the long-range contribution to dn appears to be the

most trustworthy avenue for accessing Oϕud.

In the remainder of this paper, we discuss the details of our calculation. In Section

4.2 we summarize the HBChPT framework as it applies to the computation of TVPV

84



observables and give the details of our nucleon EDM computation. In Section 4.3

we compare our results with those of Ref. [270]. We discuss the implications and

summarize in Section 4.4.

4.2 HBChPT Calculation

Loop computations performed with a relativistic meson-nucleon field theory and

dimensional regularization include explicit contributions from loop momenta of order

mN , thereby eliminating the possibility of a consistent power counting4. In HBChPT

[163], one removes these contributions by first redefining the nucleon degrees of free-

dom in terms of heavy fields having fixed velocity v

Nv =
1 + v/

2
eimNv·xN , (4.6)

where

pµ = mNv
µ + kµ , (4.7)

with k being a residual momentum. We henceforth omit the “v” subscript. Deriva-

tives acting on the heavy fields give the small residual momenta, and the propagator

of a heavy-nucleon field no longer contains the nucleon mass. The results of loop

integrals involving the N fields then scale with powers of Q/mN and Q/Λχ, where

Q is of order mπ or the external momentum (assumed to be well below one GeV),

Λχ = 2πFπ is the scale of chiral symmetry breaking, and Fπ = 186 MeV is the pion

decay constant5. One, thus, obtains a consistent EFT power counting.

4A relativistic approach can provide a reliable power counting if more complicated regularizations
schemes are applied, for a review see Ref. [272].

5Note that other work in HBChPT uses fπ = Fπ/2.
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The HBChPT interactions are constructed from the heavy nucleon and pion fields,

the velocity vµ, and the spin Sµ with S = (~σ/2, 0) in the nucleon rest frame v = (~0, 1).

It is also useful to project vectors in their components parallel and orthogonal to the

velocity. We use a subscript ⊥ to denote the perpendicular components. For example,

the perpendicular covariant derivative is

Dµ
⊥ = Dµ − vµv · D . (4.8)

We note that HBChPT operators are manifestly invariant under rotations and trans-

lations. Under boosts, the HBChPT operators are only invariant order by order in

the Q/mN expansion, leading to non-trivial constraints on the interactions in the

effective Lagrangian and on their coefficients [163, 273].

The resulting, leading order (LO) P - and T -conserving Lagrangian for f fermion

fields is (see Ref. [274] for more details)

L (0) =
1

2
Dµπ ·Dµ

π − m2
π

2D
π

2 + N̄

(

iv · D − 2gA

Fπ

Sµ
τ ·Dµπ

)

N , (4.9)

where gA = 1.27 is the pion-nucleon axial-vector coupling. At LO, electromagnetism

can be included by making the derivatives in Eq. (4.9) covariant under Uem(1),

(Dµπ)i → (Dµ,emπ)i =
1

D
(∂µδij + eAµǫ3ij)πj ,

DµN → Dµ,emN =

[

∂µ +
i

F 2
π

τ · (π ×Dµ,emπ) +
ie

2
Aµ (1 + τ3)

]

N , (4.10)

where e is the proton charge, e > 0 and D = 1 + π
2/F 2

π . For brevity, in the following

we omit the label “em”.

The anomalous magnetic moment that is of particular interest to this work first

appears at next-to-leading order (NLO) in Q/mN , together with the nucleon kinetic
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energy, a recoil correction to the axial pion-nucleon coupling, the nucleon sigma term,

and the proton-neutron mass difference

L (1) = − 1

2mN

N̄D2
⊥N +

gA

FπmN

(iv ·Dπ) · N̄τ S · D−N

+
1

4mN

εαβµνvαN̄Sβ [(1 + κ0) + (1 + κ1)τ3]NeFµν

+∆mN

(

1 − 2π2

F 2
πD

)

N̄N +
δmN

2
N̄

(

τ 3 − 2π3

F 2
πD

τ · π
)

N + . . . .(4.11)

Here, κ1 and κ0 are the isovector and isoscalar anomalous magnetic moments (AMMs),

κ1 = 3.7, κ0 = −0.12, and ∆mN and δmN the nucleon sigma term and nucleon mass

splitting originating in the quark masses. A lattice calculation found δmN = 2.26

MeV [275], while evaluations of ∆mN range between 45 and 60 MeV [276]. The

“+ · · · ” in Eq. (4.11) denote other operators with chiral index ∆ = 1, like the pion

mass splitting term, which are not relevant for our discussion.

In Eq. (4.11), the nucleon AMM couples to the magnetic field, and this interaction

does not contribute directly to the nucleon EDM. However, the AMM does couple

to the electric field at next-to-next-to-leading order (NNLO) through the spin-orbit

interaction that appears in ∆ = 2 Lagrangian:

L (2) =
gA

4m2
NFπ

Dµπ ·
(

N̄τSµD2
⊥,−N − N̄τDµ

⊥,−S · D⊥,−N
)

− i

16m2
N

εαβµνN̄Sα [(1 + 2κ0) + (1 + 2κ1)τ3] Dβ,⊥,−]N eFµν + . . . .(4.12)

The first term in Eq. (4.12) is a relativistic correction to gA, while the second term

is the spin-orbit nucleon-photon coupling. Reparametrization invariance fixes the

coupling constant of the interactions in Eq. (4.12) in terms of the couplings in Eqs.

(4.9) and (4.11) [163, 273].

Next we list the TVPV interactions originating in the four-quark operator in

Eq. (4.4). The construction of these interactions has been discussed in detail in Ref.
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[277], and here we only summarize the results. As already mentioned, the isovector

TVPV pion-nucleon interaction in Eq. (4.5) with coupling ḡ
(1)
π is induced at leading

order. Additionally, the quantum numbers of the neutral pion allow the existence of

a pion tadpole term. This tadpole can be removed from the Lagrangian via a field

redefinition of the pion and nucleon fields [278]. These field redefinitions induce an

additional LO contribution to the isovector TVPV pion-nucleon that can be absorbed

into ḡ
(1)
π . The tadpole removal also induces a contribution to the isoscalar TVPV

pion-nucleon interaction

LTVPV
πN, I=0 = ḡ(0)

π N̄τ · πN . (4.13)

Though formally LO, this contribution vanishes in the isospin limit mu = md and is

suppressed by the ratio ḡ
(0)
π /ḡ

(1)
π = δmN/(2∆mN) ≃ 0.02.

We find that there exist no NLO corrections proportional to ḡ
(1)
π and ḡ

(0)
π , because

they depend on structures like (1 ± v/)(1 ∓ v/) that vanish. The first non-vanishing

corrections proportional to ḡ
(1)
π appear at NNLO and are given by

LTVPV(NNLO)
πN, I=1 = − ḡ

(1)
π

4m2
N

(Dνπ3)N̄ [Sµ, Sν ]Dµ,−N − ḡ
(1)
π

8m2
N

π3N̄D2
⊥,−N . (4.14)

For brevity, we do not list the remaining NLO and NNLO TVPV interactions [277]

that are not relevant for the present discussion.

Finally, the combination of Eq. (4.4) and electromagnetic interactions gives rise

to the EDM interaction

LTVPV
em = −2N̄(d̄0 + d̄1τ

3)SµN vνFµν + . . . , (4.15)

where d̄0 and d̄1 are, respectively, the isoscalar and isovector short-range contributions

to the nucleon EDM and the “+ · · · ” stand for terms with one or more pions or

relativistic corrections not relevant for the discussion here.
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We now compute the contributions to the nucleon EDM generated by the inter-

actions in Eqs. (4.5,4.9,4.11-4.15). In the HBChPT framework, the EDM enters as a

TVPV contribution to the nucleon EM current:

Jµ
TVPV(q) = 2i (d0 + d1τ3) (S · qvµ − Sµv · q + . . .) , (4.16)

where qµ is the four-momentum of the outgoing photon and

LTVPV
γN = −Jµ

TVPVAµ . (4.17)

The dots in Eq. (4.16) denote relativistic corrections to the leading order current. The

neutron (proton) EDM is given by d0 − d1 (d0 + d1). For virtual photons, the nucleon

EDMs become the electric dipole form factors (see, e.g., Refs. [279, 280, 281]). For

purposes of our calculation, however, we focus on the static limits.

Contributions to the nucleon EDM arise from tree-level diagrams involving the

short-range interactions in Eq. (4.15) and from one-loop diagrams involving the TVPV

pion-nucleon vertices. The largest one-loop diagrams involve the P - and T -conserving

vertices from Eq. (4.9) only, while corrections appear due to insertions of vertices from

Eq. (4.11) or (4.12).

The contributions to d0,1 proportional to ḡ
(1)
π and ḡ

(0)
π up to order O(Q/mN)

have been computed previously in Refs. [281, 282], and they are independent of κ0,1.

The reason being that O(Q/mN) electromagnetic interactions given in Eq. (4.11) do

not contribute to the nucleon EDM since the interaction with the external field is

purely magnetic in the rest frame of the nucleon. The contributions proportional to

the AMMs therefore enter at O(Q/mN)2 and are generated by the vertex correction

diagrams in Fig. 4.1 along with the corresponding wave function renormalization

graphs in Fig. 4.2. Because ḡ
(0)
π /ḡ

(1)
π is small, at this order we focus on diagrams

involving ḡ
(1)
π only. The number of open circles indicates the order in the (Q/mN)
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(a) (b) (c) (d)

Figure 4.1. One-loop diagrams contributing to the nucleon EDMs at next-to-next-
to-leading order. Solid, dashed and wavy lines represent the propagation of nucleons,
pions and photons, respectively. A square marks the isovector TVPV interaction
from Eq. (4.5), other vertices representing the T- and P-conserving interactions.
Each circle on the vertex represents a suppression factor proportional to 1/mN . For
simplicity only one possible ordering is shown.

Figure 4.2. One-loop diagrams contributing to wave function renormalization. The
notation is as in Fig. 4.1.

expansion. Again, because the O(Q/mN) electromagnetic interactions are purely

magnetic, the contributions from the topologies of Figs. 4.1(a-c) vanish individually.

We also find that the sum of contributions proportional to ḡ
(1)
π that arise from the

O(Q/mN)2 wave function renormalization vanish. The only surviving, non-vanishing

contribution is generated by the topology of Fig. 4.1(d).

At O(Q/mN)2, an additional set of contributions to the proton EDM proportional

to ḡ
(1)
π are generated by the graphs in Fig. 4.3. The latter contain only the coupling

to the nucleon charge and various combinations of (a) O(Q/mN) corrections to the

πNN interactions and nucleon propagator as well as (b) O(Q/mN)2 corrections to one

of the couplings or propagator and LO interactions for the remaining components of

the diagram. Finally, at this order in principle contributions appear due to two-loop

diagrams involving ḡ
(1)
π and LO P - and T -conserving vertices. However, the sum of

these diagrams vanishes.
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(a) (b) (c)

Figure 4.3. Representative one-loop diagrams contributing at order (mπ/mN)2 to

the proton EDM proportional to ḡ
(1)
π and independent of the anomalous magnetic

moment coupling. The notation is as in Fig. 4.1.

Before giving our result, we first quote the LO and NLO results, including the

contributions involving both ḡ
(1)
π and ḡ

(0)
π . It should be noted that the results involv-

ing ḡ
(0)
π are actually suppressed by the smallness of ḡ

(0)
π /ḡ

(1)
π for the CPV source in

Eq. (4.4). The LO contribution proportional to ḡ
(0)
π has been first calculated in Ref.

[282], while the NLO corrections have been calculated in Refs. [281]. Together they

give

dLO+NLO
0 = d̄0 −

egA

4π2Fπ

πmπ

4mN

(

3ḡ(0)
π + ḡ(1)

π

)

,

dLO+NLO
1 = d̄1 −

egA

4π2Fπ

[

ḡ(0)
π

(

L− ln
m2

π

µ2
+

5π

4

mπ

mN

)

+
π

4

mπ

mN

ḡ(1)
π

]

. (4.18)

The contribution of ḡ
(0)
π to the isovector EDM is UV divergent, with divergence en-

coded in the factor

L ≡ 2

4 − d
− γE + ln 4π , (4.19)

in terms of number of space-time dimensions d and the Euler-Mascheroni constant

γE. The divergence is absorbed by the low-energy constant d̄1, which also contains

an a priori unknown non-vanishing finite contribution. It is conventional to absorb

L entirely into d̄1, thereby isolating the terms non-analytic in quark mass that are

unique to the loops. Notice that, at this order, the ḡ
(1)
π terms do not contribute to

91



the neutron EDM. For the interaction Cϕud in Eq. (4.4), this implies that the largest

non-analytic contributions only affect the proton EDM because ḡ
(0)
π is suppressed.

At NNLO, ḡ
(1)
π contributes to the nucleon EDM via the diagrams in Figs. 4.1 and

4.3. At this order in the Q/mN expansion, we neglect small ḡ
(0)
π m2

π/m
2
N corrections,

and only give terms proportional to ḡ
(1)
π . We find that the contributions are divergent:

dNNLO
0 =

egAḡ
(1)
π

64π2Fπ

m2
π

m2
N

[

(5 + 4κ1)

(

L− log
m2

π

µ2

)

+ 1

]

,

dNNLO
1 =

egAḡ
(1)
π

64π2Fπ

m2
π

m2
N

[

(5 + 4κ0)

(

L− log
m2

π

µ2

)

+ 1

]

. (4.20)

Again, we can absorb L and other finite pieces analytic in the quark mass into the

LECs d̄0,1. It is also instructive to express results through O(Q/mN)2 for the neutron

and proton EDM’s separately:

dn = d̄n − egA

4π2Fπ

{

ḡ(0)
π

(

ln
m2

π

m2
N

− πmπ

2mN

)

+
ḡ

(1)
π

4
(κ1 − κ0)

m2
π

m2
N

ln
m2

π

m2
N

}

(4.21)

dp = d̄p +
egA

4π2Fπ

{

ḡ(0)
π

(

ln
m2

π

m2
N

− 2πmπ

mN

)

− ḡ
(1)
π

4

[

2πmπ

mN

+

(

5

2
+ κ0 + κ1

)

m2
π

m2
N

ln
m2

π

m2
N

]

}

, (4.22)

where we have also absorbed analytic terms into d̄p = d̄0 + d̄1 (d̄n = d̄0 − d̄1) and

evaluated the result at a renormalization scale µ = mN . We observe again that unlike

dp, dn contains no terms proportional to ḡ
(1)
π linear in mπ and that its non-analytic

quark mass dependence first appears at NNLO. Thus, compared to the estimates

based on Ref. [270], the dn contributions proportional to κ0,1 are suppressed by two

powers of mπ/mN , leading to a factor of ∼ 50 suppression.

In principle, the magnitude of the finite parts of the d̄0,1, corresponding to “short

range” dynamics, may be larger than those arising from the loops. In practice, the

relative importance of the short-range and loop contributions depends on the prop-

erties of the four-quark operator in consideration. To illustrate, we consider the
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interaction of Eq. (4.4). Using general chiral symmetry arguments and NDA [283],

we expect [277, 164]

ḡ(1)
π ∼

Λ3
χ

FπΛ2

ImCϕud

(4π)2
, (4.23)

d̄0,1 ∼ eΛχ

Λ2

ImCϕud

(4π)2
, (4.24)

where Λχ = 2πFπ ∼ mN . Substituting the estimate (4.23) into Eqs. (4.18) we have

that

d̄NLO, loop
0,1 ∼ e

(2πFπ)2

πmπ

4mN

Λ3
χ

Λ2

ImCϕud

(4π)2
∼ eΛχ

Λ2

πmπ

4mN

ImCϕud

(4π)2
. (4.25)

The result in Eq. (4.25) is suppressed by one power of mπ/mN with respect to the

NDA estimate (4.24).

The non-analytic NNLO loop contributions are suppressed by an additional factor

of mπ/mN with respect to NLO contributions to d0,1, and of m2
π/m

2
N with respect to

the short-distance low-energy constants d̄0,1. For the isoscalar EDM, the suppression

is somewhat mitigated by the enhancement due to the large value of κ1.

To obtain a sense of the relative importance of various terms in Eqs. (4.21) and

(4.22), we assume ḡ
(0)
π /ḡ

(1)
π = 0.02 as one expects for the source in Eq. (4.4). In this

case, the formally LO contribution to dn, proportional to ḡ
(0)
π , and the O(m2

π/m
2
N)

correction proportional to ḡ
(1)
π × κn are numerically comparable. For the proton

EDM, the NLO contribution proportional to ḡ
(1)
π mπ/mN is about twice as large as

the NNLO term. The two contribution enter with opposite sign, and partially cancel,

so that net contributions of the two couplings ḡ
(0)
π and ḡ

(1)
π to dp are also of similar

magnitude. The comparison with the short-range contributions is more uncertain. If

we use the NDA estimates of d̄n, d̄p, and ḡ
(1)
π in Eqs. (4.23) and (4.24) we find that

the pion loops enter at the 10% to 20% level with respect to the short-range terms.

However, deviations from the NDA expectations can affect this conclusion. More

robust estimates require a first principles determination of d̄n, d̄p, ḡ
(0)
π and ḡ

(1)
π in
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Figure 4.4. One-loop diagram contributing to the nucleon EDM in relativistic chiral
perturbation theory. A square marks a TVPV interaction, other vertices representing
the T- and P-conserving interactions in Eqs. (4.27) and (4.28).

terms of the coefficient Cϕud, which, at the moment, is not available (model estimates

are summarized in Ref. [164]).

Finally our result for dn in Eq. (4.21) can be used to obtain a limit on ḡ
(1)
π .

Using the experimental upper bound |dn| < 2.9 · 10−26 e cm [148] and assuming no

cancellations with other contributions, we obtain

|ḡ(1)
π | <∼ 1.1 × 10−10 . (4.26)

4.3 Comparison with Earlier Work

It is instructive to compare the HBChPT results with those of Ref. [270]. The lat-

ter compute the contribution from Fig. 4.4 using the TVPV interactions in Eqs. (4.5)

and (4.13), together with the T- and P-conserving pseudoscalar pion-nucleon coupling

Lp =
2mNgA

Fπ

N̄iγ5
τ · πN , (4.27)

the relativistic version of the nucleon propagator, and the nucleon magnetic moment

Lagrangian

L = − e

8mN

N̄σµνFµν [κ0 + κ1τ3]N . (4.28)

We have repeated the calculation using these ingredients and obtain
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d0 = e(3ḡ(0)
π κ0 + ḡ(1)

π κ1)
gA

16π2Fπ

FP

(

m2
π

m2
N

)

,

d1 = e(−ḡ(0)
π κ1 + ḡ(1)

π κ0)
gA

16π2Fπ

FP

(

m2
π

m2
N

)

, (4.29)

where, when expanded for small x,

FP (x) =
3

2

[

4

3
− 2

3
π
√
x− x log x+ O(x3/2)

]

. (4.30)

The result obtained in Ref. [270] is similar apart from the first term in Eq. (4.30)

that is 1 in their work instead of 4/3 as we find. The discrepancy can be traced back

to a term containing the product of Dirac matrices γασ
µνγα. This combination is

proportional to d− 4, but comes in front of a divergent integral. In the limit d→ 4,

the 1/(d−4) from the loop integral cancels the d−4 in the product of Dirac matrices,

leaving a constant piece.

Comparing with the HBChPT results in Eq. (4.20), we see that the relativistic

calculation with pseudoscalar coupling yields contributions proportional to ḡ
(1)
π κ0,1

that arise at lower order in mπ/mN . The zeroth order term in Eq. (4.29) clearly

conflicts with the power counting expected in a well-behaved EFT since there ap-

pears no mπ/mN suppression. Using Eq. (4.23) in Eq. (4.29) would conflict with

the chiral/NDA expectations in Eq. (4.25), overestimating the latter by a factor of

mN/mπ ∼ 10.

The term non-analytic in the quark mass (mπ ∼ √
mu,d) proportional to (mπ/mN)κ0,1

in Eq. (4.29) respects, in principle, the chiral/NDA estimate, but in the HBChPT

calculation this term is absent. We can trace this discrepancy back to the use of

the pseudoscalar coupling in Eq. (4.27) which breaks chiral symmetry. Repeating

the calculation with the relativistic axial-vector pion-nucleon coupling that conserves

chiral symmetry, we find that the (mπ/mN)κ0,1 term does not appear. The first non-

analytic terms that appear are then proportional to (m2
π/m

2
N)κ0,1, as they should
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be. We refrain from giving all details, but have confirmed that by using appropriate

matching conditions the non-analytic terms appearing in the HBChPT and relativis-

tic calculation (with axial-vector pion-nucleon coupling) are the same6. Of course,

in the relativistic calculation with pseudovector coupling there still appear analytic

terms that are lower order in mπ/mN that may overestimate the dependence of the

nucleon EDM on ḡ
(0)
π and ḡ

(1)
π .

