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Abstract

T2K is a long baseline neutrino oscillation experiment. It utilizes a 30 GeV proton

beam at Japan Proton Accelerator Research Complex to produce an intense muon

neutrino beam which is aimed in the direction of the Super-Kamiokande detector

located 295 km away. As neutrinos travel towards the Super-Kamiokande site, they

convert or oscillate to neutrinos of another flavour. One of the main goals of T2K is

to observe νµ to νe oscillations and measure the last unknown mixing angle θ13 that

governs these transitions. In addition, the experiment also plans to make precise

measurements of the ∆m2
32 and θ23 neutrino mixing parameters. This work presents

the analysis of the neutrino flux predictions in T2K, one of the key inputs necessary

to determine the oscillation parameters. The effects of the associated systematic

uncertainties on the measurement of the oscillation parameters are also considered.
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Contributions to the T2K experiment

I joined the T2K experiment in 2005 working, with a small group from York Uni-

versity, University of Toronto, and TRIUMF laboratory, on a design for a proton

monitor to operate near the T2K target. The T2K experiment is a long-baseline

neutrino oscillation experiment. One of its main goals is the discovery of the νµ to

νe oscillations governed by the last unknown mixing angle θ13. Additionally T2K

aims to make precision measurements of the ∆m2
32 and θ23 oscillation parameters.

The experiment utilizes a new high power proton accelerator J-PARC (Japan Pro-

ton Accelerator Research Complex) meant to deliver 750 kW proton beam to make

an intense neutrino beam. The experiment uses the “off-axis” method to produce

a narrow band neutrino beam. The position of the proton beam on the target

has to be precisely controlled as shifts on the order of a millimeter would result in

significant changes in the energy of the neutrinos thereby making it hard to meet

the physics requirements of the experiment. Due to the high radiation environment

near the target, electronic equipment and conventional proton monitors, however,
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could not be used.

This led us to propose using Optical Transition Radiation (OTR) to monitor

the beam protons near the T2K target. OTR is a phenomenon where a charged

particle can produce visible light when crossing a boundary between two materials

with different dielectric constants. A thin metallic foil placed in the path of the

protons would produce the OTR light when the beam travels through it and a

system of mirrors would collect this light and guide it out of the radiation area to

form a 2D image of the beam at a camera. Since both the foil and the mirrors would

be made out of metal, such a system would not be very susceptible to radiation

damage.

This was the idea at the time I joined. There was, however, no concrete design

for a mirror system capable of transporting the light efficiently from the target area.

My first contribution was to work on an optical system simulation the York group

had started to develop. In addition to developing the simulation package, my main

priority was conducting the studies of the alignment tolerances for the position and

orientation of the mirrors. The focus of this work was to come up with a design

capable of measuring the proton beam with a required precision, given the large

distances of the optical path and a reasonable set of assumptions on capabilities of

the mechanical support structure for the mirrors. Based on our studies, we built a

1/15 scaled prototype. Using this system we were able to observe OTR light from

vi



an electron beam at the National Research Council in Ottawa. This prompted us

to proceed with the construction of a full scale detector.

My simulations had shown that the parabolic mirrors used in the optical sys-

tem were introducing a certain amount of distortion. Such distortion could lead

to a significant bias in the beam position measurements and therefore had to be

corrected. I developed a method and wrote the necessary software which enabled

correction of the distortion effects introduced by the system using an image of a

known precisely machined calibration pattern. In addition to the distortion effects,

my studies of the system performance indicated that the light collection efficiency

from the different regions of the OTR foil was not uniform and that such an effect

could also lead to significant biases in the measurements of the proton beam profile.

It is possible to calibrate the light collection efficiency by imaging a highly uniform

diffuse light source. A standard tool in photometry for this type of calibration is an

integrating sphere. Unfortunately the large dimensions of the sphere required by

our application made the commercially available models prohibitively expensive. I

demonstrated, however, that it was feasible to build such a device from inexpensive

components and obtain a light source sufficiently uniform for the calibration of the

monitor.

In addition to working on the OTR monitor calibration and image analysis, I

was one of the principal developers of the OTR monitor data acquisition system. I
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designed and tested the software for the readout of the camera images. I also worked

on the development of the trigger logic for the monitor image acquisition circuitry.

This involved a substantial amount of programming of Field-Programmable Gate

Arrays.

The OTR monitor was successfully commissioned with the rest of the T2K

beam-line in the spring of 2009. My extended stay in J-PARC at that time was

supported by the Japan Society for the Promotion of Science fellowship. During

the commissioning the monitor was especially useful as an aid to tune the proton

beam orbit. Since then, it has been reliably taking data and proved a valuable tool

in understanding proton beam properties.

I became involved with the evaluation of the neutrino flux predictions and as-

sociated systematic uncertainties which were essential inputs for the analysis of

the T2K neutrino data. This meant working extensively with the Monte Carlo

simulations designed for predicting the neutrino flux. When I started the Monte

Carlo simulation used at T2K for the flux predictions was based on GEANT 3.

This was a problem, since the simulation of the hadron production, crucial for the

prediction of the neutrino flux, was done using obsolete models. Extensive com-

parisons with the particle production data from recent experiments have indicated

that FLUKA was a better model to use. Unfortunately its GEANT interface was

no longer supported. Nonetheless I was able to integrate it into the T2K neutrino
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flux simulation. Subsequently I was put in charge of the neutrino flux Monte Carlo

simulation production for the analysis of the T2K data.

I was part of the group involved in the analysis of the first T2K data. My

responsibility was to provide the predicted neutrino flux, which is one of the inputs

required to measure the oscillation parameters. I also worked on evaluating the

systematic uncertainties in the neutrino flux predictions related to the proton beam

parameter uncertainties and the component alignment in the T2K beamline.

In T2K neutrinos originate predominantly from the decays of pions and kaons

produced in the interactions of the beam protons with a carbon target. While the

majority of the produced neutrinos are of muon flavor, other types of neutrinos are

also present. The contamination of electron neutrinos in the muon neutrino beam

is particularly important for the νµ to νe oscillation searches and measurement of

θ13. Since a sizable fraction of these neutrinos come from the kaon parents, under-

standing the uncertainties associated with the kaon production is a crucial input

to an oscillation analysis. After the first analysis of the T2K data was completed,

I have been working on incorporating the measurements of the kaon production

cross-sections from NA61 and other hadron production experiments into the T2K

analysis. This led to a significant reduction in the uncertainties associated with

νe contamination in the beam and improvement in the sensitivity for the electron

appearance signal.
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1 Introduction

Our present knowledge of the subatomic world is encapsulated in the Standard

Model (SM) of particle physics. The model describes all of the known particles and

the three fundamental forces1—strong, electromagnetic, and weak—that act upon

them. It has successfully explained a large variety of experimental results and its

predictions have been proved to be remarkably accurate. The building blocks of

the model, shown in Fig. 1.1, are six quarks, six leptons, and four particles (force

carriers) called gauge bosons that act as the mediators of interactions. The model

also postulates the existence of Higgs particle(s) (not shown in the figure) currently

being sought at the Large Hadron Collider (LHC) at CERN. The numbers in the

top left corner of each block are the electric charge (first from the top) of a given

particle and its intrinsic angular momentum called spin. Particles with fractional

spin are called fermions while those with integer spin are called bosons. Quarks and

leptons belong to the former group, while the force carriers are part of the latter.

1The fourth fundamental force, the force of gravity, is not part of the Standard Model and
attempts of including it into a single framework with the three other forces are ongoing.
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Figure 1.1: Standard Model of particles physics. The natural units are used
(~ = c = 1) and the electric charge is expressed in units of e.

Charged particles in the SM also have partners that possess the same mass,

but carry an opposite charge. These are called antiparticles and are often marked

by a bar over the particle symbol (e.g., ū is an anti-u quark). The antiparticle

of the electron, for example, is the positively charged positron. Collectively we

refer to the substance composed of particles (antiparticles) as matter (antimatter).

The situation is more complicated in the case of neutrinos. Since neutrino is not

charged, it is not known whether its “anti” partner is a distinct particle or whether

the two are actually the same particle.

The interactions between particles occur by exchanging one of the gauge bosons

(which for this reason are called force carriers). This is illustrated in Fig. 1.2

2



f

a

b

c

d

Figure 1.2: Two particle interaction with exchange of a generic vector boson f .
The arrows indicate the direction of time.

where two particles a and b are shown colliding leaving them in some altered state

(elastic or quasi-elastic collisions) or even creating new particles c and d (inelastic

collisions). The gauge boson, generically labeled as f in the figure, is the force

carrier that mediates the interaction. The type of this boson determines which

force is involved in a process.

The strong force, mediated by gluons, is responsible for binding quarks inside

particles called hadrons of which protons and neutrons are examples. The more

familiar electromagnetic force acts on any particle that carries an electric charge.

Both quarks and charged leptons (e, µ, and τ) can therefore participate in the

electromagnetic interactions. At a distance scale on the order of 10−15 meters, it

is approximately 100 times weaker than the strong force. Finally, the weak force

affects all fermions. It is the weakest of the three forces with the strength ∼ 10−4

smaller than the electromagnetic force. The three neutrinos are only sensitive to
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this force.

W±

n

νe,µ,τ

p

e−, µ−, τ−

(a) Charged current interaction medi-
ated by W± boson

Z0

n, p

νe,µ,τ

n, p

νe,µ,τ

(b) Neutral current interaction mediated
by Z boson

Figure 1.3: Neutrino interactions with protons and neutrons.

The simplest possible neutrino interactions with neutrons and protons (nucle-

ons) are illustrated in Fig. 1.3. Fig. 1.3a shows a neutrino exchanging a W± boson

with one of the quark constituents (not shown in the figure) of a neutron n which

leads to the production of a charged lepton and a proton p. The type, or flavour,

of the produced lepton defines the flavour of the interacting neutrino. Since W±

bosons carry an electric charge, such processes are referred to as charged current

(CC) interactions.

Neutrino interactions with nucleons involving the exchange of the neutral Z0

boson are also possible. These types of processes, shown in Fig. 1.3b, are referred

to as neutral current (NC) interactions.

Neutrinos are abundant in nature. One of the largest producers is the sun, which
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radiates a large number of electron neutrinos—over 1011 of these solar neutrinos

cross every square centimeter of the Earth’s surface each second. Neutrinos are also

produced in the upper layers of the Earth’s atmosphere by cosmic rays (mostly pro-

tons) colliding with the air nuclei. About two thirds of these atmospheric neutrinos

are muon neutrinos with the rest being electron neutrinos.

The standard approach of detecting neutrinos is by observing charged leptons

produced in the CC interactions. However, the cross-section, the quantity that

determines the probability of interaction, for these reactions is minute. For example,

for 1 GeV neutrinos it is on the order of 10−38 cm2, which is about 10−13 times

smaller than the cross-section for proton-nucleus interactions. Since the number of

neutrinos a given detector can expect to collect is proportional to the product of the

cross-section, detector mass, and neutrino flux (the number of neutrinos crossing a

unit area per unit time), both large detectors and high neutrino flux are needed to

observe these particles.

In addition to the difficulty of their detection, neutrinos have another distinct

property. They are the only fermions in the Standard Model that were believed to

have no mass. The situation changed at the end of the 20th century.

In 1998, a rather dramatic discovery was made by a collaboration of scientists

at the Super-Kamiokande neutrino observatory in Kamioka, Japan [1]. The group

observed that the number of the atmospheric downward-going muon neutrinos was

5



about two times larger than the number of the upward-going neutrinos. As neu-

trinos are weakly interacting, they can pass through the Earth with very little

absorption. It was therefore expected that the two numbers should be close to each

other. As no significant excess in the observed number of electron neutrinos was

seen, the best hypothesis that could explain such discrepancy was that muon neu-

trinos have converted or “oscillated” to tau neutrinos during their travel through

the Earth. Since the tau neutrinos could not be experimentally detected at Super-

Kamiokande, the “disappearance” of the upward-going neutrinos was observed. As

oscillations are only possible if neutrinos have mass, the Super-Kamiokande result

was the first experimental indication that the Standard Model was incomplete.

The neutrino oscillation hypothesis was later tested by the K2K and MINOS

experiments. The two experiments used particle accelerators to produce muon

neutrinos in a controlled way. These neutrinos are made by colliding a beam of

energetic protons with some amount of material (called a target). The interactions

of the protons with target nuclei result in the generation of the unstable particles

called pions which produce muon neutrinos when they decay. Similar to Super-

Kamiokande, a significant disappearance of muon neutrinos due to their conversion

to tau neutrinos was observed by K2K [2] and MINOS [3].

Since there are three neutrinos, it is also theoretically possible for νµ to convert

to νe. This, however, has not been seen so far. Measuring such a conversion can
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give clues for one of the most interesting questions fundamental to the existence of

the Universe. At the time of the Big Bang, matter and antimatter were produced

in equal amounts. As the Universe cooled, matter and antimatter annihilated with

each other. A tiny fraction of matter, however, survived proceeding to form stars,

planets, and galaxies: everything we see around us today. How it was possible for

such an excess to develop is one of the great puzzles. Precise measurements of νµ

to νe oscillations may help shed some light on this mystery.

One of the primary goals of the Tokai-to-Kamioka (T2K) experiment is to de-

tect νµ to νe oscillations in an intense muon neutrino beam produced by 30 GeV

protons. The experiment also aims to significantly improve our understanding of

the parameters governing the disappearance of νµ. One of the key ingredients nec-

essary to make these measurements is the knowledge of the expected neutrino flux.

That is the subject of this dissertation.

The layout of the work is as follows. A brief overview of neutrino history is

given at first in Chap. 2. The phenomenology of the neutrino mixing is discussed

in Chap. 3. The description of the T2K experiment is given in Chap. 4 followed

by the chapter on the Optical Transition Radiation proton beam monitor that has

been developed for the T2K proton beamline. The rest of the work deals with the

estimation of the neutrino flux for the analysis of the neutrino oscillations at T2K.

A brief summary and concluding remarks are given in Chap. 10.
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2 A Short History of Neutrinos

2.1 From hypothesis to detection

At the end of the 19th century, Henri Becquerel accidentally discovered that some

elements were natural emitters of strange particles, which he called rays [4]. Ma-

terials with such properties are now called radioactive. They are made of unstable

elements that can sporadically disintegrate, or decay, emitting different types of

particles (radiation). Ernest Rutherford classified the radiation into three types:

α, β, and γ according the penetrating power of each particle. The α particles were

later shown to be helium nuclei, while β and γ particles were identified as electrons

(and positrons) and photons, respectively.

From the principle of the conservation of energy, the energy spectrum of the

emitted rays was expected to be discrete. The observation of the broad energy

distribution of β electrons by James Chadwick [5] in 1914 therefore came as a

surprise and generated a considerable amount of debate (see, for example, [6] for

historical overview).

8



The difficulty in explaining the energy spectrum of β rays led to a view, advo-

cated at the time by Niels Bohr, that the energy conservation had to be violated.

Wolfgang Pauli was not inclined to accept such a radical explanation. In 1930, he

postulated the existence of a new particle emitted along with the electron which

he called “neutron” (the English translation of the letter outlining his proposal can

be found in [7]). The released energy could be shared between the electron and

neutron resulting in an observation of the broad energy spectrum for the former.

The new particle had to be neutral and have a great penetrating power to explain

the lack of experimental detection.

A different type of neutron was discovered in 1932 by Chadwick [8] who mea-

sured its mass to be close to that of the proton. This neutron was too heavy to be

the partner of the β electron.

Enrico Fermi followed Pauli’s hypothesis and assumed an invisible partner to the

β electron which he named “neutrino” to distinguish it from Chadwick’s neutron.

Fermi then proceeded to formulate a quantitative description of β decay [9]. In his

theory, the transition of the neutron to a proton was associated with the creation

of an electron and an anti-neutrino in case of the β− decays:

n→ p+ e− + ν̄e. (2.1)

9



For β+ decays, on the other hand, it was the proton that converted to a neutron

accompanied by the production of the positron-neutrino pair:

p→ n+ e+ + νe. (2.2)

The Fermi Theory of β decay, as it is known now, successfully explained the

broad energy spectrum of β rays. In addition, it also predicted processes of the

type:

ν̄e + p→ n+ e+, (2.3)

where ν̄e are anti-particles of neutrinos or anti-neutrinos.

From the experimental point a view the reaction Eq. 2.3, sometimes called

inverse β decay, was a possible way to detect a neutrino. In their 1934 paper, H.

Bethe and R. Peierls [10] estimated the neutrino capture rate for this reaction. It

turned out to be so minute that they were prompted to conclude: “there is no

practically possible way of observing the neutrino”.

In the 1950s Clyde Cowan and Frederick Reines [11], however, realized a way

to detect (anti-)neutrinos using the reaction Eq. 2.3. They placed a detector next

to a nuclear reactor hoping to measure anti-neutrinos coming from the β decays

of fission fragments. The detection principle relied on observing both the positron

and the neutron in Eq. 2.3. This provided them with a distinct signal that could
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Figure 2.1: Illustration of neutrino helicity concept.

be easily distinguished from the backgrounds caused by natural radioactivity and

cosmic rays. They saw on average 3 events per hour that were consistent with the

expected neutrino signature. After more than 20 years Pauli’s hypothesis had been

proven to be correct.

2.2 Neutrino handedness and mass

Two years after the neutrino discovery, Maurice Goldhaber et al. [12] were able

to measure the neutrino helicity or handedness. Helicity (handedness) is the term

used to describe the projection of a particle’s spin on its direction of motion. The

spin can be either aligned with the motion or point in the opposite direction (see

Fig. 2.1). In the former case the particle is said to be right-handed while in the

latter case it is called left-handed.

Goldhaber et al. analyzed the polarization of the photons produced in

152Eu + e− → 152Sm∗ + νe → 152Sm + γ + νe. (2.4)
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From the conservation of total angular momentum, they were able to infer that

the neutrinos were only left-handed. It was a significant result, as it implied that

neutrinos were massless. This follows from the fact that if they did have mass, it

would be possible to find a reference frame where they would move in the opposite

direction and therefore appear right-handed. Since no right-handed neutrinos were

detected, it was concluded that neutrinos had to have no mass. Later on the

massless neutrino fit well within the framework of the Standard Model.

2.3 The solar neutrino problem

Neutrinos are copiously produced in the nuclear reactions inside the core of the

sun. There are about 1011 of these solar νe neutrinos passing through every square

centimeter of the Earth surface per second [13]. In 1964 Ray Davis [14], in close

collaboration with John Bahcall [15], proposed an experiment for observing the

solar neutrinos via the Cl-Ar mechanism, a detection principle suggested nearly two

decades earlier by Bruno Pontecorvo [16]. In this method, neutrinos are captured

by an isotope of chlorine, 37Cl, in the reaction:

νe + 37Cl→ e− + 37Ar. (2.5)
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The atoms of 37Ar are then extracted from a detector volume and counted to

determine the number of the neutrino interactions.

In 1968, Davis and collaborators [17] reported the first measurement of the

neutrino capture rates in chlorine, which was in disagreement with the expectation

from the Standard Solar Model (SSM). This discrepancy became known as the

“solar neutrino problem” and turned out to be of profound significance.

2.4 Accelerator neutrino beams and discovery of neutrino

flavour

The reactor sources and the sun allowed the study of neutrino interactions at ener-

gies of only up to about 10 MeV. This was not high enough, however, if one wanted

to observe a reaction of the type

νµ + n→ p+ µ− (2.6)

in addition to

νe + n→ p+ e−. (2.7)

The process in Eq. 2.6 is not kinematically permitted for neutrino energies Eν < 106

MeV (which is the mass of the muon).
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Around 1960 Pontecorvo [18] and Melvin Schwartz [19] independently proposed

to use proton accelerators to generate high energy neutrino beams. It was known

that the charged π mesons decayed into a muon and a neutrino:

π+ → µ+ + νµ. (2.8)

Since pions could be easily produced by colliding protons with a stationary target,

it was feasible to make a pion beam of high enough energy and intensity to produce

a neutrino beam.

The idea was put to a test a few years later by Schwartz and a group of scientists

from Columbia University and Brookhaven National Laboratory (BNL) [20]. Under

the hypothesis that ν from π+ decays (emitted with muons) were the same particles

as ν from β decays (emitted with electrons), the group expected to see as many

electron as muon tracks in their detector. The tracks they observed, however, were

only those whose signature was consistent with muons. It was therefore concluded

that the neutrinos emitted in pion decays along with muons were of different type

or “flavour” than the ones coming from the β decays.

A very important milestone for the future accelerator neutrino beams was the

invention of the magnetic focusing horns by Simon van der Meer in 1961 [21]. In

the BNL experiment, the pions created in the collisions of the protons with a target
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formed a divergent beam. Van der Meer’s proposal was to create a device that would

act as a lens focusing pions into a nearly parallel beam. This would significantly

increase the neutrino yields as most of neutrinos could be aimed towards a detector.

2.5 Three neutrino flavours

The discovery of the νµ suggested a picture where each charged lepton had an

accompanying neutrino partner. The detection of the τ lepton by Martin Perl et

al. [22] at Standford Linear Accelerator Center (SLAC) in the mid-seventies thus

led to the belief that there existed a third neutrino species ντ .

Z0

e−

e+

q̄

q

(a) Z0 decay to quark-
antiquark pair

Z0

e−

e+

l̄

l

(b) Z0 decay to charged
leptons (l = e, µ, τ).

Z0

e−

e+

ν̄l

νl

(c) Z0 decay to neutri-
nos (l = e, µ, τ).

Figure 2.2: Decay modes of Z0 boson.

In the late eighties and early nineties experiments at the Large Electron Positron

(LEP) accelerator at CERN were able to deduce the total number of (active) neu-

trino flavours by studying the decay rates of the Z0 boson. The bosons were pro-

duced by colliding e+ and e− together. They decayed almost immediately (the

lifetime of Z0 is on the order of 10−25 sec) producing particle-antiparticle pairs.
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The three simplest Z0 decay scenarios are shown in Fig. 2.2.

It is possible to measure the Z0 decay rates to a quark-antiquark (Γhad) pair and

the charged lepton pair (Γl) by detecting the decay products. Since neutrinos escape

undetected, their contribution to the decay rate of Z0 cannot be directly measured.

One can, however, determine this “invisible” contribution, Γinv, by subtracting the

sum of Γhad and Γl from the total decay rate. The number of neutrinos, Nν , can

then be deduced from Γinv. It turned out to be [23]

Nν = 2.984± 0.008, (2.9)

confirming that there was one more neutrino waiting to be discovered.

The first direct detection of the third neutrino flavour ντ was made in 2000 by

DONuT (Direct Observation of NU Tau) at Fermilab [24].

2.6 Disappearing solar neutrinos

The deficit in the number of electron neutrinos coming from the sun first observed by

Davis et al. was later confirmed by GNO [25], GALLEX [26], SAGE [27], and Super-

Kamiokande [28] experiments. The consistency of the experimental observations

by diverse detectors with different neutrino detection techniques provided strong

evidence that the solar neutrino problem was real. The solution appeared in the
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works of B. Pontecorvo [29] and Z. Maki, M. Nakagawa, and S. Sakata [30] who,

between 1960-1970, independently introduced the idea of neutrino mixing. This

mixing could lead to an effect where neutrinos of different flavour can convert into

each other. For example, neutrinos produced purely as νe can turn into νµ, while

those in turn can convert back to νe, resulting in an oscillatory flavour change.

If neutrino flavours could mix, the deficit of the solar neutrinos could be inter-

preted to be caused by the fact that a fraction of electron neutrinos that reach the

Earth have converted to muon or tau neutrinos. Since the experiments were not

sensitive to the detection of these flavours, a deficit was observed. The hypothesis

could be tested by detecting neutrinos via a process that is sensitive to all neutrino

flavours [31]. This was done at the Sudbury Neutrino Observatory (SNO) [32].

The SNO collaboration was able to show that the predicted solar neutrino rates

from the SSM were correct and the observed deficit was indeed due to the neutrino

mixing.

2.7 Atmospheric neutrino oscillations

As mentioned earlier, in 1998 the Super-Kamiokande collaboration published the

results of their observations of atmospheric neutrinos [1]. These neutrinos, com-

posed of νµ, ν̄µ, νe, and ν̄e flavours, are produced in the decays of the unstable

particles (mostly π mesons) created in the collisions of the energetic cosmic rays
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with the nuclei in the atmosphere. Since the cosmic ray flux is isotropic, the resul-

tant neutrino flux is also uniform. The Super-Kamiokande collaboration, however,

reported a significant deficit in the number of muons produced by the up-going

muon neutrinos. As no significant excess was observed in the expected number of

electron neutrinos, such disappearance could then be explained by assuming that

muon neutrinos oscillated into tau neutrinos while traveling through the Earth.

This observation was verified by two accelerator-based neutrino experiments

K2K [2] and MINOS [3]. K2K used a 12 GeV proton beam from the KEK proton

synchrotron accelerator to produce a predominantly νµ beam. A detector near the

production point was employed to measure the initial neutrino flux prior to any

oscillation effects. The oscillated flux was observed by Super-Kamiokande located

250 km from KEK (the production site). The neutrino beam energy was optimized

to achieve a maximum conversion of νµ to ντ at the location of Super-Kamiokande.

The MINOS experiment, still in operation at Fermilab, followed the same two-

detector approach as K2K. The muon neutrino beam is produced by 120 GeV

protons from the Main Injector accelerator at Fermilab, while the baseline distance

(distance from the production site to the far detector location) is 735 km.
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2.8 Current status

The discovery of neutrino mixing was of profound significance for the Standard

Model of particle physics. The measurements of Goldhaber et al. of the neutrino

helicity implied that neutrinos were massless, in agreement with the SM expecta-

tions. The framework of neutrino mixing, however, required that at least two out

of the three neutrinos had masses distinct from each other. Various extensions to

the Standard Model have been proposed to accommodate the non-zero neutrino

masses. These theories are yet to be tested. Nonetheless the study of neutrinos

has provided the first experimentally compelling evidence of the existence of new

physics beyond what is contained in the Standard Model.

The phenomenological model that best describes the neutrino oscillation data so

far relies on the existence of three neutrinos ν1, ν2, and ν3 with distinct masses m1,

m2, and m3. These neutrinos are related to νe, νµ, and ντ by a mixing matrix. The

neutrino oscillations in this framework are described in terms of six parameters:

two mass square differences, ∆m2
21 = m2

2 − m2
1 and ∆m2

32 = m2
3 − m2

2, and four

parameters, θ12, θ23, θ13, and δ, that determine the mixing matrix. The two mass

square differences define the frequency while the three θs (mixing angles) control the

amplitude of the neutrino oscillations. The parameter δ allows for the possibility

that the neutrino oscillations behave differently from the anti-neutrino oscillations
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(CP violation). Observing such a difference and measuring δ 6= 0 would put us

closer to finding an answer to the matter-antimatter asymmetry puzzle mentioned

in the introduction.

The measurements of the θ12 and ∆m2
21 parameters come from the observa-

tions of solar neutrinos. For this reason these are sometimes referred to as solar

parameters.

The observation of the atmospheric neutrino flux at Super-Kamiokande was

the first indication of oscillations governed by θ23 and ∆m32. Consequently these

are called atmospheric parameters. It should be noted, however, that only the

absolute value of |∆m32| is currently known. The ordering of masses according to

m1 < m2 < m3 where ∆m2
32 > 0 is called the normal hierarchy. On the other hand,

the ordering where ∆m2
32 < 0 is called the inverted hierarchy.

In addition to the mass hierarchy, the value of the last mixing angle θ13 is

unknown as is the magnitude of the CP violating parameter δ. The next generation

of the neutrino oscillation experiments—one of which is the T2K experiment [33]—

is aiming to shed some light on these mysteries.
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3 Mixed Neutrinos

3.1 Neutrino mixing in vacuum

The neutrinos produced in weak interactions are of a specific flavour, which is

defined by the type of the charged lepton α = e, µ, τ involved in a given CC reaction.

In the language of quantum mechanics this means that a neutrino is produced in

a flavour eigenstate |να〉. Oscillations are possible because |να〉 is not the same as

the mass eigenstate |νi〉 (i = 1, 2, 3). Assuming there are only three neutrinos, |να〉

can be expressed as a linear combination of |νi〉 states:

|να〉 =
3∑
i=1

U∗αi|νi〉 (3.1)

where U∗αi (the star superscript indicates it is a complex conjugate of Uαi) is a

unitary mixing matrix. Mathematically, this means that

U†U = UU† = I, (3.2)
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where I is the identity matrix.

The U matrix in Eq. 3.1 is also called the PMNS mixing matrix after Pontecorvo,

Maki, Nakagawa, and Sakahata, the four scientists who introduced the idea of

neutrino mixing [29], [30].

