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ABSTRACT

HADRON PHYSICS IN TESTS OF FUNDAMENTAL
SYMMETRIES

MAY 2016

CHIEN YEAH SENG
B.Sc., TSINGHUA UNIVERSITY
M.P.H., HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Michael J. Ramsey-Musolf

Low energy precision tests of fundamental symmetries provide excellent probes
for the Beyond Standard Model Physics. Theoretical interpretations of these exper-
iments often involve the application of non-perturbative Quantum Chromodynamics
in the study of hadronic matrix elements that may either serve as signals of new
physics or Standard Model backgrounds. In this work I present a series of studies on
different hadronic matrix elements using various low-energy effective approaches to
Quantum Chromodynamics, and discuss the impact of these studies on our knowledge

of Standard Model and Beyond Standard Model physics.
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INTRODUCTION

Searches for Beyond Standard Model (BSM) physics are usually classified into
three categories, namely the energy frontier, the precision frontier and the cosmic
frontier. The energy frontier generally involves collision of particle beams which are
energetic enough to create new states of matter. Countless achievements have been
made at this frontier and are impossible to be summarized in a few pages. Among
them are the discovery of the W and Z boson [1, 2|, the charm [3, 4], bottom [5]
and top quark [6, 7] and most recently the Higgs-like scalar [8, 9]. On the other
hand, researches at the cosmic frontier involve studies of large scale structures of
the universe. In fact it is fair to say that most of the evidences that point towards
the existence of a BSM theory come from observations at this frontier. Examples
include the discovery of the solar neutrino deficit that gave the first hint for neutrino
oscillation [10, 11], the study of galaxy rotation curves [12, 13] and the gravitational
lensing of Bullet Clusters that provide proofs for the existence of dark matter [14]
and the study of the Cosmic Microwave Background (CMB) together with large scale
structure measurements which reconfirms the matter-antimatter asymmetry in cosmic
scale [15, 16] in addition to our daily experience.

In this work, we will however concentrate on the third frontier, namely the pre-
cision frontier. Complementary to the two frontiers above, researches carried out at
the precision frontier involve measuring physical quantities to a very high precision
and comparing theoretical predictions with experimental measurements. A typical
example is the measurement of the anomalous magnetic dipole moment (AMDM) of

the electron to one part in a trillion [17] which agrees with the prediction of Quantum



Electrodynamics (QED) [18], showing that the theory works with high accuracy. Be-
side that, the study of the left-right asymmetry in the electron-deuteron deep inelastic
scattering (DIS) provided the value of the weak mixing angle 6,, in Standard Model
(SM)[19]. The measurement of Z-mass and width gave a range of possible Higgs mass
even before the direct measurement from LHC [20]. Recently, the anomaly in the
muon g — 2 experiment provides interesting but not yet definite signal for the possible
existence of BSM physics [21].

Among all experiments at the precision frontier, tests for fundamental symmetries
are of particular interest for us. Symmetry is one of the basic ingredients of the
quantum field theory (QFT) which is believed to be the correct language to describe
the microscopic world. There are discrete symmetries such as charge conjugation (C),
parity (P), time reversal (T) and also continuous symmetries such as the invariance of
the theory under global and local phase transformations which lead to conservation
laws such as the charge conservation. The study of how fundamental symmetries
are conserved or broken in basic laws of nature is a persistent theme in modern
physics. The first definite sign for the violation of a particular discrete symmetry,
namely parity, was observed by Wu and her company in the $-decay of °Co[22]. This
observation was an essential input in the formulation of the charged weak interaction
theory in terms of left-handed fermions. It was found later through neutral kaon
decays that even CP is violated in the weak interaction [23] due to the existence of
the complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix [24]. Tests of
conservation laws also play crucial roles in the search of BSM physics. As an example,
the experimental confirmation of neutrino oscillation proved that lepton flavors are not
conserved and unavoidably pointed us to the need of a BSM explanation [25, 26, 27].
Besides, many BSM scenarios predict large violation of discrete symmetries such as

C and CP-violation which could be tested in low energy precision experiments.



Since there are many possible candidates for the BSM theory, it may sound compli-
cated if we have to study each of them separately. One could therefore take another
approach (namely the “bottom-up approach”) following the language of Effective
Field Theory (EFT) [28]. In this approach the only assumption is that the new de-
grees of freedom (DOFs) in the BSM physics are heavy and can be integrated out
to produce higher-dimensional effective operators consist of SM DOFs. As a result,
one just need to write down the most general Lagrangian consists of all SM DOFs
and respects the SM gauge invariance. There is an infinite tower of operators satis-
fying these two criteria, but operators with higher dimensions are more suppressed
by inverse powers of the energy scale of the unknown BSM physics. Therefore, to
achieve a level of finite precision one only needs to retain a finite number of opera-
tors. To such extent the effective theory is still predictive despite the fact that it is
non-renormalizable in the conventional sense. There is only one dimension-5 operator
that respects SM gauge symmetry and it gives the Majorana mass term for neutri-
nos. In dimension 6 there are 59 operators (barring flavor structures and Hermitian
conjugations) that respect SM gauge symmetry and conserve baryon number [29].

Currently we do not find any significant deviation from SM so precision tests of
fundamental symmetries are placing bounds on the Wilson coefficients of the effec-
tive operators. However, once our experiment is precise enough to discover a finite
deviation from the SM prediction, then we immediately face the problem of which
linear combination of operators is responsible for the observed result. It is there-
fore necessary to perform symmetry tests in different particle systems to disentangle
contributions from different operators. Note that apart for elementary particles such
as electron, systems at which precision experiments are performed are usually low-
energy bound states of the strong interaction. We must be able to accurately evaluate
matrix elements of the effective operators with respect to these bound states in or-

der to draw accurate bounds on the Wilson Coefficients of these operators from our



results of precision experiments. However, when we try to proceed in this direction
we immediately run into the difficulty in performing analytic calculations involving
bound states of the strong interaction from first principle.

Quantum Chromodynamics (QCD) is a gauge theory that describes the strong
interaction between quarks through the exchange of gluons which are SU(3), gauge
bosons. Even though there are many evidences that it is indeed the correct the-
ory of the strong interaction, only very limited analytical results using perturbation
theory at high energy can be derived from first principle, thank to its asymptotically-
free behavior at high energy [30, 31]. On the other hand, the theory becomes non-
perturbative at energy < 1 GeV so the conventional perturbation theory based on the
expansion in powers of the strong coupling constant oy fails. Some very interesting
emergent features of theory in this energy regime such as confinement and dynamical
chiral symmetry breaking (DCSB) are still not well understood. Although lattice
QCD [32] provides a promising way to extract numerical results from first principle
calculations, but it is subject to numerous technical difficulties and therefore has a
limited range of application. Furthermore, not just satisfied by just obtaining numeri-
cal answers, we need a more intuitive understanding of how low-energy QCD behaves.
For the latter purpose and also practical reasons, many effective approaches to low
energy QCD are formulated that allow studies of hadronic or nuclear properties, and
each of them tries to capture some known behaviors of the original theory such as
confinement and chiral symmetry breaking. Among them are the Chiral Perturbation
Theory (ChPT), constituent quark model, Regge Theory, Dyson-Schwinger Equation
(DSE), QCD sum rules and others.

We have two main tasks in this work. On the one hand, we will introduce a number
of effective approaches to QCD which allow us to perform analytical and numerical
studies of both static and dynamical properties of hadrons. On the other hand, we will

apply these effective approaches in the calculation of hadronic matrix elements and the



determination of specific SM backgrounds that enter various precision experiments in
tests of fundamental symmetries. In particular, we will concentrate on EDM searches
in hadrons, precision experiments involving the neutron [-decay and the study of

P-violation in the electron-deuteron parity-violating deep inelastic scattering (e-D

PVDIS).

EDMs And Hadronic Matrix Elements

Ever since the discovery of P-violation in the weak interaction, people are puzzled
by the fact that discrete symmetries such as P and CP are violated only in the weak
interaction and not in other interactions. Various experiments have been carried out
to test the conservation of these discrete symmetries in strong and electromagnetic
sector. Back in the 50s, Smith, Purcell and Ramsey had suggested the test of P-
invariance in the strong interaction by searching for intrinsic electric dipole moment
(EDM) of the neutron [33]. Since then, experimental techniques have improved much
and searches of permanent EDMs in different particle systems have been carried out
but so far all of them have returned null results. This raised another interesting
question known as the strong CP-problem, namely: due to the non-trivial vacuum
structure of QCD, one can write down a term in the Lagrangian which is P and CP-
violating and is characterized by the parameter §. In general there is no constraint
on the value of # by the theory itself so it could be of order one by naturalness.
However, the (so-far) vanishing of EDMs in all hadronic systems indicates that the
value of  has to be fine-tuned to an extremely small number, which makes the whole
theory seems unnatural. There have been several proposed solution to this problem.
Among them are the massless up quark solution [34], the Peccei-Quinn symmetry [35]
and the Nelson-Barr mechanism [36, 37| but so far none of them seems completely

satisfactory.



| Particle | Current upper bound on EDM (e cm) |

e 8.7 x 107%
Hg 31x 10 %
p 7.9 x 1072
n 2.9 x 10726

Table I.1. Examples of current upper bounds on EDM of particles

Apart from mere curiosity, searches of permanent EDMs are also essential in the
understanding of the baryon asymmetry of the universe (BAU). According to the
three Sakharov criteria, a necessary condition for the BAU to occur is the existence
of C and CP-violating interactions [38]. It is well-known that the amount of CP-
violation provided by the CKM matrix in SM is too small to explain the amount of
asymmetry we observed [39, 40], so BSM theories with extra sources of CP-violation
are very much desired. These theories are usually subject to constraints from low
energy precision measurements such as EDM searches. In this sense, EDM searches
provide very sensitive probes to BSM theories which are relevant to the understanding
of baryogenesis, namely the mechanism which is responsible for the generation of the

current BAU.

Table I.1 gives examples of current upper bounds on EDMs for some representative
particles (more about the current and future experimental status of EDM searches
will be described in the following chapters). In terms of EFT, if we restrict ourselves
to the first generation of quarks and leptons, then there are altogether 13 operators
which are CP-odd and with dimension less than or equal to 6. They could induce
CP-violating observables such as EDMs at low energy systems therefore the search of
EDMs in hadronic and nuclear systems is a very efficient way to constrain the Wilson
coefficients of these operators. However, in order to construct a precise formula which

links the Wilson coefficients of the 13 operators to the EDMs we probe at hadronic



systems we must be able to reduce the theoretical uncertainty in the calculation of
relevant hadronic matrix elements.

In this work we will present several case studies on EDMs induced by BSM physics
in different hadronic systems. First we will work with the p-meson which is the
simplest possible hadron that could possess an EDM. The aim of this work is to
find a single framework that can deal with the hadronic matrix elements of different
sources of CP-violation in a unified and coherent manner. We will show that the
Dyson-Schwinger Equation is good choice for this purpose. Within the framework
of DSE we will compute the p-EDM induced by the quark EDM, the quark chromo-
EDM, the QCD 6-term and the four quark operator (which covers most operators
of P and CP-violation up to dimension 6). This work shall serve as a prototype for
future studies of more realistic systems such as nucleon within the same theoretical
framework.

On the other hand, it is known that a significant amount of BSM-induced nucleon
EDM enters in the form of long-distance contribution, namely the contribution via
effective P and CP-odd pion-nucleon couplings. Chiral Perturbation Theory provides
a model-independent description of the properties of QCD in this regime as it is
simply the most general theory at low energy which is consistent with the exact
and approximate symmetries of QCD. With the aid of ChPT we will perform an
investigation on the pion loop correction to the nucleon EDM induced by the P and
T-odd pion-nucleon coupling gSZ’.

Finally, we would like to mention that although it is commonly understood that
SM-induced EDMs are too small to be observed with the current experimental preci-
sion, it is still worth a detailed study since the complex phase in the CKM matrix is
currently the only experimentally-confirmed source of CP-violation in nature. For this
purpose we will also present an updated work on the SM-induced nucleon EDM. We

will show that previous studies on this topic were based on a flawed effective theory



of hadrons that does not posses a valid expansion scheme at low energy. Also, their
results face large uncertainties due to poorly known physical constants in the weak
sector at that time. Our updated study will try to fix these two problems and obtain

a better determination of the nucleon EDM with a smaller theoretical uncertainty.

Scalar And Tensor Charges In The Neutron S-Decay

The (-decay of nuclei became an excellent playground for the test of fundamental
symmetries since the discovery of parity violation in the 3-decay of ®°Co which led
eventually to the V-A structure of the charged weak interaction. Recently nuclear
(-decays have been studied extensively for the purpose of BSM searches [41]. In
the language of EFT, the most general effective Lagrangian without derivatives that

triggers the nuclear f-decay can be parameterized as [42]

4G Vg _ ~
Lg=— NG Z alﬁeaF'yyeunydg + h.c. (1)

B,y

Here o, 3 = L, R denote the chirality of fermions while v = S, V, T labels the Dirac
structure of I' which can be either scalar, vector or tensor.
If we concentrate on the (3-decay of neutron, then the differential width of this

process can be parameterized as [43]

ar
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In particular, any non-zero value of the coefficient D will be a signature of T-violation
(which implies CP-violation assuming that CPT is a good symmetry) in the neutron
[-decay. The current best experimental determination of the neutron D-coefficient
is given by D = (—0.96 £ 1.89 4= 1.01) x 10~* which is consistent with zero [44].
Effects of T-violation in many BSM scenarios can therefore be tested by more precise

experimental determination of the D-coefficient.



In terms of the parametrization in Eq. (1), the value of D is related to the
imaginary part of alﬁ which depends on the specific BSM realization. However the
application of Eq. (1) in the computation of the neutron D-coefficient given in Eq.
(2) requires the evaluation of the hadronic matrix element (p|u,I""dg|n) at small
momentum transfer. When v = V', the relevant matrix elements are called the vector
(9v) and axial (g4) charges. They can be determined quite precisely by experiment.
On the other hand, when v = S or T' the corresponding hadronic matrix elements
are called scalar (gg) and tensor (gr) charges respectively. The current experimental
values of these charges suffer from very large uncertainty [45] so theoretical modelings
are needed.

We will present a calculation of the nucleon scalar and tensor charges using the
Dyson-Schwinger Equation formalism with a simplified vector-like interaction be-
tween quarks. This simplified model has been shown to give identical results with
more sophisticated truncation schemes of DSE when dealing with static behaviors of
hadrons. The application of this formalism allows us to compute hadronic matrix
elements using the conventional Feynman diagram approach with dressed propaga-
tors and vertices while only very little amount of numerical calculation is required.
In particular, we will show that the inclusion of an axial-like diquark correlation in
the nucleon is essential to reproduce a nucleon tensor charge that falls within current
range of uncertainty of the current experiment. This work therefore contributes to
both the search of BSM physics and also the understanding of quark correlations in

the nucleon.

Higher-Twist Correction And The Study of Nucleon Spin In

Parity-Violating Deep Inelastic Scattering
A good way to study the parity violation in the weak interaction is to perform

deep inelastic scattering between on the deuteron target with longitudinally-polarized



electrons. The left-right symmetry Ag;, of this process is defined as:

. dO’R—dO'L

RL = dog + doy,

(3)

where dopr is the differential cross section of the process with right (left)-handed
electron. If one neglects sea quark effects and assume charge symmetry, then it turns
out that the leading-order SM prediction to Agy, is completely free from any influence
from the low energy QCD. It thus provides an accurate measure to the weak mixing
angle #y of the electroweak theory.

The 12GeV upgrade of the Jefferson Lab and the usage of the SoLID spectrometer
enable a 0.5% precision measurement of Agy, in the e-D PVDIS over a broad range of
kinematics [46]. A precise measurement of Ap; and the search of its deviation from
the SM-prediction provide sensitive probes or constraints for many BSM scenarios.
However, at this level of precision many SM background effects have to be appro-
priately taken into account in order to disentangle them from BSM signals. Among
them is the “higher-twist” effect which originated from QCD interactions between
partons. It will add corrections that scale as inverse powers of ¢* on top of the free
parton picture where ¢ is the momentum change of the electron.

Previous studies of the higher-twist effects made use of effective quark models that
assume isotropic (polar-)angular distribution of quarks in the nucleon. Examples of
them are the QCD bag model [47] and the isotropic light-cone wavefunctions [48]. In
our work, we would like to find out how things may change if a particular component
of the parton angular momentum which, with a specific choice of gauge, can be inter-
preted as the orbital angular momentum of the quarks in the nucleon, is taken into
account. This is motivated by the yet unsolved problem about how one could decom-
pose the spin of a nucleon in terms of different components of angular momentum of
quarks and gluons. We will show in this work that, apart from resolving one of the

many SM backgrounds to the search of BSM physics in e-D PVDIS, the study of the
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higher-twist matrix element is interesting by itself as it sheds new lights on the study

of the rule of angular momentum in the structure of the nucleon.

The Arrangement Of The Contents

The contents of this thesis are arranged as follows: in Chapter 1 I will provide
a brief introduction to the Dyson-Schwinger Equation and describe the “contact-
interaction” approximation and apply the DSE formalism to compute the EDM of the
p-meson induced by various CP-violating effective operators. In Chapter 2 I apply the
same formalism in the calculation of the scalar and tensor charges of the nucleon. In
Chapter 3 I will introduce some essential concepts of the Chiral Perturbation Theory
and its heavy baryon reduction. In Chapter 4 I apply the two-flavor ChPT to compute
the nucleon EDM induced by the P,T-odd pion-nucleon coupling. In Chapter 5 I will
apply the three-flavor ChPT to study the SM-induced nucleon EDMs. In Chapter 6
I study the higher-twist correction to the e-D PVDIS and draw connections with the
nucleon spin problem. In the last chapter I will present some general discussions and

draw my conclusions.

11



CHAPTER 1
ELECTRIC DIPOLE MOMENT OF THE p-MESON

1.1 Introduction

The action for any local quantum field theory is invariant under the transformation
generated by the antiunitary operator C'PT', which is the product of the inversions:
C, charge conjugation; P, parity transformation; and 7', time reversal. The combined
CPT transformation provides a rigorous correspondence between particles and an-
tiparticles, and it relates the S matrix for any given process to its inverse, where all
spins are flipped and the particles replaced by their antiparticles. Lorentz and C'PT
symmetry together have many consequences, amongst them, that the mass and total
width of any particle are identical to those of its antiparticle.

It is within this context that the search for the intrinsic electric dipole moment
(EDM) of an elementary or composite but fundamental particle has held the fasci-
nation of physicists for over sixty years [49]. Its existence indicates the simultaneous
violation of parity- and time-reversal-invariance in the theory that describes the par-
ticle’s structure and interactions; and the violation of P- and T-invariance entails
that C'P symmetry is also broken. This last is critical for our existence because
we represent a macroscopic excess of matter over antimatter. As first observed by
Sakharov [38], in order for a theory to explain an excess of baryon matter, it must

include processes that change baryon number, and break C- and CP-symmetries;

YReprinted article with permission from M. Pitschmann, C. Y. Seng, M. J. Ramsey-Musolf,
C. D. Roberts, S. M. Schmidt and D. J. Wilson, Phys. Rev. C 87 (2013) no.1, 015205, Copyright
(2013) by the American Physical Society. DOI: http://dx.doi.org/10.1103/PhysRevC.87.015205
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and the relevant processes must have taken place out of equilibrium, otherwise they
would merely have balanced matter and antimatter. (Alternately, the presence of
CPT violation can circumvent the out-of-equilibrium environment.)

The electroweak component of the Standard Model (SM) is capable of satisfying
Sakharov’s conditions, owing to the existence of a complex phase in the 3 x 3-CKM
matrix which enables processes that mix all three quark generations. However, this
high-order process is too weak to explain the observed matter-antimatter asymmetry
[50, 51, 52]. Hence, it is widely expected that any description of baryogenesis will
require new sources of CP violation beyond the SM. This presents little difficulty,
however, because extensions of the SM typically possess C'P-violating interactions,
whose parameters must, in fact, be tuned to small values in order to avoid conflict
with known bounds on the size of such EDMs [52, 53, 54, 55, 56]. (For recent analyses,
see, e.g., Refs. [57, 58, 59] and references therein.)

The question here is how such bounds should be imposed. That is not a problem
for elementary particles, like the electron. However, it is a challenge when the SM
extension produces an operator involving current-quarks and/or gluons. In that case
the C'P violation is expressed as an hadronic property and one must have at hand a
nonperturbative method with which to compute the impact of C'P-violating features
of partonic quarks and gluons on the hadronic composite.

To elucidate, extensions of the SM are typically active at some large but unspeci-
fied energy-scale, A, and their effect at an hadronic scale is expressed in a low-energy

effective Lagrangian:

Log ~ Y K OfPAE, (1.1)
7.k

where Oj(-k) are composite C'P-odd local operators of dimension k£ > 4 and {Kj}
are dimensionless strength parameters, which monitor the size of the model’'s C'P-
violating phases and commonly evolve logarithmically with the energy scale. The

calculation of an hadronic EDM therefore proceeds in two steps. The first, easier,
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part requires calculation of the coefficients { K;} in a given model. This involves the
systematic elimination of degrees-of-freedom that are irrelevant at energy-scales less
than A. The second, far more challenging exercise, is the nonperturbative problem of
translating the current-quark-level interaction in Eq. (1.1) into observable properties
of hadrons.

We illustrate the procedure in the case of the p-meson. Not that there is any hope
of measuring a p-meson EDM but because the nonperturbative methods necessary
can most readily be illustrated in the case of systems defined by two valence-quark
degrees-of-freedom. In taking this path, we follow other authors [60, 61, 62] but
will nonetheless expose novel insights, especially because we consider more operator
structures than have previously been considered within a single unifying framework.
It is worth remarking here that particles with spin also possess a magnetic dipole
moment. That moment is aligned with the particle’s spin because it is the only
vector available. The same is true of the expectation value of any electric dipole
moment.

Herein we shall estimate the contribution of some dimension four, five and six op-

erators to the EDM of the pT-meson; viz., the impact on the p of the local Lagrangian

density
g ~ 0
L = =il 5 GLGh =5 > da@750a P
q=u,d
1) o« K.
_ Z d q 5" V50wq 9sGy, + e i€ jik [Q]d Qrysu + h. c] (1.2)

where: latin superscripts represent colour; g, is the strong coupling constant; £}, and
G, are photon and gluon field-strength tensors, respectively, and GZV = (1/2)€unrnGS
{Q;|i = 1,2} = {uy,d.}, with the subscript indicating left-handed;  is QCD’s effec-
tive f-parameter, which combines 0qcp and the unknown phase of the current-quark-

mass matrix; and {d,}, {d,} are quark EDMs and chromo-EDMs, respectively.
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We note that Eq. (1.2) is expressed at a renormalisation scale ( ~ 2 GeV, which
is far below that of electroweak symmetry breaking but still within the domain upon
which perturbative QCD is applicable. Moreover, we have chosen to include just
one dimension-six operator in the Lagrangian; i.e., a particular type of four-fermion
interaction. There is a host of dimension-six operators, Weinberg’s CP-odd three-
gluon vertex amongst them [63]. However, for our illustrative purpose, nothing is lost
by omitting them because the potency of the one operator we do consider can serve
as an indication of the strength with which each might contribute.

One merit of our analysis of the contribution from Eq. (1.2) to the EDM of the
pT-meson is the connection of these EDM responses with values of a vast array of
hadron observables that are all computed within precisely the same framework using
exactly the same parameters [64, 65, 66, 67, 68, 69]. We explain this framework in
Sec. 1.2. In addition to providing the first such comprehensive treatment, our study is
novel in considering the impact of a dimension-six operator on the p™-meson’s EDM.

We introduce the p-meson electromagnetic form factors in Sec.1.3. The effects
of Eq.(1.2) on the p-meson bound-state are analysed in Sec.1.4. Each interaction
term is considered separately, so that we present a raft of algebraic formulae that
are readily combined, evaluated and interpreted. Numerical results are provided in

Sec. 1.5 and placed in context with previous studies. Section 1.6 is an epilogue.

1.2 p-meson as a Bound State
1.2.1 p-v Vertex
The pt-meson is a composite particle and thus its EDM appears in the dressed

vertex that describes its coupling with the photon; viz.,
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_iga’ﬁ’,uUQU@(q2)} ?g:ﬂ(p/) ) (13)

where: p, is the momentum of the incoming p-meson; pj;, that of the outgoing p;

qu = P, — Pu; and
Pals
p2

BT(p) = g — L2227 (L4)

The vertex involves four scalar form factors whose ¢> = 0 values are understood as
follows: ‘E(0), electric charge, which is “1” in this case; M (0), magnetic moment,
,, in units of e/[2m,], where e is the magnitude of the electron charge; Q(0) =
(Q/mi)(Qp + 11, — 1), with @), the meson’s electric quadrupole moment; and 2D(0) is

the meson’s electric dipole moment, in units of e/[2m,)].

1.2.2 Contact Interaction

Our goal is calculation of the last of these, D(0), and for this we choose to
work within the continuum framework provided by QCD’s Dyson-Schwinger equa-
tions (DSEs) [70, 71, 72]. To be specific, we perform the computation using a
global-symmetry-preserving treatment of a vector x vector contact-interaction because
that has proven to be a reliable explanatory and predictive tool for hadron proper-
ties measured with probe momenta less-than the dressed-quark mass, M ~ 0.4 GeV
(64, 65, 67, 66, 68, 69].

To expand upon the reasons for this choice of interaction we note that DSE kernels
with a closer connection to perturbative QCD; namely, which preserve QCD’s one-
loop renormalisation group behaviour, have long been employed in studies of the
spectrum and interactions of mesons [73, 74, 75]. Such kernels are developed in the
rainbow-ladder approximation, which is the leading-order in a systematic and global-

symmetry-preserving truncation scheme [76, 77]; and their model input is expressed
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via a statement about the nature of the gap equation’s kernel at infrared momenta.
With a single parameter that expresses a confinement length-scale or strength [78,
79], they have successfully described and predicted numerous properties of vector
(79, 80, 81, 82, 83| and pseudoscalar mesons [79, 82, 83, 84, 85, 86, 87] with masses
less than 1GeV, and ground-state baryons [88, 89, 90, 91]. Such kernels are also
reliable for ground-state heavy-heavy mesons [92]. Given that contact-interaction
results for low-energy observables are indistinguishable from those produced by the
most sophisticated interactions, it is sensible to capitalise on the simplicity of the
contact-interaction herein.
The starting point for our study is the dressed-quark propagator, which is obtained
from the gap equation:
4 a a
Sp) =iy p+m+ / (;quylgzDuu(p - Q)%ws(q)%ﬂ(q,p), (1.5)
wherein m is the Lagrangian current-quark mass, D,,, is the vector-boson propagator

and I, is the quark—vector-boson vertex. We use

G Dup — ) = Dol (1.6)

mg
where mg = 0.8 GeV is a gluon mass-scale typical of the one-loop renormalisation-
group-improved interaction introduced in Ref. [83], and the fitted parameter ag /7 =
0.93 is commensurate with contemporary estimates of the zero-momentum value of a
running-coupling in QCD [93, 94]. Equation (1.6) is embedded in a rainbow-ladder

truncation of the DSEs, which is the leading-order in the most widely used, symmetry-

preserving truncation scheme [77]. This means

Iu(pg) = (1.7)
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in Eq. (1.5) and in the subsequent construction of the Bethe-Salpeter kernels. One
may view the interaction in Eq. (1.6) as being inspired by models of the Nambu—Jona-
Lasinio (NJL) type [95]. However, in implementing the interaction as an element in
a rainbow-ladder truncation of the DSEs, our treatment is atypical; e.g., we have a
single, unique coupling parameter, whereas common applications of the NJL. model
have different, tunable strength parameters for each collection of operators that mix
under symmetry transformations.
Using Eqgs. (1.6), (1.7), the gap equation becomes

167 cur dq

S_l(P)Z’W'PerJrTmQG W%S(Q)%, (1.8)

an equation in which the integral possesses a quadratic divergence, even in the chiral
limit. When the divergence is regularised in a Poincaré covariant manner, the solution
is

Sp)t=iv-p+ M, (1.9)

where M is momentum-independent and determined by

4O~/IR o 1
M = M d . 1.10
m 37rm2G/0 T M2 (1.10)

Our regularisation procedure follows Ref. [96]; i.e., we write

1 o 2
- = dr e~ T(s+M?)
s /O re
TiQr
R dr ¢ TEHM) (1.11)
2
ef(s‘i’Mz)Tgv — 67(S+M2)Tj2r
= ST , (1.12)

where 7, are, respectively, infrared and ultraviolet regulators. It is apparent from

Eq. (1.12) that 7, =: 1/A;; finite implements confinement by ensuring the absence of
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quark production thresholds [70, 97]. Since Eq. (1.6) does not define a renormalisable
theory, then A,, := 1/7,, cannot be removed but instead plays a dynamical role,
setting the scale of all dimensioned quantities.

Using Eq. (1.11), the gap equation becomes

dar 2
M=m+M (M 1.1
where
CU(M?) = MPCT(r) (1.14)
= MP[D(=1, M°72) = T(=1, M*7)] (1.15)

with I'(cr, y) the incomplete gamma-function, and, for later use, we define

C(2) = —2(d/dz)C™(2). (1.16)

In rainbow-ladder truncation, with the interaction in Eq. (1.6), the homogeneous

Bethe-Salpeter equation for the colour-singlet p-meson is

167 IR d4q
3 m | (2n)

I0(k; P) = — = Yo Xo (4 P)o (1.17)
where x7(¢; P) = S(q + P)I'(¢; P)S(q) and I',(g; P) is the meson’s Bethe-Salpeter
amplitude. Since the integrand does not depend on the external relative-momentum,
k, then a global-symmetry-preserving regularisation of Eq. (1.17) yields solutions that

are independent of k. With a dependence on the relative momentum forbidden by
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E, E. E, M r/? m, m, fa f
3.639 0481 1.531 0.368 0.243  0.140 0.929 0.101  0.129

Table 1.1. Results obtained with aqr /7 = 0.93 and (in GeV): m = 0.007, Ay, = 0.24,
Ayy = 0.905 [66]. The Bethe-Salpeter amplitudes are canonically normalised; k. is
the in-pion condensate [98, 99, 100]; and f; , are the mesons’ leptonic decay constants.
Empirical values are r, ~ (0.22GeV)? and [101] f, = 0.092GeV, f, = 0.153 GeV.
All dimensioned quantities are listed in GeV.

the interaction, then the rainbow-ladder vector-meson Bethe-Salpeter amplitude takes
the form

I7(P) = »nyp(P), (1.18)

where P,ﬁf =0, 73 + 75 = 7,. We assume isospin symmetry throughout and hence
do not explicitly include the Pauli isospin matrices.

Values of some meson-related quantities, of relevance herein and computed using
the contact-interaction, are reported in Table 1.1. We quote pion properties in order

to provide a broader picture: the pion’s Bethe-Salpeter amplitude is

, 1
[™(P) =5 |i1E.(P) + 7 PF.(P)|. (1.19)
1.3 p-meson Form Factors
At this point we can proceed to computation of the form factors. In order to
ensure a symmetry-preserving treatment, one must calculate the vertex in Eq. (1.3)
at the same level of approximation as used for the dressed-quark propagator and

meson Bethe-Salpeter amplitude; i.e., the generalised impulse approximation:

Fa#ﬁ(p’p/) = quﬁ(p,p/) + Fiuﬁ(pa p/) ) (120)

!Note, too, that we use a Euclidean metric: {v,,7} = 20,.; 'yL = Yui V5 = YaV17273s
. 4 . .
tr[%’yu%%%] = —d€uvpo; Opw = (2/2)[7,“%]; a-b= Zizlaibi; and P, timelike = P2 <0.
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Figure 1.1. Impulse approximation to the p-vy vertex, Eq.(1.21): solid lines —
dressed-quark propagators; and shaded circles, clockwise from top — Bethe-Salpeter
vertex for quark-photon coupling, and Bethe-Salpeter amplitudes for the p™-meson.

d*k i
Fﬁuﬁ(l?,p,) = 2 / @n) TYCD{ZPZJ(IQ —p')S (ki)
KTy, ey ) Sk )iT2 (k q/z;p>s<k__>}, (1.21)
wherein the trace is over colour and spinor indices and k.5 = k + aq/2 + Gp/2. We

illustrate Eq. (1.21) in Fig. 1.1.

In evaluating Eq. (1.20) we write:
Sf:S+5GpSf,f:u,d, (1.22)

where S is given in Eq. (1.9), with the dressed-mass obtained from Eq. (1.10), and the

broken-C'P corrections dgp Sy are detailed below; and the p-amplitude
% =0 Bp(P) + T0%7, (1.23)

with E,(P) explained in connection with Eq. (1.18) and the broken-C'P corrections
ngep explained below. Our computed values for the dressed-quark mass, M, and E,

are listed in Table 1.1.
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The remaining element in Eq. (1.20) is the dressed-quark—photon vertex. We are

only interested in the ¢ = 0 values of the form factors and hence may use

eTu(pr,p2) = eQu+ iDy50, (P2 — 1)y (1.24)

=: ediagfe,I';(p1, p2), —edFi(pl,pg)], (1.25)

where e is the positron charge, Q = diag[e, = 2/3, —eq = 1/3] and D = diag|d,,, —dy],
with d the EDM of a current quark with flavour f. N.B. The second term in Eq. (1.24)
describes the explicit current-quark EDM interaction in Eq. (1.2). In Sec. 1.4 we show
that the other terms in Eq. (1.2) generate additional contributions that interfere with
this explicit term.