4.4 Implications and Conclusions

From the foregoing discussion, it is evident that any phenomenological constraints

obtained from experimental limits on dn and the results in Eq. (4.29) are likely to

be at least an order of magnitude too stringent. In HBChPT, the loop contributions

proportional to κ0,1 arise at NNLO in the Q/mN expansion, while κ-independent

contributions start off at NLO. For the isoscalar EDM, the NNLO contribution is

numerically comparable to the NLO term due to the large magnitude of κ1, whereas

for the neutron the NLO contribution is absent and the NNLO suppression is more

severe. In terms of the “left-right symmetric” four-quark interaction (4.4), the NLO

loop contributions and the chiral/NDA estimates for the short distance LEC are nu-

merically comparable although the loops can be expected to be somewhat smaller

due to to a mπ/mN suppression. Consequently, we see no reasonable way around the

mπ/mN suppression that should be applied to the analysis of the LRSM. For other

scenarios that lead to a different subset of the d = 6 CPV operators, such as the

Weinberg operator or chiral invariant four-quark operators, the loop contributions

associated with ḡ
(1)
π will be further suppressed compared to the short distance contri-

6The chiral symmetry-breaking impact of the pseudoscalar coupling enters through the tree-level,
parity-conserving, pion-photon production sub-graphs of the one-loop TVPV diagrams. Matching
onto the HBChPT Lagrangian requires introduction of an explicit chiral symmetry-breaking opera-
tor. No such operator is required when matching with the relativistic, pseudovector calculation.

96



butions. On the other hand, a scenario in which the isovector quark chromo-EDM is

the dominant d = 6 CPV source will have a similar phenomenology as the LRSM7.

For the LRSM with spontaneous CPV, the relaxed constraints may allow for

consistency between EDMs, the kaon CPV parameter ǫ, and a right-handed W -boson

(WR) with mass of a few TeV rather than the lower bound of 10 TeV quoted in

Ref. [267] (see the right panel of Fig. 8 for an illustration of the impact of relaxed

EDM constraints). In this case, discovery of the WR at the Large Hadron Collider

would still be possible, though it would likely imply that a second neutral CP-even

Higgs boson would be too heavy to be observed.

Similar conclusions apply to the analysis of Ref. [269] that considered the im-

plications of dn limits for the P-conserving, T-violating neutron decay correlation

~J · ~pe × ~pν with a coefficient denoted by D. Separating out the final state interactions

(Df ) that can mimic bona fide T-violation (Dt), the authors of Ref. [269] use the

work of Ref. [268] that, in turn, relied one the relativistic meson theory calculation of

Ref. [270], to conclude that |Dt/κ| < 10−7, where κ denotes the combination of Fermi

and Gamow-Teller matrix elements, gA, and the vector coupling gV that enters the

correlation. This bound lies well below the computed final state interaction contri-

bution |Dfκ| ∼ 10−5 with an uncertainty at the 10−7 level. In this case, it would not

be possible to disentangle final state contributions from possible LRSM contributions

for experiment performed with 10−7 level sensitivity. However, applying the relaxed

EDM constraint we obtain here would lead to |Dt/κ| < 10−6, opening a window for

a future D-correlation experiment to observe a non-vanishing LRSM effect.

7Deviations from these expectations might appear in the EDMs of multi-nucleon systems [277].
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CHAPTER 5

REEXAMINATION OF THE STANDARD MODEL

NUCLEON ELECTRIC DIPOLE MOMENT

The search for permanent electric dipole moment (EDM) of elementary and com-

posite particles is motivated by its CP-violating nature. We live in a universe in which

the amount of baryons and antibaryons are unequal. In order to explain this asym-

metry CP-violating interactions are needed to fulfill one of the three Sakharov criteria

[38]. EDMs of elementary and composite particles are, in most cases, direct conse-

quences of these interactions which can be probed in low-energy experiments. Since

the first upper limit on the neutron EDM obtained by Smith, Purcell and Ramsey

in 1957 [33], numerous experiments have been performed to improve the sensitivity

of EDM measurements in different particle systems. Currently, the most stringent

bounds on EDMs are set for the electron (8.7 × 10−29e cm, 90% C.L.)[146] and the

mercury atom (3.1×10−29e cm, 95% C.L.)[147], while the current upper limit on neu-

tron and proton EDMs are 2.9×10−26e cm (90% C.L.)[148] and 7.9×10−25e cm (95%

C.L.) respectively (the latter is deduced from the bound on the mercury EDM). Fu-

ture experiments are designed (or have been considered) to push these bounds even

further down. For the neutron EDM, this includes the experiment at Paul Scher-

rer Institut (PSI)[149], the CryoEDM and PNPI/ILL experiment at Institut Laue-

Langevin (ILL)[150], the SNS neutron EDM experiment at Oak Ridge, the TRIUMF

experiment in Canada and the Munich experiment at Germany. These experiments

0Reprinted article with permission from C. Y. Seng, Phys. Rev. C 91 (2015)
no.2, 025502. Copyright (2014) by the American Physical Society. DOI:
http://dx.doi.org/10.1103/PhysRevC.91.025502
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are designed to reach a 10−28e cm precision level for the neutron EDM [151]. Also,

both COSY[152] and BNL[153] have proposed storage ring experiments designed to

measure the proton EDM to a level of 10−29e cm precision.

Although numerous Beyond Standard Model (BSM) scenarios have been proposed

that give rise to measurable EDMs within current experimental precision level, so

far no definitive signal of such physics has been observed 1. Therefore, the CP-

violating phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix in the Standard

Model (SM) remains the only source for intrinsic EDMs. Questions have been raised

concerning the expected size of EDMs coming from purely SM physics[154]. A simple

dimensional analysis using constituent quark masses may suggest that the SM-induced

neutron EDM could be as large as 10−29e cm, approaching the level of sensitivity for

future EDM experiments. It is therefore important to have a better estimate for the

SM contribution to the nucleon EDM. To leading order, the quark EDM induced by

the CKM matrix starts at three-loops [155]. A detailed calculation showed that the

valence-quark contribution to the neutron EDM is of order 10−34e cm [156]. It was

also shown that long-distance contributions, namely contributions with baryons and

mesons as effective degrees of freedom (DOFs), could generate a much larger hadronic

EDM. For instance, the pion-loop contribution to the neutron EDM was first studied

in a paper by Barton and White [157] which produced log-divergent results in the

chiral limit indicating that the long-range contribution may dominate. On the other

hand, in a series of papers, Gavela et.al. studied the pole-diagram contribution with

the CP-violating phase generated by |∆S| = 1 electroweak [158] and gluonic penguin

diagrams [159]. They claimed that the latter is dominant and derived a SM neutron

EDM of order 10−31e cm. The possibility of a long-range contribution to the neutron

1There are indeed some hopeful candidates, for example the muon g−2 anomaly; but no conclusive
statement can be made before one could further improve the experimental precision and reduce the
theoretical uncertainty of the SM prediction.
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EDM from the CKM matrix was first pointed out by Khriplovich and Zhitnitsky[160].

He et.al [161] did a thorough chiral-loop calculation and re-analyzed the pole-diagram

contribution in [158, 159] and argued that the two are of the same order of magnitude.

Their estimate for the neutron EDM is 1.6 × 10−31e cm − 1.4 × 10−33e cm, which is

currently the most widely accepted estimate for the SM neutron EDM. In recent

years, the charm contribution to nucleon EDMs is also considered and it is roughly

10−31e cm [162].

The purpose of this paper is to revisit the previous study of both chiral-loop and

the pole contributions to the nucleon EDM in order to sharpen our SM benchmark

value. On the theoretical side, one could improve earlier work in several ways. For

instance, the chiral loop calculation in [161] adopted an older meson theory utilizing a

pseudoscalar strong baryon-meson coupling that should be replaced by the standard

axial-vector coupling. Also, their work that utilized an effective hadronic Lagrangian

in computing chiral-loop diagrams faced another well-known problem in the loss of

power counting similar to that happening in the relativistic Chiral Perturbation The-

ory (ChPT). ChPT is a non-renormalizable theory that involves infinitely many inter-

action terms. Its predictive power therefore relies on the fact that higher order terms

are suppressed by powers of p/Λχ where p is the typical mass or momentum scales

of hadronic DOFs and Λχ ∼ 1GeV. This expansion however becomes ambiguous

when baryons are included because a typical baryon mass is MB ∼ 1GeV. Therefore,

MB/Λχ is no longer a small expansion parameter. Heavy Baryon Chiral Perturbation

Theory (HBchPT) [163] provides a convincing way to get around this issue by per-

forming a field redefinition in the baryon field to scale out its mass-dependence. By

doing this, one can split the baryon field into “light” and “heavy” components, where

the former depends only on its residual momentum which is well below 1 GeV. After

integrating out the heavy component of the baryon field, the effective Lagrangian

can be written as a series expansion of 1/mN . This eliminates the possibility of a
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factor mN appearing in the numerator and thus restores the power counting. Many

works have appeared recently calculating the nucleon EDM induced by different BSM

physics using HBchPT (see [164] for a general overview). Although the convergence

of the SU(3) HBchPT is not as good as its SU(2) counterpart because mK/mN is not

very small [165, 166, 167, 168, 169], it is still theoretically beneficial as it provides

a formal classification of different contributions into leading and sub-leading orders.

In this work, the chiral-loop contribution to the nucleon EDM are recalculated up to

the leading-order (LO) in the heavy baryon (HB)-expansion.

Additionally, previous numerical results of loop and pole contributions face large

uncertainties due to poorly-known values of physical constants in the weak sector at

that time. For example, the CP-violating phase δ of the CKM matrix quoted in Ref.

[161] had an uncertainty that spans one order of magnitude. The fitting of certain low

energy constants (LECs) such as weak baryon-meson interaction strengths, has been

updated since. Also, their theoretical estimation of various CP-phases in the effective

weak Lagrangian was based on older work [170, 171] which had been improved by

others. Furthermore, for previous work on pole contributions, their estimation on

effective CP-phases was based only on a single gluonic penguin operator without

considering the full analysis of operator mixing and renormalization group running.

Moreover, the approximate form of their analytic expressions was based on the out-

of-date assumption that mt ≪ mW . In this work, I do a more careful determination

of weak LECs, taking all these issues into account. Combining my calculation and an

estimate of higher-order effects, I predict a range of the long-distance SM contribution

to the nucleon EDM to be around (1− 6)× 10−32e cm. I identify the main sources of

uncertainty and discuss possible steps one could take to improve upon that. At the

same time, I use dimensional analysis to estimate the size of possible short-distance

counterterms. I find that they could be as large as 4 × 10−32e cm.
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This work is arranged as follows: in Section II I will briefly outline the main

ingredients of the SU(3) HBchPT and introduce the weak Lagrangian responsible for

the generation of the nucleon EDM. In Section III I will determine the LECs. In

Section IV and V Iderive the analytic expressions for loop and pole contributions to

the nucleon EDM respectively and calculate their numerical values. In Section VI I

will provide some further discussions and draw my conclusions.

5.1 HBchPT: Strong and Electroweak Interactions

In this section, I review some basic concepts of ChPT with the primary aim of

establishing conventions and notation. ChPT is a low-energy effective field theory

(EFT) of quantum chromodynamics (QCD) with hadrons as low energy DOFs. QCD

exhibits a global chiral symmetry in the limit of massless quarks. However this sym-

metry is spontaneously broken in the ground state and leads to the emergence of

Goldstone bosons which are identified as pseudoscalar mesons. The corresponding

EFT obeys the same symmetry. An infinite tower of operators respecting the symme-

try with increasing mass dimensions is organized in the Lagrangian. However, only

a finite number of operators are retained since the the dropped higher-dimensional

operators make contributions that are suppressed by powers of p/Λχ.

I use the standard non-linear representation of chiral fields [172, 174, 173], in

which the pseudoscalar meson octet is incorporated in the exponential function U =

exp{iφ/Fπ}, where

φ =
8
∑

a=1

φaλa =













π0 + 1√
3
η8

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η8

√
2K0

√
2K− √

2K̄0 −2
3
η8













(5.1)

with Fπ ≈ 93MeV. The matrix U transforms under the chiral rotation as: U → LUR†,

where L and R are elements of SU(3)L and SU(3)R respectively. The mass term of
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the meson octet is introduced using spurion analysis: the QCD Lagrangian would

exhibit chiral invariance if the quark mass matrix M = diag{mu,md,ms} transforms

as M → LMR†. Therefore, its low energy effective theory written in terms of the

spurion field M should also exhibit a similar invariance. The lowest-order operator

that is invariant is Tr[MU †+UM †]. This operator gives rise to non-zero meson masses

which are isospin-symmetric.

The ground state JP = (1/2)+ baryon octet is assembled into the matrix:

B =













Σ0√
2

+ Λ√
6

Σ+ p

Σ− −Σ0√
2

+ Λ√
6

n

Ξ− Ξ0 − 2Λ√
6













. (5.2)

It transforms as: B → KBK† with K = K(L,R, U) being a unitary matrix. In order

to couple baryons with the pseudoscalar octet, we define ξ =
√
U which transforms

as ξ → LξK† = KξR† and introduce the Hermitian axial vector:

Aµ =
i

2
[ξ∂µξ

† − ξ†∂µξ] (5.3)

which transforms as Aµ → KAµK
† under the chiral rotation (we have neglected its

coupling with external fields because it is not needed in this work).

I now proceed with with the formulation of HBchPT. In order to scale out the

heavy mass-dependence, I rewrite its momentum as

pµ = mNvµ + kµ, (5.4)

where mN is the nucleon mass, vµ is the velocity of the baryon (which is conserved

in the mN → ∞ limit) and kµ is the residual momentum of the baryon which is well
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below 1 GeV. I therefore rescale the baryon field and retain its “light” component 2:

Bv(x) = eimNv·x 1 + v/

2
B(x) (5.5)

The subscript v will be dropped from now on. OI integrate out the remaining com-

ponent which is “heavy”. The baryon propagator thus becomes:

iSB(k) =
i

v · k − δB + iǫ
(5.6)

where δB = mB − mN is the baryon mass splitting. This procedure also reduces

Dirac structures to either 1 or Sµ with the latter being the spin-matrix of the baryon

satisfying S ·v = 0. In this work I concentrate only on terms that are leading order in

the HB-expansion (with the exception of the baryon electromagnetic dipole transition

operator that appears in pole diagrams as I will explain below).

The lowest-order strong Lagrangian involving only the (1/2)+ baryons, Goldstone

bosons and electromagnetic fields relevant to our work is given by:

L =
F 2

π

4
Tr[DµUDµU †] +

F 2
π

4
Tr[χ+] + Tr[B̄iv · DB] + 2DTr[B̄Sµ{Aµ, B}]

+2FTr[B̄Sµ[Aµ, B]] +
bD
2B0

Tr[B̄{χ+, B}] +
bF
2B0

Tr[B̄[χ+, B]]

+
b0

2B0

Tr[B̄B]Tr[χ+] (5.7)

where D = 0.80, F = 0.50 [172] and DµU = ∂µU + ieAµ[Q,U ]. Here

Q = diag{2/3,−1/3,−1/3} (5.8)

is the quark charge matrix while B0 is a parameter characterizing the chiral quark

condensate and χ+ = 2B0(ξ
†Mξ† + ξMξ) introduces the quark-mass dependence.

2in the sense that it only depends on the residual momentum
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The last three terms in Eq. (5.7) are responsible for the mass splitting within the

baryon octet [175]. Since I have scaled out the nucleon mass from the baryon field

B the proton and neutron will appear as massless excitations and the other baryons

will have an excitation energy given by the “residual” mass δB. This is important

later during the computation of pole diagrams.

For the purpose of pole diagram contributions I need also to include the (1/2)−

baryon octet. The importance of these resonances can be traced back to the observa-

tion of the unexpectedly large violation of Hara’s theorem [176] which states that the

parity-violating radiative B → B′γ transition amplitude should vanish in the exact

SU(3) limit. The authors of Ref. [177] (and later improved by [178]) pointed out

that this apparent puzzle could be resolved by including baryon resonances that give

rise to pole diagrams which enhance the violation of Hara’s theorem. Therefore, one

should naturally expect that the same kind of diagrams will also play an important

role in the determination of the nucleon EDM. The resonance (1/2)− octet is denoted

as R :

R =













Σ0∗√
2

+ Λ∗√
6

Σ+∗ p∗

Σ−∗ −Σ0∗√
2

+ Λ∗√
6

n∗

Ξ−∗ Ξ0∗ −2Λ∗√
6













. (5.9)

It transforms in the same way as B except that it has a negative intrinsic parity.

The part of strong and electromagnetic chiral Lagrangian involving R which is

relevant to our work is given by:

LR = Tr[R̄ iv · DR ] − δ̄R Tr[R̄ R ] +
b̃D
2B0

Tr[R̄ {χ+,R }] +
b̃F
2B0

Tr[R̄ [χ+,R ]]

+
b̃0

2B0

Tr[R̄ R ]Tr[χ+]

−2rD(Tr[R̄ (vµSν − vνSµ){fµν
+ , B}] + Tr[B̄(vµSν − vνSµ){fµν

+ , R}])

−2rF (Tr[R̄ (vµSν − vνSµ)[fµν
+ , B]] + Tr[B̄(vµSν − vνSµ)[fµν

+ ,R ]]). (5.10)

105



The second to fifth terms of LR give the average residual mass and mass-splitting

among the (1/2)− baryon octet. Constants rD and rF are electromagnetic coupling

strengths between B and R and fµν
+ is the chiral field strength tensor of the electro-

magnetic field that, in the SU(3) version of ChPT, is given by [172]:

fµν
+ = −e[ξ†Qξ + ξQξ†]F µν (5.11)

with e > 0. The reason we include rD and rF terms even though they are formally

1/mN -suppressed is that they will then be compensated by small denominator δB

factors in pole diagrams.

Next I introduce the relevant weak Lagrangian that gives rise to the nucleon

EDM. As the only CP-violating effect in the SM is the complex phase in the CKM

matrix, the strange quark must be included. The CP-phase is attached to various

|∆S| = 1 four-quark operators that are responsible for kaon decay and nonleptonic

hyperon decays. It is well-known that the product of two charged weak currents could

transform as (8L, 1R) or (27L, 1R) under the SU(3) chiral rotation. Extra |∆S| = 1

operators could be induced via gluonic or electroweak penguin diagrams. The former

transforms as (8L, 1R) while the latter may introduce a (8L, 8R) component that is

however suppressed by the smallness of the fine structure constant. Furthermore, since

(8L, 1R) operators have isospin I = 1/2 while (27L, 1R) operators can have both I =

1/2 and I = 3/2 components we would naturally expect the latter to be subdominant

as compared to the (8L, 1R) operators. Otherwise the I = 3/2 channel would be

as important as the I = 1/2 channel in non-leptonic decay processes, violating the

experimentally observed |∆I| = 1/2 dominance in these processes. Hence, effective

operators I introduce later should also transform as (8L, 1R).

The pure mesonic Lagrangian that triggers the |∆I| = 1/2 kaon decay channel is

given by [174]:

L8 = g8e
iϕTr[λ+DµUD

µU †] + h.c (5.12)
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where λ+ = (λ6 + iλ7)/2. The non-zero value of ϕ introduces the CP-violating

effect. Meanwhile, the corresponding baryonic operator that triggers the nonleptonic

hyperon decay is given by [179]:

L (s)
w = hDe

iϕDTr[B̄{ξ†λ+ξ, B}] + hF e
iϕF Tr[B̄[ξ†λ+ξ, B]] + h.c. (5.13)

Here the superscript (s) indicates that these operators mediate S-wave decays. In

principle there is a counterpart operator with the Dirac structure γ5, which is time-

reversal odd and is proportional to the complex phase in the CKM matrix. I do not

need this extra operator because it vanishes at leading order in the HB-expansion

upon the non-relativistic reduction of the Dirac structure. Also, our definitions of hD

and hF here are slightly different from [179] as we take hD, hF to be real, with the

complex phases explicitly factored out.

Finally, for the purpose of including pole-diagram contributions, I need the weak

Lagrangian that triggers the B−R transition. The lowest order Lagrangian is given

by [180]:

LBR
w = iwDe

iϕ̃DTr[R̄ {h+, B}] + iwF e
iϕ̃F Tr[R̄ [h+, B]] + h.c (5.14)

where h+ ≡ ξ†λ+ξ + ξ†λ−ξ. The counterpart with a γ5 structure similarly vanishes

at leading order in the HB-expansion.

5.2 Determination of the LECs

There are altogether 12 LECs that enter into the estimate for the nucleon EDM:

seven interaction strengths {rD, rF , g8, hD, hF , wD, wF} and five CP-violating phases
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{ϕ, ϕD, ϕF , ϕ̃D, ϕ̃F}. They are either extracted from experiments or obtained by

theoretical modeling 3.

