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Abstract
The application of quantum algorithms has attracted much attention as it holds the promise of
solving practical problems that are intractable to classical algorithms. One such application is the
recent development of a quantum-walk-based optimization algorithm approach to portfolio
optimization under the modern portfolio theory framework. In this paper, we demonstrate an
experimental realization of the alternating phase-shift and continuous-time quantum walk
unitaries that underpin this quantum algorithm using optical networks and single photons. The
experimental analysis confirms that the probability of states corresponding to high-quality
solutions is efficiently amplified by increasing the number of phase-shift and quantum walk
iterations. This work provides strong evidence for practical applications of quantum-walk-based
algorithms such as financial portfolio optimization.

1. Introduction

Quantum computation promises advantages for certain problems, such as prime factoring, exhaustive search
and optimization [1–9]. Although only small quantum processors are currently available, there are
tremendous expectations for quantum technology to assist with the solving of difficult real-life problems in
the near future [10–12]. Modern financial trading relies on extensive computational resources for the
analysis of historical data, high-frequency trading, portfolio optimization and risk analysis [13–16]. In the
case of portfolio optimization, the computational complexity stems from the analysis of the balance between
return and risk of portfolios involving many assets, motivating quantum computing to solve financial
problems [17–23].

Recent works have combined financial services and quantum software to implement and test a financial
portfolio rebalancing use case using hybrid quantum–classical algorithms [24]. Based on the mean-variance
Markowitz model [25] with discrete asset constraints, Hodson et al explored the problem of portfolio
optimization and rebalancing with the help of the quantum approximate optimization algorithm and
quantum alternating operator ansatz, collectively known as QAOA [26–36].

Such heuristic, or approximation, algorithms are designed to identify high-quality solutions to
optimization problems [37–40]. The problem solution space is mapped to a superposition of quantum states
that is acted on by an interleaved sequence of solution-quality-dependent phase shits and mixing operations
parameterised by classically tunable variational parameters. These are tuned using a classical algorithm that
seeks to optimise the mean of the measured solution qualities. In doing so, constructive interference is
produced at states corresponding to high-quality solutions.

Extending the QAOA schema to constrained optimization problems requires strategies for restricting or
guiding probability amplitude to a subset of the problem solution space. The QuantumWalk-based
Optimization Algorithm (QWOA) achieves this using an efficient indexing algorithm for the valid solutions
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and generalizing the QAOA mixing operation to a Continuous-Time QuantumWalk (CTQW) [41]. Slate
et al proposed an application of the QWOA to the portfolio optimization problem, with numerical results
indicating a significant advantage over previously explored methods [42]. Key to this was the ability of the
QWOA to restrict the quantum search and, consequently, variational parameter optimization to a
non-degenerate subspace of valid solutions.

This paper investigates the efficacy of the QWOA mixing operator as applied to the portfolio
optimization problem. Using linear optical elements and single photons, we realize the first experimental
implementation of the QWOA mixing unitary and demonstrate its reliable convergence to high-quality
solutions over a wide range of quantum circuit depths. Our work provides strong evidence for the potential
of quantum-walk-based algorithms to solve complex optimization problems of practical significance.

2. QWOA for combinatorial optimization

Combinatorial optimization problems seek solutions of the form

s̄=
{
s | C(s) ∈min

{
C(s) | s ∈ S ′}} , (1)

where the problem cost-function C(s) is defined to map a solution s from an ordered set of problem
solutions S ′ = {si} to R, s is a k-permutation of discrete elements selected from a finite set and,

S ′ = {s | s ∈ χ} (2)

is the valid problem solution space where

χ=
⋃
i

{s | χi (s) = ai} (3)

represents constraints imposed on s̄, while a= {ai} defines the constraints.
The QWOA [41, 43] begins by establishing an injective map from the complete solution space S to a

Hilbert space consisting of n qubitsH where 2n ⩾ |S| in order to define the quality operator