If a neutrino is produced in the state |να〉 at time t = 0 and at a point x = 0, we

want to calculate the amplitude for detecting a neutrino of flavour νβ at a distance

x from the source

A(να → νβ) = 〈νβ|Ψ(x, t)〉 (3.3)

where Ψ(x, t) is the evolved neutrino state wave function. The corresponding oscil-

lation probability is the squared modulus of the amplitude in Eq. 3.3:

Pνα→νβ(x, t) = |A(να → νβ)|2 (3.4)

For neutrinos propagating in vacuum, the evolved state Ψ(x, t) in natural units

(~ = c = 1) is

Ψ(x, t) =
3∑
i=1

U∗αie
−i(Eit−pix)|νi〉, (3.5)

where Ei and pi are the energy and momentum of a neutrino in the ith mass eigen-

state. Thus

A(να → νβ) =
∑
i

U∗αiUβie
−i(Eit−pix) (3.6)
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where the orthogonality of the mass eigenstates 〈νi|νj〉 = δij was used. The proba-

bility of detecting the neutrino of flavour β in a detector at a distance L from the

source is then

Pνα→νβ(t) =
∑
i,j

U∗αiUβiUαjU
∗
βje
−i(Eit−piL)ei(Ejt−pjL). (3.7)

Since the time is not measured in a neutrino oscillation experiment, it is necessary

to average the probability in Eq. 3.7 over the time coordinate. As the time average

of 〈e−i(Ei−Ej)t〉 is zero unless Ei = Ej, only the mass eigenstates with a common

energy can contribute coherently to produce the oscillation pattern.

Since the neutrino masses mi are small compared to the neutrino energy (mi �

E), the relativistic expression for the neutrino momentum can be expanded as

pi =
√
E2 −m2

i ≈ E − m2
i

2E
. (3.8)

The time averaged probability of Eq. 3.7 is then

Pνα→νβ =
∑
i,j

U∗αiUβiUαjU
∗
βj exp

(
−i

∆m2
jiL

2E

)

=
∑
i

|Uαi|2|Uβi|2 + 2Re
∑
j>i

U∗αjUβjUαiU
∗
βi exp

(
−i

∆m2
jiL

2E

)
,

(3.9)
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where

∆m2
ji = m2

j −m2
i (3.10)

and ∑
j>i

. . . =
2∑
i=1

3∑
j=i+1

. . . . (3.11)

It is possible to simplify Eq. 3.9 by taking into account the unitarity conditions for

the mixing matrix: ∑
i

UαiU
∗
βi = δαβ (3.12a)

∑
α

U∗αiUαj = δij. (3.12b)

It follows from Eq. 3.12a that

∑
i

|Uαi|2|Uβi|2 = δαβ − 2Re
∑
j>i

U∗αjUβjUαiU
∗
βi.

Using this result and the fact that Re(XY ) = Re(X)Re(Y )− Im(X)Im(Y ) Eq. 3.9

can be rewritten as

Pνα→νβ = δαβ − 4
∑
j>i

Re(U∗αjUβjUαiU
∗
βi) sin2

(
∆m2

jiL

4E

)

+ 2
∑
j>i

Im(U∗αjUβjUαiU
∗
βi) sin

(
∆m2

jiL

2E

)
.

(3.13)

The oscillation probability for the anti-neutrinos can be derived in a similar way
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and is given by

Pν̄α→ν̄β = δαβ − 4
∑
j>i

Re(U∗αjUβjUαiU
∗
βi) sin2

(
∆m2

jiL

4E

)

− 2
∑
j>i

Im(U∗αjUβjUαiU
∗
βi) sin

(
∆m2

jiL

2E

)
.

(3.14)

A number of observations can be made about Eq. 3.13 and Eq. 3.14. Firstly, the

neutrino flavour transition probabilities exhibit oscillatory behaviour as a func-

tion of L/E with the frequency determined by the mass squared difference ∆m2
ji.

Secondly, the amplitude of these oscillations is determined by the elements of the

mixing matrix. Finally, a complex valued U can lead to the violation of the CP

(Charge Parity) symmetry where the oscillation probability for neutrinos is not the

same as for anti-neutrinos

Pνα→νβ 6= Pν̄α→ν̄β . (3.15)

This is evident from the fact that the imaginary parts in Eq. 3.13 and Eq. 3.14 have

different signs.

3.1.1 Two neutrino mixing

We first consider an application of Eq. 3.14 to a two-neutrino mixing scenario:

(
νe
νµ

)
=

(
Ue1 Ue2
Uµ1 Uµ2

)(
ν1

ν2

)
. (3.16)
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The unitary mixing matrix in this case takes the form:

U =

(
cos θ sin θ
− sin θ cos θ

)
. (3.17)

If we start with a beam of pure νµ, the probability of detecting νe appearance at a

distance L can be derived from the general expression in Eq. 3.13 and is shown to

be

Pµe ≡ Pνµ→νe = sin2 2θ sin2

(
1.27

L(km)

E(GeV)
∆m2(eV2)

)
(3.18)

where ~ and c have been re-introduced:

∆m2L

4E
=

∆m2c4L

4E~c
= 1.27

L(km)

E(GeV)
∆m2(eV2) = 1.27

L(m)

E(MeV)
∆m2(eV2). (3.19)

The probability of detecting νµ at a distance L (survival or disappearance prob-

ability) is

Pµµ ≡ Pνµ→νµ = 1− sin2 2θ sin2

(
1.27

L(km)

E(GeV)
∆m2(eV2)

)
. (3.20)

It is trivial to see from Eq. 3.18 and Eq. 3.20 that

Pµµ + Pµe = 1,
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Figure 3.1: Oscillation probabilities for two neutrino scenario with ∆m2 = 2.5×
10−3 eV2 and θ = 45◦ parameter values.

which means that the total neutrino flux is conserved.

The oscillation probabilities in Eq. 3.18 and Eq. 3.20 are plotted in Fig. 3.1 for

∆m2 = 2.5 × 10−3 eV2 and θ = 45◦ oscillation parameters. Fig. 3.1a shows the

appearance and disappearance probabilities as a function of a detector distance L

for a neutrino energy E = 0.6 GeV while Fig. 3.1a displays them as a function of a

neutrino energy for a baseline length of L = 295 km. The first oscillation maximum

for Pµe (minimum for Pµµ) occurs when the ratio of L/E is such that

L

E
' 1

1.27∆m2

π

2
. (3.21)

To maximize the sensitivity for measuring neutrino oscillations for a given baseline,

the energy of a neutrino beam is optimized so that the condition in Eq. 3.21 is met.
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Conversely if the energy cannot be controlled (e.g., reactor neutrinos), the distance

to the detector is set such that Eq. 3.21 is still satisfied.

3.1.2 Three neutrino mixing

In the case of the mixing between three neutrino flavours e, µ, and τ

νeνµ
ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1

ν2

ν3

 , (3.22)

the mixing matrix is parametrized in terms of four parameters: three mixing angles

θ12, θ13, and θ23 and a CP violating phase δ.

U =

 c12 s12 0
−s12 c12 0

0 0 1

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

1 0 0
0 c23 s23

0 −s23 c23


=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (3.23)

where cij ≡ cos θij and sij ≡ sin θij.

Unlike the case of the two neutrinos, the oscillatory behaviour is more com-

plicated for the three neutrino mixing, since there are now three mixing angles

involved as well as two mass differences ∆m2
21 and ∆m2

32 that set distinct oscil-

lation frequencies. Fortunately, the mass splittings differ by almost two orders of
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magnitude:

∆m2
21

∆m2
32

' 0.03 (3.24)

Under certain circumstances, this often makes it possible to considerably simplify

the description of the three flavour neutrino oscillations.

3.1.3 Probability for electron neutrino disappearance

The simplest expression for Pαβ in the three flavour formalism is for the νe → νe

survival probability Pee, which is given by (see Appendix A)

Pee = 1− c4
13 sin2 2θ12 sin2 ∆21 − sin2 2θ13(c2

12 sin2 ∆31 + s2
12 sin2 ∆32), (3.25)

where ∆ji stands for

∆ji =
∆m2

jiL

4E
(3.26)

The fact that Pee is independent of the CP phase δ implies the disappearance

probability for anti-electron neutrinos is expected to be the same as for electron

neutrinos.

Fig. 3.2 shows the plot of Eq. 3.25 for a 5 MeV neutrino energy using the

parameter values from the global three flavour fit reported in [34]. The two distinct

oscillation frequencies can be clearly seen as the total oscillation probability (solid
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Figure 3.2: Electron neutrino disappearance probability in the three neutrino
oscillation scenario for a 5 MeV neutrino beam energy. The values of the parameters
(taken from [34]): ∆m2

21 = 7.59 × 10−5 eV2, ∆m2
31 = 2.50 × 10−3 eV2, sin2 2θ12 =

0.86, and sin2 2θ13 = 0.05 (sin2 2θ13 = 0.0 for the dashed curve).

line) is the combination of the rapidly varying ∆m2
31 term modulated by the slowly

varying ∆m2
21 contribution (dashed line).

The value of the yet undetermined θ13 parameter is currently measured to be

small (sin2 2θ13 < 0.1) and is the subject of intense searches by both accelerator and

reactor based experiments. In case of the latter, θ13 can be measured (CHOOZ [35],

Double CHOOZ [36], RENO [37], and Daya Bay [38] experiments) by looking for

the disappearance of the reactor produced anti-electron neutrinos (whose energy

is on order of a few MeV) over a short baseline, where the ∆m2
31 term is still

dominant (see the insert in Fig. 3.2). In this case, the contribution of the ∆m2
21
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can be neglected and Pee is approximately

Pee ' 1− sin2 2θ13 sin2 ∆31, (3.27)

where ∆m2
31 ' ∆m2

32 was used.

For longer distances, Pee is governed by the sin2 ∆21 term in Eq. 3.25:

Pee ' 1− sin2 2θ12 sin2 ∆21. (3.28)

Measurement of the disappearance of the reactor anti-electron neutrinos over the

distance of ∼ 100km (KamLAND experiment [39]) gives access to the ∆m2
21 and

θ12 parameters.

Fig. 3.3 shows the ratio of observed to expected ν̄e flux for various reactor

experiments. The clear deficit of ν̄e events at a distance of ∼ 100 km is due to the

oscillations driven by ∆m2
21 (Eq. 3.28).
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3.1.4 Probability for muon neutrino disappearance

The survival probability for muon neutrinos Pµµ can be expressed (see Appendix A)

as

Pµµ = 1− 4|Uµ3|2(|Uµ1|2 sin2 ∆31 + |Uµ2|2 sin2 ∆32)− P µµ
sol ,

(3.29)

where

P µµ
sol = 4|Uµ1|2|Uµ2|2 sin2 ∆21. (3.30)

Eq. 3.29 is invariant under CP transformation, i.e., Pµµ = Pµ̄µ̄.

Normally the νµ disappearance is measured at the first minimum of Pµµ, where

the deficit of muon neutrinos is maximal. At this distance the contribution of Psol

is negligibly small and can be ignored. In addition, the difference between ∆m2
32

and ∆m2
31 cannot be resolved and Eq. 3.29 can be further simplified to

Pµµ = 1− 4|Uµ3|2(1− |Uµ3|2) sin2 ∆32

= 1− c4
13 sin2 2θ23 sin2 ∆32 − s2

23 sin2 2θ13 sin2 ∆32.

(3.31)

Fig 3.4 shows the plot of muon neutrino survival probability as a function of

the detector distance for neutrino energy E = 0.6 GeV. Both the full expression in

Eq. 3.29 and the approximation in Eq. 3.31 are displayed. The fact that the two
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probabilities virtually overlap for the first few minima justifies the approximation

in Eq. 3.31.

3.1.5 Probability for electron neutrino appearance

The electron neutrino appearance probability can be expressed for neutrinos (see

Appendix A) as

Pµe ' P µe
atm + P µe

sol + 2
√
P µe

sol

√
P µe

atm cos (∆32 + δ) (3.32)
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and for anti-neutrinos as

Pµ̄ē ' P µe
atm + P µe

sol + 2
√
P µe

sol

√
P µe

atm cos (∆32 − δ) (3.33)

where, following [41], the
√
P µe

sol and
√
P µe

atm terms are defined as

√
P µe

atm = s23 sin 2θ13 sin ∆31, (3.34)

and √
P µe

sol = c13c23 sin 2θ12 sin ∆21. (3.35)

This gives a simple interpretation that Pµe is composed of two oscillation proba-

bilities Patm and Psol (driven by ∆m2
31 and ∆m2

21) and an interference term. This is

illustrated in Fig. 3.5a where the total probability in Eq. 3.32 as well as the contri-

butions from Patm and Psol are plotted for E = 0.6 GeV. The appearance probability

at the first oscillation maximum (at around 300 km for the 0.6 GeV neutrinos) is

dominated by the contribution from Patm and consequently determined by the value

of θ13.

The νe appearance probability also depends on the CP phase δ, which affects it

through the interference term. As shown in Fig. 3.5b, even at the first oscillation

maximum the value of δ can have a significant effect.
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There are two possible strategies of determining the value of δ. One is to measure

the difference ∆CP = |Pµe − Pµ̄ē|:

∆CP = 4
√
Patm

√
Psol sin ∆32 sin δ. (3.36)

The other approach is to explore differences between the first and second oscillation

maximum (see Fig. 3.5b).

Measuring CP violation requires that all of the three mixing angle are non-zero.

This is evident from the fact that the product of
√
P µe

sol

√
P µe

atm multiplying the CP

violating term in Eq. 3.32 is

√
P µe

sol

√
P µe

atm ∝ sin θ12 sin θ23 sin θ13, (3.37)
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which further highlights the importance of determining the value of θ13.

3.2 Neutrino mixing in matter

The probabilities shown in the previous sections were obtained assuming neutrinos

propagate in vacuum. The mixing behaviour, however, is modified in matter as

neutrinos can coherently scatter (the momentum of the outgoing neutrino is un-

changed) from the surrounding particle. This was first demonstrated by Wolfenstein

in [42].

Neutrinos of all three flavours can interact with neutrons, protons, and electrons

in matter via the exchange of a Z0 boson (Fig. 3.6a). As was mentioned already,

such type of processes are called neutral current (NC) interactions. In the case

of electron neutrinos, a charge current (CC) coherent scattering from the matter

electrons involving W± exchange is also possible (Fig. 3.6b).

Both NC and CC processes introduce additional terms in the Hamiltonian de-

scribing the evolution of the neutrino states that affect the neutrino wave function

and change oscillation probabilities. Some of the principle features of the matter

effect on neutrino oscillations can be illustrated in the two-neutrino framework,

which will be considered next. The detailed discussion of the matter effect in the

case of the three flavour oscillations is, however, beyond the scope of this work and

can be found in the relevant literature (for example, [43] [44]).
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Figure 3.6: Scattering of neutrinos in matter.

For the case of two-neutrino mixing, the oscillation probabilities are given by

(see Appendix B.1)

Pµe = sin2 2θM sin2

(
1.27

L(km)

E(GeV)
∆m2

M(eV2)

)
, (3.38)

and

Pµµ = 1− sin2 2θM sin2

(
1.27

L(km)

E(GeV)
∆m2

M(eV2)

)
, (3.39)

where θM and ∆m2
M are related to the vacuum parameters θ and ∆m2 according

to

∆m2
M = ∆m2

√
sin2 2θ + (cos 2θ − a/∆m2)2, (3.40)

sin 2θM =
sin 2θ√

sin2 2θ + (cos 2θ − a/∆m2)2
. (3.41)

The “matter” parameter a depends on the Fermi constant GF that sets the coupling
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strength of the interactions, the matter electron density ne, and the neutrino energy

a = 2
√

2GFneE = 7.5× 10−5ρ(g/cm3)E(GeV) (eV)2, (3.42)

where ρ is the density of the medium.

The interesting consequence of the matter interactions for the neutrino oscilla-

tions is the possibility, first noted by S. Mikheyev and A. Smirnov [45], of a resonant

amplification of the flavour conversion. This effect can be achieved when a neutrino

energy is such that

∆m2 cos 2θ = 2
√

2GFneE. (3.43)

The mixing between the two neutrino states then becomes maximal (θM = π/4).

Thus even a small vacuum mixing angle θ can result in large flavour conversions.

Alternatively, the resonance condition in Eq. 3.43 can be satisfied for a given

neutrino energy by having the “right” electron density ncrit
e :

ncrit
e =

∆m2 cos 2θ

2
√

2GFE
. (3.44)

This is of particular importance for the neutrinos propagating through the sun’s

interior. Since the sun has a variable density, it is possible for the neutrinos to go

through a layer where the condition in Eq. 3.44 is met. This would give rise to a
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large flavour conversion of the electron neutrinos to other flavours. Consequently

the MSW effect, as it is now called after Mikheyev, Smirnov, and Wolfenstein,

became an attractive explanation of the solar neutrino problem.

3.2.1 Matter effects in accelerator neutrino beamlines

For accelerator-based neutrino beams, the matter density is approximately constant

and the relevant oscillation probabilities are Pµµ and Pµe.

The survival probability, Pµµ, is approximately given by the following expression

[44]:

Pµµ = 1− sin2 2θ23 sin2 ∆ + αc2
12 sin2 2θ23∆ sin 2∆

− α2 sin2 2θ12c
2
23

sin2A∆

A2
− α2c4

12 sin2 2θ23∆2 cos 2∆− 4s2
13s

2
23

sin2 (A− 1)∆

(A− 1)2

+
1

2A
α2 sin2 2θ12 sin2 2θ23

(
sin ∆

sinA∆

A
cos (A− 1)∆− ∆

2
sin 2∆

)
− 2

A− 1
s2

13 sin2 2θ23

(
sin ∆ cosA∆

sin (A− 1)∆

(A− 1)
− A

2
∆ sin 2∆

)
− 2αs13 sin 2θ12 sin 2θ23 cos δ

sinA∆

A

sin (A− 1)∆

(A− 1)

+
2

A− 1
αs13 sin 2θ12 sin 2θ23 cos 2θ23 cos δ sin ∆

(
A sin ∆− sinA∆

A
cos (A− 1)∆

)
,

(3.45)
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Figure 3.7: Muon neutrino survival probability as a function of the neutrino
energy with and without matter effects for a baseline of 295 km. The values of the
parameters (taken from [34]): ∆m2

21 = 7.59 × 10−5 eV2, ∆m2
31 = 2.50 × 10−3 eV2,

sin2 2θ12 = 0.86, sin2 2θ23 = 0.998, and sin2 2θ13 = 0.05. The Earth matter density
is taken to be 3.2 g/cm3 as in [46].

where

∆ =
∆m2

31L

4E
, A =

a

∆m2
31

, α =
∆m2

21

∆m2
31

. (3.46)

Although Eq. 3.45 is quite complex, Eq. 3.31 is still a good approximation. This

is illustrated in Fig. 3.7 where both expressions plotted for a 295 km baseline look

very similar.
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The appearance probability can be approximately written [47] as

Pµe = 4c2
13s

2
13s

2
23 sin2 ∆m2

31L

4E

(
1 +

2a

∆m2
31

(1− 2s2
13)

)
+ 8c2

13s12s13s23(c12c23 cos δ − s12s13s23) cos
∆m2

32L

4E
sin

∆m2
31L

4E
sin

∆m2
21L

4E

− 8c2
13s

2
13s

2
23 cos

∆m2
32L

4E
sin

∆m2
31L

4E

aL

4E
(1− 2s2

13)

− 8c2
13c12c23s12s13s23 sin δ sin

∆m2
32L

4E
sin

∆m2
31L

4E
sin

∆m2
21L

4E

+ 4s2
12c

2
13(c2

12c
2
23 + s2

12s
2
13s

2
23 − 2c12c23s12s13s23 cos δ) sin2 ∆m2

21L

4E
.

(3.47)

After setting a = 0 and dropping the terms on the order of O(sin(2θ13) sin ∆21),

Eq. 3.47 becomes equivalent to Eq. 3.32.

Fig. 3.8 shows the plot of Pµe with and without the matter effects included for

a 295 km baseline and matter density of 3.2 g/cm3. The fractional difference in the

probabilities integrated between 0.3 and 3.3 GeV is ∼ 8%.

3.3 Summary of the mixing parameters

3.3.1 Solar parameters: θ12 and ∆m2
21

The measurements of θ12 and ∆m2
21 parameters come from the analysis of the solar

neutrino data from Super-Kamiokande and SNO experiments. The KamLAND

experiment, which looked for the disappearance of the reactor produced ν̄e [39],
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Figure 3.8: Electron neutrino appearance probability as a function of the neutrino
energy with and without matter effects for a baseline of 295 km. The values of the
parameters (taken from [34]): ∆m2

21 = 7.59 × 10−5 eV2, ∆m2
31 = 2.50 × 10−3 eV2,

sin2 2θ12 = 0.86, sin2 2θ23 = 0.998, and sin2 2θ13 = 0.05. The Earth matter density
is taken to be 3.2 g/cm3 as in [46].

provides a precise measurement of ∆m2
21 that places a strong constraint on the

solar parameters (θ12, ∆m2
21).

Fig. 3.9 shows the results of three flavour analysis [48] of the solar and Kam-

LAND data. The combined fit to these data determines the values of the solar

parameter to be:

tan2 θ12 = 0.468+0.042
−0.033 (3.48a)

∆m2
21 = (7.59± 0.21)× 10−5 eV2 (3.48b)

The fact that the solar mixing angle is measured to be θ12 = tan−1
√

0.468 ' 34◦
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Figure 3.9: Three flavour analysis of solar and KamLAND data from [48]. The
results of the analysis of the combined data sets are shown in colour.

implies that ∆m2
21 > 0. This is a consequence of the MSW resonance condition

Eq. 3.43 requiring ∆m2 > 0 if cos 2θ > 0.

3.3.2 Atmospheric parameters: θ23 and ∆m2
32

The measurements of θ23 and |∆m2
32| come from the analysis of the Super-Kamiokande

atmospheric neutrino data and the data from the accelerator-based experiments

K2K and MINOS. The values for the atmospheric parameters obtained from each

experiment are listed in Table 3.1. The recent results from T2K, the experiment

on which this work is based, are also included.

The results in Table 3.1 indicate that θ23 is around π/4. It is not known,

however, in which octant plane this angle lies (if θ23 is not exactly π/4).
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Best fit Allowed Allowed
|∆m2

32| × 10−3 eV2 |∆m2
32| × 10−3 eV2 sin2 2θ23

SK Atm (L/E) [49] 2.4 1.9 – 3.0 > 0.90

SK Atm (Zenith) [50] 2.1 1.5 – 3.4 > 0.92

K2K [2] 2.8 1.9 – 3.5 > 0.60

MINOS [3] 2.32 2.24 – 2.44 > 0.90

T2K [51] 2.65 2.2 – 3.1 > 0.84

Table 3.1: Measurements of θ23 and |∆m2
32| from different experiments. All of the

allowed intervals are quoted at 90% C.L. except for the MINOS measurement of
|∆m2

32|, which is quoted at 68% C.L.

3.3.3 Limits on the value of θ13

The value of the last mixing angle θ13 is not known. Only limits, listed in Table 3.2,

have been placed by various experiments. The main goal of the T2K experiment,

described next, is to determine the value of θ13.

CHOOZ [35] sin2 2θ13 < 0.1 (90% C.L.)

SK Atm [52] sin2 θ13 < 0.14 (90% C.L.)

MINOS [53] 2 sin2 θ23 sin2 2θ13 < 0.12 (90% C.L.)

Double CHOOZ [54] 0.017 < sin2 2θ13 < 0.16 (90% C.L.)

T2K [46] 0.03 < sin2 2θ13 < 0.28 (90% C.L.)

Table 3.2: Limits on θ13 (for ∆m2
32 > 0).
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4 T2K Experiment

4.1 Introduction

The T2K (Tokai to Kamioka) experiment [33] is a long baseline neutrino oscilla-

tion experiment. An intense νµ neutrino beam is produced at the Japan Proton

Accelerator Research Complex (J-PARC) in Tokai on the east coast of Japan. The

beam then travels through the Earth and is detected at the Super-Kamiokande

(SK) detector in Kamioka.

The main goal of the experiment is to observe electron neutrino appearance

in the muon neutrino beam leading to the measurement of θ13, the last unknown

neutrino mixing angle. In addition, T2K aims to determine ∆m2
32 and θ23 oscillation

parameters with the precision of δ(∆m2
32) ∼ 10−4 eV2 and δ(sin2 2θ23) ∼ 0.01 from

the disappearance of the beam νµ, which will lead to a significant improvement in

the current knowledge of the atmospheric parameters (cf. Table 3.1). This is the

expected sensitivity of the experiment after 130 days of running with 0.75 MW

proton beam power.
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SKND280 & INGRID

Figure 4.1: A conceptual overview of the T2K neutrino beamline.

The neutrino beam at J-PARC (see Fig. 4.1) is generated by 30 GeV protons

striking a graphite target. The hadronic interactions of the beam proton with the

nucleons in the target result in the production of many secondary particles, the

majority of which are light mesons called pions with some admixture of the heavier

K mesons. After being focused by magnetic horns, these short-lived mesons are

allowed to decay freely inside a roughly 100 m long helium filled tunnel (decay

volume) producing neutrinos. A beam dump placed at the end of the decay volume

absorbs the particles that have not decayed and the low energy muons which are

generated along with neutrinos in the pion or kaon decays. The high energy muons

(with energies above 5 GeV) that pass through the beam dump are detected with

a muon monitor (MUMON), allowing an indirect monitoring of the neutrino beam

direction and intensity.

The neutrino beam properties are measured by the INGRID and ND280 de-

tectors located approximately 280 m from the target. The INGRID detector, po-

sitioned on the axis defined by the proton beam direction (“on-axis”), measures

the direction of the neutrino beam and monitors its stability. The ND280 detector
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intercepts neutrinos at ∼ 2− 2.5◦ relative to the proton beam direction (“off-axis”

angle) and measures the initial (prior to any significant oscillations having taken

place) neutrino beam composition, energy spectrum, and interaction rates (cross-

sections). The SK detector is positioned at an off-axis angle of 2.5◦ and 295 km

away from J-PARC and studies changes in the ν beam properties after oscillations.

4.2 Off-axis neutrino beam

T2K is the first experiment to make use of an off-axis neutrino beam, a technique

first proposed by Beavis et al. [55], to produce a neutrino beam with a small energy

spread (narrow band beam).

For a two body decay of a meson (pion or kaon) with a rest mass M , energy

E, and momentum p into a neutrino and a muon with rest mass mµ, the neutrino

energy is

Eν =
M2 −m2

µ

2(E − p cos θ)
, (4.1)

where the tiny neutrino mass is neglected and θ is the angle between the direction

of the meson and the neutrino daughter, as shown in Fig. 4.2.

Fig. 4.3 shows Eν for various values of θ as a function of the pion parent mo-

mentum pπ. For θ = 0, the energy of the neutrino is proportional to the pion

momentum. As pions are produced by energetic protons, they have a wide energy
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Figure 4.2: Two-body meson decay into a neutrino and a muon. The off-axis
angle is the angle θ between the direction of the parent meson and the neutrino
daughter.
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Figure 4.3: Neutrino energy as a function of pion parent momentum for different
values of off-axis angle.

distribution. A neutrino detector placed on the axis would therefore observe neu-

trinos with a broad energy distribution (wide band beam). This is not the case,

as Fig. 4.3 illustrates, for detectors placed at some off-axis angle. In this case the

neutrino energy is nearly independent of the pion momentum (for pπ > 2 GeV/c),

allowing the production of a narrow-band neutrino beam.

The peak energy of the beam Eν can be fine-tuned by changing the off-axis
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angle to match the maximum of the oscillation probability for a given length of a

baseline. This is illustrated in Fig. 4.4 where the top figure shows the νµ survival

probability (Eq. 3.31) for the T2K baseline of 295 km while the bottom figure shows

the un-oscillated expected T2K muon neutrino flux at the SK detector placed at

different off-axis angles. With the values of ∆m2
32 between (2.2− 2.8)× 10−3 eV2,

the maximum oscillation signal is expected to lie within 0.5− 0.7 GeV, giving 2.5◦

as a suitable value for the off-axis angle.
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Figure 4.4: The top plots shows the νµ survival probability for L = 295 km and
∆m2

32 = 2.5× 10−3 eV2. The bottom plot shows νµ flux (in arbitrary units) for SK
placed at different off-axis angles.
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The narrow band neutrino beam is particularly important for measuring the

electron neutrino appearance. As the signal is expected to be small, it is crucial to

maximize the neutrino flux while minimizing the possible sources of backgrounds. In

a wide-band beam the majority of neutrinos would not contribute to the oscillation

signal, but rather act as a significant source of background.

4.3 Japan Proton Accelerator Complex

J-PARC is a recently built accelerator facility intended to deliver a high intensity

proton beam to a variety of experiments. The accelerator complex consists of the

linear accelerator (LINAC), the rapid-cycling synchrotron (RCS), and the main

ring (MR) 30 GeV synchrotron. Table 4.1 lists some of the design parameters for

the three accelerators.

LINAC RCS MR

Beam particles H− p p
Extraction energy (GeV) 0.4 3 30

LINAC peak current (mA) 50 – –

Particle per pulse – 8.3× 1013 3.3× 1014

Design beam power (MW) – 1.0 0.75

Harmonic number – 2 9
Repetition rate (Hz) 50 25 ∼0.3

Ring circumference (m) – 348.333 1567.5

Extraction scheme – fast fast and slow

Table 4.1: Design parameters of J-PARC accelerators.