Pure electromagnetic B−R transition coupling strengths rD and rF are fitted to

electromagnetic decays of (1/2)− resonances. The authors of Ref. [178] obtain:

erD = 0.033GeV−1, erF = −0.046GeV−1. (5.15)

The constant g8 is fitted to the K0
s → π+π− decay rate, ignoring the small CP-

violating effect [181], giving

g8 = 6.84 × 10−10GeV2. (5.16)

The CP-phase ϕ is, up to a negative sign, the phase of the K0 → ππ(I = 0) decay

amplitude:

ϕ = −ξ0 = −ImA0

ReA0

(5.17)

In principle one could extract ξ0 from the measurement of the CP-violating parameter

ǫ′ in the kaon decay. However, ǫ′ is a linear combination of ξ0 and another CP-violating

phase, ξ2, of the I = 3/2 channel. Simple estimation [174] suggests that ξ2 is of the

same order as ξ0 making ξ0 hard to extract directly from the experiment. I therefore

refer to theoretical estimation based on the large-Nc approach [182] which gives:

ϕ = −ξ0 ≈ −
√

2|ǫ| × (−6 × 10−2) ≈ 1.89 × 10−4 ≈ 6.4J, (5.18)

where J = (2.96+0.20
−0.16) × 10−5 [181] is the Jarlskog invariant[183]. It is worthwhile to

mention that, in Ref. [161] the uncertainty of J spans an order of magnitude leading

3Unfortunately, none of these LECs in the literature come with error bars, so I cannot estimate
the error introduced by the fitting of LECs.
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to the main source of the error in the estimate of the neutron EDM during that time.

Today, J is determined with much higher precision so the associated uncertainty is

sub-leading compared to uncertainties due to higher-order effects in the HB-expansion

and unknown short-distance counterterms, which we will discuss later.

The four remaining interaction strengths hD, hF , wD, wF were determined in [180]

by simultaneously fitting them to the s and p-wave amplitudes of nonleptonic hyperon

decays:

hD ≈ 0.44 × 10−7GeV

hF ≈ −0.50 × 10−7GeV

wD ≈ −1.8 × 10−7GeV

wF ≈ 2.3 × 10−7GeV. (5.19)

The last two constants were determined by setting mR ≈ 1535MeV.

Finally, I need to know the four remaining CP-phases {ϕD, ϕF , ϕ̃D, ϕ̃F}. These

phases have been considered in ref [158], but their treatments are less satisfactory due

to the neglect of the operator mixing effect and a certain outdated approximation of

the small top quark mass assumption. In order to improve upon that, I review a more

recent work done in Ref. [179] that determined {ϕD, ϕF} and apply scaling arguments

to provide an estimate of {ϕ̃D, ϕ̃F}. Ref. [179] pointed out that after considering

operator mixing and renormalization group running, the dominant operator that gives

rise to the CP-violating phase in the |∆S| = 1, |∆I| = 1/2 sector is given by:

Q̂6 = −2
∑

q

d̄(1 + γ5)qq̄(1 − γ5)s. (5.20)

Ref [179] then computed the factorizable and non-factorizable contributions to ϕD, ϕF

induced by Q̂6. Here “factorizable” means to regard Q̂6 as a product of two chiral
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quark densities and match it to chiral operators. The matching is done by realizing

that q̄RqL ∼ ∂LQCD/∂mq = ∂Lchiral/∂mq. On the other hand, the “non-factorizable”

contribution is obtained simply by taking the hadronic matrix element of Q̂6 using

the quark model. These two contributions are distinct because the factorizable piece

contains a factor of chiral quark condensate F 2
πB0 through:

〈0| q̄i
Lq

j
Rq̄

k
Rq

l
L

∣

∣BB̄′〉 ∼ 〈0| q̄i
Lq

j
R |0〉 〈0| q̄k

Rq
l
L

∣

∣BB̄′〉 = −1

2
F 2

πB0δij 〈0| q̄k
Rq

l
L

∣

∣BB̄′〉

(5.21)

while the same quantity never appears in a quark model calculation. Combining

the two, they found Im(hD exp iϕD) ≈ −2.2, Im(hF exp iϕF ) ≈ 6.1, both in units of
√

2FπGFm
2
π+J . This leads to:

ϕD ≈ −1.5J, ϕF ≈ −3.6J. (5.22)

It is straightforward to see that ϕ̃D and ϕ̃F receive no factorizable contribution.

This is because it would require terms like R̄ mqB to appear in the strong chiral

Lagrangian. Such terms would violate parity and therefore cannot exist. For the non-

factorizable part, my strategy is the following: first I compute the matrix elements

〈R | Q̂6 |B〉 and 〈B′| Q̂6 |B〉 using the quark model to find their ratio. Then, I use

this ratio to infer the value of the non-factorizable part of ϕ̃D, ϕ̃F by appropriately

scaling the non-factorizable part of ϕD, ϕF given in Ref. [179].

To obtain an estimate of hadronic matrix elements I adopt the harmonic oscillator

model [177]. The structure of the spin-flavor wavefunction of the baryon octet leads

to the following ratio:

〈n∗| Q̂6

∣

∣Σ0
〉

: 〈n∗| Q̂6 |Λ〉 : 〈p∗| Q̂6

∣

∣Σ+
〉

= 1 :
√

3 : −
√

2 (5.23)

which requires that wF ϕ̃F = (1/3)wDϕ̃D in our chiral Lagrangian. I also obtain the

ratio between B −B′ and B − R matrix elements:
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〈p∗| Q̂6 |Σ+〉
〈p| Q̂6 |Σ+〉

= −
√

2

3π

1

mR0

. (5.24)

where m ≈ 0.34GeV, R0 ≈ 2.7GeV−1 are harmonic oscillator parameters. With this

ratio and the non-factorizable contribution to ϕD, ϕF given in [179], I obtain the

non-factorizable contribution to ϕ̃D, ϕ̃F :

ϕ̃D ≈ 0.04J, ϕ̃F ≈ −0.01J (5.25)

These phases are about two orders of magnitude smaller than the three other CP-

phases because they are not enhanced by the chiral quark condensate. Therefore, I

disregard them in the rest of our calculation.

To end this section, I point out that there is an important sign issue in the deter-

mination of LECs. Since LECs are fitted to experiments that only involve squared

amplitudes, an overall undetermined sign is left ambiguous. Therefore, if two sets

of LECs are fitted separately to two unrelated experiments (for example, {rD, rF}

are to fit to baryon electromagnetic transitions and {hD, hF , wD, wF} are to fit to

non-leptonic hyperon decays), there is no unique way to determine the relative sign

between these two sets of LECs. This introduces an extra uncertainty because a

change of a relative sign can turn a constructive interference to destructive and vice

versa. I will discuss the impact of this uncertainty in the last section.

5.3 One loop contribution

In this section I present analytic and numerical results of the one-1oop contribution

to the proton and neutron EDM using HBchPT. The nucleon EDM dN is defined by

the term linear in the incoming photon momentum q of the P and T-violating NNγ

amplitude
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iM ≡ −2dNv · εūNS · quN . (5.26)

Here εµ is the photon polarization vector. Note that the equation has been simplified

by applying the on-shell condition to the nucleon: v · q = −q2/2mN → 0.

Since each weak interaction vertex has |∆S| = 1, I need at least two insertions of

weak interaction vertices to obtain an EDM that is flavor diagonal. Most one-loop

integrals are UV-divergent and are regularized using the MS scheme in which the

combination

L ≡ 2

4 − d
− γ + ln(4π) (5.27)

is subtracted. Also, since all CP-violating phases {ϕi} are small, I use the small angle

approximation sinϕi ≈ ϕi. Finally, following the usual spirit of ChPT, during the

calculation of loops we assume that the heavy DOFs could be integrated out and their

effects show up in the LECs of the effective operators consist of lighter DOFs 4. Hence

what enter the loops are the lightest DOFs, which in our case are the pseudoscalar

meson octet and the ground-state (1/2)+ baryon octet.

There are four distinct types of 1-loop diagrams (see Fig.5.1) that give non-zero

contribution to the nucleon EDM (diagrams of other kinds are all vanishing at leading

order in the HB-expansion. See the Appendix for the argument). Fig. 1(a)-(c) (plus

reflections) in Fig.5.1 contribute to both neutron and proton EDM. For the neutron,

it reads:

4The reader should anyway be alerted that this may not always be the case. For example, Ref.
[186] pointed out that one needs to include the baryon decuplet in order to reconcile with the result
of the large Nc-expansion
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Figure 5.1. One-1oop contributions to the nucleon EDM. Each round dot denotes
a |∆S| = 1 weak insertion. Fig. 1(a)-(c) (and reflections) contribute to both neutron
and proton EDM; while Fig. 1(d) (and reflection) contributes only to proton EDM.

d1−loop
n = −eg8(DhD{ϕ− ϕD} + FhF{ϕ− ϕF})

4π2F 4
π (m2

π −m2
K)

(m2
π ln

m2
π

µ2
− {π ↔ K})

−δΣeg8(D − F )(hD{ϕ− ϕD} + hF{ϕF − ϕ})
4π2F 2

π (m2
π −m2

K)
(m2

π

arctan

√
m2

π−δ2
Σ

δΣ
√

m2
π − δ2

Σ

−{π ↔ K}) (5.28)

I found that all terms analytic in quark masses cancel each other. Also notice that

there is no extra singularity in the limit mK → mπ or δB → 0. Numerical estimation

with µ = mN gives

|d1−loop
n | = 1.5 × 10−32e cm. (5.29)

Similar calculations are done for the proton EDM. Figs. 1(a)-(c) give
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d1−loop,1
p =

eg8(D{hD[ϕ− ϕD] + 3hF [ϕ− ϕF ]} + 3F{hD[ϕ− ϕD] + hF [ϕF − ϕ]})
24π2F 4

π (m2
π −m2

K)

×(m2
π ln

m2
π

µ2
− {π ↔ K})

−δΣeg8(D − F )(hD{ϕ− ϕD} + hF{ϕF − ϕ})
8π2F 4

π (m2
π −m2

K)
(m2

π

arctan

√
m2

π−δ2
Σ

δΣ
√

m2
π − δ2

Σ

−{π ↔ K})

−δΛeg8(D + 3F )(hD{ϕ− ϕD} + 3hF{ϕ− ϕF})
24π2F 4

π (m2
π −m2

K)
(m2

π

arctan

√
m2

π−δ2
Λ

δΛ
√

m2
π − δ2

Λ

−{π ↔ K}) (5.30)

There is one extra type of diagrams contributing to the proton EDM corresponding

to two insertions of hi vertices (Fig. 1(d)). The corresponding diagrams do not

generate the neutron EDM simply because there is no appropriate non-vanishing

combination of B,B′, φ. This diagram for the proton EDM gives

d1−loop,2
p = −

ehDhF (D − F )(ϕD − ϕF )(π − 2 arctan δΣ√
m2

K
−δ2

Σ

)

16π2F 2
π

√

m2
K − δ2

Σ

−
ehDhF (D + 3F )(ϕD − ϕF )(π − 2 arctan δΛ√

m2
K
−δ2

Λ

)

48π2F 2
π

√

m2
K − δ2

Λ

. (5.31)

This contribution is interesting since it is UV-finite. It depends non-analytically on

quark masses and hence uniquely characterizes long-distance physics 5. Numerically,

these give

|d1−loop,1
p | = 6.1 × 10−33e cm

|d1−loop,2
p | = 1.1 × 10−32e cm. (5.32)

5One can show that Eq. (5.31) remains real even when δK , δΛ > mK by using the identity
arctan z = 1

2i
log 1+iz

1−iz
.
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I choose to present numerical results of d1−loop,1 and d1−loop,2 separately because the

former is proportional to g8hi while the latter is proportional to hihj. Since the

relative sign between g8 and hi is experimentally undetermined, these two terms can

either add or subtract each other.

As a short conclusion, I stress once again that within the HBchPT formalism,

my analytic results of 1-loop diagrams, Eq. (5.28), (5.30) and (5.31) fully respect

power counting as no powers of mB appear in the numerator upon carrying out loop

integrals. This is in contrast with the relativistic calculation done in Ref. [161], in

which the authors include diagrams involving MDM-like coupling that should have

an explicit 1/mB suppression according to the power counting, but is canceled by a

factor of mB appearing in the numerator coming from the loop integral.

Finally let me discuss the effect of counterterms. Since d1−loop
n and d1−loop,1

p are

UV-divergent, I need to introduce corresponding counterterms d0
n, d

0
p to absorb the

infinities. These counterterms are generated by short-distance physics. Therefore

their precise values cannot be calculated. To estimate the size of these counterterms

we perform a naive dimensional analysis (NDA). Following [184], there are ten ∆S = 1

four-quark operators that mix under renormalization. The effective Hamiltonian can

be written as:

H∆S=1
eff =

GF√
2
VudV

∗
us

10
∑

i=1

Ci(µ)Q̂i(µ) + h.c. (5.33)

Under conditions that ΛQCD ≈ 0.2GeV, µ = 1GeV and the top-quark mass mt =

174GeV, the largest flavor-diagonal CP-violating effect comes from the product of Q̂2

and Q̂6 with Wilson coefficients C2 = 1.31− 0.044τ and C6 = −0.011− 0.080τ where

τ = −VtdV
∗
ts/VudV

∗
us. This gives:

d0
p, d

0
n ∼ 1

16π2

G2
F

2
|VudV

∗
us|2Im(C2C

∗
6)Λ3

χ ≈ 4 × 10−32e cm. (5.34)

Here 1/16π2 is a necessary loop factor while the factor Λ3
χ is included to achieve

the correct mass dimension. I choose Λχ ∼ 1GeV instead of some other scale like

115



Figure 5.2. (with reflections) Class I pole diagrams.

ΛQCD ∼ 200MeV to provide a conservative upper limit for d0
p and d0

N . This analysis

shows that the short-distance contribution to the nucleon EDM could be as large as

the long-distance contribution6. However the NDA estimation is rarely trustable and

it may happen that some accidental cancelations could suppress the actual value of

d0
n, d

0
p from what is expected in Eq. (5.34). In this sense, a detailed study of the

long-distance contribution is worthwhile because it sets a solid bound below which

any measurable nucleon EDM could be safely regarded as being consistent with the

SM prediction.

5.4 Pole Contribution

Next I estimate the contribution of pole diagrams to the nucleon EDM. For baryon

intermediate states, I include the flavor octet part of the (56, 0+) and (70, 1−) baryon

supermultiplets. Here I adopt the standard spin-flavor SU(6) notation (D, Lp) where

D is the dimension of the SU(6) representation, L is the orbital angular momentum

and p is the parity. For generality, we first write down all possible pole configurations

that can contribute and divide it into two classes: Class I are those in which the

photon vertex involves a weak insertion and Class II are those in which the photon

vertex is purely electromagnetic (see Fig 5.2 and 5.3).

6A follow-up work from the author to compute these short-distance contributions within certain
nucleon model framework is currently in progress.
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Figure 5.3. (with reflections) Class II pole diagrams.

I want to single out the leading pole diagrams. First, one would expect that Class

I contributions are much smaller than Class II for two reasons: (1) the weak photon

vertex in Class I diagrams is due to the transition quark magnetic dipole moment

(MDM) that contains a ms + md suppression factor or the transition quark EDM

that is suppressed by ms −md (the latter, which vanishes if ms → md, is an explicit

demonstration of Hara’s theorem [176]); (2) Class II diagrams have one more pole

in the denominator. With these observations I may safely discard Class I diagrams

since they are sub-leading.

Within Class II, Fig. 3(a)-(d) can be shown to have an extra 1/mN suppression

[185]. These four diagrams involve MDM-like baryon radiative transition vertices

that have the structure of (1/mB)ǫµναβvνqαSβ at leading order. This structure is

orthogonal to the EDM structure vµS · q so it cannot generate an EDM. Therefore

in order to obtain an EDM one needs to go to the next order in the HB-expansion

leading to an extra 1/mN suppression, so I can discard these four diagrams. Finally,

Fig. 3(e) is smaller than Fig. 3(f)-(g) due to an extra propagator of a heavy excited

state R. After all these considerations, I only need to evaluate Fig. 3(f)-(g). Using

Feynman rules obtained from the Lagrangian in Section II, I obtain
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Nucleon\EDM |d1−loop,1
N | |d1−loop,2

N | |dpole
N |

neutron 1.5 × 10−32 0 1.4 × 10−32

proton 6.1 × 10−33 1.1 × 10−32 1.4 × 10−32

Table 5.1. Different contributions to the SM neutron and proton EDM in units of
e cm, assuming the sign of LECs are those given in Section III.

dpole
n =

4erD

9δΛδΛ∗δN∗δΣ∗δΣ
(hDϕD{3wF [2δΛ∗δΣ∗(δΛ − δΣ) + δN∗{δΛ∗(δΛ + δΣ)

+δΣ∗(δΣ − 3δΛ)}] − wD[2δΛ∗δΣ∗(3δΛ + δΣ) + δN∗{3δΛ∗(δΛ + δΣ)

+δΣ∗(3δΛ − δΣ)}]} + 3hFϕF{wD[2δΛ∗δΣ∗(δΛ − δΣ) + δN∗{δΛ∗(δΛ − 3δΣ)

+δΣ∗(δΛ + δΣ)}] + wF [δN∗{3δΣ∗(δΛ + δΣ) − δΛ∗(δΛ − 3δΣ)}

−2δΛ∗δΣ∗(δΛ + 3δΣ)]})

dpole
p = −8e(δN∗ − δΣ∗)(rD + 3rF )(wD − wF )(hDϕD − hFϕF )

3δN∗δΣ∗δΣ
. (5.35)

In the expression above I have neglected the two small phases ϕ̃D and ϕ̃F . Note that

Eq. (5.35) diverges in the δ → 0 limit. This simply indicates that non-degenerate per-

turbation theory fails in this limit and one needs to switch to degenerate perturbation

theory. Numerically, Eq. (5.35) gives:

|dpole
n | ≈ |dpole

p | ≈ 1.4 × 10−32e cm. (5.36)

Numerical results are summarized in Table 5.1. I caution the readers that all

these numbers are only indicative of the size, because I have not yet addressed the

sign ambiguities plaguing the determination of certain LECs as emphasized at the

end of section III. This will be done in the next section.

5.5 Discussion and Summary

Now I consider the uncertainty due to the undetermined relative sign between dif-

ferent groups of LECs. Since rD and rF are fitted simultaneously to the electromag-
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netic decay of (1/2)− resonance they should be multiplied by a common undetermined

sign factor δr = ±1. The constant g8 is fitted to the kaon decay rate, so it should carry

a separate sign factor δg. Its phase ϕ however is determined theoretically so it does not

have a sign ambiguity. The four remaining interaction strengths {hD, hF , wD, wF} are

fitted simultaneously to s and p-wave amplitudes of the hyperon non-leptonic decay,

so they should carry a common undetermined sign factor δhw. Their corresponding

phases are determined by first calculating Im{hi exp iϕi} and Im{wi exp iϕ̃i} theoret-

ically and then by dividing them by the experimentally-determined {hi, wi} so the

four remaining phases {ϕD, ϕF , ϕ̃D, ϕ̃F} should also carry the same sign factor δhw.

Summing up loop and pole diagram contributions and allowing {δr, δg, δhw} to freely

change between 1 and -1, I obtain a range of possible dn and dp:

8.7 × 10−34e cm < |dn| < 2.8 × 10−32e cm

3.3 × 10−33e cm < |dp| < 3.3 × 10−32e cm (5.37)

The surprisingly small lower bounds of |dn|, |dp| are due to an accidental cancela-

tion between loop and pole-diagram contributions for a very specific set of {δi}. There

is no reason to believe that this cancellation persists at higher order. To estimate

the size of higher-order contributions, I recall that the HB-expansion parameter is of

order mK/mN ∼ 0.5. Therefore to be conservative, I could assign a 100% error due

to the next-to-leading-order (NLO) effects in the HB-expansion. Also, by looking at

Table 5.1 one can see that both loop and pole diagrams are of order 10−32e cm. So if

I assume no fine cancellation between these two parts after adding the NLO contri-

butions from the HB-expansion, then I should expect the long-distance contribution

to the nucleon EDM to lie within the range:

1 × 10−32e cm < {|dn|, |dp|} < 6 × 10−32e cm. (5.38)
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My estimated upper bound for dn is about half the corresponding value predicted

in [161]. Eq. (5.38) is three (four) orders of magnitude smaller than the proposed

precision level of the future proton (neutron) EDM experiments.

To summarize, even though it is well-known that the nucleon EDM induced by

the Standard Model CKM matrix is well below the limit of our current experimental

precision, it is still worth a thorough study as it is currently the only source of intrinsic

EDMs in nature whose existence is certain. I re-analyze previous works on chiral loop

and pole diagram contributions to the nucleon EDM using HBchPT at the leading

order in HB-expansion, with an up-to-date determination of relevant LECs that enter

our calculation. Combined with the uncertainty due to unknown relative signs of

LECs and an estimate of higher-order contributions, I obtain the range for the long-

distance contribution to the nucleon EDM in Eq. (5.38). Although an incalculable

short-distance physics which appears as counterterms in our work could be as large

as the long-distance contribution, the study of the long-distance contribution is still

worthwhile as it provides a safe borderline below which any nucleon EDM is consistent

with the SM prediction. Finally, there are several ways to improve upon the estimate

carried out in this work. For instance, a combined analysis of lattice simulations and

better experimental measurements of various hadronic decay processes is expected to

provide a better control of both the magnitudes and signs of the required LECs. If the

LECs could be determined more precisely, then a complete analysis of NLO-effects in

the HB-expansion would be much desired to further restrict the allowed range of dn

and dp.
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CHAPTER 6

HIGHER-TWIST CORRECTION TO PVDIS AND ITS

RELATION TO THE PARTON ANGULAR MOMENTUM

6.1 Introduction

As a complement to the studies at high-energy frontier, measurements at the in-

tensity frontier (or precision frontier) provide powerful tools in the search for physics

Beyond the Standard Model (BSM). Observables such as the muon anomalous mag-

netic moment are measured to very high precision, and experimental results are then

compared with theoretical predictions. To the extent that the latter are sufficiently

reliable, any possible deviation would point to BSM physics. Alternately, these ex-

periments can provide new insights into the dynamics of the Standard Model.