Q=

|S|−1∑
i=0

qi |i⟩⟨i|, (4)

where qi = C(si).
We next require that there exists an efficient indexing algorithm from the complete solution space S to

the subset of valid solutions S ′, which makes possible an indexing unitary

U†
#|i⟩=

{
|idχ (i)⟩ , |i⟩ ∈

∣∣S ′〉 ,
|i⟩,otherwise, (5)

where U†
# maps the states corresponding to valid solutions |s ′⟩ to the indexed states |idχ(i)⟩. This enables

the preparation of an initial state |ψ0⟩ that is equally superposed over qubits corresponding only to the valid
solution space S ′,

|ψ0⟩=
1√∣∣S ′∣∣ ∑i∈S ′

|i⟩. (6)

The quality operator Q and the indexing unitary U†
# are used as part of a variational quantum circuit

that works to amplify probability density associated with high-quality (low-cost) solutions. The variational
quantum circuit implements a sequence of alternating operators. The first of these is the ‘phase-shift’ unitary

UQ (γ) = exp(−iγQ) , (7)

where γ ∈ R, applies a quality-dependent phase shift to all quantum states |i⟩.
Next is the indexed-walk unitary,

Uw (t) = U# exp(−itW)U†
#, (8)

where t⩾ 0 andW=
∑

i,j∈S ′ |idχ( j)⟩⟨idχ(i)| for i ̸= j is equivalent to the adjacency matrix of a complete
graph. The indexed-walk unitary Uw indexes |ψ0⟩ and induces a maximal unbiased coupling over the valid
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solution subspace which drives the mixing of probability amplitude between states in the subspace.
Equivalent to a CTQW for time t, during this stage phase differences encoded by UQ contribute to
constructive and destructive interference. After competition of the CTQW, the indexing unitary un-indexes
U†

#|i⟩ such that measurement is conducted with respect to the unindexed states |i⟩.
An application of UQ and Uw is carried out for p repetitions, with the final state of the quantum system

being

|γ, t⟩=
p∏

i=1

Uw (ti)UQ (γi) |ψ0⟩. (9)

With each of the p iterations, the potential for probably amplitude concentration at |i⟩ corresponding to
high-quality solutions increases—given suitable values for the variational parameters γ and t [44, 45].
Optimal variational parameters γ and t are obtained using a classical optimiser that minimises with respect
to the objective function

f(γ, t) = ⟨γ, t|Q|γ, t⟩, (10)

such that a lowering of f(γ, t) entails an increased probability of measuring a quantum state that corresponds
to a high-quality solution. In this sense, the QWOA is a hybrid algorithm whereby a small set of classical
values parametrise the evolution of an exponentially larger quantum Hilbert space.

3. The portfolio optimization problem

Consider an investor with a portfolio of assets {mi} of sizeM. For each asset, they must take one of three
positions:

(i) Short position: the buying and short-term selling of an asset under the expectation that it will drop in
value.

(ii) Long position: the buying and long-term holding of an asset with the expectation that it will increase in
value.

(iii) No position: not investing in the asset (taking neither the long nor short position).

A quantum encoding of the possible solutions si to qubit states |i⟩ uses two qubits per asset:

(i) |10⟩ → short position.
(ii) |01⟩ → long position.
(iii) |00⟩ or |11⟩ → no position.

Such that for a portfolio of sizeM we require n= 2M qubits for complete representation of the solution
space S.

The discrete mean-variance Markowitz model implements a cost function for a given combination of
solutions that takes into account the historical behavior of the assets. It may be expressed as a minimization
problem with respect to the above quantum mapping as a

C(s) = ω
M∑

i,j=1

σijzizj − (1−ω)
M∑
i=1

rizi, (11)

where σij is the covariance between assets i and j, ri is the average return, 0⩽ ω ⩽ 1 and zi ∈ {1,−1,0}
represents a choice of long, short and no position respectively. As ω→ 0, the optimal portfolio is one
providing maximum returns, while as ω→ 1, the optimal portfolio is the one that minimizes asset volatility.
Equation (11) is subject to the constraint

a=
M∑
i=1

zi, (12)

which maintains the relative net position for a pre-existing portfolio.
Altogether, the key steps of the QWOA algorithm as applied to the portfolio optimization problem are:
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(i) Preparation of |ψ0⟩ over S ′ (solutions satisfying constraint a).
(ii) Computation of |γ, t⟩ by p applications of UQ(γ) with phase-shift quality operator Q=

∑
S C(s)|s⟩⟨s|

and indexed-walk unitary Uw(t).
(iii) Minimization of f(γ, t) =

∑
s∈S ′ C(s) |⟨s |γ, t⟩|2 via classical optimization of variational parameters

γ = (γ0, . . . ,γp−1) and t= (t0, . . . , tp−1).