The proton beam production starts with H− ions accelerated by the LINAC to
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181 MeV. Prior to injection to the RCS, the ion beam is bunched and passed through

a charge-stripping foil, converting it to a proton beam. The RCS accelerates two

protons bunches per cycle to 3 GeV and the bunches are fast extracted (all bunches

are extracted at once) to the MR or the Material and Life Science Experimental

Facility (MLF). In case of the MR extraction, 8 out of 9 bunches are populated in

four RCS cycles and then accelerated to 30 GeV. The ninth bunch is left empty to

accommodate the rise-time of the MR extraction “kicker” magnet. Given the MR

circumference of 1567.5 m and the harmonic number of 9 (number of bunches), the

time interval between the bunches at the time of extraction (after acceleration to

30 GeV) is

∆t =
1567.5

9

1

βc
' 581 ns. (4.2)

The protons from the MR are delivered to the neutrino experiment and to a variety

of other nuclear and particle physics experiments.

4.4 Neutrino beamline

The proton beam from the MR is fast extracted into the T2K neutrino beamline

shown in Fig. 4.5. Each proton pulse (spill) consists of eight bunches separated by

581 nsec, as illustrated in Fig 4.6. The spills occur every 3.02 sec. To increase the

delivered beam power, however, the spill frequency will be decreased in the future
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to 2.2 sec.

Figure 4.5: Overview of the T2K neutrino beamline (taken from [33]).

~60 nsec

581 nsec

1 spill = 8 bunches

1/f = 3.02 sec → 2.2 sec

next spill
...

Figure 4.6: Structure of the T2K proton beam.

The neutrino beamline is composed of two sections called the primary and the

secondary beamlines. In the primary beamline, the extracted proton beam is bent

to point towards the SK detector and guided to the target. The target and all of

the components downstream of it are part of the secondary beamline. The design

of the neutrino beamline is flexible enough to allow for changing the off-axis angle

from 2.5◦ down to 2.0◦.
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4.4.1 Primary proton beamline

The primary beamline consists of three sections (Fig. 4.5): the preparation section

(54 m long), the arc section (147 m long), and the final focusing section (37 m long).

The main function of the preparation section is to tune the extracted beam to match

the acceptance requirements of the arc section. The beam is then bent in the arc

section by 80.7◦ to point towards the SK detector using superconducting combined

function magnets (perform both focusing and bending of the proton beam). After

the arc section, the beam is bent downwards and further focused to fit on the target

in the final focusing section.

4.4.1.1 Proton beam angle for off-axis neutrino beam

The downward angle of the proton beam θbeam
y set in the final focusing section

determines the off-axis angle. To illustrate this, we begin by introducing a right-

handed coordinate system where the horizontal Z axis is defined in such way that

the proton beam direction is given by

nbeam
x = 0

nbeam
y = sin θbeam

y

nbeam
z = cos θbeam

y .

(4.3)
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The SK detector is located relative to the Z axis at an angle θSK
x = 0.795◦ in XZ

and θSK
y = 1.26◦ in the YZ plane. The directional cosines for the vector pointing

towards the detector are

nSK
x = nz tan θSK

x

nSK
y = nz tan θSK

y

nSK
z = (1 + tan2 θSK

x + tan2 θSK
y )−1/2

(4.4)

The off-axis angle is found from

θOA = cos−1 (nbeam · nSK) = cos−1

sin θbeam
y tan θSK

y + cos θbeam
y√

1 + tan2 θSK
x + tan2 θSK

y

 (4.5)

In order to obtain the off-axis angle of 2.5◦ for the SK location, the proton beam

angle is set to θbeam
y = 3.637◦.

4.4.1.2 Proton beam monitors

The quality of the proton beam must be precisely controlled throughout the pri-

mary beamline as the stability of the off-axis neutrino beam directly follows from

the stability of the proton beam. A well tuned beam is also necessary for high

power operation, since beam losses, accumulated or from accidental mis-steering,

can lead to activation and damage of the beamline equipment. The intensity, posi-
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tion, profile, and beam loss are accurately measured throughout the beamline by 5

current transform monitors (CTs), 21 electrostatic monitors (ESMs), 19 segmented

secondary emission monitors (SSEMs), and 50 beam loss monitors (BLMs), respec-

tively. The response of CTs, ESMs, and SSEMs is fast enough to resolve individual

bunches.

The CT monitor, shown schematically in Fig. 4.7a, consists of a 50-turn coil

wound toroidally around a ferromagnetic core. The passing proton beam induces

a current in the coil, resulting in a measurable signal proportional to the beam

intensity. The absolute intensity can be measured with 2% uncertainty and the

relative intensity with 0.5%. CTs also measure the beam timing to 10 nsec precision.

The beam position is measured with ESMs (Fig. 4.7b) and SSEMs (Fig. 4.7c)

with the latter also measuring the profile. The ESMs are non-destructive monitors

that determine the beam position from the top-bottom and left-right asymmetry

in the currents induced on four electrodes. The measurement precision is better

than 0.45 mm where the dominant contributions to the error come from systematic

and alignment uncertainties (0.2 mm for systematic uncerainty and 0.1-0.4 mm for

alignment precision).

The SSEMs operate destructively (i.e., the beam interacts with the monitor).

Two 5 µm thick Ti foils, one with vertical and one with horizontal sets of strips,

are inserted in the path of the beam. When hit by the protons, a given strip emits
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Figure 4.7: Schematic views of the T2K beamline monitors.

electrons proportional to the number of protons going through it. The electrons

are drifted in the electric field to an anode plane generating a measurable current

from each strip. SSEMs measure the beam width with 0.20 mm precision while the

systematic uncertainty in the position measurements is 0.45 mm. The interactions

of the protons with the SSEM foils cause some beam losses (around 0.005%). The

monitors are therefore only used for the beam orbit tuning and are retracted during

continuous operation.

The BLMs are proportional counters filled with an Ar-CO2 gas mixture. The

ionization signal is integrated during each spill. If it exceeds a threshold, a beam

interlock signal is issued and the extraction to the neutrino beamline is aborted.
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4.4.2 Secondary beamline

The primary beamline is connected to the secondary beamline through a beam

window, which consists of two Ti-alloy 0.3 mm think shells. The window separates

the vacuum of the proton transport pipe from the helium environment of the target

station in the secondary beamline.

The secondary beamline, shown in Fig. 4.8, can be described in terms of three

sections: the target station, the decay volume, and the beam dump. The target

station and decay volume are contained in a single vessel with a volume of ∼

1500 m3, which is filled with He gas at 1 atm. The helium gas was chosen in order

to reduce the pion absorption and minimize NOx and tritium production.

Figure 4.8: Overview of the T2K secondary beamline.
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The main components in the target station are the baffle (beam collimator),

target, and three horns. The baffle and the horns are suspended from support

structures inside the He vessel. The target is positioned inside the first horn, as

illustrated in Fig. 4.9. Attached to the front of the first horn is an Optical Transition

Radiation (OTR) proton beam monitor, which will be described in detail in the

next chapter.

4.4.2.1 Baffle

The proton beam entering the helium vessel via the beam window first passes

through the baffle. Its function is to protect the downstream horn from an acci-

dentally de-focused or mis-steered proton beam. It consists of a 1.7 m long, 0.3 m

wide, and 0.4 m high graphite block with a 30 mm diameter hole for the beam.

The baffle is cooled by water cooling pipes embedded in the graphite.

4.4.2.2 Target and horns

After the baffle, the beam goes through the OTR monitor and then strikes the

target. The core of the target is a 26 mm diameter, 91.4 cm long graphite rod.

It is surrounded by a 2 mm thick cylindrical shell also made out of graphite. The

entire assembly sits inside a Ti case that is 0.3 mm thick. The target is cooled by

He gas forced to flow through the gap between the core and the shell and between
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the shell and the case.

Figure 4.9: Cross-section of the first horn and target.

Each horn consists of an inner and outer conductor, two cylindrically symmetric

shells (see Fig. 4.9), made from an aluminum alloy. With each proton beam spill

the horns are pulsed with 320 kA (250 kA have been used for the operation up to

now), creating a toroidal magnetic field in the volume between the inner and outer

conductors whose strength ideally is given by

B =
µ0I

2πr
= 0.2

I (kA)

r (mm)
, (4.6)

where µ0 is the magnetic permeability, I is the current, and r is the distance from

the horn axis. At r = 30 mm (the approximate radial position of the outer surface

of the first horn inner conductor), the field applied by the 320 kA current is ∼ 2.1

T.
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Neutrino 
detector

Horn in cross-sectional
view

Figure 4.10: Illustration of magnetic horns focusing positive pions and de-focusing
negative ones. This configuration results in a beam of neutrinos. To obtain the
anti-neutrino beam, the current flow in the horn is reversed and the negative pions
are focused instead.

Depending on the direction of the current flow through the inner and outer

conductors, either positive or negative particles (pions and kaons) are focused re-

sulting in either a neutrino (the T2K current configuration) or an anti-neutrino

beam, respectively. This is illustrated in Fig. 4.10.

Horn 1 Horn 2 Horn 3

Minimum inside diameter (mm) 54 80 140

Inner conductor thickness (mm) 3 3 3

Outside diameter (mm) 400 1000 1400

Length (m) 1.5 2 2.5

Table 4.2: Design parameters for the T2K horns.

The shape of the inner conductor, its length, and the diameter of the horn deter-

mine how long charged particles spend inside the magnetized region and therefore
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how much “kick” they get in the transverse direction. For the three T2K horns,

these parameters, in addition to the distances between the horns, have been opti-

mized in order to focus secondaries into a nearly parallel beam and maximize the

neutrino yield. Table 4.2 lists some of the design parameters for the three horns.

4.4.2.3 Decay volume and beam dump

From the target station the focused beam of secondaries enters the decay volume,

which is a ∼ 96 m long tunnel filled with He. The unstable pions and kaons decay,

producing predominantly muon neutrinos with some admixture of other flavours.

Muons, which accompany νµ (ν̄µ) production, can also decay to a positron (electron)

and two neutrinos, ν̄µ (νµ) and νe (ν̄e).

At the end of the decay volume, but still inside the helium vessel, is the beam

dump (hadron absorber). The dump is 4.69 m high, 3.174 m long, and 1.94 m

wide and its 75 ton core is made out of graphite. The cooling is done with two

aluminum cooling modules containing water channels which sandwich the core on

the sides. Placed downstream are seventeen iron plates (two inside the vessel and

fifteen outside) with the total thickness of 2.4 m. Only muons with energies of

greater than 5 GeV are able to penetrate the dump.
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4.4.2.4 Muon monitor

The energetic muons are detected by MUMON [56,57]. The detector uses arrays of

ionization chambers and Si PIN photo-diodes to register charged particles, which

according to simulations are 87% muons and 13% δ-rays (fast electrons). The arrays

cover 150× 150 cm2 area and provide a 2D profile of the particle distribution. The

mean of this distribution allows to determine the direction of the incoming muon

beam. Since muons are produced in unpolarized decays of high energy parents, the

muon beam direction follows that of the neutrino beam. Profile measurements at

MUMON therefore allow the determination of the neutrino beam direction.

Since the muon yield is sufficiently high, MUMON is also able to monitor the

stability of the neutrino beam direction on a spill-by-spill basis. The uncertainty

on the neutrino beam direction from the MUMON profile measurement is better

than 0.25 mrad while its stability can be monitored with a precision of better than

3%.

4.5 Near detectors

The goal of the near detectors is to measure the direction, energy, neutrino in-

teraction cross-sections, and composition of the neutrino beam prior to oscillation

effects.
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Short name Process Fraction for carbon (oxygen)

CCQE νl + n→ p+ l 40.6% (41.7%)

CCπ+ νl +N → N ′ + π+ + l 14.7% (14.2%)

CCπ0 νl +N → N ′ + π0 + l 3.7% (3.6%)

CC other νl +N → l +X 13.1% (12.6%)

NC elastic νl +N → νl +N 16.1% (16.5%)

NCπ± νl +N → N ′ + νl + π± 3.0% (2.8%)

NCπ0 νl +N → N ′ + νl + π0 4.5% (4.4%)

NC other νl +N → νl +X 4.4% (4.1%)

Table 4.3: Relative contributions of different neutrino interactions channels for
the T2K muon neutrinos interacting with carbon and oxygen nuclei. The results
are based on the NEUT neutrino interaction generator [58].

The best channel for neutrino energy measurement is the CC quasi-elastic scat-

tering (CCQE) process: νl + n→ p+ l. In this reaction the energy of the neutrino

can be reconstructed from the measurements of the outgoing lepton momentum pl

and angle θl according to

Erec
ν =

1

2

(m2
p −m2

l ) + 2(mn − V )El − (mn − V )2

(mn − V )− El + pl cos θl
, (4.7)

where V is the nuclear potential energy required to knock a nucleon out of a nucleus

and mn, mp, and ml are the masses of the neutron, proton, and produced leptons,

respectively.

The CCQE processes comprise about 41% of possible neutrino interactions at

T2K. Table 4.3 gives a summary of various neutrino interaction channels and their

relative contributions for the T2K neutrino beam.
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4.5.1 INGRID detector

The INGRID (Interactive Neutrino GRID) detector is positioned on-axis and covers

an area of 10×10 m2. Its primary functions are to measure the profile and direction

of the neutrino beam and to monitor daily the stability of the neutrino beam

intensity.

The detector, shown in Fig. 4.11a, consists of 16 identical modules weighing

7.1 tonnes each. The module, shown in Fig. 4.11b, is a sandwiched structure of

9 iron plates (124 × 124 × 6.5 cm3) that provide the target mass for the neutrino

interactions and 11 scintillator tracking planes. Surrounding each module are four

scintillator planes used to veto particles entering the detector from the outside.

(a) INGRID detector (b) INGRID module

Figure 4.11: INGRID detector. On the left is the front view of the detector
(neutrino beam is into the page). On the right an expanded view of a single
INGRID module is shown.

A neutrino event display typical of a νµ CC type reaction that results in a muon
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Figure 4.12: Neutrino CC νµ event in INGRID.

is shown in Fig. 4.12.

4.5.2 ND280 detector

The ND280 detector is located off-axis and is intended to measure the neutrino flux

composition, energy spectrum, and rates for various neutrino interaction channels.

In order to perform charge identification and momentum measurement, the

detector is magnetized with the refurbished magnet from the NOMAD experi-

ment [59]. The magnet provides a 0.2 T dipole field in the horizontal direction

perpendicular to the beam (along the negative X axis in Fig. 4.13).

ND280 is a collection of a number of different sub-detector systems. At the most

upstream end is the Pi-Zero Detector (PØD). Its primary function is to measure the

cross-section for the NCπ0 (ν +N → ν +N + π0) neutrino interactions on a water

target. These type of processes constitute a major background for νe detection at

SK due to the possibility of the mis-identification of two photons from π0 decay as
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Figure 4.13: An expanded view of the ND280 detector. In this picture the neu-
trino beam enters the detector from the left along the Z axis.

an electron. The detector consists of scintillator tracking planes interleaved with

lead foils and water planes.

There are three Time Projection Chambers (TPCs). They are used to determine

a particle momentum from the curvature of the track it leaves in the detectors. In

addition, the amount of ionization left by the particle allows to establish its identity

(particle identification or PID). The detectors use an argon-based gas mixture,

Ar:CF4:iC4H10 (95:3:2). The ionization electrons drift under the influence of an

electric field away from a cathode plane at the centre of the of each TPC to the

left or right side of the chamber and are sampled with bulk mircromegas [60].

Arrival time combined with the pattern of the ionization charge deposition on the

micromega pads allows to reconstruct a 3D track trajectory.

67



Figure 4.14: Neutrino CC νµ event in ND280 originating PØD and producing an
energetic muon track that travels through the first TPC, first FGD, and the second
TPC.

Two Fine Grained Detectors (FGDs) are placed between the three TPCs. The

primary goal of the FGDs is to select a clean sample of CCQE type of events for

the measurement of the neutrino energy spectrum. The detectors consist of finely

segmented scintillator bars (doped polystyrene), which provide the target mass

for the neutrino interactions while also allowing tracking charged particles coming

from the interaction vertices. The downstream FGD has water layers in addition

to scintillator to allow comparison of the neutrino interaction rates in water with

those in carbon.

Surrounding the PØD, TPCs, and FGDs are electro-magnetic calorimeters (ECALs).
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They serve to contain γ rays that did not convert to electrons, to reconstruct electro-

magnetic showers, and to provide identification for electron-muon-pion separation.

Finally, the yoke of the magnet is instrumented with scintillator counters. These

are part of the Side Muon Range Detector (SMRD) sub-system. The SMRD is

used to detect muons escaping the inner detectors at high angles and to measure

their momentum. Additionally it provides triggering for cosmic rays that enter the

detector.

An event display of a CC interaction of a beam neutrino is shown in Fig. 4.14.

The interaction occurs in the PØD. The resulting energetic muon travels through

the first TPC, first FGD, and the second TPC before exiting.

4.6 The far detector

Super-Kamiokande [61] is the far detector in the T2K experiment and, due to its

size and scientific output, is one of the more famous neutrino detectors in the world.

It sits 295 km west of J-PARC and 1 km underground in the Kamioka mine. The

construction of SK began in 1991 and the first data was taken in April, 1996. Since

then, there have been four running periods: SK-I, SK-II, SK-III, and SK-IV with

the latter still in progress. Over this time the detector has been used to measure

the flavour oscillation of the solar, atmospheric, and accelerator neutrinos, resulting

in a number of important contributions to the physics of neutrinos.
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4.6.1 Overview of Super-Kamiokande

The detector, schematically shown in Fig. 4.15, consists of a large cylindrical cavity

filled with 50 ktonnes of pure water and instrumented with more than 13,000 photo

multiplier tubes (PMTs). The volume is subdivided by a cylindrical structure

into two regions called the inner detector (ID) and the outer detector (OD). The

structure also provides support for the PMTs as well as acts as an optical barrier

between the two detector volumes.

4
1

m

39m

Control room

Outer detector

Inner detector

PMTs

1
km

Detector hall

Figure 4.15: Overview of the SK detector. Image taken from [62].

The ID is instrumented with 11,129 inward facing 50 cm diameters PMTs

mounted on the inside walls of the support structure. Facing outward and mounted

on the other side of the structure are 1,885 20 cm diameter PMTs of the OD. To

compensate for the sparse PMT coverage in this region, the walls facing the OD

PMTs are covered with a reflective material.
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Light front

θ

Figure 4.16: Cherenkov radiation.

The detection of neutrinos at SK relies on the Cherenkov effect, a phenomenon

where a charged particle emits light when traveling faster than the speed of light

in the medium it traverses. The light, as illustrated in Fig. 4.16, is emitted in a

cone with half angle θ along the particle track. For the particles that stop inside

the detector volume, this results in a ring-like pattern of light on the walls of the

detector. The cosine of the emission angle is related to the index of refraction of

the medium n and the relativistic β = v/c where v is the velocity of the charged

particle:

cos θ =
1

nβ
. (4.8)

It follows from Eq. 4.8 that there is minimum value of β and consequently a thresh-

old energy below which a particle will not radiate:

βmin =
1

n
. (4.9)
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Neutrinos therefore are only “seen” when they interact with water, producing

charged particles with sufficiently high energies in the final state to emit Cherenkov

radiation.

The ideal detection channel is the CCQE reaction (νl + n → p + l) where the

charged lepton radiates Cherenkov light. It is also possible to determine the lepton

flavour, e or µ, from the shape of the ring pattern. As the heavy muons are less

susceptible to scattering than the light electrons, the ring patterns they produce

have sharp edges in contrast to the fuzzier electron rings. This is illustrated in

Figs. 4.17 and 4.18 which show the T2K νµ and νe event candidates, respectively.

The energy of the incoming neutrino and its direction are reconstructed from

the charge deposition and charge arrival timing collected from the PMTs.

4.6.2 T2K beam events

To select the events coming from the interactions of the T2K beam neutrinos all

PMT hits are recorded within a 1 msec time window. The window is synchronized to

the expected beam arrival time (ν time-of-flight or TOF) using timing information

from GPS satellites. The scheme is illustrated in Fig. 4.19

The acquired data are passed through an offline data reduction software that

determines whether the charge deposition is above an energy threshold. The events

are then classified according to the hit distribution and recorded for subsequent
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Figure 4.17: A T2K νµ event candidate at SK. The large panel shows an unrolled
view of the inner detector. The coloured points indicate the position of the hit
PMTs and their integrated charge. The circular line shows the fitted Cherenkov
ring. The unrolled view of the outer detector is shown in the top-right corner. The
distribution of the PMT hit times is shown in the bottom-right corner.
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Figure 4.18: A T2K νe event candidate at SK. The large panel shows an unrolled
view of the inner detector. The coloured points indicate the position of the hit
PMTs and their integrated charge. The circular line shows the fitted Cherenkov
ring. The unrolled view of the outer detector is shown in the top-right corner. The
distribution of the PMT hit times is shown in the bottom-right corner.
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Figure 4.19: Timing of the T2K data acquisition at SK.

analysis.

4.7 First T2K data

The T2K experiment started started collecting data in January 2010. In total, the

data equivalent of 1.431 × 1020 protons that hit the target (protons on target or

POT) have been accumulated until March 2011. The run periods and the accu-

mulated number of POTs are summarized in Table 4.4. The history of the beam

intensity and accumulated POT is shown in Fig. 4.20.

Period Name POT

01/2010 – 06/2010 Run I 0.323× 1020

11/2010 – 03/2011 Run II 1.108× 1020

1.431× 1020

Table 4.4: Run periods and the accumulated number of the protons on target.

The proton beam at any point in the beamline is described by its position,
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Figure 4.20: History of the instantaneous beam intensity (proton per pulse) and
total accumulated number of protons on target.

Position (cm) Angle (mrad) Width (cm) ε (π mm.mrad) Twiss α

X -0.037 0.044 0.4273 2.13 0.60
Y 0.084 0.004 0.4167 2.29 -0.09

Table 4.5: Proton beam parameters for Run I.

angle, profile width, emittance ε, and Twiss α (see Appendix C). The values of

these parameters evaluated at the entrance of the baffle are listed in Table 4.5

and Table 4.6 for the two running periods. These values are obtained from the

accumulated measurements from the proton beam monitors in the final section

of the primary beamline and the OTR monitor in the secondary beamline (see

Appendix C for further details).

Position (cm) Angle (mrad) Width (cm) ε (π mm.mrad) Twiss α

X -0.0149 0.080 0.4037 5.27 0.16
Y -0.0052 -0.007 0.4083 5.17 0.14

Table 4.6: Proton beam parameters for Run II.
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A total of 121 T2K neutrino related events have been observed in the SK detec-

tor during the two running periods. The INGRID and ND280 detectors collected

well over 106 and 103 events, respectively.

Fig. 4.21 shows the measurement of the neutrino beam centre by the INGRID

detector. The dashed lines indicate the expected shifts if the ν beam drifted by

±1 mrad. The measured values are well within these bounds. The stability of the

event rates measured by INGRID is shown in Fig. 4.22. No significant variation in

the events rates has been detected.

Fig. 4.23a shows the ND280 measurements of µ− momentum produced in CC

interactions (νµ + N → µ− + X). The reconstructed neutrino energy distribution

assuming CCQE kinematics (Eq. 4.7) is shown in Fig. 4.23b. The ratio of the total

measured to the predicted number of events [46] is

RData/MC = 1.036± 0.028(stat.)+0.044
−0.037(det. sys.)± 0.038(phys. sys.), (4.10)

illustrating a good agreement between the data and predictions.

The analysis of the initial T2K data gave a first indication of the νe appearance

[46]. In addition, a clear νµ disappearance signal was observed [51].
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Figure 4.21: Horizontal and vertical profile centre measurements by INGRID.

Figure 4.22: Event rate stability in INGRID normalized by 1014 protons per spill.

(a) Event distribution as a function of
reconstructed muon momentum.

(b) Event distribution as a function of
reconstructed neutrino energy assuming
CCQE kinematics.

Figure 4.23: Expected and measured distributions of CC νµ events in ND280.
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5 OTR Monitor

5.1 Introduction

Precise determination of the oscillation parameters depends on accurate measure-

ments of the position and angle of the proton beam at the target. Due to the

horn focusing, changes in the proton beam position and angle lead to variations in

the direction of the secondary meson beam, effectively changing the off-axis angle

and shifting the neutrino energy spectrum at SK. To meet the requirements of the

precision for the T2K measurement of the oscillation parameters, the stability of

the proton beam position and angle has to be monitored with a precision of 1 mm

and 0.5 mrad, respectively. In addition, the profile of the beam has to be measured

with a precision of about 10%. This is required for target and horn protection. The

intense proton beam can be damaging to the first horn if it is too wide for the target

and a significant fraction of the protons in the beam halo pass through the horn.

Conversely, if the beam is too narrow, the target can be damaged due to the large

energy dissipation over a small area. The task of an Optical Transition Radiation
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Figure 5.1: This drawing shows the T2K target station area. The OTR foil is
placed between the beam collimator and the first horn.

(OTR) monitor [63] is to measure the beam position and profile just upstream of

the target.

The monitor utilizes the Optical Transition Radiation (OTR) effect, the phe-

nomenon where electromagnetic radiation is emitted in the visible range when a

charged particle traverses a boundary between two media with different dielectric

constants.

A theoretical description of transition radiation was first offered by Ginsburg and

Franck [64]. The effect was experimentally verified for vacuum-metal boundaries

by Goldsmith and Jelley [65]. Since then, OTR has been used at a number of
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accelerators to monitor beam characteristics [66–68], where it has been generated

by introducing a thin foil in the path of the beam and then recording the emitted

light with a camera.

In case of the T2K experiment, the dose expected near the target at 750 kW

operation is 5.4×108 Sv/hr. This precludes the placement of any electronics nearby.

The OTR light is transported by a system of mirrors out of the harsh environment

near the target to a safer one where a camera can be operated.

A side view of the T2K target station, discussed in the previous section, is

shown in Fig. 5.1. The foil for the OTR production is placed downstream of the

baffle approximately 30 cm upstream of the target. A series of mirrors is used

to transport the light through channels (to prevent a straight path for ionizing

particles to escape) in the iron and concrete shielding. The light emerges through

a quartz window in the helium vessel lid where it is collected by a camera.

5.2 Transition Radiation

When a charged particle passes through a boundary from one medium to another

its field induces a time-dependent polarization at the surface of the new medium.

The radiation emitted by this polarized medium is the transition radiation. The

maximum depth in the material at which the coherent emission can be obtained is
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called the formation length D. As discussed in [69], it is given by

D =
γc

ωp
, (5.1)

where ωp is the plasma frequency of the medium. It is related to the electron

number density ne and vacuum permittivity ε0:

ω2
p =

nee
2

ε0me

, (5.2)

where me is the electron mass.

For example, the plasma frequency for solid titanium is

ωTi
p ' 1.34× 1016 sec−1. (5.3)

For a 30 GeV proton (γ ' 32) crossing the Ti boundary, D is on the order of 1 µm.

Consequently only a thin layer of material is required to produce the transition

radiation.

The number of photons N emitted in a frequency range dω into a solid angle
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dΩ per particle of unit electric charge e is given by [70]

d2N

dωdΩ
=
e2β2√ε2 sin2 θ cos2 θ

π2c~ω

×

∣∣∣∣∣∣ (ε1 − ε2)(1− β2ε2 − β
√
ε1 − ε2 sin2 θ)

(1− β2ε2 cos2 θ)(1− β
√
ε1 − ε2 sin2 θ)

(
ε1 cos θ +

√
ε1ε2 − ε22 sin2 θ

)
∣∣∣∣∣∣
2

,

(5.4)

where β = v/c, v is the velocity of the particle, c is the speed of light, θ is the angle

between the photon and particle direction, and ε1 and ε2 are the dielectric con-

stants for the two materials that define the boundary (see Fig. 5.2). While Eq. 5.4

describes the transition radiation produced in the forward direction, emission in

the backward direction also occurs. The intensity of the backward radiation can be

obtained from Eq. 5.4 by interchanging ε1 and ε2 and setting β → −β.

Forward lightBackward light

Charged 
particle

ϵ1 ϵ2

Figure 5.2: OTR emission from a particle crossing a material boundary.

The dielectric constants in Eq. 5.4 have an implicit frequency dependence de-

termined by the dispersive properties of the materials. For metals, a good approx-
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imation of this dependence is

ε(ω) = 1−
ω2
p

ω2
. (5.5)

We will now consider the transition radiation emitted at optical frequencies

(Optical Transition Radiation or OTR) by charged particles crossing a vacuum-

metal or metal-vacuum boundary. Propagation of the OTR photons in metal is

suppressed, since at optical frequencies ω ∼ 1015 and the dielectric constant ε is

less than zero (ωp ∼ 1016 for metals). Therefore only emission into vacuum, which

is backward for a vacuum-metal boundary crossing or forward for a metal-vacuum

boundary crossing, needs to be considered.