Electron-deuteron parity violating deep inelastic scattering (eD PVDIS) is an ex-

cellent example of this class of studies. Historically, it provided the first experimental

measurement of weak mixing angle θW [19]. Nowadays, with the prospect of the Jef-

ferson Laboratory 12-GeV upgrade and the use of a new spectrometer called SoLID,

the left-right asymmetry of PVDIS can be measured with 0.5% precision over the

kinematic range 0.3 < xB < 0.7 [46]. With this level of precision, one will be able

to probe or constrain an interesting set of BSM scenarios, such as a leptophobic Z’

boson[116, 117] and supersymmetry[118], as well as to study hadronic physics effects

which are yet to be fully understood, such as charge symmetry violation (CVC) and

higher-twist (HT).

0Reprinted article with permission from C. Y. Seng and M. J. Ramsey-Musolf, Phys. Rev.
C 88 (2013) no.1, 015202. Copyright (2013) by the American Physical Society. DOI:
http://dx.doi.org/10.1103/PhysRevC.88.015202
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The effect of HT [119] is a potentially important Standard Model correction that

originates from the interaction between partons. This correction in general scales

as (Q2)−(τ−2)/2, with the twist τ > 2, so its effect is enhanced at low Q2. In the

framework of the operator product expansion (OPE), the higher-twist correction can

be expressed as a convolution of a high-energy and low-energy piece; the former

(embodied in the Wilson coefficients) can be calculated using perturbative methods,

whereas the latter involves hadronic matrix elements that require understanding of

non-perturbative QCD. Studying the higher-twist correction may help us in prob-

ing correlations between the confined quarks and gluons inside the nucleon, so it is

interesting to explore HT matrix elements within various model approaches. One

advantage of eD PVDIS process is that the HT contribution to the leading term in

the PV asymmetry (defined below) arises from a single operator matrix element and

can, in principle, be separated kinematically from the subleading terms that have

a more complicated HT structure. With this motivation in mind, several previous

works [120, 47, 48, 121] have been carried out to study the twist-four (i.e. τ = 4)

correction to the left-right asymmetry of eD PVDIS. In what follows, we report on a

study that follows-up these earlier works.

The study of HT may also shed light on another important issue, namely, the

spin structure of the nucleon. Nearly twenty-five years ago, the EMC collaboration

[128] performed a DIS experiment with longitudinally-polarized muons on a target of

longitudinally-polarized protons, obtaining a value for the structure function g1(xB)

over the range 0.01 < xB < 0.7. After extrapolating to the low- and high-xB region,

the collaboration obtained a value for the leading moment of g1(xB) that contradicted

the Ellis-Jaffe sum rule [129] and implied that that the spin of proton is not built up

entirely from the quark spin. The result has been confirmed by a variety of subsequent

studies. A key question in nuclear physics research has, thus, become explaining in

detail the source of nucleon spin in terms of QCD degrees of freedom.
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From a theoretical perspective, arriving at a decomposition of the nucleon spin

in terms of gauge-invariant matrix elements of local operators that afford a straight-

forward partonic interpretation has been a vexing problem, and different approaches

have been pursued over the years[123, 124, 125, 126, 127]. In each case, reference is

usually made to the interpretation in the light-cone – gauge dependence notwithstand-

ing – given its historical importance for thinking about parton dynamics. However,

while the meaning of the quark helicity is gauge invariant, the relative importance

of other aspects of partonic angular momentum (gluon helicity and quark and gluon

orbital angular momentum) in general vary with the choice of gauge and even def-

inition. Nonetheless, it is interesting to ask how different observables may probe

different aspects of partonic angular momentum and to do so in a way that is both

gauge-invariant and as insensitive as possible to a particular angular momentum de-

composition.

In this respect, we will study HT in the context of light-cone quantization. In

early work within this framework, it has been shown that one particular component

of parton angular momentum – identified as quark orbital angular momentum (OAM)

under light-cone quantization using light-cone gauge – is responsible for the non-zero

value of Sivers function and Boer-Mulders function [130, 131] in semi-inclusive deep

inelastic scattering (SIDIS) [132]. In light of these results, it is also interesting to study

how the inclusion of the same component of parton angular momentum modifies the

current model predictions for HT corrections to eD PVDIS. Indeed, in all the previous

studies of eD PVDIS, only the Fock component of the nucleon wavefunction with zero

parton OAM has been included.

After including quark OAM in the light-cone amplitudes, we observe a rather

non-intuitive phenomenon: although the absolute magnitude of individual non-zero

quark OAM contributions can be significant, they largely cancel against each other.

We will argue that this cancelation is largely independent of the detailed model for
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the relevant light-cone amplitudes. As a result, the twist-four correction to PVDIS

is almost transparent to the inclusion of quark OAM. In contrast, other hadronic

quantities, such as the parton distribution functions (PDF), Sivers function, and

Boer-Mulders function, manifest non-negligible dependence on quark OAM. Gener-

alizing from the particular choice of light-cone quantization and light-cone gauge, we

thus conclude that whatever features of parton angular momentum are responsible for

the observed behavior of the PDFs, Sivers, and Boer-Mulders functions, they should

have a relatively minor impact on the HT correction to eD PVDIS of interest here.

Moreover, any deviation from the light-cone predictions obtained here and in previ-

ous works[120, 47, 48] – should they be observed expermentally – would signal the

importance of other aspects of parton angular momentum and/or higher Fock space

components of the nucleon wavefunction.

The discussion of the computation leading to these observations is arranged in

the following order: in Section II we summarize the relevant results of the general

formulation of the twist-four correction to eD PVDIS; in Section III we introduce the

light-cone wavefunction with quark OAM-dependence; in Section IV we present the

analytic expressions of the hadronic matrix elements needed for the twist-4 correction,

and demonstrate the generic cancelation between non-zero quark OAM components;

in Section V we present the numerical results using one specific choice of nucleon

wavefunction, and discuss their physical significance. Detailed formulae appear in

the Appendix.

6.2 Higher-twist in PVDIS: general formulation

Here, we review the well-known results for the twist-four correction in eD PVDIS.

We will simply quote the central equations that are relevant to our study without

any derivation and refer the reader to Refs. [47, 48] for the details.
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Figure 6.1. Kinematics of e-D PVDIS: a deuteron of momentum P interacts with
an incoming electron of momentum k via an exchange of a single photon or Z-boson,
and breaks into hadrons which are denoted collectively as X

In eD PVDIS, longitudinally-polarized electron beams are incident on unpolarized

deuteron targets. One measures the PV right-left asymmetry

ARL =
dσR − dσL

dσR + dσL

(6.1)

where dσR/L is the differential cross-section for the scattering of the right/left-handed

electrons. At the one-boson exchange (OBE) level, the leading parity-violating piece

comes from the interference between photon and Z-boson exchange diagrams (see Fig

6.1). The low-energy Z-boson exchange interaction can be described by the following

effective 4-fermion interaction:

LPV =
GF√

2
[ēγµγ5e(C1uūγµu+ C1dd̄γµd) + ēγµe(C2uūγµγ5u+ C2dd̄γµγ5d)] (6.2)

where, at tree level, we have:

C1u = −1

2
+

4

3
sin2θW (6.3)

C1d =
1

2
− 2

3
sin2θW (6.4)

C2u = −1

2
+ 2sin2θW (6.5)

C2d =
1

2
− 2sin2θW (6.6)
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Neglecting contributions from sea quarks, assuming charge symmetry (up
V = dn

V , etc.

with qN
V being the valence quark PDF of nucleon N), the leading-twist SM prediction

is given by the Cahn-Gilman formula[122]:

ARL =
GFQ

2

2
√

2πα

3

5
[(2C1u − C1d) + (2C2u − C2d)

1 − (1 − y)2

1 + (1 − y)2
] (6.7)

where Q2 = −q2 and y = P · q/P · k.

To include corrections from possible BSM and as well as other SM pieces, we can

reparametrize the Cahn-Gilman formula [47]:

ARL = − GFQ
2

2
√

2πα

3

5
[ã1 + ã2

1 − (1 − y)2

1 + (1 − y)2
] (6.8)

with ãi = −(2Ciu −Cid)(1 +Ri). Here, Ri describes any deviation of the Ci from the

expressions in Eqs. (6.3) to (6.6), including both SM and BSM corrections. In this

paper we concentrate on RHT
1 , namely the higher-twist correction to ã1.

Bjorken and Wolfenstein [133, 134] showed that, if one assumes isospin symmetry

and neglects sea quark contributions, then there is only one matrix element that con-

tributes to RHT
1 (for a detailed review of these arguments in a more modern context,

see Ref. [47]). This observation significantly simplifies the theoretical interpretation of

the asymmetry, allowing us to concentrate on one particular matrix element without

needing to to disentangle the contributions from many different sources. In brief, the

Bjorken and Wolfenstein argument works as follows: ARL arises from the interference

between the electromagnetic and weak neutral currents. First, one can decompose

both currents into an isoscalar S and an isovector V term. The matrix elements of

the S × V cross-term vanishes because deuteron is an isosinglet. Furthermore, at

leading twist, we have 〈SS〉 = 〈V V 〉. Therefore, the difference between 〈SS〉 and

〈V V 〉 that enters hadronic tensor Wµν
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W µν
ud (P, q) =

1

8πMD

∫

d4zeiq·z 〈D(P )| ū(z)γµu(z)d̄(0)γνd(0) + (u↔ d) |D(P )〉 (6.9)

withMD being the mass of deuteron, is the only matrix element giving a HT correction

to R1.

Below, we will compute the matrix element (6.9) using an expansion of string

operators [135] in order to extract the twist-four piece; the latter is expressed in terms

of the deuteron twist-four distribution function Q̃D(xB), which will be computed in

Section IV.

6.3 The light-cone amplitudes

The main challenge in proceeding from (6.9) is our ignorance of the details of the

nucleon wavefunctions. As QCD is non-perturbative at the hadronic scale, analytical

expressions for the wavefunctions are unknown. At present, lattice QCD can provide

only HT contributions to structure function moments and not the xB-dependence of

the RHT
1 that is of interest to the SoLID experiment. Consequently, one must turn to

various models that seek to incorporate non-perturbative dynamics. Previous works

on RHT
1 include the use of MIT bag model [47] and isotropic light-cone wavefunctions

that contain both quark and gluon Fock components [48]; their results yield similar

shapes for the xB-dependence but differ somewhat in magnitude, with a maximum

RHT
1 of 0.003 ∼ 0.005 at 0.2 < xB < 0.7 for Q2 = 4GeV2, which is a little bit lower

than the achievable precision level in the SoLID experiment.

In this work we study how the inclusion of additional parton angular momentum

might modify theRHT
1 prediction. For this purpose, we adopt the formalism developed

in Ref. [136], starting from a light-cone formulation of quark states which is equivalent

to the well-known “infinite momentum frame” point of view that gives the PDF its

intuitive meaning as a parton momentum probability distribution [119]. We then

perform a light-cone expansion of the nucleon state, retaining only the portion of
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Fock space containing three valence quarks with all possible quark OAM. To illustrate,

we consider a spin-up proton. Its three valence quarks can form a total helicity of

±1/2,±3/2; therefore in order to keep the total proton spin in z-direction to be 1/2 we

need to assign different z-component quark OAM (i.e. lz) for different combinations.

A spin-up proton state, then, can be parametrized as the follows:

|P ↑〉 = |P ↑〉lz=0 + |P ↑〉lz=1 + |P ↑〉lz=−1 + |P ↑〉lz=2 (6.10)

with

|P ↑〉lz=0 =
ǫabc

√
6

∫

[DX3](ψ
(1)(1, 2, 3) + i(kx

1k
y
2 − ky

1k
x
2 )ψ(2)(1, 2, 3)) ×

u†a↑(1){u†b↓(2)d†c↑(3) − d†b↓(2)u†c↑(3)} |0〉 (6.11)

|P ↑〉lz=1 =
ǫabc

√
6

∫

[DX3](k
+
1⊥ψ

(3)(1, 2, 3) + k+
2⊥ψ

(4)(1, 2, 3)) ×

(u†a↑(1)u†b↓(2)d†c↓(3) − d†a↑(1)u†b↓(2)u†c↓(3)) |0〉 (6.12)

|P, ↑〉lz=−1 =
ǫabc

√
6

∫

[DX3](−k−2⊥ψ(5)(1, 2, 3))(u†a↑(1)u†b↑(2)d†c↑(3)

−u†a↑(1)d†b↑(2)u†c↑(3)) |0〉 (6.13)

|P ↑〉lz=2 =
ǫabc

√
6

∫

[DX3]k
+
1⊥k

+
3⊥ψ

(6)(1, 2, 3)(u†a↓(1)d†b↓(2)u†c↓(3)

−u†a↓(1)u†b↓(2)d†c↓(3)) |0〉 (6.14)

where k±i⊥ = kx
i ± iky

i , while u†ai(1) means the creation operator of an up-quark (same

for down-quark) with color a, spin i and momentum k1 etc, satisfying the light-cone

anti-commutation relation:

{uai(p), u
†
bj(p

′)} = 2p+(2π)3δabδijδ(p
+ − p′+)δ(2)(~p⊥ − ~p′⊥) (6.15)
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The integration measure is 1:

∫

[DX3] =
√

2
dx1dx2dx3√
2x12x22x3

d2~k1⊥d
2~k2⊥d

2~k3⊥
(2π)9

2πδ(1 − x1 − x2 − x3) ×

(2π)2δ(2)(~k1⊥ + ~k2⊥ + ~k3⊥) (6.16)

The proton wavefunction amplitudes {ψ(1)...ψ(6)} are generally unknown functions.

Although the expansion (6.11)∼(6.14) is generic, the explicit form of ψ(i) is model-

dependent. In this work, we chose the form of ψ(i) derived in Ref. [130] by starting

from the static solution of a constituent quark model [137] (which works well in

predicting many electroweak properties of the baryons) and applying a Melosh rota-

tion to the solution to obtain non-zero lz components [138]. This choice of proton

wavefunction is used to predict the first moment of Sivers function, and turns out to

agree fairly well with the experimental measurements from HERMES and COMPASS

[139]2.

6.4 Matrix elements between nucleon states

Following [135], in order to obtain the twist-four distribution function Q̃D(x) we

need to evaluate the matrix elements between state |D(P )〉 of the following operators:

QA(b, z) ≡ : ū(b1z)t
az/γ5u(b2z)d̄(b3z)t

az/γ5d(b4z) :

QV (b, z) ≡ : ū(b1z)t
az/u(b2z)d̄(b3z)t

az/d(b4z) : (6.17)

where z is a coordinate on light cone, and the parameters b ≡ {b1, b2, b3, b4} charac-

terize the light-cone separation between quark field operators.

1There might be difference in constant factors in the definition of integration measure by different
authors, which only affects the overall normalization.

2Ref. [130] and Ref. [139] defined their first moment of Sivers function with a sign difference.
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When computing the matrix elements of QV,A in Eq. (6.17) we assume an inco-

herent impulse approximation in which the incoming photon strikes only one of the

two nucleons (see, e.g. Ref. [145] for further discussions regarding the impulse ap-

proximation); hence, matrix elements of the operators (6.17) can be related to the

same matrix elements taken between proton states (or equivalently between neutron

states, given isospin symmetry). Also, since the quantities we compute do not depend

on the proton spin, we can take it to be +1/2 along the z-direction without loss of

generality.

Now, starting from the operators (6.17), we define two distribution functions

Q±(xξ) via

〈P (p) ↑| {QV (b, z) ±QA(b, z)} |P (p) ↑〉

≡ (p · z)2

∫ 4
∏

k=1

dxξk
δ(
∑

i

xξi
)e−i(p·z)

P

k bkxξkQ±(xξ) (6.18)

with xξ collectively representing {xξ1 , xξ2 , xξ3 , xξ4}, the light-cone momentum frac-

tions: ξ+
i = xξi

p+. Meanwhile |P (p) ↑〉 is the spin-up proton state with momentum

p. Substituting (6.11)∼(6.14) into (6.18) we are able to express Q±(xξ) in terms of

the proton wavefunction amplitudes. It is easy to observe that only diagonal terms,

(i.e. terms with the same lz in initial and final states), could give non-vanishing

contributions. After a rather lengthy derivation with the aid of Eq. (H.2), we obtain:

Q±(xξ) = −32π3

3

∫

d2~ξ1⊥
(2π)3

...
d2~ξ4⊥
(2π)3

θ(−xξ1)θ(xξ2)θ(−xξ3)θ(xξ4)θ(1 − xξ2 − xξ4) ×

δ2(~ξ1⊥ + ~ξ2⊥ + ~ξ3⊥ + ~ξ4⊥)
∑

lz

ψ±
lz
(−ξ1,−ξ3, ξ2, ξ4) (6.19)

where the explicit formulas of ψ±
lz

are given in Appendix I.

The proton twist-four distribution function can now be expressed in terms of the

Q± (refer to Eq. (42) of Ref. [48] after some rearrangement):
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Q̃p(xB) ≡ 2Re

∫ 1

−1

∏4
k=1 dxξk

xξ2xξ3(xξ2 + xξ3)
δ(
∑

k

xξk
){(xξ2 + xξ3)δ(xB + xξ1 + xξ2)

−xξ3δ(xB + xξ1) − xξ2δ(xξ4 − xB)}[(1 + P14P23)Q+(xξ)

−(P12 + P34)Q−(xξ)] (6.20)

Here Pij is the permutation operator, e.g.

P12Q+(xξ1 , xξ2 , xξ3 , xξ4) = Q+(xξ2 , xξ1 , xξ3 , xξ4). (6.21)

The deuteron twist-four distribution function Q̃D(xB) can be expressed in terms of

Q̃p(xB) through an incoherent impulse approximation [140], which says that a general

deuteron hadronic tensor can be related to the corresponding hadronic tensors of

proton and neutron by:

MDW
µν
D (p, q) ≈MNW

µν
p (

p

2
, q) +MNW

µν
n (

p

2
, q) (6.22)

where MN is the mass of nucleon. In the equation above each hadronic tensor is

multiplied by the particle’s mass, because following Eq. (6.9) the hadronic tensor

we defined has dimension -1. Now we can express both sides of Eq. (6.22) in terms

of dimensionless structure functions {Fi(xB)}. Using isospin symmetry and the fact

that Q̃(xB) is proportional to x−1
B F ud

1 (xB) (see Eq. (34) of Ref. [48]), we obtain 3:

1

2
Q̃D(xB/2) ≈ Q̃p(xB) + Q̃n(xB) ≈ 2Q̃p(xB) (6.23)

Finally, following the logic of Ref. [48], one can the derive the twist-four contri-

bution to R1:

3In Ref. [48], the authors did not multiply their hadronic tensors by particle mass in the impulse
approximation formula, therefore the corresponding relation they obtained is off by a factor 1/2;
same for the relation of quark distribution functions.
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RHT
1 (xB, Q

2) =
1

Q2

αsπ

5(1 − 20
9
sin2θW )

xBQ̃D(xB)

uD(xB) + dD(xB)
(6.24)

with qD(xB) being the parton distribution function for quark of flavor q in the

deuteron

〈D(P )| q̄(z)z/q(−z) |D(P )〉 = 2(P · z)
∫ 1

−1

dxe2i(P ·z)xqD(x) (6.25)

Note that we neglect the logarithmic Q2-dependence of the structure functions in this

analysis. We can express qD in terms of PDF of the proton and neutron again by the

impulse approximation (6.22), but now comparing the structure function F2(xB) on

both sides, which is proportional to x−1
B q(xB). The result is:

qD(xB/2) ≈ qp(xB) + qn(xB) (6.26)

where qp(x) and qn(x) are defined as in Eq. (6.25) but for proton/neutron states.

Furthermore, neglecting CSV effects we have:

un(xB) = dp(xB), dn(xB) = up(xB) (6.27)

Therefore, it is sufficient to just calculate up(xB) and dp(xB) using the proton light-

cone wavefunction (6.11)∼(6.14). Using (H.3) and (H.4) , we can compute the quark

PDFs of the (spin-up) nucleons by calculating the matrix element on LHS of Eq.

(6.25) with nucleon states, and compare it with the form on RHS to extract the

PDFs. Same with the twist-four distribution functions, only terms diagonal to lz

survive, so we can separate the result into components of different lz as the following:

up(xB) + dp(xB) = dn(xB) + un(xB)

=
1

(2π)6

∫ 1

0

dx1

∫

d2~k1⊥d
2~q⊥Θ(1 − xB − x1)

∑

lz

Alz(q, 1, 2)

(6.28)
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where the functions Alz(q, 1, 2) are given in Appendix I.