The QWOA algorithm, originating from a quantum walk perspective [46], can be implemented using a
sequence of quantum gates, as detailed in [41]. Extensive simulations [42] highlight QWOA’s advantages over
other QAOA-based algorithms, notably due to its significantly reduced search space, achieving high-quality
portfolios with fewer iterations. Furthermore, the inherent global symmetry in the QWOA mixing operator
contributes to an unbiased convergence to optimal solutions with sufficient quantum circuit depth. QWOA
has also shown great promise in handling diverse optimization challenges with intricate constraints and
solution domains. The portfolio optimization problem can be efficiently solved using the QWOA with a gate
complexity ofO(m2) [42]. These theoretical results depend on the efficient encoding of Q into the phase of
the |i⟩ states, implementation of the indexed-mixing operator Uw(t), and identification of (at least) locally
optimal variational parameters γ and t.

4. Experimental implementation

In this work, we consider a partial physical implementation of the QWOA as applied to the portfolio
optimization problem to experimentally verify the effectiveness of the alternating phase-shift and
quantum-walk operations. We consider a restricted phase-shift operator UQ ′ which encodes the cost of only
the valid solutions over a Hilbert space of size |S ′| and a corresponding quantum walk unitary Uw ′ . Within
this framework, solutions in S ′ are computed and indexed classically.

A portfolio consisting of three stocks (Google, IBM and Microsoft) is considered under the constraint
a= 0, for which there are seven valid solutions (|S ′|= 7). We show the seven valid solutions in the
supplemental material. The quality values qi have been calculated classically from the adjusted closing prices
between 1/1/2019 and 12/31/2020 [47]. These are used to simulate the QWOA using the software package
QuOp_MPI to obtain optimal values of t and γ for p= 1 to 8 [48]. Optimization of γ and t is carried out
using the BFGS algorithm [49] with initial values generated following a uniform distribution between 0 and
2π for 20 repeats at each p.

The restricted QWOA operators UQ ′ and Uw ′ are implemented with single photons following the
experimental setup as illustrated in figure 1(a). The seven computational basis states correspond to the
QWOA indexes representing valid portfolios. In a 7-dimensional qudit, the basis states are encoded as
|0⟩= |V1⟩, |1⟩= |H2⟩, |2⟩= |V2⟩, · · · , |5⟩= |H4⟩, |6⟩= |V4⟩. Here, i (i = 1, · · · ,4) denotes the spatial
modes of the single photons, and H (V) indicates the horizontal (vertical) polarization of the photons.

In this experiment, the initial state of the qudit is prepared in an equal superposition state represented as
|s⟩= 1√

7

∑6
i=0 |i⟩. Initially, the photons pass through a polarizing beam splitter (PBS) and a half-wave plate

(HWP) set at−20.4◦, which divides the transmitted photons with different polarizations into two parallel
paths using a beam displacer (BD). Next, in the upper and lower modes, two additional HWPs at−27.4◦ and
−22.5◦ are inserted, respectively. Finally, the initial state is prepared as |s⟩ by passing through the second BD,
followed by four HWPs set at 90◦, 22.5◦,−22.5◦, and 22.5◦.

We simulate the probability amplification process in the QWOA using the mixing operator Uw ′(t) and
the phase shift operator UQ ′(γ). The mixing operator is the CTQW Uw ′(t) = e−iWt on the complete graph
K7 with adjacency matrixW shown in figure 1(b), which connects all valid solutions. The phase shift
operator is a diagonal unitary that applies a phase shift proportional to the variational parameter γ and the
value of the mean-variance Markowitz model, UQ ′(γ) = e−iγQ, where the quality operator
Q= diag(q0,q1, · · · ,q6) is a diagonal operator defined by solution qualities. Thus, we apply the unitary
operation Up =