For a highly relativistic particle that moves from material with |ε1| > 1 into

vacuum, Eq. 5.4 can be reduced to [71]

d2N

dωdΩ
=

e2β2

4π2c~ω
sin2 θ

(1− β cos θ)2
. (5.6)

This light is emitted in a narrow cone centred around the direction of the moving

particle. The maximum emission happens at θ ∼ 1/γ. Fig. 5.3a shows the angular

distribution of the OTR light for 30 GeV protons (γ = 32) as a function of the

polar angle θ. The distribution is symmetric in the azimuthal angle φ.
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Figure 5.3: Angular and spectral distributions for OTR. The calculation of the
backward OTR spectrum uses the data in [72] for the frequency dependent dielectric
constant.

For the backward emitted OTR, ε1 = 1 and ε2 = ε and Eq. 5.4 reduces to

d2N

dωdΩ
=

e2

4π2c~ω

∣∣∣∣√ε− 1√
ε+ 1

∣∣∣∣2 sin2 θ

(1− β cos θ)2
. (5.7)

Similar to Eq. 5.6, Eq. 5.7 describes emission of the light into a cone centred around

the particle direction. The intensity of this light, however, also depends on the

reflective properties of the material through the dielectric constant ε.

Fig. 5.3b illustrates the spectrum of the OTR light in the optical frequency

range. Spectra of both the forward (Eq. 5.6) and the backward (Eq. 5.7) emis-

sions are shown. For the latter, spectra of OTR from aluminum and titanium are

considered.

When particles are not at normal incidence to the material boundary, the for-
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Figure 5.4: OTR light emission from a foil oriented at 45◦ with respect to the
incident beam. The forward light cannot be used as it requires placing optical
components in or near the beam path.

ward OTR light is still generated along the direction of the particle motion. The

backward emission, however, happens around the axis of the reflection from the

material surface. For a thin foil placed at 45◦ with respect to the direction of

charged particle beam, the backward light is emitted at 90◦ relative to the beam as

illustrated in Fig. 5.4. The OTR monitor uses this principle to image the proton

beam.

5.3 Optical system

5.3.1 Overview

The layout of the OTR system is shown in Fig. 5.5. The proton beam passes

through a foil which is oriented at 45◦ relative to the beam axis. The light emitted

from the upstream surface of the foil (backward light) at 90◦ with respect to the

beam axis is collected and transported through the shielding and out of the target
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station vessel by four 90◦ off-axis parabolic mirrors. The first mirror (mirror 1)

collimates the divergent OTR light from the foil. It is then focused by the second

mirror to form an intermediary image. This image is used as a virtual object to

the mirror 3 which again acts as a collimator. The collimated light emerges from

the helium vessel through a 25 cm diameter quartz (BK7-G18) window mounted in

the lid of the vessel. It is then focused by the last mirror onto a camera.

He vessel lid Quartz window

~7m

Iron shielding

60cm

110cm

110cm

110cm

Mirror 2 Mirror 3

Mirror 4

Mirror 1

Rad hard camera

Fibre taper

(4cm diameter)

Foil (5cm diameter)

Proton beam

Concrete shielding

Figure 5.5: This figure shows a slice through the optical path of the OTR system
where the proton beam is going into the page and striking the foil. Three light rays
illustrate the focusing properties of the optics.

The first three mirrors have the same focal length of F = 55 cm, while the last
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Figure 5.6: View of the mirror 4 mounted on its support.

one has a shorter focal length of F4 = 30 cm. This reduces the image projected

on the camera by a factor F4/F = 30/55 ' 0.55 relative to the actual object.

The camera is equipped with a 40 mm diameter fiber taper optically coupled to

an 11 mm camera sensor. Combining the reduction from the optical system and

the taper dimensions gives a maximum viewable area of 50 mm on the foil. This is

large enough to completely cover the acceptance area defined by a 30 mm diameter

hole in the upstream baffle.

5.3.2 Mirrors

Each mirror is machined out of solid aluminum. Fig. 5.6 shows the picture of the

mirror 4 mounted on its support structure. The diameter of the mirrors is 12 cm.

The reflective surface is coated with a 400 nm thick layer of Al2O3, which has a
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reflectivity close to 100%. Prior to the fabrication of the mirrors, a small test mirror

with this coating was irradiated with a proton beam at TRIUMF. After exposing

it to the dose equivalent to 130 years of operation at the location of the mirror 1

no significant deterioration in the reflective properties was observed. This provided

confidence in the long term survivability of the mirrors.

5.3.3 Camera

A monochrome video camera (Thermo Fisher Scientific 8710D1M) is used to cap-

ture the OTR light. The camera is rated to be radiation tolerant to an accumulated

dose of up to 10 kGy, while the expected dose at its location is estimated to be ∼ 1

kGy/year with a 750 kW beam operation.

The camera sensor is a radiation-hardened charge injection device (CID). The

pixel matrix consists of 755× 484 sites with dimensions of 12.0µm× 13.7µm. The

sensor is controlled remotely by a camera control unit (CCU) located on the ground

level of the target station and accessible during beam operation.

The video output is an interlaced analog signal that follows the RS-170 standard.

Each frame (full readout of the camera sensor) is composed of the even field followed

by the odd field. These correspond to progressive scans of even and odd lines in

the pixel array, respectively. The field scan rate is 60 Hz resulting in a frame rate

of 30 Hz.
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Figure 5.7: The measured camera response in ADC counts is shown as a function
of the expected ADC counts assuming linear operation. The response is averaged
over the pixels.

The progressive interlaced readout on the camera sensor means that even lines

are scanned 1/60 sec ahead of the odd lines. Some fraction of the charge collected

at the arrival of the OTR light therefore could be lost through leakage currents

before it can be recorded. An exponential decay of the collected charge with a time

constant of 77 msec has been observed. This is taken into account when the image

data is analyzed.

At low light levels the camera was observed to exhibit a non-linear response.

This is illustrated in Fig. 5.7 where the expected response is plotted against the

measured values. The cause of this behaviour was understood to be due to im-

purities in the silicon of the sensor that trap the collected charge. To avoid this

problem, a uniform ambient light is used to pre-populate these traps and move the
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response of the camera into the linear region.

To increase the dynamic range of the camera, several neutral density filters

with different attenuation constants are used. The filters are mounted on a wheel

and placed in front of the camera. A given filter can thus be selected remotely by

rotating the wheel.

5.3.4 Prototype system

Prior to the construction of the full scale monitor, a prototype system was as-

sembled to demonstrate the detector capability of observing OTR and measuring

beam parameters. The system used four parabolic mirrors with the focal lengths

13.8% of the values in the full-scale design. Image capture was done with a charge-

coupled device (CCD) photo-sensor. Three different foils made from titanium-alloy,

aluminum, and graphite were tested.

The system was deployed at the National Research Council electron linear ac-

celerator in Ottawa. The γ factor of the electron beam was similar to that of the

beam at J-PARC, so the angular distribution of the emitted light was expected to

be the same. OTR was observed for all of the test foils. Additional tests were made

to identify whether the He environment in the T2K target station could potentially

affect the light emission or act as a source of background light. No such effects were

detected.
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The measurement of the beam position and width with the prototype system

were estimated to be accurate to 0.2 mm and 15%, respectively. This was sufficiently

accurate to proceed with the construction of the full scale system.

5.4 Mechanical design

The OTR mechanical system is illustrated in Fig. 5.8a and Fig. 5.8b. Since the sys-

tem is located in the high-radiation environment of the target station, direct access

is not possible after deployment. The design of the mechanical system therefore

had to meet the following criteria:

• the ability to continually calibrate the optics

• stability with temperature

• long-term robustness and survivability

• ease of remote maintenance for part replacement.

5.4.1 The foil disk system

The OTR monitor has several foils that are mounted on a disk as shown in Fig. 5.9a.

The disk has eight identical slots that can accommodate 50 mm diameter foils.

Seven of the slots are filled while one is left empty. Table 5.1 lists the different foils
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Figure 5.8: The OTR system components.

used in the system. There are four titanium foils for high-intensity beam operation.

In addition there is one aluminum foil and a ceramic wafer to extend the range of

operation to lower beam intensities such as used during the beam commissioning.

Finally there is a titanium foil with a precisely machined hole pattern. It is used

for calibrations of the optical system.

Material (number of foils) Thickness (µm) Operation

AF995R (1) 100 < 1 kW beam power

Al 1100 (1) 1− 40 kW beam power

Ti 15-3-3-3 (4) 50 > 8 kW beam power

Ti 15-3-3-3 (1) calibration with no beam

Table 5.1: Foils used in the OTR system.
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Figure 5.9: View of the foil disk and the arm from the upstream side.

The disk is mounted at 45 degrees to the beam axis on an arm (Fig. 5.9b) that

attaches to the support frame of the first horn. A remotely controlled stepper motor

system allows to an operator rotate the disk and place an appropriate foil into the

beam path.

There are several systems to ensure the correctness and repeatability of the foil

placement in the beam. Each foil position on the disk has a machined titanium

button that engages a micro-switch once the foil is in position. In addition, the

disk has depressions at each foil site. When the foil is in position, a spring-loaded

plunger slides into the depression, securely locking the disk in place.

A combination of the micro-switch and the plunger is the primary method for

positioning the foils. In the event of their failure, there is a backup system that

relies on a pressurized helium line. The outlet end of the line is placed in close
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proximity to the disk surface and the pressure is maintained in the line until the

foil moves into the correct position marked by a small hole in the disk. Once

the hole and the gas line outlet are aligned, the pressure decreases. This drop is

detected with a pressure sensor installed on the line.

After the disk was installed, the centre of the calibration foil was surveyed with

respect to the axis through the centre of the first horn (nominal beamline axis).

The position of the central calibration hole was measured relative to this axis with

0.3 mm precision.

5.4.2 Mechanical design of the optical system

The first and the second parabolic mirrors along the OTR light path (see Fig. 5.5)

are mounted at either end of a long steel tube while a shorter tube houses the third

mirror. This is illustrated in Fig. 5.8b.

The tubes are precisely mounted to the back of the front plate of the horn 1

support module. It is possible to lift them out of the helium vessel and install

replacements through two ports in the vessel lid directly above the tubes.

The OTR light reflected by the mirror 3 passes through the quartz window in

the helium vessel lid. It is collected by the mirror 4 which forms an image on the

camera. The camera is mounted on three remotely controlled motorized stages,

allowing to make adjustments to its position in three directions. The fourth mirror
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and the stages with the camera are mounted on an optical table, which is fixed to

the helium vessel lid.

5.4.3 Calibration lighting systems

The optical system is calibrated periodically to monitor any changes in the optical

path. This is done by placing the calibration foil in the beam path (the beam is off

for this configuration) and lighting the foil from behind. There are three lighting

systems in place for this.

Two of them use LED lasers (Sanyo DL3147-060, 650 nm, 7 mW). One of the

lasers is mounted just above the quartz window in the vicinity of the mirror 4. The

other is located inside the vessel on top of the concrete shielding. The light from

each laser is sent down two internally polished steel tubes. The bottom of the tubes

have small reflectors that guide the laser light to another reflector on the arm (see

Fig. 5.9b), that aims the light to the calibration foil.

The third lighting system consists of three filament lamps. Each lamp is made

from a coiled Alchrome wire mounted inside a parabolic reflector. The lamps are

operated at a 12 A current. They are located in the same region as the laser tube

reflectors and oriented to emit light in the direction of the arm reflector. Fig. 5.10

shows a picture of this region.
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Figure 5.10: Picture of the filament lamps and laser reflectors. The flexible shafts
of the disk rotation system is also visible.

5.4.4 Alignment

The optical system was aligned using a small He-Ne laser. The laser was mounted

on the disk above one of the foil slots and aligned to point along the beamline

through the first horn. A plane mirror was then attached to the same foil slot

parallel to the disk. The mirror reflected the laser light at 90◦ with respect to the

beam axis in the direction of the OTR light as illustrated in Fig. 5.11a. Parabolic

mirrors were then adjusted one by one, so that the laser light could hit the centre

of each mirror traveling along the central path through the optical system to the

camera.
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Figure 5.11: Illustration of the OTR system alignment.

The arm reflector was aligned by shining a laser back from the camera position

through the optical system as shown in Fig. 5.11b. The orientation of the reflector

was adjusted until the light from the laser could reach the area with the laser

reflectors and the filament lamps.
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5.5 Data Acquisition and Slow Control

5.5.1 OTR DAQ system

The main functions of the data acquisition system (DAQ) are to trigger, collect

and process the image data.

The components of the DAQ system are illustrated in Fig. 5.12. The trigger

signals and the image acquisition controls are handled by a Field Programmable

Gate Array (FPGA) chip located on a frame-grabber board, which interfaces to

a host DAQ computer via a Peripheral Component Interconnect Express (PCI

Express) bus. Also located on the board is a TriMedia TM1302 digital signal

processor (DSP), which is responsible for the transfer of the digitized image frames

to the host computer. Configuration of the FPGA registers is done via TriMedia

software.

The analog video signal from the camera is acquired and digitized by the frame-

grabber. Fig. 5.13 shows timing signals important for the DAQ operation. The

readout cycle is initiated with a pre-trigger, which arrives 100 msec before a possible

proton beam extraction to the neutrino beam-line. Following its arrival after a

programmable delay (frame_reset_delay) a frame reset signal is issued to the

camera, which synchronizes it and the readout circuitry to the expected spill arrival

time. The trigger signaling the beam extraction to the neutrino beam-line arrives
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Figure 5.12: OTR monitor slow control and DAQ system.

20 µsec before the spill. After it is received and while the camera data are acquired

and digitized by the frame-grabber an interrupt signal (TM interrupt) is sent to

the DSP. The timing of the interrupt relative to the frame reset is configurable

(capture_delay). The interrupt signal informs the DSP that the next available

frame will contain the spill data and should be moved from the internal memory

buffers to a dedicated memory address on the host computer. After moving the

spill image, the DSP also transfers the image data from the two subsequent frames.

These images are later used for the pedestal subtraction (see Section 5.6.3).

Once the images are copied to the memory of the host computer, a MIDAS-

based [73] front-end application compresses them using the PNG image compression
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Figure 5.13: Image acquisition signals.

algorithms [74]. The data are then sent to a dedicated event server that handles

the distribution of all of the proton monitor data for online analysis and archiving.

The OTR online monitoring program displaying an event from one of the first

proton beam extractions to the neutrino beamline at J-PARC is shown in Fig. 5.14.

The centre of the T2K target is marked by a yellow cross-hair in the middle panel.

The two panels on the right show in the horizontal and vertical projections the

results of a 2D fit that extracts the beam position and width. These values along

with the measurements from the upstream proton beam monitors are used to de-

termine whether the beam position and width are within tolerance. If they are

outside tolerance, an abort signal is sent to prevent further extraction from the

main accelerator ring to the neutrino beamline.
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Figure 5.14: OTR online event display showing one of the first proton beam spills
on target. The centre of the target is marked by a yellow cross-hair in the middle
panel.

5.5.2 Slow Control

The OTR monitor has a number of remotely controlled motors to move different

components of the detector. In addition, the lighting system for the periodic cali-

bration of the optics requires a number of power supplies. These elements are part

of the slow control system (Fig. 5.12), which is managed using MIDAS.

The hardware control of the disk, filter wheel and camera stage motors is done

using a Galil [75] motor control module. The unit also collects the status from

the pressure sensor and the micro-switches on the motors. The state of the disk

micro-switch is constantly monitored. To avoid possible proton beam extraction
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during the foil disk rotation or when the disk is not properly positioned, a beam

interlock signal is generated when it is not engaged.

5.6 Image correction and analysis

5.6.1 Efficiency correction

(a) Simulated efficiency of the optical
system.

(b) Efficiency measured with the inte-
grating sphere.

Figure 5.15: Simulated and measured light collection efficiencies. Each distribu-
tion is normalized by the maximum efficiency, which is at the centre of the image.

Ray tracing simulations of the optical system revealed that within ±15 mm of

the foil centre, the relative light collection efficiency varies by more than 50%. This

is illustrated in Fig. 5.15a. The significant variation of the light collection efficiency

over the size of the beam spot introduces bias into the reconstructed beam position

and width.

An integrating sphere was used to provide a uniform light source in order to
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Figure 5.16: A schematic of the integrating sphere used to measure the light
collection efficiency.

calibrate the light collection efficiency of the system. This device, schematically

shown in Fig. 5.16, is a hollow sphere 30.5 cm in diameter with a 12 cm opening

port (output port). The inside surface of the sphere is painted white. Light is

injected into the inner volume using eight laser diodes arranged in a circle. There

is no direct path between the diodes and the output port requiring any light ray that

escapes the sphere to undergo multiple scattering from the rough inner surface of

the sphere. This results in a diffuse light distribution at the output. The uniformity

of the light over the area of the output port has been measured to be within 5%.

To calibrate the optical system, the integrating sphere was positioned at the

foil location with the output port facing the mirror 1. Images of the light through

the optical system were then taken with the camera system. These images, shown

in Fig. 5.15b, are used to apply the correction for the non-uniform light collection

efficiency.
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Figure 5.17: The thin black lines show a grid of point sources placed on the foil
surface, and the wider lines show the resulting image after simulated rays were
traced through the optical system. The size of the image is also reduced by 55%
compared to the original due to the smaller focal length of mirror 4 compared to
the first 3 mirrors.

5.6.2 Distortion correction

The optical system introduces a certain amount of distortion to the images, which

leads to bias in measurements and therefore requires correction. Fig. 5.17 illustrates

the effect of the distortion on a uniform grid. It is minimal at the centre of the

image, but increases near the edges, and is more pronounced in the vertical direction

due to the parabolic nature of the mirrors. The distortion is corrected by imaging

the calibration foil.

The calibration foil, shown in Fig. 5.18, has laser-machined holes arranged in

a grid 7 mm apart. The two central holes are 0.8 mm in diameter. The rest of

the holes have a diameter of 1.2 mm. The dimensions of the holes were optimized
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Figure 5.18: The calibration foil with a grid of laser-machined holes.

such that the light output from each hole is high enough to be visible, while its size

is kept as small as possible. The relative hole location is known to a precision of

better than 0.1 mm. The location of the central hole relative to the proton beam

axis is known to the precision of 0.3 mm, as already discussed in Section 5.4. This

hole provides an absolute position reference for the images recorded by the camera.

The calibration lighting systems are used to back-light the calibration foil and

take images of its hole pattern. This yields not only a reference point relative to

the beam axis, but also an image of the grid of holes to correct for distortion in

the optical system. The calibration images are taken regularly during periods of no

beam operation. This allows monitoring of any movement of the hole pattern with

respect to the camera pixels due to changes in the optical path.

The image of the pattern on the back-lit calibration foil is sensitive to the
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(a) Image of the back-
lit calibration foil show-
ing the characteristic
distortion introduced by
the optics.
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(b) Image of the dis-
torted calibration foil
pattern with centroids
of the holes marked by
black triangles.
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(c) Image of the back-
lit calibration foil after
the distortion correction
with the true hole pat-
tern superimposed.

Figure 5.19: Illustration of distortion correction for the calibration foil image.

angles of the incident light (note that the light from the filament lamps and lasers

is incident at different angles on the arm reflector). This results in a ∼ 0.2 mm shift

in the imaged hole positions between different light sources. An unbiased image of

the calibration pattern was obtained by placing a light source directly behind the

calibration foil on the optical axis (the axis defined by the line of sight between

the central hole of the foil and the centre of the mirror 1) and these shifts were

corrected.

The distortion of the imaged calibration foil pattern is visible in Fig. 5.19a and

follows the expectations from simulations (cf. Fig. 5.17). These calibration im-

ages are analyzed to obtain the centroids of the holes marked by black triangles in

Fig. 5.19b. This information along with the true hole positions yields a transfor-
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mation map that is used to correct image distortions. As an example, Fig. 5.19c

shows the image of the calibration foil pattern after the distortion correction with

the true positions of the holes superimposed.

The mathematical procedure for constructing the transformation map is to ex-

pand the coordinates (u, v) of the undistorted or true image in terms of the coor-

dinates of the distorted or measured image (x, y) as in [76]:

u(x, y) =
6∑
i=1

aiφi(x, y), (5.8a)

v(x, y) =
6∑
i=1

biφi(x, y), (5.8b)

where φi, i = 1 . . . 6 is a set of orthogonal functions and the expansion coefficients

ai and bi are the elements of the transformation map. The functions φi are con-

structed from the polynomial basisH = {1, x, y, x2, xy, y2} using the Gram-Schmidt

orthogonalization process [77]. The orthogonality relation for φi is defined as

m∑
k=1

Wkφi(xk, yk)φj(xk, yk) = 0 i 6= j, (5.9)

where the summation is performed over all m calibration holes of the imaged pat-
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tern. The weight coefficients Wk are calculated from the function

Wk(x, y) = exp (−δ
√

(x− xk)2 + (y − yk)2), (5.10)

where δ is a tunable “range” parameter and (xk, yk) are the measured coordinates of

a kth calibration hole. This function is introduced for the distortion transformation

to have a more local character. That is to say, it allows the holes in a given

neighborhood of the image to have greater contribution than the ones further away.

Once the orthogonal basis functions are constructed, the transformation map

coefficients ai and bi can be simply obtained from

ai(x, y) =

∑m
k=1 Wk(x, y)ukφi(xk, yk)∑m
k=1Wkφi(xk, yk)φi(xk, yk)

, (5.11a)

bi(x, y) =

∑m
k=1 Wk(x, y)vkφi(xk, yk)∑m
k=1Wkφi(xk, yk)φi(xk, yk)

, (5.11b)

where the pair (uk, vk) refers to the true coordinates of a kth calibration hole.

5.6.3 Image analysis

The position and width of the proton beam as well as the total light yield from a

given foil is determined on a spill-by-spill basis. The analysis begins by subtracting

the pedestal from each spill frame. The pedestal values are obtained from the two
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images taken immediately after the spill image. Following the pedestal subtraction,

a number of corrections are performed:

1. correction due to the non-uniform light collection efficiency of the optical

system using the map obtained with the integrating sphere,

2. correction due to the charge decay in the camera sensor (described in Sec-

tion 5.3.3),

3. correction of the image distortions with the transformation map obtained

from the back-lit image of the calibration foil.

After the image corrections, a two-dimensional fit to the data is performed to extract

the proton beam position, profile, and the total light yield.

5.7 Performance and results

5.7.1 Performance summary

The OTR monitor has operated with beam intensities ranging from 1 × 1011 to

1 × 1014 protons per spill. For low beam intensities during the first stages of the

T2K beamline commissioning, the ceramic wafer was used. Above 1 × 1012, the

OTR light production was sufficiently high with both aluminum and titanium foils.

These foils were used during the periods of the data collection for the physics
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analysis. Fig. 5.20 shows an examples of the proton beam profile obtained with

titanium (Fig. 5.20a) and aluminum (Fig. 5.20b) foils.
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(a) OTR beam image with Ti foil
and 9.0× 1013 protons per spill.
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(b) OTR beam image with Al foil
and 2.3× 1013 protons per spill.

Figure 5.20: Example OTR images obtained with the titanium and aluminum
alloy target foils. The black circle indicates the location of the edge of the target.

The expected number of the electrons produced in the camera sensor per in-

cident proton on the Ti foil is 2.1 × 10−5, while the measured value is 4.8 × 10−6

electrons per proton. This discrepancy of 23% may arise from the underestimation

of the mirror surface quality in the calculation of the predicted value or loss of the

reflective qualities due to possible dust deposits on the mirror surfaces. The OTR

light production as a function as the proton beam intensity is shown in Fig. 5.21.

A good linearity in the system response is observed for the beam intensities varying

over more than one order of magnitude.

The resolution of the OTR monitor is calculated from 50 consecutive spills

taken with 7.4 × 1013 protons per spill. Assuming that the beam is stable during
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Figure 5.21: Camera response as a function of the number of protons per spill.
The dashed line shows the fit to the data.

this period, the RMS of the obtained OTR measurements gives an estimate of the

monitor resolution. Table 5.2 lists the values for the measurement resolutions of

the beam position and width in the horizontal and vertical directions. All values

are below 0.1 mm.

Measurement Resolution (mm)

Position x 0.069
Position y 0.085
Profile width σx 0.068
Profile width σy 0.054

Table 5.2: Measurement resolutions of the OTR monitor obtained with the tita-
nium target and 7.4× 1013 protons per spill.
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5.7.2 Systematic uncertainties

The dominant contribution to the uncertainties in the OTR measurements comes

from the systematic uncertainties. Table 5.3 list contributions from different sources

of the systematic uncertainties.

The largest source of the uncertainty for the position measurements is the 0.3

mm alignment uncertainty from the survey of the calibration foil. Another signif-

icant contribution comes from the alignment of the calibration light sources. As

discussed earlier, the fact that the calibration lights are not positioned on the opti-

cal axis introduces a bias in the images of the calibration pattern. Conservatively

this translates into 0.20− 0.25 mm uncertainty in the position measurements.

Source δx(mm) δy(mm) δσx(mm) δσy(mm)

Calib. foil alignment 0.302 0.300 0.087 0.102
Signal model 0.005 0.003 0.436 0.376
Background model 0.090 0.115 0.010 0.031
Fitter bias 0.004 0.015 0.105 0.140
Calib. light alignment 0.210 0.251 0.046 0.038
Pixel charge decay 0.101 0.084 0.019 0.030
Distortion correction 0.029 0.039 0.083 0.111
Others sources 0.095 0.057 0.079 0.085

Total 0.404 0.432 0.473 0.441

Table 5.3: Sources of systematic uncertainties for absolute proton beam position
and width measurements by OTR monitor.

For the width measurements, the dominant source of the systematic uncertainty

comes from the choice of the model used to fit the signal. Nominally a 2D Gaussian
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Figure 5.22: Proton monitors and beamline elements upstream of the target.

function is used. Other models are, however, consistent with the data. The uncer-

tainty in the width measurements introduced by the choice of model is 0.38-0.44

mm.

The total uncertainties are less than 0.5 mm, satisfying the precision require-

ments for the monitor.

5.7.3 Proton monitor results

The OTR monitor in conjunction with the upstream ESMs and SSEMs is used to

determine the proton beam position, angle, width, and divergence at the target.

Fig. 5.22 schematically shows the components in the final focusing section of

the primary beamline and secondary beamline upstream of the target. The hori-

zontal position and angle are measured using the data from the position monitors

downstream of the last focusing magnet. The vertical position and angle are de-

termined from the monitor data downstream of the last vertical bending magnet.
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(a) Fit in horizontal direction (b) Fit in vertical direction

Figure 5.23: Example fits of the beam position using SSEM and OTR measure-
ments. The target is at s = 0.

Examples of the beam orbit fits (the fitting procedure is discussed in more detail

in Appendix C) that determine the horizontal and vertical position and angle are

shown in Fig. 5.23. The horizontal axis in the plots is the s coordinate defined to be

collinear with the nominal beam direction. The errors in the monitor measurements

are dominated by the alignment uncertainties.

The beam positions at the target obtained by fitting the proton monitor data

can be compared to the position measurements of the muon beam centre made by

MUMON. Given there are no significant misalignment in the secondary beamline

components, a properly tuned proton beam hitting the target should produce a

profile in MUMON which is centred. Fig. 5.24 shows the correlation of the MUMON

measurements with the position of the proton beam at the target for runs where

the beam was scanned in the x and y directions. At the centre, the MUMON and
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(b) Beam scans in y direction

Figure 5.24: Correlation of the MUMON position measurements with the proton
beam position at the target. The OTR data was taken with the aluminum foil.

proton beam position measurements agree within alignment uncertainties. The

anti-correlation between the beam position and MUMON measurements is due to

the horn focusing.

Fig. 5.25 shows the examples of the beam optics fits in x and y. The beam

width and divergence at any point in the final focusing section (red curve) are

obtained from the OTR and upstream SSEMs measurements. The fit, discussed in

more detail in Appendix C, uses Twiss parametrization. Propagation of the beam

through the drift space and focusing elements is done with the standard techniques

used in the analysis of the accelerator beamline optics. Some inconsistency is

observed between OTR measurements (particularly in x) and the fit results. The
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(a) Beam optics fit in x (b) Beam optics fit in y

Figure 5.25: Beam optics fit (red curve) to the width measurements by the SSEM
and OTR monitors (near s = 0 mm).

origin for this discrepancy is currently unexplained. At such beam widths, however,

the discrepancy does not lead to any significant effect on the neutrino flux.

The OTR monitor along with the upstream proton monitors not only provide

confirmation of the proton beam stability, but also are part of the T2K physics

analysis. The proton monitor measurements (Table 4.5 and Table 4.6) form the

necessary input for modeling the proton beam distribution in the simulation of the

neutrino beamline that provides the predicted neutrino flux.
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6 Prediction of the Neutrino Flux

6.1 Introduction

The essential ingredients to measure the oscillation parameters are:

• neutrino flux Φ

• neutrino interaction cross-sections σ

• detector efficiency ε.

