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Summary.

In the context of Conformal Field Theory in Theoretical Physics the Virasoro
Algebra and its representations play a fundamental role. The Virasoro Algebra
can be given as the Lie algebra of meromorphic vector fields on P1

C\{0,∞} . In
view of the generalization of Conformal Field Theory to higher genus Riemann
Surfaces (for example, appearing in String Theory) Krichever and Novikov gen-
eralized the setting to higher genus allowing for the vector fields poles at two
arbitrary but fixed points. The natural modules over the algebra of such vector
fields (now usually called Krichever - Novikov algebra) are the vector spaces of
meromorphic forms of weight λ with the same restrictions on the set of poles.
For the construction of the semi-infinite wedge representations of the Krichever
- Novikov algebra (yielding analogs of Verma modules, resp. heighest weight
modules) it is necessary to exhibit a bases in the algebra and the modules in
such a way that with respect to a grading induced by the indexing of the basis
the module structure is ‘generalized graded’.
In the setting of String Theory the two points where poles are allowed corre-
spond to an incoming free string, resp. an outgoing free string. The Riemann
surface correspond to the interaction. To incorporate more strings which are
in interaction it is necessary to allow poles at more than two points.

In this work the whole (mathematical) situation is generalized to the case
where more than two poles are present. The set of poles is divided into two non-
empty subsets, the ‘in’ and ‘out’- points. With respect to this partition, bases
of the algebra of vector fields and the modules of forms of integer weight λ are
introduced in such a way, that they induce a generalized grading. The existence
and uniqueness of such a bases is shown by Riemann-Roch type arguments.
Explicit expressions in terms of rational functions, resp. σ−functions, resp.
theta functions and prime forms are given. This setting contains the Virasoro
case and the Krichever - Novikov case as special examples. The bases obey
an important duality relation. It is obtained by integrating forms of weight
λ against forms of weight 1 − λ over the level lines of a suitable generalized
proper time function.

The whole procedure is extended to the algebra of meromorphic differential
operators (containing beside the algebra of vector fields also the algebra of
functions), again with the above restriction on the set of poles. ‘Local’ central
extensions of the involved algebras are introduced using geometrically defined
cocycles. The term ‘local’ depends again on the grading, hence on the partition.
For example, generalized Heisenberg algebras are obtained as central extensions
of the abelian Lie algebra of functions.
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Central extensions inevitably appear in the construction of semi-infinite
wedge representation (starting with the modules of forms of weight λ) as
analogs of heighest weight representations. By requiring, that the defining cocy-
cle for the extensions of the vector field algebra is independent of λ, the central
element operates by multiplication with central charge c = −2(6λ2− 6λ+ 1) .
The value of the cocycle for the extension of the differential operator algebra for
certain index combinations of the bases elements is given, supplying confidence
to a conjectured form of the cocycle.

Finally the semi-infinite wedge space also provides a representation of the
Clifford algebra given by (again generalized) b− c systems of weight
λ, (1 − λ) . Interesting commutator relations between the b resp. c operators
and the operators corresponding to differential operators are given.
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§ 1. Einleitung

Im Rahmen der “konformen Feldtheorie” in der theoretischen Physik hat
die Virasoro Algebra nebst ihren Darstellungen eine fundamentale Bedeutung.
Die Virasoro Algebra kann beschrieben werden als die universelle zentrale Er-
weiterung einer dichten Teilalgebra der komplexifizierten Liealgebra der an-
alytischen Vektorfelder auf der Kreissphäre S1. Diese Algebra ist jedoch iso-
morph zur Liealgebra der meromorphen Vektorfelder auf P1 (der Riemannschen
Zahlenkugel), welche holomorph auf P1 \ {0,∞} sind. Diese zweite Betra-
chtungsweise hat sich als sehr nützlich für die konforme Feldtheorie erwiesen.
Im Zuge der Erweiterung der konformen Feldtheorie auf Riemannsche Flächen
höheren Geschlechtes, wie sie etwa in der Stringtheorie auftreten, stellt sich die
Frage der Verallgemeinerungen der Virasoro Algebra und ihrer Darstellungen.
Diese Verallgemeinerungen wurden von Krichever und Novikov [KN1][KN2]
1987 eingeführt und deren Struktur untersucht. Kurz gesagt handelt es sich
bei der entsprechenden Algebra ebenfalls um eine zentrale Erweiterung der Al-
gebra der meromorphen Vektorfelder auf der kompakten Riemannschen Fläche
vom Geschlecht g ≥ 1, welche holomorph sind außerhalb zweier “generischer”
Punkte (welche festgehalten werden). Es ist heute allgemein üblich diese Al-
gebra Krichever - Novikov Algebra zu nennen (mit oder ohne zentrale Er-
weiterung). Im folgenden bezeichne ich sie auch kurz mit KN Algebra. Dieser
Verallgemeinerungsschritt mag naheliegend erscheinen. Es darf jedoch nicht
vergessen werden, daß nicht nur die Algebra sondern auch ihre Darstellungen
(speziell die “wedge”-Darstellung) wichtig sind. Zur Konstruktion der “wedge”-
Darstellung benutzt man im Virasoro Falle die Graduierung der Algebra und
der beteiligten Module, welche durch die Nullstellenordnung am Punkt z = 0 in-
duziert ist. Die KN Algebra ist nun keine graduierte Algebra im üblichen Sinne
mehr. Durch Einführung spezieller Basen kann man jedoch eine verallgemein-
erte Graduierung einführen, die es erlaubt die wesentlichen Schritte auch im
Falle höheren Geschlechtes durchzuführen. Physiker nahmen diese Konstruk-
tionen auf und benutzten sie zur Beschreibung der konformen Feldtheorie. [PA]
enthält eine exemplarische Liste von Arbeiten von Physikern welche sich mit
diesen Anwendungen befassen.