∏p
i=1Uw ′(ti)UQ ′(γi) (p= 1, · · · ,6) on the state |s⟩. Details of the variational parameters ti

and γi can be found in supplemental material.
With the method introduced in [1, 50, 51], an arbitrary n× n unitary matrix can be decomposed into a

product of 1
2n

2 − 1
2n two-level unitary matrices, which act non-trivially only on two-dimensional subspaces

of the n-dimensional Hilbert space. In this experiment, each 7× 7 unitary operator Up (p= 1, · · · ,6) can be
decomposed as

Up = U7,6 · · ·U7,1U6,5 · · ·U6,1 · · ·U2,1, (13)
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Figure 1. (a) Experimental setup. Heralded single photons are generated through type-I spontaneous parametric
down-conversion in a β-barium-borate (BBO) nonlinear crystal. The initial state is encoded using both polarizing and spatial
degrees of freedom, which are prepared by a polarizing beam splitter (PBS) followed by beam displacers (BDs) and wave plates
(WPs). Subsequently, the photons pass through an optical network that implements the QWOA phase-shift and mixing unitaries,
consisting of WPs and BDs. Finally, the photons are projected onto the basis states using a PBS. Avalanche photodiodes (APDs)
detect the photons in coincidence with the trigger within a coincident window of 3 ns. We record photon detections for a duration
of 10s, resulting in approximately 27000 single photons being registered. (b) A complete graph with 7 vertices K7, in which an
edge connects every pair of distinct vertices.

where Ui,j are two-level unitary matrices. A two-level unitary matrix takes the form with only four elements
Ei,i, Ei,j, Ej,i and Ej,j, which are neither 0 or 1. For the remaining elements, all the diagonal elements are set to
1, while all the off-diagonal elements are set to 0.

According to the requirement of realizing a two-level matrix Ui,j [52], the horizontal and vertical
polarization states of the photons in different paths are recombined into polarization states of the photons in

the same path via BDs and 45◦ HWPs. Then we apply a 2× 2 unitary transformation

(
Ei,i Ei,j
Ej,i Ej,j

)
to the

polarization state of this path, which can be realized via a set of wave plates (WPs), thus producing an exact
correspondence with equations (4) and (8).

The complexity of our experimental setup is independent of the number of the iterations and only
depends on the dimension of Up which in our experiment is always 7. In this case, we employ a total of 10
beam displacers (BDs) to implement each Up. The variational parameters, which can be considered as
parameters of Ui,j, are adjusted by configuring the setting angles of WPs. A detailed resource analysis of our
experimental implementation of QWOA mixing unitary with the bulk optics is included in Supplemental
Material, together with the corresponding system-agnostic quantum circuits.

Once the transformation Up is implemented, we determine the square of the overlap between the final
state |ψ⟩ and the basis states |i⟩ through a projection measurement. To perform the projective measurement,
a PBS is employed to map the basis states of the qudit state onto separate spatial modes. By calculating the
proportion of photon counts in each spatial mode to the total photon counts, we estimate the probability of
the photons being measured in each basis state.

5. Experimental results

Theoretical predictions and experimental results of the probability distribution for the final states are
presented in figure 2, covering iterations p= 1 to 6. The probabilities of the final state projected onto basis
state |2⟩ after the 1st, 2nd, · · · , and 6th iterations are 0.324± 3, 0.502± 3, 0.763± 3, 0.812± 2, 0.816± 2 and
0.797± 2, respectively. These results align closely with the theoretical predictions of 0.363, 0.567, 0.876,
0.970, 0.998 and 0.998, respectively. Thus, the probability of the optimal portfolio occupying the valid
solution space increases with the number of iterations and finally tends to be stable. The experimental results
show that we will find the highest-quality portfolio with a probability close to 1.

In addition, we measure the expectation value of the quality operator that encodes the objective function,
given by ⟨ψ|Q|ψ⟩=

∑6
i=0 qi|⟨i|ψ⟩|2, as shown in figure 3. It can be seen that as the number of iterations

increases, the value of the objective function is in a gradual downward trend, which indicates that the
probability of the high-quality portfolio is gradually increasing. In our experiment, the imperfections of the
results include the imperfections of the interferometers and inaccuracies of WPs. The former leads to the
dephasing whose impact on the objective function can be estimated by assuming the dephasing rate is
∼ 0.97.
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Figure 2. The experimental results present the probability distribution of the final state after p iterations. The state index denotes
the corresponding basis state, which corresponds to different valid solutions. The solid blue line represents the theoretical
predictions, while the blue pentagram denotes the experimental results. The error bars indicate the statistical uncertainty
calculated assuming Poissonian statistics.

