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Spinning particles and twistors are traditional subjects of the string theory and the
present SQS-conference, Usual treatment concerns the pointlike (or stringlike) objects in
(super)space-time. The Kerr-Schild spinning particle is eztended space-time object based
on the rotating Kerr-Newman black hole solution which has gyromagnetic ratio, g = 2.
as that of the Dirac clectron (Carter 1969). This solution has a reach twistorial structure
which polarizes space-time, so that the all surrounding {super)fields: spinor, clectromag-
uetic, gravitational, (axion and dilaton) are to be aligned with the Kerr principal null
congruence formed by twistor field.

The Dirac theory of electron and QED neglect gravity, arguing that it is very small.
The Kerr geometry shows that gravity plays essential role which is expanded to the
Compton region of electron. Origin of that is the extremely high value of the spin/mass
ratio (about 10" in the units i = ¢ = G = 1,) which shows that the estimations of
the gravitational effects have to be based on the Kerr-Newman solution. Strong twistor
polarization of the Kerr space-time induces very strong deformation of clectromagnetic
(em-) field which has to be aligned with the Kerr congruence. As a result, in the Kerr-
Newman space-time with parameters of electron, em-field acquires singular ring of the
Compton size @ = S/m = li/2m ~ 10?2 ~ 107! ¢cm. which is naked, since horizons are
absent by a >> m. The corresponding source of the Kerr-Newman solution represents
string-like structure which matches naturally with gravity and displays especial role of
the Compton region.

This space-time has twofold topology with a branch line along the Kerr singular ring
which is a closed 'Alice’ string. The field around the Kerr string is similar to the field
around a heterotic string [1]. Polarization of the em-field near this string may be consid-
ered as em-excitation of the string.

Structure of the Kerr-Schild geometry. The Kerr-Newman metric may be rep-
resented in the Kerr-Schild form

Guv = Nuv — ZHk/lkl/! (1)

where 7, is auxiliary Minkowski metric and H = ﬂ"fT;‘i[Sf—o For small mass m metric is
flat almost everywhere, for exclusion of a small neighborhood of the Kerr string. Vector
field £, is tangent to a twisting family of null rays — twistors, forming a vortex which is
described by the Kerr theorem. This congruence of twistors polarizes space-time
and determines the form of Kerr-Newman vector potential A, ~ k,, and the flow of
radiation 7" ~ ®(z)k*k".

The Kerr theorem states that any holomorphic surface in the projective twistor
space with coordinates Y, A =(—-Yw, X =u+Y(,

(where 254 = + iy, 2%(_ =z — iy, 2ty = z — t, 22y = 2+t are the null
Cartesian coordinates) determines the geodesic and shear-free null congruence in M1,
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Such congruences lead to solutions of the Einstein-Maxwell field equations with metric
(1) and aligned with k, em-field. The Kerr congruence of twistors is built of a family of
straight null lines - the twisting family of photon geodesics. For any holomorphic function

Figure 1: The Kerr singular ring and congruence.

F, solution Y (z#) of the equation F(Y, A1, A2) = 0 determines congruence of null lines by

the 1-form B ) ~
e =du+Yd(+Ydl—YYVdv (2)

and the null vector field k,dz* = P~'e’. Function Y is projective spinor, Y = ¢,/¢,, so
ku = $ad5% ¢ in spinor form.
Solutions considered in the original work [2] have a quadratic in ¥ function

F=¢(Y)+ (qY + )M — (pY + §) A2 3)

where ¢ = ag +a,Y + ap Y2

In this case congruences may be found in explicit form and correspond to the Kerr
solution up to Lorentz boost, orientation of spin, and shift of the origin.

Methods developed in the papers [3] allow one to fix explicit values of these parameters
corresponding to concrete values of the boost and orientation of angular momentum.

Coeflicients ag, a;, a, define orientation of angular momentum and the constants
D, q, 4, c are related to Killing vector of the solution. They determine function P = pY'Y +
qY +q¥ +c.

In particular, for the Kerr-Newman solution at rest p = ¢ = 27%2, ¢ =g =0 and
P =2"12(1 + YY). Spin S is oriented along 7 axis for ay = ay = 0, and a; = —ia.

Recently, the light-like analog of the Kerr-Newman solution we considered in [4]. The
total mass-energy E = m of this solution is finite and concentrated near the light-like
front 2 +t = 0. In the light-like limit the rest-mass my of the corresponding stationary
Kerr-Newman solution has to tend to zero, providing the finite value for the relativistic
mass-energy £ = m = mg/\/1 — (v/c)? in the limit v — ¢. So, the limit v — ¢ is to be
related with the limit mg — 0.