Note that both structures in the vertex, Eq.(1.24), are in general multiplied by
momentum-dependent scalar functions. Naturally, the vector Ward-Takahashi iden-
tity ensures that the coefficient of the Q% term is “1” at ¢ = 0. In connection with
the tensor term, one knows from Ref. [66] that a tensor vertex is not dressed in the
rainbow-ladder treatment of the contact interaction. However, with a more sophisti-
cated interaction, strong interaction dressing of the 50, part of the quark-photon
vertex might be significant, given that the dressed-quark-photon vertex certainly pos-
sesses a large dressed-quark anomalous magnetic moment term owing to dynamical
chiral symmetry breaking [102]. At ¢ = 0, this could enhance the strength of the D
term by as much as a factor of ten. If so, then sensitivity to current-quark EDMs is
greatly magnified. It is worth bearing this in mind.

Working with Eq. (1.3), it is sufficient herein to employ three projection operators:

Prs = PlL(p)BuPls(), (1.26a)
0 8 4o’ -0 o' qp P (50(/’3/
Pls = PL.(p) Tg,@(p’)( : e 4 %2 : (1.26h)
q P
1
Po%uﬁ - qufga’(p)ga’ﬁ’uJQU?ﬂjjﬁ(p/), (1260)
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with p’ =p+¢q, P =p+p/, for then

1

E(0) = qhinompo{wrwﬁ, (1.27a)
1

M) = th_I}O 1 P? oL o s (1.27b)

D) = qh?OP L aus (1.27c)

and pu, = M(0)e/[2m,], d, = D(0) e/[2m,]. So long as a global-symmetry-preserving
regularisation scheme is implemented, £(0) = 1; the value of M (0) is then a predic-
tion, which can both be compared with that produced by other authors and serve as
a benchmark for our prediction of D(0).

At this point one has sufficient information to calculate the p-meson’s magnetic

moment. We simplify the denominator in Eq. (1.20) via a Feynman parametrisation:

(2, + 27 (12, + 2 (12 0
1
// dxdy[k2+M2 4[p2—2(1—2x—2y)p-q+q2]
-3
—(1—2y)q-k+(1—2x)p~k} . (1.28)
This appears as part of an expression that is integrated over four-dimensional k-

space. The expression is simplified by a shift in integration variables, which exposes

a denominator of the form 1/[k* + M?J?, with
]\7[2:M2+:c(a:—1)m?)+y(1—x—y)Q2. (1.29)
One thereby arrives at a compound expression that involves one-dimensional inte-

grals of the form in Eq. (1.10), which we regularise via Eq. (1.11) and generalisations

thereof; viz.,
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Figure 1.2. Evolution of p-meson magnetic moment with current-quark mass. m =
170 MeV corresponds to the mass of the s-quark in our treatment of the contact
interaction [69], so the difference between M,(0) and My(0) is just 1%.

5 d s, \ =i

/dsm = —=0 C"w) =: C (w), (1.30a)
s Ld* L . =

/ds P = C; (W) —wC, (w), (1.30¢)

etc. Details for this component of our computation may be found in Ref. [66] and
pursuing it to completion one obtains the magnetic moment listed in Table 1.2.

We depict the evolution of M (0) with current-quark mass in Fig. 1.2: M(0) is
almost independent of m. This outcome matches that obtained in Ref. [81] using a
renormalisation-group-improved one-gluon exchange kernel and hence a momentum-
dependent dressed-quark mass-function of the type possessed by QCD [103, 104, 105,

106]. The behaviour in Fig. 1.2 will serve to benchmark that of the p-meson’s EDM.

1.4 p-meson EDM: Formulae

We now turn to computation of the effect of the interaction terms in Eq. (1.2) on
the p-meson. There are three types of contribution, which arise separately through
modification of: (1) the quark-photon vertex, Eq.(1.24); (2) the p-meson Bethe-

Salpeter amplitude, Eq. (1.23); and (3) the dressed-quark propagator, Eq. (1.22).

24



Figure 1.3. Top — Correction to the quark-photon vertex generated by the four-
fermion operator in Eq. (1.31). The unmodified quark-photon vertex is the left dot,
whereas the right dot locates insertion of Lg. If the internal line represents a circu-
lating d-quark then, owing to the Lg insertion, the external lines are u-quarks, and
vice versa. Middle — Analogous correction to the p-meson Bethe-Salpeter amplitude.
The unmodified amplitude is the left dot, whereas the right dot locates insertion of
Lg. The lower internal line is an incoming d-quark and the upper external line is an
outgoing u-quark. Bottom — Lg-correction to the dressed-quark propagator, with the
dot locating the operator insertion. If the outer line is a u-quark, then the internal
line is a d-quark; and vice versa.

1.4.1 Four-fermion interaction

We begin with the dimension-six operator, which can be written explicitly as

Lg= 22—7152 [ﬂadadb%ub + @5 d*dPu’ — ddulysub — Ja%daﬂbub} , (1.31)

with summation over the repeated colour indices. This operator generates all three

types of modification.
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1.4.1.1 Lg — quark-photon vertex
This contribution is depicted in the top panel of Fig.1.3. Consider first the case
of d-quarks circulating in the loop, then straightforward but careful analysis of the

induced Wick contractions produces the following result:

Y,d K@d d4€
it = i | G ()
I = —PrS({+q)7.S(0)Pr+ PLS({ +q)7.5() Pr, (1.32b)

o= Poa{S(+qnSOP} — Pate{S(C+q),S(OP},  (1.32)

where Pr = (1/2)(1+7;). These right- and left-handed projection operators satisfy
Pr+ P, = I,

Further simplification of the integrand reveals

12 _ gl 2
I° = I1,+1,

1y - q M , ly M
_ 2 1.33
@+@Mﬂﬁwﬁ+Mﬁy%%MwV+MWMwﬂ%’( )

2020, +q,) M

L = (raf FARE IR (1.33h)
so that one may subsequently obtain
d M —iu

/Wlu = (¢ +1i0wq)Vs 6 2/ dz C; (wg), (1.34a)
/ élni £ = o / e T, (1.34p)
/ (%4 . qm;% /0 (1 -2 ). (1.34c)

where w, = z(1 — z)¢*> + M?. Combining the terms, Eq. (1.32a) becomes
ot = e e e+ 2N~ 2010, + ik (139
e O ioans (1.36)
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In the other case, with a u-quark circulating in the loop, one obtains

W 2= ew M —i .
FZL‘S qZO ﬁ—u_clu(Mg)ZJuVQVVS . (]‘37)
Plainly, the net correction to the quark-photon vertex can now be cast in the form

of the second term in Eq. (1.24) and hence is readily expressed in D(0).

1.4.1.2 Lg — Bethe-Salpeter amplitude
This correction is depicted in the middle panel of Fig. 1.3. Each of the four terms

in Eq. (1.31) generates a distinct contribution. That from the first and second are:

Il = —i%NCEp Pr

die .
«tr / G SOPRS(C+ P (1.389)

reh = —iA—?EEp Pg

di ,
X / S+ PRES(OPr. (1.38h)

The third and fourth terms are identical, up to sign-change and the replacement

Pr — Pr; and hence

X d*e
—F
a2 | o)

Irbe — (1" + NI, (1.39)

where the superscript “T” indicates that 7! is here used in the expressions for I'2,

I3.
Now, using the formulae of Sec.1.4.1.1, one arrives at
1
Lo . -{](: MEp —iu
Fg = —ZFW’VE;O'&VPV/O dz Cl (u)p) y (140)
where wp = x(1 — 2)P* + M?, P> = —m?. This is one of the additive corrections to

the Bethe-Salpeter amplitude anticipated in Eq. (1.23).
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1.4.1.3 Lg — quark propagator
The final modification arising from the dimension-six operator is that depicted
in the bottom panel of Fig.1.3. So long as the correction is small, it modifies the

dressed-quark propagator as follows:
S(k) — S(k) + 0,,S(k) = S(k) + S(k)il"**S(k), (1.41)

where, once again, each of the four terms in Eq. (1.31) contributes. Their sum is

s K[ di

[PrS(0)Pr — PLS(0)Py,

T A2 ) (2n)t
+N.Pg tr{S(¢)Pr} — NP, tr{S(()P.}] . (1.42)
Now
M
PrS({)Pr — PLS(0) P = 52—1-—]\/[275
_ %[PR te{S(0) P} — Prte{S(O)PL}], (1.43)

so that with little additional algebra one arrives at

! X M

1.4.2 Quark chromo-EDM

The term in the middle line of Eq. (1.2) also generates all three types of modifi-
cation described in the opening lines of this Section. Notably, owing to dynamical
chiral symmetry breaking, the dressed-quark-gluon coupling possesses a chromomag-
netic moment term that, at infrared momenta, is two orders-of-magnitude larger than
the perturbative estimate [102]. One may reasonably expect similar strong-interaction
dressing of a light-quark’s chromo-EDM interaction with a gluon, in which case sen-

sitivity to the current-quark’s chromo-EDM is very much enhanced.
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Figure 1.4. Correction to the quark-photon vertex generated by the quark chromo-
EDM operator in Eq.(1.2): the incoming and outgoing quark lines have the same
flavour, f. The dot in the left two diagrams locates insertion of Logpas, whilst that
in the rightmost diagram indicates the second term in Eq.(1.24); i.e., the explicit
quark EDM.

1.4.2.1 Lcgpym — quark-photon vertex
This contribution is depicted in Fig.1.4. After a lengthy analysis, in which we

represent the exchanged gluon via Eq.(1.6), the sum of the two leftmost diagrams

produces
1 dsa 1 , _
me — _— 2f IR/ d in _ in 2 o
H Gir mZ Jo I[C (wg) — G (Wq)} Qo Opas

—61 [3(x —1/2)q, —pu} 75} ! dfOZIR/O dx leu(wq)

3 mG
{6[% - 2M2] PuYs — 6[(95 —1/2)w, +22(1 — x)q ~p] Qs
+M[((z = 1/2)q + D) - V] daCans

+Mgaoapys[((x = 1/2)q +p) - 7] } (1.45)

where, again, d ¢ is the chromo-EDM of a quark with flavour f.
As we are interested solely in the EDM, we may consider ¢> = 0, at which value

the result simplifies greatly:

1 dquR iu 2 iu 2 ;
e = e [C(M?) — (M) [150 pata + 3ipus)
! dfO‘IR Co(M?) | M{ } o + 2
: Opa 9o :
5z O Y+ Dy V5O ua ke + 2D - 4G5
+6M2pm] . (1.46)
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Figure 1.5. Correction to the p-meson Bethe-Salpeter amplitude generated by the
quark chromo-EDM operator in Eq.(1.2): the incoming line is a d-quark and the
outgoing line is a u-quark. In each case the dot locates insertion of Logpay.

Plainly, the net correction to the quark-photon vertex from these two diagrams
can now be cast in the form of the second term in Eq. (1.24), which, in fact, is precisely

the rightmost diagram in Fig. 1.4 because ¢ = ps — p1.

1.4.2.2 Lcgpy — Bethe-Salpeter amplitude
This correction is expressed in Fig.1.5. Owing to similarity between the Leg-
uncorrected p-meson amplitude and quark-photon vertex, the results can be read
from those in Sec.1.4.2.1; viz., with czi = ciu + ch,
1 AR

1
o) — Ep/ dz [Ciu(wp) — Cliu(uJP)]
0

Gir m2,
x{ [(dy — 3(x — 1/2)d_) Py — d_pg) 0,575,

+3ic§+pu”y5 ?fa —3d_ M*y#’yg,iPEa }

1 QIR ! —iu ~
_gm_éEp /0 dz C} (wp){?,cz+ [wp — 2M?] 5Py,
—d_(lwp — 2M?)[(x — 1/2)P5 + pg)) ins08, P,
+Mdy[((x = 1/2)P + p) - 7] Psopus By

+MJuPﬁo—Bw5zP§a [((z = 1/2)P +p) -] } (1.47)
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_l_

Figure 1.6. Correction to the dressed-quark propagator generated by the quark
chromo-EDM operator in Eq. (1.2). In each image the dot locates insertion of Logpy.

In computing the vertex in Eq. (1.20) one must employ Fig. 1.5 and also its charge
conjugate, the form of which is obtained from Eq. (1.47) via the interchange d, < dy,

and p — —p, P — —P.

1.4.2.3 Lcgpy — quark propagator
The last modification generated by the chromo-EDM term in Eq. (1.2) is that to

the quark propagator, Fig.1.6. The self-energy insertion is readily evaluated:

.8 .
D50 = d; % DU(M2)ys, (1.48)
G

where

2 2
. ir 2
DV (w) = /dssj_w — /Tgv dTﬁ exp(—Tw), (1.49)

so that, with f = u,d,

1 ~ 8 QIR ~iu

1.4.3 0-term

Owing to a connection between the Higgs mechanism for generating current-quark
masses in the SM and CP violation in the weak interaction, the effect of the 6-term
can completely be expressed through a Us(1) rotation of the current-quark mass-

matrix. We consider the s-quark to be massive and m, = myg, in which case the effect
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of the first term in Eq. (1.2) is expressed simply in a modification of the dressed-quark

propagator:
S(k) ! (1.51)
iy k4 M+ imby; '
mf small 1 1 _

1.4.3.1 Dressed-quark anomalous chromomagnetic moment

In our global-symmetry-preserving rainbow-ladder treatment of the contact in-
teraction, the general form of the p-meson’s Bethe-Salpeter amplitude is given in
Eq. (1.18). The absence of a term o, P, F,(P) is an artefact of the rainbow-ladder
truncation: even using Eq. (1.6), a Bethe-Salpeter amplitude with F,(P) # 0 is ob-
tained in any symmetry-preserving truncation that goes beyond this leading order
[77]. One material consequence of this omission is complete cancellation of all terms
at leading-order in 6, so that the f-term’s contribution to the p-meson’s EDM is
anomalously suppressed in rainbow-ladder truncation. This defect may be amelio-
rated by acknowledging that the dressed-quark-gluon vertex possesses an anomalous
chromomagnetic moment coupling which is enhanced by dynamical chiral symmetry

breaking [102]. We therefore include an effect generated by

acm

acm /"L
Fp (pzapf) = W@w(ﬁf _pi)V7 (153)

where [107] p*™ ~ (=1/4).
In order to explicate the effect we find it convenient to first express collectively the

corrections to the dressed-quark propagator computed above; viz., from Egs. (1.44),

(1.50), (1.52),
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A

S(k) — S(k)—ivs—5—— o M2 , (1.54)
o g(: iu
Aoy = (1 + 2N, )A2 67 2C ( ) (1.55)
~ 8 IR 2
A = —dy— — DM 1.
(9) f T mG ( )v ( 56)
1
Ag = —md. (1.57)

2

Our corrections are now obtained via the diagrams in Fig. 1.5, except that here the
dots represent Eq. (1.53), and one simultaneously adds the correction to one and then

the other propagator. In this way, careful but straightforward computation yields

QIR )\1 acm )\2 acm

1
Fi\b,acm — / dx [CIU(WP) - Ciu(wP)} Vs

227rmG

627rmG]\/[/ dx CI'( {3u v-(p+ (x—1/2)P)

x[(1 = 2)A' = 2P, +i[(1 — 2)A" + 2X%)] 15 PaGay
—Hy™ PaGau ] (p + (& = 1/2)P), = A" M [ (p + (x — 1/2) P)goys

F3ip* ™ (p + (z — 1/2) P), ] } s, (1.58)

where 3™ = p3m 4 p3™ and {\, i = 1,2} represents the quark propagator correc-
tion on each leg with AT = \! + \2.

One can now adapt the general expression in Eq. (1.58) to the particular cases of
relevance herein. The first is the p-meson Bethe-Salpeter amplitude. Capitalising on

acm

isospin symmetry, which entails p2" = p5™ =: ", one finds

poaem  _ O pTAT /1 dz [C"(wp) = G'(wp)] YuBuas
o 2imm, 2M 7 o
QR ; !
E d 1—2)A
327rmG 2M / °C {Z[( K

+x/\2] ('VBPVO'ua - Pvauo/yﬁ) (p + (z — 1/2)P),5’

2N MP,(p+ (z — 1/2)P)VJW} Vs (1.59)
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where “\” is constructed from the correction specified in one of Egs. (1.55) — (1.57).
The other case is the quark-photon vertex, for which the correction is found with

A= \%2 = )\, since the quark flavours are identical, and we need only consider ¢? = 0:

acm __ QIR ,uacm)\_iu 2
FZ - m IM Cl (M )/75 [7 P, O-,ana} . (160)

1.5 p-meson EDM: Results
1.5.1 Analysis without Peccei-Quinn symmetry

In order to obtain a result for the p-meson’s EDM, d,,, it remains only to sum the
various contributions derived in Sec. 1.4 as they contribute to Eq. (1.20), evaluated

with the parameter values in Table 1.1:

d, = —2.88x107°p*™ef/s
+0.785 (d, — dy)
+(1.352 + 0.775 1*™Ve(d,, — dy)
—(0.091 — 2.396 1*™)e(d,, + dy)
sK

—es (2.696 — 6.798 1*™) x 1073 (1.61)

In this formula, dy, d ¢ carry a dimension of inverse-mass and s = 1 GeV.
A nugatory transformation allows one to rewrite Eq. (1.61) in terms of dimension-

less electric and chromoelectric quark dipole moments; viz.,

d, = —2.88x107°u*™ef/s
(%21
+2 0785 (Du — Da)
+(1.352 4 0.775 pi*™)e(D,, — Dy)
—(0.091 — 2.396 1> ™)e(D,, + Dy)

—(1.096 — 2.763 p1*™) x 107" e K| , (1.62)
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Figure 1.7. Evolution of the quark-EDM component of the p-meson’s EDM with
current-quark mass, assuming d_ is independent of m. m = 170 MeV corresponds
to the mass of the s-quark in our treatment of the contact interaction [69], so the
difference between d) and d is 10%.

where vy = 246 GeV is the cube-root of the phenomenological Higgs vacuum expec-

tation value. In a class of models that includes, e.g., Ref. [108], one finds

Dj ~ Zl—; ~2x 1077, (1.63)
a result which may be used to inform expectations about the “natural” magnitude of
the terms in Egs. (1.61), (1.62).

There are four distinct types of contribution to d, in Eq.(1.61). The first is
associated with the 6-term; and it is notable that this contribution vanishes in the
absence of a dressed-quark anomalous magnetic moment, a feature which emphasises
the connection between topology and dynamical chiral symmetry breaking that is
highlighted, e.g., in Eq. (21) of Ref. [87]. Our result may directly be compared with

that obtained in a sum rules analysis; viz.,

herein : —2.9 x 1073 ™ e ~ 0.7 x 1073 ef
(1.64)

Ref. [62] : 4.4 x107%ef.

The second contribution owes to an explicit dressed-quark EDM. It has been

computed via a number of methods, so that a comparison with our results is readily
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compiled:

herein DSE [60] BM[60] nrQM [60] sum rules[62] (1.65)
0.79 0.72 0.83 1.00 0.51,

where each entry is multiplied by d_ = (d, — dy); and DSE [60] summarises results
obtained from momentum-dependent DSE input, BM [60] reports a bag-model re-
sult, and nrQM [60] is the non-relativistic constituent-quark value. We depict the
current-quark mass dependence of this contribution in Fig. 1.7. It is notable that the
magnitude of these results matches an existing DSE estimate of the analogous con-
tribution to the neutron’s EDM [109]. Moreover, based on Ref. [110], a perturbative
analysis would yield Qm,,d];’elrt = 2md_, where m is the current-quark mass. With the
parameter values employed herein, this is dgert = 0.014 d_, which is just ~ 2% of the
order-of-magnitude specified by the values in Eq. (1.65).

The third contribution to d, is generated by the quark’s chromoelectric dipole
moment. Its subcomponents are detailed in Table 1.3. The net result is comparable in
magnitude and sign with that produced by the quark EDM, Eq. (1.65). In comparison
with a sum rules computation [62], however, our result is an order of magnitude larger,
has the opposite sign and contains a sizeable d_-term. At least the first two of these
marked discrepancies are insensitive to reasonable variations in p*™. It is worth
emphasising here that our calculation has no other variable parameters: the two
specifying our model, listed in Table 1.1, were fixed in prior studies of an array of
meson and baryon observables [64, 65, 67, 66, 68, 69]. This mismatch will receive
further attention in future work.

The four-fermion interaction is responsible for the final contribution in Eq. (1.61).
Its subcomponents are detailed in Table 1.4. As ours is the first estimate of the
contribution from a dimension-six operator to the p-meson’s EDM, there is no ready
substantial comparison. On the other hand, the result in Table 1.4 is quickly seen to

be “natural” in size. The dimension-six operator is associated with a coupling %X /A?,
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which has mass-dimension “—2”. In order to obtain a quantity with mass-dimension

“—17, this coupling must be multiplied by another energy scale. We are interested

in an hadronic EDM, so that scale should be typical of hadron physics; e.g., the

dressed-quark mass “M”. Finally, a loop correction is required for the generation of

an EDM, and loops are characterised by a factor 1/(167%). Putting these quantities

together yields an expectation based on naive dimensional analysis; viz.,
D=6 1 MoygX sevp K

- e ~1x 10"
) “T6r2 vy A2 X 0=

(1.66)

in agreement with the magnitude of the final row in Table 1.4. Comparison with
Eq. (1.63), furthermore, indicates that in our computation the quark-EDM and dimension-
six contributions are naturally related via

EDM D=6
dTPPM K~ g5, (1.67)

p

1.5.2 Peccei Quinn Symmetry

The leading term in Eq. (1.62) is that associated with #. Arising from a dimension-
four operator, this contribution is not suppressed by a large beyond-SM mass-scale.
One may furthermore expect that, absent any symmetry to prevent it, a typical non-
SM for CP-violation will produce large corrections to 6. In order to reconcile this
with the remarkably small upper-bound on 6 placed by the neutron’s EDM, one must
accept that the initial value of 6 is very finely tuned. There is nothing to prevent
this from being simply an accident of Nature. However, some view that possibility as
aesthetically displeasing and prefer to introduce a new dynamical degree of freedom,
the axion, a pseudo-Goldstone boson, whose role is to cancel the effect of § [35]. It is
notable that there is currently no empirical evidence in favour of the axion’s existence

and the remaining domain of parameter space is small [115].
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Notwithstanding this, in the context of EDM estimates it is customary to expose
the possible effect of axion physics on the results in Eq. (1.61) or (1.62). Here there is
a complication. If one considers an extension of the SM with a collection of CP-odd
operators that may mix with the 6-term, then the effective potential describing axion
physics at the hadronic scale can plausibly acquire terms that shift its minimum to
a nonzero value of the effective #-parameter, finduced [55]. The quark chromoelectric
dipole moment interaction is one such operator. In its case, within a sum rules
calculation [62], the net effect of this mixing is elimination of § in favour of a modest
enhancement in magnitude of the coefficients of d. in Eq. (1.61), with no change in
sign.

The implications for our study are plain. Allowing an axion-like mechanism to
play a role, then # disappears from Eqgs. (1.61) and (1.62), and any measurement of
an hadron EDM, here that of the p-meson, places a little more stringent constraint
on cii in particular but also on di and X.

This is, perhaps, particularly relevant to %, since the high-scale physics that
generates this operator will typically also produce a complex phase for the quark
masses. Within the low-energy effective theory of Eq.(1.2), this phase will arise
from one-loop contributions to the quark propagator containing one insertion of the
CP-violating four-quark operator and the quark Yukawa interaction. Consequently,
constraints on # imply a bound on %. On the other hand, with the elimination of 8
via an axion effective potential, the term modulated by X is exposed to independent
constraint [56]. Computing the contribution of the four-quark CP-violating operator
to the axion potential, determining the resulting dependence of Oinducea O K, and

deriving the expression corresponding to Eq. (1.62) will be the subject of future work.
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1.6 Epilogue

Using the leading-order in a global-symmetry-preserving truncation of QCD’s
Dyson-Schwinger equations, we computed the electric dipole moment of the p-meson,
d,, that is generated by the leading dimension-four and -five CP-violating operators
and an example of a dimension-six operator. We employed a momentum-independent
form for the leading-order kernel in the gap- and Bethe-Salpeter equations. This is
known to produce results for low-energy pseudoscalar- and vector-meson observables
that are indistinguishable from those obtained with the most sophisticated interac-
tions available when they are analysed using the same truncation. Since the dipole
moment is a low-energy observable, our predictions should be similarly reliable, in
which case the framework we employ and elucidate can usefully be adapted to the
more challenging task of computing the neutron’s EDM, d,.

We find that the two dimension-five operators; namely, quark-EDM and -chromo-
EDM, characterised by d, and Jq, respectively, produce contributions to d, whose
coefficients are of the same sign and within a factor of two in magnitude. This
contrasts with an extant sum rules evaluation, in which the coefficients of the contri-
butions have the opposite sign and differ by a factor of four in magnitude. Since all
studies agree within a factor of two on the quark-EDM coefficient, the discrepancy
resides with the chromo-EDM contribution. These differences invite further analysis
and guarantee relevance to a DSE evaluation of the impact of qu on the neutron’s
EDM.

Absent a mechanism that suppresses a 6-term in any beyond-Standard-Model
action, the tight constraints on the magnitude of a contribution from this term to
the neutron’s EDM also apply to contributions from a dimension-six four-fermion
operator to this or another hadron’s EDM. Should such a mechanism exist, however,
we find that a dimension-six operator can match the quark-EDM and chromo-EDM

in importance.
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Using the techniques described herein, calculation of the neutron’s EDM is un-

derway:.
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This work and Ref. [66] 2.11

DSE: RL RGl-improved [81] 2.01
DSE: EF parametrisation [111] 2.69

LF CQM [112] 2.14

LF CQM [113] 1.92
Sum Rules [114] 1.8+0.3
point particle 2

Table 1.2. Magnetic moment of the p-meson calculated using our framework; and
a comparison with other computations. Legend: RL RGI-improved, treatment of a
renormalisation-group-improved one-gluon exchange kernel in rainbow-ladder trunca-
tion; EF parametrisation, entire function parametrisation of solutions to the gap and
Bethe-Salpeter equations; and LF CQM, light-front constituent-quark model. The
results are listed in units of e/[2m,)].

qvq —0.066 d® — 0.199 d<.

BSA —0.120d° +0.108d%,

S(k) 1.538 d°

acm (X 2m) 0.775d° + 2.396 d°.

our CEDM (1.35 + 0.78 ™) d° — (0.09 — 2.40 y*°™) d°.
total 1.16d° — 0.69 d5,

sum rules [62] —0.13d°

Table 1.3. Contributions to the p-meson EDM associated with a quark chromoelec-
tric dipole moment, with JfF = e(ciu F cid). Row 1: quark-photon vertex correction,
Sec. 1.4.2.1; Row 2: p-meson Bethe-Salpeter amplitude correction, Sec. 1.4.2.2; Row 3:
dressed-quark propagator correction, Sec. 1.4.2.3; Row 4: anomalous chromomagnetic
moment contributions, Sec. 1.4.3.1; Row 5: sum of preceding four rows; Row 6: Row 5
evaluated with ™ = —1/4; and Row 7: sum rules result from Ref. [62], evaluated
here with a heavy s-quark.
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qvq —1.005 x 107

BSA —9.114 x 1077

S(k) 0

acm (X p2em) 2.763 x 1075 yaom

our D = 6 total —(1.096 — 2.763 ™) x 107°

Table 1.4. Contributions to the p-meson EDM associated with the dimension-six
operator in Eq. (1.2). Each row should be multiplied by evy X /A% Row 1: quark-
photon vertex correction, Sec. 1.4.1.1; Row 2: p-meson Bethe-Salpeter amplitude cor-
rection, Sec. 1.4.1.2; Row 3: dressed-quark propagator correction, Sec. 1.4.1.3; Row 4:
anomalous chromomagnetic moment contributions, Sec. 1.4.3.1; and Row 5: sum of
preceding four rows.
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CHAPTER 2
SCALAR AND TENSOR CHARGES OF THE NUCLEON

2.1 Introduction

In recent years a global approach to the description of nucleon structure has
emerged, one in which we may express our knowledge of the nucleon in the Wigner
distributions of its basic constituents and thereby provide a multidimensional general-
isation of the familiar parton distribution functions (PDFs). The Wigner distribution
is a quantum mechanics concept analogous to the classical notion of a phase space
distribution. Following from such distributions, a natural interpretation of measured
observables is provided by construction of quantities known as generalised parton dis-
tributions (GPDs) [187, 188, 189, 190, 191, 192, 193, 194] and transverse momentum-
dependent distributions (TMDs) [195, 196, 197, 198, 199, 200, 201]: GPDs are linked
to a spatial tomography of the nucleon; and TMDs allow for its momentum tomog-
raphy. A new generation of experiments aims to provide the empirical information
necessary to develop a phenomenology of nucleon Wigner distributions.

At leading-twist there are eight distinct TMDs, only three of which are nonzero
in the collinear limit; i.e., in the absence of parton transverse momentum within the

target, k; = 0: the unpolarized (f1), helicity (¢g1) and transversity (hir) distribu-

OReprinted article with permission from M. Pitschmann, C. Y. Seng, C. D. Roberts and
S. M. Schmidt, Phys. Rev. D 91 (2015) 074004, Copyright (2015) by the American Physical So-
ciety. DOI: http://dx.doi.org/10.1103/PhysRevD.91.074004
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Figure 2.1. The tensor charge, Eq.(2.1), measures the net light-front distribution
of transversely polarised quarks inside a transversely polarized proton.

tions. In connection with the last of these, one may define the proton’s tensor charges

(¢ =u,d,...)

orq = /1 dx hir(z) :/0 dx [h‘{T(x) — h‘zT(x)] , (2.1)

which, as illustrated in Fig. 2.1, measures the light-front number-density of quarks
with transverse polarisation parallel to that of the proton minus that of quarks with
antiparallel polarisation; viz., it measures any bias in quark transverse polarisation
induced by a polarisation of the parent proton. The charges drq represent a close ana-
logue of the nucleon’s flavour-separated axial-charges, which measure the difference
between the light-front number-density of quarks with helicity parallel to that of the
proton and the density of quarks with helicity antiparallel [202]. In nonrelativistic
systems the helicity and transversity distributions are identical because boosts and
rotations commute with the Hamiltonian.

The transversity distribution is measurable using Drell-Yan processes in which
at least one of the two colliding particles is transversely polarised [203]; but such
data is not yet available. Alternatively, the transversity distribution is accessible via
semi-inclusive deep-inelastic scattering using transversely polarised targets and also
in unpolarised ete™ processes, by studying azimuthal correlations between produced

hadrons that appear in opposing jets (ete™ — hyhe X). Capitalising on these obser-
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vations, the transversity distributions were extracted through an analysis of combined
data from the HERMES, COMPASS and Belle collaborations [45]; and those distri-
butions have been used to produce an estimate of the proton’s tensor charges, with

the following flavour-separated results:

Spu = 0397015, Spd = —0.2570% (2.2)

at a renormalisation scale (4 = 0.9 GeV. Given that the tensor charges are a defining
intrinsic property of the nucleon, the magnitude of the errors in Eqs. (2.2) is unsatis-
factory. It is therefore critical to better determine dpu, drd. Consequently, following
upgrades at the Thomas Jefferson National Accelerator Facility (JLab), it is antici-
pated [204] that experiments [205, 206] in Hall-A (SoLID) and Hall-B (CLAS12) will
provide a far more precise determination of the tensor charges.

Naturally, measurement of the transversity distribution and the tensor charges will
not reveal much about the strong interaction sector of the Standard Model unless these
quantities can be calculated using a framework with a traceable connection to QCD.
This point is emphasised with particular force by the circumstances surrounding the
pion’s valence-quark PDF. As reviewed elsewhere [207], numerous authors suggested
that QCD was challenged by a PDF parametrisation based on a precise 7 N Drell-Yan
measurement [208]. However, the appearance of nonperturbative calculations within
the framework of continuum QCD [209, 210] forced reanalyses of the cross-section,
with the inclusion of next-to-leading-order evolution [211] and soft-gluon resumma-
tion [212], so that now those claims are known to be false and the pion’s valence-quark
PDF may be viewed as a success for QCD [213]. The comparisons between exper-
iment and computations of the pion and kaon parton distribution amplitudes and
electromagnetic form factors have reached a similar level of understanding [214, 215].

Herein, therefore, we compute the proton tensor charges using a confining, symmetry-

preserving Dyson-Schwinger equation (DSE) treatment of a single quark-quark in-
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teraction; namely, a vector ® vector contact-interaction. This approach has proved
useful in a variety of contexts, which include meson and baryon spectra, and their
electroweak elastic and transition form factors [64, 65, 66, 67, 68, 69, 216, 217, 218,
219, 220]. In fact, so long as the momentum of the probe is smaller in magnitude than
the dressed-quark mass produced by dynamical chiral symmetry breaking (DCSB),
many results obtained in this way are practically indistinguishable from those pro-
duced by the most sophisticated interactions that have thus far been employed in
DSE studies [221, 70, 71, 222].

It is apposite to remark here that confinement and DCSB are two key features of
QCD; and much of the success of the contact-interaction approach owes to its effi-
cacious expression of these emergent phenomena in the Standard Model. They are
explained in some detail elsewhere [221, 70, 71, 222] so that here we remark only that
confinement may be expressed via dynamically-driven changes in the analytic struc-
ture of QCD’s propagators and vertices; and DCSB is the origin of more than 98%
of the mass of visible material in the Universe. These phenomena are intimately con-
nected; and whereas the nature of confinement is still debated, DCSB is a theoretically
established nonperturbative feature of QCD [223], which has widespread, measurable
impacts on hadron observables, e.g. Refs. [69, 217, 224, 225, 226, 227, 228, 215, 229],
so that its expression in QCD is empirically verifiable.