The number of neutrinos expected to be detected for a given energy (spectrum) is

given by these three quantities, and the oscillation probability Pνµ→νx determined

by the set of the oscillation parameters to be measured:

N exp
νx (Erec) = ε(Erec, E)σ(E)Pνµ→νx(E; θ,∆m2)Φνµ(E), (6.1)

where E and Erec are the true and reconstructed neutrino energy, respectively.
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Once a measurement is performed, the observed event distribution Nobs(E) is

compared to N exp(E) to extract the oscillation parameters that best match the

observations. Uncertainties associated with the predicted flux and neutrino inter-

action cross-sections, however, tend to be large. The former is due to the difficulty

in precise modeling of the hadronic interactions responsible for generating mesons

(hadron production) that produce the neutrino beam. The latter is due to the

combination of the scarcity of available cross-section measurements and the large

experimental errors associated with them. These factors constrain the precision

with which the oscillation parameters can be measured and prevent looking for

small signals such as the one expected for νµ → νe oscillations.

To achieve better precision and higher sensitivity to the minute oscillation ef-

fects, it is necessary to measure the hadron production in a dedicated experiment.

In addition, two neutrino detectors are needed: one positioned near the neutrino

production site (near detector or ND) and the other located where the oscillation

probability is maximal (far detector or FD). The near detector measures the neu-

trino flux at the source prior to any oscillation effects and establishes the baseline for

the far-detector observations. It could also measure the interaction cross-sections

with the same neutrino beam to constrain the cross-section uncertainties.

Due to its proximity to the neutrino production source, the neutrino spectrum

observed at the near detector is not identical to the one in the far detector. For
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the near detector, the neutrinos are produced by a line source (decay vertices are

spread out over the decay volume). The far detector, on the other hand, sees a

point source of neutrinos. Using the ND measurement to obtain the expectation

at the far detector therefore requires extrapolating it to the FD location. The

simplest way such an extrapolation from the near to the far (N/F extrapolation)

detector can be done is by using the near detector observations ΦND,obs
νµ (E) as a

normalization correction to the predicted values for the FD.

The expected number of events at the far detector can then be written as

NFD,exp
νx (Erec) = ε(Erec, E)σ(E)Pνµ→νx(E; θ,∆m2)RF/N(E)ΦND,obs

νµ (E), (6.2)

where RF/N(E) is the ratio of the predicted flux at the far detector to the one at

the near detector:

RF/N(E) =
ΦFD
νµ (E)

ΦND
νµ (E)

. (6.3)

Most of the remaining work will focus on the evaluation of the flux predictions

for the T2K experiment and the estimation of the associated systematic uncertain-

ties. The flowchart illustrating the steps involved in obtaining the neutrino flux

predictions in T2K is shown in Fig. 6.1.

The Monte Carlo simulation of the neutrino beamline (JNUBEAM) will be

described in the next section. After this, an overview of the hadron production
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Beam Monte Carlo: JNUBEAM

FLUKA simulation: 
Proton interactions 
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decay volume
Neutrino producing meson decays

Measured proton
beam parameters

Measured horn 
currents

External hadron
production data

Adjust hadron production
models using external data

Predicted ν flux
for physics analysis

Figure 6.1: Neutrino flux prediction flowchart.

relevant to the T2K experiment will be given and the experimental measurements

will be described. In addition, some of the necessary tools needed for the subsequent

analysis will be presented. In the following chapter (Chap. 7), the use of available

hadron production data to derive neutrino flux predictions will be discussed and

the resultant neutrino fluxes for ND280 and SK will be shown. The systematic

uncertainties associated with the predictions will be addressed in Chap. 8.

6.2 Neutrino Beam Monte Carlo

The JNUBEAM simulation is based on the FLUKA [78–80] (2008.3b) and GEANT3

[81] particle transport tools. Interactions of the proton beam with the baffle and

the graphite core of the target are simulated with FLUKA. The produced particles

121



are then exported to the GEANT3-based simulation that models the entire T2K

secondary beamline and handles the generation of neutrinos.

6.2.1 FLUKA simulation

The geometry layout in the FLUKA simulation is illustrated in Fig. 6.2, where a yz

cross-section of the geometry through the x = 0 plane is shown. The graphite baffle

and the target core are the only beamline components present in the simulation.

The baffle is modeled as a rectangular graphite block of dimensions 290 × 400 ×

1711.45 mm3 with a cylindrical hole 30 mm in diameter through the centre. The

target core is a simple graphite cylinder 26 mm in diameter and 900 mm long. The

distance between the target and the downstream end of the baffle is 526.68 mm.

The baffle hole and the volume between the target and the baffle are filled with

helium gas.

6.2.2 Treatment of proton beam parameters

The beam protons with 30 GeV kinetic energy are generated upstream of the baffle.

The simulation relies on the beam parameters to model the spatial and angular

profile distribution of the beam. These parameters are

• position (x̄, ȳ)
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Graphite 
Target

Graphite 
Baffle

He gas 

Figure 6.2: The yz cross-sectional view of the geometrical set-up in the FLUKA
simulation.

• angle (x̄′, ȳ′)

• width (σx, σy)

• emittance (εx, εy)

• divergence parameter (αx, αy).
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For each coordinate (x or y), the starting position and angle of a given proton

is generated randomly according to

B(x, x′) =
1

2πσxσx′
√

1− ρ2
xx′

×

exp

(
− 1

2(1− ρ2
xx′)

[
(x− x̄)2

σ2
x

+
(x′ − x̄′)2

σ2
x′

− 2ρxx′(x− x̄)(x′ − x̄′)
σxσx′

])
,

(6.4)

where

• σx′ = εx
√

1 + α2
x/4σx

• ρxx′ = −αx/
√

1 + α2
x.

The technical details of the procedure to sample the distribution in Eq. 6.4 are

discussed in Appendix C.3.

6.3 Particle transport and neutrino production

The particles exiting the baffle and the target regions in the FLUKA simulation are

transported through the horns, decay volume, and the beam dump by a GEANT3-

based simulation. The simulation uses GCALOR [82] to model hadron interactions

with the beamline material. The particles are transported until their energy is

below the tracking threshold. For hadrons and muons, 0.1 GeV is used for the

threshold, while for electrons and photons, it is set to 1.0 GeV.
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π+ K+ K0
L µ+/µ−

νµ νµµ
+ (99.9877%) νµµ

+ (63.55%) νµπ
±µ∓ (27.04%) νµνee

− (' 100%)
νµµ

+π0 (3.353%)

νe νee
+ (1.23× 10−4) νee

+π0 (5.07%) νeπ
±e∓ (40.55%) ν̄µνee

+ (' 100%)

Table 6.1: Particle decay modes with neutrinos as a product implemented in
JNUBEAM. The decay branching ratios are shown in brackets. The decay modes
for π− and K− are the charge conjugates of those for π+ and K+.

Table 6.1 lists the neutrino producing decay modes for the various particles

that are implemented in JNUBEAM. When one of these decays occurs the energy

of the neutrino is calculated according to the appropriate decay kinematics. The

contribution of each produced neutrino to the flux is determined by the factor N :

N = NPOT × Γ× P, (6.5)

where NPOT is an overall normalization given by the number of protons on target, Γ

is the appropriate decay branching fraction, and P is the probability of the neutrino

to be emitted in a direction of a given detector (INGRID, ND280, or SK). The latter

is determined from the distance from the decay vertex to the detector, the direction

of the neutrino parent, and the detector solid angle acceptance.
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6.3.1 Particle interaction history

During the particle transport, JNUBEAM keeps track of the interactions that lead

to the production of any given particle. For every interaction other than elastic

scattering, the material, vertex, and momenta and identities of the outgoing parti-

cles are recorded. When a neutrino producing decay occurs, the interaction history

that led to the production of the neutrino parents is reconstructed from this record

and stored along with the neutrino information. The data of the primary proton

that initiated the event are stored at the beginning of the interaction history record.

The information available from the interaction history enables a study of the

contributions from various hadronic interactions that lead to neutrino production

and to tune the MC models based on available hadron production data.

6.4 Hadron production

Using the interaction history it is possible to study which particle productions are

important for the neutrino flux predictions at T2K. Table 6.2 lists the fractional

contributions of the particles produced in the interactions of the beam proton (sec-

ondaries) to the SK neutrino flux without oscillation effects.

Since the T2K target is over 90 cm long, the secondary particles may undergo

additional interactions before they escape. Particle interactions are also possible
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Figure 6.3: Illustration of particle production chains.

Secondary particle νµ ν̄µ νe ν̄e
π+ 67.41% 11.72% 38.78% 3.41%
π− 1.98% 36.55% 1.73% 3.97%
K+ 4.90% 2.19% 26.96% 2.96%
K− 0.14% 4.99% 0.36% 12.99%
K0, K̄0 2.83% 4.43% 11.87% 55.86%
Proton 15.80% 21.34% 13.62% 13.00%
Neutron 5.22% 13.54% 5.17% 5.39%
Others (Λ, Σ, n̄, etc.) 1.73% 5.24% 1.51% 2.42%

Table 6.2: Fractional contributions of secondary particles to the un-oscillated
neutrino flux at SK.

with the material (predominantly aluminum) found outside of the target. These

concepts are illustrated in Fig. 6.3. Not all of the particles listed in Table 6.2

therefore contribute to the neutrino flux directly (i.e., decay to produce neutrinos).

In particular, the sizable contribution of the secondary protons comes from the

tertiary particles they produce such as pions, kaons, etc. that can decay into

neutrinos. The breakdown of the tertiary particle contributions to the SK neutrino

flux is listed in Table 6.3.
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Tertiary particle νµ ν̄µ νe ν̄e
π+ 12.30% 2.06% 6.61% 0.41%
π− 0.19% 11.50% 0.19% 0.86%
K+ 0.59% 0.26% 3.42% 0.40%
K− 0.01% 0.66% 0.02% 1.63%
K0, K̄0 0.29% 0.54% 1.42% 7.46%
Proton 1.69% 3.35% 1.41% 1.39%
Neutron 0.52% 2.09% 0.40% 0.45%
Others (Λ, Σ, n̄, etc.) 0.21% 0.89% 0.14% 0.40%

Total 15.80% 21.34% 13.62% 13.00%

Table 6.3: Fractional contributions of tertiary particles produced by secondary
protons to the un-oscillated neutrino flux at SK.

As Table 6.2 illustrates the pion contribution is dominant. Understanding pion

production is therefore an essential first step for predicting the neutrino flux.

A rather important background in the search of electron neutrino appearance is

the intrinsic component of νe present in the beam. Since a sizable contribution to

the νe flux comes from kaons, their production also needs to be studied to properly

assess the magnitude of the νe contamination.

6.5 NA61/SHINE

One of the main goals of the NA61/SHINE (SPS Heavy Ion and Neutrino Experi-

ment) [83] is to measure the particle yields for the T2K experiment. The experiment

uses a 30 GeV secondary proton beam produced by 400 GeV protons slow-extracted

(protons are extracted over a few accelerator cycles) from the SPS accelerator at
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CERN to measure particle yields from graphite targets. Two types of target are

used:

• a 2 cm thin target to study the particle production from the 30 GeV protons

without the secondary interaction effects

• a replica of the T2K target (long target) to measure the total particle yields

for T2K.

The experiment began collecting data in 2007. The currently available mea-

surements of π± [83] and K+ [84] production from the thin target obtained in the

analysis of the 2007 data are used in this work.

6.6 Hadron production data relevant for T2K

Fig. 6.4a shows the angle θ vs momentum p of the secondary pions which contribute

neutrinos at SK with the coverage of the NA61 superimposed. Most of the relevant

phase-space is covered by the NA61 data.

The p − θ distribution of the secondary K+ mesons that result in a neutrino

at SK is shown in Fig. 6.4b. The NA61 K+ data covers approximately 60% of the

phase-space. Using the K+ production data of [85] and [86], the data coverage of

the kaon production phase-space can be extended to over 90%.
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(a) Phase-space of secondary π+

Phase-space of secondary K+ which
contribute to a neutrino @ SK

NA61

Eichten & Allaby

(b) Phase-space of secondary K+

Figure 6.4: Phase-space of the secondary π+ and K+ mesons that produce neu-
trino at the SK detector. The colour of each point indicates how large the contri-
bution to the neutrino flux is from that part of the phase-space. The coverage of
the NA61 measurements and those of Eichten et al. [85] and Allaby et al. [86] are
also shown.

Other available experimental data can also be used to study the systematic

uncertainties associated with the hadron production.

The hadron production measurements relevant for T2K are summarized in Ta-

ble 6.4, where the beam energy, target material, and the particles measured in each

experiment are listed.

Experiment Beam (GeV/c) Target Particles

NA61 [83] [84] 31 GeV/c C π±, K+

Eichten et al. [85] 24 GeV/c Be, Al, and others p, π±, K±

Allaby et al. [86] 19.2 GeV/c Be, Al, and others p, π±, K±

E910 [87] 6.4, 12.3, and 17.5 GeV/c Be π±

Table 6.4: Hadron production data relevant for the T2K neutrino flux predictions.

As Table 6.4 illustrates, the beam energy and the target material used by the
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different experiments may be different from T2K. Methods to scale the data from

one beam energy to another (momentum scaling) and from different materials (ma-

terial scaling) are therefore needed.

Momentum scaling is also necessary to study the production of tertiary pions.

As Tables 6.2 and 6.3 show, these pions have a sizable contribution to the neutrino

flux. The tertiary pion production can be evaluated from the NA61 data, but it is

necessary to scale these data to lower beam energies.

6.7 Momentum scaling

The idea of momentum scaling was proposed by Feynman while analyzing data

from inelastic particle collisions [88]. He noted that in the inclusive reactions of the

type

a+ b→ c+X,

where a and b are two colliding particles and c is the produced particle accompa-

nied by unspecified products X, the (Lorentz) invariant cross-section Edσc/d~p is

independent of the total available centre of mass energy
√
s (set by the momentum

of the interacting particles) if described using a suitable set of parameters. He sug-

gested that such parameters would be the transverse momentum pT and a variable
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xF , now referred to as the Feynman scaling variable, defined as

xF =
p∗L
p∗Max

, (6.6)

where p∗L is the longitudinal momentum of a produced particle and p∗Max is the

maximum available momentum, both in the centre of mass frame of the a + b

system.

A slightly different choice for a scaling variable was suggested by Taylor et

al. [89]. They proposed analyzing the scaling behaviour of the invariant cross-

sections in terms of the ratio of the energy of the particle E∗ and the maximum

energy kinematically available E∗Max

xR =
E∗

E∗Max

. (6.7)

The variable xR is called the radial scaling variable.

The idea of the cross-section scaling can be applied to the hadron production

data, since it provides a way of taking the invariant differential cross-section in p−θ

phase-space at one beam momentum p0 and mapping it to p′ − θ′ phase-space at a

different beam momentum p′0.

The first step is to find the xF (xR) and pT for a given particle produced with

a momentum p and angle θ relative to the direction of an interacting proton. The
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square of the total centre of mass energy available when a proton interacts with a

stationary nucleon of the target matter is

s = (E0 +mp)
2 − p2

0, (6.8)

where mp is the mass of the proton and E0 is the energy of the beam. The difference

of about 1 MeV between the neutron and proton mass is ignored here. This gives

s = 2mp(E0 +mp). (6.9)

The relativistic βcm and γcm of the centre of mass (CM) frame relative to the

laboratory frame of reference are

βcm =
p0

E0 +mp

, (6.10)

γcm =
E0 +mp√

s
. (6.11)

Given E, p, and θ of a produced particle in the lab frame, the transverse and

longitudinal momentum of this particle in the CM frame are

p∗T = pT = p cos θ, (6.12)
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p∗L = γcm(pL − βcmE), (6.13)

while its energy in the CM frame is

E∗ = γcm(E − βcmpL). (6.14)

To calculate the particle xF (xR), it is necessary to find p∗Max (E∗Max). It can be

shown (see Appendix D) that

p∗Max =

√
(s−m2 −M2

Min)2 − 4m2M2
Min

4s
, (6.15)

where m is the mass of the produced particle and MMin is the minimum possible

value of the total mass of the other products. The exclusive reaction that gives

MMin can be determined from various conservation laws. The values of MMin with

the corresponding exclusive channels are listed in Table 6.5 for various types of

inclusive reactions.

Since the interaction of the beam protons with the target can involve either p+p

or p+n reactions, the average of the MMin is taken when evaluating Eq. 6.15. Once

p∗Max is computed, the E∗Max can be easily evaluated using the relativistic energy

momentum relation: E =
√
m2 + p2.

It should be noted that in the limit s � m2 and s � m2
Max Eq. 6.15 simplifies
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Inclusive reaction Exclusive reaction MMin (GeV)

p+ p→ π+ +X p+ p→ π+ + (p+ n) 1.878

p+ p→ π− +X p+ p→ π− + (p+ p+ π+) 2.017

p+ p→ K+ +X p+ p→ K+ + (p+ Λ) 2.054

p+ p→ K− +X p+ p→ K− + (2p+K+) 2.370

p+ p→ K0 +X p+ p→ K0 + (p+ Σ+) 2.128

p+ p→ K̄0 +X p+ p→ K̄0 + (2p+K0) 2.374

p+ p→ p+X p+ p→ p+ p 0.938
p+ p→ n+X p+ p→ n+ (p+ π+) 1.078

p+ n→ π+ +X p+ n→ π+ + 2n 1.879
p+ n→ π− +X p+ n→ π− + 2p 1.877
p+ n→ K+ +X p+ n→ K+ + (n+ Λ) 2.055

p+ n→ K− +X p+ n→ K− + (p+ n+K+) 2.372

p+ n→ K0 +X p+ n→ K0 + (n+ Σ+) 2.129

p+ n→ K̄0 +X p+ n→ K̄0 + (p+ n+K0) 2.376

p+ n→ p+X p+ n→ p+ n 0.939
p+ n→ n+X p+ n→ n+ p 0.938

Table 6.5: The values of MMin with the corresponding exclusive channel for a
given inclusive reaction.

to

p∗Max ≈
√
s

2
(6.16)

and xF reduces to a more familiar form

xF =
2p∗L√
s
. (6.17)

After evaluating xF and pT , the “scaled” p′ and θ′ can be computed. From the

definition of xF in Eq. 6.6 and the relativistic transformation of pL in Eq. 6.13, it
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follows that

xF =
1

p′∗Max

γ′cm(p′L − β′cm

√
p′2L + p2

T +m2), (6.18)

where the primes indicate that a given quantity is calculated for the beam momen-

tum p′0. Introducing the following parameters:

A = 1− β′2cm,

B = −xFp
′∗
Max

γ′cm

,

C =

(
xFp

′∗
Max

γ′cm

)2

− β′2cm(p2
T +m2),

the general solutions of Eq. 6.18 for p′L can be written as

p′L =
−B ±

√
B2 − AC
A

.

Since 0 < A < 1, the more positive solution (the one giving the larger p′L) is taken:

p′L =
−B +

√
B2 − AC
A

. (6.19)

Once p′L is found, it is trivial to compute p′ and θ′:

p′ =
√
p′2L + p2

T , (6.20)
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θ′ = arcsin
pT
p′
. (6.21)

When the xR scaling variable is used the calculation is similar, except that p′L

is found by solving the equation

xR =
1

E ′∗Max

γ′cm(
√
p′2L + p2

T +m2 − β′cmp
′
L). (6.22)

Defining

A = β′2cm − 1,

B =
xRE

′∗
Max

γ′cm

β′cm,

C =

(
xRE

′∗
Max

γ′cm

)2

− (p2
T +m2),

the positive solution for p′L (−1 < A < 0) is expressed as

p′L =
−B −

√
B2 − AC
A

. (6.23)

Once again p′ and θ′ are computed from Eq. 6.20 and Eq. 6.21 once p′L is found.
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6.8 Material scaling

To scale data from one material to another the approach described by Bonesini

et al. in [90] is adopted. The invariant cross-section for particle production in a

material with the atomic weight A1 is related to the invariant cross-section in a

different material with the atomic weight A2 according to

E
d3σA2

dp3
=

(
A2

A1

)α(xF ,pT )

E
d3σA1

dp3
. (6.24)

The exponent α depends on the Feynman scaling variable xF and the transverse

momentum pT . Based on the works by Barton et al. [91] and Skubic et al. [92], the

form for this dependence suggested by Bonesini et al. is

α(xF , pT ) = (a+ bxf + cx2
F )(d+ ep2

T ). (6.25)

The values of the parameters a – e given by Bonesini et al. are for all the

particles. Using these values to test the material scaling on the Allaby et al. and

Eichten et al. kaon data do not, however, give satisfactory results. Since both of

the experiments have measurements of pion as well as kaon production from Be,

Al, and Cu targets, it is possible to fine-tune the values by analyzing the pion and

kaon data sets separately.
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Figure 6.5: Examples of the material scaling exponent α fit for two (4 and 10
GeV/c) momentum bins at 0.017 rad for the [85] π+ and K+ data.

The analysis consists of two steps. First the values of α are determined for each

p− θ bin in the data. Then they are fitted to the polynomial model of Eq. 6.25 to

obtain the parameters a – e.

To cancel the correlated error component the Al and Cu measurements are nor-

malized by the Be data. This significantly reduces the overall error and considerably

simplifies the treatment of measurement uncertainties. Each p−θ data bin is fitted
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with

f(A) =

(
A

ABe

)α
, (6.26)

where A = AAl, ACu and α is the fit parameter. Fig 6.5 shows as an example four

such fits to two bins from the [85] π+ and K+ data.

a b c d e

nominal 0.74 -0.55 0.26 0.98 0.21
fitted π 0.75 -0.52 0.23 1.0 (fixed) 0.21

fitted K 0.77 -0.32 0.0 1.0 (fixed) 0.25

Table 6.6: Parameters for material scaling

After fitting all of the data bins in this manner a table of values of α for each

value of p− θ is obtained. These results are fitted with Eq. 6.25 to extract model

parameters. The values of the parameters given by Bonesini et al. (nominal) and

those obtained from separate analysis of the charged pion and kaon data are listed

in Table 6.6. The parameter d has been fixed in the fit to 1.0 to avoid strong

correlations with the a term.

The uncertainty associated with the material scaling is estimated by comparing

the predicted values from scaling the Eichten and Allaby Be data, σBe→Al, to the

corresponding measurements from the two experiments taken with the Al target,

σAl. The histograms of the ratios

RAl/Scaled Be = σAl/σBe→Al (6.27)
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of all of the p − θ bins are shown in Fig. 6.6 and Fig. 6.7 for pion and kaon data,

respectively.

To find the mean and obtain some measure of the spread, the distributions

shown in the figures are fitted (χ2 minimization) with the Gaussian function

G = Ae
−(RAl/Scaled Be−µ)2/2σ2

(6.28)

with the normalization A, mean µ, and width σ being the fit parameters. The

results of these fits for the mean and width are listed in Table 6.7 and Table 6.8 for

pion and kaon data, respectively.

Allaby π+ Allaby π− Eichten π+ Eichten π−

µ 1.00 0.99 0.99 0.99
σ(%) 2.7 4.0 2.0 2.5

Table 6.7: Results of the fit to the distribution of RAl/Scaled Be for the [85, 86]
charged pion data.

Allaby K+ Allaby K− Eichten K+ Eichten K−

µ 1.04 0.96 1.02 0.95
σ(%) 4.9 5.5 4.6 5.0

Table 6.8: Results of the fit to the distribution of RAl/Scaled Be for the [85, 86]
charged kaon data.

The material scaling works better for pions, while in the case of kaons the

distribution of RAl/Scaled Be is systematically below or above unity by at most 5%.

When considering uncertainties due to the material scaling this could be treated
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(b) Results for Allaby π− data
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(c) Results for Eichten π+ data
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(d) Results for Eichten π− data

Figure 6.6: Distribution of RAl/Scaled Be for the [85,86] charged pion data.
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(b) Results for Allaby K− data
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(c) Results for Eichten K+ data
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(d) Results for Eichten K− data

Figure 6.7: Distribution of RAl/Scaled Be for the [85,86] charged kaon data.
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as a normalization uncertainty, i.e., applied in a correlated way to all the data

points. The spread in the distribution of RAl/Scaled Be values can be applied as an

additional uncertainty uncorrelated from data point to data point. Based on the

values in Table 6.8 a value of 5% is taken for this type of uncertainty.
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7 T2K Neutrino Flux

The T2K neutrino flux predictions rely on the available hadron production data

from NA61 and other experiments. These data are incorporated by adjusting or

tuning the hadron production models used inside the JNUBEAM simulation. This

accounts for the discrepancies between the hadron yields predicted by the models

and the ones measured experimentally.

7.1 Hadron production tuning strategy

Hadron production tuning is done be re-weighting the contribution of each neutrino

event to the flux based on the comparison of a given model (FLUKA and GCALOR)

predictions with the available hadron production data. The term weight here in

general refers to a number by which a given simulated process needs to be tuned

or adjusted for the output result to match the data. Two types of weights are

considered. One is for re-weighting the phase-space distribution of the produced

hadrons, which will be called multiplicity tuning and the other for re-weighting the
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total interaction rate, which will be referred to as interaction rate tuning.

Before discussing how these weights are obtained, it is necessary to introduce

some additional nomenclature. We define production multiplicity as

d2nh

dpdΩ
=

1

σprod

d2σh

dpdΩ
, (7.1)

where σprod is the total production cross-section and d2σh/dpdΩ is the differential

cross-section for the production of hadron h. The production cross-section is ob-

tained from the corresponding inelastic cross-section by subtracting the component

for the quasi-elastic scattering, i.e.,

σprod = σinel − σqe. (7.2)

For multiplicity tuning, weights are computed from the ratio of the measured to

the predicted differential particle production. Thus for a hadron produced with a

momentum p and angle θ (production angle) relative to the direction of the incident

particle, as shown in Fig. 7.1a for a charged pion, the weight is determined from

wh(p, θ) =
d2nData

dpdΩ

/d2nMC

dpdΩ
. (7.3)

For the interaction rate tuning, model (FLUKA, GCALOR) predicted interac-
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tion lengths are compared to experimental data. The following definition of the

interaction length in terms of the production cross-section is adopted here:

λI =
A

NAρσprod

, (7.4)

where NA, A, and ρ are the Avogadro’s constant, atomic number, and density of

the target material, respectively.

Two different weights are applied depending on whether the particle escapes the

material or undergoes interaction. In the case of the escaping particle, the weight

is calculated as

wout = e−xesc/(λData
I −λMC

I ), (7.5)

where xesc is the distance to the material boundary as shown in Fig. 7.1a. This

is just the ratio of the particle survival probabilities in the materials with the

interaction lengths λData
I and λMC

I .

For the particle undergoing interaction a weight is calculated according to

wout =
λMC
I

λData
I

e−xint/(λ
Data
I −λMC

I ), (7.6)

where xint refers to the distance a particle has traveled in the material to the

interaction vertex, as illustrated in Fig. 7.1a.
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Figure 7.1: Illustration of interactions.

The total weight for a given neutrino event is calculated as the product of

weights for each step in the interaction history. Taking as an example Fig. 7.1a and

assuming the pion there decays to a neutrino without any additional scattering, the

weight for this neutrino event would in general be the product of Eq. 7.3, Eq. 7.5

and Eq. 7.6.

While the majority of the interactions happen inside the graphite core of the

T2K target, a fraction of particles escaping the target can re-interact with surround-

ing material, which mostly consists of aluminum in the horns. This is illustrated

in Fig. 7.1b. For νµ and νe flux, the estimate of this out-of-target contribution

from simulations is about 13%. It is, however, larger for the anti-neutrinos, with

approximately 50% of ν̄µ coming from out-of-target interactions. Consequently

comparisons of both FLUKA (in-target) and GCALOR (out-of-target) models to

the hadron production data are necessary.
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7.2 Pion multiplicity tuning

The pion contribution to the neutrino flux is tuned using the NA61 thin target

data [83]. To obtain the tuning weights for the pions produced in the proton

interaction inside the target, the interactions of the 31 GeV/c protons with a thin

carbon target are simulated in FLUKA. The resultant pion yields are binned and

normalized in the same manner as the NA61 data to obtain the MC predictions for

the pion production multiplicity. A ratio of the simulated and measured multiplicity

is then computed to get the weights for different p− θ bins. Fig. 7.2a and Fig. 7.2b

shows the obtained weights for π+ and π−, respectively. The NA61 data covers

about 92% and 98% of the π+ and π− phase-space relevant for the T2K, respectively.

For the phase-space not covered by the NA61 data the nominal FLUKA values are

used.

For the secondary pions, an appropriate multiplicity weight is determined from

the histograms in Fig. 7.2 according to their momentum and angle.

As shown in Table 6.3, there is also a sizable (∼ 12% for νµ) contribution to

the neutrino flux from the tertiary pions that are produced in the interactions of

the secondary protons. To tune the production multiplicity of the tertiary pions,

the (p, θ) and the momentum of the secondary proton are used to evaluate the

corresponding (p′, θ′) for 31 GeV/c beam using the xF scaling variable and following
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Figure 7.2: NA61 Data/FLUKA ratio for pions.
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Figure 7.3: Scaled NA61 Data/GCALOR ratio for pions in aluminum.

the procedure described in Section 6.7. An appropriate weight is then determined

based on the scaled values of the momentum and angle of the produced pion.

