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Abstract

This study reevaluates criticism of the Korean government’s R&D investment strategy,

which was considered an ’R&D cartel’ and was cited as a reason for the Korean govern-

ment’s R&D cuts in 2023, through an advanced framework of quantum game theory. By

modeling the interaction between the government and researchers as a quantum informa-

tion strategy game, it redefines the dynamics of R&D investment as a quantum game

involving two key players: the R&D manager (Alice) and the research performer (Bob).

This quantum game, akin to the Prisoner’s Dilemma but focused on responsibility and sin-

cerity, allows for the exploration of strategic complexities and decision-making dynamics

not possible in classical models. It introduces quantum entanglement and superposition

as innovative strategies to shift the paradigm of R&D investment, suggesting that terms

like ’R&D bureaucracy’ and ’R&D monopoly’ more accurately describe the moral hazards

in this sector than ’R&D cartel’. Through simulations, the paper demonstrates how quan-

tum strategies can significantly alter outcomes, providing fresh insights and policy alter-

natives for R&D innovation. This research not only challenges conventional investment

frameworks but also proposes a novel approach for achieving Pareto optimal outcomes in

government R&D investments, emphasizing the transformative potential of quantum

game theory in strategic decision-making and policy development.

Research background and purpose

The Korean government, acknowledging the inefficiencies in the management of its R&D

budget, has recalibrated its financial allocation for R&D in 2024. The revised budget, set at

25.9 trillion won, marks a 16.6% reduction from the previous year [1]. This decision was rati-

fied at the plenary session of the National Assembly, ultimately confirming the budget at the

stated amount. Notably, this reduction represents a 15% decrease from the 31.1 trillion won

allocated in 2023. Consequently, the investment proportion of the Korean government’s total

expenditure has diminished from 4.9% to 3.9%. This shift marks a significant moment in the

nation’s fiscal history, as it is the first time since 1991, a span of 33 years, that the proportion of
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investment relative to total government expenditure has plummeted to the 3% range, a phe-

nomenon last observed 21 years ago [2]. Sources such as "South Korea, a science spending

champion, proposes cutbacks" [3] and “South Korean scientists’ outcry over planned R&D

budget cuts” [4] offer detailed insights into these developments.

The Korean government rationalized this decision, citing ‘insufficient visible results’ in the

R&D sector, ‘a proliferation of small-scale R&D projects in the form of sharing’, and ‘a closed

research system centered on domestic researchers and funds’ [2]. Within this context, the term

’R&D cartel’, diverging from its traditional usage, emerged as a critical descriptor for the ineffi-

cient management and allocation of R&D funds. Unlike a conventional cartel that typically

implies coordination of price and production among competitors, the ’R&D cartel’ in this con-

text refers to a group or project monopolizing resources or influencing the decision-making

process [5]. In this scenario, terms such as ’R&D bureaucracy’ or ’R&D monopoly’ may more

accurately encapsulate the situation.

This study posits that the employment of these terms, in relation to Korea’s R&D budget

cuts, functioned more as rhetorical devices to justify policy shifts than as reflections of eco-

nomic or legal precision. The study adopts a game theory perspective to analyze the cause of

these developments, aiming to identify viable policy alternatives. From this angle, depending

on the perspective from which the cartel is viewed, it can influence market competition and

innovation. Therefore, an academic analysis is warranted over a purely political interpretation.

The objective of this study is to apply quantum game theory to offer novel strategic insights

and interpret the complex dynamics inherent in R&D investment decisions. Quantum game

theory expands upon traditional game theory, exploring new strategic possibilities through the

unique characteristics of quantum entanglement and superposition. This approach facilitates

the exploration of strategic scenarios that classical game theory cannot adequately address.

Consequently, this study aims to contribute to the understanding of the prisoner’s dilemma in

R&D investment decision-making from the perspective of quantum game theory, thereby pre-

senting pertinent issues and alternatives related to R&D investment strategies.

The quantum game model

Development of game theory: Classical and quantum perspectives

Game theory offers a mathematical framework for analyzing interdependent decision-making

situations in a logical manner. This theory is utilized to elucidate a myriad of scenarios where a

player’s payoff is contingent not only upon their own actions but also on the actions of others.

Quantum mechanics shares similarities with the stochastic model, which delineates the state of

particles and their transformations via a wave function. This model is predicated on the proba-

bility of detecting the physical quantity under observation.

The foundational aspects of classical game theory were established by Von Neumann and

Morgenstern in 1953 [6]. John Nash’s proposition of the Nash equilibrium in 1996 furthered

this theoretical framework [6]. In 1999, Meyer proposed a quantum game concept, and Eisert

et al. [7] introduced the quantum prisoner’s dilemma game, presenting a methodology for par-

ticipants to surmount classical dilemmas.

The concepts of superposition, entanglement, and decoherence within quantum mechanics

broaden the strategic landscape in decision-making processes. They introduce a dimension

that stands in contrast to the principles of reality, causality, and locality prevalent in classical

mechanics. Traditional prisoner’s dilemma games are generally constrained to binary options

(A or B). However, quantum mechanics facilitates strategic alterations through the superposi-

tion of A and B. These quantum game theories have gained widespread application in various

domains, including economics, social sciences, communication, and biology, where they have
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significantly contributed to the evolution of logic [8]. Classical game simulation theory uses a

deterministic approach focusing on rational choices and optimal strategies of players. It con-

centrates on finding equilibria in games, which means identifying the best strategy for each

player in various interactive situations. A typical example is the Nash equilibrium.

On the other hand, quantum game simulation theory applies principles of quantum

mechanics to game theory, proposing a new type of game model. It explores new strategic

spaces impossible in traditional game theory by utilizing quantum mechanical phenomena

like superposition and entanglement. This approach deals with game outcomes probabilisti-

cally, with player choices leading to probabilistic rather than deterministic outcomes.

The distinction between classical and quantum game simulation theories marks a signifi-

cant evolution in the field of game theory, broadening the scope of strategic analysis and appli-

cation in uncertain environments.

In particular, the field of integrating AI and Markov models, etc. with classical and quan-

tum game theories is an active area of research, and while specific titles may vary, the suggested

papers indicate the focus and approach researchers might take in these interdisciplinary

studies.

In the case of classical game theory, various studies combining Markov models and stochas-

tic strategy models [9–13] and models incorporating AI models [14–18]. Meanwhile, in the

case of quantum game models, various studies combining Markov models and stochastic strat-

egy models and models incorporating AI models [19–23]. Whether classical game theory or

quantum game theory, the convergence of Markov models, stochastic strategy models, and AI

models complements each other’s weaknesses, enabling more accurate predictions. Compar-

ing the characteristics of convergence models for classical and quantum game theory using

Markov and stochastic strategy models and AI models can be conceptualized as shown in

Table 1.

This paper aims to explore the potential of quantum strategy games to transcend the classi-

cal prisoner’s dilemma, offering new insights into overcoming traditional strategic limitations.

The interplay of quantum mechanics and game theory suggests a paradigm shift in

Table 1. Comparison of characteristics of convergence application models by game theory.