Apart from the hadron physics imperative, the value of the nucleon tensor charges
can be directly related to the visible impact of a dressed-quark electric dipole mo-
ment (EDM) on neutron and proton EDMs [109]. Novel beyond-the-Standard-Model
(BSM) scalar operators may also conceivably be measurable in precision neutron ex-
periments so that one typically considers both the nucleon scalar and tensor charges
when exploring bounds on BSM physics [230]. The sum of the scalar charges of all
active quark flavours is simply the nucleon o-term, which we therefore also compute

herein.
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Figure 2.2. Poincaré covariant Faddeev equation. W is the Faddeev amplitude for a
nucleon of total momentum P = p, + pg. The shaded rectangle demarcates the kernel
of the Faddeev equation: single line, dressed-quark propagator; I', diquark correlation
(Bethe-Salpeter) amplitude; and double line, diquark propagator. (See Apps. A, B for
details.)

Relying on material provided in numerous appendices, we provide a brief outline
of our computational framework in Sec.2.2: both the Faddeev equation treatment of
the nucleon and the currents which describe the interaction of a probe with a baryon
composed from consistently-dressed constituents. This presentation scheme enables
us to embark quickly upon the description and analysis of our results for the scalar
and tensor charges, Secs. 2.3 and 2.4, respectively. In Sec.2.5 we use our results for
the tensor charges in order to determine the impact of valence-quark EDMs on the

neutron and proton EDMs. Section 2.6 is an epilogue.

2.2 Nucleon Faddeev Amplitude and Relevant Interaction

Currents
We base our description of the nucleon’s dressed-quark-core on solutions of a
Faddeev equation, which is illustrated in Fig.2.2, and formulated and described in
Apps. A, B. In order to determine the scalar and tensor charges of the nucleon
described by this Faddeev equation, the Q? = 0 values of three interaction currents
are needed: elastic electromagnetic, which determines the canonical normalisation
of the nucleon’s Faddeev amplitude; scalar; and tensor. The computation of these

quantities is detailed in App. C.
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2.3 Sigma-Term
The contribution of a given quark flavour (¢ = u,d,...) to a nucleon’s o-term is

defined by the matrix element

oy = mqy (N(p)|qlg|N(p)), (2.3)

where |N(p)) is the state vector of a nucleon with four-momentum p. The o-term is
independent of the renormalisation scale used in the computation, even though the
individual pieces in the product on the right-hand-side (rhs) are not. As explained
in App. E, the scale appropriate to our symmetry-preserving regularisation of the
contact interaction is (g ~ M, where M is the dressed-quark mass.

Our computed value of the nucleon’s o-term is reported in Eq. (C.49); viz.,

ony =0y + 04 =m3.06 =21 MeV. (2.4)

This result is consistent with that obtained using the Feynman-Hellmann theorem
in connection with the results from which Ref.[67] was prepared. An interesting
way to expose this is to recall Eq. (B.28), which states that our analysis describes a
nucleon that is 77% dressed-quark + scalar-diquark and 23% dressed-quark + axial-
vector diquark. In the isospin symmetric limit, which we typically employ, it follows

that

on = 0.7T[og + 04p] +0.23[0g + 041 (2.5)

= 00+ 0.7T0,p0 +0.23 0,4, (2.6)

where

48



oM

og = mﬁ—m:QGMeV, (27&)

Og0 = m%zlm\/{ev, (2.7b)
OMmggt

Gy = m%leMeV, (2.7¢)

again computed using material in Ref. [67]. Inserting Egs. (2.7) into Eq.(2.6), one
obtains oy = 24 MeV.! Apparently, so far as the contribution of explicit chiral sym-
metry breaking to the mass of the nucleon’s dressed-quark core is concerned, the
contact-interaction nucleon is a simple system. This analysis also shows that our
diagrammatic computational method is sound; and hence Eq.(2.4) is the rainbow-
ladder (RL) truncation? prediction of a vector ® vector contact-interaction treated in
the Faddeev equation via the static approximation. (Inclusion of meson-baryon loop
effects will increase the result in Eq. (2.4) by approximately 15% [231].)

In addition, the fact that Eqgs. (2.4) and (2.6) yield similar results emphasises the
important role of diquark correlations because if the nucleon were just a sum of three

massive, weakly-interacting dressed-quarks, then one would have

o =300 =29MeV (2.8)

which is 21% too large.

Adopting a different perspective, we note that the value in Eq.(2.4) is roughly
one-half that produced by a Faddeev equation kernel that incorporates scalar and
axial-vector diquark correlations in addition to propagators and interaction vertices

that possess QCD-like momentum dependence [231]. It compares similarly with the

!The origin of the 11% mismatch is explained in Sec. C.1.7.

2The rainbow-ladder truncation is the leading-order term in the most widely used, global-
symmetry-preserving DSE truncation scheme [76, 77].
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value inferred in a recent analysis [232] of lattice-QCD results for octet baryon masses
in 2 + 1-flavour QCD:

on =45+ 6 MeV | (2.9)

In order to understand the discrepancy, consider Egs.(2.7). The value of og
matches expectations based on gap equation kernels whose ultraviolet behaviour is
consistent with QCD [231, 233]. On the other hand, with such interactions one
typically finds 0,0 2 0,0 2 0, = 25MeV. We therefore judge that Eq.(2.4) un-
derestimates the physical value of oy; and that the mismatch originates primarily
in the rigidity of the diquark Bethe-Salpeter amplitudes produced by the contact in-
teraction, which leads to weaker m-dependence of the diquark (and hence nucleon)
masses than is obtained with more realistic kernels.® Notwithstanding this, Eq. (2.4)
is a useful benchmark, providing a sensible result via a transparent method.

Further valuable information may be obtained from the results in App.C.2 if
one supposes that the ratio of contact-interaction d- and wu-quark contributions is
more reliable than the net value of oy. In this connection, note that for a proton

constituted as a weakly interacting system of three massive dressed-quarks in the

isospin symmetric limit
3M
ON,d
3M
O-N,u

(2.10)

N | —

Comparing this with our computed value

INd 0,65, (2.11)

ONu
one learns that diquark correlations work to accentuate the contribution of the singly-
represented valence-quark to the proton o-term relative to that of doubly-represented

valence-quarks: the magnification factor is 1.3.

3Consider that if one uses 0,50 = 041 = 30MeV, then oy &~ 40 MeV.
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Let’s take this another step and assume that oy ,, 64 in App. C.2 respond weakly
to changes in m. This is valid so long as solutions of the dressed-quark gap equation

satisfy
dM mu7%<<M dM

2.12
an , (212

my+mg)/2 dm My, My
which is found to be a good approximation in all available studies (see, e.g., Refs. [234,
235]). One may then estimate the effects of isospin symmetry violation owing to the

difference between u- and d-quark current-masses. Taking the value of the mass ratio

from Ref. [181], one finds

Mo 048401 = dINd _ g g5r0dr (2.13)
mq My ONu

Alternatively, one might use the mass ratio inferred from a survey of numerical sim-
ulations of lattice-regularised QCD [236], in which case

My,

T 0474004 = [dIN _q 3g+017 (2.14)

A

mq My ONu

We predict, therefore, that the d-quark contribution to that part of the proton’s
mass which arises from explicit chiral symmetry breaking is roughly 37% greater
than that from the u-quark. This value is commensurate with a contemporaneous
estimate based on lattice-QCD [237]. It is noteworthy that if the proton were a
weakly interacting system of three massive dressed-quarks, then Eq.(2.14) would
yield 1.06%)1%; and hence one finds again that the presence of diquark correlations

within the proton enhances the contribution of d-quarks to the proton’s o-term.

2.4 Tensor Charge
The tensor charge associated with a given quark flavour in the proton is defined

via the matrix element (¢ = u,d,...)

o1



(P(p,0)|qowa|P(p,0)) = drq u(p,o)o,u(p,0), (2.15)

where u(p, o) is a spinor and |P(p,0)) is a state vector describing a proton with
momentum p and spin ¢.* With §7u, drd in hand, the isoscalar and isovector tensor

charges are readily computed:
o = pu+ 6rd, gV = 6pu — 6rd. (2.16)

Importantly, the tensor charge is a scale-dependent quantity. Its evolution is discussed
in App. F.

Our analysis of the proton’s tensor charge in a symmetry-preserving RL-truncation
treatment of a vector ® vector contact-interaction is detailed in App.C.3. At the
model scale, (g, which is determined and explained in App. E, we obtain the results
in Table C.3, which represent a parameter-free prediction: the current-quark mass
and the two parameters that define the interaction were fixed elsewhere [66], in a
study of 7- and p-meson properties.

It is natural to ask for an estimate of the systematic error in the values reported
in Table C.3. As we saw in Sec.2.3, the error might pessimistically be as much
as a factor of two. However, that is an extreme case because, as observed in the
Introduction, one generally finds that our treatment of the contact interaction pro-
duces results for low-momentum-transfer observables that are practically indistin-
guishable from those produced by RL studies that employ more sophisticated inter-
actions [64, 65, 67, 66, 68, 69, 216, 217, 218, 219, 220]. It is therefore notable that
analyses of hadron physics observables using the RL truncation and one-loop QCD
renormalisation-group-improved (RGI) kernels for the gap and bound-state equations

produce results that are typically within 15% of the experimental value [221]. We

“In the isospin symmetric limit: 6%u := é7u = 6d, 64.d := 67d = 5.
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therefore ascribe a relative error of 15% to the results in Table C.3 so that our pre-

dictions are:

Sru ord g g 217

G~ M| 0.69(10) —0.14(2) 0.55(8) 0.83(12)

One means by which to check our error estimate is to repeat the calculations
described herein using a modern RGI kernel [83] in the gap and bound-state equations.
That has not yet been done but one may nevertheless infer what it might yield.
Consider first Ref. [238], which computes the dressed-quark-tensor vertex using a RL-
treatment of a QCD-based kernel: one observes that the dressed-quark’s tensor charge
is markedly suppressed; namely, with a QCD-based momentum-dependent kernel,
a factor of approximately one-half appears on the rhs of Eq.(C.50). This DCSB-
induced suppression would tend to reduce the values in Eq.(2.17). On the other
hand, the use of a more sophisticated momentum-dependent kernel in the bound-
state equations increases the amount of dressed-quark orbital angular momentum in
the proton, an effect apparent in the reduction of the fraction of proton helicity carried
by dressed u- and d-quarks when one shifts from a contact-interaction framework to
a QCD-kindred approach [226, 229]. Hence, the tensor charges are determined by
two competing effects, the precise balance amongst which can only be revealed by
detailed calculations.

In this context, however, it is worth noting that similar DCSB-induced effects
are observed in connection with g4, the nucleon’s axial charge. The axial-charge
of a dressed-quark is suppressed [202], owing to DCSB; but that is compensated in
the calculation of g4 by dressed-quark orbital angular momentum in the nucleon’s
Faddeev wave-function, with the computed value of the nucleon’s axial-charge being

20% larger than that of a dressed-quark. The net effect is that a computation of g4
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using the framework of Refs. [229] can readily produce a result that is within 15% of
the empirical value [221, 202]. This suggests that our error estimate is reasonable.
The predictions in Eq. (2.17) are quoted at the model scale, whose value is ex-
plained in App. E. In order to make a sensible comparison with estimates obtained
in modern simulations of lattice-regularised QCD, those results must be evolved to
(o = 2GeV. We therefore list here the results obtained under leading-order evolution

to (s = 2GeV, obtained via multiplication by the factor in Eq. (F.4):

oru opd ggro) g(Tl) (2 18)

G | 0.55(8) —0.11(2) 0.44(7) 0.66(10)

The error in Eq. (F.4) does not propagate significantly into these results.

Notably, the dominant contribution to d;u arises from Diagram 1: tensor probe
interacting with a dressed u-quark with a scalar diquark as the bystander. The tensor
probe interacting with the axial-vector diquark, with a dressed-quark as a spectator,
Diagram 4, produces the next largest piece. However, that is largely cancelled by the
sum of Diagrams 5 and 6: tensor probe causing a transition between scalar- and axial-
vector diquark correlations within the proton whilst the dressed-quark is a bystander.
It is a large negative contribution for both dru and d7d: indeed, owing to a significant
cancellation between Diagrams 2 and 4 in the d-quark sector, which describe the net
result from quark + axial-vector-diquark contributions, the sum of Diagrams 5 and 6
provides almost the entire result for dpd.

A particularly important result is the impact of the proton’s axial-vector diquark
correlation. As determined in App.C.3.6, with a symmetry-preserving treatment
of a contact interaction, dpd is only nonzero if axial-vector diquark correlations are
present. Significantly, in dynamical calculations the strength of axial-vector diquark
correlations relative to scalar diquark correlations is a measure of DCSB [69]. In the

absence of axial-vector diquark correlations [Eqgs. (C.73), Eq. (F.4)]
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Figure 2.3. Flavour separation of the proton’s tensor charge: “1” — illustration of
anticipated accuracy in planned JLab experiment [205], with central values based
on Eq.(2.2); “2” — results in Eq. (2.2), drawn from Ref. [45]; “3” phenomenological
estimate in Ref. [239] “4” — prediction herein, Eq. (2.18); “5” — result obtained herein
with omission of axial-vector diquark correlations, Eq. (2.19); “6-13” — estimates from
Refs. [109, 240, 241, 242, 243, 244, 245, 246], respectively. By way of context, we note
that were the proton a weakly-interacting collection of three massive valence-quarks
described by an SU(4)-symmetric spin-flavour wave function, then [246] the quark
axial and tensor charges are identical, so that dru = 4/3 and drd = —1/3 at the
model scale. These values are located at “14”.

0 1
oryu  Oryd g(n) g(n)

(;]0.61(9) 0 0.61(9) 0.61(9)

; (2.19)

i.e., 0pd vanishes altogether and dru is increased by 11%. We expect that the influ-
ence of axial-vector diquark correlations will be qualitatively similar in the treatment
of more sophisticated kernels for the gap and bound-state equations. A hint in sup-
port of this expectation may be drawn from the favourable comparison, depicted in
Fig. 2.3, between the predictions for dru in Eq. (2.19), “4”, and the result of Ref. [109],
“5”. The latter employed a proton and tensor-current that suppressed but did not
entirely eliminate the contribution from axial-vector diquark correlations. This same
comparison also supports the verity of our error estimate.

Additionally, it is valuable to note that the magnitude of d7u is a direct probe of

the strength of DCSB and hence of the strong interaction at infrared momenta. This
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could be anticipated, e.g., from Egs. (C.55), (C.64), the expressions for Diagrams 1
and 4, which produce the dominant positive contributions to dru: both show a strong
numerator dependence on the dressed-quark mass, M; and M/m > 1 is a definitive
signal of DCSB. To quantify the effect, we reduced ajg in the gap and Bethe-Salpeter
equations by 20% and recomputed all relevant quantities. This modification reduced
the dressed-quark mass by 33%: M = 0.368 — M_. = 0.246 GeV. Combined with
knock-on effects throughout all correlations and bound-states, the 20% reduction in

amg produces [Table C.4 and Eq. (F.4)]

M — M| dru opd g gV 2.20)

Co 0.44 —-0.12 0.32 0.56

which expresses a 20% decrease in dru. As we signalled, the greatest impact of the
cut in aqg and hence M is a reduction in the size of the contributions from Diagrams 1
and 4: the former describes the tensor probe interacting with a dressed-quark whilst
a scalar diquark is a spectator; and the latter involves a tensor probe exploring an
axial-vector diquark with a dressed-quark bystander.

As remarked in the Introduction, the tensor charge is a defining intrinsic prop-
erty of the proton and hence there is great interest in its reliable experimental and
theoretical determination. In Fig.2.3 we therefore compare our predictions with re-
sults from other analyses [109, 239, 240, 241, 242, 243, 244, 245, 246]. Evidently, of
all available computations, our contact-interaction predictions are in best agreement
with the phenomenological estimates in Eq. (2.2).

Another interesting point is highlighted by a comparison between our predictions
and the values obtained when the proton is considered to be a weakly-interacting
collection of three massive valence-quarks described by an SU(4)-symmetric spin-
flavour wave function [246]: 5;U(4)u = 2e, and 5§U(4)d = ¢4 cf. our results, Eq. (2.17),

dru = 0.52(2e,), érd = 0.42(e4). The presence of diquark correlations in the pro-
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ton amplitude significantly suppresses the magnitude of the tensor charge associated
with each valence quark whilst simultaneously increasing the ratio d7d/dru by ap-

proximately 20%.

2.5 Electric Dipole Moments
In typical extensions of the Standard Model, quarks acquire an EDM [55, 56]; i.e.,

an interaction with the photon that proceeds via a current of the form:

dq 4V50 w4 s (2.21)

where ch is the quark’s EDM and here we consider ¢ = u,d. The EDM of a proton

containing quarks which interact in this way is defined as follows:

(P(p, )55 |P(p, 0)) = dy #(p, 0) V50 (p, 0) , (2.22)
where
]ﬁ,DM(a:) =d, w(x) V50 ulx) + d, ci(:c)’yg,au,,d(:v) ) (2.23)

At this point it is useful to recall a simple Dirac-matrix identity:

1

"}/50'#1, = §€M,ja50'aﬁ, (224)
using which one can write
EpM _ | . i3
IEPM = 6 [du W0t + dgdoagd) . (2.25)
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It follows that

(P(p,o)| I 1P (p. o)

1 ~ = _
= 5Euvap [du oru +dg 5Td] u(p,o)oapu(p,o) (2.26)
= [cfu Sru + dy 5Td} u(p, o) 50 u(p,o); (2.27)

namely, the quark-EDM contribution to a proton’s EDM is completely determined

once the proton’s tensor charges are known:

d, = dy 67u + dg 0pd. (2.28)

With emerging techniques, it is becoming possible to place competitive upper-limits
on the proton’s EDM using storage rings in which polarized particles are exposed to

an electric field [247].

An analogous result for the neutron is readily inferred. In the limit of isospin

symmetry,
(N(p,0)|ao,ulN(p,0)) = (P(p,0)|do,,d|P(p,0)),
(N (p, U)|a70Wd|N(p, o)) = (P(p,o0)|uo,u|P(p,0)); (2.29)
and hence
Jn = Ciu (5Td -+ CZd 5TU . (230)

Using the results in Eq. (2.17), we therefore have

d, = —0.14d, + 0.69d,, d, = 0.69d, — 0.14d,. (2.31)

It is worth contrasting Eqgs. (2.31) with the results one would obtain by assuming

that the nucleon is merely a collection of three massive valence-quarks described by
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an SU(4)-symmetric spin-flavour wave function. Then, by analogy with magnetic

moment computations, a procedure also made valid by Eq. (2.24):

4, (2.32)

values which are roughly twice the size that we obtain.
The impact of our predictions for the scalar and tensor charges on BSM phe-

nomenology may be elucidated, e.g., by following the analysis in Refs. [230, 248].

2.6 Conclusion

We employed a confining, symmetry-preserving, Dyson-Schwinger equation treat-
ment of a vector ® vector contact interaction in order to compute the dressed-quark-
core contribution to the nucleon o-term and tensor charges. The latter enabled us to
determine the effect of dressed-quark electric dipole moments (EDMs) on the neutron
and proton EDMs.

A characteristic feature of DSE treatments of ground-state baryons is the predicted
presence of strong scalar and axial-vector diquark correlations within these bound-
states. Indeed, in some respects the baryons can be viewed as weakly interacting
dressed-quark + diquark composites. The diquark correlations are active participants
in all scattering events and therefore serve to modify the contribution to observables of
the singly-represented valence-quark relative to that of the doubly-represented quark.

Regarding our analysis of the proton’s o-term, we estimate that with a realistic
d-u mass splitting, the singly-represented d-quark contributes 37% more than the
doubly-represented u-quark to that part of the proton mass which owes to explicit
chiral symmetry breaking [Egs. (2.13), (2.14)].

Our predictions for the proton’s tensor charges, d7u, drd, are presented in Eq. (2.18).
In this case, compared to results obtained in simple quark models, diquark correla-

tions act to reduce the size of dru, drd by a factor of two and increase the ratio
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drd/d7u by roughly 20%. Two additional observations are particularly significant.
First, the magnitude of d7u is a direct measure of the strength of DCSB in the Stan-
dard Model, diminishing rapidly with the difference between the scales of dynamical
and explicit chiral symmetry breaking. Second, drd measures the strength of axial-
vector diquark correlations in the proton, vanishing with Py+/Fy+; i.e., the ratio of
axial-vector- and scalar-diquark interaction probabilities, which is also a measure of
DCSB.

Our analysis of the Faddeev equation employed a simplifying truncation; viz., a
variant of the so-called static approximation. A natural next step is recalculation of
the tensor charges after eliminating that truncation. Subsequently or simultaneously,
one might also employ the approaches of Refs.[249, 229] in order to obtain DSE

predictions with a more direct connection to QCD.
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CHAPTER 3

AN INTRODUCTION TO THE CHIRAL
PERTURBATION THEORY

In this chapter we provide a brief introduction to the Chiral Perturbation Theory
(ChPT) which is a low-energy effective theory of Quantum Chromodynamics (QCD)
that describes the strong interaction governing interactions between hadrons. There
are many pedagogical articles of this topic and here we mainly follow the logic and

notations in Ref. [172].

3.1 The motivation

QCD is long believed to be the appropriate theory for the strong interaction.
It is an SU(3). non-Abelian gauge theory that can be described by the following
Lagrangian:

£ =Y {aPa — myin} — GG (3.1)
q
where ¢ is the quark field and D, = 10, — g;T* A7, is the SU (3). covariant derivative.
The free parameters in the theory are the strong coupling constant g; and the quark
masses {m,}.

As we have explained in the introduction, QCD is perturbative at high energy and
is extremely successful in this regime, examples including the prediction of scaling
violation behavior in deep inelastic scattering (DIS). On the other hand, the theory
becomes highly non-perturbative when the energy scale is lowered to the mass of

light hadrons as the running coupling constant g,(x) diverges in the infrared limit.
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Therefore conventional perturbative treatment to QCD is not applicable for the study
of the low-energy properties of hadrons.

Lattice QCD (LQCD) is currently the only promising way to tackle this problem
from the first principle. It involves numerical evaluations of the QCD path integral in
a discretized spacetime using Monte Carlo method. This method is proved to be ex-
tremely successful in many areas, for example the precise reproduction of the hadronic
spectrum. However it applicability is also severely limited by various technical issues
such as the large amount of CPU time. The alternative way to approach is problem
is through the application of effective field theories (EFTs) which are theories that
try to mimic some, if not all, of the properties of QCD in the infrared limit. These
theories are suitably engineered such that calculations in the low energy regime are
tractable.

ChPT is the most general effective field theory at low energy that is constructed
based on one particular symmetry of QCD, namely the chiral symmetry. Instead of
quarks and gluons, the degrees of freedom in ChPT are mesons and baryons. It is
particularly successful in describing the residual strong interaction between hadrons
that involves exchange of light mesons. In this chapter we shall introduce the basic
concepts and ingredients needed for the construction of ChPT Lagrangian without
diving into any specific calculation of Feynman diagrams. These basic concepts are

very helpful for the understanding of most of the contents in the next two chapters.

3.2 Chiral symmetry and spontaneous symmetry breaking
3.2.1 Chiral transformation

Apart from the color SU(3), the QCD Lagrangian possesses another symmetry
known as the chiral symmetry in the limit of massless quarks. To be definite let
us consider the QCD with two lightest quark u and d (the discussion below can

be straightforwardly generalized to include the strange quark). We can separate

62



each quark field into its left- and right-handed components and define the following

doublets:

u

QL/R = . (32)
d
L/R

The two-flavor QCD Lagrangian can then be rewritten as

. . _ - 1
L=QriD,Qr+ QriD,Qr — QrMQ — QLM 'Qp — ZGZVGQW (3.3)

where M = diag(m, my) is the quark mass matrix. It is clear that if we take the
quark masses to be zero then the quark doublet fields with different handedness do
not mix with each other. In other words, the massless two-flavor QCD Lagrangian is

invariant under the following SU(2), x SU(2)p transformation:

SU(Q)LZ Qr — UlQr

SUR2)r: Qr — UrQr (3.4)

where Uy /r = exp{iéTL /r°T/2} are two independent 2x2 special unitary matrices. This
symmetry is explicitly broken by the quark mass matrix M, however since current
quark masses m,, and my are only a few MeV, much lighter than the lightest hadron
mass m,o ~ 135 MeV, so one naively expects the chiral symmetry to be pretty well
respected. It is also extremely useful to realize that the SU(2), x SU(2)g symmetry
is equivalent to an SU(2)y x SU(2) 4 symmetry defined by the following “vector” and

“axial” transformation to the quark doublet:

SU@y: Q — explify 1)@

SUR2)a: Q@ — exp{igA'§75}Q. (3.5)

In particular, the SU(2)y symmetry is known as the isospin symmetry and it is a

good symmetry even with non-zero quark masses provided that m, = my.
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3.2.2 Spontaneous symmetry breaking

Unlike the isospin symmetry which is proven to be a good approximate symmetry,
nature does not seem to respect the SU(2)4 symmetry. A clear evidence is the
following: one can easily prove that if SU(2), is a good symmetry, then it implies
that for any hadron (made up of light quarks) there must be a corresponding hadron
with the same mass but with the opposite parity. This “parity doubling” effect
is however not observed experimentally. For example, let us consider the lightest
JP = (1/2)" baryon (i.e. proton) which has a mass of 938 MeV. If parity doubling
is true, one shall observe a J? = (1/2)~ baryon with approximately the same mass.
Such baryon is however never been observed; the lightest (1/2)~ baryon has a mass
around 1535 MeV which can never be interpreted as the parity counterpart of the
proton.

The non-existence of the parity doubling could be explained if the QCD vacuum

|0) is non-invariant under the axial transformation, i.e.

Q4 10) #0 (3.6)

where Q4 = [ d®rQ°y55-Q is the conserved charge of SU(2)4. The non-invariance
of the vacuum under a certain symmetry signifies a spontaneous symmetry breaking
(SSB). According to the Nambu-Goldstone theorem, a SSB implies existence of mass-
less spin-zero bosons known as Nambu-Goldstone (NG) bosons. Indeed, we find that
the lightest pseudo-scalar mesons (i.e. the pion triplet) have masses around 135-140
MeV which are much lighter than all the remaining hadrons. We may then identify
them as the NG bosons due to the SSB of the SU(2)4 symmetry. Their non-zero
masses are simply due to the existence of small quark masses that explicitly breaks
SU(2)4. Finally we should point out that even though the non-observation of par-
ity doubling and the existence of very light pions are significant evidence that SSB

indeed happens in QCD, but so far there is no rigorous proof that this is indeed the
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case based on first-principle calculation. ChPT is therefore an effective field theory
of QCD based on the assumption that SSB takes place at low energy and the pion

triplet are the corresponding NG bosons.

3.3 Non-linear realization of NG bosons
In this section we want to introduce the concept of the non-linear representation

of NG bosons which is crucial in the construction of the ChPT Lagrangian.

3.3.1 Basic idea

In order to easily understand the idea let us consider the following simple example.
Imagine a Lagrangian £(¢) which possesses a symmetry group h; X hy, and we know
that the symmetry h; (say with m generators) is spontaneously broken while hs

remains a good symmetry. Then, we may parameterize the field ¢(z) as the following:

¢(x) = R(&(x))p(x) (3.7)

where R is the transformation matrix of hy and {(z) = (& (2),&(x),...&n(x)) are
the “rotational angles” of the symmetry transformation h;, except that now they
are spacetime-dependent fields. Finally, p(x) is a field which is invariant under the
transformation h;.

With this parameterization it is clear that the fields {{;(x)} are automatically the
NG bosons (up to normalization factors) due to the SBB of h;. The way to see this
is very simple: if {{;(x)} are spacetime-independent, then we can perform another hy

transformation on ¢(x):

¢'(z) = R (€)o(x) = R R(Ep(x) = pl). (3.8)

Now, since L is invariant under hy, so we will have L(¢) = L(¢') = L(p), i.e. the

fields {¢&;} will not appear in the Lagrangian. This implies that, if the fields {¢;} are
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to appear in the Lagrangian then they must be spacetime-dependent. The only way
for this to happen is that every term in the Lagrangian £ which involve only {¢;}
must also involve derivatives on {¢;}. This immediately excludes any mass term of
{&} as it does not involve derivatives. They are therefore massless bosons and can

be identified as NG bosons due to the SSB of the symmetry group h;.

3.3.2 Example of non-linear realization: SU(2), x SU(2)g

To elaborate the general idea above and derive one essential building block for
the actual ChPT, let us proceed to the study of non-linear realization of Goldstone
bosons in a simple theory with spontaneously-broken SU(2), x SU(2)gr symmetry.
The fermionic building blocks can be written as 1z and 17, which transform as ¢z —
Urtr and ¢, — Urypy under SU(2), x SU(2)g. Now, if we want to write down an
SU(2)r, x SU(2) g-invariant theory that involves interaction between g and v, then

it is essential to introduce a 2 x 2 matrix 3(z) that transforms as:
S () — Upl(z)U]. (3.9)

With this matrix, terms like 13X, will be invariant.

Recall from the previous section that SU(2)g x SU(2). is also equivalent to
SU(2)y x SU(2)a. Starting from Eq. (3.9), it is easy to show that 3(x) should

transform under SU(2) as

|
—

SU2)a: S(z) — exp{ify, - g}Z(x) exp{if, - 5 (3.10)

where 04 = (Az — 0,,)/2. Now, assuming that SU(2), is spontancously broken, we
may follow the spirit of non-linear realization introduced in the previous subsection

and reparameterize () as

Y(x) = U(x)o(x)\/U(x) (3.11)



where

VU@) = exp{ila) - 5} (3.12)
and the field o(z) is invariant under SU(2)4. By construction, the triplet field &(x)
plays the role of NG bosons (up to normalization factors). Furthermore, we require
that E (z) transforms as a triplet under the good symmetry SU(2)y just like what
happens to ordinary pions. One may show that this requirement implies the following

transformation rule of /U (z) under SU(2)y:

SU©2)y : /U(z) — exp{ify - %}\/U(x) exp{—ify - %} (3.13)
(6 = (r+6.)/2). Combining Eq. (3.10) and (3.13) we immediately see that o(z) is
an invariant under SU(2)y x SU(2) 4. It is therefore a scalar field instead of a matrix.

Finally, the ¥(x) matrix can now be written as

Y(z) =o(x)U(x) (3.14)
where U(z) = exp{i7 - £(z)} and transforms under SU(2); x SU(2)g as U(z) —
UrU(z)Uf. The scalar field o(z) is a massive excitation and it plays no role in
maintaining the symmetry of the Lagrangian, therefore it can be integrated out in
the effective theory. On the other hand, the matrix U(x) serves as the non-linear
realization of the NG bosons and will be one of the main building blocks of our

low-energy effective theory of QCD.

3.4 ChPT for NG bosons

Now we are ready to construct the effective field theory of QCD based on symmetry
consideration. As we showed in Sec. 3.2, the two-flavor QCD possesses the following

properties:

1. It is invariant under SU(2)y x SU(2)4 in the massless quark limit;
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2. SU(2)4 is spontaneously broken at low energy and pions are the NG bosons;

3. SU(2)4 is explicitly broken by the insertion of quark mass matrix M.

It is then natural to require our effective theory to obey the properties listed above. In
fact, we want to construct the MOST GENERAL Lagrangian that satisfies these three
requirements. Obviously there are infinitely many terms with arbitrary mass dimen-
sions that may satisfy these three criteria and we shall include all of them in our La-
grangian. This unavoidably makes ChPT an unrenormalizable theory which is a com-
mon feature for most of the effective field theories. Despite its non-renormalizability,
ChPT still possesses finite predictive power due to the following reason. Due to the
non-linear realization, terms involving pions must contain either derivatives or inser-
tions of quark mass matrix M (and we will see later that m2 ~ m,). It therefore
exists a “power counting” rule saying that one may arrange terms in ChPT according
to an increasing power of p/A, where p is either the pion mass or a small momentum
of pion while A, ~1 GeV is an energy scale related to the chiral symmetry breaking.
Hence, for any given precision level, one only needs to include a finite number of terms
in the chiral Lagrangian as the remaining terms are suppressed by more powers of
p/A,. This concept of power counting is essential as it makes calculations in ChPT

tractable.

3.4.1 O(p?): Chiral invariant terms
Let us concentrate on the pure Goldstone terms in ChPT in this section. These
terms can be constructed using the matrix U(x) we discussed in the previous section.

Following standard notations, we define the normalized pion fields 7(z) through

7(x) - T

U(z) = exp{i

} (3.15)

s

and the parameter F; is known as the pion decay constant. In our convention £, ~ 93

MeV but it is also worth knowing that in other conventions F, may take different
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values (the most common example is that F,; ~ 186 MeV in the SO(4) representation
of ChPT).

We start by constructing the leading order chiral-invariant Lagrangian using U (x).
As discussed in Sec. 3.3, any chiral-invariant term of pions must involve derivatives.