The pion production outside of the target is also tuned. Since a majority of the

interactions happen in the aluminum of the horns, the weights are calculated from

the ratio of the GCALOR simulated pion multiplicity to the NA61 measurements

after they are scaled from C to Al according to the method in Section. 6.8. The
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obtained weights are shown in Fig. 7.3a and Fig. 7.3b for π+ and π−, respectively.

Finally, the multiplicity of the pions produced in neutron interactions (∼ 5%

contribution) is also tuned. This is done by applying the π− and π+ weights to the

neutron produced π+ and π−, respectively.

7.3 Kaon multiplicity tuning

The kaon production multiplicity in the target is tuned using the data listed in

Table 7.1. The tuning is performed for secondary and tertiary kaons produced in

the interactions inside the target.

Experiment Beam (GeV/c) Target Particles

Allaby et al. [86] 19.2 Be K±

Eichten et al. [85] 24 Be K±

NA61 [84] 31 C K+

Table 7.1: Data used in tuning kaon production.

Following the approach of [90], the charged kaon data is also used to estimate

the neutral kaon production using a combination of K+ and K− data sets:

K0
L =

1

4
(K+ + 3K−). (7.7)

The coverage of each data set of the kaon production phase-space relevant for

the T2K neutrino flux is summarized in Table 7.2. Figs. 7.4 through 7.6 show the
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momentum and the production angle of the secondary kaons contributing to the

neutrino flux at SK. The parts of the phase-space covered by the data sets listed

in Table 7.1 are shown as well in these figures.

NA61 Eichten Allaby Total

Secondary K+ 60.0% 30.5% 0.9% 91.4%
Secondary K− 0.0% 40.5% 1.3% 41.8%
Secondary K0

L 0.0% 35.3% 0.7% 36.0%

All K+ 59.0% 30.8% 1.0% 90.8%
All K− 0.0% 39.9% 1.2% 41.1%
All K0

L 0.0% 35.5% 0.7% 36.2%

Table 7.2: Data coverage of the kaons contributing to the neutrino flux at SK

Before comparing the Eichten and Allaby measurements to model predictions,

a bi-cubic spline interpolation is performed on these data. Fig. 7.7 illustrates the

procedure in the case of the Eichten K+ data. At first, a set of cubic splines Sθi(p)

is constructed for each angular bin. One such spline is shown along with the data

points in Fig. 7.7b. An interpolated value of the cross-section at any given (p, θ)

point (e.g., the one marked by a star in Fig. 7.7a) inside the covered phase-space

is then obtained by constructing a cubic spline Sp(θ) from the values of Sθi(p) and

evaluating it at an appropriate value of θ.
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Figure 7.4: Momenta and angles of K+ contributing to the SK flux.
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Figure 7.5: Momenta and angles of K− contributing to SK flux.
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L contributing to the SK flux.
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(a) Bi-cubic spline interpolation on a
grid of data points

(b) An example of a cubic spline inter-
polation for the first (0.017 rad) angular
bin

Figure 7.7: Illustration of the bi-cubic spline interpolation for a grid of data
points.

7.3.1 Kaon tuning procedure

The ratio of the NA61 measurements to the FLUKA predictions (Eq. 7.8)

w(p, θ) =
dnθNA61

dp

/dnθFLUKA

dp
, (7.8)

is used to tune K+ production multiplicity in the phase-space covered by the NA61

data. Fig. 7.8 shows the obtained ratios for the two angular bins.

The ratio of the measured to predicted double differential cross-sections2

w(p, θ) =
dσEichten,Allaby

dpdΩ

/dσFLUKA

dpdΩ
(7.9)

2The production cross-sections used to normalize the differential cross-section to obtain mul-
tiplicities are essentially the same for data and FLUKA for protons on Be and cancel when the
ratio is taken.

154



is used to tune the K+ production outside of the NA61 phase-space with data sets

of Eichten et al. and Allaby et al. These data are also used to tune the production

multiplicity of K− and K0
L. The data/FLUKA ratios for the data sets of Eichten

et al. and Allaby et al. are shown in Fig. 7.9 and Fig. 7.10, respectively.

Given the momentum p and angle θ of a secondary kaon, the tuning weight

is determined from the prescription shown in Fig. 7.11. To obtain the Eichten

(Allaby) data weights, the momentum and angle of the produced kaon has to be

scaled from 31 GeV/c to 24 GeV/c (19.2 GeV/c) beam momentum using the xF

scaling procedure described in Section. 6.7. The scaled values of p and θ are denoted

by primes in the figure.

The production of the tertiary kaons in the target is also tuned. The weights

are linearly interpolated from wNA61(p′, θ′), wEichten(p′, θ′), and wAllaby(p′, θ′). The

primes on p and θ here again indicate that the appropriate beam momentum scal-

ing has been performed. The interpolation is done between a pair of neighboring

weights. For example, if the momentum of the secondary proton psec. prot is some-

where between pNA61 = 31 and pEichten = 24 GeV/c and both wNA61(p′, θ′) and

wEichten(p′, θ′) weights exist then the interpolated weight is found from

w = wNA61 +
wEichten − wNA61

pEichten − pNA61

(psec prot − pNA61). (7.10)
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Figure 7.8: Ratios to the NA61 K+ multiplicity to the FLUKA predictions.

(a) Ratio for K+ (b) Ratio for K− (c) Ratio for K0
L

Figure 7.9: Ratios of the interpolated kaon production double differential cross-
section measurements from Eichten et al., to the FLUKA predictions for 24 GeV/c
protons interacting with Be target.

(a) Ratio for K+ (b) Ratio for K− (c) Ratio for K0
L

Figure 7.10: Ratios of the interpolated kaon production double differential cross-
section measurements from Allaby et al., to the FLUKA predictions for 19.2 GeV/c
protons interacting with Be target.
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Figure 7.11: Flowchart of secondary kaon multiplicity tuning.

When it is not possible to find two weights to perform such an interpolation, any

existing weight is chosen.

The effects of tuning the kaon production inside the target on the neutrino flux

are illustrated in Fig. 7.12 and 7.13 for the fluxes predicted at the ND280 and SK

detector sites, respectively. Individual contributions from the NA61, Eichten, and

Allaby data as well as KL
0 and tertiary production tuning are also shown. As can

be seen the contribution of the NA61 kaon data to the νµ fluxes is dominant for

neutrinos up to about 5 GeV, while tuning of the high energy νµ tail is based on

the Eichten data. This is consistent with the fact that the Eichten measurements of

kaon production are in the momentum range from 6–24 GeV/c when scaled to the
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 (GeV)νTrue E
0 1 2 3 4 5 6 7 8 9 10

T
un

in
g 

W
ei

gh
t

1

1.1

1.2

1.3

1.4

1.5
+NA61 K

Eichten et al
Allaby et al

L
0K

Tertiary
Total

(c) Tuning weights for νe
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Figure 7.12: Kaon tuning weights for the ND280 neutrino fluxes.
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Figure 7.13: Kaon tuning weights for the SK neutrino fluxes.
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T2K beam energy. For νe the contribution of the Eichten data is more significant

for lower energies. This is due to the fact that these neutrinos come from the three

body K+ decay,

K+ → π0e+νe,

which leads to a larger probability of a high energy kaon producing a low energy

neutrino.

7.4 Interaction rate tuning

To tune the interaction rate, the model predictions are compared to the data listed

in Table 7.3. Fig. 7.14 (Fig. 7.15) shows the data and the predicted production

cross-sections with the FLUKA, GCALOR, and GFLUKA models for protons, pi-

ons, and kaons interacting in carbon (aluminum).

FLUKA reproduces the data reasonably well, meaning that the effect of tuning

the interaction rate inside the target (based on FLUKA-data discrepancy) is not

significant when compared to the effects of the associated systematic uncertainties.

The interaction rate inside the target is consequently not tuned. GCALOR, on

the other hand, shows a sizable disagreement with the cross-section data. The

out-of-target interaction rates are therefore tuned.
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Figure 7.14: Comparison of production cross-section data in carbon with FLUKA,
GCALOR, and GFLUKA predictions.
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Figure 7.15: Comparison of production cross-section data in aluminum with
FLUKA, GCALOR, and GFLUKA predictions.
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Data Beam Material pbeam (GeV/c) Measurement

Abrams et al. [93] K± C, Cu 1-3.3 σinel

Allaby et al. [94] π−, K− C, Al, other 20-65 σinel

Allardyce et al. [95] π± C, Al, other 0.71-2 σinel

Bellettini et al. [96] p C, Al, other 19.3, 21.5 σinel

Bobchenko et al. [97] π−, p C, Al, other 1.75-9 σinel

Carroll et al. [98] π±,K±, p C, Al, other 60-280 σprod

Cronin et al. [99] π− C, Al 0.73-1.33 σinel

Chen et al. [100] p C, Al, other 1.53 σinel

Denisov et al. [101] π±,K±, p C, Al, other 6-60 σinel or σprod

Longo et al. [102] π+, p C, Al 3 σinel

NA61 [83] p C 31 σprod

Vlasov et al. [103] π− C, Al 2-6.7 σinel

Table 7.3: Available inelastic and production cross-section data

7.5 Hadron production tuning results

The tuning performed on the MC flux predictions is summarized in Table 7.4.

FLUKA GCALOR

p+ C → π± +X p+ Al→ π± +X
n+ C → π± +X n+ Al→ π± +X
p+ C → K± +X –
p+ C → K0

L +X –

– Interaction rate

Table 7.4: Summary of the model prediction tuning

Fig. 7.16 and Fig. 7.17 show the results of the hadron production tuning for the

neutrino flux predictions for ND280 and SK, respectively. The vertical axis in these

plots shows how much the JNUBEAM predicted flux needs to be scaled based on

the hadron production data-model discrepancies.
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(b) Tuning effects for ND280 ν̄µ flux
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Figure 7.16: Hadron production tuning results for the neutrino flux predictions
for the ND280 detector.
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(a) Tuning effects for SK νµ flux

 (GeV)νTrue E
0 1 2 3 4 5 6 7 8 9 10

Fr
ac

tio
na

l f
lu

x 
ch

an
ge

0.9

1

1.1

1.2

1.3

1.4

1.5
int. rate tuning

kaon tuning

pion tuning

total tuning
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Figure 7.17: Hadron production tuning results for the neutrino flux predictions
for the SK detector.
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7.6 Predicted neutrino flux

The neutrino flux predictions for the ND280 and SK detectors are obtained by

tuning the JNUBEAM output with the hadron production data. The different

proton conditions between the runs (see Table 4.5 and Table 4.6) are accounted

by taking a POT weighted sum of the flux predictions for a given detector and

neutrino flavour for each run:

Φ̄(E) =
1

NPOT
tot

# of runs∑
i

NPOT
i Φi(E) (7.11)

where Φ̄(E) is the run average of the Φi(E) flux predictions for the ith run with

NPOT
i being the number of protons on target accumulated in this run and NPOT

tot is

the total number of the accumulated POT.

The flux predictions without oscillation effects are shown in Figs. 7.18 and 7.19

for the ND280 and SK detector, respectively. Figs. 7.20 and 7.21 show the same

predictions broken down according to the contributions from different neutrino

parents. Finally, Fig. 7.22 illustrates the contributions from each neutrino flavour

on the same scale for the ND280 (Fig. 7.22a) and SK (Fig. 7.22b) detectors.

The fluxes shown in these figures are normalized to 1021 POT, which is the

number of the POTs expected per year with 0.75 MW proton beam power. To

obtain the predictions for the number of POT accumulated so far (1.431 × 1020),
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(a) Predicted ND280 νµ flux
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(b) Predicted ND280 ν̄µ flux
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(c) Predicted ND280 νe flux
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(d) Predicted ND280 ν̄e flux

Figure 7.18: The predicted neutrino flux at the ND280 detector. Only the MC
statistical errors are shown.
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(a) Predicted SK νµ flux
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(b) Predicted SK ν̄µ flux
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(c) Predicted SK νe flux
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(d) Predicted SK ν̄e flux

Figure 7.19: The predicted neutrino flux at the SK detector without oscillation
effects. Only the MC statistical errors are shown.
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(a) Predicted ND280 νµ flux
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(b) Predicted ND280 ν̄µ flux
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(c) Predicted ND280 νe flux
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(d) Predicted ND280 ν̄e flux

Figure 7.20: The predicted neutrino flux at the ND280 detector separated by
parent type. Only the MC statistical errors are shown.
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(a) Predicted SK νµ flux
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(b) Predicted SK ν̄µ flux
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(c) Predicted SK νe flux

 (GeV)νE
0 1 2 3 4 5 6 7 8 9 10

/5
0M

eV
]

2
 P

O
T

/c
m

21
Fl

ux
[/

10

-210

-110

1

10

210

310
All

 parents-π
 parents-K

0
LK
 parents+µ

(d) Predicted SK ν̄e flux

Figure 7.21: The predicted neutrino flux at the SK detector separated by parent
type without oscillation effects. Only the MC statistical errors are shown.
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(a) Neutrino flux at the ND280 detector
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(b) Neutrino flux at the SK detector

Figure 7.22: Neutrino fluxes at the ND280 and SK detectors. Only the MC
statistical errors are shown.

the results in these figures should be re-scaled by a factor of 1.431× 1020/1021.

As can be seen from Figs. 7.20 and 7.21, the majority of muon neutrinos come

from pion parents. The high energy tail, however, is dominated by the muon

neutrinos originating from kaon parents. The νe flux is dominated by contributions

from µ decays, which mostly come from the same pion parents that contributed

to the νµ flux. Similar to νµ, the high energy νe originate from kaons. However,

unlike the case of νµ flux, where kaons do not contribute significantly up to ∼ 3

GeV, the kaon contribution to the νe flux becomes sizable after ∼ 1 GeV. As

mentioned already, this is the consequence of the fact that in the case of kaons,

electron neutrinos come from a three body decay.

The contributions of each neutrino parent and from different neutrino flavours

are also summarized in Table 7.5 for the SK neutrino flux without oscillation effects.
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π+/− K+/− K0
L µ+/− νx/νall

νµ
Total 94.44% 5.46% 0.09% 0.01% 92.67%

0.5–0.7 GeV 99.79% 0.18% 0.02% 0.006% 97.19%

ν̄µ
Total 82.47% 7.00% 1.39% 9.14% 6.05%

0.5–0.7 GeV 80.13% 2.98% 0.90% 15.97% 2.32%

νe
Total 0.97% 34.61% 11.50% 52.92% 1.11%

0.5–0.7 GeV 0.31% 11.20% 6.23% 82.26% 0.45%

ν̄e
Total 0.36% 18.49% 73.77% 7.38% 0.17%

0.5–0.7 GeV 0.23% 22.33% 62.54% 14.89% 0.05%

Table 7.5: Fractional contributions to the flux predictions (without oscillation
effects) for SK from different neutrino parents. The last column shows the fractions
of each neutrino flavour in the total neutrino flux.

The fractional contributions are computed for both the total flux and the flux in

the expected region of the maximum oscillation signal 0.5− 0.7 GeV.

Pion decays contribute over 90% to the muon neutrino flux. In addition, pions

are responsible (mostly via the muon daughters) for about 52% of the νe flux,

which is the major background to the νe appearance signal. Understanding of

these contributions is based on the measurements of the pion production done by

the NA61 experiment.

The remaining 48% of the electron neutrinos come from kaon decays. This

contribution is constrained using the NA61 K+ measurements and kaon production

data of Eichten et al. and Allaby et al.
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8 Systematic Uncertainties in the Predicted

Neutrino Flux

The sources of the systematic uncertainties for the neutrino flux predictions are:

• pion production

• kaon production

• secondary nucleon production

• production cross-section

• proton beam conditions

• neutrino beam direction (off-axis angle)

• component (target and horn) alignment

• horn currents.
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A covariance matrix Vb is used to encapsulate the systematic uncertainties in

the predicted neutrino flux. It is a generalization of the standard variances that also

includes information on possible correlations between neutrinos of different energies

and flavours.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 2.01.2 1.5 3.02.5 4.03.5 5.0 7.0 10.0 30.0 GeV

0-19 20-39 40-59 60-79 80-99 100-119 120-139 140-159

ND280 SK

muon ν anti-muon ν anti-e νelectron ν muon ν anti-muon ν anti-e νelectron ν

Figure 8.1: Binning and ordering of the flux covariance matrix entries.

For each neutrino flavour and detector 20 energy bins covering the range from

0 to 30 GeV are adopted. The covariance matrix is organized in the following

order: ND280 νµ (entries 0-19), ND280 ν̄µ (entries 20-39), ND280 νe (entries 40-

59), ND280 ν̄e (entries 60-79), SK νµ (entries 80-99), SK ν̄µ (entries 100-119), SK

νe (entries 120-139), and SK ν̄e (entries 140-159). Fig. 8.1 illustrates the binning

and the ordering for the covariance matrix entries.

The elements of this covariance matrix are defined as

V b
EE′ = ρEE′σΦ(E)σΦ(E ′) (8.1)
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where σΦ(E) is the fractional uncertainty for a given energy bin of the neutrino

flux and ρEE′ is the correlation coefficient between two energy bins. It follows from

Eq. 8.1 that the diagonal elements of Vb are the squares of the flux uncertainties

for a given bin.

Using the flux covariance the systematic uncertainties in the flux predictions

can be described with a multi-variate normal distribution:

N ∼ 1

|Vb|1/2
exp

[
−1

2
(b− 1)TVb−1

(b− 1)

]
. (8.2)

The scale factors b sampled from this PDF can then be used to vary the nominal

flux predictions Φ0(E) and study the effects of the systematic uncertainties in the

oscillation analysis:

Φ′(E) = b(E)Φ0(E). (8.3)

The remainder of this chapter will be devoted to the evaluation of Vb.

8.1 Evaluation of systematic uncertainties

The uncertainties are evaluated from variations in the predicted neutrino flux. If a

given source of the systematic uncertainty can be described by a small number of

uncorrelated parameters, the effects on the neutrino flux can be studied by changing

each parameter by one standard deviation. This will be called the “1σ” method.
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The uncertainty in the neutrino flux predictions are evaluated according to

σΦ(E) = |R(E)|, (8.4)

where R(E) is the ratio of the flux produced from the variation of a given systematic

parameter over the nominal flux Φ (predicted flux prior to any changes of the

systematic parameters). The covariance between the energies E and E ′ is computed

according to

V b
EE′ = (R(E)− 1)(R(E ′)− 1). (8.5)

If the number of the systematic parameters is large or there are strong corre-

lations between the parameters, the 1σ method becomes difficult to implement.

In this case, the uncertainties in the neutrino flux predictions are evaluated from

an ensemble of the parameter sets drawn from or thrown according to some nor-

mal distribution that represents the systematic uncertainties associated with the

parameter values. This approach will be referred to as the “thrown parameter”

method.

The uncertainty in the neutrino flux is computed from

σΦ(E) =

√√√√ 1

N − 1

N∑
j=1

(Φj(E)− Φ̄(E))2, (8.6)

176



where N is the number of the generated parameter throws, Φj(E) is the neutrino

flux for the jth throw, and Φ̄(E) is the mean. The covariance matrix is estimated

as a sample covariance according to

V b
EE′ =

1

N − 1

N∑
j=1

(Φj(E)− Φ̄(E))(Φj(E ′)− Φ̄(E ′))

Φ̄(E)Φ̄(E ′)
(8.7)

from the ensemble of Φj(E).

8.2 Pion production uncertainties

The sources of the systematic uncertainties associated with pion production are:

• experimental errors in the NA61 π± data

• uncertainties associated with the momentum scaling procedure

• uncertainties in the pion production in the regions not covered by data.

8.2.1 Uncertainties in the NA61 pion data

The uncertainties in π± production are based on the experimental errors in the

NA61 data reported in [83]. The statistical uncertainties are uncorrelated between

different p− θ bins. The systematic uncertainties are separated into the contribu-

tions from different sources and appropriate bin-to-bin correlations are adopted for

177



each source.

To propagate the NA61 errors, the pion weights are modified by randomly sam-

pling the statistical and systematic covariances. The systematic uncertainty in the

neutrino flux is calculated from the set of the resultant predictions.

8.2.2 Uncertainties in the momentum scaling

The use of momentum scaling when tuning the tertiary pion production introduces

an additional source of systematic uncertainty. This has been evaluated by modi-

fying the scaling procedure. The pion production measurements done with protons

of 12.3 and 17.5 GeV/c on a Be target by the E910 experiment [87] (see Table 6.4)

are scaled to carbon using the material scaling procedure described in Section 6.8.

The scaled data sets are then fit separately using the parametrization proposed by

Bonesini, Marchionni, Pietropaolo, and Tabarelli de Fatis (BMPT) [90]:

E
d3σ

dp3
= A(1− xR)α(1 +BxR)x−βR (1 + a′(xR)pT + b′(xR)p2

T )e−a
′(xR)pT , (8.8)

where a′(xR) = a/xγR, b′(xR) = a2/2xδR, and A,B, a, α, β, γ, δ are seven model

parameters determined by the fit to the data. The resultant parametrization is

then compared to the FLUKA predictions and a set of tuning weights is obtained.

The tertiary pion production is tuned based on the weights found from a linear
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interpolation of 31 GeV/c (NA61), 17.5 GeV/c, and 12.3 GeV/c results. The xR

variable is used instead of xF (see Section 6.7) to perform the momentum scaling.

When using this procedure, the flux predictions change by a few percent relative

to when the nominal scaling method is used. This change is treated as a systematic

uncertainty.

8.2.3 Uncertainties in the pion production outside of the data covered

regions

To evaluate the uncertainties in the parts of the phase-space not covered by the

NA61 π± data, the BMPT parametrization is used to extrapolate into these regions.

The BMPT function is fitted to π± data and its results are then compared to

the FLUKA model predictions to get the tuning weights. The change in the flux

predictions observed when the pion production outside of the NA61 covered phase-

space is tuned according to the BMPT/FLUKA ratio relative to the nominal case

when no tuning is done is taken as a systematic uncertainty. The effect of the

uncertainties in the BMPT parameters from the fit to the data is evaluated and

included into the systematic uncertainty.
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8.3 Kaon production uncertainties

The sources of the systematic uncertainties associated with the kaon production

are:

• experimental errors associated with the NA61 K+ data

• uncertainties associated with the Eichten and Allaby data

• uncertainties associated the momentum scaling procedure

• uncertainties in the kaon production in the regions not covered by the data

• uncertainties in the contribution from kaons produced in the interactions out-

side of the target graphite.

8.3.1 NA61 kaon uncertainties

The experimental errors in the NA61 measurement of kaon production are shown

in Fig. 8.2 in the two angular bins. The dominant uncertainties are statistical and

are on the order of 10 − 22% depending on the momentum bin. The systematic

uncertainties are mostly on the order of 4% and only become significant (5-10%)

for the highest momentum bins. The overall uncertainty for each momentum bin

is calculated as a sum in quadrature of statistical and systematic uncertainties. In
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addition to the bin errors, the normalization uncertainty of 2.3% in the NA61 data

is also applied.
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Figure 8.2: Uncertainties in the NA61 K+ multiplicity measurements.

These uncertainties are propagated by adjusting the NA61 based kaon tuning

weights by one standard deviation (1σ) one bin at a time for the bin errors, and all

the bins simultaneously (fully correlated) for the normalization error. This gives

in total eleven different re-weighted Monte Carlo sets (ten different data bins plus

overall normalization).

Since the statistical errors are much larger than the systematic uncertainties

for most of the bins, the possible correlation between systematic uncertainties for

different bins is not treated at this time.

Due to limited statistics the NA61 kaon data had to be coarsely binned. To

estimate the effects of such coarse binning on the neutrino flux, the kaon production

data in Table 7.1 is fitted with the BMPT model. After the fit is performed, the
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integral of the BMPT function in a given NA61 bin is normalized to the NA61

measurement in this bin. To evaluate the binning effect the kaon production is then

tuned based on the normalized BMPT function in place of the NA61 measurements.

The change in the resultant flux relative to the nominal predictions is included as

a systematic uncertainty.

The uncertainties in the neutrino flux predictions from the sources associated

with the NA61 kaon production measurements are shown in Fig. 8.3 and Fig. 8.4

for the ND280 and SK detectors, respectively. The labels of “+1σ bin 1” etc.

refer to the uncertainties due to errors for the seven momentum bins in the first

(20–140 mrad) angular bin, while those of “+1σ bin 8” etc. correspond to the

uncertainties from the three momentum bins in the second (140–240 mrad) angular

bin. The covariance for the predicted neutrino fluxes at different energies E and

E ′ is calculated as in Eq. 8.5.

8.3.2 Eichten and Allaby kaon uncertainties

The effects of the uncertainties in the Eichten and Allaby data on the neutrino flux

are studied by varying the values of each measurement point within these data sets

according to the associated uncertainties.

The considered uncertainties are summarized in Table. 8.1. The normalization

uncertainty σN is treated as correlated for all the data points and both the K+ and
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Figure 8.3: Systematic errors in the neutrino fluxes at ND280 due to the uncer-
tainties associated with the NA61 K+ multiplicity measurements.
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Figure 8.4: Systematic errors in the neutrino fluxes at SK due to the uncertainties
associated with the NA61 K+ multiplicity measurements.
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Experiment σN σθ σp,θ
Eichten et al. 15% 5% Max 4%
Allaby et al. 10% 10% 2− 5%

Table 8.1: Summary of the uncertainties in the Eichten and Allaby data. The
overall normalization uncertainty is denoted by σN . The uncertainty for a given
angular bin which is correlated for different momentum bins is labeled as σθ. The
uncorrelated uncertainty for each p− θ bin is denoted by σp,θ.

K− data sets from a given experiment. The uncertainty σθ is treated as correlated

for the measurements taken at the same angle θ for both K+ and K−. Finally, σp,θ

is the error component uncorrelated between different data points.

In addition to the experimental errors, the uncertainties in the scaling from

beryllium to carbon (A-scaling) target material are applied. As discussed in Sec-

tion 6.8, these consist of a normalization type uncertainty σAN = 5% which is corre-

lated for both Eichten and Allaby data and an uncorrelated uncertainty σAp,θ = 5%.

To study the effects of these errors, each data point is scaled by a factor fi. These

factors are the products of weights randomly drawn from Gaussian distributions N

with the mean of one and the width defined by the given error source:

fi = N (1, σAN)×N (1, σN)×N (1, σθ)×N (1,
√

(σp,θ)2 + (σAp,θ)
2). (8.9)

The N (1,
√

(σp,θ)2 + (σAp,θ)
2) term represents the uncorrelated component of the

error and is drawn for each point separately. The draws from other distributions
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in Eq. 8.9 are made according to the discussed correlations. For example, a factor

drawn from N (1, σN) is the same for all the points in a given data set.

Each throw of K+ and K− data is appropriately (preserving any error corre-

lations) combined according to Eq. 7.7 to obtain sets of predictions for K0
L and

to estimate the uncertainty on the neutrino flux coming from the production of

neutral kaons.

After the data points are adjusted based on the thrown scale factors, the bi-

cubic interpolation is performed. The nominal flux tuning weights w(p, θ) computed

according to Eq. 7.9 are then modified according to

wj(p, θ) =

(
dσjEichten,Allaby

dpdΩ

/dσEichten,Allaby

dpdΩ

)
× w(p, θ), (8.10)

where the superscript j indicates an index of a re-scaled data set. Finally, the

neutrino flux is tuned using wj(p, θ), which results in a modified set of neutrino flux

predictions Φj(E). Using Eq. 8.6 and Eq. 8.7, the uncertainty and covariance matrix

for flux predictions are computed from an ensemble of 200 Φj(E) distributions.

8.3.3 Uncertainties in momentum scaling

The momentum scaling is required in order to tune the production of secondary

kaons with Eichten and Allaby data. It is also involved in the tuning of the tertiary
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kaon production.

The momentum scaling is nominally performed using the xF scaling variable,

but a radial scaling variable xR could also be used. The difference in the tuned flux

predictions when xR is used from those obtained with xF is treated as a systematic

uncertainty associated with the momentum scaling.
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Figure 8.5: Ratio of the scaled K+ production data from Allaby et al. to that of
Eichten et al.

It is also possible to check the scaling with the data, since kaon production

measurements of Allaby et al. performed at 19.2 GeV/c could be scaled to 24 GeV/c

and compared to those of Eichten et al. The comparison of the scaled Allaby data

to the Eichten data is shown in Fig. 8.5 for K+ as an example. The fact that the

ratio shown in this figure is not one is dealt with by modifying the Eichten kaon
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weights according to

w′(p, θ) =

(
dσScaled Allaby

dpdΩ

/dσEichten

dpdΩ

)
× wEichten(p, θ). (8.11)

The changes in the predicted flux after the tuning with the modified weights is

performed are taken to represent the systematic uncertainty.