Game Theory

Type

Model Type Convergence Model Characteristics

Classical Game

Theory

Markov

Model

Stochastic

Model

Integrates time-based transitions with rational decision-making, allowing for

dynamic strategy evolution in predictable environments.

AI Model Uses historical data and pattern recognition to refine strategies and

predictions within classical game frameworks.

Quantum Game

Theory

Markov

Model

Stochastic

Model

Adapts quantum probability and dynamics to a temporal context, potentially

capturing the evolution of entangled strategic choices over time.

AI Model Employs quantum machine learning algorithms that might take advantage of

quantum computational speedups to optimize strategies in complex game

scenarios.

This table compares classical and quantum game theory models, where classical models use rational decision-making

and historical data for strategy development, while quantum models incorporate quantum mechanics principles,

allowing for entangled decision dynamics and potentially leveraging quantum computational advantages for strategy

optimization.

https://doi.org/10.1371/journal.pone.0308355.t001
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understanding strategic decision-making processes, particularly in scenarios traditionally

modeled by classical game theory.

The Schrödinger equation, a foundational equation in quantum mechanics, plays a crucial

role in the quantum game theory, particularly in understanding the quantum game version of

the Prisoner’s Dilemma. Understanding this equation is essential for grasping the quantum

game theory aspect of the Prisoner’s Dilemma, which is based on an evolutionary model incor-

porating concepts central to quantum mechanics such as wave functions, operators, and

eigenstates.

The Schrödinger equation describes the time evolution of a wave function, which represents

the state of a quantum system [24]. Eigenstates represent the system’s fundamental states,

where the wave function remains unchanged by the application of an operator. This phenome-

non, where a special case becomes the norm in the quantum world, links directly to the rever-

sal of ordinary and special cases in quantum mechanics compared to classical mechanics.

In the quantum game version of the Prisoner’s Dilemma, players’ strategies are represented

by wave functions instead of the pure or mixed strategies found in traditional game theory.

The game’s goal is to find the optimal solution through the superposition of quantum strate-

gies. The eigenstate of the wave function plays a crucial role in this process. Finding an eigen-

state in quantum mechanics, akin to finding the essential state of an electron, parallels the

process of players finding their optimal strategies in the Prisoner’s Dilemma quantum game.

The evolutionary model in quantum game theory applies these quantum mechanical con-

cepts to game theory, exploring how players’ strategies can evolve and optimize over time.

Basic principles of quantum mechanics, such as those in the Schrödinger equation, deeply

influence the rules and outcomes of the game. Consequently, the quantum game version of the

Prisoner’s Dilemma surpasses traditional game theory, enabling the discovery and under-

standing of new strategies.

Simulations of this model include applying various forms of wave functions to operators

and observing the resulting changes to identify eigenstates. These simulations are crucial for

understanding the evolutionary development of strategies in quantum game theory, ultimately

illustrating how participants can achieve optimal outcomes through cooperation and

competition.

Classic R&D investment game model

This study explores a game-theoretic model of R&D investment strategy, focusing on two key

participants: a government R&D budget efficiency manager (Alice) and a research project

executor (Bob). The game is designed as a sequential or dynamic game, wherein the govern-

ment R&D budget efficiency manager’s types are categorized based on their tendency towards

efficient (Aa) or inefficient (Ab) budget investment. Similarly, research project executors are

distinguished by their orientation towards stable (Ba) or unstable (Bb) project execution.

Alice is responsible for managing the efficient use of the R&D budget, aiming to select proj-

ects that promise the highest possible investment returns. The ideal scenario involves using the

budget efficiently to select and successfully implement projects with high return on invest-

ment. However, projects with high investment potential often carry a significant risk of failure,

presenting a liability risk for managers. Conversely, projects with lower risk typically offer

lesser investment returns, creating a strategic dilemma.

On the other hand, Bob is responsible for the success or failure of research projects, typi-

cally opting for tasks with a higher probability of success [25]. This approach often aligns with

lower incentives, whereas tasks with higher risk levels offer greater rewards.
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In this context, the study defines and analyzes the potential strategic combinations between

Alice and Bob, exploring the dynamics of cooperation and defection between them. The inter-

actions and scenarios that may arise in this R&D investment strategy game between Alice and

Bob are influenced by the efficiency of budget investment and the stability of project execution,

providing important insights for understanding strategic decision-making in the management

and execute on of R&D processes.

In this context, the study defines and analyzes the possible strategic combinations between

Alice and Bob, exploring the dynamics of cooperation and defection bet.

ween them as follows:

• Alice (Aa) and Bob (Ba): Alice efficiently manages the R&D budget, while Bob conducts

research with a focus on stable project execution. This combination leans towards high-risk

projects, offering significant rewards upon success, but with shared accountability in case of

failure.

• Alice (Aa) and Bob (Bb): Alice efficiently manages the budget, but Bob undertakes research

with unstable execution. Here, Alice may select ambitious projects (large/long-term proj-

ects), but Bob’s unstable approach increases the risk of project failure.

• Alice (Ab) and Bob (Ba): Alice adopts a less efficient approach to budget management, while

Bob remains focused on stable project execution. In this scenario, Alice tends to choose

lower-risk projects (small/short-term tasks), resulting in low risk but also limited rewards.

• Alice (Ab) and Bob (Bb): Both parties exhibit tendencies towards inefficient budget manage-

ment and unstable project execution. They are likely to opt for the safest projects (small/

short-term tasks), which involve minimal risk and reward. In case of failure, the probability

of accountability issues arising between them is high.

The study presents a quadrant model to illustrate the potential strategic combinations

between Alice (efficient or inefficient R&D budget manager) and Bob (stable or unstable

research project executor). Alice’s strategies are divided into efficient or inefficient budget

management, while Bob’s approaches are categorized as stable or unstable project execution.

Each cell within the quadrant delineates a distinct strategic combination for Alice and Bob,

offering a structured framework to analyze the interaction dynamics in the R&D investment

strategy game.

In Table 2, various scenarios are depicted based on the strategic combinations of Alice and

Bob. These scenarios highlight potential interactions and outcomes:

• Alice (Aa) and Bob (Ba): This scenario portrays a situation where Alice efficiently manages

the R&D budget and Bob conducts research with a focus on stable project execution. The

anticipated results are high performance in large/long-term tasks, culminating in success.

• Alice (Aa) and Bob (Bb): Here, Alice manages the budget efficiently, but Bob adopts an

unstable approach to research execution. From Alice’s perspective, this combination yields

the least favorable return on investment. However, for Bob, it still secures a medium level of

success, especially in large-scale/long-term tasks.

• Alice (Ab) and Bob (Ba): In this instance, Alice opts for smaller/shorter-term tasks to mini-

mize budgetary inefficiency, while Bob remains focused on stable project execution. The

outcome is moderately satisfactory from Alice’s standpoint. However, for Bob, it is viewed

as a relative failure due to the mismatch between the effort exerted and the incentives

received.
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• Alice (Ab) and Bob (Bb): Both Alice and Bob demonstrate a lack of commitment in this sce-

nario. Alice opts for inefficient budget management, and Bob’s approach to research execu-

tion is unstable. Consequently, overall performance deteriorates, and success in tasks is

limited.