Um eine Hinführung zu den Problemstellungen dieser Arbeit zu geben,
möchte ich im folgenden erläutern wie die Virasoro Algebra in der Stringtheo-
rie auftaucht. Der nicht an der physikalischen Motivation interessierte Mathe-
matiker mag die folgenden Seiten überschlagen. Im Hauptteil der Arbeit wird
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keine Referenz mehr zu diesen gemacht.

Stringtheorie ist ein Beispiel einer zweidimensionalen konformen Feldthe-
orie. Konforme Feldtheorien auf zweidimensionalen orientierbaren Flächen
sind dadurch gekennzeichnet, daß alle beteiligten Felder, bzw. Operatoren, bei
geeignet gewählter komplexer Struktur, vollständig in holomorphe und anti-
holomorphe Anteile faktorisieren. So sind beispielsweise die globalen (primären)
Felder Φ wie folgt gegeben: Φ ist ein Schnitt in ein Bündel über der (Rie-
mannschen) Fläche M . Es kann dargestellt werden als lokaler Ausdruck in den
lokalen Koordinaten z. Sei weiter w = w(z) ein holomorpher Koordinaten-
wechsel. Φ heißt ein (primäres) Feld vom konformen Gewicht (α, β) falls für
seine lokalen Repräsentanten Φ(z), bzw. Φ̃(w) gilt1

Φ̃(w) =
(
∂w

∂z

)−α(
∂w

∂z

)−β
· Φ(z) . (1-1)

Zur genaueren Einführung in die konforme Feldtheorie sei auf [BPZ] verwiesen.2

Zur Vereinfachung möchte ich im folgenden lediglich die (α, 0), bzw. holomor-
phen Anteile der Felder betrachten.

Die Stringtheorie war in den letzten Jahren die Hoffnung der theoretischen
Physiker alle fundamentalen Kräfte (elektromagnetische, schwache, starke und
gravitative) als verschiedene “Aspekte” einer einzigen, universellen Kraft zu
beschreiben. Auch wenn dies (noch?) nicht gelungen ist, so hat sie jedoch
wesentliche Impulse sowohl in der theoretischen Physik (Quantenfeldtheorie)
als auch in der Mathematik (Modulraum der Kurven, unendlichdimension-
ale Liealgebren, Monstergruppe,...) gegeben. Um die wesentlichen Aspekte
darzustellen, sei die Situation vereinfacht. Ich betrachte nur die geschlossene,
bosonische Stringtheorie. Realistischere Modelle sind supersymmetrische Stringth-
eorien. Ein String im flachen euklidschen Raum3 ist in der anschaulichen klass-
sischen Betrachtungsweise ein eingebetteter Kreis (mit Orientierung) im RD.
Hierbei ist die Dimension D des Einbettungsraum nicht a priori festgelegt. Ins-
besondere ist D nicht 4, bzw. 3. Dieser Kreis bewegt sich mit seiner Eigenzeit
im RD. Anfangsbedingung ist eine feste Position A für den String, Endbedin-
gung eine feste Position B. Die klassische Bewegungsgleichung des Stringes,
formuliert als Variationsproblem für die Energie, lautet: Bewege dich von A

1Physiker verwenden gerne Φ(z, z̄) statt Φ(z) .
2Es treten z.Bsp. durch die Operatorproduktentwicklung in Bezug auf benachbarte Punkte

auch lokale (sekundäre) Felder auf.
3Auch hier sind realistischere Modelle Strings im Minkowski Raum, bzw. Strings in

beliebig gekrümmten Räumen.
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nach B in einer Weise, daß eine Fläche minimalen Inhaltes ausgeschöpft wird.
Dabei soll sich die Orientierung des Kreises nicht ändern. Die ausgeschöpfte
Fläche ist eine orientierte Fläche mit 2 Randkurven, kann also als (berandete
) Riemannsche Fläche aufgefaßt werden. Diese Fläche heißt “world sheet” des
Strings (in Anlehnung an die bekannte Weltlinie eines Teilchens in der Rela-
tivitätstheorie).