If angular momentum of the Kerr solution is oriented along the boost direction, the
Kerr singular ring will be orthogonal to the boost and will not be subjected to Lorentz
contraction. Thus, during the limiting procedure its radius will be a = ay. Assuming
that mg — 0 by v — ¢, and using the Kerr metric relation J = mgyag, we have to set
simultaneous ag — o0, or to shift singular ring of the corresponding Kerr solution to
infinity. Setting a = agy/1 — (v/c)? as a ‘relativistic’ parameter ¢ = J/m we conserve
during the limit the Kerr relation J = mpay = ma.
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The parameters of the above Kerr generating function F' were taken as a prototype of

the boosted solution. We have ¢ = —iaY which corresponds to orientation of the angular
momentum in the z-direction, and we direct collinearly the light-like boost which will be
described by the parameters p = ¢ = ¢ = 0, ¢ = 1 corresponding to the null Killing

direction K = 0,.

It leads to the twistor congruence which depend explicitly on the light-like coordinate
v = 2"Y2(z — t) The functions F and P of the Kerr theorem take in this case the simple
form F = —ia} + (( — Yv), P =1, and solution of the equation F' = 0 yields

Y =¢/(ia+v), (4)

and function Y (z) determines the principal null congruence €® by the relation (2).
One sees that congruence has a non-trivial coordinate dependence and has a non-zero
expansion @ and twist w, where Z = 0 + iw = (v — ia)/[v> 4+ a?] , where Z is also
determined by generating function F' of the Kerr theorem,

Zl=F=-0vF =v+1ia. (5)

One sees that expansion tends to zero only near the front plane v = 0, (or z = t,)
where the twist w is maximal. In the vicinity of the axis z, where YY — 0, and far
from the front plane, congruence tends to simple form e® = du corresponding to pp-wave
solutions. In spite of the very nontrivial form of the congruence, the equations turn out to
be very simple and solvable. As a result, metric is determined by the Kerr-Schild ansatz
(1) with function A given by

b= [mw = SAIAW))/0F +a?), (6)
where ¥ = W—ﬁ;}’;’r%ﬂ)

One can try to use this light-like analog of the Kerr-Newman solution to describe
gravitational field of a photon. In this case the Kerr relation J = ma takes the form £ =
J/a, where J = h. Comparison with the photon relation E' = Av shows that characteristic
size of this solution a corresponds to de Broglie wavelength of the photon.

Therefore, the twistorial structure of the Kerr geometry allows to describe an extended
structure of the massive and light-like spinuing particles. In the massive case this twistorial
structure forms a complex string which is controlled by the solutions of the Dirac equations
5].

The case of linear in Y generating function F' of Kerr theorem is important for the
problem of gravitational (and electromagnetic) interactions of spinning particles. The
corresponding Kerr-Schild treatment of multi-particle solutions has to be based on the
Kerr theorem with generating functions F' of different degrees in Y, including the linear
ones and of higher orders [6]. Twistorial structure of a Kerr-Newman particle is described
by a quadratic in Y generating function F' = F,(Y’), (3), and this case was investigated
in details. Contrarily, the solutions with generating functions of first degree in Y, F' =
F1(Y) have not paid considerable attention, in spite of their important physical meaning
- relations to the light-like spinning particles. The general case of higher degrees in Y
was considered in [6]. It was shown that multi-particle Kerr-Schild solutions lead to a
multi-sheeted twistor space which may be split into simple one- and two-sheeted blocks
corresponding to a set of the light-like and massive particles. Machinery of the Kerr-Schild
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formalism shows that the gravitational and electromagnetic fields of interacting particles
form a singular string along their comnmon twistor line, fixed by the set

{1 V(") = Ya(a®)}. (7)

In other words, solutions acquire a propagator ~ W, which is exhibited in the
form of a singular pp-wave beam between the particles.

This treatment is close related to the suggested by Nair 7] and renewed by Witten [8)
twistor-string approach to perturbative gauge theory of quantum scattering, where the
traditional quantim treatment in momentum space gets a natural generalization to twistor
space with correspouding twistorial generalizations of the wave functions and amplitudes
of seattering. The gauge hosons are deseribed by eurves of first degree in twistor space, aud
the corresponding plane waves are replaced by twistor null planes. This approach has got
preat atlention last vears leading to drastic simplifications some of of the Feynman graphs.
The approach on the base of Kerr theorem is more informative, since the description of
wave funetion hy a single twistor null plane is replaced here by section of a twistor bundle,
and twistorial deseription of the wave functions contains important coordinate information
which is necessary to incorporate gravity in quantum theory.
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