Analyzing the R&D investment game as described above, to maximize each player’s utility,

Alice can focus on short-term/small-scale investments (Ab) to minimize risk, while Bob can

also focus on short-term/small-scale tasks (Bb) to optimize his utility. This interaction results

in a Nash equilibrium [26], a state where neither party has an incentive to deviate from their

current strategy, assuming the other maintains their strategy as well. This scenario is indicative

of ’moral hazard’ [27]. The remuneration structure in this context is outlined as follows.

Table 2 presents the classic game payoff matrix for the R&D investment strategy game,

reflecting a specific payoff structure. This table enables the analysis of game equilibrium within

a scenario that mirrors a Prisoner’s Dilemma situation.

• T(5)> R(3): This inequality suggests that for researchers (Bob), pursuing short-term, unsta-

ble projects (high-risk, high-reward scenarios) is more advantageous than engaging in stable,

long-term research. It indicates a preference for immediate gains over sustained, stable proj-

ect execution.

• R(3)> P(1): Investing in efficient budget management and undertaking stable research proj-

ects yield better results compared to a scenario where both parties opt for inefficient budget

management and unstable project execution. This implies that the optimal collaboration

between Alice’s efficient budget investment and Bob’s stable project execution leads to better

outcomes.

• R(3)> (T(5) + S(0))/2: The total reward from both parties choosing their optimal strategies

(efficient budget management and stable project execution) exceeds the reward from any

other combination of strategies.

In this game scenario, each player, Alice and Bob, selects a strategy that maximizes their

individual benefit. However, this approach often results in a reduced overall gain, manifesting

as a cycle of ‘low-risk, low-reward’ characterized by both inefficient budget management and

Table 2. Classic game framework of R&D investment strategy.

Alice
Bob (Cb)

Unstable Project Execution

(Db)

Stable Project Execution

(Ca)

Efficient Budget

Investment

High performance, success

R, R (3, 3)

Worst performance,

medium success

S, T (0, 5)

(Da)

Inefficient Budget

Investment

Medium performance, failure

T, S (5, 0)

Low performance,

limited success

P, P (1, 1)

This table portrays a classic game framework for R&D investment strategy, depicting outcomes for pairs of

government managers (Alice) and researchers (Bob) based on efficient or inefficient budget investment and stable or

unstable project execution, with payoffs reflecting various degrees of success and failure.

• R (Reward): Reward when two players cooperate.

• S (Sucker): Reward when only one player cooperates and the other player defects.

• T (Temptation): Reward when one player defects and the other cooperates.

• P (Punishment): Reward when both players defect.

https://doi.org/10.1371/journal.pone.0308355.t002
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unstable project execution. Alice, representing budget management, tends to adopt a ’play it

safe’ strategy aiming to minimize risk and personal liability. Conversely, Bob as a researcher

prefers immediate rewards, even in the context of long-term investments, which diminishes

the potential for undertaking large-scale, stable projects.

The result of these interactions converges to an equilibrium characterized by ‘low invest-

ment, low performance,’ akin to the Nash equilibrium found in the prisoner’s dilemma. In

these scenarios, each player independently makes choices that are optimal from their perspec-

tive, while the collective outcome is suboptimal [28]. This situation is elucidated through a

detailed analysis of the classic Prisoner’s Dilemma game, enhancing our understanding of the

dynamics at play.

Quantum information strategy game model composition

This study aims to establish a theoretical foundation centered on the “EWL (Eisert, Wilkens,

and Lewenstein) quantization protocol [7].” A critical aspect of transitioning from classical to

quantum game theory is the application of ring homomorphism. In algebra, ring homomor-

phism is defined as a function that preserves specific operations (usually addition and multipli-

cation) between two algebraic structures, known as rings. For instance, consider a function f:

R! S between any two rings R and S. This function f must satisfy certain conditions to be

considered a ring homomorphism [29]:

For addition conservation:

fðx þ yÞ ¼ fðxÞ þ fðyÞ for any elements x; y in R ð1Þ

For multiplication conservation:

fðxyÞ ¼ fðxÞfðyÞ for any elements x; y in R: ð2Þ

These quasi-isomorphisms are instrumental in the mapping process that translates strategic

choices from classical game theory into states and operators in quantum game theory. In this

context, the strategies of ’cooperate’ and ’defeat’ in classical game theory correspond to the

quantum states |0i and |1i, respectively. In quantum mechanics, these vectors are referred to

as eigenstates. Hence, the eigenstate of σx comprises a superposition of | Defection i and |

Cooperation i states. Consequently, there are four quantum-classical correspondences:

j00i  ! ðC; CÞ; ð3Þ

j01i  ! ðC; DÞ; ð4Þ

j10i  ! ðD; CÞ; ð5Þ

j11i  ! ðD; DÞ: ð6Þ

Introducing a semi-isomorphic function ρ transforms the strategies of classical game theory

into quantum game theory. This function is defined as ρ(ic) = I (identity matrix) and ρ(rc) = σx

(Pauli X matrix). This mapping forges a link between classical and quantum game theories,

where these states in quantum mechanics are regarded as distinct states. This conceptual

framework thus allows for an enriched understanding of strategic interactions in the realm of

quantum game theory.

In this study, quantum game theory is employed in conjunction with the concept of neuro-

cognitive modeling, as referenced from the work of Surov [30]. Players engaged in a game

within an R&D system framework can be conceptualized and analyzed in a manner similar to a
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system device in quantum physics (Fig 1). This approach allows the cognitive attributes and

decision-making processes of the players to be modeled as quantum mechanical properties,

analyzing how various potential actions and decisions within the game interact with each other.

In this context, the rotation equation used in quantum game theory represents the possible

action states of the players, mathematically expressing their strategic choices. Each state in this

equation is associated with a specific strategy or decision, and the probabilistic distribution of

these strategies can be interpreted as wave function probability amplitudes in quantum

mechanics. In other words, the probability of each strategy is proportional to the square of the

coefficients in the equation.

As a result, this study provides a novel methodology for analyzing and predicting human

cognitive and behavioral patterns. The psychological states and potential actions of game par-

ticipants are expressed in the mathematical language of quantum mechanics, allowing for a

more sophisticated modeling of their complex interactions.

The study proposes five distinct quantum strategies as fundamental elements of quantum

game theory. These strategies are denoted as I (Identity matrix), H (Hadamard matrix), σx

(Pauli X matrix), σy (Pauli Y matrix), and σz (Pauli Z matrix). The overarching framework of

the quantum information strategy game model, which is elaborated later in this paper, is

depicted in Fig 2. This model emphasizes the determination of the game’s equilibrium value

through the quantum information computation of the game’s final state. The procedural

framework for the quantum game encompasses the following steps:

• Setting of Initial State: Establishing the initial conditions or state of the game.

• Entanglement Operator Setting: In quantum mechanics, an operator is employed to trans-

form an existing quantum state into a new one. The entanglement operator is a critical com-

ponent in this process.

• Selection of Strategy: Players choose their respective strategies, which are represented by

quantum operations.