We now proceed to show that a partial cancelation occurs between contributions

of lz = +1 and lz = −1. For this purpose, we combine (6.19) and (6.20), together

with the fact that ψ±
lz
(q, l, q′, l′)∗ = ψ±

lz
(q′, l′, q, l), to simplify the expression of Q̃p(xB)

as:

Q̃p(xB) = Q̃+
p (xB) + Q̃−

p (xB) (6.29)

where

Q̃+
p (xB) =

64π3

3

∫ 1

0

4
∏

i=1

dxξi
δ(xξ1 − xξ2 + xξ3 − xξ4)θ(1 − xξ2 − xξ4) ×

{δ(xB − xξ1 + xξ2)

xξ2xξ3

+
δ(xB − xξ1)

xξ2(xξ2 − xξ3)
− δ(xB − xξ4)

xξ3(xξ2 − xξ3)

+
δ(xB + xξ3 − xξ4)

xξ1xξ4

}
∫ 4
∏

i=1

d2~ξi⊥
(2π)3

δ2(~ξ⊥1 − ~ξ⊥2 + ~ξ⊥3 − ~ξ⊥4) ×
∑

lz

Reψ+
lz
(ξ1, ξ3, ξ2, ξ4) (6.30)

Q̃−
p (xB) =

64π3

3

∫ 1

0

4
∏

i=1

dxξi
δ(xξ1 − xξ2 − xξ3 + xξ4)θ(1 − xξ2 − xξ3) ×

{δ(xB + xξ1 − xξ2)

xξ2xξ3

− δ(xB − xξ4)

xξ3(xξ2 + xξ3)
− δ(xB − xξ1)

xξ2(xξ2 + xξ3)

+
δ(xB − xξ1 + xξ2)

xξ2xξ3

}
∫ 4
∏

i=1

d2~ξi⊥
(2π)3

δ2(~ξ⊥1 − ~ξ⊥2 − ~ξ⊥3 + ~ξ⊥4) ×
∑

lz

Reψ−
lz
(ξ2, ξ3, ξ1, ξ4) (6.31)

First we qualitatively analyze the contribution from each lz-component to Q̃±
p (xB).

This can be done by simply referring to Eqs. (I.1)∼(I.8) of the Appendix B. The result

is summarized in Table 6.1. We observe that the lz = +1 (-1) piece contributes mainly

to Q̃−
p (Q̃+

p ). Also notice that we do not include the lz = 2 component as its effect is

tiny.
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lz Contribution to Q̃+
p (xB) Contribution to Q̃−

p (xB)

0 subdominant dominant
+1 subdominant dominant
-1 all zero

Table 6.1. The contributions from different lz-components to Q̃±
p (xB). The lz=0,+1

components contribute mostly to Q̃−
p (“dominant”) and less so to Q̃+

p (“subdomi-

nant”), while the lz=-1 component contributes only to Q̃+
p .

Next we study the behavior of different contributions to Q̃±
p (xB) with respect to

xB, showing that those associated with the lz ± 1 components largely cancel. The

individual contributions from the latter are shown in the top two panels of Fig. 6.2.

We observe that the lz = −1 contribution, which contributes only to Q̃+
p (xB) changes

sign at xB ≈ 0.4, whereas the lz = +1 contribution does not. Consequently, the two

contributions will cancel against each other for xB
>∼ 0.4. While the cancellation is

not exact, it becomes more effective at larger values of xB, a region that is weighted

most strongly in RHT
1 by the factor of xB in the numerator of Eq. (6.24) and the

corresponding presence of uD(xB) + dD(xB) in the denominator.

We also note that this sign change and cancellation appears to be rather generic.

To see why, let us naively take:

∫ 4
∏

i=1

d2~ξi⊥
(2π)3

δ2(...)Reψ±
lz
≈ constant ≡ C (6.32)

assuming the function above is well-behaved with respect to {xξi
}. This approxima-

tion simply means that we do not care about the details of the proton wavefunction

amplitudes. Under this approximation, the numerical integration (6.30) and (6.31)

can be performed quite trivially, and the result is shown in the lower two panels of Fig

6.2. In this case, we show Q̃±
p (xB) as the lz = ±1 components contribute primarily to

one or the other of these two quantities (see Table 6.1). Although the the assumption

in Eq. (6.32) breaks down at large and small xB, one can see that a sign change of
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Figure 6.2. (Color online) Top panels: full results for lz±1 contributions to Q̃p(xB).
Bottom panels: behavior of Q̃∓

p (xB) ignoring the details of nucleon wavefunction
amplitudes. The constant C is defined in Eq. (6.32).

Q̃+
p (xB) from negative to positive occurs near xB = 0.4, implying that Q̃+

p (xB) and

Q̃−
p (xB) will have different signs for xB

>∼ 0.4. Therefore, according to Table 6.1, the

contribution to Q̃p(xB) from lz = 1 and lz = −1 should partially cancel other for

xB
>∼ 0.4. Furthermore, since the argument above does not depend on the details

of the nucleon wavefunction (as long as it is well-behaved), this feature of partial

cancelation should be generic.

6.5 Numerical results and discussion

Eqs. (6.30) and (6.31) are our starting point for the numerical evaluation of

Q̃p(xB), which involves an eight-fold integration. To perform this integration, we

adopt the Monte Carlo numerical integration called Divonne contained in the CUBA

Library, which is an algorithm package designed for multi-dimensional numerical in-
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Figure 6.3. (Color online)The Twist-4 correction to R1 at Q2 = 4GeV2. The blue
dashed curve shows the lz = 0 contribution; purple dot-dashed curve shows the lz = 1
contribution; brown dot-dashed curve shows the lz = −1 contribution; the red solid
curve is the sum of all. lz = 2 contribution is negligible and therefore not included.

tegration [141]. For each lz component, we evaluate the value of Q̃p(xB) at a series

of discrete {xB,i}, and then link them together using a best-fit line. Also, we take

αs = 0.5 at 1GeV following the renormalization group (RG) prediction of the running

coupling constant at 4-loop order together with a 3-loop threshold matching, with the

quark thresholds taken to be Mc = 1.5 GeV and Mb = 4.7 GeV respectively [142].

Our main result is shown in Fig. 6.3, which gives RHT
1 versus x′B ≡ 2xB at

Q2 = 4GeV2. First, let us compare this outcome with that of Refs. [47] and [48]. It

turns out that all three calculations predict similar curve shape for RHT
1 , only with

slightly different positions of peak and zero-point. Concerning the magnitude, our

work predicts a maximum absolute value |RHT
1 | ≈ 2.6×10−3 between 0.2 < x′B < 0.7,

which is smallest in magnitude among all the three predictions, and is about a half of

the size to that of Ref. [48]. This is understandable because the authors include a 3-

quark+1-gluon Fock-space component whose contribution is comparable in magnitude

to that of the pure 3-quark state. Nonetheless, all three calculations suggest that

|RHT
1 | lies below that of the expected SoLID precision.

Next we study the OAM-dependence in detail. To that end, we first introduce

some nomenclature: in the following, we will use the notation (|lz| ⊗ |lz′ |), which

denotes a generic matrix element taking between two hadronic states, of which one of
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Figure 6.4. (color online)The unnormalized QDF of spin-up proton, splitted into
contributions from different lz components. Blue thick-dashed curve shows contribu-
tion from lz = 0 component; purple dot-dashed curve shows contribution from lz = 1
component; brown dot-dashed curve shows contribution from lz = −1 component;
green thin-dashed curve shows contribution from lz = 2 component; red solid curve
is the sum of all contributions.

them has absolute value of quark OAM in z-direction being |lz| and the other being

|lz′ |.

From our arguments at the end of Section 6.4, we expect that although lz = ±1

individually contribute a significant amount to Q̃p(xB), they should largely cancel

against each other for xB > 0.4, making the total (1 ⊗ 1) contribution rather small,

and therefore leaving the (0⊗0) contribution as the dominant piece. This expectation

is born out by the curves in Fig. 6.3. The purple dot-dashed curve and brown dot-

dashed curve curves give the individual (lz = 1)⊗ (lz = 1) and (lz = −1)⊗ (lz = −1)

contributions, respectively , which exhibit the expected cancellation for x′B > 0.4.

The blue dashed curve and red solid curve give the (0 ⊗ 0) and total contributions,

respectively. It is clear that the former dominates the total. This (0 ⊗ 0) dominance

is a rather unique feature of the particular twist-four contribution of interest here,

and one that is not shared by other diagonal matrix elements. For example, if one

calculate proton quark PDFs (leading twist) using the same set of wavefunctions, the

(0⊗ 0) and (1⊗ 1) contributions are comparable; moreover, since they have the same

sign, the two |lz| = 1 pieces do not cancel each other (see Fig.6.4).
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On the other hand, we also note that there are hadronic matrix elements that

depend crucially on the existence of non-zero quark OAM in light cone quantiza-

tion. In particular, in Ref. [130], the authors studied the Sivers function [196] and

Boer-Mulders function [143], which are examples of transverse momentum depen-

dent parton distribution functions (TMDs), appearing in semi-inclusive deep inelastic

scattering. Importantly, both distribution functions depend on off-diagonal matrix

elements of lz: the Sivers function is sensitive to (0⊗ 1) while Boer-Mulders function

is sensitive to both (0 ⊗ 1) and (1 ⊗ 2). Simply speaking, the existence of non-zeo

quark OAM is responsible for the non-vanishing values of the Sivers and Boer-Mulders

functions. Combining this observation with our analysis of the HT matrix element,

we conclude that the twist-four correction to eD PVDIS is essentially transparent to

the parton angular momentum dynamics that generate the Sivers and Boer-Mulders

functions.

It is also interesting to study the impact of sea-parton dynamics on the behav-

ior of the HT matrix element. To that end, we performed a qualitative analysis of

the contribution made by the Fock space component containing 3 quarks + 1 gluon,

using the general form suggested in Ref. [144] that includes non-zero gluon OAM.

The authors of Ref. [48] computed the contribution of the 3q+1g state with lz = 0

, which turns out to have a similar shape to that of the lz = 0 3q-state contribu-

tion. To our knowledge, however, there exist no explicit functional forms for the

3q+1g nucleon wavefunction with non-zero parton OAM. Consequently, our analysis

is purely analytic at this point. We observe that, in contrast to the 3q state contri-

bution, the matrix element of 3q+1g state for a fixed lz can contribute significantly

to both Q̃±
p (xB) simultaneously; therefore there is no obvious correlation between

lz and Q̃±
p (xB) and hence no obvious pattern of partial cancelation. In Table 6.2 we

summarize the importance of different (|lz|⊗|l′z|) contributions to various distribution

functions, considering only the contributions of 3q states.
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Distribution Functions Dominant Subdominant
Quark Distribution Functions (0×0), (1⊗1) (2⊗2)
PVDIS Twist-Four Correction (0⊗0) (1⊗1), (2⊗2)

Sivers Function (0⊗1) (1⊗2)
Boer-Mulders Function (0⊗1), (1⊗2) —

Table 6.2. The dependence on different quark light-cone OAM components of various
distribution functions.

Combining observations, we may draw the following conclusion: if a future eD

PVDIS measurement yields a sufficiently precise determination of RHT
1 as a function

of x′B, one can compare the experimental curve with our current theoretical prediction.

A significant deviation from the predicted curve (e.g., the peak and zero-point are

shifted by a considerable amount), could signal the importance of parton angular

momentum dynamics beyond those responsible for the Sivers, Boer-Mulders, and

spin-independent parton distribution functions.

6.6 Summary

The next generation of parity-violating electron scattering experiments are poised

to probe both possible BSM physics as well as novel features of hadron and nuclear

structure. In this work, we have studied one particular hadronic effect, namely,

the twist-four contribution to ã1, the y-independent term in the PV asymmetry.

Using a set of proton light-cone wavefunctions with non-zero quark orbital angular

momentum, we evaluated the twist-four contribution as a function of xB, identifying

the contributions from different OAM-components. Our total for the correction RHT
1

is similar in both shape and magnitude to those obtained in previous works, indicating

that higher-precision than expected with the SoLID experiment would be needed to

discern this HT effect. An effort to achieve such precision may be worthwhile, because

RHT
1 appears to be rather unique, in the sense that it is not significantly affected by

the parton angular momentum physics responsible for the existence of some other
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DIS observables such as the Sivers and Boer-Mulders functions. Thus, by combining

the results of a more precise measurement of the asymmetry with measurements of

other distribution functions, it is possible to probe complementary aspects of parton

angular momentum and, perhaps, shed new light on the role of angular momentum

in the structure of the nucleon.
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CHAPTER 7

CONCLUSION

There are many open questions in both the SM and BSM physics remained to

be answered. In particular, this thesis focuses mainly on: (1) the understanding of

QCD at low energy and its application in hadrons and nuclear systems, and (2) the

description of effects of new physics through effective field theory and probes of BSM

physics in various low energy experiments, including tests of fundamental symmetries

in hadrons and nuclei. These two areas of research merge naturally as the development

of various effective approaches to the low energy QCD does not only offers a better

understanding of the original theory itself in the non-perturbative regime but also

provides inputs, such as various QCD matrix elements, that are needed to interpret

searches for BSM physics via low energy precision experiments. Throughout this

thesis, I try to address the following questions with several case studies:

1. What are the currently-available effective approaches to hadron physics and

how well can they reproduce behaviors of QCD at low energy,

2. How precisely can we evaluate the relevant QCD matrix elements with our

currently knowledge and computational technique in hadron physics,

3. What are the limitations and deficiencies of each effective approach, and

4. What can we do to improve our current knowledge and computational tech-

niques in the two areas listed above.

In the first two chapters involving the application of Dyson-Schwinger Equation,

the main motivation is to search for a unified formalism that can be used to study
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the low energy effects of all effective operators in the same footing with a manage-

able amount of theoretical calculation. We show that DSE with an extremely simple

contact interaction approximation is capable to reproduce many known static prop-

erties of hadrons as good as other more sophisticated methods. With this simple

approximation we calculated both the EDM of a ρ-meson induced by several effective

operators up to dimension 6 and various static charges of nucleon.

Upon comparing our result with existing calculations we find that the degree of

agreement with other calculations depends operator-by-operator. This raises a general

question of how one could possibly estimate the degree of accuracy within each model

calculations. Currently there exists no commonly-agreed algorithm for this purpose.

As far as practical usage is concerned, the standard way adopted by the community

is simply to take the spread of calculations performed using different models as the

theoretical error of the calculated quantity. This is obviously not promising enough

because any additional theoretical effort in the future will only increase the amount

of spread and not decrease it. Therefore, we believe that an essential step in the

future is to develop a universal formalism that allows us to quantify the theoretical

calculation within any given model.

In the next three chapters I switch my attention to Chiral Perturbation Theory. I

demonstrate how an effective theory can be built based on very general arguments of

symmetry. This kind of effective theory is sensitive to the IR behavior of QCD. One

of the many unique features of ChPT is the prediction of non-analytical dependence

on quark masses in scattering amplitudes. Besides, the importance of a valid power

counting scheme in non-renormalizable field theories is also stressed in these chapter.

In fact, both the works on ḡ
(i)
π and SM EDM are basically improvements of existing

literatures using the heavy baryon formalism that respects chiral power counting. In

particular, it is shown in the ḡ
(i)
π calculation that the loss of valid power counting in
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ChPT may lead to an overestimation of O(mN/mπ) ∼10 times in the calculation of

low energy observables.

Some obvious deficiencies of ChPT-like effective theories are also clearly revealed

in these two works. The key point is that effective theories constructed merely from

the symmetry considerations contains too many degrees of freedom (in parameters)

compared to the original theory. A direct consequence is that the constructed EFT

then contains infinitely many free parameters undetermined by the theory itself. For

example, UV-divergences in chiral loop integrals must be canceled by counterterms

which appear as higher-order LECs. These counterterms are not a priori known

and what we can do at most without referring to inputs from lattice or other model

calculations is to estimate their order of magnitudes using dimensional analysis. For

the observables studied in Chapter 4 and 5 we find that the size of these counterterms

can be as large as the loop correction so the ignorance of the numerical values of

counterterms renders our theory prediction less useful. Currently the only promising

way to determine these pieces is through fittings in lattice simulation. I believe that

one of the interesting future directions will be to explore alternative methods in the

determination of counterterms involving applications of chiral-improved models.

In Chapter 6 I present an alternative viewpoint to the interplay between low

energy QCD and searches of BSM physics. In this chapter, the key message is not

just that better QCD calculation is needed for the interpretation of experiment, but

the opposite is also true. In this particular example, the twist-four matrix element

which is a relevant SM background in BSM searches through PVDIS could actually

be measured experimentally and it turns out to also teach us interesting features

of QCD, in this case the role of parton angular momentum in the nucleon spin.

Combining with other parton distribution functions measurable in SIDIS, it provides

a possibility for us to perform a systematic study on different components of parton

angular momentum in nucleon separately.
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As a conclusion, we are still very far away from having a satisfactory effective

description of hadrons that is universal, theoretically clean and computationally eco-

nomical. With particular working examples, I give a flavor of how much one can do

using current available effective approaches in terms of calculations of relevant QCD

matrix elements that play key roles in the low-energy tests of fundamental symme-

tries in systems of hadrons and point out several possible directions one may improve

from. It will be a true excitement if any of us here can live long enough to witness

a fundamental breakthrough either in the understanding of QCD at hadronic scale

or the search of BSM physics as either of them could easily be listed as one of the

greatest triumphs of mankind since the born of modern physics.
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APPENDIX A

CONTACT INTERACTION

In this appendix we include some detail of the contact interaction approximation

we used to describe the low-energy interaction between quarks in our DSE formalism.

Our treatment of the contact interaction begins with the gap equation

S(p)−1 = iγ · p+m

+

∫

d4q

(2π)4
g2Dµν(p− q)

λa

2
γµS(q)

λa

2
Γν(q, p), (A.1)

wherein m is the Lagrangian current-quark mass, Dµν is the vector-boson propagator

and Γν is the quark–vector-boson vertex. We work with the choice

g2Dµν(p− q) = δµν
4παIR

m2
G

, (A.2)

where mG = 0.8 GeV is a gluon mass-scale typical of the one-loop renormalisation-

group-improved interaction introduced in Ref. [83], and the fitted parameter αIR/π =

0.93 is commensurate with contemporary estimates of the zero-momentum value of a

running-coupling in QCD [93, 94]. Equation (A.2) is embedded in a rainbow-ladder

(RL) truncation of the DSEs, which is the leading-order in the most widely used,

global-symmetry-preserving truncation scheme [76, 77]. This means

Γν(p, q) = γν (A.3)

in Eq. (A.1) and in the subsequent construction of the Bethe-Salpeter kernels.
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One may view the interaction in Eq. (A.2) as being inspired by models of the

Nambu–Jona-Lasinio type [95]. However, our treatment is atypical. Moreover, as

noted in the Introduction, one normally finds Eqs. (A.2), (A.3) produce results for

low-momentum-transfer observables that are practically indistinguishable from those

produced by more sophisticated interactions [64, 65, 67, 66, 68, 69, 216, 217, 218, 219,

220]. Using Eqs. (A.2), (A.3), the gap equation becomes

S−1(p) = iγ · p+m+
16π

3

αIR

m2
G

∫

d4q

(2π)4
γµ S(q) γµ , (A.4)

an equation in which the integral possesses a quadratic divergence. When the diver-

gence is regularised in a Poincaré covariant manner, the solution is

S(p)−1 = iγ · p+M , (A.5)

where M is momentum-independent and determined by

M = m+M
4αIR

3πm2
G

∫ ∞

0

ds s
1

s+M2
. (A.6)

We define Eq. (A.4) by writing [96]

1

s+M2
=

∫ ∞

0

dτ e−τ(s+M2)

→
∫ τ2

ir

τ2
uv

dτ e−τ(s+M2) (A.7)

=
e−(s+M2)τ2

uv − e−(s+M2)τ2
ir

s+M2
, (A.8)

where τir,uv are, respectively, infrared and ultraviolet regulators. It is apparent from

Eq. (A.8) that a finite value of τir =: 1/Λir implements confinement by ensuring the

absence of quark production thresholds [97]. Since Eq. (A.2) does not define a renor-

malisable theory, then Λuv := 1/τuv cannot be removed but instead plays a dynamical
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role, setting the scale of all dimensioned quantities. Using Eq. (A.7), the gap equation

becomes

M = m+M
4αIR

3πm2
G

C iu(M2) , (A.9)

where,

C iu(ω) = ω [Γ(−1, ωτ 2
uv) − Γ(−1, ωτ 2

ir)] , (A.10)

with Γ(α, y) being the incomplete gamma-function.

At this point we also list expressions for the other regularised integrals that we

employ herein:

C iu
n (ω) = (−1)nω

n

n!

dn

dωn
C iu(ω) , (A.11)

D iu(ω) =

∫

R

ds
s2

s+M2

= 2ω2 [Γ(−2, ωτ 2
uv) − Γ(−2, ωτ 2

ir)] , (A.12)

E iu(ω) =

∫

R

ds
s3

s+M2

= 6ω3 [Γ(−3, ωτ 2
uv) − Γ(−3, ωτ 2

ir)] , (A.13)

Ǧ iu
1 (ω) =

∫

R

ds
s

(s+ ω)3 =
1

2

d2

dω2
C iu(ω) , (A.14)

Ǧ iu
2 (ω) =

∫

R

ds
s2

(s+ ω)3

= C̄ iu
1 (ω) − ω

2

d2

dω2
C iu(ω) , (A.15)

Ǧ iu
3 (ω) =

∫

R

ds
s3

(s+ ω)3

= C iu(ω) − 2 C iu
1 (ω) + C iu

2 (ω) , (A.16)

Ǧ iu
4 (ω) =

∫

R

ds
s4

(s+ ω)3 = D iu(ω)

− 2ω C iu(ω) + 3ω C iu
1 (ω) − ω C iu

2 (ω) , (A.17)

Ǧ iu
5 (ω) =

∫

R

ds
s5

(s+ ω)3 = E iu(ω) − 2ωD iu(ω)
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+ 3ω2 C iu(ω) − 4ω2 C iu
1 (ω) + ω2 C iu

2 (ω) , (A.18)

where {Gi = Ǧi/(16π2), i = 1, . . . , 5}.