Figure 3. Experimental results of the expectation value of quality operator ⟨ψ|Q|ψ⟩ for p= 1 to 6. The red line and blue points
represent theoretical predictions and experimental results, respectively. The black line represents the estimated values of the
objective function by numerical simulations, taking into account the imperfection caused by the dephasing. The dephasing rate is
considered here∼ 0.97.

6. Conclusion

The implementation of quantum optimization algorithms on current quantum processors is still constrained
by the compounding effects of system noise [31–33]. In contrast, we present the realization of a variational
search up to p= 6 with strong agreement with predictions for a noise-free system. At all considered p,
minimization of the objective function amplifies probability at the basis state corresponding to the
highest-quality solution.

We consider a 3 asset portfolio where, as two qubits are used to encode the position per asset, the
complete Hilbert space is of size 22×3 = 64. However, the QWOA reduces the quantum search to a
globally-symmetric sub-space of seven valid solutions. For the portfolio optimization problem, compared to
the QAOA, this significantly reduces the search space and eliminates bias resulting from mixing asymmetry.

In this paper, we present compelling evidence that demonstrates the applicability of quantum algorithms
in solving portfolio optimization problems. Our experimental approach is direct, flexible, and holds the
potential for scalability. The exploration of quantum algorithms in practical applications is gaining
momentum [53–55], even though they are currently in a preliminary stage. With the dedicated efforts of
scientific researchers, we anticipate that quantum technology will soon be leveraged to tackle challenging
real-life problems.
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Appendix A. TheMarkowtiz model

The mean-variance Markowitz model expresses the problem of choosing the optimal set of positions through
minimization of the objective function,

C(s) = ω
M∑

i,j=1

σijzizj − (1−ω)
M∑
i=1

rizi, (A.1)

which is subject to,

a=
M∑
i=1

zi, (A.2)

for the case of discrete asset constraints. Variable ri represents the expected returns for a given asset, σij
represents the covariance between assets i and j, zi ∈ {1,−1,0} represents long, short and no position
respectively, and ω is between 0 and 1 [42]. Equation (A.1) formalizes the idea of asset diversification. For a
pair of assets in a given portfolio, the first term is minimized by taking the same position on both assets if
they are anti-correlated or by taking a short position on one asset and a long position on the other if they are
correlated. The second term is minimized by taking a long position on appreciating assets and a short
position on depreciating assets. The ω parameter balances the influence of risk and potential return with the
value chosen according to the preference of the portfolio manager. Equation (A.2) arises in the context of
portfolio rebalancing, with constraint value a preserving the net position with respect to a pre-existing
portfolio.

WithM assets with three possible positions per asset (long, short or none), the size of the unconstrained
solution space is 3M . Introducing the constraint defined in equation (A.2), the number of valid solutions
with net position a is

M(M,a) =
M∑
j=0

(
M
j

)(
M− j

1
2 (M+ a− j)

)
, (A.3)

where, if the bottom parameter of the rightmost binomial coefficient is not an integer, it is set to 0 [42].
WhileM(M,a) is always less than 3M , for any possible a, the number of valid solutions nevertheless grows
exponentially withM.

Consider a portfolio of three stocks: Google, IBM and Microsoft, under the constraint that we have the
same number of long and short positions (a= 0). This results in a valid solution space spanning 7
computational basis states.

The daily closing and opening prices of the three stocks between the 1/1/2019 and 12/31/2020 were
obtained from Yahoo Finance, and the expected returns (ri) and covariance matrix (σij) calculated see
table A1. The 7 valid solution qualities, as given by the mean-variance Markowitz model with ω= 0.5 are
shown in table A2. These define the diagonal, q= q0, . . . ,q6, of the Q operator. Note that, for a problem of
this size, the qi are of the order 10−4. To assist in the optimization process all qi have been scaled by a
constant factor of 250.
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Table A1.Mean return (ri) of the assets and covariance (σij) between the assets from 1/1/2019 to 12/31/2020.