• Resolution of Entanglement Operators: This step involves the application and subsequent

resolution of the entanglement operators, leading to a change in the quantum state of the

system.

Fig 1. Concept map for quantum information strategy game. In the diagram, a ’Black Box’ represents the R&D

system, and the cognitive attributes of the players are depicted as overlapping circles, labeled with ’Cognition’ and

’Mind’ for players named Alice and Bob, symbolizing their mental states and cognitive processes. The ’Observation’

section symbolizes the transition of these cognitive processes into actual behaviors or actions. The ’Potential State’

reflects the strategic options available to the players, corresponding to decisions like ’Cooperation’ and ’Defection.’ The

probabilities of these strategies are represented in a manner akin to the squared magnitude of probability amplitudes in

quantum mechanics, which calculates the likelihood of each strategy.

https://doi.org/10.1371/journal.pone.0308355.g001
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• Confirmation of Final State by Observation: The final state of the game is determined

through observation, post the application of strategies and resolution of entanglement

operators.

This methodology integrates quantum mechanics principles with game theory, offering a

unique perspective in understanding and analyzing strategic interactions within the R&D sys-

tem. By applying quantum strategies and entanglement principles, this approach provides a

novel framework for exploring decision-making processes in complex systems.

These procedures are pivotal in integrating fundamental quantum properties, such as

superposition and entanglement, into quantum games. Entanglement, a key concept in quan-

tum game theory, involves the interconnection of two quantum states, such that the measure-

ment of one state instantaneously influences the other. This aspect is crucial for delving into

quantum mechanics, particularly for understanding the role of entanglement in the quantum

adaptation of the Prisoner’s Dilemma game.

A significant advancement in quantum game theory is its ability to introduce a new tier of

strategic complexity and potential. It achieves this by expanding upon the deterministic strate-

gies of traditional game theory, extending them into the realm of quantum mechanical states.

In quantum games, the central concepts of quantum entanglement and superposition facilitate

novel strategic scenarios that were unattainable in conventional game theory. For instance,

quantum entanglement encompasses the phenomenon where the strategies of two players

directly impact each other, a dynamic absent in traditional game theory.

A crucial concept in the quantization process of game theory is the transformation of classi-

cal strategies into quantum game dynamics through semi-isomorphism. This transformation

process maps strategic choices from the classical game into states within the quantum game.

Fig 2. Quantum information strategy game model. Fig 2. illustrates the stages of a quantum information strategy game model: starting from a cooperative initial

state, moving through an entanglement phase to introduce correlations, followed by strategy selection and development. It then progresses to disentangle and

resolve the state, culminating in the measurement of outcomes to determine the players’ expected payoffs. Initial State: Both players start in a cooperative state |00i,

represented on a Bloch sphere. Entangling Gate (U): An entangling operation introduces quantum correlations between the players. Initial Value Interpretation:

The entangled state represents a mix of cooperative and competitive strategies. Strategy Selection (RA and RB): Players choose strategies affecting the game’s

evolution. Entanglement Resolution (U†): The entangled state is resolved, setting the stage for payoff determination. Determination of Expected Payoff: The game

concludes with a measurement that determines the players’ payoffs, represented by πA and πB.

https://doi.org/10.1371/journal.pone.0308355.g002
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Such a mapping significantly enhances the strategic complexity and diversity of the game, pre-

senting a broader spectrum of strategic possibilities [31].

Simulation results

Quantum information strategy simulation analysis

In the quantum information strategy game, the strategies represented by quantum information

vectors |00>, |01>, |10>, |11>, and so forth, exist within the Hilbert space. These vectors

denote the respective quantum strategies (qubits) of the government and researchers. The ini-

tial part of the vector represents the government’s strategy, while the latter part signifies the

researcher’s strategy.

From the perspective of the Hamiltonian, the rearrangement of any given equation in this

context must adhere to the logical sequence of quantum state evolution within a quantum

game or decision-making scenario. The analysis phase, as delineated by David McMahon [32],

proceeds in the following order: state initialization, entanglement application, strategy selec-

tion, and entanglement resolution.

Initial state. The initial state of the system, denoted as ψ0, must be established. This state

reflects the players’ initial strategies or positions before any game interaction (such as entangle-

ment or strategic move) takes place. Although this initial stage might not be explicitly men-

tioned in the equations, it constitutes the implicit starting point within the Hamiltonian

framework. Concerning the interpretation of the initial value |00>, this vector indicates that

the R&D manager (Alice) has chosen C (Cooperate) as the initial strategy. Similarly, the

researcher (Bob)’s strategy is also represented by C (Cooperate).

Initial value interpretation. This representation implies that both the government

(Alice) and the researcher (Bob) start the game with a cooperative strategy. This initial condi-

tion sets the stage for further strategic developments as the game progresses, with subsequent

phases involving entanglement and strategic decision-making impacting the evolution of the

game’s state. The Hamiltonian approach to analyzing these quantum games provides a struc-

tured framework for understanding the complex dynamics of strategy selection and its impli-

cations in quantum decision-making scenarios.

j00 >¼j CC >¼

1

0

0

0

2

6
6
6
6
4

3

7
7
7
7
5

ð7Þ

In this study, an entangled state is created by applying an entanglement operator U to the

initial state. This procedure is crucial in quantum games, as it incorporates quintessential

quantum properties such as superposition and entanglement into the system. Following the

establishment of initial values, the next critical step is the generation of entanglement. Opera-

tors are applied to the initial state to engender a new system state. The newly formed system

state, denoted as ψ1, emerges as a superposition of states reflecting various decision combina-

tions by the players.

The expression for ψ1 is given by:

c1 ¼ U j CCi ð8Þ

In this equation, U represents the entanglement operator, instrumental in entangling the

states of the players. The formulation of all entanglement operators is as follows, with the
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entanglement angle preset to g ¼ p

2
; ϴ ¼ p

4
; ϕ ¼ p

2
:

U y;Υð Þ ¼
1
ffiffiffi
2
p I � I þ eiΥX � X

� �
ð9Þ

where X: e i2θσx = cos(2θ)I + isin(2θ)σx

I: Identity matrix

σx: Pauli X matrix

Here, γ is the entanglement parameter, which distinguishes it from the strategy in a classical

game. When γ = 0, the strategy aligns with that of a classical game. In contrast, when γ 6¼ 0,

entanglement occurs, signifying the commencement of a quantum game. Notably, g ¼ p

2
is

indicative of maximum entanglement, with γ ranging within [0; p
2
].