8.3.4 Uncertainties in kaon production outside of the data covered re-

gions

The BMPT parametrization fitted to the kaon production data is used to extrapo-

late to the regions of phase-space not covered by the data. The kaon production is

tuned in these regions using the ratio of the BMPT to FLUKA predictions Eq. 8.12:

wBMPT(p, θ) =
dnBMPT

dpdΩ

/dnFLUKA

dpdΩ
, (8.12)

where nBMPT and nFLUKA are the BMPT and FLUKA predictions for the kaon

production multiplicity in the interactions of 31 GeV/c protons with graphite. A

systematic uncertainty is assigned based on the discrepancy between the resultant

and the nominally tuned flux.

Since the measurements used to construct the BMPT parametrization have ex-

perimental uncertainties, these errors also need to be accounted for when assigning
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the uncertainties outside of the data coverage. This is done by re-fitting the BMPT

parametrization using a hundred throws of the Eichten and Allaby data sets de-

scribed earlier. The BMPT parameters obtained from each fit are used to calculate

the kaon production multiplicity njBMPT and the weights in Eq. 8.12 are modified

according to

wj(p, θ) =

(
dnjBMPT

dpdΩ

/dnBMPT

dpdΩ

)
× wBMPT(p, θ). (8.13)

These weights are used to tune the hadron production in the regions not covered

by the data. The errors are then estimated from the resultant variation in the flux

predictions relative to the case when only the weights in Eq. 8.12 are used.

8.3.5 Uncertainties in kaon production outside of the target

(a) Ratio for K+ (b) Ratio for K− (c) Ratio for K0
L

Figure 8.6: Ratios to the interpolated kaon production double differential cross-
section measurements from Eichten et al., to the GCALOR predictions for 24 GeV/c
protons interacting on Al.

To estimate the uncertainties in the kaon production outside of the target, it is

necessary to compare the existing data to the GCALOR predictions. The predic-

188



p (GeV/c)
0 1 2 3 4 5 6 7

N
A

61
/G

C
A

L
O

R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(a) Ratio of the NA61/GCALOR K+

production for θ = 20− 140 mrad

p (GeV/c)
0 1 2 3 4 5

N
A

61
/G

C
A

L
O

R

0

0.2
0.4
0.6
0.8

1

1.2
1.4
1.6
1.8

2

(b) Ratio of the NA61/GCALOR K+

production for θ = 140− 240 mrad

Figure 8.7: Ratios to the scaled NA61 K+ production measurements to the
GCALOR predictions.

tions for kaon production are computed by simulating interactions of 24 GeV/c and

31 GeV/c proton beams in aluminum. The GCALOR predicted production with

24 GeV/c is compared to the measurements of Eichten et al., of kaon production

from Al target. The ratios of the data to GCALOR predictions for K+, K−, and

K0
L production are shown in Fig. 8.6.

To compare the NA61 measurements to the predicted kaon production with a 31

GeV/c proton beam, the data is first scaled from carbon to aluminum by applying

the scaling factor A

A =

(
AAl
AC

)α(xF ,pT )

, (8.14)

where AC and AAl are the atomic weights of carbon and aluminum, respectively.

189



As discussed in Section 6.8, the exponent α(xF , pT ) has the form

α(xF , pT ) = (0.77− 0.32xF )(1.0 + 0.25p2
T ). (8.15)

For each data bin, α and the scaling factor A are calculated by taking the p and θ

value at the bin centre, determining the corresponding xF and pT , and then using

Eq. 8.14 and 8.15 to evaluate the required quantities. The ratios of the NA61 scaled

K+ production data to the GCALOR predictions are shown in Fig. 8.7.

The difference of the tuned flux when the weighting of the kaon production in

GCALOR is included with the nominal one is assigned as the systematic uncer-

tainty.

8.3.6 Total kaon flux uncertainties

The fractional uncertainties in the neutrino flux predictions associated with the

kaon production are shown in Fig. 8.8 for the ND280 and Fig. 8.9 for SK detectors.

The contributions from each error source are also shown in these figures.

The largest contribution comes from the uncertainties associated with Eichten

and Allaby data (“Other data errors”). These uncertainties are mainly dominated

by the overall 15% normalization uncertainty in the Eichten data. The uncertainties

associated with the NA61 K+ production measurements are on the order of 5% and
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Figure 8.8: The uncertainties on the ND280 neutrino flux due to the kaon pro-
duction.
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Figure 8.9: The uncertainties on the SK neutrino flux due to the kaon production.
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4% for νµ and νe fluxes, respectively.

8.4 Secondary nucleon production uncertainties

Secondary protons and neutrons have a sizable contribution to the neutrino flux.

For example, the contribution of protons (neutrons) is around 16% (5%) for the

SK νµ (see Table 6.2). The xF − pT phase-space for the contributing protons and

neutrons are shown in Figs. 8.10a and 8.10b, respectively.

There are two components to the proton production: one with xF ≤ 0.9 and

another for xF > 0.9. This is not the case for neutrons where only those with xF ≤

0.9 contribute significantly. The contribution from high xF protons is attributed

to be coming from quasi-elastic scattering type of events, while the contributions

from xF ≤ 0.9 is due to hadron production. The evaluation of the uncertainty for

the secondary nucleon production is, consequently, separated into two regions.

In the region with xF ≤ 0.9 the uncertainty for the secondary nucleon produc-

tion is evaluated by comparing the FLUKA predictions for proton production in

beryllium with the proton production measurements of Eichten et al. and Allaby

et al. Fig 8.11 shows the ratio of the data to the FLUKA predictions of differential

proton production multiplicity. The location of the Eichten (circles) and Allaby

(squares) measurements is superimposed. The ratio shown in Fig. 8.11 is used to

tune the multiplicity of the nucleons produced with xF ≤ 0.9. Assuming isospin
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(a) Secondary protons (b) Secondary neutrons

Figure 8.10: Distribution of secondary protons and neutrons contributing to the
neutrino flux at SK.

invariance the same weights are used for protons as for neutrons.

For the parts of the production phase-space not covered by the data the values

of the tuning weights assigned are based on the average weight calculated in the

nearby regions. The effects of the normalization uncertainties (dominant sources of

the data errors, see σN in Table 8.1) are incorporated by scaling the Eichten and

Allaby data by 15% and 10%, respectively, independently of each other. Out of the

four possible combination (scaling Eichten data by 1.15 and Allaby by 1.10, scaling

Eichten data by 0.85 and Allaby by 1.10, etc.), the one giving the largest variation

in the flux predictions is chosen to represent the systematic uncertainty due to the

data errors.

In the region with xF > 0.9, it is assumed that the incident protons undergo

collisions with small momentum transfer and are not destroyed in the interactions.
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Figure 8.11: Ratio of the secondary proton production measurements to FLUKA
predictions. The location of Eichten and Allaby measurements are indicated by
circles and squares, respectively. Outside the phase space of the data, factors
of 2.5, 1.5 and 0.5 are assigned for the regions coloured by red, green and blue,
respectively.

Due to the lack of relevant data, a 100% uncertainty is currently assigned on the

multiplicity in this region.

8.5 Production cross-section uncertainties

The systematic uncertainty in the production cross-section is conservatively taken

to be represented by the magnitude of the quasi-elastic component σqe. This is based

on the discrepancy observed between the cross-section measurements for protons

of Denisov et al. [101] and those of Bellettini et al. [96], Carroll et al. [98], and

NA61 [83]. This is illustrated in Fig. 8.12 where these data are plotted. For the

measurement of the Bellettini et al., the quasi-elastic contribution of 30.4 mb [83]
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Figure 8.12: Production cross-section measurements for protons on graphite tar-
gets for momenta 20–60 GeV/c.

has been subtracted from the reported value of 254 mb. The fact that after the

subtraction the measurement agrees well with the NA61 and Carroll results can

be interpreted as that the magnitude of the discrepancy is roughly similar to the

size of the quasi-elastic cross-section. A conservative approach is therefore taken

by using σqe as the systematic uncertainty.

8.6 Proton beam uncertainties

The uncertainties in the proton beam parameters at the entrance of the baffle are

obtained from an orbit and optics fit to the proton monitor data (see Appendix C for

the details about the procedure). The values of these uncertainties are summarized

in Table 8.2 for the Run I and II periods.

196



Run I Run II

x̄ horizontal position (mm) 0.38 0.27

ȳ vertical position (mm) 0.58 0.62

x̄′ horizontal angle (mrad) 0.056 0.064

ȳ′ vertical angle (mrad) 0.286 0.320

cov(x̄, x̄′) (mm mrad) 0.011 0.013

cov(ȳ, ȳ′) (mm mrad) 0.065 0.079

σx horizontal profile width (mm) 0.11 0.26

σy vertical profile width (mm) 0.97 0.82

Twiss αx 0.32 0.26
Twiss αy 1.68 0.49

Table 8.2: Uncertainties in the proton beam parameters.

The dominant sources of the systematic uncertainties in the flux predictions are

the beam position and angle in y (vertical direction). These are the two sources

that will be considered here. As an example, Figs 8.13a and 8.13b show the νµ flux

changes for ND280 and SK, respectively, when the ȳ and ȳ′ are changed by one

standard deviation. The ratio of the flux predictions obtained with a shifted beam

to the nominal ones are plotted.

The uncertainty in the y − y′ is described with a bi-variate normal distribution

Np PDF:

Np(y, y′) =
1

2πδyδy′
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
∆2
y

δ2
y

+
∆2
y′

δ2
y′
− 2ρ∆y∆y′

δyδy′

])
, (8.16)

where:

197



 GeVνE
0 0.5 1 1.5 2 2.5 3

 F
lu

x 
ra

tio

0.85

0.9

0.95

1

1.05

1.1

1.15 σ + 1y
σ' + 1y

σ - 1y
σ' - 1y

(a) Effects on νµ flux at ND280

 GeVνE
0 0.5 1 1.5 2 2.5 3

 F
lu

x 
ra

tio

0.85

0.9

0.95

1

1.05

1.1

1.15 σ + 1y
σ' + 1y

σ - 1y
σ' - 1y

(b) Effects on νµ flux at SK

Figure 8.13: Effects of proton beam variations on the νµ flux at the ND280 and
SK detectors. The error bars represent the MC statistical errors.

• ∆y = y − ȳ

• ∆y′ = y′ − ȳ′

• δy and δy′ are the uncertainties in y and y′

• ρ is the dimensionless correlation coefficient: ρ = cov(ȳ, ȳ′)/δyδy′ .

The PDF is drawn for the Run I y−y′ proton beam conditions in Fig 8.14. The

points used to produce the four cases in Fig. 8.13 are marked by stars. They lie on

the isocontour curve

c =
1

2πδyδy′
√

1− ρ2
e−1/2, (8.17)

which is also shown in Fig. 8.14.
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Figure 8.14: PDF for beam position and angle in vertical direction with Run I
proton beam parameter values and uncertainties.

8.6.1 Propagating the proton beam uncertainties

In order to evaluate the effects of the proton beam uncertainties on the neutrino flux

predictions, the parameter space described by the PDF in Eq. 8.16 needs to be sam-

pled. To do this efficiently, a special MC sample was made with a large emittance in

y − y′ phase-space. Since the primary proton information (position, direction, and

momentum) is stored with each neutrino event, the proton information in the wide

beam sample can be re-weighted to obtain a desired proton distribution. In other

words, for given values of y and y′ drawn randomly from Eq. 8.16 the neutrino flux

predictions can be quickly obtained by picking the neutrino events from the wide

beam sample that have the desired proton beam parameters.

The beam shape in y− y′ (and x− x′) is modeled as a bi-variate normal distri-
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bution, which is defined in terms of the beam position ȳ, angle ȳ′, profile width σy,

emittance εy, and Twiss αy:

B(y, y′; ȳ, ȳ′, σy, εy, αy) =
1

2πσyσy′
√

1− ρ2
yy′

exp

(
− 1

2(1− ρ2
yy′)
F

)
, (8.18)

with

F =
(y − ȳ)2

σ2
y

+
(y′ − ȳ′)2

σ2
y′

− 2ρyy′(y − ȳ)(y′ − ȳ′)
σyσy′

,

where

• σy′ = εy
√

1 + α2
y/4σy

• ρyy′ = −αy/
√

1 + α2
y.

For a given draw of yi and y′i from the PDF in Eq. 8.16, each neutrino event gen-

erated by protons with (y, y′) coordinates in the wide beam sample is re-weighted

according to

w(y, y′) =
B(y, y′; yi, y

′
i, σ

n
y , ε

n
y , α

n
y )

B(y, y′; yw, y′w, σ
w
y , ε

w
y , α

w
y )
, (8.19)

where superscripts n and w indicate that the parameters correspond to the actual

beam conditions for a given run and wide beam conditions, respectively.

Using this approach a set of flux predictions is produced from the wide beam

sample and the uncertainties are estimated from this ensemble.
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8.7 Off-axis angle uncertainties

The neutrino beam profile is measured by the INGRID detector [104] and the di-

rection of the neutrino beam is inferred from the measured profile centre. The

uncertainty on the neutrino beam direction is estimated from the INGRID mea-

surements and the associated experimental uncertainties.

8.8 Alignment uncertainties

After the installation in the helium vessel, the horn alignment was surveyed with

respect to the proton beamline. The survey errors are a source of the systematic

uncertainties for the flux predictions. In addition, the alignment of the target inside

the first horn is also a source of the systematic uncertainties.

8.8.1 Horn alignment

Table 8.3 gives the summary of the horn alignment survey uncertainties. The

definition of the coordinate axis is positive x is on the beam left, positive y is up,

and positive s is in the direction of the proton beam.

Uncertainty

x 0.3 mm
y 1.0 mm
s 1.0 mm

Table 8.3: Horn alignment uncertainties.
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The alignment uncertainties are the same for all three horns.

The significance of the horn misalignment in different directions is estimated by

moving all three horns in a correlated way by 1σ in a given direction. The results

are illustrated in Figs. 8.15 and 8.16, where the ratios of the νµ flux generated with

all the horns misaligned according to the corresponding uncertainties (Table 8.3) to

the nominal flux are shown for ND280 and SK, respectively. The horn misalignment

in the y direction has the largest effect on the νµ neutrino flux predictions. The

effects of the misalignment in the other directions as well as other neutrino flavours

are small and are dominated by the MC statistical errors. For this analysis only

the effects of the horn misalignment in y direction will be considered.

To evaluate the uncertainty due to the horn alignment errors in y, four MC

samples were generated:

• horn 2 moved up by 5 mm (=5σ), Φ+
H2

• horn 2 moved down by 5 mm, Φ−H2

• horn 3 moved up by 5 mm, Φ+
H3

• horn 3 moved down by 5 mm, Φ−H3.

The horn 1 alignment errors are not considered. This is due to the fact that the

OTR monitor is aligned relative to the axis of the first horn and therefore the horn

1 alignment error is included in the proton beam parameter errors.
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Figure 8.15: Effects of the correlated misalignment in all three horns on the νµ
flux at ND280.
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Figure 8.16: Effects of the correlated misalignment in all three horns on the νµ
flux at SK.
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The uncertainties in the neutrino flux predictions due to the horn alignment are

estimated from the four MC samples. This is done by taking an average of horn 2

alignment effects linearly combined (full correlation) with that of horn 3 and then

scaled by a factor of 5 to estimate the effects at the 1σ level:

δΦi =
1

5

(
Φ+
H2(i) − Φ−H2(i)

Φ+
H2(i) + Φ−H2(i)

+
Φ+
H3(i) − Φ−H3(i)

Φ+
H3(i) + Φ−H3(i)

)
, (8.20)

where Φi stands for the flux at either ND280 or SK in the ith energy bin.

Figs 8.17 and 8.18 show the fractional flux changes due to the correlated horn

2 and horn 3 alignment errors calculated according to Eq. 8.20.

8.8.2 Target alignment

Table 8.4 summarizes the target alignment from the survey after the target was

installed inside the first horn. To evaluate the effects of the target misalignment,

horizontal tilt 1.3 mrad
vertical tilt 0.1 mrad

Table 8.4: Summary of the target alignment.

the target was rotated by 1.3 mrad in the horizontal and 0.1 mrad in the vertical

directions. The MC sample produced with the rotated target is then compared to

the nominal case and the magnitude of the flux change taken as the systematic

uncertainty. The flux ratios of the misaligned target over nominal case for different
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Figure 8.17: The effects on the ND280 neutrino flux from the horn 2 and horn 3
misalignment by 1 mm.
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Figure 8.18: The effects on the SK neutrino flux from the horn 2 and horn 3
misalignment by 1 mm.
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Figure 8.19: Effects of target alignment for the ND280 neutrino flux predictions.
Flux ratios (misaligned target to the nominal target configuration) are shown.
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Figure 8.20: Effects of target alignment for the SK neutrino flux predictions.
Flux ratios (misaligned target to the nominal target configuration) are shown.
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neutrino flavours are shown in Figs. 8.19 and 8.20 for the ND280 and SK detectors,

respectively.

8.9 Horn current uncertainties

The horn current is monitored to a precision of ∼ 2%. For a 250 kA operation

during Run I and Run II periods, this translates into a 5 kA uncertainty on the

absolute current value supplied to the horns. The effect of this error is included as

a systematic uncertainty in the neutrino flux predictions.

8.10 Total systematic uncertainty and flux covariance

The total flux covariance is obtained by summing the contributions from each error

source. The fractional uncertainties (square root of the diagonal elements of the flux

covariance matrix) are shown in Figs. 8.21 and 8.22 for the neutrino flux predictions

at the ND280 and SK detector, respectively.

The entire flux covariance matrix is shown in Fig. 8.23. The x and y axes corre-

spond to the bin numbers whose ordering follows the convention shown in Fig. 8.1.

As can be seen the matrix is symmetric. The non-zero off-diagonal elements indi-

cate (anti-)correlations between energy bins for different neutrino flavours and the

two detectors.
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Figure 8.21: Fractional uncertainties for ND280 flux predictions.
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Figure 8.22: Fractional uncertainties for SK flux predictions.
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9 Effects of Flux Systematic Uncertainties on

Oscillation Parameters

As discussed in the previous chapter, the systematic uncertainties in the neutrino

flux predictions for T2K are encapsulated in the flux covariance matrix Vb. We will

now consider the effects of Vb on the oscillation searches at T2K. We will begin by

looking at the νµ disappearance and the effects Vb has on the determination of the

θ23 and ∆m2
32 oscillation parameters. We will then consider the νe appearance and

evaluate the impact of the flux systematic uncertainties on the search for the value

of the θ13 mixing angle.

9.1 νµ disappearance search

In this section we will consider two types of analysis. One is the single detector

approach where only the SK measurements are considered. The other uses the

information from both near and far detectors. For the single detector approach,

the expected flux of the muon neutrinos at SK is evaluated from the JNUBEAM
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ΦSK
νµ (E) predicted flux as

ΦSK,exp
νµ (E; sin2 2θ23,∆m

2
32) = P SK

µµ (E; sin2 2θ23,∆m
2
32)ΦSK

νµ (E), (9.1)

where P SK
µµ (E; sin2 2θ23,∆m

2
32) is the νµ survival probability at the position of SK.

For the two detector approach, the near-to-far extrapolation scheme is adopted.

In this case, the expected the expected νµ flux at SK is evaluated as

ΦSK,exp
νµ (E; sin2 2θ23,∆m

2
32) = R

νµ
F/N(E)P SK

µµ (E; sin2 2θ23,∆m
2
32)ΦND280,obs

νµ (E),

(9.2)

where quantity R
νµ
F/N(E), the far/near ratio, is obtained by taking the ratio of the

JNUBEAM predicted νµ neutrino fluxes for SK and ND280:

R
νµ
F/N(E) =

ΦSK
νµ (E)

ΦND280
νµ (E)

. (9.3)

Fig 9.1 shows the plot of the R
νµ
F/N. The fractional uncertainties on the ratio calcu-

lated from the flux covariance Vb are shown in Fig 9.2. For reference, the fractional

errors in the predicted νµ flux (Fig. 8.22) are also shown. The uncertainty on the

ratio is < 4% even though the flux uncertainties are 10− 20%.
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Figure 9.1: Far/near ratio for νµ flux extrapolation.
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Figure 9.2: Fractional uncertainty in νµ flux and far/near νµ/νµ ratio.

9.1.1 Analysis overview

The muon neutrino disappearance is studied by counting the number of muons

detected at SK. These muons are produced in the CC interactions with the water

nuclei and identified by the pattern of the Cherenkov light they emit in the detector.

The contributions from non-zero θ13 to the νµ survival probability in Eq. 3.31
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are ignored and the following approximation is used in this analysis:

P SK
µµ (E; sin2 2θ23,∆m

2
32) ' 1− sin2 2θ23 sin2 ∆32. (9.4)

Also, in the case of the far/near extrapolation, we will take ΦND280,obs
νµ (E) = ΦND280

νµ (E),

i.e., replace the observed neutrino energy spectrum with the predicted one. Thus

the ND280 detector effects will be ignored.

The SK νµ MC events are selected by requiring:

• event is fully contained in the fiducial volume (FCFV)

• the visible energy is greater than 30 MeV (Evis > 30 MeV)

• the event is a CC event with a single µ-like ring.

The reconstructed energy spectra of the selected events with sin2 2θ23 = 0 (no

oscillation) and sin2 2θ23 = 1.0 (maximal mixing) are shown in Figs. 9.3a and 9.3b

for ∆m2
32 = 2.4× 10−3 eV2.

To study the effects of systematic uncertainties for some set of the oscillation

parameters, a large number of pseudo-experiments is performed. For each such

experiment the relevant systematic parameters bND80
νµ (E) and bSK

νµ (E) are randomly

drawn from the PDF in Eq. 8.2.

In case of the single detector approach, an “observed” reconstructed energy
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Figure 9.3: Reconstructed νµ spectrum at SK for single ring µ-like FCFV events.
The mass difference ∆m2

32 = 2.4× 10−3 eV2.

spectrum is produced by re-weighting the MC predicted one by

wn(E) = bSK
νµ (E). (9.5)

In the far/near extrapolation approach, the re-weighting is done as

wn(E) =
Rn

F/N

Rtrue
F/N

=
bSK
νµ (E)

bND80
νµ (E)

. (9.6)

These flux weights as well as the oscillation probability are functions of the true

neutrino energy. As a first step in the analysis, a 2D distribution of events in the

Eν − Erec
ν plane is constructed. This distribution is obtained from the selected SK

MC event sample assuming no oscillations and is shown in Fig. 9.4. The projections

of the y bins on the horizontal axis gives the spectrum identical to the one shown
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in Fig. 9.3a. For each set of the flux weights and given values of the oscillation

parameters, the reconstructed energy spectrum is obtained by re-weighting the

Eν − Erec
ν distribution and then summing over all Eν bins.
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Figure 9.4: Distribution of the selected events in Eν − Erec
ν plane.

The probability that one observes a total number of events nobs given the ex-

pectation of nexp is described by the Poisson distribution:

P (nobs;nexp) =
(nexp)n

obs
e−n

exp

nobs!
. (9.7)

The probability that there are nobs
i events in the ith energy bin is given by the

multinomial distribution:

P (nobs
i ;nexp

i , nexp) = nobs
∏
i

1

nobs
i

(
nexp
i

nexp

)nobs
i

. (9.8)
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The likelihood of observing the spectrum nobs
i is therefore a joint probability of the

Poisson and multinomial probability distributions:

L = e−n
exp ∏

i

1

nobs
i

(nexp
i )n

obs
i =

∏
i

e−n
exp
i

1

nobs
i

(nexp
i )n

obs
i . (9.9)

Taking the natural logarithm of Eq. 9.9 and using the freedom that the shape of

the resultant function is unchanged when a constant is added or subtracted, we can

write:

−2 lnL = 2
∑
i

[
nobs
i ln

(
nobs
i

nexp
i

)
− (nobs

i − n
exp
i )

]
. (9.10)

The quantity −2 lnL has a χ2 distribution. To obtain the values of sin2 2θ23 and

∆m2
32 that best describe the pseudo-experiment data, Eq. 9.10 is minimized by

varying the oscillation parameters and consequently changing nexp
i .

For each pseudo-experiment χ2 is computed with true and best fit values of the

oscillation parameters and, following the approach of [105], the difference between

the two χ2 values is taken

∆χ2 = χ2
true − χ2

best. (9.11)

As a final step, a value of ∆χ2
crit is chosen such that 68.27% of the pseudo-experiments

fall into ∆χ2 < ∆χ2
crit sub-sample. The uncertainties in the oscillation parameters

due to the flux systematic uncertainties are then evaluated from the selected sub-
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sample by taking the largest deviation of the best fit oscillation parameters from

their true values.

9.1.2 Results

A raster scan is performed to probe the oscillation parameter phase-space. This is

done by choosing three values of sin2 2θ23: 0.90, 0.95, and 1.00 (cf. Table 3.1). At

each of these values ∆m2
32 is scanned in the interval between 2.0−3.0×10−3 eV2 in

steps of 0.2× 10−3 eV2. Five thousand pseudo-experiments are used at each point

in the oscillation parameters phase-space.

Fig. 9.5 shows the uncertainties in the ∆m2
32 and sin2 2θ23 oscillation parameters

obtained from the variations of the flux predictions according to the systematic un-

certainties. Results for both one-detector and two-detector approaches are shown.

While the uncertainty in the flux predictions is too high to meet the T2K goal

of δ(∆m2
32) ∼ 10−4 and δ(sin2 2θ23) ∼ 1% precision, the uncertainties in the F/N

ratio are rather small. The flux uncertainties are therefore not expected to be a

dominant error source limiting the precision of the experiment in the future.

9.2 νe appearance search

The electron neutrinos are detected via electrons they produce in the CC inter-

actions with the water nuclei. At SK electrons are distinguished from muons by
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Figure 9.5: Uncertainties in the ∆m2
32 and sin2 2θ23 oscillation parameters result-

ing from the systematic uncertainties in the flux predictions.
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fuzzier Cherenkov ring patterns in the detector.

The two most important backgrounds in the search for νe appearance at T2K are

the intrinsic νe contamination in the neutrino beam and π0 mesons produced in NC

interactions (NCπ0) of νµ that are incorrectly identified as electrons. In this section

we will evaluate the uncertainties in the background predictions arising from the

flux systematic uncertainties. Similar to the previous section, these uncertainties

will be evaluated with and without ND280 measurement of the νµ flux.

The contributions to the number of νe detected at SK come from:

• νµ → νe oscillations

• νµ induced background

• ν̄µ induced background

• νe beam contamination.

For the νµ-induced background, the flux predictions are evaluated according to

Eqs. 9.1 and 9.2 for one-detector and two-detector scenario, respectively. For ν̄µ,

no near detector information is used and the expected flux is obtained from

ΦSK,exp
ν̄µ (E; sin2 2θ23,∆m

2
32) = P SK

µµ (E; sin2 2θ23,∆m
2
32)ΦSK

ν̄µ (E). (9.12)

In the case of the νe background prediction, the expected νe flux at SK with no
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ND280 information is given by

ΦSK,exp
νe (E; sin2 2θ23,∆m

2
32, sin

2 2θ13) = P SK
µe (E; sin2 2θ23,∆m

2
32, sin

2 2θ13)ΦSK
νe (E).

(9.13)

For the two detector case, the near-to-far extrapolation is adopted again:

ΦSK,exp
νe (E; sin2 2θ23,∆m

2
32, sin

2 2θ13) = Rνe
F/N(E)P SK

µe (E; sin2 2θ23,∆m
2
32, sin

2 2θ13)

× ΦND280,obs
νµ (E).

(9.14)

The far/near ratio in this case has the form

Rνe
F/N(E) =

ΦSK
νe (E)

ΦND280
νµ (E)

. (9.15)

The ratio is shown in Fig. 9.6.

The fractional uncertainties in the expected neutrino flux from the systematic

uncertainties in the flux predictions are shown in Fig. 9.7. As this figure illustrates,

there is still an advantage in doing the near-to-far extrapolation, as the flux uncer-

tainties are reduced. The reduction, however, is not as significant as with the case

of the ND280 νµ to the SK νµ extrapolation discussed in the previous section.

To study the effects of the flux uncertainties, we will use the same selection
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Figure 9.6: Far/near ratio for νe flux extrapolation.
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Figure 9.7: Fractional uncertainty in νe flux and far/near νe/νµ ratio.

criteria for the SK events as the ones in the T2K νe analysis [46]:

• events are FCFV events

• the visible energy is greater than 100 MeV

• events are associated with a single e-like ring

• no delayed electrons are observed
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• the reconstructed invariant mass is less than 105 MeV (suppresses π0 back-

ground)

• the reconstructed energy is less than 1250 MeV.
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Figure 9.8: Distribution of the selected νe events for sin2 2θ13 = 0.1.

Fig. 9.8 shows the MC predicted reconstructed energy spectrum for νe events

at SK for sin2 2θ13 = 0.1. All but the reconstructed energy cut have been applied

in this figure. For the νe appearance signal, the oscillation probability in Eq. 3.47

is used with the following parameter values:

• ∆m2
32 = 2.4× 10−3 eV2

• ∆m2
21 = 7.6× 10−5 eV2

• sin2 2θ12 = 0.8704
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• sin2 2θ23 = 1.0

• a = 3.2 g/cm3

• δ = 0

• normal hierarchy: ∆m2
32 > 0.