Covariance (σij) Mean return (ri)

Stock Google IBM Microsoft —

Google 0.000407 0.000243 0.000344 0.001245
IBM 0.000243 0.000415 0.000270 0.000604
Microsoft 0.000344 0.000270 0.000460 0.001833

Table A2. Quality vector, q, describes the 7 valid solutions under the given the constraint of a= 0. The position on each stock (Google,
IBM and Microsoft) can be read from the 6 qubits, where |01⟩ denotes a long position, |10⟩ denotes a short position and |00⟩ is no
position.

QWOA Index |idχ(i)⟩ quantum encoding |i⟩ qi

|0⟩ |000000⟩ 0.0
|1⟩ |000110⟩ 0.19537791107281657
|2⟩ |001001⟩ −0.1119084583542568
|3⟩ |010010⟩ 0.09592313540638248
|4⟩ |011000⟩ −0.038186379903069514
|5⟩ |100001⟩ −0.05124555365045395
|6⟩ |100100⟩ 0.12193130046716749

Appendix B. The optimal variational parameters

The optimal variational parameters of ti and γi are obtained by the software package QuOp_MPI, for which
detailed instructions and simulation code for the portfolio optimization problem are provided in [48, 56].
We experimentally realize the unitary operator of p-iteration QWOA (p= 1, · · · ,6) as follows

U1 = Uw ′ (0.688)UQ ′ (6.915) ,
U2 = Uw ′ (0.756)UQ ′ (12.139)Uw ′ (0.606)UQ ′ (6.304) ,
U3 = Uw ′ (0.716)UQ ′ (13.972)Uw ′ (0.669)UQ ′ (13.806)Uw ′ (0.596)UQ ′ (7.482) ,
U4 = Uw ′ (0.760)UQ ′ (15.512)Uw ′ (0.676)UQ ′ (14.986)Uw ′ (0.635)UQ ′ (13.501)

Uw ′ (0.536)UQ ′ (6.957) ,
U5 = Uw ′ (0.801)UQ ′ (15.134)Uw ′ (0.724)UQ ′ (15.861)Uw ′(0.656)UQ ′(14.611)

Uw ′(0.591)UQ ′(12.985)Uw ′(0.528)UQ ′(6.078),
U6 = Uw ′(0.801)UQ ′(15.134)Uw ′(0.724)UQ ′(15.860)Uw ′(0.656)UQ ′(14.610)

Uw ′(0.591)UQ ′(12.978)Uw ′(1.383)UQ ′(0.005)Uw ′(0.042)UQ ′(6.070).

(B.1)

Appendix C. Resource analysis of realization of QWOA in bulk optical setup

The key to running QWOA on hardware is to implement the unitary matrix U=
∏p

i=1Uw(ti)UQ(γi). For
larger databases, the bulk optical setup can realize QWOA with the n× n arbitrary unitary matrix and the
number of the beam displacers NBD increases with n linearly, i.e. NBD ∼ 2n− 4, as shown in figure C1. An
arbitrary n× n unitary matrix can be decomposed into a product of 1

2n
2 − 1

2n two-level unitary matrices,
which act non-trivially only on two-dimensional subspaces of the n-dimensional Hilbert space:

U= Un,n−1 · · ·Un,1Un−1,n−2 · · ·Un−1,1 · · ·U2,1. (C.1)

Therefore, such an implementation does make a significant contribution to the general scheme of QWOA.

Appendix D. Quantum circuit of QWOA

In this section, we present the quantum circuit of QWOA to demonstrate that the algorithm can also be
implemented in other systems. The design of quantum circuits is based on the cosine-sine decomposition
(CSD) [57, 58]. As an example, we describe the factorization of an arbitrary 8× 8 unitary matrix using the
CSD. For the 8× 8 unitary matrix U8, it can be decomposed as U8 = L8(S4 ⊕ I4)R8, where L8 and R8 are
block diagonal,

L8 =

[
L4 0
0 L ′

4

]
, R8 =

[
R4 0
0 R ′

4

]
, (D.1)

8
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Figure C1. Experimental setup with cascaded interferometers which is able to implement arbitrary n× n unitary operator.