One may easily show that the only chiral-invariant operator in O(p?) is given by:

2

o) = TEn(0,0)(0°U") (3.16)

The prefactor F2/4 serves for the normalization of the pion kinetic term. Expansion

of this Lagrangian according to power of pion fields gives:

2 S . 4. 9
£ = 29,7 + sl (7 0u7)° = 7(0,7)°] + O(x°) (3.17)
which gives the pion kinetic terms as well as interaction terms involving even number
of pions. The interaction strengths of different terms are all inter-related due to chiral

symmetry.

3.4.2 Spurion and chiral symmetry breaking terms at O(p?)

Eq. (3.16) is not the only available term at O(p?) because we need also to include
chiral symmetry breaking terms at the same order. These terms involve insertions
of quark mass matrix M following definite rules. Before we proceed, it is useful to
introduce the concept of “spurion” which is crucial in constructions of symmetry-
breaking terms in an effective theory. To understand this concept let us consider the

quark mass term in QCD. It has the following form:
Lep = —QrMQL + h.c.. (3.18)

This term is obviously not chiral invariant, however it “would be” chiral invariant

if we imagine that the constant matrix M would transform as M — UrM Uz under
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SU(2), x SU(2)g. The matrix M is an example of spurion which is defined as a
constant quantity which would make a given theory invariant under certain transfor-
mation if we imagine that it would transform according to some specific rule.

Since ChPT is an effective theory of QCD it should break chiral symmetry explic-
itly in the exact same ways as QCD does, namely: one should construct operators
involving insertions of the constant quark mass matrix M in such as way that, if
M — UrMU| under chiral rotation then these operators would be chiral invariant.
There is only one such operator at leading order, namely:

o b 7?23 *Te[MUT + UMY (3.19)

m

Here By is a free parameter with mass dimension 1. The expansion of £ gives:

(2) _ o 7 (7)° 6
L2 = F2By(m, +mg)(1 — o T F;}) + O(7°). (3.20)

We obtain from L,(,f) a constant term, an isospin-invariant pion mass term and a
series of interaction terms with even number of pions. The squared pion mass is then
identified as m2 = By(m, + my). It is interesting to notice that m, ~ /Mg, i.e. the
pion mass depends non-analytically to the quark masses.

Finally, combining Eq. (3.16) and (3.19) we obtain the full mesonic chiral La-

grangian at O(p?):

F2 F?B
@ I“Tr[(auU)(a“UT)] + = 2T MU + UM
Lo oo m72r—'2 L. N2 2278 =\2 m; 212
= COHSt—FE(a;ﬂT) _TW +6—F3[(7T-8M7r) -7 (au’/T) ]+24F7?(7r )
+O(7%) (3:21)

3.4.3 Brief discussion of O(p') Lagrangian
If we restrict our requirement of precision level to O(p?), then what we need is the

application of Eq. (3.21) at tree-level. However, to increase our precision to O(p?)
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one needs to include extra terms in the chiral Lagrangian at this order. If we ignore

the coupling with external fields then the relevant terms are:

LW = L{Tr[(8,U)("UN}? + Ly Tr[(8,U)(8,UN) Tr[(9"U) (0" U]
+ L3 Tr[(0,U) (0" U (0,U)(0"UN] + Ly Tx[(9,U)(0"UN| Tr[MU + UMT]
+LsTr[(0,U) (0" U (MUY + UM + Le{Tr[MU + UM']}?

+LAATe[MUT — UM™Y + LsTe[MUTMUT + UMTUMT). (3.22)

The parameter {L;} are low energy constants (LECs) which cannot be determined
by any symmetry argument.

To obtain full results up to O(p*) one needs to apply Eq. (3.21) to one loop as
well as Eq. (3.22) at tree level. In general the 1-loop integrals contributed by the
O(p?) Lagrangian contain UV-divergences and these divergences can be canceled by
the O(p?) low energy constants {L;}. One may define L; = A; + L’ where A; are
responsible for the cancelation of the UV-divergences of the loop integrals and {L]}
are renormalized LECs which are finite numbers. They have to be either determined

by experiment or fitted to lattice data.

3.5 Baryons in ChPT
So far we have only included pions in our chiral Lagrangian so the next step is
obviously to include baryons. Again we restrict ourselves to a two-flavor QCD so the

ground state baryons are just proton and neutron.

3.5.1 Transformation rule of the nucleon field
It is well-known that p and n form an isospin doublet and can be written collec-
tively as a two-component nucleon field N = (p n)T. Under SU(2)y the nucleon field

should transform as
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SU2)y : N — exp{ify - g}N. (3.23)

On the other hand, it is not clear how N(z) should transform under the full chiral
symmetry SU(2);, x SU(2)g. In fact, this transformation can be chosen arbitrarily
and the only requirement is that it reduces to Eq. (3.23) when Op = 9}. Different
choices will all give the same result as far as physical observables are concerned.
The first and probably most obvious choice one could think about is to let Ny /g —
Ur/rNp r under SU(2)r, x SU(2)g. This choice is completely fine, but then one could
build chiral-invariant terms such as NrU N, which do not involve any derivative. For
these terms it is not totally obvious whether or not the usual power counting scheme
still holds because there seems to be no momentum suppression. To avoid this trouble
one may choose a different kind of chiral transformation for N. The most standard

choice is defined as the following. First we consider the chiral transformation of

u(z) = /U(x). It can be written as:

u— UpuK'T = KuU] (3.24)
where K = K(m(z)) is a 2 x 2 unitary matrix which depends on the pion fields.
The last equality of the equation above comes the fact that U = u - u transforms as
U — UgUU]. Following Eq. (3.13), it is obvious that K — exp{ify - 7} (which is
the isospin transformation matrix) when 0r = 0,. Now the transformation rule of
the nucleon field NV under chiral rotation can be chosen as:

N — KN (3.25)

which obviously reduces to Eq. (3.23) in the isospin limit.
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3.5.2 Nucleon Lagrangian at O(p')

We still need several other building blocks for the construction of the baryon ChPT
Lagrangian. First, consider a naive kinetic term of the nucleon field N i@N. This term
is obviously not chiral invariant because the matrix K is spacetime-dependent. It is
therefore essential to construct a chiral covariant derivative 9, which transforms
under SU(2); x SU(2)p as:

D, — KD,K". (3.26)

One could verify that the correct form of the chiral covariant derivative is
1o f
D, = 0 + i(u Opu +ud,u'). (3.27)

With this, the term NiZ/N is now chiral invariant. Expansion of this term gives the
nucleon kinetic term and interaction terms involving nucleon and even number of
pions.

It is also possible to construct operators that describe interactions between nucleon
and odd number of pions. For that purpose one should introduce another piece of
building block:

u, = i(u'0,u — ud,ul). (3.28)

It is an axial vector as it transforms under parity as v, — —u. Also, one can straight-
forwardly show that u,, transforms under SU(2),x SU(2)g as u,, — Ku, K'. With the
introduction of this axial vector one could construct a new classes of chiral-invariant
operators. The only operator at the leading order has the form of N Yysu, N, where
the 75 is included to make the whole term parity-even since we know that QCD
conserves parity.

Finally, one shall not forget that a simple nucleon mass term —myNN is also
chiral invariant so it has to be included in the chiral Lagrangian. Note that this

mass comes from dynamical chiral symmetry breaking and not from quark mass

73



insertion, hence it remains non-zero even in the chiral limit. Combining all the terms

we obtained above, we can now write down the nucleon Lagrangian in ChPT to the

order O(p'):

LY = NG —my+ T rsu)N
_ _ _ 1 -
— NigN —myNN — 29]:3” NAbas(9,7) - 7N + 4—F7%Nw(aﬁ x @) - 7N
+0(n%) (3.29)

It is interesting to notice that the pion-nucleon coupling constant g, is the same g4
that appears in the neutron beta decay form factor. This is known as the Goldberger-

Treiman relation.

3.6 Heavy Baryon Chiral Perturbation Theory

The nucleon Lagrangian in Eq. (3.29) is pathological not due to any symmetry
consideration but due to the introduction of a large nucleon mass my that breaks the
chiral power counting. Recall our discussion in Sec. 3.4 that the success of ChPT as
an effective theory relies on the existence of a power counting scheme, where different
terms can be arranged according to an increasing power of p/A, and p < 1 GeV.
The introduction of a massive baryon, however, provides a new scale p ~ my ~ 1
GeV to the theory and my/A, ~ 1 is obviously not a valid expansion parameter.
The breakdown of the power counting rule renders the theory useless because there
can be infinitely many terms in the Lagrangian which are equally important in the
calculation of a given observable and there is no way we can take all these terms into
account simultaneously.

The standard way to get around this problem is to introduce a phase shift to the
nucleon field N that removes the large nucleon mass my in the theory. The redefined

nucleon field now acts as a massless excitation with a residual momentum k& <1
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GeV such that k/A, < 1 so the chiral power counting is recovered. ChPT with this
treatment is known as Heavy Baryon Chiral Perturbation Theory (HBChPT). In this

section we shall introduce some basic concepts of HBChPT.

3.6.1 The velocity superselection rule
First let us consider a very heavy particle with mass m. Its initial momentum p
can be defined as:

Pt = mot + k* (3.30)

where v can be interpreted as its “velocity” and k* is a residual momentum where
k < m. Now, imagine that it interacts with another light particle with a typical
momentum much less than m. The final momentum p’of the heavy particle can be

written as:

Pt = mut + K" (3.31)

The difference between the initial and final momentum is then

pt —pt =mu™ —ok) + (K" — E*). (3.32)

It is clear now that in the large m limit we must have v = ¢’ in order for the momentum
change to be finite, which means the velocity of a heavy particle is conserved during
a soft interaction even though its momentum is not. This is known as the “velocity
superselection rule”. The picture can be visualized easily: when a light ball bounces
off a very heavy ball, the heavy ball experiences a finite momentum change due to
momentum conservation but its velocity is hardly changed.

Applying this concept to the nucleon in ChPT, we are able to label the nucleon
field N with a four-velocity v which is conserved during interactions involving ex-

change of soft momenta.
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3.6.2 Light and heavy components of the nucleon field
Let us make the discussion above more rigorous in terms of mathematical for-
mulation. First, we define an arbitrary constant vector v* satisfying the following

relations:

v > 1 (3.33)

and two velocity projection operators

1+
2
One can easily verify the following properties for the projection operators:
Pv+ + P _ = 1
(Pvi)Q = Pvi
P’UiP’U¥ — 0
PPy = +£P,.. (3.35)

Next, we shall define the “light” component N, and the “heavy” component H,

of the nucleon field as the following:

_ ITMNV-T
N, = ¢™vip N

H, = ¢™v*p, N. (3.36)

Obviously, the original nucleon field N is related to these two components by N(z) =
e~ mNve(N, (x) + H,(x)). Also, note that this decomposition acts only on the Dirac

space of the nucleon field and has nothing to do with the isospin space.
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3.6.3 The heavy baryon expansion

With this decomposition we are now ready to formulate the heavy baryon expan-
sion of the ChPT Lagrangian. Our goal is to expand the ChPT Lagrangian in powers
of p/my where p is an energy scale much less than 1 GeV. With this expansion,
the nucleon mass my can only appear in denominator and not numerator, hence the
power counting of our chiral Lagrangian will be safe. Let us start with the following

nucleon Lagrangian:

L=N@GT—my+T)N (3.37)

where I' can take any form. Substitution of the decomposed form of N into the

equation above leads to:

L= N,(iD+T)N,+ H,(i?—2myx +T)H, + N,(iP —2my +T)H, + H,(i7+T)N,.
(3.38)

If we concentrate on the first two terms of the equation above, it seems that N,
is a massless excitation while H, is a massive excitation with mass 2my. One could
then integrate out the heavy field H, in the Lagrangian and obtain and effective
theory of the light field N, only. This procedure creates infinitely many terms that
can be arranged by increasing powers of 1/my and that is exactly the heavy baryon
expansion we are looking for.

There is one further step we need to perform to Eq. (3.38) before H, can be
integrated out. One should be aware that after the velocity projection N, and H, are
effectively two-component spinors although formally they still have four components.
Similarly, the Dirac structure of (¢20—2my +1") also contains redundancies that needs
to be removed otherwise it will have no inverse. The removal of this redundancy
involves sandwiching Dirac matrices between velocity projection operators. Some

useful results are summarized below:
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PviAP'Ui = £A. vl
PviAP'U$ = AJ_P’qu - PviAJ_
PosdysPor = AivsPs

PiAvsP+ = +A-vyP (3.39)

with A’} = A*—v- Av*. For notational convenience, we shall also define for any Dirac
structure I', I';; = P,,I'P,; (for example, I'y_ = P,.T'P,_). With this, Eq. (3.38) can

be rewritten as

L = N,(iv-D+T, )N, + H,(—iv-D—2my +T__)H,

+N, (i, + T4 )H, + H,(iP, +T_)N,. (3.40)

The heavy field H, can now be integrated out from Eq. (3.40) simply by completing

the square. The effective Lagrangian we obtain is the following:

Lgg = Ny(iv-D+T1;)N,

+N,(iD, + Ty )2my +iv-D—T__ ) (iD, +T_)N,. (3.41)

This effective Lagrangian can be easily expanded in powers of 1/my.

3.6.4 Reduction of Dirac structures

The fermionic degree of freedom in Eq. (3.41) is the light nucleon field NV, which
is effectively a two-component spinor. Recall that for a theory with two-component
Pauli spinors there are only two independent types of matrices in the spin space,
namely 1 and &. We expect the same to happen here, where all the Dirac structures

can be reduced to either 1 or some kind of spin matrix.
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It turns out that the appropriate definition of the spin matrix is given by
5% = —*Py5up. (3.42)

Some useful relations involving the spin matrix are summarized below:

Syv = 0

1
fse.0} = S0 —g")

Spo= m
[Pv-i-asg] =0
(51,87 = e, Sy, (3.43)

Note that the first four equalities hold in arbitrary dimension while the last equality
is only true when d = 4. One can demonstrate that the S# defined above indeed
possesses well-known properties of spin matrices. For instance, consider a static
nucleon where v#* = (1,0). Then the last equality becomes [S?, S7] = ic'*S¥ which is
indeed the correct commutation rule for spin operators.

One may proceed to show that any Dirac matrix sandwiched between N, and N,

will reduce to either 1 or S¥. A complete list of such reductions is given below:

NU’YE)NU = 0

NA"N, = v*N, N,
Nyv*vsN, = QNUSﬁNv
NyoHN, = 267, N,53N,

N,o"vsN, = 2i(v"N,S’N, —v"N,S"N,). (3.44)

Again, the first three equalities hold in arbitrary dimension while the last two equal-

ities are true only when d = 4.
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3.6.5 Leading order HBChPT Lagrangian
Finally we shall apply the heavy baryon formalism to Eq. (3.29). With I' =

(9a/2)yys we have:

NI, N, = %‘va%m - %ANU(% —u-vP)ysNy = gaNyu - SyN,. (3.45)

Therefore, to the leading order in 1/my expansion one simply gets:

_ 1
Lg = Ny(iv - D+ gASU : ’LL)NU + O(m—) (346)
N

The free-particle EOM derived from this Lagrangian is simply iv - 9N, = 0, which

implies the following on-shell condition:
v-k=20 (3.47)

where £ is the residual momentum carried by the light nucleon field N,,. The Feynman

propagator of the light field is given by:

l

S = e

(3.48)

These are basically all the ingredients we need in the evaluation of Feynman diagrams

using the leading order HBChPT Lagrangian.
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CHAPTER 4

NUCLEON ELECTRIC DIPOLE MOMENTS AND THE
ISOVECTOR PARITY- AND TIME-REVERSAL-ODD
PION-NUCLEON COUPLING

4.1 Introduction

Electric dipole moments (EDMs) of neutral atoms, molecules, and the neutron
provide sensitive probes of new sources of time-reversal (T) and parity (P) violation.
Current upper limits on the EDMs of the 'Hg atom [147], d4('**Hg), and neutron
[148], d,, place tight constraints on the QCD vacuum angle within the Standard
Model (SM) as well as on possible sources of sources of CP-violation (CPV) arising
from physics beyond the SM (BSM)!. The existence of BSM CPV is needed in order
to explain the cosmic baryon asymmetry (for a recent review, see Ref. [52]). If the
asymmetry had been generated at temperatures of order the electroweak (EW) scale,
then d,, provides a particularly sensitive probe.

At energies below the scale of BSM interactions A but above the EW scale, one
may characterize the effects of BSM CPV interactions in terms of an effective theory

involving only SM fields:

Lepy = Loxm + Lo + L5 (4.1)

where Loy and L denote the SM Cabibbo-Kobayashi-Maskawa (CKM) [24] and

QCD vacuum angle [34, 265, 264] CPV Lagrangians, respectively, and

'In what follows, we assume CPT conservation, so that the signal for a non-vanishing neutron
EDM would also indicate the presence of CP-violation.
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1
Liby = e ZOZEG) Oi(6) +- (4.2)

gives the set of non-renormalizable CPV effective operators at the weak scale v = 246
GeV generated by BSM physics at a scale A > v. For brevity, we have indicated only
those entering at dimension (d) six, while the 4 --- indicate those of higher dimen-
sion?. Among the more widely considered d = 6 CPV operators are the elementary
fermion EDMs, the quark chromo-EDMs, and the Weinberg three-gluon operator.
In this study, we focus on one particular d = 6 operator that naturally arises in
left-right symmetric model (LRSM) extensions of the SM, that gives rise to EDMs
of nucleons, nuclei, and diamagnetic atoms, and that has received considerably less

attention than the other operators that arise at this order in the effective theory:
ngud = 1(95TDM<P)71R7”CZR ) (43)

where ¢ is the Higgs doublet, ¢ = imp*, D,, is the SU(2),xU(1)y covariant deriva-
tive and ug (dg) is the right-handed up-quark (down-quark) field. In LRSMs, the
corresponding Wilson coefficient C.,4 is generated by mixing between the left- and
right-handed W bosons in the presence of either spontaenous CPV and/or explicit
CPV in the right-handed quark CKM matrix.

After electroweak symmetry-breaking wherein ¢’ — (0,v/v/2), the exchange of
the W* contained in the covariant derivative with a left-handed quark current leads
to an effective four quark interaction®

Im Cug

L’Effi;,CPV = —ZT [CZL")/“’LLL aR’YudR — ﬂL’yudL CZR")/M’LLR} . (44)

2A complete list of dimension six operators may be found in Refs. [29], while those directly
relevant to EDMs are listed in Tables three and four of Ref. [164].

3Corrections due to the evolution of the four quark interaction to hadronic scales are minor, see
the discussion in Ref. [266].
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The interaction in Eq. (4.4) breaks isospin symmetry, thereby giving rise to, among
other interactions, the isovector TVPV 7w NN interaction:

Lin' 1oy = g NTN (4.5)
where NV and 7 are the nucleon and neutral pion fields, respectively. This interaction
leads to long-range contributions to the nuclear Schiff moment that induces d 4(**°Hg)
as well as long-range contributions to d,, that can be computed in chiral perturbation
theory. The present limits on these EDMs, thus, imply constraints on the mass My,
of the right-handed W-boson and associated CPV phases in the LRSM.

Following this line of reasoning, the authors of Refs. [267, 268] have derived con-
straints on My, and the strength of spontaneous CPV in the LRSM from the limits
on d, and the corresponding implications of CPV in the neutral kaon sector. The
results imply that My, > 10 TeV. In related work, the authors of Ref. [269] ob-
served that O,,q will also induce a semi-leptonic CPV operator that contributes to
neutron decay. Even without specifying to the LRSM, the d,, limits on Cy,q then
constrain the magnitude of possible effects in T-odd neutron decay correlations. In
both cases, the d, constraints relied on an earlier pion-loop calculation performed
by the authors of Ref. [270] using a relativistic meson-nucleon field theory approach.
The results indicate that the leading term in d,, resulting from the interaction (4.5)
is proportional to the neutron anomalous magnetic moment «,, and is independent of
the pion-to-nucleon mass ratio, m, /my. From the standpoint of effective field theory
(EFT), this result is surprising, as the anomalous magnetic moment vertex brings
in an inverse power of the nucleon mass while consistent power counting in chiral
perturbation theory requires that loops only bring in momenta of order of the pion
mass. The absence of any m.,/my suppression in the computation of Ref. [270] is not

consistent with this expectation.
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In what follows, we repeat the pion loop computation associated with (4.5) using
heavy baryon chiral perturbation theory (HBChPT) [163] and show that the result
proportional to gﬁr%n is suppressed by (m,/my)* ~ 0.02. HBChPT implements
the power counting required by an EFT by expanding about both the static nucleon
(my — o0) and chiral (m, — 0) limits. Our results imply considerably weaker con-
straints on C,,4 from the long-range contribution to d,, than obtained in the studies of
Refs. [267, 268, 269]. Presently uncalculable short-distance contributions associated
with loop momenta of order one GeV that reside in the nucleon EDM counterterm
may imply stronger constraints as suggested by naive dimensional analysis (NDA). In
this context, one may view the relativistic meson theory computation of Ref. [270] as
providing a model estimate of the short-distance contributions. Generally speaking,
however, both the sign and magnitude of NDA and/or model estimates for the short
distance contributions are subject to uncertainty, so the most conservative implica-
tions will be inferred from the calculable long-distance terms.

In this respect, we note that the diamagnetic EDMs provide an in principle more
robust benchmark than d,,, as the nuclear Schiff moment arises from tree-level pion
exchange between two nucleons and is relatively free from the uncertainties associated
with short-distance contributions. In practice, the many-body nuclear theory uncer-
tainty associated with the interaction (4.5) are substantial [164], with the situation
for ¥9Hg being particularly unsettled. Looking to the future, storage-ring searches
for EDMs of light nuclei such as the deuteron or *He nucleus [247] would provide the-
oretically cleaner probes of O,,q since the short-distance contributions to such EDMs
are relatively minor and since the few-body nuclear theory is well under control [271].
In the immediate term, however, the long-range contribution to d,, appears to be the
most trustworthy avenue for accessing Oyq.

In the remainder of this paper, we discuss the details of our calculation. In Section

4.2 we summarize the HBChPT framework as it applies to the computation of TVPV
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observables and give the details of our nucleon EDM computation. In Section 4.3
we compare our results with those of Ref. [270]. We discuss the implications and

summarize in Section 4.4.

4.2 HBCHhPT Calculation

Loop computations performed with a relativistic meson-nucleon field theory and
dimensional regularization include explicit contributions from loop momenta of order
my, thereby eliminating the possibility of a consistent power counting*. In HBChPT
[163], one removes these contributions by first redefining the nucleon degrees of free-

dom in terms of heavy fields having fixed velocity v

1 )
N, = %”emwv'w , (4.6)
where
P =myvt + k" (4.7)

with k£ being a residual momentum. We henceforth omit the “v” subscript. Deriva-
tives acting on the heavy fields give the small residual momenta, and the propagator
of a heavy-nucleon field no longer contains the nucleon mass. The results of loop
integrals involving the N fields then scale with powers of Q)/my and Q/A,, where
@ is of order m, or the external momentum (assumed to be well below one GeV),
A, = 27 F} is the scale of chiral symmetry breaking, and F; = 186 MeV is the pion

decay constant®. One, thus, obtains a consistent EFT power counting.

4A relativistic approach can provide a reliable power counting if more complicated regularizations
schemes are applied, for a review see Ref. [272].

°Note that other work in HBChPT uses f, = Fy /2.
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The HBChPT interactions are constructed from the heavy nucleon and pion fields,
the velocity v, and the spin S* with S = (&/2,0) in the nucleon rest frame v = (0, 1).
It is also useful to project vectors in their components parallel and orthogonal to the
velocity. We use a subscript L to denote the perpendicular components. For example,

the perpendicular covariant derivative is
D = D' —vtv-D . (4.8)

We note that HBChPT operators are manifestly invariant under rotations and trans-
lations. Under boosts, the HBChPT operators are only invariant order by order in
the @Q/my expansion, leading to non-trivial constraints on the interactions in the
effective Lagrangian and on their coefficients [163, 273].

The resulting, leading order (LO) P- and T-conserving Lagrangian for f fermion

fields is (see Ref. [274] for more details)

L(O):lDﬂ"D“ﬂ'—m—iﬂ'Z—i—N iU-@—zﬂSuT-Dﬂ' N (4.9)
2 H 2D F. a ’ '
where g4 = 1.27 is the pion-nucleon axial-vector coupling. At LO, electromagnetism

can be included by making the derivatives in Eq. (4.9) covariant under Ugy (1),

1
(Dum)i — (Dyem™)i = ) (0465 + eApesij) 5

1 e
Q)ﬂN — @p,emN = aﬂ + ﬁT : (Tl' X D,u,,ernﬂ-) + EA’LL (1 + 7'3) N , (410)
where e is the proton charge, ¢ > 0 and D = 1 +a?/F2. For brevity, in the following
we omit the label “em”.
The anomalous magnetic moment that is of particular interest to this work first

appears at next-to-leading order (NLO) in QQ/my, together with the nucleon kinetic
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energy, a recoil correction to the axial pion-nucleon coupling, the nucleon sigma term,

and the proton-neutron mass difference

1 -
O = — ~ NprN 4
QmN AN

1 _
+—5°‘B’“’UQN55 [(1+ ko) + (1 + K1)m3) NeF,,
N

4m
5mN — ( 3 271'3
T —_

NN+ 2N
) L F2D

(iv-Dm)-NTS-D_N

272
2D

+Amy <1 7'~7'r> N+... (411)
Here, k1 and kg are the isovector and isoscalar anomalous magnetic moments (AMMs),
k1 = 3.7, kg = —0.12, and Amy and dmy the nucleon sigma term and nucleon mass
splitting originating in the quark masses. A lattice calculation found dmy = 2.26
MeV [275], while evaluations of Amy range between 45 and 60 MeV [276]. The
“+.--7in Eq. (4.11) denote other operators with chiral index A = 1, like the pion
mass splitting term, which are not relevant for our discussion.

In Eq. (4.11), the nucleon AMM couples to the magnetic field, and this interaction
does not contribute directly to the nucleon EDM. However, the AMM does couple
to the electric field at next-to-next-to-leading order (NNLO) through the spin-orbit
interaction that appears in A = 2 Lagrangian:

ga

L = SDym (NTS$"D} _N—NtDf _S-D; _N)
myFr ’ ’

—ﬁgaﬂﬂwsa [(1+ 2k0) + (1 + 2k1)73] Ds1 N €Fl + ... (4.12)
The first term in Eq. (4.12) is a relativistic correction to g4, while the second term
is the spin-orbit nucleon-photon coupling. Reparametrization invariance fixes the
coupling constant of the interactions in Eq. (4.12) in terms of the couplings in Egs.
(4.9) and (4.11) [163, 273].

Next we list the TVPV interactions originating in the four-quark operator in

Eq. (4.4). The construction of these interactions has been discussed in detail in Ref.
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[277], and here we only summarize the results. As already mentioned, the isovector

TVPV pion-nucleon interaction in Eq. (4.5) with coupling g&l) is induced at leading

order. Additionally, the quantum numbers of the neutral pion allow the existence of

a pion tadpole term. This tadpole can be removed from the Lagrangian via a field

redefinition of the pion and nucleon fields [278]. These field redefinitions induce an

additional LO contribution to the isovector TVPV pion-nucleon that can be absorbed
(1)

into gr’. The tadpole removal also induces a contribution to the isoscalar TVPV

pion-nucleon interaction

ER,/’P}/:O = gﬁro)Nr -N . (4.13)

Though formally LO, this contribution vanishes in the isospin limit m, = m, and is
suppressed by the ratio gﬁo)/gﬁﬁ) = dmy/(2Amy) ~ 0.02.

We find that there exist no NLO corrections proportional to g,(,” and §17(T0), because
they depend on structures like (1 & ¢)(1 F ¢) that vanish. The first non-vanishing

corrections proportional to gﬁf) appear at NNLO and are given by

=(1) =(1)
TVPV(NNLO 9r N v Gr N
AR ~ 4 (Dym) N[S", 8D, N — ZomNDE N . (4.14)
N N
For brevity, we do not list the remaining NLO and NNLO TVPV interactions [277]
that are not relevant for the present discussion.

Finally, the combination of Eq. (4.4) and electromagnetic interactions gives rise

to the EDM interaction
LIV = —9N(dy+ dy7*)SEN v F + ..., (4.15)

where dy and d; are, respectively, the isoscalar and isovector short-range contributions
to the nucleon EDM and the “+---” stand for terms with one or more pions or

relativistic corrections not relevant for the discussion here.
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We now compute the contributions to the nucleon EDM generated by the inter-
actions in Egs. (4.5,4.9,4.11-4.15). In the HBChPT framework, the EDM enters as a

TVPV contribution to the nucleon EM current:
Jivev(@) = 2i(dy+dims) (S-qut —S*v-q+...) , (4.16)
where ¢" is the four-momentum of the outgoing photon and
LWTR{PV = —JrvevAu - (4.17)

The dots in Eq. (4.16) denote relativistic corrections to the leading order current. The
neutron (proton) EDM is given by dy — d; (do+ dy). For virtual photons, the nucleon
EDMs become the electric dipole form factors (see, e.g., Refs. [279, 280, 281]). For
purposes of our calculation, however, we focus on the static limits.

Contributions to the nucleon EDM arise from tree-level diagrams involving the
short-range interactions in Eq. (4.15) and from one-loop diagrams involving the TVPV
pion-nucleon vertices. The largest one-loop diagrams involve the P- and T-conserving
vertices from Eq. (4.9) only, while corrections appear due to insertions of vertices from
Eq. (4.11) or (4.12).

The contributions to dy; proportional to gﬁr” and gf(ro) up to order O(Q/my)
have been computed previously in Refs. [281, 282], and they are independent of kg ;.
The reason being that O(Q/my) electromagnetic interactions given in Eq. (4.11) do
not contribute to the nucleon EDM since the interaction with the external field is
purely magnetic in the rest frame of the nucleon. The contributions proportional to
the AMMs therefore enter at O(Q/my)? and are generated by the vertex correction
diagrams in Fig. 4.1 along with the corresponding wave function renormalization
graphs in Fig. 4.2. Because §7(r0) / g§3) is small, at this order we focus on diagrams

involving gt only. The number of open circles indicates the order in the (Q/my)
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(a) (b) (c) (d)

Figure 4.1. One-loop diagrams contributing to the nucleon EDMs at next-to-next-
to-leading order. Solid, dashed and wavy lines represent the propagation of nucleons,
pions and photons, respectively. A square marks the isovector TVPV interaction
from Eq. (4.5), other vertices representing the T- and P-conserving interactions.
Each circle on the vertex represents a suppression factor proportional to 1/my. For
simplicity only one possible ordering is shown.

Figure 4.2. One-loop diagrams contributing to wave function renormalization. The
notation is as in Fig. 4.1.

expansion. Again, because the O(Q/my) electromagnetic interactions are purely
magnetic, the contributions from the topologies of Figs. 4.1(a-c) vanish individually.
We also find that the sum of contributions proportional to gf(rl) that arise from the
O(Q/my)? wave function renormalization vanish. The only surviving, non-vanishing
contribution is generated by the topology of Fig. 4.1(d).

At O(Q/mx)?, an additional set of contributions to the proton EDM proportional
to g,(rl) are generated by the graphs in Fig. 4.3. The latter contain only the coupling
to the nucleon charge and various combinations of (a) O(Q)/my) corrections to the
mN N interactions and nucleon propagator as well as (b) O(Q/my)? corrections to one
of the couplings or propagator and LO interactions for the remaining components of
the diagram. Finally, at this order in principle contributions appear due to two-loop

(1

diagrams involving g,r) and LO P- and T-conserving vertices. However, the sum of

these diagrams vanishes.
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(a) (b) (c)

Figure 4.3. Representative one-loop diagrams contributing at order (m,/my)? to

the proton EDM proportional to §7(T1) and independent of the anomalous magnetic
moment coupling. The notation is as in Fig. 4.1.

Before giving our result, we first quote the LO and NLO results, including the
contributions involving both gﬁf) and g,(ro). It should be noted that the results involv-
ing gSP) are actually suppressed by the smallness of gSP) / gfrl) for the CPV source in
Eq. (4.4). The LO contribution proportional to 7 has been first calculated in Ref.
[282], while the NLO corrections have been calculated in Refs. [281]. Together they

give

JLO+NLO g €A TMx az0) (1)
0 O In2E Ay 05 TO)

2

dIfO+NLO — ({1 __f94 @(FO) I — 1n% + 5_7-(& + fﬁ@(rl) ) (4_18)
4m2F,

The contribution of gﬁro) to the isovector EDM is UV divergent, with divergence en-

coded in the factor

—— — g + Indn | 4.19
1—d " (4.19)
in terms of number of space-time dimensions d and the Euler-Mascheroni constant
ve. The divergence is absorbed by the low-energy constant d;, which also contains
an a priori unknown non-vanishing finite contribution. It is conventional to absorb
L entirely into d;, thereby isolating the terms non-analytic in quark mass that are

unique to the loops. Notice that, at this order, the §7(r1) terms do not contribute to
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the neutron EDM. For the interaction Cy,4 in Eq. (4.4), this implies that the largest

7 is suppressed.

non-analytic contributions only affect the proton EDM because gx
At NNLO, gﬂl contributes to the nucleon EDM via the diagrams in Figs. 4.1 and
4.3. At this order in the Q/my expansion, we neglect small §{”m2 /m2, corrections,

and only give terms proportional to g7r . We find that the contributions are divergent:

~(1)

2 2
gNNLO - GIATr a5 g V(L —log 27 ) 41
0 T (5+ 4k1) 085 +1],

(1) 2 2
ANLO €gagr "~ Mz [(5 + 4kg) (L log — Do ) + 1] . (4.20)
p?