The parameters that specify our treatment of the contact interaction were de-

termined in a study of π- and ρ-meson properties [66]; viz., αIR/π = 0.93 and (in

GeV)

m = 0.007 , Λir = 0.240 Λuv = 0.905 , (A.19)

using which, Eq. (A.9) yields

M = 0.368 GeV. (A.20)

With the aim of exploring the impact of DCSB on our results, herein we also

consider results obtained with αIR/π = 0.74, in which case

M →M< = 0.246 GeV. (A.21)
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APPENDIX B

FADDEEV EQUATION

We describe the dressed-quark-cores of the nucleon via solutions of a Poincaré-

covariant Faddeev equation [250]. The equation is derived following upon the observa-

tion that an interaction which describes mesons also generates quark-quark (diquark)

correlations in the colour-3̄ channel [251]. The fidelity of the diquark approximation

to the quark-quark scattering kernel has been verified [91].

In RL truncation, the colour-antitriplet diquark correlations are described by an

homogeneous Bethe-Salpeter equation that is readily inferred from the analogous

meson equation; viz., following Ref. [251] and expressing the diquark amplitude as

Γc
qq(k;P ) = Γqq(k;P )C†Hc, (B.1)

with

{H1 = iλ7, H2 = −iλ5, H3 = iλ2} , ǫc1c2c3 = (Hc3)c1c2 , (B.2)

where {λ2,5,7} are Gell-Mann matrices, then

Γqq(k;P ) = −8π

3

αIR

m2
G

∫

d4q

(2π)4
γµχqq(q;P )γµ , (B.3)

where χqq(q;P ) = S(q)Γqq(P )S(q − P ) and Γqq is the diquark Bethe-Salpeter ampli-

tude, which is independent of the relative momentum when using a contact interaction

[66].
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Scalar and axial-vector quark-quark correlations are dominant in studies of the

nucleon:

Γ0+

qq (P ) = iγ5Eqq0(P ) +
1

M
γ5γ · PFqq0(P ) , (B.4)

iΓ1+

qq µ(P ) = iγT
µEqq1(P ), (B.5)

where Pµγ
T
µ = 0. These amplitudes are canonically normalised:

Pµ = 2tr

∫

d4q

(2π)4
Γ0+

qq (−P )
∂

∂Pµ

S(q + P )Γ0+

qq (P )S(q); (B.6)

and

Pµ =
2

3
tr

∫

d4q

(2π)4
Γ1+

qq α(−P )
∂

∂Pµ

S(q + P )Γ1+

qq α(P )S(q). (B.7)

A J = 1
2

baryon is represented by a Faddeev amplitude

Ψ = Ψ1 + Ψ2 + Ψ3 , (B.8)

where the subscript identifies the bystander quark and, e.g., Ψ1,2 are obtained from

Ψ3 by a cyclic permutation of all the quark labels. We employ a simple but realistic

representation of Ψ. The spin- and isospin-1
2

nucleon is a sum of scalar and axial-

vector diquark correlations:

Ψ3(pi, αi, τi) = N 0+

3 + N 1+

3 , (B.9)

with (pi, αi, τi) the momentum, spin and isospin labels of the quarks constituting the

bound state, and P = p1 + p2 + p3 the system’s total momentum.
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The scalar diquark piece in Eq. (B.9) is

N 0+

3 (pi, αi, τi) = [Γ0+

(
1

2
p[12];K)]τ1τ2

α1α2
∆0+

(K) [S(ℓ;P )u(P )]τ3α3
, (B.10)

where: the spinor satisfies Eq. (G.4), with M the mass obtained by solving the Fad-

deev equation, and it is also a spinor in isospin space with ϕ+ = col(1, 0) for the

charge-one state and ϕ− = col(0, 1) for the neutral state; K = p1 + p2 =: p{12},

p[12] = p1 − p2, ℓ := (−p{12} + 2p3)/3;

∆0+

(K) =
1

K2 +m2
qq

0+

(B.11)

is a propagator for the scalar diquark formed from quarks 1 and 2, with mqq
0+

the

mass-scale associated with this correlation, and Γ0+

is the canonically-normalised

Bethe-Salpeter amplitude described above; and S , a 4×4 Dirac matrix, describes the

relative quark-diquark momentum correlation.

The axial-vector component in Eq. (B.9) is

N 1+

(pi, αi, τi) = [ti Γ1+

µ (
1

2
p[12];K)]τ1τ2

α1α2
∆1+

µν (K) [A i
ν(ℓ;P )u(P )]τ3α3

, (B.12)

where the symmetric isospin-triplet matrices are

t
+ =

1√
2
(τ 0 + τ 3) , t0 = τ 1 , t− =

1√
2
(τ 0 − τ 3) , (B.13)

and the other elements in Eq. (B.12) are straightforward generalisations of those in

Eq. (B.10) with, e.g.,

∆1+

µν (K) =
1

K2 +m2
qq

1+

(

δµν +
KµKν

m2
qq

1+

)

. (B.14)
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One can now write the Faddeev equation for Ψ3:







S(k;P ) u(P )

A i
µ(k;P ) u(P )







= − 4

∫

d4ℓ

(2π)4
M (k, ℓ;P )







S(ℓ;P ) u(P )

A j
ν(ℓ;P ) u(P )






. (B.15)

The kernel in Eq. (B.15) is

M (k, ℓ;P ) =







M00 (M01)
j
ν

(M10)
i
µ (M11)

ij
µν






, (B.16)

with

M00 = Γ0+

(kq − ℓqq/2; ℓqq)S
T(ℓqq − kq)

× Γ̄0+

(ℓq − kqq/2;−kqq)S(ℓq) ∆0+

(ℓqq) , (B.17)

where: ℓq = ℓ, kq = k, ℓqq = −ℓ + P , kqq = −k + P , the superscript “T” denotes

matrix transpose, Γ̄ is defined in Eq. (G.9); and

(M01)
j
ν = t

j Γ1+

µ (kq − ℓqq/2; ℓqq)S
T(ℓqq − kq)

× Γ̄0+

(ℓq − kqq/2;−kqq)S(ℓq) ∆1+

µν (ℓqq), (B.18)

(M10)
i
µ = Γ0+

(kq − ℓqq/2; ℓqq)S
T(ℓqq − kq) t

i

× Γ̄1+

µ (ℓq − kqq/2;−kqq)S(ℓq) ∆0+

(ℓqq), (B.19)

(M11)
ij
µν = t

j Γ1+

ρ (kq − ℓqq/2; ℓqq)S
T(ℓqq − kq) t

i

× Γ̄1+

µ (ℓq − kqq/2;−kqq)S(ℓq) ∆1+

ρν (ℓqq). (B.20)

The dressed-quark propagator is described in Sec. A and the diquark propagators

are given in Eqs. (B.11), (B.14), so the Faddeev equation is complete once the diquark
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Bethe-Salpeter amplitudes are computed from Eqs. (B.3) – (B.7). However, we follow

Ref. [67] and employ a simplification of the kernel; viz., in the Faddeev equation, the

quark exchanged between the diquarks is represented as

ST(k) → g2
N

M
, (B.21)

where gN = 1.18. This is a variant of the so-called “static approximation,” which

itself was introduced in Ref. [252] and has subsequently been used in studying a range

of nucleon properties [253]. In combination with diquark correlations generated by

Eq. (A.2), whose Bethe-Salpeter amplitudes are momentum-independent, Eq. (B.21)

generates Faddeev equation kernels which themselves are momentum-independent.

The dramatic simplifications which this produces are the merit of Eq. (B.21). Never-

theless, we are currently exploring the veracity of this truncation.

The general forms of the matrices S(ℓ;P ) and A i
ν(ℓ;P ), which describe the momentum-

space correlation between the quark and diquark in the nucleon, are described in

Refs. [254, 255]. However, with the interaction described in Sec. A augmented by

Eq. (B.21), they simplify greatly; viz.,

S(P ) = s(P ) I , (B.22a)

iA j
µ(P ) = aj

1(P )γµγ5 + iaj
2(P )γ5P̂µ , j = +, 0 , (B.22b)

with the scalars s, ai
1,2 independent of the relative quark-diquark momentum and

P̂ 2 = −1.

The mass of the ground-state nucleon is then determined by a 5×5 matrix Faddeev

equation; viz., Ψ = KΨ, with the eigenvector defined via

Ψ(P )T =
[

s(P ) a+
1 (P ) a0

1(P ) a+
2 (P ) a0

2(P )
]

, (B.23)
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and the kernel (k± = ±√
2)

K(P ) =




























K00
ss k−K

01
sa1

K01
sa1

k−K
01
sa2

K01
sa2

k−K
10
a1s 0 k+K

11
a1a1

0 k+K
11
a1a2

K10
a1s k+K

11
a1a1

K11
a1a1

k+K
11
a1a2

K11
a1a2

k−K
10
a2s 0 k+K

11
a2a1

0 k+K
11
a2a2

K10
a2s k+K

11
a2a1

K11
a2a1

k+K
11
a2a2

K11
a2a2





























, (B.24)

whose entries are given explicitly in Eqs. (B20), (B21) of Ref. [68]. Given the structure

of the kernel, the eigenvectors exhibit the pattern:

a+
i = −

√
2a0

i , i = 1, 2. (B.25)

Using the parameters and results described in and connection with Eqs. (A.19),

(A.20), the diquark Bethe-Salpeter equations produce the following diquark masses

(in GeV)

mqq0+ = 0.78 , mqq1+ = 1.06 , (B.26)

and canonically normalised amplitudes:

Eqq0+ = 2.742 , Fqq0+ = 0.314 , Eqq1+ = 1.302 . (B.27)

With this input to the Faddeev equation, one obtains [67, 68, 69] mN = 1.14 GeV

and the following unit-normalised eigenvector1

1Eqq0+ , Fqq0+ listed in Table I(A) of Ref. [68] are incorrect. The values listed in Eq. (B.27) were
actually used therein.
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s(P ) a+
1 (P ) a0

1(P ) a+
2 (P ) a0

2(P )

0.88 −0.38 0.27 −0.065 0.046
. (B.28)

As explained elsewhere [67, 68, 69], the mass is greater than that determined empir-

ically because our Faddeev equation kernel omits resonant contributions; i.e., does

not contain effects that may phenomenologically be associated with a meson cloud.

It is for this reason that our Faddeev equation describes the nucleon’s dressed-quark

core. Notably, meson cloud effects typically work to reduce a hadron’s mass [256].

Using the reduced coupling value described in connection with Eq. (A.21), the

diquark Bethe-Salpeter equations produce the following diquark masses (in GeV)

mqq0+ = 0.70 , mqq1+ = 0.98 , (B.29)

and canonically normalised amplitudes:

Eqq0+ = 2.165 , Fqq0+ = 0.139 , Eqq1+ = 1.093 . (B.30)

With this input to the Faddeev equation, one obtains mN = 1.02 GeV and the fol-

lowing unit-normalised eigenvector

s(P ) a+
1 (P ) a0

1(P ) a+
2 (P ) a0

2(P )

0.88 −0.38 0.27 −0.065 0.046
. (B.31)

Plainly, a 20% cut in the infrared value of the coupling diminishes the strength of

DCSB by 33%. This feeds into reductions of the diquark Bethe-Salpeter amplitudes

and a 10% cut in the nucleon mass. On the other hand, the nucleon’s Faddeev

amplitude, which describes its internal structure, is almost unchanged. The same

pattern is seen in studies of the temperature dependence of nucleon properties [218].
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APPENDIX C

INTERACTION CURRENTS

In this appendix we explain the interaction currents involved in the calculation of

nucleon static charges using the Fadeev equation. In order to translate the diagrams

drawn in this appendix into formulae, it is helpful to bear the following points in

mind.

(1) In front of a closed fermion trace; i.e., a vertex, one should, as usual, include a

factor of (−1).

(2a) States entering a diagram are described by the amplitudes

Γ0+

qq (P ) = γ5 (iEqq0+ +
1

M
γ · P Fqq0+) , (C.1a)

Γ1+

qqµ(P ) = iEqq1+γT
µ , (C.1b)

S(P ) = s I , (C.1c)

A j
µ(P ) = aj

1γµγ5 + iaj
2γ5P̂µ . (C.1d)

(N.B. In this Appendix we have absorbed the “i” of Eqs. (B.5), (B.22) into the labels

Γ1+

qqµ(P ) and A j
µ.)

(2b) States leaving a diagram are described by the amplitudes

Γ0+

qq (−P ) = γ5 (iEqq0+ − 1

M
γ · P Fqq0+) , (C.2a)

Γ1+

qqµ(−P ) = iEqq1+γT
µ , (C.2b)

S(−P ) = s I =: S̄ , (C.2c)
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A j
µ(−P ) = aj

1γ5γµ + iaj
2γ5P̂µ . (C.2d)

In these equations,

γT
µ = γνPµν(P ) , Pµν(P ) = δµν +

PµPν

m2
qq1+

. (C.3)

(3) In the traces arising from a closed fermion loop, we have: ējN̄ for charge form

factors, where ē0 = 1
3
e, ē+ = 4

3
e, where e is the positron charge; and 2N̄ for scalar

and tensor form factors. Note that N̄ = 2 for diquark initial and final states.

C.1 Electromagnetic Current

In computing the charge form factor of any hadron, one must employ the dressed-

quark-photon vertex [257, 258]. That vertex may be obtained by solving an inho-

mogeneous Bethe-Salpeter equation whose unrenormalised form is determined by the

inhomogeneous term γµ. The complete solution for the contact-interaction’s vector

vertex in RL truncation can be found in Refs. [65, 216]; but that result is not neces-

sary herein because we only require the result at Q2 = 0, which is fixed by the Ward

identity. With the contact interaction, that means

V q
µ (Q)

Q2=0
= eqγµ , (C.4)

where eq is the quark’s electric charge.

The Q2 = 0 value of the elastic electromagnetic proton current determines the

canonical normalisation of the nucleon’s Faddeev amplitude [259]. Given the Faddeev

equation in Fig. 2.2, the complete result is obtained by summing the six one-loop
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ℓ+ p

p p

−ℓ

0
+

ℓ+ p

Figure C.1. Diagram 1: The probe interacts with a quark within the proton and
the 0+ diquark is a bystander.

diagrams that we now describe. There would be more diagrams if the interaction

were momentum dependent [259].

C.1.1 Diagram 1 – em

The first contribution is depicted in Fig. C.1, which translates into the following

expression

eQp,1 Λ+(p)γµΛ+(p) = N Λ+(p) S̄

∫

d4ℓ

(2π)4

×S(ℓ+ p)euγµS(ℓ+ p)∆0+

(−ℓ) S Λ+(p) (C.5)

= 2 N Λ+(p) s2

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4

{iγ · (ℓ+ xp) −M} euγµ {iγ · (ℓ+ xp) −M}
[ℓ2 − x(1 − x)m2

N + (1 − x)M2 + xm2
qq0

]3
Λ+(p) ,

(C.6)

where here and hereafter we (often) suppress the parity-+ superscript on the diquark

label, S is the scalar-diquark piece of the Faddeev amplitude and N is the (as yet un-

determined) canonical normalisation constant for the Faddeev amplitude that ensures

that the proton charge is unity; i.e., Qp = 1.

Applying the projection operator

Pµ =
1

2
γµ , (C.7)
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and performing the trace, one obtains

eQp,1 = eu N s2

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4

ℓ2 + 2(M + xmN)2

[ℓ2 − x(1 − x)m2
N + (1 − x)M2 + xm2

qq0
]3

(C.8)

→ eu N s2

∫ 1

0

dx (1 − x)

{

G iu
2

(

x(x− 1)m2
N

+(1 − x)M2 + xm2
qq0

)

+ 2(M + xmN)2

×G iu
1

(

x(x− 1)m2
N + (1 − x)M2 + xm2

qq0

)

}

, (C.9)

where G iu
1 (ω), G iu

2 (ω) are defined in Eqs. (A.14), (A.15), respectively, and eu = 2
3
e.

This expression evaluates to

eQp,1 = D1 eu N

= 0.0182622 eu N = 0.0121748 eN . (C.10)

C.1.2 Diagram 2 – em

The second contribution is almost identical to that depicted in Fig. C.1: the only

change being that in this instance a 1+ diquark is the bystander. However, owing to

isospin symmetry, which we assume herein, and Eq. (B.25), this term yields

eQp,2 = (2 ed + eu)D
0
2 N

= (2 ed + eu) 0.00195845 N = 0 , (C.11)

where D0
2 is the contribution obtained with a {ud}-diquark spectator.

C.1.3 Diagram 3 – em

The third contribution is depicted in Fig. C.2, which represents the following ex-

pression
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ℓ+ p

p p−ℓ

ℓ+ p

0
+

0
+

Figure C.2. Diagram 3: The probe interacts with the 0+ diquark within the proton
and the dressed-quark is a bystander.

eQp,3 Λ+(p)γµΛ+(p)

= N Λ+(p) S̄

∫

d4ℓ

(2π)4
∆0+

(ℓ+ p)

× V 0
µ (ℓ+ p)∆0+

(ℓ+ p)S(−ℓ) S Λ+(p) (C.12)

= −2 N Λ+(p) s2

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4

× iγ · (−ℓ+ (1 − x)p) −M

[ℓ2 − x(1 − x)m2
N + (1 − x)m2

qq0
+ xM2]3

× V 0
µ (ℓ+ xp) Λ+(p) . (C.13)

The vertex is given by (N̄ = 2)

V 0
µ (P ) = −ē0N̄

∫

d4q

(2π)4
tr
{

S(q + P/2)γµS(q + P/2)

× Γ0+

qq (P )S(q − P/2)Γ̄0+

qq (−P )
}

(C.14)

= 2ē0N̄

∫ 1

0

dx (1 − x)

∫

d4q

(2π)4

× tr
{

[iγ · (q + xP ) −M ] γµ [iγ · (q + xP ) −M ]

× γ5

(

iEqq0
+

1

M
γ · P Fqq0

)

× [iγ · (q + (x− 1)P ) −M ]

× γ5

(

iEqq0
− 1

M
γ · P Fqq0

)}

×
(

q2 − x(1 − x)m2
qq0

+M2
)−3

, (C.15)
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where, again, ē0 = 1
3
e; and P is the incoming as well as the outgoing momentum of the

0+ diquark, owing to our need to only consider vanishing momentum transfer Q→ 0,

and we choose P to be an on-shell momentum. Applying the projector in Eq. (C.7)

and evaluating the trace, one obtains

eQp,3 = D3 ē0 N

= 0.008733364 ē0 N = 0.00291112 eN . (C.16)

C.1.4 Diagram 4 – em

The fourth contribution is almost identical to that depicted in Fig. C.2: the only

change being that in this instance the 1+ diquark is probed, so that one has

eQp,4 Λ+(p)γµΛ+(p)

= N
∑

j∈0,+

Λ+(p) A j
α(−p)

∫

d4ℓ

(2π)4
∆1+

αα′(ℓ+ p)

× V j
α′µβ′(ℓ+ p)∆1+

β′β(ℓ+ p)S(−ℓ) A j
β(p) Λ+(p) (C.17)

= −2 N
∑

j∈0,+

Λ+(p) γ5

(

aj
1γα + iaj

2p̂α

)

∫ 1

0

dx (1 − x)

×
∫

d4ℓ

(2π)4

iγ · (−ℓ+ (1 − x)p) −M

[ℓ2 − x(1 − x)m2
N + (1 − x)m2

qq1
+ xM2]3

× Pαα′(ℓ+ xp) V j
α′µβ′(ℓ+ xp) Pβ′β(ℓ+ xp)

×
(

aj
1γβ + iaj

2p̂β

)

γ5 Λ+(p) . (C.18)

The vertex is (N̄ = 2)

V j
αµβ(P ) = −ējN̄

∫

d4q

(2π)4
tr
{

S(q + P/2)γµS(q + P/2)

× Γ1+

qqβ(P )S(q − P/2)Γ̄1+

qqα(−P )
}

(C.19)
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= −2ējN̄E
2
qq1

∫ 1

0

dx (1 − x)

∫

d4q

(2π)4

× tr{[iγ · (q + xP ) −M ] γµ [iγ · (q + xP ) −M ]

× γT
β (P ) [iγ · (q + (x− 1)P ) −M ] γT

α (P )}

× [q2 − x(1 − x)m2
qq1

+M2]−3 , (C.20)

where, as noted above, ē0 = 1
3
e and ē+ = 4

3
e, and P is the incoming as well as outgoing

momentum of the 1+ diquark. Applying the projector in Eq. (C.7) and evaluating the

trace, one obtains

eQp,4 = (2 ē+ + ē0)D
0
4 N

= (2 ē+ + ē0) 0.00090133 N = 0.002704 eN , (C.21)

where D0
4 is the contribution from the {ud}-diquark.