Figure D1. (a) The quantum circuit for the 8× 8 unitary matrix U8. (b) The quantum circuit for the 4× 4 unitary matrix U4

(R4, R ′
4 , L4, L

′
4 ). (c) The quantum circuit for the cosine-sine matrix S4.

and L4, L ′
4, R4, and R ′

4 are 4× 4 unitary matrix. The matrix S4 is an orthogonal cosine-sine matrix,

S4 =


cosθ1 0 sinθ1 0
0 cosθ2 0 sinθ2

− sinθ1 0 cosθ1 0
0 − sinθ2 0 cosθ2,

 . (D.2)

For convenience, the unitary transformations L8 and R8 can be written as

L8 = |0⟩⟨0| ⊗ L4 + |1⟩⟨1| ⊗ L ′
4

R8 = |0⟩⟨0| ⊗R4 + |1⟩⟨1| ⊗R ′
4.

(D.3)

Then the 8× 8 unitary transformations can be implemented by three controlled three-qubit transformations
in figure D1(a). In addition, the 4× 4 unitary matrix U4 (L4, L ′

4, R4, and R ′
4) can be decomposed as

U4 = LS4R, where

L=

[
L 0
0 L ′

]
, R=

[
R 0
0 R ′

]
, (D.4)

are block-diagonal, and L, L′, R, and R′ are 2× 2 unitary transformations. The 4× 4 unitary transformations
L, S4, and R can be rewritten as

L= |0⟩⟨0| ⊗ L+ |1⟩⟨1| ⊗ L ′

S4 = S⊗ |0⟩⟨0|+ S ′ ⊗ |1⟩⟨1|
R= |0⟩⟨0| ⊗R+ |1⟩⟨1| ⊗R ′,

where S=

[
cosθ1 sinθ1
− sinθ1 cosθ1

]
and S ′ =

[
cosθ2 sinθ2
− sinθ2 cosθ2

]
. Then these 4× 4 unitary transformations

can be implemented by three controlled two-qubit transformations in figures D1(b) and (c). The
decomposition method can be used to decomposed higher-dimensional unitary operators. Therefore, our
idea can in principle design quantum circuit of any dimension, so as to realize the unitary matrix required by
QWOA for generalization in other systems.

9



Quantum Sci. Technol. 9 (2024) 025014 D Qu et al

ORCID iDs

Dengke Qu https://orcid.org/0000-0001-6169-1368
Edric Matwiejew https://orcid.org/0000-0002-2480-1633
Jingbo Wang https://orcid.org/0000-0001-7544-0084
Peng Xue https://orcid.org/0000-0002-4272-2883

References

[1] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge
University Press)

[2] Shor P W 1997 SIAM J. Comput. 26 1484–509
[3] Grover L K 1997 Phys. Rev. Lett. 79 325–8
[4] Childs A M, Gosset D and Webb Z 2013 Science 339 791–4
[5] Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687–90
[6] Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
[7] Childs A M and Goldstone J 2004 Phys. Rev. A 70 022314
[8] Xue P, Sanders B C and Leibfried D 2009 Phys. Rev. Lett. 103 183602
[9] Qu D, Marsh S, Wang K, Xiao L, Wang J and Xue P 2022 Phys. Rev. Lett. 128 050501
[10] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O’Brien J L 2010 Nature 464 45–53
[11] Cirac J I and Zoller P 2012 Nat. Phys. 8 264–6
[12] Preskill J 2018 Quantum 2 79
[13] Glasserman P 2003Monte Carlo Methods in Financial Engineering (Springer)
[14] Föllmer H and Schied A 2016 Stochastic Finance (De Gruyter)
[15] Hull J C 2003 Options Futures and Other Derivatives (Pearson Education India)
[16] Green A 2015 XVA: Credit, Funding and Capital Valuation Adjustments (Wiley)
[17] An D, Linden N, Liu J-P, Montanaro A, Shao C and Wang J 2021 Quantum 5 481
[18] Rebentrost P and Lloyd S 2018 arXiv:1811.03975
[19] Rebentrost P, Gupt B and Bromley T R 2018 Phys. Rev. A 98 022321
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