64m2 F, m&

Again, we can absorb L and other finite pieces analytic in the quark mass into the
LECs dp;. It is also instructive to express results through O(Q/my)? for the neutron

and proton EDM’s separately:

4Am2F,

2
ega 0 m;  2Tmg,
d, = d O (In —x —
P ij4 2F {g <nm?\, mN)
2

=(1) 2
x| 2Tmy 5

I { S +( +m0+nl) T 1n—m;1 , (4.22)
4 | my 2 my My

where we have also absorbed analytic terms into Jp = dy+ d, (Jn = dy — a_ll) and

_ 2 ~(1) 2 2
4. — q, - 94 {ggn (m M _ ”m”) + % (k1 — no)%lnm—;} (4.21)

evaluated the result at a renormalization scale u = my. We observe again that unlike
d,, d, contains no terms proportional to g,(r” linear in m, and that its non-analytic
quark mass dependence first appears at NNLO. Thus, compared to the estimates
based on Ref. [270], the d,, contributions proportional to kg ; are suppressed by two
powers of m,/my, leading to a factor of ~ 50 suppression.

In principle, the magnitude of the finite parts of the dj;, corresponding to “short
range” dynamics, may be larger than those arising from the loops. In practice, the
relative importance of the short-range and loop contributions depends on the prop-

erties of the four-quark operator in consideration. To illustrate, we consider the
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interaction of Eq. (4.4). Using general chiral symmetry arguments and NDA [283],
we expect [277, 164]

A3 TmC
—(1) ~ X pud
g7r Fﬂ—A2 (47T)2 ) (423)
- ey ImClq
doa N ()2 (4.24)

where A, = 27F; ~ my. Substituting the estimate (4.23) into Eqs. (4.18) we have

that
e My A_f’( ImClyq N ey, mm,; ImCyyq
(2nF;)? dmy A2 (4m)? A% dmy  (47)?

dpy @1 ~ (4.25)

The result in Eq. (4.25) is suppressed by one power of m,/my with respect to the
NDA estimate (4.24).

The non-analytic NNLO loop contributions are suppressed by an additional factor
of m,/my with respect to NLO contributions to dy 1, and of m2 /m3 with respect to
the short-distance low-energy constants dy ;. For the isoscalar EDM, the suppression
is somewhat mitigated by the enhancement due to the large value of k.

To obtain a sense of the relative importance of various terms in Eqgs. (4.21) and
(4.22), we assume géo)/gﬁl) = 0.02 as one expects for the source in Eq. (4.4). In this

case, the formally LO contribution to d,, proportional to i, and the O(m?2 /m%)

correction proportional to gfrl) X Ky are numerically comparable. For the proton
EDM, the NLO contribution proportional to gﬁr”m,r /my is about twice as large as
the NNLO term. The two contribution enter with opposite sign, and partially cancel,

7(r0) and gﬁr” to d, are also of similar

so that net contributions of the two couplings g
magnitude. The comparison with the short-range contributions is more uncertain. If
we use the NDA estimates of d,, d,, and g in Eqgs. (4.23) and (4.24) we find that
the pion loops enter at the 10% to 20% level with respect to the short-range terms.
However, deviations from the NDA expectations can affect this conclusion. More
0

robust estimates require a first principles determination of d,, Jp, g ) and gsrl) in
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Figure 4.4. One-loop diagram contributing to the nucleon EDM in relativistic chiral
perturbation theory. A square marks a TVPV interaction, other vertices representing
the T- and P-conserving interactions in Eqs. (4.27) and (4.28).

terms of the coefficient C,,4, which, at the moment, is not available (model estimates
are summarized in Ref. [164]).
Finally our result for d,, in Eq. (4.21) can be used to obtain a limit on g,

Using the experimental upper bound |d,| < 2.9 - 107 ecm [148] and assuming no

cancellations with other contributions, we obtain

1G] $1.1x 10710 . (4.26)

4.3 Comparison with Earlier Work

It is instructive to compare the HBChPT results with those of Ref. [270]. The lat-
ter compute the contribution from Fig. 4.4 using the TVPV interactions in Eqgs. (4.5)
and (4.13), together with the T- and P-conserving pseudoscalar pion-nucleon coupling

2 _
L, = m;ng NivSr - 7N | (4.27)

™

the relativistic version of the nucleon propagator, and the nucleon magnetic moment

Lagrangian
e

L =— NO"LWFHV [Iio + I€1T3] N . (428)

8mN

We have repeated the calculation using these ingredients and obtain
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do = 6(3@7(?)50 + ggrl)/ﬂ?l) g4 Fp (

SHES
N——

1672 F, m
2
_ —(0 —(1 ga mx
d = e(=gVr1 +gVko) 167r2F7TFP (m?\r) : (4.29)
where, when expanded for small x,
314 2
Fp(x) = 5|3 3™ve- xlogx + O(x3/2)] : (4.30)

The result obtained in Ref. [270] is similar apart from the first term in Eq. (4.30)
that is 1 in their work instead of 4/3 as we find. The discrepancy can be traced back
to a term containing the product of Dirac matrices y,0*~v“. This combination is
proportional to d — 4, but comes in front of a divergent integral. In the limit d — 4,
the 1/(d—4) from the loop integral cancels the d —4 in the product of Dirac matrices,
leaving a constant piece.

Comparing with the HBChPT results in Eq. (4.20), we see that the relativistic
calculation with pseudoscalar coupling yields contributions proportional to gf(rl)/fo,l
that arise at lower order in m,/my. The zeroth order term in Eq. (4.29) clearly
conflicts with the power counting expected in a well-behaved EFT since there ap-
pears no m,/my suppression. Using Eq. (4.23) in Eq. (4.29) would conflict with
the chiral/ NDA expectations in Eq. (4.25), overestimating the latter by a factor of
my/mg ~ 10.

The term non-analytic in the quark mass (my ~ /M, 4) proportional to (m-/my)koa
in Eq. (4.29) respects, in principle, the chiral/ NDA estimate, but in the HBChPT
calculation this term is absent. We can trace this discrepancy back to the use of
the pseudoscalar coupling in Eq. (4.27) which breaks chiral symmetry. Repeating
the calculation with the relativistic axial-vector pion-nucleon coupling that conserves
chiral symmetry, we find that the (m,/my)ko1 term does not appear. The first non-

analytic terms that appear are then proportional to (m2/m%)ko 1, as they should
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be. We refrain from giving all details, but have confirmed that by using appropriate
matching conditions the non-analytic terms appearing in the HBChPT and relativis-

6. Of course,

tic calculation (with axial-vector pion-nucleon coupling) are the same
in the relativistic calculation with pseudovector coupling there still appear analytic
terms that are lower order in m,/my that may overestimate the dependence of the

nucleon EDM on gﬁro) and §7(r1).

4.4 Implications and Conclusions

From the foregoing discussion, it is evident that any phenomenological constraints
obtained from experimental limits on d,, and the results in Eq. (4.29) are likely to
be at least an order of magnitude too stringent. In HBChPT, the loop contributions
proportional to kg; arise at NNLO in the @)/my expansion, while s-independent
contributions start off at NLO. For the isoscalar EDM, the NNLO contribution is
numerically comparable to the NLO term due to the large magnitude of 1, whereas
for the neutron the NLO contribution is absent and the NNLO suppression is more
severe. In terms of the “left-right symmetric” four-quark interaction (4.4), the NLO
loop contributions and the chiral/NDA estimates for the short distance LEC are nu-
merically comparable although the loops can be expected to be somewhat smaller
due to to a m,/my suppression. Consequently, we see no reasonable way around the
m./my suppression that should be applied to the analysis of the LRSM. For other
scenarios that lead to a different subset of the d = 6 CPV operators, such as the
Weinberg operator or chiral invariant four-quark operators, the loop contributions

associated with §7(r1) will be further suppressed compared to the short distance contri-

6The chiral symmetry-breaking impact of the pseudoscalar coupling enters through the tree-level,
parity-conserving, pion-photon production sub-graphs of the one-loop TVPV diagrams. Matching
onto the HBChPT Lagrangian requires introduction of an explicit chiral symmetry-breaking opera-
tor. No such operator is required when matching with the relativistic, pseudovector calculation.
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butions. On the other hand, a scenario in which the isovector quark chromo-EDM is
the dominant d = 6 CPV source will have a similar phenomenology as the LRSM”.

For the LRSM with spontaneous CPV, the relaxed constraints may allow for
consistency between EDMs, the kaon CPV parameter €, and a right-handed W-boson
(Wg) with mass of a few TeV rather than the lower bound of 10 TeV quoted in
Ref. [267] (see the right panel of Fig. 8 for an illustration of the impact of relaxed
EDM constraints). In this case, discovery of the Wg at the Large Hadron Collider
would still be possible, though it would likely imply that a second neutral CP-even
Higgs boson would be too heavy to be observed.

Similar conclusions apply to the analysis of Ref. [269] that considered the im-
plications of d,, limits for the P-conserving, T-violating neutron decay correlation
J- Pe X P, with a coefficient denoted by D. Separating out the final state interactions
(Dy) that can mimic bona fide T-violation (D,), the authors of Ref. [269] use the
work of Ref. [268] that, in turn, relied one the relativistic meson theory calculation of
Ref. [270], to conclude that |D;/k| < 1077, where x denotes the combination of Fermi
and Gamow-Teller matrix elements, g4, and the vector coupling gy that enters the
correlation. This bound lies well below the computed final state interaction contri-
bution |Dsk| ~ 107° with an uncertainty at the 107 level. In this case, it would not
be possible to disentangle final state contributions from possible LRSM contributions
for experiment performed with 10~7 level sensitivity. However, applying the relaxed
EDM constraint we obtain here would lead to |D;/k| < 107, opening a window for

a future D-correlation experiment to observe a non-vanishing LRSM effect.

"Deviations from these expectations might appear in the EDMs of multi-nucleon systems [277].
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CHAPTER 5

REEXAMINATION OF THE STANDARD MODEL
NUCLEON ELECTRIC DIPOLE MOMENT

The search for permanent electric dipole moment (EDM) of elementary and com-
posite particles is motivated by its CP-violating nature. We live in a universe in which
the amount of baryons and antibaryons are unequal. In order to explain this asym-
metry CP-violating interactions are needed to fulfill one of the three Sakharov criteria
[38]. EDMs of elementary and composite particles are, in most cases, direct conse-
quences of these interactions which can be probed in low-energy experiments. Since
the first upper limit on the neutron EDM obtained by Smith, Purcell and Ramsey
in 1957 [33], numerous experiments have been performed to improve the sensitivity
of EDM measurements in different particle systems. Currently, the most stringent
bounds on EDMs are set for the electron (8.7 x 107*ecm, 90% C.L.)[146] and the
mercury atom (3.1 x 107%%e cm, 95% C.L.)[147], while the current upper limit on neu-
tron and proton EDMs are 2.9 x 107%%e cm (90% C.L.)[148] and 7.9 x 10~ *¢e cm (95%
C.L.) respectively (the latter is deduced from the bound on the mercury EDM). Fu-
ture experiments are designed (or have been considered) to push these bounds even
further down. For the neutron EDM, this includes the experiment at Paul Scher-
rer Institut (PSI)[149], the CryoEDM and PNPI/ILL experiment at Institut Laue-
Langevin (ILL)[150], the SNS neutron EDM experiment at Oak Ridge, the TRIUMF

experiment in Canada and the Munich experiment at Germany. These experiments

OReprinted article with permission from C. Y. Seng, Phys. Rev. C 91 (2015)
no.2,  025502. Copyright  (2014) by the American Physical Society. DOLI:
http://dx.doi.org/10.1103 /PhysRevC.91.025502
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are designed to reach a 107?®e¢ cm precision level for the neutron EDM [151]. Also,
both COSY[152] and BNL[153] have proposed storage ring experiments designed to
measure the proton EDM to a level of 107*¢ cm precision.

Although numerous Beyond Standard Model (BSM) scenarios have been proposed
that give rise to measurable EDMs within current experimental precision level, so
far no definitive signal of such physics has been observed !. Therefore, the CP-
violating phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix in the Standard
Model (SM) remains the only source for intrinsic EDMs. Questions have been raised
concerning the expected size of EDMs coming from purely SM physics[154]. A simple
dimensional analysis using constituent quark masses may suggest that the SM-induced
neutron EDM could be as large as 10~?%¢ cm, approaching the level of sensitivity for
future EDM experiments. It is therefore important to have a better estimate for the
SM contribution to the nucleon EDM. To leading order, the quark EDM induced by
the CKM matrix starts at three-loops [155]. A detailed calculation showed that the
valence-quark contribution to the neutron EDM is of order 10~3*ecm [156]. It was
also shown that long-distance contributions, namely contributions with baryons and
mesons as effective degrees of freedom (DOFs), could generate a much larger hadronic
EDM. For instance, the pion-loop contribution to the neutron EDM was first studied
in a paper by Barton and White [157] which produced log-divergent results in the
chiral limit indicating that the long-range contribution may dominate. On the other
hand, in a series of papers, Gavela et.al. studied the pole-diagram contribution with
the CP-violating phase generated by |AS| = 1 electroweak [158] and gluonic penguin
diagrams [159]. They claimed that the latter is dominant and derived a SM neutron

EDM of order 10~3!'e cm. The possibility of a long-range contribution to the neutron

!There are indeed some hopeful candidates, for example the muon g—2 anomaly; but no conclusive
statement can be made before one could further improve the experimental precision and reduce the
theoretical uncertainty of the SM prediction.
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EDM from the CKM matrix was first pointed out by Khriplovich and Zhitnitsky[160].
He et.al [161] did a thorough chiral-loop calculation and re-analyzed the pole-diagram
contribution in [158, 159] and argued that the two are of the same order of magnitude.
Their estimate for the neutron EDM is 1.6 x 1073'ecm — 1.4 x 10733¢ cm, which is
currently the most widely accepted estimate for the SM neutron EDM. In recent
years, the charm contribution to nucleon EDMs is also considered and it is roughly
1073%e cm [162].

The purpose of this paper is to revisit the previous study of both chiral-loop and
the pole contributions to the nucleon EDM in order to sharpen our SM benchmark
value. On the theoretical side, one could improve earlier work in several ways. For
instance, the chiral loop calculation in [161] adopted an older meson theory utilizing a
pseudoscalar strong baryon-meson coupling that should be replaced by the standard
axial-vector coupling. Also, their work that utilized an effective hadronic Lagrangian
in computing chiral-loop diagrams faced another well-known problem in the loss of
power counting similar to that happening in the relativistic Chiral Perturbation The-
ory (ChPT). ChPT is a non-renormalizable theory that involves infinitely many inter-
action terms. Its predictive power therefore relies on the fact that higher order terms
are suppressed by powers of p/A, where p is the typical mass or momentum scales
of hadronic DOFs and A, ~ 1GeV. This expansion however becomes ambiguous
when baryons are included because a typical baryon mass is Mg ~ 1GeV. Therefore,
Mp/A, is no longer a small expansion parameter. Heavy Baryon Chiral Perturbation
Theory (HBchPT) [163] provides a convincing way to get around this issue by per-
forming a field redefinition in the baryon field to scale out its mass-dependence. By
doing this, one can split the baryon field into “light” and “heavy” components, where
the former depends only on its residual momentum which is well below 1 GeV. After
integrating out the heavy component of the baryon field, the effective Lagrangian

can be written as a series expansion of 1/my. This eliminates the possibility of a
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factor my appearing in the numerator and thus restores the power counting. Many
works have appeared recently calculating the nucleon EDM induced by different BSM
physics using HBchPT (see [164] for a general overview). Although the convergence
of the SU(3) HBchPT is not as good as its SU(2) counterpart because my /my is not
very small [165, 166, 167, 168, 169], it is still theoretically beneficial as it provides
a formal classification of different contributions into leading and sub-leading orders.
In this work, the chiral-loop contribution to the nucleon EDM are recalculated up to
the leading-order (LO) in the heavy baryon (HB)-expansion.

Additionally, previous numerical results of loop and pole contributions face large
uncertainties due to poorly-known values of physical constants in the weak sector at
that time. For example, the CP-violating phase § of the CKM matrix quoted in Ref.
[161] had an uncertainty that spans one order of magnitude. The fitting of certain low
energy constants (LECs) such as weak baryon-meson interaction strengths, has been
updated since. Also, their theoretical estimation of various CP-phases in the effective
weak Lagrangian was based on older work [170, 171] which had been improved by
others. Furthermore, for previous work on pole contributions, their estimation on
effective CP-phases was based only on a single gluonic penguin operator without
considering the full analysis of operator mixing and renormalization group running.
Moreover, the approximate form of their analytic expressions was based on the out-
of-date assumption that m; << my . In this work, I do a more careful determination
of weak LECs, taking all these issues into account. Combining my calculation and an
estimate of higher-order effects, I predict a range of the long-distance SM contribution
to the nucleon EDM to be around (1 —6) x 1072?c cm. I identify the main sources of
uncertainty and discuss possible steps one could take to improve upon that. At the
same time, I use dimensional analysis to estimate the size of possible short-distance

counterterms. I find that they could be as large as 4 x 1073%¢ cm.
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This work is arranged as follows: in Section II I will briefly outline the main
ingredients of the SU(3) HBchPT and introduce the weak Lagrangian responsible for
the generation of the nucleon EDM. In Section III I will determine the LECs. In
Section IV and V Iderive the analytic expressions for loop and pole contributions to
the nucleon EDM respectively and calculate their numerical values. In Section VI I

will provide some further discussions and draw my conclusions.

5.1 HBchPT: Strong and Electroweak Interactions

In this section, I review some basic concepts of ChPT with the primary aim of
establishing conventions and notation. ChPT is a low-energy effective field theory
(EFT) of quantum chromodynamics (QCD) with hadrons as low energy DOFs. QCD
exhibits a global chiral symmetry in the limit of massless quarks. However this sym-
metry is spontaneously broken in the ground state and leads to the emergence of
Goldstone bosons which are identified as pseudoscalar mesons. The corresponding
EFT obeys the same symmetry. An infinite tower of operators respecting the symme-
try with increasing mass dimensions is organized in the Lagrangian. However, only
a finite number of operators are retained since the the dropped higher-dimensional
operators make contributions that are suppressed by powers of p/A,,.

I use the standard non-linear representation of chiral fields [172, 174, 173], in
which the pseudoscalar meson octet is incorporated in the exponential function U =

exp{i¢p/F,}, where

w4+ Jems V2rt o V2K
¢ = Z Gada = \/§7T_ -9 + %778 \/§[(0 (51)
V2K~ V2K° _§7I8

with F; ~ 93MeV. The matrix U transforms under the chiral rotation as: U — LUR,

where L and R are elements of SU(3), and SU(3)g respectively. The mass term of
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the meson octet is introduced using spurion analysis: the QCD Lagrangian would
exhibit chiral invariance if the quark mass matrix M = diag{m.,,, m4, ms} transforms
as M — LMR'. Therefore, its low energy effective theory written in terms of the
spurion field M should also exhibit a similar invariance. The lowest-order operator
that is invariant is Tr[MUT+U MT]. This operator gives rise to non-zero meson masses
which are isospin-symmetric.

The ground state J© = (1/2) baryon octet is assembled into the matrix:

30 A +
% +7€ 2 P
B=| s -miao, (5.2)
= =0 _2A
- - NG

It transforms as: B — K BK' with K = K(L, R, U) being a unitary matrix. In order
to couple baryons with the pseudoscalar octet, we define & = v/U which transforms

as £ — LEKT = KER' and introduce the Hermitian axial vector:

A, = 5[0, — €10, (53

which transforms as 4, — K4,K" under the chiral rotation (we have neglected its
coupling with external fields because it is not needed in this work).
I now proceed with with the formulation of HBchPT. In order to scale out the

heavy mass-dependence, I rewrite its momentum as
DPu = MNV, + k,u; (54)

where my is the nucleon mass, v, is the velocity of the baryon (which is conserved

in the my — oo limit) and k,, is the residual momentum of the baryon which is well

103



below 1 GeV. I therefore rescale the baryon field and retain its “light” component 2:

Bu(z) = eiva-x#B(x) (5.5)

The subscript v will be dropped from now on. OI integrate out the remaining com-
ponent which is “heavy”. The baryon propagator thus becomes:

i

ZSB(k):U-k—53+ie

(5.6)

where 0 = mp — my is the baryon mass splitting. This procedure also reduces
Dirac structures to either 1 or S* with the latter being the spin-matrix of the baryon
satisfying S-v = 0. In this work I concentrate only on terms that are leading order in
the HB-expansion (with the exception of the baryon electromagnetic dipole transition
operator that appears in pole diagrams as I will explain below).

The lowest-order strong Lagrangian involving only the (1/2)" baryons, Goldstone

bosons and electromagnetic fields relevant to our work is given by:

2 2

I3 F _ _
L = Z”Tr[Q)MUQ)“UT] + 5 Trlxs] + Te[Biv - DB] + 2DTr[BS*{4,, B]
_ b _ b _
+2FTr[BS"(A,, B]] + 5 Tr[B{x, B} + 5= Tr[Blx;, BJ]

2B, 2B,
bo

+2—BOTr[BB]Tr[X+] (5.7)

where D = 0.80, F' = 0.50 [172] and D,U = 0,U + ieA,[Q,U]. Here

Q = diag{2/3, —1/3,—1/3} (5.8)

is the quark charge matrix while By is a parameter characterizing the chiral quark

condensate and y; = 2By(ETMET + EME) introduces the quark-mass dependence.

Zin the sense that it only depends on the residual momentum
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The last three terms in Eq. (5.7) are responsible for the mass splitting within the
baryon octet [175]. Since I have scaled out the nucleon mass from the baryon field
B the proton and neutron will appear as massless excitations and the other baryons
will have an excitation energy given by the “residual” mass dg. This is important
later during the computation of pole diagrams.

For the purpose of pole diagram contributions I need also to include the (1/2)~
baryon octet. The importance of these resonances can be traced back to the observa-
tion of the unexpectedly large violation of Hara’s theorem [176] which states that the
parity-violating radiative B — B’~y transition amplitude should vanish in the exact
SU(3) limit. The authors of Ref. [177] (and later improved by [178]) pointed out
that this apparent puzzle could be resolved by including baryon resonances that give
rise to pole diagrams which enhance the violation of Hara’s theorem. Therefore, one
should naturally expect that the same kind of diagrams will also play an important

role in the determination of the nucleon EDM. The resonance (1/2)~ octet is denoted

as R

30 A* +x *
=T by P
R = DR (5.9)
——x —=0x _2AF
- - V6

It transforms in the same way as B except that it has a negative intrinsic parity.
The part of strong and electromagnetic chiral Lagrangian involving X which is

relevant to our work is given by:

Ly = Tr[Riv- DR] - dx Tr[RR] + 2—BOT1"[17{{X+> R} + Q—&JTI"[K[X+> R]]

b
+2_B?()TT[K.K]TT[X+]

—27”D(T1“[R(UHSU — 0, S){fY, B} + Tr[B(v,S, — v,S){f}", R}])
2 (THR (0,5, — S, B + TeB(o,S, — u,S,) 12, R])). (510
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The second to fifth terms of Lg give the average residual mass and mass-splitting
among the (1/2)~ baryon octet. Constants rp and rp are electromagnetic coupling
strengths between B and K and f!” is the chiral field strength tensor of the electro-

magnetic field that, in the SU(3) version of ChPT, is given by [172]:

= —e[€'Q€ + Qe P (5.11)

with e > 0. The reason we include rp and rpr terms even though they are formally
1/my-suppressed is that they will then be compensated by small denominator dp
factors in pole diagrams.

Next I introduce the relevant weak Lagrangian that gives rise to the nucleon
EDM. As the only CP-violating effect in the SM is the complex phase in the CKM
matrix, the strange quark must be included. The CP-phase is attached to various
|AS| = 1 four-quark operators that are responsible for kaon decay and nonleptonic
hyperon decays. It is well-known that the product of two charged weak currents could
transform as (8z,1g) or (27;,1g) under the SU(3) chiral rotation. Extra |[AS| =1
operators could be induced via gluonic or electroweak penguin diagrams. The former
transforms as (8., 1z) while the latter may introduce a (8;,8z) component that is
however suppressed by the smallness of the fine structure constant. Furthermore, since
(81, 1r) operators have isospin I = 1/2 while (27, 1) operators can have both I =
1/2 and I = 3/2 components we would naturally expect the latter to be subdominant
as compared to the (81, 1g) operators. Otherwise the I = 3/2 channel would be
as important as the I = 1/2 channel in non-leptonic decay processes, violating the
experimentally observed |Al| = 1/2 dominance in these processes. Hence, effective
operators I introduce later should also transform as (8., 1g).

The pure mesonic Lagrangian that triggers the |[AI| = 1/2 kaon decay channel is
given by [174]:

Ly = gge?Tr[\; D,UD"U'] + h.c (5.12)
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where Ay = (A\¢ + ¢A7)/2. The non-zero value of ¢ introduces the CP-violating
effect. Meanwhile, the corresponding baryonic operator that triggers the nonleptonic

hyperon decay is given by [179]:

LY = hpe#Te[B{EIA L€, BY) + hpe*r Ta[BETALE, B + hec. (5.13)

Here the superscript (s) indicates that these operators mediate S-wave decays. In
principle there is a counterpart operator with the Dirac structure ~y5, which is time-
reversal odd and is proportional to the complex phase in the CKM matrix. I do not
need this extra operator because it vanishes at leading order in the HB-expansion
upon the non-relativistic reduction of the Dirac structure. Also, our definitions of hp
and hp here are slightly different from [179] as we take hp, hr to be real, with the
complex phases explicitly factored out.

Finally, for the purpose of including pole-diagram contributions, I need the weak
Lagrangian that triggers the B — K transition. The lowest order Lagrangian is given

by [180]:

LR = jwpeP Tr[R{hy, B}] + iwpe" Tr[R [hy, B]] + h.c (5.14)

where hy = A € + €TA_E. The counterpart with a 75 structure similarly vanishes

at leading order in the HB-expansion.

5.2 Determination of the LECs
There are altogether 12 LECs that enter into the estimate for the nucleon EDM:

seven interaction strengths {rp,rr, gs, hp, hr, wp, wr} and five CP-violating phases
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{¢,¢p,¢0r, ¢p, Pr}. They are either extracted from experiments or obtained by
theoretical modeling 3.
Pure electromagnetic B — R transition coupling strengths rp and rp are fitted to

electromagnetic decays of (1/2)~ resonances. The authors of Ref. [178] obtain:

erp = 0.033GeV !, erp = —0.046GeV . (5.15)

The constant gg is fitted to the K? — 777~ decay rate, ignoring the small CP-

violating effect [181], giving

gs = 6.84 x 107°GeV?. (5.16)

The CP-phase ¢ is, up to a negative sign, the phase of the K° — 77 (I = 0) decay

amplitude:
Ion
RGAO

== =— (5.17)

In principle one could extract &, from the measurement of the CP-violating parameter
¢’ in the kaon decay. However, € is a linear combination of £, and another CP-violating
phase, &, of the I = 3/2 channel. Simple estimation [174] suggests that & is of the
same order as & making &, hard to extract directly from the experiment. I therefore

refer to theoretical estimation based on the large-N, approach [182] which gives:

0= —E& ~ —V2]e| x (—6 x 1072) ~ 1.89 x 1074 ~ 6.4/, (5.18)

where J = (2.967520) x 107° [181] is the Jarlskog invariant[183]. It is worthwhile to

mention that, in Ref. [161] the uncertainty of J spans an order of magnitude leading

3Unfortunately, none of these LECs in the literature come with error bars, so I cannot estimate
the error introduced by the fitting of LECs.
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to the main source of the error in the estimate of the neutron EDM during that time.
Today, J is determined with much higher precision so the associated uncertainty is
sub-leading compared to uncertainties due to higher-order effects in the HB-expansion
and unknown short-distance counterterms, which we will discuss later.

The four remaining interaction strengths hp, hp, wp, wr were determined in [180]
by simultaneously fitting them to the s and p-wave amplitudes of nonleptonic hyperon

decays:

hp =~ 044 x 1077GeV

hr ~ —0.50x 107"GeV
wp ~ —18x10"GeV
wp ~ 2.3 x1077GeV. (5.19)

The last two constants were determined by setting mg ~ 1535MeV.

Finally, I need to know the four remaining CP-phases {¢p, ¢r, ¢p, Pr}. These
phases have been considered in ref [158], but their treatments are less satisfactory due
to the neglect of the operator mixing effect and a certain outdated approximation of
the small top quark mass assumption. In order to improve upon that, I review a more
recent work done in Ref. [179] that determined {¢p, pr} and apply scaling arguments
to provide an estimate of {¢p,Ppr}. Ref. [179] pointed out that after considering
operator mixing and renormalization group running, the dominant operator that gives

rise to the CP-violating phase in the |AS| =1, |AI| = 1/2 sector is given by:

Qs = —22 d(1+ 75)qq(1 — 75)s. (5.20)

q

Ref [179] then computed the factorizable and non-factorizable contributions to ¢ p, ¢

induced by QG. Here “factorizable” means to regard QG as a product of two chiral
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quark densities and match it to chiral operators. The matching is done by realizing
that grqr ~ 0Loep/0my = OLeniva/Omy. On the other hand, the “non-factorizable”
contribution is obtained simply by taking the hadronic matrix element of Qﬁ using
the quark model. These two contributions are distinct because the factorizable piece

contains a factor of chiral quark condensate F? B, through:

(0] 4qdrar | BB") ~ (0] 4193 10) (0| grqy, | BB') ——%F2Bo i (0 iy, | BB')
(5.21)
while the same quantity never appears in a quark model calculation. Combining
the two, they found Im(hpexpipp) ~ —2.2, Im(hrexpipr) ~ 6.1, both in units of
V2F,Gpm?2, J. This leads to:

¢p ~ —1.5J, pp =~ —3.6J. (522)

It is straightforward to see that ¢p and pp receive no factorizable contribution.
This is because it would require terms like ﬂ_{qu to appear in the strong chiral
Lagrangian. Such terms would violate parity and therefore cannot exist. For the non-
factorizable part, my strategy is the following: first I compute the matrix elements
(R| Qs |B) and (B'| Qg |B) using the quark model to find their ratio. Then, I use
this ratio to infer the value of the non-factorizable part of ¢p, ¢ by appropriately
scaling the non-factorizable part of ¢p, pr given in Ref. [179].

To obtain an estimate of hadronic matrix elements I adopt the harmonic oscillator
model [177]. The structure of the spin-flavor wavefunction of the baryon octet leads

to the following ratio:
(71 Qs [2°) = (0| Qs 1A) = (7| Qs [SF) = 1:V3: =2 (5.23)

which requires that wp@r = (1/3)wp@p in our chiral Lagrangian. I also obtain the

ratio between B — B’ and B — R matrix elements:
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(| Qs |SF) 2 1
(p|Qs|nt)  V3rmRy (5.24)

where m ~ 0.34GeV, Ry ~ 2.7GeV ! are harmonic oscillator parameters. With this
ratio and the non-factorizable contribution to ¢p,¢p given in [179], 1 obtain the

non-factorizable contribution to ¢p, Pp:

Fp ~ 0.04J, ¢p ~ —0.01.] (5.25)

These phases are about two orders of magnitude smaller than the three other CP-
phases because they are not enhanced by the chiral quark condensate. Therefore, I
disregard them in the rest of our calculation.

To end this section, I point out that there is an important sign issue in the deter-
mination of LECs. Since LECs are fitted to experiments that only involve squared
amplitudes, an overall undetermined sign is left ambiguous. Therefore, if two sets
of LECs are fitted separately to two unrelated experiments (for example, {rp,rr}
are to fit to baryon electromagnetic transitions and {hp, hp, wp,wr} are to fit to
non-leptonic hyperon decays), there is no unique way to determine the relative sign
between these two sets of LECs. This introduces an extra uncertainty because a
change of a relative sign can turn a constructive interference to destructive and vice

versa. | will discuss the impact of this uncertainty in the last section.

5.3 One loop contribution

In this section I present analytic and numerical results of the one-1loop contribution
to the proton and neutron EDM using HBchPT. The nucleon EDM dy is defined by
the term linear in the incoming photon momentum ¢ of the P and T-violating N N~

amplitude
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iM = —2dyv - eunS - quy. (5.26)

Here ¢* is the photon polarization vector. Note that the equation has been simplified
by applying the on-shell condition to the nucleon: v - ¢ = —¢*/2my — 0.

Since each weak interaction vertex has |[AS| =1, I need at least two insertions of
weak interaction vertices to obtain an EDM that is flavor diagonal. Most one-loop
integrals are UV-divergent and are regularized using the MS scheme in which the
combination

2

is subtracted. Also, since all CP-violating phases {¢;} are small, T use the small angle
approximation sin ; &~ ¢;. Finally, following the usual spirit of ChPT, during the
calculation of loops we assume that the heavy DOF's could be integrated out and their
effects show up in the LECs of the effective operators consist of lighter DOFs . Hence
what enter the loops are the lightest DOFs, which in our case are the pseudoscalar
meson octet and the ground-state (1/2)" baryon octet.

There are four distinct types of 1-loop diagrams (see Fig.5.1) that give non-zero
contribution to the nucleon EDM (diagrams of other kinds are all vanishing at leading
order in the HB-expansion. See the Appendix for the argument). Fig. 1(a)-(c) (plus
reflections) in Fig.5.1 contribute to both neutron and proton EDM. For the neutron,

it reads:

4The reader should anyway be alerted that this may not always be the case. For example, Ref.
[186] pointed out that one needs to include the baryon decuplet in order to reconcile with the result
of the large N -expansion
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Figure 5.1. One-loop contributions to the nucleon EDM. Each round dot denotes

a |AS| = 1 weak insertion. Fig. 1(a)-(c) (and reflections) contribute to both neutron
and proton EDM; while Fig. 1(d) (and reflection) contributes only to proton EDM.