The entanglement operator U(Θ,γ) symbolizes the mechanism through which the states of

the two players are interconnected. The X operator, a Pauli X matrix, is a unitary matrix repre-

senting a linear transformation. This transformation is critical as it preserves the normalization

of the quantum state, maintaining both the length and angle (inner product structure) of the

vectors. The application formula for the entanglement operator U is structured as follows:

c1 ¼ UjCC >¼
1
ffiffiffi
2
p

1 0 0 � i

0 1 � i 0

0 � i 1 0

� i 0 0 1

2

6
6
6
6
4

3

7
7
7
7
5
 

1

0

0

0

2

6
6
6
6
4

3

7
7
7
7
5
¼

1
ffiffiffi
2
p  

1

0

0

� i

2

6
6
6
6
4

3

7
7
7
7
5

ð10Þ

Strategy selection and development. When the system transitions into the entangled

state ψ1, players select their strategies, represented by rotation matrices RA and RB. These stra-

tegic choices are pivotal in influencing the evolution of the system. The application of these

strategies results in a new state, ψ2, which is defined by ψ2 = (RA� RB) ψ1. This transition cor-

responds to step 3 in the process and signifies the evolution of the state as a consequence of the

players’ strategic decisions [33].

c2 ¼ ðR
A � RBÞc1 ð11Þ

Here, ψ2 is contingent upon the strategies employed by the players. In a state of maximum

entanglement, the chosen strategies of the players (which could be exemplified by a Pauli gate)

have the potential to yield an optimal reward for both parties. Generally, RA and RB are quan-

tum gates, determined by the strategies of players A and B, respectively. These quantum gates

can be analogized to real-world or social scenarios, allowing for the application of approximate

strategies. Within the Hilbert space of the fundamental state, each player manipulates their

base state through personal beliefs and infers outcomes based on an N-dimensional vector

space [34]. This study utilizes phase shifts and bit inversions in its analysis. Table 3 provides an

example of how each gate can be interpreted as a strategic metaphor, illustrated through

changes in bits and wavelengths.

The Hamiltonian is interpreted from an evolutionary standpoint, focusing on how various

quantum gates, which represent strategic decisions in a quantum game, can influence the

game’s state. The analysis is structured as follows: Hamilton, which governs the evolution of

the nation over time, is impacted by these gates, thereby dictating the unfolding of the player’s

strategy within the game. From a Hamiltonian perspective, these gates symbolize diverse stra-

tegic alterations to the player state in the quantum game [37].
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Firstly, consider the scenario where RA = I and RB = I as an example. In this instance, the

identity matrix strategy is utilized to simulate the effect of entanglement strength while main-

taining the existing strategic direction unchanged.

c2 ¼ I� Ið Þc1 ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6
6
6
6
4

3

7
7
7
7
5

1
ffiffiffi
2
p  

1

0

0

� i

2

6
6
6
6
4

3

7
7
7
7
5
¼

1
ffiffiffi
2
p  

1

0

0

� i

2

6
6
6
6
4

3

7
7
7
7
5

ð12Þ

The strategic maneuvers of the government and researchers are each linked to the evolution

of the system through (RA�RB) ψ1. The state of each individual quantum strategy eventually

transitions into the ψ2 state following temporal evolution. For both the government and

researchers, the single quantum information strategies RA(Θ1, ϕ1) and RB(Θ2, ϕ2) correspond to

Θ1, Θ2 2 [0, π] in phase and ϕ1; ϕ2 2 0; p

2

� �
in amplitude.

Entanglement resolution. The final step involves resolving the entanglement using U†,

which is the inverse function of the entanglement operator, thereby concluding the game.

c3 ¼ Uy c2 ð13Þ

Here, ψ2 is shaped by the players’ strategies. However, as elaborated earlier, if U† is applied

Table 3. Concept of quantum gate and strategy.

Gate
Strategy Conversion Hamiltonian Perspective

Identity Gate
(I)

This gate leaves the quantum state unchanged.

I : a 0j i þ b 1j i ) a 0j i þ b 1j i

Analogous to maintaining the status
quo in a game, without altering the
current position or strategy

Hadamard Gate (H) Introduces superposition, putting the qubit in a
state where it is both 0 and 1 with equal
probability.
H : a 0j i þ b 1j i ) a

0j iþ1iffiffi
2
p þ b

0j i� 1j iffiffi
2
p

Similar to a dynamic and exploratory
approach in a game, where the player is
open to different outcomes and adapts
their strategy accordingly.

Pauli X Gate
(bit flip)

Flips the qubit state from 0 to 1 and vice versa.

X : a 0j i þ b 1j i ) b 0j i þ a 1j i

Analogous to a transformative
approach that completely inverts the
existing strategy.

Pauli Y Gate
(bit and phase flip)

Combines a bit flip (like X) with a phase shift.
Y : a 0j i þ b 1j i ) � bi 0j i þ ai 1j i

Represents a multifaceted approach
encompassing both the player’s position
and perspective, similar to a radical
and strategic shift in a game.

Pauli Z Gate (phase
change)

Introduces a phase shift without changing the state
itself.
Z : a 0j i þ b 1j i ) a 0j i � b 1j i

Analogous to altering the
interpretation or methodology of a
game without modifying the
fundamental position.

Table 3 delineates how different quantum gates influence the state of a qubit and compares these changes to strategic

movements in game theory. The Identity Gate maintains the current state and the Hadamard Gate creates a state of

superposition and exploration. The Pauli X Gate flips the state, representing a complete strategic overhaul and the

Pauli Y Gate adds complexity with both bit and phase flips and the Pauli Z Gate alters the phase, signifying a change

in approach without changing the actual strategy [35, 36].

https://doi.org/10.1371/journal.pone.0308355.t003
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to ψ2 with RA = I and RB = I, the result is as follows:

c3 ¼ Uy c2 ¼
1
ffiffiffi
2
p

1 0 0 i

0 1 i 0

0 i 1 0

i 0 0 1
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7
7
7
5

1
ffiffiffi
2
p  

1

0

0

� i

2
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4
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7
7
7
7
5
¼
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0

0
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5

ð14Þ

Each player sends their quantum state to a final measuring device that determines their pay-

off. The final state of the quantum game is expressed as Pee’ = |ee’|ψf>|2. The lower quantum

state element set is composed of the elements (CC, CD, DC, DD). As noted earlier, this quan-

tum information strategy game reduces to a classical game when the entanglement factor γ
equals 0.

This model provides a nuanced understanding of the interplay between quantum strategies

and their outcomes, offering insights into the dynamics of decision-making in quantum game

theory. The transition from quantum to classical game scenarios through the manipulation of

entanglement underscores the versatility and complexity of strategic choices in this

framework.

Determination of expected payoff value. The determination of the expected payoff value

involves confirming the final state through observation. The expected payoff for players A and

B is derived based on the overlap of states. The square of the magnitude of each coefficient in

the state vector ψ3 represents the probability of a particular outcome. The final expected

reward is calculated as a weighted sum of these probabilities. This approach is used to compute

the expected payoffs of players A and B when RA = I and RB = I.

For player A, the expected payoff hπAi is calculated as:

hπAi ¼ 3jhc3 j CCj
2 þ 0 j hc3 j CDij

2 þ 5 j hc3 j DCij
2 þ 1 j hc3 j DDij

2 ð15Þ

¼ 3jhc3 j 1j
2 þ 0 j hc3 j 0ij

2 þ 5 j hc3 j 0ij
2 þ 1 j hc3 j 0ij

2

¼ 3
ð16Þ

For player B, the expected payoff hπBi is similarly calculated:

hπBi ¼ 3jhc3 j CCj
2 þ 0 j hc3 j CDij

2 þ 5 j hc3 j DCij
2 þ 1 j hc3 j DDij

2 ð17Þ

¼ 3jhc3 j 1j
2 þ 0 j hc3 j 0ij

2 þ 5 j hc3 j 0ij
2 þ 1 j hc3 j 0ij

2

¼ 3
ð18Þ

The final expected payoff varies depending on the player’s strategy and the specific state ψ2.
In the calculations shown in Table 4 and Fig 3, different matrices RA and RB corresponding to

each strategy would yield different payoff values.