C.1.5 Diagram 5 – em

This contribution is depicted in Fig. C.3. In this case

Qp,5eΛ+(p)γµΛ+(p) = 0 , (C.22)

because the vertex vanishes at zero momentum transfer; i.e.,

Vµα = 0 . (C.23)

Consequently

Qp,5 = 0 . (C.24)
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ℓ+ p

p p−ℓ

ℓ+ p

α

0
+

1
+

Figure C.3. Diagram 5: The probe is absorbed by a 0+-diquark, which is thereby
transformed into a 1+ diquark.

C.1.6 Diagram 6 – em

This is the conjugate contribution to that depicted in Fig. C.3; namely, a 1+ di-

quark absorbs the probe and is thereby transformed into a 0+ diquark. In a symmetry

preserving treatment of any reasonable interaction, this contribution is identical to

that produced by Diagram 5.

C.1.7 Current Conservation

If a truly Poincaré invariant regularisation is employed, then one has Ward iden-

tities relating the charges in Eqs. (C.10), (C.21) and (C.11), (C.16)

D1 = D3 , D
0
2 = D0

4 , (C.25)

which ensure: simple additivity of the quark and diquark electric charges, and thereby

guarantee a unit-charge isospin=(+1/2) baryon through a single rescaling factor [259];

and a neutral isospin=(−1/2) baryon without fine tuning. Owing to the cutoffs

we have introduced, however, these identities are violated: Eq. (C.10) cf. (C.16),

Eq. (C.11) cf. (C.21). Following Ref. [68], we ameliorate this flaw by enforcing the

Ward identities:

D1,3 → D13 = (D1 +D3)/2 = 0.01350 , (C.26a)

D2,4 → D24 = 3(D0
2 +D0

4)/2 = 0.00429 . (C.26b)
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Qp,i/N Qκ
p,i/N

Diagram 1 0.01217 0.0090
Diagram 2 0 0
Diagram 3 0.00291 0.00450
Diagram 4 0.00270 0.00426
Diagram 5 0
Diagram 6 0

Sum 0.0178 0.0178

Table C.1. Column 1: Summary of the results computed from all diagrams consid-
ered in connection with the proton’s charge. Column 2: Results scaled as described
in Sec. C.1.7.

This corresponds to introducing a rescaling factor for each of the diagrams involved:

Di → κiDi, κ1,3 = D13/D1,3, κ2,4 = D24/D2,4. Diagrams 5 and 6 are unaffected

because they are equal and do not contribute to a baryon’s charge.

C.1.8 Canonical Normalisation

The results computed from all diagrams considered in connection with the proton’s

charge are collected in Table C.1. As noted above, the canonical normalisation is fixed

by requiring

Qp =
6
∑

i=1

Qp,i = 1 , (C.27)

from which it follows that

N =
1

0.01777
= 56.27 . (C.28)

C.2 Scalar Current

When computing the scalar charge of any hadron, one must employ the dressed-

quark-scalar vertex. That vertex, too, is obtained by solving an inhomogeneous

Bethe-Salpeter equation: in this case, the unrenormalised form is determined by
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the inhomogeneous term I. The complete solution for the contact-interaction’s scalar

vertex in RL truncation can be found in Refs. [216], and at Q2 = 0 this yields:

V q
I

=
1

1 +
4αIR

3πm2
G

(

2 C iu
1 (M2) − C iu(M2)

)
I = 1.37 I , (C.29)

where M is the dressed-quark mass in Eq. (A.20).

As a check on this result, we note again that since the vertex is only required at

Q2 = 0, one can appeal to a Ward identity [260], which takes the form

VI(Q)
Q2=0
= I

∂M

∂m
(C.30)

when the contact interaction is used. Employing the results from which Ref. [67] was

prepared, this expression, too, yields the numerical value in Eq. (C.29).

The nucleon’s scalar charge is also known as the nucleon σ-term; and using our

implementation of the contact interaction, one need consider only relevant analogues

of the six diagrams described explicitly in App. C.1. In this case, Diagrams 1–4

provide a nonzero contribution and the complete result is obtained from the sum.

C.2.1 Diagram 1 – scalar

This is the contribution produced by the scalar probe interacting with a the

dressed-quark whilst the 0+ [ud]-diquark is a spectator:

σ̂q,1 Λ+(p)IΛ+(p) = N κ
1 Λ+(p) S̄

∫

d4ℓ

(2π)4
S(ℓ+ p)

× V q
I
S(ℓ+ p)∆0+

(−ℓ) S Λ+(p) (C.31)

= 2 N κ
1 Λ+(p) s2

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4

× {iγ · (ℓ+ xp) −M}V q
I
{iγ · (ℓ+ xp) −M}

[ℓ2 − x(1 − x)m2
N + (1 − x)M2 + xm2

qq0
]3

Λ+(p) , (C.32)

165



where N κ
1 = κ1N , with κ1 defined in connection with Eqs. (C.26), N given in

Eq. (C.28). Applying the projector

P =
1

2
I , (C.33)

and evaluating the trace, one obtains

σ̂u,1 = σ̂q,1 = 0.309 , σ̂d,1 = 0 . (C.34)

It was plain from the outset that this diagram would only produce a contribution to

σ̂u,1 because the d-quark is sequestered inside the scalar diquark.

C.2.2 Diagram 2 – scalar

In this case we have the scalar probe interacting with the dressed-quark and the

1+ diquarks being spectators:

σ̂qj,2
Λ+(p)IΛ+(p)

= N κ
2 Λ+(p) A j

α(−p)
∫

d4ℓ

(2π)4
S(ℓ+ p)V q

I

× S(ℓ+ p)∆1+

αβ(−ℓ) A j
β(p) Λ+(p) (C.35)

= 2 N κ
2 Λ+(p) γ5

(

aj
1γα + iaj

2p̂α

)

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4

× {iγ · (ℓ+ xp) −M}V q
I
{iγ · (ℓ+ xp) −M}

[ℓ2 − x(1 − x)m2
N + (1 − x)M2 + xm2

qq1 ]3

× Pαβ(ℓ− (1 − x)p)
(

aj
1γβ + iaj

2p̂β

)

γ5 Λ+(p). (C.36)

Applying the projector in Eq. (C.33) and evaluating the trace, one finds, owing to

Eq. (B.25),

σ̂u,2 = σ̂q0,2
= 0.0318 , σ̂d,2 = σ̂q+,2

= 0.0636 = 2σ̂u,2 . (C.37)
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C.2.3 Diagram 3 – scalar

The third diagram describes the scalar probe interacting with the 0+ [ud]-diquark

and the dressed-quark acting merely as an onlooker:

σ̂q,3 Λ+(p)IΛ+(p) = N κ
3 Λ+(p) S̄

∫

d4ℓ

(2π)4
∆0+

(ℓ+ p)

× V 0
I
(ℓ+ p)∆0+

(ℓ+ p)S(−ℓ) S Λ+(p) (C.38)

= −2 N κ
3 s2

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4
Λ+(p)

× [iγ · (−ℓ+ (1 − x)p) −M ]V 0
I
(ℓ+ xp) Λ+(p)

[ℓ2 − x(1 − x)m2
N + (1 − x)m2

qq0 + xM2]3
. (C.39)

The vertex is given by (N̄ = 2)

V 0
I
(P ) = −2N̄

∫

d4q

(2π)4
tr
{

S(q + P/2)V q
I
S(q + P/2)

× Γ0+

qq (P )S(q − P/2)Γ̄0+

qq (−P )
}

(C.40)

= 4N̄

∫ 1

0

dx (1 − x)

∫

d4q

(2π)4
tr
{

[iγ · (q + xP ) −M ]

× V q
I

[iγ · (q + xP ) −M ] γ5

(

iEqq0
+

1

M
γ · P Fqq0

)

× [iγ · (q + (x− 1)P ) −M ] γ5

(

iEqq0

− 1

M
γ · P Fqq0

)}(

q2 − x(1 − x)m2
qq0

+M2
)−3

. (C.41)

Applying the projector in Eq. (C.33) and evaluating the trace, one obtains

σ̂u,3 =
σ̂q,3

2
= 1.0419 = σ̂d,3 . (C.42)

C.2.4 Diagram 4 – scalar

The fourth diagram describes the scalar probe interacting with a 1+ {uu}- or

{ud}-diquark where the dressed-quark acts merely as an onlooker:
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σ̂qj,4
Λ+(p)IΛ+(p)

= N κ
4 Λ+(p) A j

α(−p)
∫

d4ℓ

(2π)4
∆1+

αα′(ℓ+ p)V I

α′β′(ℓ+ p)

× ∆1+

β′β(ℓ+ p)S(−ℓ) A j
β(p) Λ+(p) (C.43)

= −2 N κ
4 Λ+(p) γ5

(

aj
1γα + iaj

2p̂α

)

∫ 1

0

dx (1 − x)

×
∫

d4ℓ

(2π)4

iγ · (−ℓ+ (1 − x)p) −M

[ℓ2 − x(1 − x)m2
N + (1 − x)m2

qq1
+ xM2]3

× Pαα′(ℓ+ xp) V I

α′β′(ℓ+ xp) Pβ′β(ℓ+ xp)

×
(

aj
1γβ + iaj

2p̂β

)

γ5 Λ+(p) . (C.44)

The vertex is given by (N̄ = 2)

V I

αβ(P ) = −2N̄

∫

d4q

(2π)4
tr
{

S(q + P/2)V q
I
S(q + P/2)

× Γ1+

qqβ(P )S(q − P/2)Γ̄1+

qqα(−P )
}

(C.45)

= −4N̄E2
qq1

∫ 1

0

dx (1 − x)

∫

d4q

(2π)4
tr{[iγ · (q + xP )

−M ] V q
I

[iγ · (q + xP ) −M ] γT
β [iγ · (q + (x− 1)P )

−M ] γT
α }[q2 − x(1 − x)m2

qq1
+M2]−3 (C.46)

→ 16MN̄E2
qq1

V q
I
Pαβ(P )

∫ 1

0

dx (1 − x)

×
(

M2 − x(x− 2)m2
qq1

)

G iu
1

(

x(x− 1)m2
qq1

+M2
)

, (C.47)

where P is again both the incoming and outgoing momentum of the 1+ diquark.

Applying the projector in Eq. (C.33) and evaluating the trace, one finds

σ̂u,4 =
σ̂q0,4

2
+ σ̂q+,4

= 0.465 , σ̂d,4 =
σ̂q0,4

2
= 0.0938 . (C.48)
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σ̂u σ̂d σ [MeV]

Diagram 1 0.309 0 2.163
Diagram 2 0.032 0.063 0.666
Diagram 3 1.042 1.042 14.587
Diagram 4 0.465 0.094 3.914
Diagram 5 0 0 0
Diagram 6 0 0 0

Total Result 1.85 1.20 21.33

Table C.2. Summary of the results computed from all diagrams considered in con-
nection with the proton’s scalar charge.

C.2.5 Proton σ-term

The results obtained from all diagrams considered in connection with the proton’s

scalar charge are collected in Table C.2. The proton σ-term is

σN = m
6
∑

i=1

[σ̂u,i + σ̂d,i] = 21.33 MeV. (C.49)

In the isospin symmetric limit, the neutron σ-term is identical.

C.3 Tensor Current

When computing the tensor charge of any hadron, one must employ the dressed-

quark-tensor vertex. However, as explained elsewhere [67], any dressing of the tensor

vertex must depend linearly on the relative momentum [261] and such dependence

is impossible using a symmetry-preserving regularisation of a vector⊗ vector contact

interaction. Hence, in our case, the quark-tensor vertex is unmodified from its bare

form; viz.,

V q
µν = σµν . (C.50)

Naturally, when computing the proton’s tensor charge using our implementation of

the contact interaction, one need only consider relevant analogues of the six diagrams

described explicitly in App. C.1. In this case, Diagrams 1,2,4,5,6 provide nonzero
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contributions. Diagram 3 yields zero because Poincaré invariance entails that a scalar

diquark cannot possess a tensor charge.

C.3.1 Diagram 1 – tensor

As usual, we first consider the case of the tensor probe interacting with the dressed-

quark and the 0+ [ud]-diquark being a spectator:

δ1qΛ+(p)σµνΛ
+(p) = N κ

1 Λ+(p) S̄

∫

d4ℓ

(2π)4
S(ℓ+ p)σµν

× S(ℓ+ p)∆0+

(−ℓ) S Λ+(p) (C.51)

= 2 N s2

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4
Λ+(p) {iγ · (ℓ+ xp)

−M}σµν {iγ · (ℓ+ xp) −M}Λ+(p)

× [ℓ2 − x(1 − x)m2
N + (1 − x)M2 + xm2

qq0
]−3 . (C.52)

Applying the projector

Pµν =
1

12
σµν , (C.53)

and evaluating the trace, one obtains

δ1q = 2 N1 s
2

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4

× (M + xmN)2

[ℓ2 − x(1 − x)m2
N + (1 − x)M2 + xm2

qq0
]3

(C.54)

→ 2 N s2

∫ 1

0

dx (1 − x)(M + xmN)2

× G iu
1

(

x(x− 1)m2
N + (1 − x)M2 + xm2

qq0

)

, (C.55)

where G iu
1 (ω) is defined in Eq. (A.14). As a result we find

δT1u = δ1q = 0.581 , δT1d = 0 . (C.56)
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C.3.2 Diagram 2 – tensor

When the tensor probe interacts with the dressed-quark and the 1+ diquarks are

spectators, one has

δ2qj Λ+(p)σµνΛ
+(p)

= N κ
2 Λ+(p) A j

α(−p)
∫

d4ℓ

(2π)4
S(ℓ+ p)σµν

× S(ℓ+ p) ∆1+

αβ(−ℓ) A j
β(p) Λ+(p) (C.57)

= 2 N κ
2 Λ+(p) γ5

(

aj
1γα + iaj

2p̂α

)

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4

× {iγ · (ℓ+ xp) −M}σµν {iγ · (ℓ+ xp) −M}
[ℓ2 − x(1 − x)m2

N + (1 − x)M2 + xm2
qq1

]3

× Pαβ(ℓ− (1 − x)p)
(

aj
1γβ + iaj

2p̂β

)

γ5Λ
+(p). (C.58)

Applying the projector in Eq. (C.53) and evaluating the resulting trace, one finds,

owing to Eq. (B.25):

δT2d = δ2q+ = 2δ2q0 = −0.0359 = 2δT2u . (C.59)

C.3.3 Diagram 4 – tensor

The next nonzero contribution arises from the tensor probe interacting with a 1+

{uu}- or {ud}-diquark where the dressed-quark acts merely as an onlooker:

δ4qj Λ+(p)σµνΛ
+(p)

= N κ
4 Λ+(p) A j

α(−p)
∫

d4ℓ

(2π)4
∆1+

αα′(ℓ+ p)V 2
α′µνβ′(ℓ+ p)

× ∆1+

β′β(ℓ+ p)S(−ℓ) A j
β(p) Λ+(p) (C.60)

= −2 N κ
4 Λ+(p) γ5

(

aj
1γα + iaj

2p̂α

)

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4

× iγ · (−ℓ+ (1 − x)p) −M

[ℓ2 − x(1 − x)m2
N + (1 − x)m2

qq1
+ xM2]3
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× Pαα′(ℓ+ xp) V 2
α′µνβ′(ℓ+ xp)

× Pβ′β(ℓ+ xp)
(

aj
1γβ + iaj

2p̂β

)

γ5 Λ+(p) . (C.61)

The vertex is (N̄ = 2)

V 2
αµνβ(P ) = −2N̄

∫

d4q

(2π)4
tr
{

S(q + P/2)σµνS(q + P/2)

× Γ1+

qqβ(P )S(q − P/2)Γ̄1+

qqα(−P )
}

(C.62)

= −4N̄E2
qq1

∫ 1

0

dx (1 − x)

∫

d4q

(2π)4
tr

[

[iγ · (q + xP )

−M ]σµν [iγ · (q + xP ) −M ] γT
β

× [iγ · (q + (x− 1)P ) −M ] γT
α

]

× [q2 − x(1 − x)m2
qq1

+M2]−3 (C.63)

→ 16iMN̄E2
qq1

(

Pαµ(P )Pβν(P ) − Pαν(P )Pβµ(P )
)

×
∫ 1

0

dx (1 − x)
{(

M2 − x(x− 2)m2
qq1

)

G iu
1 (ω)

+ G iu
2

(

x(x− 1)m2
qq1

+M2
)}

(C.64)

where P is the incoming and outgoing momentum of the 1+ diquark, and G iu
1 (ω),

G iu
2 (ω) are defined in Eqs. (A.14), (A.15). Applying the projector in Eq. (C.53) and

evaluating the resulting trace, one finds

δT4u =
δ4q0
2

+ δ4q+ = 0.292 , δT4d =
δ4q0
2

= 0.0589 . (C.65)

C.3.4 Diagram 5 – tensor

This is the contribution to the tensor charge arising when a scalar diquark absorbs

the tensor probe and is thereby transformed into a 1+ diquark. Naturally, in a
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symmetry preserving treatment of any reasonable interaction, this contribution is

identical to that produced by Diagram 6. Concretely, one has:

δ5qΛ+(p)σµνΛ
+(p)

= N κ
5 Λ+(p) A0

α(−p)
∫

d4ℓ

(2π)4
∆1+

αβ(ℓ+ p)V 10
βµν(ℓ+ p)

× ∆0+

(ℓ+ p)S(−ℓ) S Λ+(p) (C.66)

= −2 N κ
5 Λ+(p) γ5

(

a0
1γα + ia0

2p̂α

)

∫ 1

0

dx

∫ 1

0

dy y

∫

d4ℓ

(2π)4

× [iγ · (−ℓ+ yp) −M ]V 10
βµν(ℓ+ (1 − y)p)

× Pαβ(ℓ+ (1 − y)p) sΛ+(p)[ℓ2 + y(y − 1)m2
N

+ xym2
qq1

+ (1 − x)ym2
qq0

+ (1 − y)M2]−3 . (C.67)

The transition vertex is V 10
βµν(P, P ) where (N̄ = 2)

V 10
βµν(P, P

′) = −2N̄

∫

d4q

(2π)4
tr
{

S(q + P ′)σµνS(q + P )

× Γ0+

qq (P )S(q)Γ̄1+

qqβ(−P ′)
}

(C.68)

= 4iN̄Eqq1

∫ 1

0

dx

∫ 1

0

dy y

∫

d4q

(2π)4

× tr
{

[iγ · (q + yP ′ − xyP ) −M ]σµν

× [iγ · (q − (1 − y)P ′ + (1 − xy)P ) −M ]

× γ5

(

iEqq0
+

1

M
γ · P Fqq0

)

× [iγ · (q − (1 − y)P ′ − xyP ) −M ] γT
β (P ′)

}

×
(

q2 − (1 − x)y(1 − y)m2
qq1

− x(1 − x)y2m2
qq0

+M2
)−3

, (C.69)

where P and P ′ are the incoming and outgoing momenta of the diquarks, respectively.

(Some details about the on-shell procedure can be found in App.D.) Applying the
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δTu δTd g
(0)
T g

(1)
T

Diagram 1 0.581 0 0.581 0.581
Diagram 2 −0.018 −0.036 −0.054 0.018
Diagram 3 0 0 0 0
Diagram 4 0.292 0.059 0.351 0.233
Diagram 5+6 −0.164 −0.164 −0.329 0

Total Result 0.691 −0.141 0.550 0.832

Table C.3. Summary of results computed from all diagrams considered in connection
with the proton’s tensor charge. They represent values at the model scale, ζH ≈ M ,
described in App. E.

projector in Eq. (C.53), evaluating the resulting trace and combining the result with

that from Diagram 6, one finds

δT,5+6u = δT,5+6d = δq5 = −0.164 . (C.70)

C.3.5 Proton tensor charge

The results obtained from all diagrams considered in connection with the proton’s

tensor charges are collected in Table C.3. Notably, the values of the tensor charges de-

pend on the renormalisation scale associated with the tensor vertex. This is discussed

in App. F.

C.3.6 Proton tensor charge – scalar diquark only

It is interesting to consider the impact of the axial-vector diquark on the tensor

charges. This may be exposed by comparing the results in Table C.3 with those

obtained when the axial-vector diquark is eliminated from the nucleon. We implement

that suppression by using the following nucleon Faddeev amplitude:

s(P ) a+
1 (P ) a0

1(P ) a+
2 (P ) a0

2(P )

1.0 0 0 0 0
, (C.71)
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and then repeating the computations in Apps. C.1, C.3. Naturally, in this case only

Diagrams 1 and 3 can possibly yield nonzero contributions to any quantity.

Recomputing the canonical normalisation, we obtain

N6 1 =
1

0.0174
= 57.50 , (C.72)

which is 2% larger than the complete result in Eq. (C.28).