(c)

1—loop _6g8(DhD{g0 — ()OD} + FhF{QD - SDF}) 21 m_72'r _ K
" W EimE —mg) e e R

m2—62,
_Osegs(D — F)(hp{e — ¢p} + hr{er — ¢}) (m? arctan ~—
P F2(m? — ) N
—{m < K}) (5.28)

I found that all terms analytic in quark masses cancel each other. Also notice that

there is no extra singularity in the limit myg — m, or g5 — 0. Numerical estimation
with = my gives

|di71P| = 1.5 x 107*?e cm. (5.29)
Similar calculations are done for the proton EDM. Figs. 1(a)-(c) give
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g-loopt _ €98(D{holp — ool + 3hele — orl} + 3F{hply — o] + helor — ¢1})
b 242 FH(m2 — m?%,)
m2
x(mfrln,u—; —{r < K})

m2 —§2
_Osegs(D — F)(hp{v —¢p} + hr{vr — ¢}) (m? arctan ~—5—
812 F4(m2 — m%) To/m2 — 82

—{r < K})

m2—62

_onegs(D 4 3F) (hp{y — ¢p} + 3hr{p — vr}) (m? arctan ~—g-

2472 F4(m2 — m3,) Toym2 -8

o K)) (5.30)

There is one extra type of diagrams contributing to the proton EDM corresponding
to two insertions of h; vertices (Fig. 1(d)). The corresponding diagrams do not
generate the neutron EDM simply because there is no appropriate non-vanishing

combination of B, B’, ¢. This diagram for the proton EDM gives

ehphp(D — F)(pp — pp)(m — 2 arctan —=22—)

1672 F2/m3, — 62
ehphp(D +3F)(pp — or)(m — 2arctan —A—)

2 _ 2
mi—63

- . (5.31)

48T2F2\/m3. — 63

1—loop,2
dp

This contribution is interesting since it is UV-finite. It depends non-analytically on
quark masses and hence uniquely characterizes long-distance physics °. Numerically,

these give

|d11)_l°°p’1| = 6.1 x 10%3eccm

|d) 712 = 1.1 x 10" e cm. (5.32)

50One can show that Eq. (5.31) remains real even when dx,d0p > myg by using the identity
arctan z = 3 log 12,
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I choose to present numerical results of d'~1°°P! and ¢'~!oop»2

separately because the
former is proportional to gsh; while the latter is proportional to h;h;. Since the
relative sign between gg and h; is experimentally undetermined, these two terms can
either add or subtract each other.

As a short conclusion, I stress once again that within the HBchPT formalism,
my analytic results of 1-loop diagrams, Eq. (5.28), (5.30) and (5.31) fully respect
power counting as no powers of mp appear in the numerator upon carrying out loop
integrals. This is in contrast with the relativistic calculation done in Ref. [161], in
which the authors include diagrams involving MDM-like coupling that should have
an explicit 1/mp suppression according to the power counting, but is canceled by a
factor of mp appearing in the numerator coming from the loop integral.

Finally let me discuss the effect of counterterms. Since d}, """ and d} ™! are
UV-divergent, I need to introduce corresponding counterterms d2, dg to absorb the
infinities. These counterterms are generated by short-distance physics. Therefore
their precise values cannot be calculated. To estimate the size of these counterterms
we perform a naive dimensional analysis (NDA). Following [184], there are ten AS =1
four-quark operators that mix under renormalization. The effective Hamiltonian can

be written as:

HE = 72 udv* ZC )+ h.c. (5.33)

Under conditions that Aqep =~ O.QGeV, p = 1GeV and the top-quark mass m; =

174GeV, the largest flavor-diagonal CP-violating effect comes from the product of Q,

and Q6 with Wilson coefficients Cy = 1.31 — 0.0447 and Cg = —0.011 — 0.0807 where
= —ViaVis/VaaVi- This gives:

1
d07 dn G
P 1672

|vudv*| Im(C,Cf)AS ~ 4 x 10~%e cm. (5.34)

Here 1/167* is a necessary loop factor while the factor A? is included to achieve

the correct mass dimension. I choose A, ~ 1GeV instead of some other scale like

115



N N N N
B R

Figure 5.2. (with reflections) Class I pole diagrams.

Aqcp ~ 200MeV to provide a conservative upper limit for dg and d%;. This analysis
shows that the short-distance contribution to the nucleon EDM could be as large as
the long-distance contribution®. However the NDA estimation is rarely trustable and
it may happen that some accidental cancelations could suppress the actual value of
d?l,dg from what is expected in Eq. (5.34). In this sense, a detailed study of the
long-distance contribution is worthwhile because it sets a solid bound below which
any measurable nucleon EDM could be safely regarded as being consistent with the

SM prediction.

5.4 Pole Contribution

Next I estimate the contribution of pole diagrams to the nucleon EDM. For baryon
intermediate states, I include the flavor octet part of the (56,0") and (70,17) baryon
supermultiplets. Here I adopt the standard spin-flavor SU(6) notation (D, LP) where
D is the dimension of the SU(6) representation, L is the orbital angular momentum
and p is the parity. For generality, we first write down all possible pole configurations
that can contribute and divide it into two classes: Class I are those in which the
photon vertex involves a weak insertion and Class II are those in which the photon

vertex is purely electromagnetic (see Fig 5.2 and 5.3).

6A follow-up work from the author to compute these short-distance contributions within certain
nucleon model framework is currently in progress.
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Figure 5.3. (with reflections) Class II pole diagrams.

I want to single out the leading pole diagrams. First, one would expect that Class
I contributions are much smaller than Class II for two reasons: (1) the weak photon
vertex in Class I diagrams is due to the transition quark magnetic dipole moment
(MDM) that contains a ms + mg suppression factor or the transition quark EDM
that is suppressed by ms; — my (the latter, which vanishes if m, — my, is an explicit
demonstration of Hara’s theorem [176]); (2) Class II diagrams have one more pole
in the denominator. With these observations I may safely discard Class I diagrams
since they are sub-leading.

Within Class II, Fig. 3(a)-(d) can be shown to have an extra 1/my suppression
[185]. These four diagrams involve MDM-like baryon radiative transition vertices
that have the structure of (1/mp)e"*fv,q,Ss at leading order. This structure is
orthogonal to the EDM structure v*S - ¢ so it cannot generate an EDM. Therefore
in order to obtain an EDM one needs to go to the next order in the HB-expansion
leading to an extra 1/my suppression, so I can discard these four diagrams. Finally,
Fig. 3(e) is smaller than Fig. 3(f)-(g) due to an extra propagator of a heavy excited
state R. After all these considerations, I only need to evaluate Fig. 3(f)-(g). Using

Feynman rules obtained from the Lagrangian in Section II, I obtain
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Nucleon\EDM | [dy '] [ [dy "% | |a%°] |
neutron 1.5 x 1072 0 1.4 x 10732
proton 6.1x10733 [ 1.1 x107%2 | 1.4 x 1072

Table 5.1. Different contributions to the SM neutron and proton EDM in units of
e cm, assuming the sign of LECs are those given in Section III.

4
B = e ?“Dé = (hp@n{3wrl28r- 05 (54 — b5) + On- {8a-(6a + 6x)
*ON*05+ 0%

+52* (52 — 3(5/\)}] — UJD[Q(SA*(;E* (35/\ + 52) + 5N*{35A* (6/\ + 52)

65+ (365 — 05)H} + 3hpop{wp[20x: 0+ (5 — 65)) + S+ {0a- (5 — 30%)
‘|‘5z* (51\ + 52)}] + wF[(SN*{352* (51\ + 52) - 5/\* ((SA — 352)}

—20-05+(da + 30%)]})

dele — _86(61\[* — 52*)(TD + 3TF)(U)D - wF)<hDng - hFQOF) ) (535)
b 30 N+0x+0x

In the expression above I have neglected the two small phases pp and pr. Note that
Eq. (5.35) diverges in the § — 0 limit. This simply indicates that non-degenerate per-
turbation theory fails in this limit and one needs to switch to degenerate perturbation

theory. Numerically, Eq. (5.35) gives:
| 2| & |2 &~ 1.4 x 107 e cm. (5.36)

Numerical results are summarized in Table 5.1. I caution the readers that all
these numbers are only indicative of the size, because I have not yet addressed the
sign ambiguities plaguing the determination of certain LECs as emphasized at the

end of section III. This will be done in the next section.

5.5 Discussion and Summary
Now I consider the uncertainty due to the undetermined relative sign between dif-

ferent groups of LECs. Since rp and rg are fitted simultaneously to the electromag-
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netic decay of (1/2)~ resonance they should be multiplied by a common undetermined
sign factor 6, = +1. The constant gg is fitted to the kaon decay rate, so it should carry
a separate sign factor d,. Its phase ¢ however is determined theoretically so it does not
have a sign ambiguity. The four remaining interaction strengths {hp, hp, wp, wr} are
fitted simultaneously to s and p-wave amplitudes of the hyperon non-leptonic decay;,
so they should carry a common undetermined sign factor dp,. Their corresponding
phases are determined by first calculating Im{h; expip;} and Im{w; expip;} theoret-
ically and then by dividing them by the experimentally-determined {h;, w;} so the
four remaining phases {¢p, pr, ¢p, pr} should also carry the same sign factor .
Summing up loop and pole diagram contributions and allowing {d,, d,, 0. } to freely

change between 1 and -1, I obtain a range of possible d,, and d,,:

8.7 x 107*ecm < |d,| < 2.8 x 107 cm

3.3 x 107 ¥eem < |d,| < 3.3 x 107*ecm (5.37)

The surprisingly small lower bounds of |d,|, |d,| are due to an accidental cancela-
tion between loop and pole-diagram contributions for a very specific set of {0;}. There
is no reason to believe that this cancellation persists at higher order. To estimate
the size of higher-order contributions, I recall that the HB-expansion parameter is of
order myg /my ~ 0.5. Therefore to be conservative, I could assign a 100% error due
to the next-to-leading-order (NLO) effects in the HB-expansion. Also, by looking at
Table 5.1 one can see that both loop and pole diagrams are of order 10~*?¢ cm. So if
I assume no fine cancellation between these two parts after adding the NLO contri-
butions from the HB-expansion, then I should expect the long-distance contribution

to the nucleon EDM to lie within the range:

1 x 107*%ecm < {|d,|, |d,|} < 6 x 10"*?ecm. (5.38)
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My estimated upper bound for d,, is about half the corresponding value predicted
in [161]. Eq. (5.38) is three (four) orders of magnitude smaller than the proposed
precision level of the future proton (neutron) EDM experiments.

To summarize, even though it is well-known that the nucleon EDM induced by
the Standard Model CKM matrix is well below the limit of our current experimental
precision, it is still worth a thorough study as it is currently the only source of intrinsic
EDMs in nature whose existence is certain. I re-analyze previous works on chiral loop
and pole diagram contributions to the nucleon EDM using HBchPT at the leading
order in HB-expansion, with an up-to-date determination of relevant LECs that enter
our calculation. Combined with the uncertainty due to unknown relative signs of
LECs and an estimate of higher-order contributions, I obtain the range for the long-
distance contribution to the nucleon EDM in Eq. (5.38). Although an incalculable
short-distance physics which appears as counterterms in our work could be as large
as the long-distance contribution, the study of the long-distance contribution is still
worthwhile as it provides a safe borderline below which any nucleon EDM is consistent
with the SM prediction. Finally, there are several ways to improve upon the estimate
carried out in this work. For instance, a combined analysis of lattice simulations and
better experimental measurements of various hadronic decay processes is expected to
provide a better control of both the magnitudes and signs of the required LECs. If the
LECs could be determined more precisely, then a complete analysis of NLO-effects in

the HB-expansion would be much desired to further restrict the allowed range of d,

and d,.
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CHAPTER 6

HIGHER-TWIST CORRECTION TO PVDIS AND ITS
RELATION TO THE PARTON ANGULAR MOMENTUM

6.1 Introduction

As a complement to the studies at high-energy frontier, measurements at the in-
tensity frontier (or precision frontier) provide powerful tools in the search for physics
Beyond the Standard Model (BSM). Observables such as the muon anomalous mag-
netic moment are measured to very high precision, and experimental results are then
compared with theoretical predictions. To the extent that the latter are sufficiently
reliable, any possible deviation would point to BSM physics. Alternately, these ex-
periments can provide new insights into the dynamics of the Standard Model.

Electron-deuteron parity violating deep inelastic scattering (eD PVDIS) is an ex-
cellent example of this class of studies. Historically, it provided the first experimental
measurement of weak mixing angle Oy, [19]. Nowadays, with the prospect of the Jef-
ferson Laboratory 12-GeV upgrade and the use of a new spectrometer called SoLID,
the left-right asymmetry of PVDIS can be measured with 0.5% precision over the
kinematic range 0.3 < zp < 0.7 [46]. With this level of precision, one will be able
to probe or constrain an interesting set of BSM scenarios, such as a leptophobic 7’
boson[116, 117] and supersymmetry[118], as well as to study hadronic physics effects
which are yet to be fully understood, such as charge symmetry violation (CVC) and
higher-twist (HT).

OReprinted article with permission from C. Y. Seng and M. J. Ramsey-Musolf, Phys. Rev.
C 88 (2013) no.1, 015202. Copyright (2013) by the American Physical Society. DOI:
http://dx.doi.org/10.1103 /PhysRevC.88.015202
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The effect of HT [119] is a potentially important Standard Model correction that
originates from the interaction between partons. This correction in general scales
as (Q?)~2/2 with the twist 7 > 2, so its effect is enhanced at low Q2. In the
framework of the operator product expansion (OPE), the higher-twist correction can
be expressed as a convolution of a high-energy and low-energy piece; the former
(embodied in the Wilson coefficients) can be calculated using perturbative methods,
whereas the latter involves hadronic matrix elements that require understanding of
non-perturbative QCD. Studying the higher-twist correction may help us in prob-
ing correlations between the confined quarks and gluons inside the nucleon, so it is
interesting to explore HT matrix elements within various model approaches. One
advantage of eD PVDIS process is that the HT contribution to the leading term in
the PV asymmetry (defined below) arises from a single operator matrix element and
can, in principle, be separated kinematically from the subleading terms that have
a more complicated HT structure. With this motivation in mind, several previous
works [120, 47, 48, 121] have been carried out to study the twist-four (i.e. 7 = 4)
correction to the left-right asymmetry of eD PVDIS. In what follows, we report on a
study that follows-up these earlier works.

The study of HT may also shed light on another important issue, namely, the
spin structure of the nucleon. Nearly twenty-five years ago, the EMC collaboration
[128] performed a DIS experiment with longitudinally-polarized muons on a target of
longitudinally-polarized protons, obtaining a value for the structure function ¢;(zp)
over the range 0.01 < xg < 0.7. After extrapolating to the low- and high-zp region,
the collaboration obtained a value for the leading moment of g1 (xp) that contradicted
the Ellis-Jaffe sum rule [129] and implied that that the spin of proton is not built up
entirely from the quark spin. The result has been confirmed by a variety of subsequent
studies. A key question in nuclear physics research has, thus, become explaining in

detail the source of nucleon spin in terms of QCD degrees of freedom.
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From a theoretical perspective, arriving at a decomposition of the nucleon spin
in terms of gauge-invariant matrix elements of local operators that afford a straight-
forward partonic interpretation has been a vexing problem, and different approaches
have been pursued over the years[123, 124, 125, 126, 127]. In each case, reference is
usually made to the interpretation in the light-cone — gauge dependence notwithstand-
ing — given its historical importance for thinking about parton dynamics. However,
while the meaning of the quark helicity is gauge invariant, the relative importance
of other aspects of partonic angular momentum (gluon helicity and quark and gluon
orbital angular momentum) in general vary with the choice of gauge and even def-
inition. Nonetheless, it is interesting to ask how different observables may probe
different aspects of partonic angular momentum and to do so in a way that is both
gauge-invariant and as insensitive as possible to a particular angular momentum de-
composition.

In this respect, we will study HT in the context of light-cone quantization. In
early work within this framework, it has been shown that one particular component
of parton angular momentum — identified as quark orbital angular momentum (OAM)
under light-cone quantization using light-cone gauge — is responsible for the non-zero
value of Sivers function and Boer-Mulders function [130, 131] in semi-inclusive deep
inelastic scattering (SIDIS) [132]. In light of these results, it is also interesting to study
how the inclusion of the same component of parton angular momentum modifies the
current model predictions for HT corrections to eD PVDIS. Indeed, in all the previous
studies of eD PVDIS, only the Fock component of the nucleon wavefunction with zero
parton OAM has been included.

After including quark OAM in the light-cone amplitudes, we observe a rather
non-intuitive phenomenon: although the absolute magnitude of individual non-zero
quark OAM contributions can be significant, they largely cancel against each other.

We will argue that this cancelation is largely independent of the detailed model for
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the relevant light-cone amplitudes. As a result, the twist-four correction to PVDIS
is almost transparent to the inclusion of quark OAM. In contrast, other hadronic
quantities, such as the parton distribution functions (PDF), Sivers function, and
Boer-Mulders function, manifest non-negligible dependence on quark OAM. Gener-
alizing from the particular choice of light-cone quantization and light-cone gauge, we
thus conclude that whatever features of parton angular momentum are responsible for
the observed behavior of the PDFs, Sivers, and Boer-Mulders functions, they should
have a relatively minor impact on the HT correction to eD PVDIS of interest here.
Moreover, any deviation from the light-cone predictions obtained here and in previ-
ous works[120, 47, 48] — should they be observed expermentally — would signal the
importance of other aspects of parton angular momentum and/or higher Fock space
components of the nucleon wavefunction.

The discussion of the computation leading to these observations is arranged in
the following order: in Section II we summarize the relevant results of the general
formulation of the twist-four correction to eD PVDIS; in Section III we introduce the
light-cone wavefunction with quark OAM-dependence; in Section IV we present the
analytic expressions of the hadronic matrix elements needed for the twist-4 correction,
and demonstrate the generic cancelation between non-zero quark OAM components;
in Section V we present the numerical results using one specific choice of nucleon
wavefunction, and discuss their physical significance. Detailed formulae appear in

the Appendix.

6.2 Higher-twist in PVDIS: general formulation
Here, we review the well-known results for the twist-four correction in eD PVDIS.
We will simply quote the central equations that are relevant to our study without

any derivation and refer the reader to Refs. [47, 48] for the details.
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Figure 6.1. Kinematics of e-D PVDIS: a deuteron of momentum P interacts with
an incoming electron of momentum £ via an exchange of a single photon or Z-boson,
and breaks into hadrons which are denoted collectively as X

In eD PVDIS, longitudinally-polarized electron beams are incident on unpolarized

deuteron targets. One measures the PV right-left asymmetry

dUR—dUL

A _——  —
RL dUR+dUL

(6.1)
where dog/y, is the differential cross-section for the scattering of the right/left-handed
electrons. At the one-boson exchange (OBE) level, the leading parity-violating piece
comes from the interference between photon and Z-boson exchange diagrams (see Fig
6.1). The low-energy Z-boson exchange interaction can be described by the following

effective 4-fermion interaction:

Gr

V2

Lpy = [ev"vse(Cryty,u + Crady,d) + ey"e(Coy iy, ysu + Coadry,ysd)]  (6.2)

where, at tree level, we have:

1 4

Cr = —§+§sm2ew (6.3)
Ciqg = %— gsiHQGW (6.4)
Co, = —%—l—ZSinQGW (6.5)
Cog = %—QSiDZHW (6.6)
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Neglecting contributions from sea quarks, assuming charge symmetry (u}, = df,, etc.
with ¢iY being the valence quark PDF of nucleon N), the leading-twist SM prediction

is given by the Cahn-Gilman formula[122]:

A GFQ2§
ik 227 b

[(2C1, — Cha) + (2Co, — Caq)

where Q? = —¢> and y = P - ¢/P - k.
To include corrections from possible BSM and as well as other SM pieces, we can

reparametrize the Cahn-Gilman formula [47]:

GrQ? 3. 1-(1—y)
App = — 2l + g Y
i 2\/§7roz5[ PTG (1)

] (6.8)

with @; = —(2C;, — Ciq)(1 4+ R;). Here, R; describes any deviation of the C; from the
expressions in Egs. (6.3) to (6.6), including both SM and BSM corrections. In this
paper we concentrate on R¥7 namely the higher-twist correction to a;.

Bjorken and Wolfenstein [133, 134] showed that, if one assumes isospin symmetry
and neglects sea quark contributions, then there is only one matrix element that con-
tributes to RFT (for a detailed review of these arguments in a more modern context,
see Ref. [47]). This observation significantly simplifies the theoretical interpretation of
the asymmetry, allowing us to concentrate on one particular matrix element without
needing to to disentangle the contributions from many different sources. In brief, the
Bjorken and Wolfenstein argument works as follows: Agy arises from the interference
between the electromagnetic and weak neutral currents. First, one can decompose
both currents into an isoscalar S and an isovector V' term. The matrix elements of
the S x V cross-term vanishes because deuteron is an isosinglet. Furthermore, at
leading twist, we have (SS) = (VV). Therefore, the difference between (SS) and

(VV) that enters hadronic tensor W,
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/d“ze“’“ (D(P)|u(z)y"u(2)d(0)7"d(0) + (u < d) |D(P)) (6.9)

Wi (Pa) = g
with Mp being the mass of deuteron, is the only matrix element giving a HT correction
to R;.

Below, we will compute the matrix element (6.9) using an expansion of string
operators [135] in order to extract the twist-four piece; the latter is expressed in terms
of the deuteron twist-four distribution function Qp(z3), which will be computed in

Section IV.

6.3 The light-cone amplitudes

The main challenge in proceeding from (6.9) is our ignorance of the details of the
nucleon wavefunctions. As QCD is non-perturbative at the hadronic scale, analytical
expressions for the wavefunctions are unknown. At present, lattice QCD can provide
only HT contributions to structure function moments and not the xg-dependence of
the RIT that is of interest to the SoLID experiment. Consequently, one must turn to
various models that seek to incorporate non-perturbative dynamics. Previous works
on RIT include the use of MIT bag model [47] and isotropic light-cone wavefunctions
that contain both quark and gluon Fock components [48]; their results yield similar
shapes for the xg-dependence but differ somewhat in magnitude, with a maximum
RAT of 0.003 ~ 0.005 at 0.2 < 25 < 0.7 for Q% = 4GeV?, which is a little bit lower
than the achievable precision level in the SoLID experiment.

In this work we study how the inclusion of additional parton angular momentum
might modify the RIT prediction. For this purpose, we adopt the formalism developed
in Ref. [136], starting from a light-cone formulation of quark states which is equivalent
to the well-known “infinite momentum frame” point of view that gives the PDF its
intuitive meaning as a parton momentum probability distribution [119]. We then

perform a light-cone expansion of the nucleon state, retaining only the portion of
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Fock space containing three valence quarks with all possible quark OAM. To illustrate,
we consider a spin-up proton. Its three valence quarks can form a total helicity of
+1/2,43/2; therefore in order to keep the total proton spin in z-direction to be 1/2 we
need to assign different z-component quark OAM (i.e. [,) for different combinations.

A spin-up proton state, then, can be parametrized as the follows:

Py =[P 1)+ [P [P )T [P 1) (6.10)
with
l.=0 (k=LY yr1.2\,/,(2) %
P = ffpxg (1,2, 3) + i(kTKY — KR (1,2, 3))
uby (D{uy (2)d], (3) — d}, (2)ul;(3)}|0) (6.11)

Py = / DX)(k09(1,2.3) + kL0 D(1,2,3)) x

V6

(uly (1) (2, 3) =l (1) 21, () ) (6.12)
P = S [0 e 2.8 0 21 (3

(1)) 2y (3) 0 (6.13)

abe
P T)lz:Q = i/é/[DX?)]kﬂk;l (6)(172,3)(U21(1)d£1(2)uil(3)

—ul (1)u}, (2)d](3))]0) (6.14)

where kX = k¥ + ik, while u!,(1) means the creation operator of an up-quark (same
for down-quark) with color a, spin i and momentum k; etc, satisfying the light-cone

anti-commutation relation:

{tai(p), ub; (1)} = 27 (27)* 600356 (p™ — p')6@ (5L — 7)) (6.15)

128



The integration measure is ':

d.%'ldiCle'g d2E1J_d2E2Ld2E3J_
,/wXﬂ::N@VZEEEQ ) 210(1 — @1 — 9 — T3) X

(2m)?6@) (ks + Koy + Ks1) (6.16)

The proton wavefunction amplitudes {¢(")...4)(9} are generally unknown functions.
Although the expansion (6.11)~(6.14) is generic, the explicit form of ¢ is model-
dependent. In this work, we chose the form of ¢ derived in Ref. [130] by starting
from the static solution of a constituent quark model [137] (which works well in
predicting many electroweak properties of the baryons) and applying a Melosh rota-
tion to the solution to obtain non-zero I, components [138]. This choice of proton
wavefunction is used to predict the first moment of Sivers function, and turns out to
agree fairly well with the experimental measurements from HERMES and COMPASS

[139)2.

6.4 Matrix elements between nucleon states
Following [135], in order to obtain the twist-four distribution function Qp(z) we

need to evaluate the matrix elements between state |D(P)) of the following operators:

Qa(b, 2) L by )t ysu(bez)d(bsz)t Fysd(baz) -

Qv(b,z) = :a(b2)t"fu(bez)d(bz2)t#d(bs2) : (6.17)

where z is a coordinate on light cone, and the parameters b = {by, by, b3, by} charac-

terize the light-cone separation between quark field operators.

IThere might be difference in constant factors in the definition of integration measure by different
authors, which only affects the overall normalization.

2Ref. [130] and Ref. [139] defined their first moment of Sivers function with a sign difference.
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When computing the matrix elements of Qy 4 in Eq. (6.17) we assume an inco-
herent impulse approximation in which the incoming photon strikes only one of the
two nucleons (see, e.g. Ref. [145] for further discussions regarding the impulse ap-
proximation); hence, matrix elements of the operators (6.17) can be related to the
same matrix elements taken between proton states (or equivalently between neutron
states, given isospin symmetry). Also, since the quantities we compute do not depend
on the proton spin, we can take it to be +1/2 along the z-direction without loss of
generality.

Now, starting from the operators (6.17), we define two distribution functions

Qi<$§) via

(P0) T1Qu10.2) £ Qalb 1} PG 1)
= o [T trad(S e @ TsQue)  618)

with x¢ collectively representing {x¢,,xe,, xe,, 2¢, }, the light-cone momentum frac-
tions: & = z¢,pT. Meanwhile |P(p) 1) is the spin-up proton state with momentum
p. Substituting (6.11)~(6.14) into (6.18) we are able to express Q(z¢) in terms of
the proton wavefunction amplitudes. It is easy to observe that only diagonal terms,
(i.e. terms with the same [, in initial and final states), could give non-vanishing

contributions. After a rather lengthy derivation with the aid of Eq. (H.2), we obtain:

Qx(re) =

32 3 dQ—’ d2—»
5 [ e el ~ 2~ 2c)

(L + 61 + &1 +&1) Y UiE(—E1,—&.6,8) (6.19)
lz

where the explicit formulas of wliz are given in Appendix 1.
The proton twist-four distribution function can now be expressed in terms of the

Q+ (refer to Eq. (42) of Ref. [48] after some rearrangement):
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~ LR |
Q,(rg) = 2Re L xe ){ (e, + ey )0(x 5 + ey + T,
p(75) | eve (@e + 70 (; s (2, +7¢,)0(2p + 1, + 7¢,)

—2¢,0(2p + T¢,) — T, 0(wg, — ) (1 + PraPas) Q4 (x¢)

—(Prg + Ps34)Q(7¢)] (6.20)

Here P;; is the permutation operator, e.g.

P12Q+ (xﬁlv Leyy Legs I€4> = Q-l— (xéw Teyy Legs l’54). (6'21)

The deuteron twist-four distribution function Q p(xp) can be expressed in terms of
Qp(x p) through an incoherent impulse approximation [140], which says that a general
deuteron hadronic tensor can be related to the corresponding hadronic tensors of

proton and neutron by:

MpWp5"(p,q) = Mng‘”(g, q) + MNW#”(%?, q) (6.22)

where My is the mass of nucleon. In the equation above each hadronic tensor is
multiplied by the particle’s mass, because following Eq. (6.9) the hadronic tensor
we defined has dimension -1. Now we can express both sides of Eq. (6.22) in terms
of dimensionless structure functions {F;(zp)}. Using isospin symmetry and the fact

that Q(xp) is proportional to 25" F{*!(zp) (see Eq. (34) of Ref. [48]), we obtain *:

%@D(:ma/?) ~ Qp(zg) + Qulzp) = 2Q,(2p) (6.23)

Finally, following the logic of Ref. [48], one can the derive the twist-four contri-

bution to Rj:

3In Ref. [48], the authors did not multiply their hadronic tensors by particle mass in the impulse
approximation formula, therefore the corresponding relation they obtained is off by a factor 1/2;
same for the relation of quark distribution functions.

131



HT 2\ _ L QT xBQD(xB)
B (en @) = Q?5(1 — Lsin®Oy ) up(zp) + dp(xp) (6.24)

with ¢p(zp) being the parton distribution function for quark of flavor ¢ in the

deuteron
1

(D(P)|a(:)ta(~2) ID(P) =2(P2) [ de T Fgp(e)  (625)

-1

Note that we neglect the logarithmic Q?>-dependence of the structure functions in this
analysis. We can express ¢p in terms of PDF of the proton and neutron again by the
impulse approximation (6.22), but now comparing the structure function Fy(xg) on

both sides, which is proportional to x5'¢(x). The result is:

4p(r5/2) = 4p(7B) + qn(TB) (6.26)

where ¢,(x) and ¢,(z) are defined as in Eq. (6.25) but for proton/neutron states.

Furthermore, neglecting CSV effects we have:

un(zp) = dp(2p), dn(xp) = up(rp) (6.27)

Therefore, it is sufficient to just calculate u,(zp) and d,(xp) using the proton light-
cone wavefunction (6.11)~(6.14). Using (H.3) and (H.4) , we can compute the quark
PDFs of the (spin-up) nucleons by calculating the matrix element on LHS of Eq.
(6.25) with nucleon states, and compare it with the form on RHS to extract the
PDFs. Same with the twist-four distribution functions, only terms diagonal to [,

survive, so we can separate the result into components of different [, as the following:

up(zp) +dp(zp) = du(zp) +un(zp)

1 /1 -,
- dr, / Pk dq 01 — x5 —21) Y A(q,1,2)
(2m)® Jo I

(6.28)
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where the functions A% (g, 1,2) are given in Appendix 1.

We now proceed to show that a partial cancelation occurs between contributions
of I, = +1 and [, = —1. For this purpose, we combine (6.19) and (6.20), together
with the fact that 1;*(q, 1, ¢',I')* = ¥;=(¢',, ¢, 1), to simplify the expression of Q,(z5)

as:

Qp(zp) = Q, (v5) + Q, (vB) (6.29)

where

~ 6473 1
Qf (xp) = 3 / [ dwed(ae, — we, + e, — 2e,)0(1 — 2, — ,) X
0 =1
0(ap —wg +xg,) | d(wp—xg)  O(zp —wg,)
{ + :
Te, Ty T, (Tey, — Tey)  Tey(Te, — Tgy)
O(ap+oe —we), (YTPoL0r 7 7 &
+ e e, }/g (27r)36 (€11 — &2+ &3 — &1a) X
Z Ret;” (&1, 83, 62, 64) (6.30)
lz
- 64m3 [
@ (z5) = — / [ dwed(we, — we, — we, + 2e,)0(1 — 2, — ;) X
0 =1
{5(173 + g —w,)  O(wp—wy)  O(zp— )
Ly gy Tes (xﬁz + :U§3> Tey ($E2 + I&;)
0(rp — Tg + 2g,) A s s o
+ et }/E (27?)3(5 (€11 — &2 — i3+ &1a) X
Z Rey; (&2,83,61,64) (6.31)
l.

First we qualitatively analyze the contribution from each [.-component to Q;,t (xB).
This can be done by simply referring to Eqs. (I.1)~(1.8) of the Appendix B. The result
is summarized in Table 6.1. We observe that the [, = +1 (-1) piece contributes mainly
to Q; (Q; ). Also notice that we do not include the [, = 2 component as its effect is

tiny.
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L, Contribution to @ (z5) Contribution to @, (zp)

0 subdominant dominant
+1 subdominant dominant
-1 all 7Zero

Table 6.1. The contributions from different /,-components to Q;t (xg). The 1,=0,+1
components contribute mostly to Q; (“dominant”) and less so to Q;“ (“subdomi-
nant” ), while the [,=-1 component contributes only to Q;

Next we study the behavior of different contributions to Q;t(:v p) with respect to
xrp, showing that those associated with the [, = 1 components largely cancel. The
individual contributions from the latter are shown in the top two panels of Fig. 6.2.
We observe that the [, = —1 contribution, which contributes only to Q;{ (rp) changes
sign at g ~ 0.4, whereas the [, = +1 contribution does not. Consequently, the two
contributions will cancel against each other for xg 2 0.4. While the cancellation is
not exact, it becomes more effective at larger values of x g, a region that is weighted
most strongly in RHT by the factor of zp in the numerator of Eq. (6.24) and the
corresponding presence of up(xg) + dp(xp) in the denominator.