This methodology allows for a precise calculation of the expected payoffs in quantum

games, considering the intricacies of quantum states and strategies. The ability to modify the

payoff outcomes based on different strategic matrices underscores the dynamic nature of

quantum game theory and its applicability in various decision-making scenarios.

Application of player strategy

In this study, we aim to analyze changes in payoff values when RA and RB are configured as

identity strategy, Hadamard strategy, and various Pauli operators. The simulation investigates

the modifications in the compensation structure resulting from permutations of these
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quantum strategies, particularly under the influence of an entanglement degree set at p
4
. To this

end, the payoffs πA and πB were systematically analyzed under the following RA and RB strategy

configurations:

• Both combined with the identity operator (I): (’I’, ’I’)

Table 4. Payoff (πA, πB) according to combination of quantum strategies.

Combination of Strategies πA πB

(’I’, ’I’) 3 3

(’I’, ’σx’) 0 5

(’σx’, ’I’) 5 0

(’σx’, ’σx’) 1 1

(’I’, ’H’) 0.5 3

(’H’, ’I’) 3 0.5

(’H’, ’σx’) 3 0.5

(’σx’, ’H’) 0.5 3

(’H’, ’H’) 2.25 2.25

(’σx’, ’σy’) 3 3

(’σy’, ’σx’) 3 3

(’σy’, ’σy’) 1 1

(’σx’, ’σz’) 0 5

(’σz’, ’σx’) 5 0

(’σz’, ’σz’) 3 3

(’σy’, ’σz’) 5 0

(’σz’, ’σy’) 0 5

Table 4 presents the payoffs for players A and B based on various combinations of quantum strategies. The table

highlights which strategies lead to Pareto optimal payoffs of 3 for both players, specifically when the strategies are (’I’,

’I’), (’σx’, ’σy’), (’σy’, ’σx’), and (’σz’, ’σz’), indicating situations where mutual cooperation yields the highest benefit.

https://doi.org/10.1371/journal.pone.0308355.t004

Fig 3. Comparison of compensation systems according to combination of quantum strategies. The image is a bar

graph from a paper on quantum game theory. It depicts the expected payoffs for two players (Player A and Player B)

across different combinations of quantum strategies. Each pair of bars represents a different strategic combination,

with the height of the bar indicating the expected payoff. Player A’s payoffs are shown in blue, while Player B’s are in

red. The graph is used to illustrate how different quantum strategies can affect the payoffs in a quantum game,

demonstrating the dynamic interplay and the potential outcomes of strategic choices in this theoretical framework.

https://doi.org/10.1371/journal.pone.0308355.g003
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• Combination of the I operator and the Pauli X operator in sequence: (’I’, ’σx’)

• Sequential combination of the Pauli X operator and the I operator: (’σx’, ’I’)

• Combining both with the Pauli X operator: (’σx’, ’σx’)

• Sequential combination of the I operator and the Hadamard (H) operator: (’I’, ’H’)

• Sequential combination of the Hadamard (H) operator and the I operator: (’H’, ’I’)

• Sequential combination of the Hadamard (H) operator and the Pauli X operator: (’H’, ’σx’)

• Sequential combination of the Pauli X operator and the Hadamard (H) operator: (’σx’, ’H’)

• Combining both with the Hadamard (H) operator: (’H’, ’H’)

• Sequential combination of the Pauli X operator and the Pauli Y operator: (’σx’, ’σy’)

• Sequential combination of the Pauli Y operator and the Pauli X operator: (’σy’, ’σx’)

• Both combined with the Pauli Y operator: (’σy’, ’σy’)

• Sequential combination of the Pauli X operator and the Pauli Z operator: (’σx’, ’σz’)

• Sequential combination of the Pauli Z operator and the Pauli X operator: (’σz’, ’σx’)

• Both combined with the Pauli Z operator: (’σz’, ’σz’)

• Sequential combination of the Pauli Y operator and the Pauli Z operator: (’σy’, ’σz’)

• Sequential combination of the Pauli Z operator and the Pauli Y operator: (’σz’, ’σy’)

For the aforementioned combinations of quantum strategies, both players reach the Pareto

optimum of (3,3) with configurations such as (’I’, ’I’), (’σx’, ’σy’), (’σy’, ’σx’), and (’σz’, ’σz’), as

detailed in Table 4. This analysis demonstrates the impact of various strategic configurations

on the resultant payoffs, providing insights into the dynamics of quantum strategy applications

in game theory scenarios. The quantum circuit diagram that implements this process is illus-

trated in Fig 4.

The diagram represents a two-qubit quantum circuit, which is used in quantum computing

to perform operations on quantum bits (qubits). Here’s what each part of the circuit does:

• Rz(π/4): This is a rotation gate that rotates the state of a qubit around the z-axis of the Bloch

sphere by an angle of π/4 radians. It’s applied to both qubits q0 and q1 at the beginning of

the circuit.

• CNOT Gate: The plus sign with the circle and the line connecting it to another qubit repre-

sents a controlled NOT gate (CNOT). The qubit at the circle end is the control qubit, and

Fig 4. Quantum circuit diagram when RA = X, RB = Y. The image shows a quantum circuit for a two-qubit system,

where specific operations are applied to simulate a game with strategies RA = X and RB = Y. The sequence includes

rotations (Rz), controlled-NOT (CNOT) for entanglement, phase shifts (P), another set of rotations, and measurement

operations, indicating the process of evolving the quantum state according to chosen strategies and then measuring the

outcomes.

https://doi.org/10.1371/journal.pone.0308355.g004
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the qubit at the end of the line is the target qubit. If the control qubit is in the state |1i, it flips

the target qubit; otherwise, it does nothing.

• P(π/2) and P(-π/2): These are phase gates that add a phase of π/2 and -π/2 to the qubit state,

respectively. They only change the relative phase of the qubit state and not the probability

amplitudes.

• Rz(-π/4): This is another rotation gate that rotates the state of a qubit around the z-axis by an

angle of -π/4 radians.

• The vertical line with the double slash before the measurement indicates a barrier, which is

used in quantum circuits to prevent certain optimizations that might otherwise be done by

the quantum compiler. It’s a way of telling the compiler to treat the operations before and

after the barrier as distinct steps.

• The measurement gates (meas): At the end of the circuit, there are two measurement gates,

indicated by the meter symbols. These gates measure the state of the qubits and collapse

their state to either 0 or 1, which can then be read out as classical information.

• Regarding the RA = X, RB = Y part, it might indicate the specific types of rotation to be

applied on the qubits named RA and RB, with X and Y referring to rotations about the x-axis

and y-axis of the Bloch sphere, respectively. However, this is not depicted in the circuit

provided.