Regarding the tensor charges, Diagram 3 also vanishes in this instance so that the

net result is simply that produced by Diagram 1:

δT6 1u δT6 1d g
(0)
T6 1 g

(1)
T6 1

0.765 0 0.765 0.765
. (C.73)

Comparison with Table C.3 shows that with a symmetry-preserving treatment of a

vector⊗ vector contact interaction, the d-quark contribution to the proton’s tensor

charge is only nonzero in the presence of axial-vector diquark correlations and these

correlations reduce the u-quark contribution by 10%.

C.3.7 Proton tensor charge – Reduced DCSB

In order to expose the effect of DCSB on the tensor charges, we repeated all

relevant calculations above beginning with the value of αIR used to produce Eq. (A.21)

and thereby obtained the results listed in Table C.4.
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δTu δTd g
(0)
T g

(1)
T

Diagram 1 0.495 0 0.495 0.495
Diagram 2 −0.020 −0.039 −0.059 0.020
Diagram 3 0 0 0 0
Diagram 4 0.236 0.047 0.283 0.189
Diagram 5+6 −0.160 −0.160 −0.319 0

Total Result 0.551 −0.151 0.400 0.703

Table C.4. Summary of results computed from all diagrams considered in connection
with the proton’s tensor charge using input based on αIR/π = 0.74, quoted at the
model scale, ζH ≈M , described in App. E.
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APPENDIX D

ON-SHELL CONSIDERATIONS FOR THE TRANSITION

DIAGRAMS

For the practitioner it will likely be helpful here to describe our treatment of

the denominator that arises when using a Feynman parametrisation to compute the

transition diagrams. Namely, one has

1

(q + P ′)2 +M2

1

(q + P )2 +M2

1

q2 +M2

= 2

∫ 1

0

dx

∫ 1

0

dy y{(q + (1 − y)P ′ + xyP )2

+ (1 − y)yP ′2 + xy(1 − xy)P 2

− 2(1 − y)xyP ′ · P +M2}−3 . (D.1)

At this point, a shift of the integration variable q → q − (1 − y)P ′ − xyP yields

2

∫ 1

0

dx

∫ 1

0

dy y{q2 + (1 − y)yP ′2 + xy(1 − xy)P 2

− 2(1 − y)xyP ′ · P +M2}−3 . (D.2)

Next, we employ on-shell relations, which for Diagram 5 are given by

P ′2 = −m2
qq1
, P 2 = −m2

qq0
. (D.3)

Then, since Q2 ≡ (P ′ − P )2 = P ′2 + P 2 − 2P ′ · P = 0:

P ′ · P = −
m2

qq0
+m2

qq1

2
. (D.4)
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Hence, the Feynman integral associated with Diagram 5 is

2

∫ 1

0

dx

∫ 1

0

dy y{q2 − (1 − x)y(1 − y)m2
qq1

− x(1 − x)y2m2
qq0

+M2}−3 . (D.5)

Diagram 6 is obtained via mqq0
↔ mqq1

.
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APPENDIX E

MODEL SCALE

In modern studies of QCD’s gap equation, which use DCSB-improved kernels and

interactions that preserve the one-loop renormalisation group behaviour of QCD, the

dressed-quark mass is renormalisation point invariant. As in QCD, however, the

current-quark mass is not. Therefore, in quoting a current-quark mass in Eq. (A.19),

a question immediately arises: to which scale, ζH , does this current-quark mass cor-

respond?

As noted in App. A, the contact-interaction does not define a renormalisable theory

and the scale ζH should therefore be part of the definition of the interaction. We define

ζH so as to establish contact between the current-quark mass in Eq. (A.19) and QCD.

Current-quark masses in QCD are typically quoted at a scale of ζ2 = 2 GeV. A

survey of available estimates indicates [181]

m(ζ2) =
mu(ζ2) +md(ζ2)

2
= 3.5+0.7

−0.2 ; (E.1)

and this value compares well with that determined from a compilation of estimates

using numerical simulations of lattice-regularised QCD [236]:

m(ζ2) =
mu(ζ2) +md(ζ2)

2
= 3.4 ± 0.2 . (E.2)

On the other hand, we have determined an average value of the u- and d-quark masses

appropriate to our interaction that is m(ζH) := m = 7 MeV.
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The scale dependence of current-quark masses in QCD is expressed via

m(ζ ′)

m(ζ)
=

[

αs(ζ
′)

αs(ζ)

]γm

, (E.3)

where αs(ζ) is the running coupling and γm = 12/(33 − 2nf ), with nf the number

of active fermion flavours, is the mass anomalous dimension. Plainly, the running

current-quark mass increases as the scale is decreased.

Using the one-loop running coupling, with nf = 4 and ΛQCD = 0.234 GeV [83],

then

m(ζH) ≈ 2m(ζ2) for ζH = 0.39 ± 0.02 GeV ; (E.4)

and thus we have determined the model-scale. Given the arguments in Refs. [207,

262, 213], the outcome ζH ≈ M is both internally consistent and reasonable. (We

use the one-loop expression owing to the simplicity of our framework. Employing

next-to-leading-order (NLO) evolution leads simply to a 25% increase in ζH with no

material phenomenological differences.)
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APPENDIX F

SCALE DEPENDENCE OF THE TENSOR CHARGE

Whilst the values of the tensor charges are gauge- and Poincaré-invariant, they

depend on the renormalisation scale, ζ, employed to compute the dressed inhomoge-

neous tensor vertex

Γµν(k;Q; ζ) = S1(k;Q; ζ)σµν + . . . , (F.1)

at zero total momentum, Q = 0. (k is the relative momentum.) The renormalisation

constant ZT (ζ,Λ) is the factor required as a multiplier for the Bethe-Salpeter equation

inhomogeneity, σµν , in order to achieve S1(k
2 = ζ2;Q = 0; ζ) = 1.

At one-loop order in QCD [263]:

Γµν(k;Q; ζ)
ζ2≫Λ2

QCD

=

[

αS(ζ2
0 )

αS(ζ2)

]ηT

Γµν(k;Q; ζ0) , (F.2)

where ηT = (−1/3)γm. The pointwise behaviour of Γµν(k;Q = 0; ζ) is illustrated in

Ref. [238].

Equation (F.2) entails

δq(ζ)
ζ2≫Λ2

QCD

=

[

αS(ζ2
0 )

αS(ζ2)

]ηT

δq(ζ0) , (F.3)

and hence that δq decreases as ζ increases. It follows, for example and in connection

with our analysis, that

δq(ζ2)

δq(ζH)
= 0.794 ± 0.015 , (F.4)

with ζH drawn from Eq. (E.4).
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APPENDIX G

EUCLIDEAN CONVENTIONS

The standard DSE treatment usually deals with Euclidean spacetime so it will be

worthwhile to explain the conventions here. In our Euclidean formulation:

p · q =
4
∑

i=1

piqi ; (G.1)

{γµ, γν} = 2 δµν ; γ†µ = γµ ; σµν =
i

2
[γµ, γν ] ; (G.2)

tr [γ5γµγνγργσ] = −4 ǫµνρσ , ǫ1234 = 1 . (G.3)

A positive energy spinor satisfies

ū(P, s) (iγ · P +M) = 0 = (iγ · P +M) u(P, s) , (G.4)

where s = ±1
2

is the spin label. The spinor is normalised:

ū(P, s) u(P, s) = 2M , (G.5)

and may be expressed explicitly:

u(P, s) =
√
M − iE







χs

~σ · ~P
M − iE

χs






, (G.6)
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with E = i
√

~P 2 +M2,

χ+ =







1

0






, χ− =







0

1






. (G.7)

For the free-particle spinor, ū(P, s) = u(P, s)†γ4.

The spinor can be used to construct a positive energy projection operator:

Λ+(P ) :=
1

2M

∑

s=±
u(P, s) ū(P, s) =

1

2M
(−iγ · P +M) . (G.8)

A charge-conjugated Bethe-Salpeter amplitude is obtained via

Γ̄(k;P ) = C† Γ(−k;P )TC , (G.9)

where “T” denotes a transposing of all matrix indices and C = γ2γ4 is the charge

conjugation matrix, C† = −C. We note that

C†γT
µ C = −γµ , [C, γ5] = 0 . (G.10)
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APPENDIX H

MATRIX ELEMENTS OF TWO AND FOUR-FERMION

OPERATORS

In this section we present matrix elements of two-fermion operators (u†u and d†d)

and four-fermion operators (u†ud†d) between nucleon states that are involved in the

calculation of the PVDIS distribution functions. For this purpose let us consider two

arbitrary components of proton light-cone wavefunction defined as the following:

|ψα〉 ≡ ǫabc

√
6

∫

[DX3]ψα(1, 2, 3)u†aλ1
(1)u†bλ2

(2)d†cλ3
(3) |0〉

|ψβ〉 ≡ ǫabc

√
6

∫

[DX3]ψβ(1, 2, 3)u†aλ′

1
(1)u†bλ′

2
(2)d†cλ′

3
(3) |0〉 (H.1)

It is straightforward to work out the matrix elements of the four-fermion operator be-

tween these two states (the symbol “1” denotes the four momentum k1 = (x1p
+, ~k1⊥)

which is given by x1 = 1 − xq − xl = 1 − x′q − x′l and ~k1⊥ = −~q⊥ −~l⊥ = −~q′⊥ −~l′⊥.):

〈ψα|u†iρ(q)ui′ρ′(q
′)d†jλ(l)dj′λ′(l′) |ψβ〉 =

32π3

3
(δii′δjj′ − δij′δi′j)δλ3λδλ′

3λ′

√

xqxlx′qx
′
l

δ(xq + xl − x′q − x′l)δ
2(~q⊥ +~l⊥ − ~q′⊥ − ~l′⊥)

∫

dx1d
2 ~k1⊥δ(1 − x1 − xq − xl) ×

δ2(~k1⊥ + ~q⊥ +~l⊥) ×

(δλ1ρδλ2λ′

2
δρ′λ′

1
ψ∗

α(q, 1, l)ψβ(q′, 1, l′) + δλ1λ′

2
δλ2ρδρ′λ′

1
ψ∗

α(1, q, l)ψβ(q′, 1, l′)

+δλ1ρδλ2λ′

1
δρ′λ′

2
ψ∗

α(q, 1, l)ψβ(1, q′, l′) + δλλ′

1
δλ2ρδρ′λ′

2
ψ∗

α(1, q, l)ψβ(1, q′, l′)) (H.2)

and those for two-fermion operators:
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〈ψα| d†jλ(l)dj′λ′(l′) |ψβ〉 =
4

3
xlδ(xl − x′l)δ

2(~l⊥ −~l′⊥)δλ3λδλ′

3λ′δjj′

∫

dx1dx2d
2~k1⊥d

2~k2⊥

δ(1 − x1 − x2 − xl)δ
2(~k1⊥ + ~k2⊥ +~l⊥)(δλ1λ′

1
δλ2λ′

2
ψβ(1, 2, l)

+δλ1λ′

2
δλ2λ′

1
ψβ(2, 1, l))ψ∗

α(1, 2, l) (H.3)

〈ψα|u†jλ(l)uj′λ′(l′) |ψβ〉 =
4

3
xlδ(xl − x′l)δ

2(~l⊥ −~l′⊥)δλ3λ′

3
δjj′

∫

dx1dx2d
2~k1⊥d

2~k2⊥

δ(1 − x1 − x2 − xl)δ
2(~k1⊥ + ~k2⊥ +~l⊥) ×

(δλ1λδλ2λ′

2
δλ′λ′

1
ψ∗

α(l, 1, 2)ψβ(l, 1, 2)

+δλ1λ′

2
δλ2λδλ′λ′

1
ψ∗

α(1, l, 2)ψβ(l, 1, 2)

+δλ1λδλ2λ′

1
δλ′λ′

2
ψ∗

α(l, 1, 2)ψβ(1, l, 2)

+δλ1λ′

1
δλ2λδλ′λ′

2
ψ∗

α(1, l, 2)ψβ(1, l, 2)) (H.4)
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APPENDIX I

COMPLETE FORMULAE FOR VARIOUS QUARK

DISTRIBUTION FUNCTIONS IN TERMS OF PROTON

WAVEFUNCTION AMPLITUDES

In this section we present explicit expressions needed to compute the quark PDFs

and the twist-four distribution function.

The distribution functions Q̃±
p (xB) in Eqs. (6.30) and (6.31) are expressed in terms

of ψ±
lz
(q, l, q′, l′), which have the following expressions:
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ψ+
lz=0(q, l, q

′, l′) = 2ψ(1,2)∗(q, 1, l)ψ(1,2)(q′, 1, l′) (I.1)

ψ−
lz=0(q, l, q

′, l′) = 2{ψ(1,2)∗(1, q, l)ψ(1,2)(1, q′, l′) + ψ(1,2)∗(q, l, 1)ψ(1,2)(q′, l′, 1)

+ψ(1,2)∗(1, l, q)ψ(1,2)(q′, l′, 1) + ψ(1,2)∗(q, l, 1)ψ(1,2)(1, l′, q′)

+ψ(1,2)∗(1, l, q)ψ(1,2)(1, l′, q′)} (I.2)

ψ+
lz=1(q, l, q

′, l′) = 2ψ(3,4)∗(1, q, l)ψ(3,4)(1, q′, l′) (I.3)

ψ−
lz=1(q, l, q

′, l′) = 2{ψ(3,4)∗(q, 1, l)ψ(3,4)(q′, 1, l′) + ψ(3,4)∗(l, q, 1)ψ(3,4)(l′, q′, 1)

+ψ(3,4)∗(l, 1, q)ψ(3,4)(l′, q′, 1) + ψ(3,4)∗(l, q, 1)ψ(3,4)(l′, 1, q′)

+ψ(3,4)∗(l, 1, q)ψ(3,4)(l′, 1, q′)} (I.4)

ψ+
lz=−1(q, l, q

′, l′) = 2{ψ(5,5)∗(q, 1, l)ψ(5,5)(q′, 1, l′) + ψ(5,5)∗(1, q, l)ψ(5,5)(q′, 1, l′)

+ψ(5,5)∗(q, 1, l)ψ(5,5)(1, q′, l′)

+ψ(5,5)∗(1, q, l)ψ(5,5)(1, q′, l′)} (I.5)

ψ−
lz=−1(q, l, q

′, l′) = 0 (I.6)

ψ+
lz=2(q, l, q

′, l′) = 2{ψ(6,6)∗(q, 1, l)ψ(6,6)(q′, 1, l′) + ψ(6,6)∗(1, q, l)ψ(6,6)(q′, 1, l′)

+ψ(6,6)∗(q, 1, l)ψ(6,6)(1, q′, l′)

+ψ(6,6)∗(1, q, l)ψ(6,6)(1, q′, l′)} (I.7)

ψ−
lz=2(q, l, q

′, l′) = 0 (I.8)

The definitions of ψ(i,j) are the following:

ψ(1,2)(1, 2, 3) = ψ(1)(1, 2, 3) + i(kx
1k

y
2 − ky

1k
x
2 )ψ(2)(1, 2, 3)

ψ(3,4)(1, 2, 3) = k+
1⊥ψ

(3)(1, 2, 3) + k+
2⊥ψ

(4)(1, 2, 3)

ψ(5,5)(1, 2, 3) = −k−2⊥ψ(5)(1, 2, 3) + k−3⊥ψ
(5)(1, 3, 2)

ψ(6,6)(1, 2, 3) = k+
1⊥(k+

2⊥ψ
(6)(1, 3, 2) − k+

3⊥ψ
(6)(1, 2, 3)) (I.9)
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On the other hand, the quark distribution functions in (6.28) are given in terms

of Alz(q, 1, 2), which look like the following:

Alz=0(q, 1, 2) = ψ(1,2)∗(q, 1, 2)ψ(1,2)(q, 1, 2) + 2ψ(1,2)∗(1, q, 2)ψ(1,2)(1, q, 2)

+ψ(1,2)∗(q, 2, 1)ψ(1,2)(q, 2, 1) + ψ(1,2)∗(1, 2, q)ψ(1,2)(q, 2, 1)

+ψ(1,2)∗(q, 2, 1)ψ(1,2)(1, 2, q) + 2ψ(1,2)∗(1, 2, q)ψ(1,2)(1, 2, q)

+ψ(1,2)∗(1, q, 2)ψ(1,2)(2, q, 1) (I.10)

Alz=1(q, 1, 2) = 2ψ(3,4)∗(q, 1, 2)ψ(3,4)(q, 1, 2) + ψ(3,4)∗(1, q, 2)ψ(3,4)(1, q, 2)

+ψ(3,4)∗(2, q, 1)ψ(3,4)(2, q, 1) + ψ(3,4)∗(2, 1, q)ψ(3,4)(2, q, 1)

+ψ(3,4)∗(2, q, 1)ψ(3,4)(2, 1, q) + ψ(3,4)∗(2, 1, q)ψ(3,4)(2, 1, q)

+ψ(3,4)∗(1, 2, q)ψ(3,4)(1, 2, q)

+ψ(3,4)∗(q, 1, 2)ψ(3,4)(q, 2, 1) (I.11)

Alz=−1(q, 1, 2) = ψ(5,5)∗(q, 1, 2)ψ(5,5)(q, 1, 2) + ψ(5,5)∗(1, q, 2)ψ(5,5)(q, 1, 2)

+ψ(5,5)∗(q, 1, 2)ψ(5,5)(1, q, 2) + ψ(5,5)∗(1, q, 2)ψ(5,5)(1, q, 2)

+ψ(5,5)∗(1, 2, q)ψ(5,5)(1, 2, q)

+ψ(5,5)∗(1, 2, q)ψ(5,5)(2, 1, q) (I.12)

Alz=2(q, 1, 2) = ψ(6,6)∗(q, 1, 2)ψ(6,6)(q, 1, 2) + ψ(6,6)∗(1, q, 2)ψ(6,6)(q, 1, 2)

+ψ(6,6)∗(q, 1, 2)ψ(6,6)(1, q, 2) + ψ(6,6)∗(1, q, 2)ψ(6,6)(1, q, 2)

+ψ(6,6)∗(1, 2, q)ψ(6,6)(1, 2, q)

+ψ(6,6)∗(1, 2, q)ψ(6,6)(2, 1, q) (I.13)
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with q = (xBp
+, ~q⊥), x2 = 1 − xB − x1 and ~k2⊥ = −~q⊥ − ~k1⊥.
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APPENDIX J

VANISHING ONE-LOOP DIAGRAMS IN THE

CALCULATIONS OF SM NUCLEON EDM

Here I will show that all 1-loop diagrams, other than those in Fig. 5.1, do not

give rise to the CKM-induced SM nucleon EDM, at least at leading order in the

HB-expansion.

All other possible 1-loop diagrams beside those I have calculated are summarized

in Fig. J.1. Since the weak Lagrangian used in my work does not involve covariant

derivatives of baryon fields, any baryon-photon coupling term has to arise from the

ordinary P and T-conserving Lagrangian.

For Fig. 4(a), the photon vertex must arise from Dirac coupling since an MDM

coupling is suppressed by (1/mN)2 as pointed out in [185]. Since the Dirac coupling

is independent of the photon momentum q, one can define loop momenta in a way

such that the dependence of q only appears in the baryon propagator. However, using

the on-shell condition v · q = 0, the baryon propagator is actually q-independent and

therefore so is the whole diagram. As a result, Fig. 4(a) cannot generate an EDM

that is linear in q.

For Fig. 4(b), at leading order in the HB-expansion the BB′φγ vertex is propor-

tional to Sµ, so it cannot generate an EDM because the latter is proportional to vµ

which is perpendicular to Sµ.

For Fig. 4(c), first I note that the BB′φφ′ vertex cannot come from the D or

F -term of the ordinary chiral Lagrangian because that would violate parity. There-

fore it can only come from L (s)
w . In this case, it can only be parity-conserving and
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Figure J.1. 1-loop diagrams that vanish at LO HBchPT. The weak vertices could
be placed at any allowed position and therefore are not explicitly shown.

time reversal-conserving (PCTC), or parity-conserving and time reversal-violating

(PCTV). So in order to get an EDM which is PVTV, one needs to place another

PVTC or PVTV vertex in some other part of the diagram. This cannot be done

because all φφ′ and φφ′γ operators I have are parity-conserving.

For Fig. 4(d), one could generate an EDM by coupling the resulting complex

mass term of the baryon to its MDM. But again this contribution is suppressed by

(1/mN)2 and should be discarded at leading order in the HB-expansion.
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[214] L. Chang, I. C. Cloët, C. D. Roberts, S. M. Schmidt and P. C. Tandy, Phys.
Rev. Lett. 111, 141802 (2013).

[215] C. Shi et al., Phys. Lett. B 738, 512 (2014).

[216] C. Chen et al., Phys. Rev. C 87, 045207 (2013).

[217] M. Pitschmann et al., Phys. Rev. C 87, 015205 (2013).

[218] K.-L. Wang, Y.-X. Liu, L. Chang, C. D. Roberts and S. M. Schmidt, Phys.
Rev. D 87, 074038 (2013).

[219] J. Segovia, C. Chen, C. D. Roberts and S. Wan, Phys. Rev. C 88, 032201(R)
(2013).

[220] J. Segovia et al., Few Body Syst. 55, 1 (2014).

[221] C. D. Roberts, M. S. Bhagwat, A. Höll and S. V. Wright, Eur. Phys. J. ST
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