The νµ (and ν̄µ) survival probability is calculated according to Eq. 9.4, while

the νe appearance probability is obtained from Eq. 3.27.

The fractional contributions from different sources to the total number of the

selected νe events are summarized in Table 9.1 for the oscillation signal assuming

sin2 2θ13 = 0.1.

νe signal 74.5%
νe background 13.5%
νµ background 11.3%

ν̄µ background 0.7%

Table 9.1: Fractional contributions to the total number of selected νe events
assuming oscillation signal with sin2 2θ13 = 0.1.

The fractional uncertainties in each contribution as well as the total fractional

error in the νe expected background from the flux systematic uncertainties are sum-

marized in Table 9.2. It should be noted that the uncertainties for each background

source are not weighted by the size of the respective contribution. The total uncer-

tainty, however, takes the fractional contribution of each background source into

account.
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SK only ND280 & SK

νe background 10.9% 5.6%
νµ background 10.5% 0.7%

ν̄µ background 10.6% 10.6%

Total 10.3% 3.1%

Table 9.2: Fractional uncertainties in each contribution and the total fractional
error in the expected νe background computed with sin2 2θ13 = 0.

As Table 9.2 illustrates, the contribution of the flux systematic errors is on the

order of 3% with the near-to-far extrapolation. It should be noted that the current

uncertainty from the uncertainties in the neutrino interaction cross-sections is on

the order of 14%, while the contribution from the systematic uncertainties in the

SK measurement is ∼ 15% [46]. The uncertainty in the flux predictions are not a

dominant systematic error and, until cross-section and detector systematic errors

are significantly reduced, should not limit the precision of the experiment.

As a reference, Fig. 9.9 shows the T2K sensitivity to sin2 2θ13 for the normal mass

hierarchy. The sensitivity curves are constructed for 5%, 10%, and 20% fractional

uncertainties in the expected background.

Fig. 9.10 shows the first results of the νe appearance analysis of the T2K data

accumulated with 1.431 × 1020 POT. In this data set, six νe events that passed

all selection criteria were observed while the expected background if θ13 = 0 is 1.5

events. The T2K result therefore was the first indication of non-zero θ13 at > 90%

confidence.
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10 Conclusions

The T2K experiment is the long baseline oscillation experiment aiming to observe

νµ to νe oscillations and determine the θ13 mixing angle. In addition, it also plans

to make precise measurements of the ∆m2
32 and sin2 2θ23 parameters.

Successful operation of the T2K experiment relies on the stability of the high

intensity proton beam used for the neutrino production. To ensure this is possi-

ble an Optical Transition Radiation proton beam monitor has been designed and

commissioned. The unique feature of this detector is its ability to operate in the

high radiation environment near the T2K target. It has been successfully used

to monitor the proton beam stability and determine the beam position and angle

with the accuracy necessary to meet the T2K goal of measuring the atmospheric

parameters with the precision of δ(∆m2
32) ∼ 10−4 eV2 and δ(sin2 2θ23) ∼ 0.01.

To achieve high sensitivity to the small θ13 mixing angle and significantly im-

prove the precision of the determination of θ23 and ∆m2
32, T2K uses two neutrino

detectors, ND280 and SK, to measure the neutrino flux near the production site
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and at the peak of the oscillation probability, respectively. Including the ND280

data into the analysis of the oscillation signals requires a way to relate these ob-

servations to the far detector measurements. This connection is derived from the

neutrino flux predictions for each detector. This has been the primary focus of this

work.

One of the most challenging aspects of determining the neutrino flux is the

evaluation of particle yields in the hadronic interactions of the proton beam with the

target. The strategy adopted by T2K is to rely on the available hadron production

data as much as possible in order to reduce systematic uncertainties.

As the majority of the muon neutrinos are generated in decays of pions, un-

derstanding the production of these particles is therefore the first priority. The

pion production data from the NA61/SHINE experiment has been instrumental in

addressing this issue.

Since the primary goal of the T2K experiment is to detect νe appearance in

the muon neutrino beam, understanding the intrinsic contamination of the electron

neutrinos in the neutrino beam is also critical. A large fraction of these neutrinos

come from the decays of muons that are produced along with νµ neutrinos in the

pion decays. This contribution is therefore well described by the data for pion

production from the NA61 experiment. A sizable fraction of the beam electron

neutrinos, however, also come from the kaon decays. In this thesis, the analysis
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of this contribution has been performed using the NA61 measurement of the K+

multiplicity in conjunction with the kaon production data from other experiments.

The absolute uncertainty in the νµ and νe predicted flux for neutrino energies

below 3 GeV (where the majority of the T2K neutrino flux is) is under 15%. The rel-

ative uncertainty between the neutrino flux predictions (without the contributions

from the uncertainties in the ND280 measurements) for ND280 and SK detectors is

on the order of 3% for muon neutrinos and between 5-10% for electron neutrinos.

The uncertainty on the total number of the beam electron neutrinos expected to

be reconstructed in the SK with energies between 100–1250 MeV is on the order of

3%. The systematic uncertainties in the neutrino flux predictions are not expected

to be dominant for the oscillation searches at T2K until the errors associated with

the neutrino interaction cross-sections and detector measurements are reduced.

To conclude, we would like to emphasize that the parameter θ13 holds the key

to answering one of the most interesting unknowns: CP violation in the lepton

sector, which is one of the pieces in the matter-antimatter asymmetry puzzle. In

addition, it can also solve the problem of the neutrino mass hierarchy. Determining

the value of this parameter is therefore of great scientific interest and T2K and

other experiments will hopefully be able to provide the answers.
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A Oscillation Probabilities in Vacuum

To calculate the expression for various neutrino oscillation channels in vacuum, we
begin with the general expression for the oscillation probability:

Pαβ = |U∗α1Uβ1e
−im

2
1L

2E + U∗α2Uβ2e
−im

2
2L

2E + U∗α3Uβ3e
−im

2
3L

2E |2

= |U∗α1Uβ1 + U∗α2Uβ2e
−2i∆21 + U∗α3Uβ3e

−2i∆31|2,
(A.1)

where ∆ji stands for

∆ji =
∆m2

jiL

4E
. (A.2)

For α = β, Eq A.1 can be written as

Pαα = ||Uα1|2 + |Uα2|2e−2i∆21 + |Uα3|2e−2i∆31|2

= |Uα1|4 + |Uα2|4 + |Uα3|4

+ 2|Uα1|2|Uα2|2 cos 2∆21 + 2|Uα1|2|Uα3|2 cos 2∆31 + 2|Uα2|2|Uα3|2 cos 2∆32

= |Uα1|4 + |Uα2|4 + |Uα3|4 + 2|Uα1|2|Uα2|2 + 2|Uα1|2|Uα3|2 + 2|Uα2|2|Uα3|2

− 4|Uα1|2|Uα2|2 sin2 ∆21 − 4|Uα1|2|Uα3|2 sin2 ∆31 − 4|Uα2|2|Uα3|2 sin2 ∆32

= (|Uα1|2 + |Uα2|2 + |Uα3|2)

− 4|Uα1|2|Uα2|2 sin2 ∆21 − 4|Uα1|2|Uα3|2 sin2 ∆31 − 4|Uα2|2|Uα3|2 sin2 ∆32

= 1− 4|Uα1|2|Uα2|2 sin2 ∆21 − 4|Uα1|2|Uα3|2 sin2 ∆31 − 4|Uα2|2|Uα3|2 sin2 ∆32.

(A.3)

If α 6= β, it is also possible to simplify Eq. A.1 somewhat. Using the unitarity
condition

3∑
i=1

U∗αiUβi = δαβ,
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we can re-write Eq. A.1 as

Pαβ = |U∗α2Uβ2e
−2i∆21 + U∗α3Uβ3e

−2i∆31 − (U∗α2Uβ2 + U∗α3Uβ3)|2

= 4|U∗α2Uβ2e
−i∆21 sin ∆21 + U∗α3Uβ3e

−i∆31 sin ∆31|2

= 4(U∗α2Uβ2e
−i∆21 sin ∆21 + U∗α3Uβ3e

−i∆31 sin ∆31)

× (Uα2U
∗
β2e

i∆21 sin ∆21 + Uα3U
∗
β3e

i∆31 sin ∆31)

= 4(|Uα2Uβ2|2 sin2 ∆21 + |Uα3Uβ3|2 sin2 ∆31

+ 2|Uα2Uβ2Uα3Uβ3| sin ∆21 sin ∆31 cos (∆32 + δ)).

(A.4)

For anti-neutrinos, on the other hand, the appearance probability is

Pᾱβ̄ = 4(|Uα2Uβ2|2 sin2 ∆21 + |Uα3Uβ3|2 sin2 ∆31

+ 2|Uα2Uβ2Uα3Uβ3| sin ∆21 sin ∆31 cos (∆32 − δ)).
(A.5)

The last term in Eq. A.4 and A.5 gives rise to CP violation if δ 6= 0.
Eqs. A.3 – A.5 are the general expressions for the oscillation probabilities for

the case of three neutrino mixing. We will now derive the probabilities for some of
the specific appearance and disappearance channels.

We start with the algebraically simplest case of Pee. From Eq. 3.23 it follows
that

|Ue1|2 = c2
12c

2
13,

|Ue2|2 = s2
12c

2
13,

|Ue3|2 = s2
13.

Substituting these into Eq. A.3 we obtain

Pee = 1− c4
13 sin2 2θ12 sin2 ∆21 − sin2 2θ13(c2

12 sin2 ∆31 + s2
12 sin2 ∆32). (A.6)

The next in line is the probability of electron neutrino appearance in a νµ beam,
Pµe:

Pµe = |2U∗µ2Ue2e
−i∆21 sin ∆21 + 2U∗µ3Ue3e

−i∆31 sin ∆31|2

= |2s12c13(c12c23 − s12s23s13e
−iδ)e−i∆21 sin ∆21 + s23 sin 2θ13e

−i∆31e−iδ sin ∆31|2

= |2s12c13(c12c23 − s12s23s13e
−iδ) sin ∆21 + s23 sin 2θ13 sin ∆31e

−i(∆32+δ)|2

= |c13c23 sin 2θ12 sin ∆21 − s2
12s23 sin 2θ13 sin ∆21e

−iδ + s23 sin 2θ13 sin ∆31e
−i(∆32+δ)|2.
(A.7)
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Introducing the following quantities√
P µe

sol = c13c23 sin 2θ12 sin ∆21, (A.8)√
P µe

atm = s23 sin 2θ13 sin ∆31, (A.9)√
P µe

tiny = s2
12s23 sin 2θ13 sin ∆21, (A.10)

we can write

Pµe = |
√
P µe

sol −
√
P µe

tinye
−iδ +

√
P µe

atme
−i(∆32+δ)|2

= P µe
sol + P µe

atm + P µe
tiny − 2

√
P µe

tiny(
√
P µe

sol cos δ +
√
P µe

atm cos ∆32)

+ 2
√
P µe

sol

√
P µe

atm cos (∆32 + δ),

(A.11)

while for anti-neutrinos Eq. A.11 becomes

Pµ̄ē = P µe
sol + P µe

atm + P µe
tiny − 2

√
P µe

tiny(
√
P µe

sol cos δ +
√
P µe

atm cos ∆32)

+ 2
√
P µe

sol

√
P µe

atm cos (∆32 − δ).
(A.12)

Consequently the last term in Eqs. A.11 and A.12 can lead to the CP violation.

Moreover, the contribution of
√
P µe

tiny is negligible for oscillation studies on the

distance scales set by the ∆31 and the neutrino energies from the accelerator beams.
This is illustrated in Fig. A.1 where Eqs. A.8 – A.10 are plotted for a rather low νµ

energy of 100 MeV. The contribution of
√
P µe

tiny does not become significant until

the distances where oscillations are driven by ∆21. Ignoring this contribution, we
can simplify the expressions for the νe and ν̄e appearance probability to

Pµe ' P µe
sol + P µe

atm + 2
√
P µe

sol

√
P µe

atm cos (∆32 + δ), (A.13)

Pµ̄ē ' P µe
sol + P µe

atm + 2
√
P µe

sol

√
P µe

atm cos (∆32 − δ). (A.14)

Finally we calculate the probability for the νµ disappearance, Pµµ:

Pµµ = 1− 4|Uµ1|2|Uµ2|2 sin2 ∆21 − 4|Uµ1|2|Uµ3|2 sin2 ∆31 − 4|Uµ2|2|Uµ3|2 sin2 ∆32

= 1− 4|Uµ3|2(|Uµ1|2 sin2 ∆31 + |Uµ2|2 sin2 ∆32)− P µµ
sol ,

(A.15)
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Figure A.1: Contributions to Pµe. The values of the parameters (taken from
[34]): ∆m2

21 = 7.59 × 10−5 eV2, ∆m2
31 = 2.50 × 10−3 eV2, sin2 θ12 = 0.312, and

sin2 θ13 = 0.013.

where
P µµ

sol = 4|Uµ1|2|Uµ2|2 sin2 ∆21. (A.16)

In the case when the energy of the neutrinos and the distance to the detector
are such that we are only sensitive to the ∆m2

32 ' ∆m2
31, the P µµ

sol can be neglected
and Eq. A.15 can be further simplified to

Pµµ = 1− 4|Uµ3|2(1− |Uµ3|2) sin2 ∆32

= 1− 4c2
13s

2
23(1− c2

13s
2
23) sin2 ∆32

= 1− c4
13 sin2 2θ23 sin2 ∆32 − s2

23 sin2 2θ13 sin2 ∆32.

(A.17)

This can be shown more rigorously by expanding sin ∆31 to the first order in
∆21:

sin2 ∆31 = sin2 ∆32 + ∆21 sin 2∆32. (A.18)

Then
|Uµ1|2 sin2 ∆31 ' |Uµ1|2 sin2 ∆32 + s2

12c
2
23∆21 sin 2∆32, (A.19)
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where we have neglected terms on the order of s13∆21 and higher. Consequently

Pµµ ' 1− 4|Uµ3|2(1− |Uµ3|2) sin2 ∆32 − 4|Uµ3|2s2
12c

2
23∆21 sin 2∆32

= 1− c4
13 sin2 2θ23 sin2 ∆32 − s2

23 sin2 2θ13 sin2 ∆32 − c2
13s

2
12 sin2 2θ23∆21 sin 2∆32

(A.20)

Near the oscillation maximum ∆32 ' π/2, so that sin ∆32 ' 1 while sin 2∆32 ' 0,
so the last term does not contribute.
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B Oscillation Probabilities in Matter

B.1 General formalism

The effects of the neutrino interactions in matter on the oscillation probabilities can
be obtained by solving the Schrödinger equation, Eq. B.1, for the evolved neutrino
state Ψ(x, t) in the presence of the appropriate matter potentials. For simplicity,
we drop any spatial dependence, i.e., work in the rest frame of νi:

i
∂

∂t
Ψ(t) = ĤΨ(t), (B.1)

where Ĥ is the Hamiltonian operator. Expanding Ψ(t) in the flavor eigenstate
basis, we obtain

Ψ(t) =
∑
α

fα(t)|να〉, (B.2)

where f 2
α(t) = |〈να|Ψ(t)〉|2 is the probability to find να in the state Ψ(x, t). From

Eqs. B.1 and B.2 it follows that

i
∂

∂t
fβ(t) =

∑
α

〈νβ|H|να〉fα(t). (B.3)

Arranging fβ(t) into a vector (νe, νµ, ντ )
T and the terms 〈νβ|H|να〉 into a 3 × 3

matrix which we will call H and Eq. B.3 can be re-written in a matrix form as

i
∂

∂t
f(t) = Hf(t). (B.4)

Solving Eq. B.4 for f(t), we get

f(t) = e−iHtf(t0). (B.5)
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In the case of vacuum oscillations H = H0 where

H0 = U

m1 0 0
0 m2 0
0 0 m3

U† (B.6)

and

e−iHt = U

e−im1t 0 0
0 e−im2t 0
0 0 e−im3t

U†. (B.7)

Imposing the condition that neutrino was born in state α, i.e., f(t0) = δαβ, we
obtain

fβ(t) =
∑
i

Uβie
−imitU∗αi

or, after using the Lorentz invariance mit = Et′ − pL,

fβ(L, t) =
∑
i

Uβie
−i(Et−pL)U∗αi

which is completely equivalent to Eq. 3.3.
It should be noted, that in the majority of literature H0 is defined as

H0 =
1

2E
U

m2
1 0 0

0 m2
2 0

0 0 m2
3

U† (B.8)

which follows from the approximation of Ei by E + m2
i /2E. Since the first term

results in an overall phase factor multiplying the oscillation amplitude, it disappears
when the oscillation probability is computed. Thus only m2

i term is considered in
H0. Both Eq. B.6 and Eq. B.8 yield the same results for oscillation probabilities,
but Eq. B.8 makes subsequent algebra somewhat easier, so we will use it instead of
Eq. B.6.

Returning to the propagation of neutrinos in matter, we construct an effective
Hamiltonian as

HM = H0 +HZ +HW . (B.9)

The neutral current (NC) interactions (Fig. 3.6a) affect all flavors. Therefore the
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Hamiltonian for these type of interactions has the form

HZ = VZ

1 0 0
0 1 0
0 0 1

 , (B.10)

where VZ is determined by the strength of interactions and the density of matter.
The neutral current contribution would generate only an additional overall phase

in Eq. B.5 that would disappear when calculating the oscillation probability. Thus
these processes have no effect on the flavor oscillations. This is true in general for
any H which is proportional to the identity matrix.

In case of the charged current νe scattering. the Hamiltonian has the form

HW = VW

1 0 0
0 0 0
0 0 0

 . (B.11)

The constant VW is given by
VW =

√
2GFne, (B.12)

where GF is the Fermi constant that sets the coupling strength of the interactions
and ne is the matter electron density. For anti-neutrinos VW is

VW = −
√

2GFne. (B.13)

To illustrate the effects of such interaction on the neutrino oscillations, we con-
sider the case of two neutrino mixing. The free Hamitonian in this case becomes

H0 =
1

2E

(
cos θ sin θ
− sin θ cos θ

)(
m2

1 0
0 m2

2

)(
cos θ − sin θ
sin θ cos θ

)
=

1

2E

(
m2

1 cos2 θ +m2
2 sin2 θ (m2

2 −m2
1) sin θ cos θ

(m2
2 −m2

1) sin θ cos θ m2
1 sin2 θ +m2

2 cos2 θ

)
=
m2

1 +m2
2

4E

(
1 0
0 1

)
+

∆m2

4E

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
.

(B.14)

As already discussed, the terms proportional to the identity matrix do not con-
tribute to the oscillation probability, so we can simply write

H0 =
∆m2

4E

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
. (B.15)
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For HW , we obtain

HW =
VW
2

(
1 0
0 −1

)
+
VW
2

(
1 0
0 1

)
. (B.16)

Drooping the last term

HW =
∆m2

4E

(
a/∆m2 0

0 −a/∆m2

)
, (B.17)

where
a = 2

√
2GFneE. (B.18)

Therefore the total Hamiltonian in matter is

HM =
∆m2

4E

(
−(cos 2θ − a/∆m2) sin 2θ

sin 2θ cos 2θ − a/∆m2

)
. (B.19)

Defining

∆m2
M = ∆m2

√
sin2 2θ + (cos 2θ − a/∆m2)2 (B.20)

and

sin 2θM =
sin 2θ√

sin2 2θ + (cos 2θ − a/∆m2)2
, (B.21)

Eq. B.19 can be re-written as

HM =
∆m2

M

4E

(
− cos 2θM sin 2θM
sin 2θM cos 2θM

)
. (B.22)

Comparing Eq. B.22 with Eq. B.15, we can conclude that by replacing θ with θM
and ∆m2 with ∆m2

M in Eqs. 3.18 and 3.20 the two flavor oscillation probabilities
in matter can be obtained:

Pµe = sin2 2θM sin2

(
1.27

L(km)

E(GeV)
∆m2

M(eV2)

)
(B.23)

and

Pµµ = 1− sin2 2θM sin2

(
1.27

L(km)

E(GeV)
∆m2

M(eV2)

)
. (B.24)
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B.2 Disappearance of the solar neutrinos

The MSW effect for the solar neutrinos is discussed in the context of the so called
adiabatic matter transitions where it is assumed that the matter density decreases
very slowly along the neutrino path. In the two flavor oscillation framework, the
matter eigenstates ν̃i can be expressed in terms of the flavor states νe and νµ by
inverting the mixing matrix:

ν̃1 = νe cos θM − νµ sin θM ,

ν̃2 = νe sin θM + νµ cos θM ,
(B.25)

where θM is given by Eq. B.21. For the neutrinos produced in the layers where
ne � ncrit

e , sin 2θM ' 0 and θM ' π/2. Consequently, the neutrino mixing is
suppressed, as the mass eigenstates are identical to the flavor eigenstates:

ν̃1 ' −νµ,
ν̃2 ' νe.

(B.26)

Since the reactions in the sun produce νe, Eq. B.26 implies that the solar neutrinos
are produced in ν̃2 eigenstate. For the adiabatic transitions neutrinos will remain
in the mass eigenstate and emerge from the sun in the vacuum eigenstate ν2, which
will not oscillate. The flavor content of the mass eigenstate, however, is no longer
pure νe and contains a mixture of νµ and νe. The average probability for νe to
emerge as νe is given by (see for example [106], [107])

P (νe → νe) =
1

2
(1 + cos 2θ cos 2θM(x)), (B.27)

where θM(x) is the mixing angle at the production point. It is energy dependent
because of θM . Different vacuum oscillation parameter values (θ, ∆m2) can lead
to different suppression of the energy spectrum of emerging νe. Since νe gradually
evolves into ν2, no oscillation actually happen for solar neutrinos. The MSW effect,
however, does rely on the existence of the neutrino mixing.
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C Proton Beam

C.1 Beam orbit fit

Position and 
profile monitors

Bending magnets 
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Focusing magnets
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-318 cm-428 cm-865 cmPrimary beamline: final section

Secondary beamline

Figure C.1: Proton monitors and beamline elements upstream of the target.

The beamline components in the final focusing section and upstream end of the
target vessel are shown in Fig. C.1. The position and angle of the proton beam is
obtained by fitting the beam position measurements. In the horizontal x direction,
the proton monitors downstream of the last quadrupole magnet are used. In the
vertical y direction, the monitors downstream of the last vertical bending magnet
are used. In this approach, there is no magnetic field that can change the beam
orbit present between different monitors. Consequently the orbit can fit can be
done simply by fitting the position data from the beam monitors to a straight line:

x(s) = x0 + x′s+ xoffset, (C.1)

where

• s is the coordinate collinear with the design beam orbit

• x(s) is the fit function in either the x or y coordinate
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• x′ is the beam angle

• x0 is the beam center at a given point in the beamline (e.g. target)

• xoffset is the offset between the primary and secondary beamline.

The parameters x0, x′, and xoffset are determined by fitting the position measure-
ments with Eq. C.1.

C.2 Beam optics fit

C.2.1 Introduction to matrix formalism of beam dynamics

The beam profile in position-angle, x− x′, phase-space is represented by ellipse in
general given by

γx2 + 2αxx′ + βx′
2

= ε. (C.2)

The parameters α, β, γ are called the Twiss parameters and ε is called the emittance.
The area of the beam in x− x′ is given by επ.

The parameters satisfy the following constraint

βγ − α2 = 1. (C.3)

Liouville’s theorem [108] requires ε to be conserved along a transport line.
The coordinates at any point in the beamline can be obtained from the trans-

formation (
x(s)
x′(s)

)
=

(
C(s) S(s)
C ′(s) S ′(s)

)(
x0

x′0

)
(C.4)

or more compactly in matrix notation

x = Mx0. (C.5)

The conservation of beam emittance requires that the Twiss parameters trans-
form according toβ(s)

α(s)
γ(s)

 =

 C(s)2 −2C(s)S(s) S(s)2

−C(s)C ′(s) C(s)S ′(s) + C ′(s)S(s) −S(s)S ′(s)
S ′(s)2 −2C ′(s)S ′(s) S ′(s)2

β0

α0

γ0

 . (C.6)

For a simple case of a particle beam traveling through a drift space of length l,
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the transformation in Eq. C.4 has the form:(
x(l)
x′(l)

)
=

(
1 l
0 1

)(
x(0)
x′(0)

)
. (C.7)

The matrix representing the drift space is therefore

MDrift =

(
1 l
0 1

)
. (C.8)

The transformation of the Twiss parameters in Eq. C.6 in the drift space takes
the form β(l)

α(l)
γ(l)

1 −2l l2

0 1 −l
0 0 1

β0

α0

γ0

 . (C.9)

For a quadrupole magnet of length l, the transformation matrix in the focusing
plane is

Mfocus =

(
cos
√
kl 1/

√
k sin

√
kl

−
√
k sin

√
kl cos

√
kl

)
, (C.10)

while the de-focusing plane of a quadrupole is represented by

Mdefocus =

(
cosh

√
|k|l 1/

√
|k| sinh

√
|k|l√

|k| sinh
√
|k|l cosh

√
|k|l

)
. (C.11)

The quadrupole field strength parameter k is determined by the field gradient G
and the momentum of a particle beam p:

k =
eG

p
, (C.12)

where e is the electric charge.
The propagation of a particle beam through a transport line consisting of some

sequence of drift spaces, bending magnets, and quadrupole magnets is represented
by a series of transformation matrices Mi appropriate for each element. The to-
tal transformation matrix for some number of elements N is the product of each
individual transformation matrix:

M = MNMN−1 . . .M3M2M1. (C.13)
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C.2.2 Measurement of emittance and Twiss parameters

The beam width σ is related to the emittance and the Twiss parameter β according
to

2σ =
√
εβ. (C.14)

According to Eq. C.6, the Twiss parameter β transforms as

β = M2
11β0 − 2M11M12α0 +M2

12γ0, (C.15)

where the matrix elements Mij are determined by the appropriate sequence of
transformations. Multiplying both sides of Eq. C.15 by the emittance ε and using
Eq. C.14 and Eq. C.3 gives

(2σ)2 = M2
11(2σ0)2 − 2M11M12α0ε+M2

12

ε(1 + α2
0)

(2σ0)2
. (C.16)

The parameters ε, α0, and σ0 are obtained by fitting the width measurements σi
from the profile monitors in the final focusing section of the primary beamline and
the OTR in the secondary beamline.

C.3 Treatment of proton beam parameters in Monte Carlo
simulation

The proton distribution in x− x′ (x refers to either x or y coordinate) phase-space
is modeled by

B(x, x′) =
1

2πσxσx′
√

1− ρ2
xx′

×

exp

(
− 1

2(1− ρ2
xx′)

[
(x− x̄)2

σ2
x

+
(x′ − x̄′)2

σ2
x′

− 2ρxx′(x− x̄)(x′ − x̄′)
σxσx′

])
,

(C.17)

where

• σx′ = ε
√

1 + α2/4σx

• ρxx′ = −α/
√

1 + α2.

The mean values of position x̄ and angle x̄′ are obtained from the orbit fit to the
position monitor data, which is described at the beginning of this Appendix. The
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parameters Twiss α, emittance ε, and beam width σx are extracted from the orbit
fit described in the previous section.

To generate a proton distribution according to Eq. C.17, a pair of independent
random numbers r1 and r2 is drawn from a Gaussian distribution with a mean of
0 and a width of 1. The x and x′ are then calculated from(

x
x′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
ar1

br2

)
+

(
x̄
x̄′

)
, (C.18)

where the angle θ is

θ =
1

2
arctan

2α

γ − β
, (C.19)

while a and b are given by

a =
1

2

√
ε

γ + α tan θ
, (C.20)

b =
1

2

√
ε

β − α tan θ
. (C.21)
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D Particle Momentum in the Centre of Mass

Frame

In this section we show how the centre of mass (CM) momentum of a particle c
produced in the inclusive reaction of the type

a+ b→ c+X (D.1)

is calculated.
The square of the total CM energy available in any frame is

s = (Ec + EX)2 − (pc + pX)2. (D.2)

In the CM frame this becomes

s = (
√
p2 +m2 +

√
p2 +M2)2, (D.3)

where m and M are the masses of c and X, respectively, where the latter is

M =
∑
i

mi. (D.4)

Expanding the right-hand-side of Eq. D.3 gives

s = 2p2 +m2 +M2 + 2
√
p2 +m2

√
p2 +M2, (D.5)

which leads to

((s−m2 −M2)− 2p2)2 = 4(p2 +m2)(p2 +M2). (D.6)

Expanding the expressions on the left and right gives

(s−m2−M2)2− 4p2(s−m2−M2) + 4p4 = 4p4 + 4p2(m2 +M2) + 4m2M2. (D.7)
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Eq. D.7 can be easily solved for p2:

p2 =
(s−m2 −M2)2 − 4m2M2

4s
. (D.8)

Thus the momentum of particle c in the CM frame is

p =

√
(s−m2 −M2)2 − 4m2M2

4s
. (D.9)
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