Meanwhile, in the second simulation, the combination (’σx’, ’σy’) was selected from the

Pareto optimal set as illustrated in Fig 4. In this scenario, the entanglement angle (γ) was varied

from 0 to π at intervals of p

32
. The simulation aimed to observe the expected payoffs of players A

and B (πA and πB) when adjusting the entanglement angle (γ) of the entanglement operator

U ϴ; gð Þ ¼ 1ffiffi
2
p (I�I + eiγ X�X) over this range.

In Fig 5, player A employs the Pauli_X strategy, while player B utilizes the Pauli_Y strategy.

This setup enables the observation of how the players’ expected payoffs vary as the gamma

value changes. Notably, the gamma value exhibits its maximum impact around p

4
(45 degrees).

Fig 5. Change in entanglement angle (γ) and expected payoffs of players A and B. The graph displays the relationship

between the entanglement angle (gamma value) and the expected payoffs for players A and B. It depicts a bell-shaped

curve, with the payoff values on the y-axis and the gamma values on the x-axis. The peak of the curve suggests the

optimal entanglement angle where the expected payoffs for both players are maximized. This figure illustrates how

varying degrees of entanglement affect the strategic outcomes in a quantum game when players adopt specific

strategies, in this case, Pauli X for player A and Pauli Y for player B.

https://doi.org/10.1371/journal.pone.0308355.g005

PLOS ONE Quantum game strategy solution for R&D cartel

PLOS ONE | https://doi.org/10.1371/journal.pone.0308355 December 5, 2024 16 / 22

https://doi.org/10.1371/journal.pone.0308355.g005
https://doi.org/10.1371/journal.pone.0308355


This observation indicates that different combinations of quantum gates can yield varied out-

comes, and the interplay between gate selection and the degree of entanglement crucially influ-

ences the final reward. Specifically, the entanglement angle at which the interaction is

maximized, and consequently the maximum compensation value, was found to occur around
p

4
(45 degrees).

This analysis underscores the significance of the entanglement angle in quantum game the-

ory, particularly in terms of its effect on strategic outcomes. The results suggest that the opti-

mal entanglement angle for maximizing rewards in this simulation context is approximately p

4
,

demonstrating the intricate relationship between quantum gate combinations and entangle-

ment in determining player payoffs.

Discussion

Analysis of quantum game simulation results

The results obtained from quantum game simulations mark a significant advancement, tran-

scending the traditional constraints of the classic Prisoner’s Dilemma. Among the evaluated

strategy combinations, four specific pairs of quantum strategies—(’I’, ’I’), (’σx’, ’σy’), (’σy’, ’σx’),

and (’σz’, ’σz’)—achieved the Pareto optimal payoff of (3,3). This outcome illustrates a scenario

where players can individually enhance their rewards without adversely affecting their coun-

terparts, embodying the essence of an optimal cooperative strategy.

A particularly notable outcome is the achievement of Pareto optimality with the (’I’, ’I’)

strategy. In the realm of static Hamiltonian quantum games, a static Hamiltonian implies that

players’ strategies or states remain constant throughout the game, analogous to actors adhering

to a predetermined script. Their actions and outcomes are consistent and predictable, steered

by the unalterable rules of static Hamiltonians.

This strategy, indicative of a static state, highlights the fact that Pareto optimality is attain-

able solely by manipulating the degree of entanglement. This discovery suggests that in practi-

cal applications, enhanced entanglement, akin to increased transparency and mutual trust, can

lead to Pareto-optimal outcomes without necessitating substantial modifications to existing

policy frameworks.

The implications of these simulation results are profound in the context of policy develop-

ment. If maximal entanglement (y ¼ p

4
) is pivotal in securing optimal outcomes in a quantum

game environment, it hints that a similar level of ‘entanglement’ could be instrumental in fos-

tering collaborative synergy among various stakeholders, including researchers. Metaphori-

cally, this implies that policies should be geared towards augmenting the degree of

entanglement, thereby fostering transparency and trust.

In summary, the findings from the quantum game simulations advocate for policy develop-

ment that focuses on increasing entanglement while concurrently enhancing transparency and

building trust. Such strategies are poised to achieve Pareto optimality in cooperative scenarios,

effectively surpassing the limitations inherent in conventional game theory approaches.

Policy implications and recommendations

This article seeks to reinterpret the issues surrounding the Korean government’s R&D invest-

ment, previously criticized as an ’R&D cartel’, through a new lens: that of a strategic game.

This reinterpretation is achieved by framing the interactions between the government (the

investors) and researchers (the R&D implementers) within a quantum game model, conceptu-

alized as a quantum information strategy model. The article posits that the Korean R&D

investment environment can be modeled as a quantum game, featuring two primary agents:
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the R&D manager (Alice) and the research performer (Bob). This model is akin to the classic

prisoner’s dilemma, emphasizing responsibility and sincerity.

In this model, Alice, representing R&D management, is inclined to focus on short-term or

small-scale investments to mitigate risk. Concurrently, Bob, the research performer, tends to

pursue short-term or small-scale tasks to maximize his utility, thus maintaining a Nash equi-

librium. This equilibrium indicates a state where no participant can unilaterally improve their

position without worsening the position of the other. As shown in Table 5, this study suggests

that terms such as ‘R&D bureaucracy’ or ‘R&D monopoly’, which are often seen as moral haz-

ards, may be more appropriate descriptions than the term ‘R&D cartel’. The article under-

scores the potential of quantum game theory to extend and transform the classical game

theory paradigm. This transformation is facilitated by introducing new strategic dimensions,

such as quantum entanglement and superposition states. These dimensions offer fresh per-

spectives and policy alternatives for R&D innovation. Simulations within the quantum game

model demonstrate the dynamic interplay of strategic configurations, highlighting how quan-

tum entanglement can significantly alter the reward landscape, surpassing the traditional

dilemmas inherent in classical models.

Conclusion

Summary of findings

A crucial aspect of this study is the illumination of how quantum strategies, particularly those

employing entanglement, can facilitate Pareto optimal outcomes. In such scenarios, no player

Table 5. Comparison of R&D cartel, R&D bureaucracy, and R&D monopoly.

R&D Cartel R&D Bureaucracy R&D Monopoly

Definition • Agreements between competing companies to
collaborate on R&D activities, often to control the
pace of innovation and share markets.

• A system where R&D decisions and funding are
controlled by a complex and inefficient
administrative structure.

• A situation where one entity
dominates R&D activities in a
specific field or market.

Main Features • Sharing of collaborative R&D costs and risks between
competitors.

• Potential reduction in competition and possibility of
market manipulation.

• Involves extensive procedural requirements and
administrative controls.

• Slow decision-making process leading to
inefficiencies.

• Often associated with government or large
institutional structures.

• R&D capabilities and resources are
concentrated in the hands of one
entity.

• Leads to a lack of competition and
innovation.

• Increased barriers to entry for other
companies.

Impact on

Innovation

• Positive aspects include collaboration and resource
pooling.

• Negative aspects include reduced competition and
potential stifling of innovation.

• Can be slow and limited due to procedural
rigidity and lack of flexibility.

• Lack of competitive pressure to
innovate.