We also note that this sign change and cancellation appears to be rather generic.

To see why, let us naively take:

- d2§:¢ 2 + —
/211 (2%)36 (.-.)Rey);. = constant = C (6.32)
assuming the function above is well-behaved with respect to {z¢,}. This approxima-
tion simply means that we do not care about the details of the proton wavefunction
amplitudes. Under this approximation, the numerical integration (6.30) and (6.31)
can be performed quite trivially, and the result is shown in the lower two panels of Fig
6.2. In this case, we show Q;(xB) as the [, = +1 components contribute primarily to
one or the other of these two quantities (see Table 6.1). Although the the assumption

in Eq. (6.32) breaks down at large and small xg, one can see that a sign change of
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Figure 6.2. (Color online) Top panels: full results for [. 41 contributions to Q,(zp).
Bottom panels: behavior of Q[ (zp) ignoring the details of nucleon wavefunction
amplitudes. The constant C is defined in Eq. (6.32).

Q;(xg) from negative to positive occurs near xp = 0.4, implying that Q;(xg) and
Q; (xp) will have different signs for g 2 0.4. Therefore, according to Table 6.1, the
contribution to Qp(a:B) from [, = 1 and [, = —1 should partially cancel other for
rp 2 0.4. Furthermore, since the argument above does not depend on the details

of the nucleon wavefunction (as long as it is well-behaved), this feature of partial

cancelation should be generic.

6.5 Numerical results and discussion
Egs. (6.30) and (6.31) are our starting point for the numerical evaluation of
Qp(xB), which involves an eight-fold integration. To perform this integration, we

adopt the Monte Carlo numerical integration called Divonne contained in the CUBA

Library, which is an algorithm package designed for multi-dimensional numerical in-
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Figure 6.3. (Color online)The Twist-4 correction to R; at Q? = 4GeV?. The blue
dashed curve shows the [, = 0 contribution; purple dot-dashed curve shows the [, = 1
contribution; brown dot-dashed curve shows the [, = —1 contribution; the red solid
curve is the sum of all. [, = 2 contribution is negligible and therefore not included.

tegration [141]. For each I, component, we evaluate the value of Q,(rp) at a series
of discrete {xp;}, and then link them together using a best-fit line. Also, we take
as = 0.5 at 1GeV following the renormalization group (RG) prediction of the running
coupling constant at 4-loop order together with a 3-loop threshold matching, with the
quark thresholds taken to be M, = 1.5 GeV and M, = 4.7 GeV respectively [142].

Our main result is shown in Fig. 6.3, which gives RIT versus 2’y = 2zp at
Q% = 4GeV?. First, let us compare this outcome with that of Refs. [47] and [48]. It
turns out that all three calculations predict similar curve shape for R¥7 only with
slightly different positions of peak and zero-point. Concerning the magnitude, our
work predicts a maximum absolute value |R¥T| ~ 2.6 x 1072 between 0.2 < 25 < 0.7,
which is smallest in magnitude among all the three predictions, and is about a half of
the size to that of Ref. [48]. This is understandable because the authors include a 3-
quark+1-gluon Fock-space component whose contribution is comparable in magnitude
to that of the pure 3-quark state. Nonetheless, all three calculations suggest that
| RHT| lies below that of the expected SoLID precision.

Next we study the OAM-dependence in detail. To that end, we first introduce
some nomenclature: in the following, we will use the notation (|l,| ® |l./|), which

denotes a generic matrix element taking between two hadronic states, of which one of
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Figure 6.4. (color online)The unnormalized QDF of spin-up proton, splitted into
contributions from different [, components. Blue thick-dashed curve shows contribu-
tion from [, = 0 component; purple dot-dashed curve shows contribution from [, = 1
component; brown dot-dashed curve shows contribution from [, = —1 component;
green thin-dashed curve shows contribution from [, = 2 component; red solid curve
is the sum of all contributions.

them has absolute value of quark OAM in z-direction being |l.| and the other being
L]

From our arguments at the end of Section 6.4, we expect that although [, = +1
individually contribute a significant amount to Qp(a:B), they should largely cancel
against each other for xp > 0.4, making the total (1 ® 1) contribution rather small,
and therefore leaving the (0®0) contribution as the dominant piece. This expectation
is born out by the curves in Fig. 6.3. The purple dot-dashed curve and brown dot-
dashed curve curves give the individual (I, =1)® (I, = 1) and (I, = —1)® (I, = —1)
contributions, respectively , which exhibit the expected cancellation for z; > 0.4.
The blue dashed curve and red solid curve give the (0 ® 0) and total contributions,
respectively. It is clear that the former dominates the total. This (0 ® 0) dominance
is a rather unique feature of the particular twist-four contribution of interest here,
and one that is not shared by other diagonal matrix elements. For example, if one
calculate proton quark PDF's (leading twist) using the same set of wavefunctions, the
(0®0) and (1®1) contributions are comparable; moreover, since they have the same

sign, the two |l,| = 1 pieces do not cancel each other (see Fig.6.4).
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On the other hand, we also note that there are hadronic matrix elements that
depend crucially on the existence of non-zero quark OAM in light cone quantiza-
tion. In particular, in Ref. [130], the authors studied the Sivers function [196] and
Boer-Mulders function [143], which are examples of transverse momentum depen-
dent parton distribution functions (TMDs), appearing in semi-inclusive deep inelastic
scattering. Importantly, both distribution functions depend on off-diagonal matrix
elements of /,: the Sivers function is sensitive to (0 ® 1) while Boer-Mulders function
is sensitive to both (0 ® 1) and (1 ® 2). Simply speaking, the existence of non-zeo
quark OAM is responsible for the non-vanishing values of the Sivers and Boer-Mulders
functions. Combining this observation with our analysis of the HT matrix element,
we conclude that the twist-four correction to eD PVDIS is essentially transparent to
the parton angular momentum dynamics that generate the Sivers and Boer-Mulders
functions.

It is also interesting to study the impact of sea-parton dynamics on the behav-
ior of the HT matrix element. To that end, we performed a qualitative analysis of
the contribution made by the Fock space component containing 3 quarks + 1 gluon,
using the general form suggested in Ref. [144] that includes non-zero gluon OAM.
The authors of Ref. [48] computed the contribution of the 3q+1g state with [, = 0
, which turns out to have a similar shape to that of the [, = 0 3g-state contribu-
tion. To our knowledge, however, there exist no explicit functional forms for the
3q+1g nucleon wavefunction with non-zero parton OAM. Consequently, our analysis
is purely analytic at this point. We observe that, in contrast to the 3q state contri-
bution, the matrix element of 3q+1g state for a fixed [, can contribute significantly
to both Q;t (xp) simultaneously; therefore there is no obvious correlation between
[, and Q;t(x p) and hence no obvious pattern of partial cancelation. In Table 6.2 we
summarize the importance of different (|I.|®1|l.|) contributions to various distribution

functions, considering only the contributions of 3q states.
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Distribution Functions Dominant Subdominant

Quark Distribution Functions (0x0), (1®1) (2®2)
PVDIS Twist-Four Correction (020) (1x1), (22)
Sivers Function (0®1) (1®2)

Boer-Mulders Function (0®1), (1®2) —

Table 6.2. The dependence on different quark light-cone OAM components of various
distribution functions.

Combining observations, we may draw the following conclusion: if a future eD
PVDIS measurement yields a sufficiently precise determination of R¥7 as a function
of 2, one can compare the experimental curve with our current theoretical prediction.
A significant deviation from the predicted curve (e.g., the peak and zero-point are
shifted by a considerable amount), could signal the importance of parton angular
momentum dynamics beyond those responsible for the Sivers, Boer-Mulders, and

spin-independent parton distribution functions.

6.6 Summary

The next generation of parity-violating electron scattering experiments are poised
to probe both possible BSM physics as well as novel features of hadron and nuclear
structure. In this work, we have studied one particular hadronic effect, namely,
the twist-four contribution to a;, the y-independent term in the PV asymmetry.
Using a set of proton light-cone wavefunctions with non-zero quark orbital angular
momentum, we evaluated the twist-four contribution as a function of xg, identifying
the contributions from different OAM-components. Our total for the correction RHT
is similar in both shape and magnitude to those obtained in previous works, indicating
that higher-precision than expected with the SoLID experiment would be needed to
discern this HT effect. An effort to achieve such precision may be worthwhile, because
RHET appears to be rather unique, in the sense that it is not significantly affected by

the parton angular momentum physics responsible for the existence of some other
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DIS observables such as the Sivers and Boer-Mulders functions. Thus, by combining
the results of a more precise measurement of the asymmetry with measurements of
other distribution functions, it is possible to probe complementary aspects of parton
angular momentum and, perhaps, shed new light on the role of angular momentum

in the structure of the nucleon.
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CHAPTER 7
CONCLUSION

There are many open questions in both the SM and BSM physics remained to
be answered. In particular, this thesis focuses mainly on: (1) the understanding of
QCD at low energy and its application in hadrons and nuclear systems, and (2) the
description of effects of new physics through effective field theory and probes of BSM
physics in various low energy experiments, including tests of fundamental symmetries
in hadrons and nuclei. These two areas of research merge naturally as the development
of various effective approaches to the low energy QCD does not only offers a better
understanding of the original theory itself in the non-perturbative regime but also
provides inputs, such as various QCD matrix elements, that are needed to interpret
searches for BSM physics via low energy precision experiments. Throughout this

thesis, I try to address the following questions with several case studies:

1. What are the currently-available effective approaches to hadron physics and

how well can they reproduce behaviors of QCD at low energy,

2. How precisely can we evaluate the relevant QQCD matrix elements with our

currently knowledge and computational technique in hadron physics,
3. What are the limitations and deficiencies of each effective approach, and

4. What can we do to improve our current knowledge and computational tech-

niques in the two areas listed above.

In the first two chapters involving the application of Dyson-Schwinger Equation,

the main motivation is to search for a unified formalism that can be used to study
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the low energy effects of all effective operators in the same footing with a manage-
able amount of theoretical calculation. We show that DSE with an extremely simple
contact interaction approximation is capable to reproduce many known static prop-
erties of hadrons as good as other more sophisticated methods. With this simple
approximation we calculated both the EDM of a p-meson induced by several effective
operators up to dimension 6 and various static charges of nucleon.

Upon comparing our result with existing calculations we find that the degree of
agreement with other calculations depends operator-by-operator. This raises a general
question of how one could possibly estimate the degree of accuracy within each model
calculations. Currently there exists no commonly-agreed algorithm for this purpose.
As far as practical usage is concerned, the standard way adopted by the community
is simply to take the spread of calculations performed using different models as the
theoretical error of the calculated quantity. This is obviously not promising enough
because any additional theoretical effort in the future will only increase the amount
of spread and not decrease it. Therefore, we believe that an essential step in the
future is to develop a universal formalism that allows us to quantify the theoretical
calculation within any given model.

In the next three chapters I switch my attention to Chiral Perturbation Theory. I
demonstrate how an effective theory can be built based on very general arguments of
symmetry. This kind of effective theory is sensitive to the IR behavior of QCD. One
of the many unique features of ChPT is the prediction of non-analytical dependence
on quark masses in scattering amplitudes. Besides, the importance of a valid power
counting scheme in non-renormalizable field theories is also stressed in these chapter.
In fact, both the works on §7(ri) and SM EDM are basically improvements of existing
literatures using the heavy baryon formalism that respects chiral power counting. In

particular, it is shown in the g,(f) calculation that the loss of valid power counting in
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ChPT may lead to an overestimation of O(my/m,) ~10 times in the calculation of
low energy observables.

Some obvious deficiencies of ChPT-like effective theories are also clearly revealed
in these two works. The key point is that effective theories constructed merely from
the symmetry considerations contains too many degrees of freedom (in parameters)
compared to the original theory. A direct consequence is that the constructed EFT
then contains infinitely many free parameters undetermined by the theory itself. For
example, UV-divergences in chiral loop integrals must be canceled by counterterms
which appear as higher-order LECs. These counterterms are not a priori known
and what we can do at most without referring to inputs from lattice or other model
calculations is to estimate their order of magnitudes using dimensional analysis. For
the observables studied in Chapter 4 and 5 we find that the size of these counterterms
can be as large as the loop correction so the ignorance of the numerical values of
counterterms renders our theory prediction less useful. Currently the only promising
way to determine these pieces is through fittings in lattice simulation. I believe that
one of the interesting future directions will be to explore alternative methods in the
determination of counterterms involving applications of chiral-improved models.

In Chapter 6 I present an alternative viewpoint to the interplay between low
energy QCD and searches of BSM physics. In this chapter, the key message is not
just that better QCD calculation is needed for the interpretation of experiment, but
the opposite is also true. In this particular example, the twist-four matrix element
which is a relevant SM background in BSM searches through PVDIS could actually
be measured experimentally and it turns out to also teach us interesting features
of QCD, in this case the role of parton angular momentum in the nucleon spin.
Combining with other parton distribution functions measurable in SIDIS, it provides
a possibility for us to perform a systematic study on different components of parton

angular momentum in nucleon separately.

143



As a conclusion, we are still very far away from having a satisfactory effective
description of hadrons that is universal, theoretically clean and computationally eco-
nomical. With particular working examples, I give a flavor of how much one can do
using current available effective approaches in terms of calculations of relevant QCD
matrix elements that play key roles in the low-energy tests of fundamental symme-
tries in systems of hadrons and point out several possible directions one may improve
from. It will be a true excitement if any of us here can live long enough to witness
a fundamental breakthrough either in the understanding of QCD at hadronic scale
or the search of BSM physics as either of them could easily be listed as one of the

greatest triumphs of mankind since the born of modern physics.
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APPENDIX A
CONTACT INTERACTION

In this appendix we include some detail of the contact interaction approximation
we used to describe the low-energy interaction between quarks in our DSE formalism.

Our treatment of the contact interaction begins with the gap equation

Sp) =iy-p+m

+ / (;qu)ziQQDw(P - q)gws(q)%n(q,p), (A1)

wherein m is the Lagrangian current-quark mass, D, is the vector-boson propagator

and [, is the quark—vector-boson vertex. We work with the choice

iYige"
gQD;w(p - Q) = 5MV—2m ) (AQ)
me

where mg = 0.8 GeV is a gluon mass-scale typical of the one-loop renormalisation-
group-improved interaction introduced in Ref. [83], and the fitted parameter ag /7 =
0.93 is commensurate with contemporary estimates of the zero-momentum value of a
running-coupling in QCD [93, 94]. Equation (A.2) is embedded in a rainbow-ladder
(RL) truncation of the DSEs, which is the leading-order in the most widely used,

global-symmetry-preserving truncation scheme [76, 77]. This means

I(p,g) = (A.3)

in Eq. (A.1) and in the subsequent construction of the Bethe-Salpeter kernels.
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One may view the interaction in Eq.(A.2) as being inspired by models of the
Nambu—Jona-Lasinio type [95]. However, our treatment is atypical. Moreover, as
noted in the Introduction, one normally finds Eqs. (A.2), (A.3) produce results for
low-momentum-transfer observables that are practically indistinguishable from those
produced by more sophisticated interactions [64, 65, 67, 66, 68, 69, 216, 217, 218, 219,
220]. Using Egs. (A.2), (A.3), the gap equation becomes

167 arr dq

Sfl(p)zi’Y'ererTm% W%LS(Q)’M, (A.4)

an equation in which the integral possesses a quadratic divergence. When the diver-

gence is regularised in a Poincaré covariant manner, the solution is
Sp)=iv-p+ M, (A.5)

where M is momentum-independent and determined by

4 = |
M=m+M O‘IR/ ds s . (A.6)
0

We define Eq. (A.4) by writing [96]

1 o 2
s dr o= (s+M?)
e / re
Ti2r
— | dr o T+ (A7)
ef(s‘i’Mz)Tgv — 67(5+M2)Ti2r
- S+M2 Y (AS)

where 7,y are, respectively, infrared and ultraviolet regulators. It is apparent from
Eq. (A.8) that a finite value of 7, =: 1/A;, implements confinement by ensuring the
absence of quark production thresholds [97]. Since Eq. (A.2) does not define a renor-

malisable theory, then A, := 1/7,, cannot be removed but instead plays a dynamical
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role, setting the scale of all dimensioned quantities. Using Eq. (A.7), the gap equation

becomes

dorr

M = M
m 3rme,

Ciu(MQ) ’

where,

C"(w) =w[[(-Lwry) = T(-Lwr)],

1r

with I'(cr, y) being the incomplete gamma-function.

(A.9)

(A.10)

At this point we also list expressions for the other regularised integrals that we

employ herein:

n Jn
2wt od

n! dw™
2

Gl'(w) = (=1)

@iu — d
(@) /R WENVE

- 2(,02 [F<_2a wTu2v) - F(_27WT'2)] )

1

C"(w),

83

E'w)= [ d
() /RSS%—JW2

- 6(,03 [F(_3a wTu2v) - F(_37WT§)] )

viu(w):/RdS( S o 1 d&? Ciu(w),

s+w)3 T 2dw?

~iu w d2 iu
= 1(‘«0)—5@6' (w),

?W*ié“@+wf
= C"(w) = 20" (W) + G (W),

Twzéwriﬁ=ﬂw>

s+ w)

— 2w M (W) + 3w (W) —w G'(W),

G (w) = /R ds (‘9— = EV(w) — 2w D (W)

s+ w)?
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(A.12)

(A.13)

(A.14)
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(A.16)
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+ 3w? C™(w) — 4w? G (W) + W? G (W), (A.18)

where {G; = G;/(167%),i=1,...,5}.

The parameters that specify our treatment of the contact interaction were de-
termined in a study of m- and p-meson properties [66]; viz., aqr/7m = 0.93 and (in
GeV)

m = 0.007, A =0.240 A,y = 0.905, (A.19)

using which, Eq. (A.9) yields
M = 0.368 GeV. (A.20)

With the aim of exploring the impact of DCSB on our results, herein we also

consider results obtained with aqgr/m = 0.74, in which case

M — M. = 0.246 GeV. (A.21)
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APPENDIX B
FADDEEV EQUATION

We describe the dressed-quark-cores of the nucleon via solutions of a Poincaré-
covariant Faddeev equation [250]. The equation is derived following upon the observa-
tion that an interaction which describes mesons also generates quark-quark (diquark)
correlations in the colour-3 channel [251]. The fidelity of the diquark approximation
to the quark-quark scattering kernel has been verified [91].

In RL truncation, the colour-antitriplet diquark correlations are described by an
homogeneous Bethe-Salpeter equation that is readily inferred from the analogous

meson equation; viz., following Ref. [251] and expressing the diquark amplitude as

with

{H' =i\, H? = i) H? = iX\*}  ecrones = (H®) o0y (B.2)

where {\?%7} are Gell-Mann matrices, then

8 IR / d4q
L,k:P)= ——— | —— - P B.3
aq(k; P) 3 m2 | (2n) YuXaa (@5 P) Vo (B.3)

where x4(q; P) = S(q)I'y(P)S(q — P) and I, is the diquark Bethe-Salpeter ampli-
tude, which is independent of the relative momentum when using a contact interaction

66).
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Scalar and axial-vector quark-quark correlations are dominant in studies of the

nucleon:

) 1
FSJ(P) = 5L (P) + A PF(P), (B.4)
Z.F;;,LL(P) = iVEqul(P)u (B.5)

where P,/yf = 0. These amplitudes are canonically normalised:

P = 2 STl (<P) S5 Sla+ PITY, (PIS(a) (B.)
and
P, = gtr / gﬂ‘;r;ga(—m%sw +P)TL (P)S(q). (B.7)

AJ= % baryon is represented by a Faddeev amplitude

U =0 + Uy + Uy, (B.8)

where the subscript identifies the bystander quark and, e.g., ¥, 5 are obtained from
V3 by a cyclic permutation of all the quark labels. We employ a simple but realistic
representation of W. The spin- and isospin—% nucleon is a sum of scalar and axial-

vector diquark correlations:

Us(pi, o, 7i) = %0+ + %ﬁ, (B.9)

with (p;, o, 7;) the momentum, spin and isospin labels of the quarks constituting the

bound state, and P = p; + po + p3 the system’s total momentum.
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The scalar diquark piece in Eq. (B.9) is

N (pry o m3) = [T (Sppg KN, A% (K) [S(6 PYu( P (B.10)

2 o102 g’
where: the spinor satisfies Eq. (G.4), with M the mass obtained by solving the Fad-
deev equation, and it is also a spinor in isospin space with ¢, = col(1,0) for the

charge-one state and ¢_ = col(0,1) for the neutral state; K = p 4+ po =: ppgy,

ppg) = p1 — P2, L= (—ppay + 2p3)/3;

B 1
K24+ m?2

9490+

A" (K) (B.11)
is a propagator for the scalar diquark formed from quarks 1 and 2, with mg, , the
mass-scale associated with this correlation, and T° is the canonically-normalised
Bethe-Salpeter amplitude described above; and §, a 4 x 4 Dirac matrix, describes the
relative quark-diquark momentum correlation.

The axial-vector component in Eq. (B.9) is

A () = [6TL (oo KA, AL () [ PP, (BA2)

where the symmetric isospin-triplet matrices are

1
tt=—("+7%), ¢ =17

2 Lt = —(1" =7, (B.13)

and the other elements in Eq. (B.12) are straightforward generalisations of those in

Eq. (B.10) with, e.g.,

991+ 99,1+

1 K, K
1t _ v
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One can now write the Faddeev equation for Ws:

S(k; P)u(P)
A, (k; P) u(P)

die S(4; P) u(P)
_ _4/ o M, P) . (B.15)

The kernel in Eq. (B.15) is

My )]
M(k, 0; P) = %0' ( 1)” , (B.16)
(Mao),, (M),
with
%0 - FO+( qq/2 gqq) ST(gqq —k )

X fw(gq - qu/25 _qu) S(gq) Am (gqq) ) (B-17)
where: {, =0, kg =k, lyy = —0+ P, kyy = —k + P, the superscript “I” denotes
matrix transpose, I is defined in Eq. (G.9); and

(%1)1]/ = ¢/ Fﬁ( qq/2 qu)ST(qu kq)

X fm(gq - qu/25 _qu) S(gq) A;lut (gqq)a (B'18)
(9"[10)2 = F0+( qq/2 qu) ST(gqq kq) t!

X T3 (g = Figq/2; —kgq) S(Lg) A" (£yy), (B.19)
(%1)31/ =t/ F1+( qq/2 gqq) ST@qq kq) t!

X F1+( kqq/2; —kqq) S(£y) A}; (Lgq)- (B.20)

The dressed-quark propagator is described in Sec. A and the diquark propagators

are given in Egs. (B.11), (B.14), so the Faddeev equation is complete once the diquark
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Bethe-Salpeter amplitudes are computed from Egs. (B.3) — (B.7). However, we follow
Ref. [67] and employ a simplification of the kernel; viz., in the Faddeev equation, the

quark exchanged between the diquarks is represented as
T 9N
S (k) — == (B.21)

where gy = 1.18. This is a variant of the so-called “static approximation,” which
itself was introduced in Ref. [252] and has subsequently been used in studying a range
of nucleon properties [253]. In combination with diquark correlations generated by
Eq. (A.2), whose Bethe-Salpeter amplitudes are momentum-independent, Eq. (B.21)
generates Faddeev equation kernels which themselves are momentum-independent.
The dramatic simplifications which this produces are the merit of Eq. (B.21). Never-
theless, we are currently exploring the veracity of this truncation.
The general forms of the matrices S(¢; P) and 4% (¢; P), which describe the momentum-

space correlation between the quark and diquark in the nucleon, are described in
Refs. [254, 255]. However, with the interaction described in Sec. A augmented by

Eq. (B.21), they simplify greatly; viz.,

S(P) = s(P)L, (B.22a)
i21(P) = al(P)ys +iaj(P)ys Py, j = +,0, (B.22b)

with the scalars s, aiL2 independent of the relative quark-diquark momentum and
P?=—1.
The mass of the ground-state nucleon is then determined by a 5x 5 matrix Faddeev

equation; viz., ¥ = KU, with the eigenvector defined via

W(P)" = [s(P) af (P) aj(P) a3 (P) a5(P)] , (B.23)
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and the kernel (Ky = +4/2)

K(P) =

Kg;) kT KOI KOl Ki KOl KOI

saq say sa2 sa2

k‘— KlO 0 k:i— Kéllal 0 k:f— Kgllag

ais

K® kKM, OKDN kKM KM (B.24)
k‘i K;Ss 0 k‘Jr K‘Eal 0 k«Jr Kizlaz

KlO k:I— Kll Kll k‘_'_ Kll Kll

azs asal asal asaz aza2

whose entries are given explicitly in Egs. (B20), (B21) of Ref. [68]. Given the structure

of the kernel, the eigenvectors exhibit the pattern:

af = —V2d0, i=1,2. (B.25)

Using the parameters and results described in and connection with Egs. (A.19),
(A.20), the diquark Bethe-Salpeter equations produce the following diquark masses
(in GeV)

Myqgo+ = 0.78, myqy+ = 1.06, (B.26)

and canonically normalised amplitudes:

Eyo+ = 2742, Fpor = 0.314, Eypv = 1.302. (B.27)

With this input to the Faddeev equation, one obtains [67, 68, 69] my = 1.14 GeV

and the following unit-normalised eigenvector!

YE, 40+, Fyq0+ listed in Table I(A) of Ref. [68] are incorrect. The values listed in Eq. (B.27) were
actually used therein.
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s(P) af (P) a%(P) al(P) aS(P
(P) af (P) aj(P) a3(P) ay(P) | (B.28)
0.88 —0.38 0.27 —0.065 0.046

As explained elsewhere [67, 68, 69], the mass is greater than that determined empir-
ically because our Faddeev equation kernel omits resonant contributions; i.e., does
not contain effects that may phenomenologically be associated with a meson cloud.
It is for this reason that our Faddeev equation describes the nucleon’s dressed-quark
core. Notably, meson cloud effects typically work to reduce a hadron’s mass [256].
Using the reduced coupling value described in connection with Eq. (A.21), the

diquark Bethe-Salpeter equations produce the following diquark masses (in GeV)

Mygo+ = 0.70, mgg+ = 0.98, (B.29)

and canonically normalised amplitudes:

B0+ = 2165, Fyyor = 0.139, Egp+ = 1.093. (B.30)

With this input to the Faddeev equation, one obtains my = 1.02 GeV and the fol-

lowing unit-normalised eigenvector

s(P) af(P) a%(P) al(P) ai(P
(P) aij (P) aj(P) a3(P) as( ). (B.31)
0.88 —0.38 0.27 —-0.065 0.046

Plainly, a 20% cut in the infrared value of the coupling diminishes the strength of
DCSB by 33%. This feeds into reductions of the diquark Bethe-Salpeter amplitudes
and a 10% cut in the nucleon mass. On the other hand, the nucleon’s Faddeev
amplitude, which describes its internal structure, is almost unchanged. The same

pattern is seen in studies of the temperature dependence of nucleon properties [218].
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APPENDIX C
INTERACTION CURRENTS

In this appendix we explain the interaction currents involved in the calculation of
nucleon static charges using the Fadeev equation. In order to translate the diagrams
drawn in this appendix into formulae, it is helpful to bear the following points in

mind.

(1) In front of a closed fermion trace; i.e., a vertex, one should, as usual, include a

factor of (—1).

(2a) States entering a diagram are described by the amplitudes

. 1

T (P) = 75 (iBgqo+ + 7P Fog0t) (C.1a)
+ .

Ffllqu(P> = ZEqﬂ*’Y}f: (C.1b)

S(P) :Sﬂa (ClC)

A)(P) = alv,s + iakys Dy (C.1d)

(N.B. In this Appendix we have absorbed the “i” of Egs. (B.5), (B.22) into the labels
Il (P)and 43.)

qqp

(2b) States leaving a diagram are described by the amplitudes

. 1
sz(_P> =7 (Zqu0+ - M v Pqu0+> ) (C2a)
F;;ru(_P) = iqu1+7;:f> (C.2b)
S(=P) =sl=:5, (C.2¢)
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A (—P) = alys7y + iakys D, (C.2d)

In these equations,

PP,
Y =%Puw(P), Pu(P)=0u+—5—=. (C.3)

qql™

(3) In the traces arising from a closed fermion loop, we have: &;N for charge form

1
3

e, €, = 2e, where e is the positron charge; and 2N for scalar

factors, where ¢, = 3

and tensor form factors. Note that N = 2 for diquark initial and final states.

C.1 Electromagnetic Current

In computing the charge form factor of any hadron, one must employ the dressed-
quark-photon vertex [257, 258]. That vertex may be obtained by solving an inho-
mogeneous Bethe-Salpeter equation whose unrenormalised form is determined by the
inhomogeneous term «,. The complete solution for the contact-interaction’s vector
vertex in RL truncation can be found in Refs. [65, 216]; but that result is not neces-
sary herein because we only require the result at Q? = 0, which is fixed by the Ward

identity. With the contact interaction, that means

11(Q) =" C.4
M(Q) = €V (C.4)
where e, is the quark’s electric charge.

The Q? = 0 value of the elastic electromagnetic proton current determines the
canonical normalisation of the nucleon’s Faddeev amplitude [259]. Given the Faddeev

equation in Fig.2.2, the complete result is obtained by summing the six one-loop
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Figure C.1. Diagram 1: The probe interacts with a quark within the proton and
the 07 diquark is a bystander.

diagrams that we now describe. There would be more diagrams if the interaction

were momentum dependent [259].

C.1.1 Diagram 1 — em
The first contribution is depicted in Fig. C.1, which translates into the following

expression

+ + _ + Iy d't
QN 1A ) = AN 1) S [ o
X S(£ 4 p)eayS(L 4+ p)AY (=) S A*(p) (C.5)

_ 2NA+(p)s2/0 dx(l—x)/%
{iv-(C+ap) — M}yesy{iv- (C+ap) —M}

A
(2 — (1 —2)m3 + (1 — ) M? + xm?, | (p),

(C.6)

where here and hereafter we (often) suppress the parity-+ superscript on the diquark
label, § is the scalar-diquark piece of the Faddeev amplitude and A is the (as yet un-
determined) canonical normalisation constant for the Faddeev amplitude that ensures
that the proton charge is unity; i.e., @, = 1.
Applying the projection operator
1

?M = 57}1’ (C7)
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and performing the trace, one obtains

! d*?
— 2 _
eQp1 =e, N s /0 dr (1 x)/<2w>4
02 4+ 2(M + zmy)?

(02 = 2(1 = z)m3, + (1 — 2)M? + 2m2, ? (C.8)
1
— €u9\[82/0 dr (1 — :1:){ 5“(:1:(;5 — 1)m3%
+(1 —z)M? + xm2q0> +2(M + xmy)?
x G <x(x —)m3 + (1 —2)M? + :z:m?lqo)} ; (C.9)

where Gi*(w), Gi*(w) are defined in Egs. (A.14), (A.15), respectively, and e, = Ze.

This expression evaluates to

@Qp,l = D e, 9\[

= 0.0182622 ¢, AL = 0.0121748 e N\_ . (C.10)

C.1.2 Diagram 2 — em
The second contribution is almost identical to that depicted in Fig. C.1: the only
change being that in this instance a 17 diquark is the bystander. However, owing to

isospin symmetry, which we assume herein, and Eq. (B.25), this term yields

eQpa = (2eq+ €,) Dy N

= (2eq+ €,)0.00195845 A =0, (C.11)

where DY is the contribution obtained with a {ud}-diquark spectator.

C.1.3 Diagram 3 — em
The third contribution is depicted in Fig. C.2, which represents the following ex-

pression
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Figure C.2. Diagram 3: The probe interacts with the 0" diquark within the proton

and the dressed-quark is a bystander.

eQp3 AT (p)7, A" ()

=N At (p) 3/

d*e
(2m)* A (£ +p)

X V(L +p)A” (0 + p)S(—0) S AF(p)

=—29\£A+(p)82/1dx(1—x>/%

iy (04 (L= )~ M
(02 — (1 — x)mi + (1 —z)m2, + xM?]?

q40

X ’VI?(E +ap) AT (p) .

The vertex is given by (N = 2)

VI(P) = eV [ (;%4 w{S(+ P/2,5( + P/2)

x TV (P)S(q — P/2)T% (—P)}

:260N/01 dx(1—x)/(;i:§4

xte{[iv- (a+P) = M3, liv - (a+2P) = M)

) 1
X 75<ZE11!10 +M7’Pquo>
X [iv- (g + (z = 1)P) — M]

) 1
X75(Zquo _M'Y'Pquo)}

-3
><<q2—x(1—:p)m2 +M2> :

440
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where, again, €y = 3¢;

Le: and P is the incoming as well as the outgoing momentum of the

0" diquark, owing to our need to only consider vanishing momentum transfer ) — 0,

and we choose P to be an on-shell momentum. Applying the projector in Eq. (C.7)

and evaluating the trace, one obtains

eQps = Dség N
= 0.008733364 ey N = 0.00291112 e N[ .

C.1.4 Diagram 4 — em

(C.16)

The fourth contribution is almost identical to that depicted in Fig. C.2: the only

change being that in this instance the 11 diquark is probed, so that one has

eQpa AT ()7 AT (p)
“ A Y N [ Al
X V25 (04 D)AL (0 + p)S(—0) Z(p) AT (p)
= 2N Z AT (p) s (a{% + mé%) /0 dx (1 — )
d4é iy (—0+(1—2)p)— M
8 / (2m)* [2 — x(1 — x)m3 + (1 — 2)m2, + xM?]3

X ]P)Ococ’ (é + :Ep) (Vci’uﬁ’

x (a]m + ia%ﬁﬁ) v AT (p).