Market

Dynamics

• Induces coordinated market behavior which can limit
competition but might accelerate certain innovations.

• Characterized by excessive regulation and
control, potentially inhibiting market
dynamics.

• Decreased market competition,

increased prices, and limited
consumer choice.

Legal

Considerations

• Violation of antitrust laws if it leads to anti-
competitive practices.

• Often legal, but prone to inefficiencies and lack
of responsiveness to market needs.

• May be illegal if it results from anti-
competitive practices.

Representative

Scholar

• Harrington Jr, J. E. [38]
• Martin, Stephen. [39]

• Armstrong, J. S., & Green, K. C. [40]
• Damanpour, F.,& Evan, W. M. [41]

• Schumpeter, Joseph, A. [42]
• Tirole, Jean. [43]

Table 5 compares three organizational forms in the context of R&D: cartels, bureaucracies, and monopolies. It contrasts their definitions, main features, impacts on

innovation, market dynamics, legal considerations, and representative scholars. The table suggests that while R&D cartels may foster cooperation, they risk market

manipulation; bureaucracies may lead to inefficiencies due to procedural rigidity; and monopolies could stifle competition and innovation due to concentrated control.

https://doi.org/10.1371/journal.pone.0308355.t005
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can improve their payoff without adversely impacting other players. This quantum-based opti-

mization, achieved through varying levels of entanglement, marks a significant departure from

classical strategies, where mutual cooperation is often non-equilibrium and suboptimal. The

study thus contributes valuable insights into the potential of quantum strategies to revolution-

ize traditional approaches to strategic decision-making in R&D investment.

This study offers a nuanced understanding that the efficacy of bilateral strategies in foster-

ing cooperation and mitigating moral hazard is contingent not solely on the degree of entan-

glement but also on the dynamic fairness of the strategic (policy) response system, aligned

with the fundamental compensation mechanism.

The simulation results for the aforementioned combinations of quantum strategies demon-

strate that both players achieve Pareto optimality (3,3) with the configurations (’I’, ’I’), (’σx’,

’σy’), (’σy’, ’σx’), and (’σz’, ’σz’). The strategic implications and policy alternatives corresponding

to these strategy combinations are elucidated as follows:

• Strategy (’I’, ’I’)—Status Quo Maintenance: This strategy represents a scenario where nei-

ther player alters their state, symbolizing stability and predictability in quantum games. It

reflects a tendency towards preserving the status quo, with the sole change being the strength

of entanglement. The corresponding policy alternative should involve implementing systems

and policies that effectively evaluate research efforts. This can be achieved through enhanc-

ing system transparency, establishing a government investment technology notification sys-

tem, and introducing a jury-type evaluation committee.

• Strategy (’σx’, ’σy’)—Complementary Change: The ’σx’ and ’σy’ Pauli operators represent

shifts in different dimensions. This combination signifies both players attempting strategic

changes in diverse directions, fostering diversity and adaptability. The policy response

should focus on defining clear responsibilities and obligations in R&D selection and perfor-

mance. This involves establishing systems ensuring researchers’ accountability and introduc-

ing a real-name R&D policy/planning system for R&D discovery and policy proposals.

• Strategy (’σy’, ’σx’)—Dynamic Response: This combination, utilizing ’σx’ and ’σy’ operators

in reverse order, implies a dynamic response strategy. The first player’s ’σy’ operation influ-

ences the second player’s ’σx’ strategy, reflecting a flexible response to changing environ-

ments. Policy alternatives should encourage long-term investment and prioritize innovative

projects through a mandatory large-scale R&D quota system.

• Strategy (’σz’, ’σz’)—Cooperative Progress: The selection of ’σz’ by both players indicates a

joint progression towards a common goal. The ’σz’ operator maintains a specific state while

inducing internal changes, signifying a cooperative and goal-oriented approach. As a policy

alternative, there is a need to fortify cooperation within the R&D system, create a dynamic

cooperative environment, and promote mutually beneficial strategies. This includes expand-

ing rewards for research achievements, acknowledging sincerity in failures, and sharing

accumulated information on R&D performance and planning management.

In conclusion, this study delineates the transformative influence of quantum strategy

dynamics on game theory. It provides an integrated approach that merges the policy frame-

work of quantum strategy and entanglement to advance innovation and collaboration in the

research and development sphere.

Limitations of the study and future research directions

In this study, policy alternatives derived from quantum game theory have been metaphorically

applied to policy situations using the rotation axis and direction of the identity operator and
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Pauli operators (’σx’, ’σy’, ’σz’). However, this methodology, while instrumental in translating

the intricate concepts of quantum mechanics into a policy-making context, is not without sig-

nificant limitations.

Firstly, there exists a discernible gap between abstraction and practical application. The

operators and theoretical constructs of quantum mechanics are inherently abstract, and the

direct correlation of these to tangible policy decisions may lead to discrepancies in practical

application. Metaphorical interpretations and abstract models may not entirely encapsulate

the complexities of real-world policy environments, potentially impacting the feasibility of the

proposed policies.

Secondly, the approach is subject to the subjectivity inherent in metaphorical interpreta-

tion. The process of metaphorically applying the operator’s axis and direction to policy alterna-

tives introduces a degree of interpretation subjectivity. Different researchers may perceive the

same quantum mechanical phenomenon differently, leading to varied interpretations and

applications. This variability can raise concerns regarding the consistency and objectivity of

the policy proposals.

Thirdly, the challenge of empirical verification presents itself. Policies based on quantum

game theory are challenging to empirically validate. While integrating quantum mechanical

concepts into social science contexts is intellectually stimulating, quantifiably measuring and

verifying the efficacy of these approaches in real policy-making processes is a complex endeavor.

Fourthly, the applicability of policies derived from quantum game theory may be limited to

specific contexts or situations. Not all policy issues are amenable to resolution within the quan-

tum game theory framework. In certain cases, traditional game theory or other analytical tools

may prove more pertinent.

By acknowledging these limitations and considerations, this study aims to provide a more

comprehensive understanding of the applicability and practicality of quantum game theory,

thereby establishing a groundwork for future research directions.

Lastly, in terms of practical use, it is the open use of data and information. This is also

related to the construction of a quantum computing system according to technological devel-

opment. In particular, it is an alternative to ensure policy transparency. Future quantum tech-

nologies, such as quantum communication, quantum sensing, and distributed quantum

computation, rely on shared entanglement networks between spatially separated nodes. For a

variety of parameters, our policy should improve previously known policies such as the “swap

as soon as possible” policy with respect to latency and fidelity of end-to-end entanglement

[44]. To obtain these results, the entanglement distribution must be modeled using a Markov

decision process, and then reinforcement learning (RL) algorithms, etc., must be applied to

discover the queue-replacement policy, thereby promoting cooperation between each tempo-

rally and spatially distant node. It will need to be quantified to support decision-making. To

achieve this, the interaction between data providers, users, and regulators should be analyzed

through quantum evolution game theory, and the need for open data for sustainable digital

economy development should be emphasized [9]. For reference, the Python code used in this

study is provided as S1–S3 Appendices.

Supporting information
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(DOCX)
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