(0 +xp) Pyrs(l + p)

The vertex is (N = 2)

V(P = e [ S el sta+ st P/
< T (P)S(q — P/z)r;;a( P)}
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R 1 d4q
:—erNqul/O dm(l—x)/<2ﬂ)4

x tr{liy - (g +xP) — My, [iv - (¢ 4+ 2P) — M]
x5 (P) [iv- (g + (x = 1)P) — M] 75 (P)}

x [¢* — 2(1 —z)m2, + M?*|7?, (C.20)

991

where, as noted above, ¢y = %e and e, = %e, and P is the incoming as well as outgoing
momentum of the 17 diquark. Applying the projector in Eq. (C.7) and evaluating the

trace, one obtains

eQpa = (28, + &) DI N

= (2, + &) 0.00090133 AL = 0.002704 ¢ N_ (C.21)

where DY is the contribution from the {ud}-diquark.

C.1.5 Diagram 5 — em

This contribution is depicted in Fig. C.3. In this case

Qpse AT ()1 A" (p) =0, (C.22)

because the vertex vanishes at zero momentum transfer; i.e.,

Ve = 0. (C.23)

Consequently

Qps =0. (C.24)
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Figure C.3. Diagram 5: The probe is absorbed by a 0"-diquark, which is thereby
transformed into a 17 diquark.

C.1.6 Diagram 6 — em

This is the conjugate contribution to that depicted in Fig. C.3; namely, a 17 di-
quark absorbs the probe and is thereby transformed into a 0" diquark. In a symmetry
preserving treatment of any reasonable interaction, this contribution is identical to

that produced by Diagram 5.

C.1.7 Current Conservation

If a truly Poincaré invariant regularisation is employed, then one has Ward iden-

tities relating the charges in Egs. (C.10), (C.21) and (C.11), (C.16)

Dy = Ds, DY =Dj, (C.25)

which ensure: simple additivity of the quark and diquark electric charges, and thereby
guarantee a unit-charge isospin=(+1/2) baryon through a single rescaling factor [259];
and a neutral isospin=(—1/2) baryon without fine tuning. Owing to the cutoffs
we have introduced, however, these identities are violated: Eq.(C.10) cf. (C.16),
Eq. (C.11) cf. (C.21). Following Ref. [68], we ameliorate this flaw by enforcing the

Ward identities:

Dy — Dz = (D + Ds)/2 = 0.01350, (C.26a)

Dy.4 — D3z = 3(D3 + DJ)/2 = 0.00429 . (C.26b)
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| Qpi/N | @pi/N |
Diagram 1 | 0.01217 | 0.0090
Diagram 2 0 0
Diagram 3 | 0.00291 | 0.00450
Diagram 4 | 0.00270 | 0.00426
Diagram 5 0
Diagram 6 0

| Sum [ 0.0178 | 0.0178 |

Table C.1. Column 1: Summary of the results computed from all diagrams consid-
ered in connection with the proton’s charge. Column 2: Results scaled as described

in Sec. C.1.7.

This corresponds to introducing a rescaling factor for each of the diagrams involved:
D; — k;D;, k13 = Dig/D13, Koy = Dgg/Ds4. Diagrams 5 and 6 are unaffected

because they are equal and do not contribute to a baryon’s charge.

C.1.8 Canonical Normalisation
The results computed from all diagrams considered in connection with the proton’s
charge are collected in Table C.1. As noted above, the canonical normalisation is fixed

by requiring

6
Q=) Qi=1, (C.27)
i=1
from which it follows that
N 0.01777 06.27 (C.28)

C.2 Scalar Current
When computing the scalar charge of any hadron, one must employ the dressed-
quark-scalar vertex. That vertex, too, is obtained by solving an inhomogeneous

Bethe-Salpeter equation: in this case, the unrenormalised form is determined by
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the inhomogeneous term I. The complete solution for the contact-interaction’s scalar

vertex in RL truncation can be found in Refs. [216], and at Q* = 0 this yields:

W= ! I=1371, (C.29)
g 2y iug g g2
g (2¢m(2) = o)

where M is the dressed-quark mass in Eq. (A.20).
As a check on this result, we note again that since the vertex is only required at
Q? = 0, one can appeal to a Ward identity [260], which takes the form
2o _ OM
%(Q) ="1°— .30
Q) =15 (C.30)
when the contact interaction is used. Employing the results from which Ref. [67] was
prepared, this expression, too, yields the numerical value in Eq. (C.29).
The nucleon’s scalar charge is also known as the nucleon o-term; and using our
implementation of the contact interaction, one need consider only relevant analogues
of the six diagrams described explicitly in App.C.1. In this case, Diagrams 1-4

provide a nonzero contribution and the complete result is obtained from the sum.

C.2.1 Diagram 1 — scalar
This is the contribution produced by the scalar probe interacting with a the

dressed-quark whilst the 07 [ud]-diquark is a spectator:

. I [ d
ba1 A (D)IA*(p) = AF AT (p) 3 / G St

X VIS(C+p) A (—0) S A (p) (C.31)
NN d*0
=200 AF(p) s / d:c(l—x)/w
{iy- (€ +xp) — M} VI {iy - (€ + xp) — M} )
(2 — (1 —x)m3 + (1 — ) M? + am? A™(p), (C.32)

QQO]g
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where A = k1A, with k; defined in connection with Egs. (C.26), A given in

Eq. (C.28). Applying the projector

P=_1I, (C.33)

and evaluating the trace, one obtains

6'%1 = 5'(171 - 0309, (3'd’1 == O . (034)

It was plain from the outset that this diagram would only produce a contribution to

04,1 because the d-quark is sequestered inside the scalar diquark.

C.2.2 Diagram 2 — scalar
In this case we have the scalar probe interacting with the dressed-quark and the

1% diquarks being spectators:

Gq, AT (P)IAT (p)
=26 N 0) ) [ Gy S+
x S(C+p)ALy(—0) Z(p) AT (p) (C.35)

=275 At (p) s (a]m + z‘a%%)/ol dr (1 — 37)/ %

(i - (U4 ap) — M} V' {in - (0 + xp) — M}
[ —2(l —z)m}y + (1 — 2) M2 + 2m? 3

X Pag(C — (1 = 2)p)(als + iahps ) 35 A (). (C.36)

Applying the projector in Eq. (C.33) and evaluating the trace, one finds, owing to
Eq. (B.25),
Gun = Gy = 00318, G5 = Gy, , = 0.0636 = 26, (C.37)
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C.2.3 Diagram 3 — scalar

The third diagram describes the scalar probe interacting with the 0" [ud]-diquark

and the dressed-quark acting merely as an onlooker:

Ga3 AT (P)IAT (p) = AL AT (p (0 +p)

< V(L +p)A” (L +p)S(—0) S A*(p)

:-2%“52/Oldx(l—x)/(§;§4/\+(p)

[iy - (=t + (1 = x)p) — M]VP (L + xp) A*(p)
(2 —2(1 —z)miy + (1 —2)m] o +x M2

The vertex is given by (N = 2)

S(q+ P/2)VS(q¢+ P/2)

x T (P)S(q — 13/2)rgq+ (—P)}

:4N/01da:(1—x)/(§;§4tr{[i7-(q+xP)—M]

1
MV‘Pqu())

x Y'liv- (¢ +2P) — M]vs (iquo +

< (17 (g + (2 = 1)P) = M]3 (i By,

1

~3
-7 Pquo)}<q2 —z(l—az)mi, + M2>

Applying the projector in Eq. (C.33) and evaluating the trace, one obtains

Gus = % = 1.0419 = 6435

C.2.4 Diagram 4 — scalar

(C.38)

(C.39)

(C.40)

(C.41)

(C.42)

The fourth diagram describes the scalar probe interacting with a 17 {uu}- or

{ud}-diquark where the dressed-quark acts merely as an onlooker:
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G, AT (P)IAT (p)

= AT ) A ) [ s A+ D)V (4
x Abig(€+p)S(—0) Aj(p) A*(p) (C.43)
= 27" AT (p) s (a{va + m%ﬁa) /0 dx (1 —x)
d*( iv- (—l+(1—x)p)— M
” / 2m)* 2 —x(1 —z)m3%, + (1 — x)m2, + xM?]3

X Poor (€ + xp) {Vaﬂ’ﬁ’ (€ + xp) Pﬁ’ﬁ(“g + ap)

x (afs + iakps ) v A (). (C.44)
The vertex is given by (N = 2)

_ —2N/ S(q+ P/2)V{S(q + P/2)

x T (P)S(q — P/2)F1+ (- P)} (C.45)

= —4NE§q1/O dr (l—x)/%tr{[iw (g +xP)
— M} W [iv- (¢ +xP) = My liv- (¢ + (z = 1)P)
— My Ha® = 2(1 = x)mg, + M?]7° (C.46)

qq1

1
— 16MNE?, VP, s5(P )/ dx (1 —z)
0

X (M2 —z(x — 2)mqu> i (x(:c m?2, + M2> (C.A4T)
where P is again both the incoming and outgoing momentum of the 17 diquark.
Applying the projector in Eq. (C.33) and evaluating the trace, one finds
qu 4

Gus =~ 4 5y, = 0465, G = qu — 0.0938. (C.48)
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| | 6. | 64 | o [MeV]]
Diagram 1 | 0.309 0 2.163
Diagram 2 | 0.032 | 0.063 | 0.666
Diagram 3 | 1.042 | 1.042 | 14.587
Diagram 4 | 0.465 | 0.094 | 3.914
Diagram 5 0 0 0

Diagram 6 0 0 0

| Total Result | 1.85 | 1.20 [ 21.33 |

Table C.2. Summary of the results computed from all diagrams considered in con-
nection with the proton’s scalar charge.

C.2.5 Proton o-term
The results obtained from all diagrams considered in connection with the proton’s

scalar charge are collected in Table C.2. The proton o-term is

6
oy =m Y [fui+ 6a;] = 21.33MeV. (C.49)

i=1

In the isospin symmetric limit, the neutron o-term is identical.

C.3 Tensor Current

When computing the tensor charge of any hadron, one must employ the dressed-
quark-tensor vertex. However, as explained elsewhere [67], any dressing of the tensor
vertex must depend linearly on the relative momentum [261] and such dependence
is impossible using a symmetry-preserving regularisation of a vector ® vector contact
interaction. Hence, in our case, the quark-tensor vertex is unmodified from its bare
form; viz.,

. (C.50)

Naturally, when computing the proton’s tensor charge using our implementation of
the contact interaction, one need only consider relevant analogues of the six diagrams

described explicitly in App.C.1. In this case, Diagrams 1,2,4,5,6 provide nonzero
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contributions. Diagram 3 yields zero because Poincaré invariance entails that a scalar

diquark cannot possess a tensor charge.

C.3.1 Diagram 1 — tensor

As usual, we first consider the case of the tensor probe interacting with the dressed-

quark and the 07 [ud]-diquark being a spectator:

d*?

SN P () = AN ) S [ 55 S+ Do

X S+ p)A® (=€) S AT (p)

oo [ar(-a) [ SN0 (- (4

(2m)
— M} o {iy- (04 xp) — MIAT(p)

x [ —2(1 —2)m3 + (1 —2)M?* + zm?

-3
QQO]
Applying the projector

,uu_ﬁauua

and evaluating the trace, one obtains

51q:29\652/0 dx(l—x)/%
(M+me)2

=0 —a)md + (1= o) M2 + am2, P
1
— 257\[52/ dr (1 —2)(M + xmy)?
0

x G" (x(x —1)mA + (1 — z)M? + xm3q0> :
where Gi"(w) is defined in Eq. (A.14). As a result we find

5T1u == 51q = 0.581 y (5T1d =0.
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(C.52)

(C.53)

(C.54)

(C.55)

(C.56)



C.3.2 Diagram 2 — tensor
When the tensor probe interacts with the dressed-quark and the 17 diquarks are

spectators, one has

52(]]' A+ (p)a;wA+ (p)
-2 N0 R [

X S(C+p) As(—0) A (p) A (p) (C.57)
=226 A ) s (oo + i) [ e =) [ 5
{iv- (04 ap) — M} oy {iy - (£ +ap) — M}

(02 — x(1 — x)mi + (1 —z)M? + 2m2, |?

qq1

X Pag(C — (1= 2)p) (als + iahfs ) 1A () (C.58)

S+ p)ouw

Applying the projector in Eq.(C.53) and evaluating the resulting trace, one finds,

owing to Eq. (B.25):
5T2d = 52(]+ = 262(]0 = —0.0359 = 25T2U . (059)

C.3.3 Diagram 4 — tensor
The next nonzero contribution arises from the tensor probe interacting with a 1*

{uu}- or {ud}-diquark where the dressed-quark acts merely as an onlooker:

54(13‘ AT (p)U;wAJr (P)
d*¢ +

=20 A () ) [ G AL+ D) Ve (0
x Abyy(C+p)S(—0) A (p) A (p) (C.60)
i ; NS a4y
= =2N"A"(p)s (aﬂa + zagpa> /0 dx (1 — x)/ o)
iy (—0+(1—x)p)— M
(02 —2(1 — z)m4 + (1 — x)m2,, + xM?]3

qq1

171



X ]P)aa (6 + ZL’p) rVa gnzey (f + pr)
X Para(€+ ap) (alvs -+ iadis ) 35 A* (1) (C.61)
The vertex is (N = 2)
V2, 4(P) = —2N / S(a+ P/2)ouS(a+ P/2)
1+ 1+
X TLis(P)S(q — P/2)The(~ P)} (C.62)

= —4NE2, /01 dr (1 — ) / %u{[m (¢ +zP)

— Mo, [iv- (q+aP) = M]~s

<lir- 4+ (o= DP) = M)

x [¢* —2(1—2)mi, + M?]7° (C.63)
— 16IMNE?, <IP’W(P)IP>5,,(P) - IP’W(P)]P’W(P»

x /01 dr (1 — @{(M? —a(z - 2)m qql) ()

+ G (2o — Dym2,, + M) | (C.64)

where P is the incoming and outgoing momentum of the 17 diquark, and Gi"(w),
M(w) are defined in Eqgs. (A.14), (A.15). Applying the projector in Eq. (C.53) and

evaluating the resulting trace, one finds
0440 54610

(5T4u = — + (54(]+ =0. 292 5T4d =

5 = (0.0589. (C.65)

C.3.4 Diagram 5 — tensor
This is the contribution to the tensor charge arising when a scalar diquark absorbs

the tensor probe and is thereby transformed into a 1% diquark. Naturally, in a
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symmetry preserving treatment of any reasonable interaction, this contribution is

identical to that produced by Diagram 6. Concretely, one has:

05q AT (p)oyw AT (p)

= AN ) A [ o AL+ VL4 D)
x A" (04 p)S(—€) S A*(p) (C.66)

= 20" AT(p) s (a?%ﬂ'agﬁa) /O o /0 1 dyy / (%4
x [iv - (= +yp) = M)V, (€ + (1 = y)p)

X Pog(l+ (1 —y)p) s AT (p) [ + y(y — 1)m3

+ Jz:quq1 +(1-— x)quq0 (1 —y)M?]73. (C.67)

The transition vertex is V30, (P, P) where (N = 2)

Vi (P, P') = —2N/ S(qg+ P)owS(q+ P)
x T (P)S(q) T (— P')} (C.68)
= 4iNE,, /0 d:zc/o dyy/ (qu)z;
X tr{[m (q+yP —ayP) — Mo
x [iv-(¢g— (1 =y)P' + (1 —2y)P) — M]
377 P Fm)
X [iv- (g = (1 —y)P' —ayP) — M] 7§(P’)}
x (¢ = (1= 2)y(1 = y)m2,,

-3
— (= 2)yPmd, + M?) (C.69)

X Y5 (iquo +

where P and P’ are the incoming and outgoing momenta of the diquarks, respectively.

(Some details about the on-shell procedure can be found in App.D.) Applying the
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[ oru [ ord | G0 ] o]

Diagram 1 0.581 0 0.581 | 0.581
Diagram 2 —0.018 | —0.036 | —0.054 | 0.018
Diagram 3 0 0 0 0
Diagram 4 0.292 0.059 0.351 | 0.233
Diagram 5+6 | —0.164 | —0.164 | —0.329 0

| Total Result [ 0.691 [ —0.141 [ 0.550 [ 0.832 |

Table C.3. Summary of results computed from all diagrams considered in connection
with the proton’s tensor charge. They represent values at the model scale, (g ~ M,
described in App. E.

projector in Eq. (C.53), evaluating the resulting trace and combining the result with

that from Diagram 6, one finds

5T75+6U = 5T75+6d = (SC]5 = —0.164. (C?O)

C.3.5 Proton tensor charge

The results obtained from all diagrams considered in connection with the proton’s
tensor charges are collected in Table C.3. Notably, the values of the tensor charges de-
pend on the renormalisation scale associated with the tensor vertex. This is discussed

in App. F.

C.3.6 Proton tensor charge — scalar diquark only

It is interesting to consider the impact of the axial-vector diquark on the tensor
charges. This may be exposed by comparing the results in Table C.3 with those
obtained when the axial-vector diquark is eliminated from the nucleon. We implement

that suppression by using the following nucleon Faddeev amplitude:

: (C.71)
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and then repeating the computations in Apps. C.1, C.3. Naturally, in this case only
Diagrams 1 and 3 can possibly yield nonzero contributions to any quantity.

Recomputing the canonical normalisation, we obtain

1
= ——— =57.50 C.72
A 0.0174 ’ ( )
which is 2% larger than the complete result in Eq. (C.28).
Regarding the tensor charges, Diagram 3 also vanishes in this instance so that the
net result is simply that produced by Diagram 1:
drpu Oryd gy ghy

. (C.73)
0.765 0 0.765 0.765

Comparison with Table C.3 shows that with a symmetry-preserving treatment of a
vector ® vector contact interaction, the d-quark contribution to the proton’s tensor
charge is only nonzero in the presence of axial-vector diquark correlations and these

correlations reduce the u-quark contribution by 10%.

C.3.7 Proton tensor charge — Reduced DCSB
In order to expose the effect of DCSB on the tensor charges, we repeated all
relevant calculations above beginning with the value of ajr used to produce Eq. (A.21)

and thereby obtained the results listed in Table C.4.
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‘ o7 ‘ ord ‘ Q(TO) ‘Q(TI)‘

Diagram 1 0.495 0 0.495 | 0.495
Diagram 2 —0.020 | —0.039 | —0.059 | 0.020
Diagram 3 0 0 0 0
Diagram 4 0.236 0.047 0.283 | 0.189
Diagram 5+6 | —0.160 | —0.160 | —0.319 0

| Total Result | 0.551 [ —0.151 | 0.400 | 0.703 |

Table C.4. Summary of results computed from all diagrams considered in connection
with the proton’s tensor charge using input based on ajg/m = 0.74, quoted at the
model scale, (g ~ M, described in App. E.
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APPENDIX D

ON-SHELL CONSIDERATIONS FOR THE TRANSITION
DIAGRAMS

For the practitioner it will likely be helpful here to describe our treatment of
the denominator that arises when using a Feynman parametrisation to compute the

transition diagrams. Namely, one has

1 1 1
(g+P')?+ M?(q+ P)>+ M? ¢ + M?

_2/ dx/ dyy{(q+ (1 —y)P' + zyP)’

+ (1 —y)yP"? + 2y(1 — 2y)P?

—2(1 —y)ayP' - P+ M?*} 2. (D.1)
At this point, a shift of the integration variable ¢ — ¢ — (1 — y) P’ — xy P yields

1 1
2/ dx/ dy y{q® + (1 — y)yP"? + zy(1 — xy) P*
0 0

—2(1 — y)ayP' - P+ M*}73. (D.2)
Next, we employ on-shell relations, which for Diagram 5 are given by

P? = P?=—m2 . (D.3)

qql ) qqo

Then, since Q? = (P’ — P)? = P? + P> —2P'- P =0:

mqu + quII

2

P.P= (D.4)
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Hence, the Feynman integral associated with Diagram 5 is

1 1
2/ d:v/ dyy{q® — (1 —2)y(1 —y)m?,,
0 0

— (1 —2)y*m2, + M?}73,

q40

Diagram 6 is obtained via mgq, < mygq, -
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APPENDIX E
MODEL SCALE

In modern studies of QCD’s gap equation, which use DCSB-improved kernels and
interactions that preserve the one-loop renormalisation group behaviour of QCD, the
dressed-quark mass is renormalisation point invariant. As in QCD, however, the
current-quark mass is not. Therefore, in quoting a current-quark mass in Eq. (A.19),
a question immediately arises: to which scale, (g, does this current-quark mass cor-
respond?

Asnoted in App. A, the contact-interaction does not define a renormalisable theory
and the scale (i should therefore be part of the definition of the interaction. We define
Cu so as to establish contact between the current-quark mass in Eq. (A.19) and QCD.

Current-quark masses in QCD are typically quoted at a scale of (, = 2GeV. A
survey of available estimates indicates [181]

~ omy () +ma(Ge)

m(Gy) = Tl E D) _ g saer. ()

and this value compares well with that determined from a compilation of estimates

using numerical simulations of lattice-regularised QCD [236]:

(C2) +ma(¢2)
2

m(G) = 2 — 34402 (E.2)

On the other hand, we have determined an average value of the u- and d-quark masses

appropriate to our interaction that is m((y) := m = 7MeV.

179



The scale dependence of current-quark masses in QCD is expressed via

m(¢) {%(C’)} " ’ (E.3)

as(¢)
where a;(¢) is the running coupling and ~,, = 12/(33 — 2ny), with n; the number
of active fermion flavours, is the mass anomalous dimension. Plainly, the running
current-quark mass increases as the scale is decreased.

Using the one-loop running coupling, with ny = 4 and Aqgcp = 0.234 GeV [83],
then

m(Cy) & 2m(G) for (= 0.39£0.02GeV; (E.4)

and thus we have determined the model-scale. Given the arguments in Refs. [207,
262, 213|, the outcome (y ~ M is both internally consistent and reasonable. (We
use the one-loop expression owing to the simplicity of our framework. Employing
next-to-leading-order (NLO) evolution leads simply to a 25% increase in (i with no

material phenomenological differences.)
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APPENDIX F
SCALE DEPENDENCE OF THE TENSOR CHARGE

Whilst the values of the tensor charges are gauge- and Poincaré-invariant, they
depend on the renormalisation scale, ¢, employed to compute the dressed inhomoge-

neous tensor vertex
Lu(k; Q;: Q) = Si(k;Q; Qo + -, (F.1)

at zero total momentum, @ = 0. (k is the relative momentum.) The renormalisation
constant Zr((, A) is the factor required as a multiplier for the Bethe-Salpeter equation
inhomogeneity, o, in order to achieve Si(k? = (*;Q = 0;¢) = 1.

At one-loop order in QCD [263]:

L (k;Q;¢)

<2>>§QCD {QS(C(?)

aS(CQJ L (k5 Q; Go) (F.2)

where np = (=1/3)%m. The pointwise behaviour of I, (k; @ = 0;() is illustrated in
Ref. [238].

Equation (F.2) entails

6q(C)

C>Aen [as(@)]™
B ot o) ®3

and hence that dq decreases as ( increases. It follows, for example and in connection

with our analysis, that
dq(¢2)
6q(Cr)

with (g drawn from Eq. (E.4).

= 0.794 £ 0.015, (F.4)

181



APPENDIX G
EUCLIDEAN CONVENTIONS

The standard DSE treatment usually deals with Euclidean spacetime so it will be

worthwhile to explain the conventions here. In our Euclidean formulation:

4
p-q:Zpiqi; (G.1)
i=1

0

{'7#771/} = 25;”/; '7;2 =Yus Opw = 2[’7#771/] ) (GZ)
tr [75%%%%] = —4d€upo €123 = 1. (G-S)

A positive energy spinor satisfies
u(P,s)(iy-P+M)=0=(iv- P+ M)u(P,s), (G.4)

where s = :I:% is the spin label. The spinor is normalised:

u(P,s)u(P,s)=2M, (G.5)

and may be expressed explicitly:

Xs
u(P,s) =vM—iE 5. p : (G.6)
M —iEN

182



with £ = iV P2 + M2,
X+ = , X- = : (G.7)

For the free-particle spinor, #(P,s) = u(P,s)y,.

The spinor can be used to construct a positive energy projection operator:

u(P,s)u(P,s) = L (—iy- P+ M). (G.8)

1
A4(P) -

2M =~

A charge-conjugated Bethe-Salpeter amplitude is obtained via
[(k;P)=C'T'(-k;P)T C, (G.9)

where “T” denotes a transposing of all matrix indices and C' = 7,7, is the charge

conjugation matrix, CT = —C. We note that

CWEC =—7,, [C,v]=0. (G.10)
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APPENDIX H

MATRIX ELEMENTS OF TWO AND FOUR-FERMION
OPERATORS

In this section we present matrix elements of two-fermion operators (u'u and d'd)
and four-fermion operators (u'ud'd) between nucleon states that are involved in the
calculation of the PVDIS distribution functions. For this purpose let us consider two

arbitrary components of proton light-cone wavefunction defined as the following:

) = ﬁ / DXsJa(1,2,3)ul, (Duly, (2)dl, (3) [0)
) = T [IDXa0s(0.2. 3l (Dl (2 (3) 1) (H1)

It is straightforward to work out the matrix elements of the four-fermion operator be-
tween these two states (the symbol “1” denotes the four momentum k; = (z1p™, K, 1)

Whichisgivenbyxlzl—xq—xlzl—:pf}—x; andl;u:—(ﬁ—ll:—Q’L—l_i.):

, , 32m?
(ol (@)t ()l (Delyxe (1) [85) = 5 G0 = 04jr0irj ) Orax x| B0

(g 4 11 — 2 — 27)0%(qL +I—q, - l_”L)/dxlko_ilﬂl — X — Ty —1y) X
52(l€_ﬁ +qL+ ll) X
(6)\1p5>\2/\’25p’)\’1¢;(Q7 L, Z)wﬁ(qlv L, ll) + 5)\1)\’25)\2[25[)’)\’177/};(17 q, l)d)ﬁ(qla L, l/)

+5)\1p5>\2)\’1 6p’)\’2¢:;(q7 L, l)wﬁ(la q/a l/) + 6)\>\’1 5)\2p6p’)\’2¢;(17 q, Z)¢ﬁ(1v qlv l/)) (HQ)

and those for two-fermion operators:
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4 . . .
(ol di\(D)dyx (1) [1hg) = 51’15(371—$§)52(h—F¢)5A3A5Agx5jj’/dﬁfld@d%ud%u

01—z — a9 — $l)52(lgu + kol + 11)(5,\@’15,\2,\’21/%(1, 2,1)

+5)\1)\’25/\2)\/1¢5(27 17 l))%U;(L 27 l) (H3)

(ol uly Dy (V) [1hg) = gxlé(ml — 2 (I — U)o 05 / dzydzod?ky | Ak,
01— 21 — x9 —xl)52(ElL+E2L+l_l) X
(Ox20n0, 00 x, Vi (15 1, 2)105(1, 1, 2)
F0x 200100 Vo (1,1, 2)15(1, 1, 2)
F0a a0 Oy a1, 1, 2)05(1, 1, 2)

+(5>\1>\'15)\2)\5/\’)\’2w;(17l7Q)wﬂ(lal>2)) (H4)
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APPENDIX I

COMPLETE FORMULAE FOR VARIOUS QUARK
DISTRIBUTION FUNCTIONS IN TERMS OF PROTON
WAVEFUNCTION AMPLITUDES

In this section we present explicit expressions needed to compute the quark PDF's
and the twist-four distribution function.
The distribution functions Q;‘E (xp) in Egs. (6.30) and (6.31) are expressed in terms

of @bi (q,1,q', "), which have the following expressions:
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1/’11_:0(97 la qla l,)

¢ZZ:O(Q7 la qu l,)

¢Z:1(Q7 l7 C]/, l/)

¢l::1(Q7 l7 q/7 l/)

wlt:_l(q7 l> qu l/)

¢l::_1(Q7 l7 q,7 l,)

U _o(q. 1,4 1)

wl_z:Q(Cb lv qlv l/)

2012 (q, 1, )2 (¢, 1, 1) (L1)
2{ (1, ¢, DM (1,4 1) + (g, 1, )2 (¢, 1, 1)

+ (1L g (g 1, 1) + 0P (g, L D) (LT )

+ (1,1 )P (1,1, ¢} (1.2)
20091, ¢,V (1,4, 1) (L.3)
2{O (g, 1,00V (¢, 1, 1) + B (1, ¢, )Y (1, ¢/ 1)
+PO (11, QPO 1) + B g, D BI(T 1, ¢)
+POI (11, g1, 1,¢)} (L.4)
2{®5(q, 1,090 (¢, 1, 1) + PV (1, ¢, )9 (¢, 1,1)
+9 (g, 1,9V (1,4, 1)

+OV*(1, ¢, ) (1,4, 1)} (15)
0 (1.6)
2{ (g, 1, )00 (¢, 1, 1) + 9" (1, ¢, ) (¢, 1,1)
+y 09 (q, 1,099 (1,4, 1)

+ (1, ¢,y 01,4, 1)} (L.7)

0 (1.8)

The definitions of 1)) are the following:

p0(1,2,3) = ¢0(1,2,3) +i(kikY — kK5 (1,2,3)

w(374)<17273) = erw(3)<17273> + k;—lw(4)<1’273)

vOI(1,2,3) = —ky, v(1,2,3) + k3, v P(1,3,2)

WOO(1,2,3) = kL (k5 9®(1,3,2) - K 99(1,2,3)) (L9)
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On the other hand, the quark distribution functions in (6.28) are given in terms

of A':(q,1,2), which look like the following:

A%g,1,2) = (g, 1,2)9p1(g,1,2) + 200P*(1,¢,2)9 (1, 4,2)
+p1D%(q,2, 1)1 (g, 2, 1) + p1D%(1, 2, 9)p 12 (¢, 2, 1)
02 (q,2, )P 2(1,2, q) + 202*(1, 2, ¢ (1,2, )

+ (1, ¢, 2)p 1 (2, ¢,1) (1.10)

A=Y g,1,2) = 20894, 1,2)03 (¢, 1,2) + B (1, ¢, 2)CD (1, ¢, 2)
(2,4, )9 (2,¢,1) + 902, 1,0)9 (2,4, 1)
(2,4, )9 (2,1,q) + 902, 1,9)p (2,1, 9)
+¢(3,4)*(1’ 2, q)¢(3’4)(1, 2,q)

B0 (g,1,2)3 (¢, 2, 1) (I.11)

AFg,1,2) = (g, 1,2)95%(q,1,2) + (1,4, 2)057 (¢, 1,2)
+p0 (¢, 1,2 (1, ¢,2) + V1, ¢,2)p 9 (1, ¢, 2)
+90*(1,2, ) *(1,2,q)

+07(1,2,9)909(2,1,9) (112)

A2(q,1,2) = 909%(q,1,2)9% (g, 1,2) + 9OV (1,¢,2)9% (g, 1,2)
+009%(q,1,2)9 00 (1,q,2) + " (1,¢,2)p (1, ¢,2)
+0 09 (1,2, ) 9(1,2,q)

L9 (1,2, )9 (2,1, q) (1.13)
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with ¢ = ($BP+7Q1)7 ro=1—xp—x and ko) = —q¢1 — k1.
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APPENDIX J

VANISHING ONE-LOOP DIAGRAMS IN THE
CALCULATIONS OF SM NUCLEON EDM

Here I will show that all 1-loop diagrams, other than those in Fig. 5.1, do not
give rise to the CKM-induced SM nucleon EDM; at least at leading order in the
HB-expansion.

All other possible 1-loop diagrams beside those I have calculated are summarized
in Fig. J.1. Since the weak Lagrangian used in my work does not involve covariant
derivatives of baryon fields, any baryon-photon coupling term has to arise from the
ordinary P and T-conserving Lagrangian.

For Fig. 4(a), the photon vertex must arise from Dirac coupling since an MDM
coupling is suppressed by (1/my)? as pointed out in [185]. Since the Dirac coupling
is independent of the photon momentum ¢, one can define loop momenta in a way
such that the dependence of ¢ only appears in the baryon propagator. However, using
the on-shell condition v - ¢ = 0, the baryon propagator is actually ¢g-independent and
therefore so is the whole diagram. As a result, Fig. 4(a) cannot generate an EDM
that is linear in q.

For Fig. 4(b), at leading order in the HB-expansion the BB’¢~y vertex is propor-
tional to S*, so it cannot generate an EDM because the latter is proportional to v*
which is perpendicular to S*.

For Fig. 4(c), first I note that the BB'¢¢’ vertex cannot come from the D or
F-term of the ordinary chiral Lagrangian because that would violate parity. There-

fore it can only come from £, In this case, it can only be parity-conserving and
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(c) (d)
Figure J.1. 1-loop diagrams that vanish at LO HBchPT. The weak vertices could
be placed at any allowed position and therefore are not explicitly shown.

time reversal-conserving (PCTC), or parity-conserving and time reversal-violating
(PCTV). So in order to get an EDM which is PVTV, one needs to place another
PVTC or PVTV vertex in some other part of the diagram. This cannot be done
because all ¢p¢’ and ¢¢'y operators I have are parity-conserving.

For Fig. 4(d), one could generate an EDM by coupling the resulting complex
mass term of the baryon to its MDM. But again this contribution is suppressed by

(1/my)? and should be discarded at leading order in the HB-expansion.
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