Eine Möglichkeit des Überganges von der klassischen Theorie zur Quanten-
theorie ist die Pfadintegralmethode. In diesem Modell geht man davon aus,
daß alle Möglichkeiten der Bewegung von A nach B mit gewissen Wahrschein-
lichkeiten realisiert werden. Diese Wahrscheinlichkeit ist jedoch umso kleiner,
je größer die Energie, d.h. der Inhalt der ausgeschöpften Fläche, ist. Dabei
ist in diesem Modell auch erlaubt, daß sich ein String in zwei Strings teilt,
bzw. zwei Strings sich zu einem vereinigen. Dies heißt, die Wechselwirkung
mehrerer Strings ist automatisch berücksichtigt. Ein einzelner world sheet
ist nun eine (berandete) Riemannsche Fläche beliebigen Geschlechtes. Auf-
grund postulierter Invarianzen des Wahrscheinlichkeitsmaßes (Unabhängigkeit
von der speziellen lokalen Koordinatenwahl, Invarianz unter Multiplikation der
Metrik mit einer positiven reellen Funktion, Invarianz unter Translation im Ein-
bettungsraum) reduzieren sich die verschiedenen Möglichkeiten (alle Einbettun-
gen des world sheets in RD und alle Metriken auf dem world sheet) auf die an-
alytischen Isomorphieklassen von Riemannschen Flächen. Zur ausführlicheren
Information konsultiere man den Bourbaki Exposé von Bost [Bos], die Ein-
leitung von I. McArthur in [Schl1], das Standardwerk über Stringtheorie [GSW],
....

Auf dem world sheet sind nun alle Felder, bzw. alle Operatoren definiert.
Dies ist in vollkommener Analogie zum “Teilchen im Raum” zu sehen. In
diesem Fall ist etwa der Ort des Teilchens, der Impuls und die Energie des
Teilchens eine Funktion auf der Bahnkurve. Aufgrund der Postulate der Stringth-
eorie ist die zu studierende Feldtheorie auf dem world sheet eine konforme
Feldtheorie. Der Fall Geschlecht g = 0 für das world sheet ist gut untersucht
und soll als Einstiegsbeispiel betrachtet werden. Allerdings ist die Darstel-
lungsweise etwas anders als üblicherweise in der Physikliteratur anzutreffen. Ich
habe sie gewählt unter dem Gesichtspunkt der Verallgemeinerung auf beliebiges
Geschlecht. Insbesondere werden Objekte und Notationen wie im Hauptteil der
Arbeit verwendet. Im Fall g = 0 ist der world sheet ein Zylinder. Dieser kann
konform auf P1 \{I,O} abgebildet werden. Auf der komplex projektiven Ger-
ade sei eine globale Koordinate z gewählt, derart daß I dem Punkt z = 0
und O dem Punkt z = ∞ entspricht. Es sei X = P1 und X0 = P1 \ {I,O}.
Aufgrund (1-1) sind die interessanten Objekte meromorphe Schnitte in die Ten-
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sorpotenzen des kanonischen Bündels K von X. Sie sollen auf X0 holomorph
sein. Sei Fλ der Raum solcher Schnitte in Kλ. λ heißt das Gewicht. Der
Schnitt wird auch Form vom Gewicht λ genannt. Ich fixiere eine Basis von Fλ
wie folgt

{ fn(λ) | fn(λ)(z) := zn−1(dz)λ, n ∈ ZZ } . (1-2)

Damit ist eine Graduierung von Fλ aufgrund der Numerierung der Basis gegeben.
Diese entspricht einer Graduierung in Bezug auf die Nullstellenordnung am
Punkt I. Übliche Bezeichnungen für Formen von speziellem Gewicht sind

en := fn(−1), ωn := fn(1), An := fn(0), Ωn := fn(2) .

Die Virasoro Algebra mit zentraler Ladung c ist die Liealgebra erzeugt (als
Vektorraum) von { Ln, n ∈ ZZ ; } und einem zentralen Element t mit den
Kommutatorregeln4

[ Ln, t ] = 0,

[ Ln, Lm ] = (m− n)Ln+m−2 +
c

12
((n− 2)3 − (n− 2)) δm,4−n · t .

(1-3)

Offensichtlich ist die Virasoro Algebra eine graduierte Algebra. Die Vektor-
felder (d.h. die Formen vom Gewicht −1 ) bilden ebenfalls eine Algebra unter
dem üblichen Kommutator. Es gilt

[en, em] = (m− n) en+m−2 , (1-4)

d.h. die Algebra der Vektorfelder F−1 ist isomorph eingebettet in die Virasoro
Algebra mit zentraler Ladung c = 0. Für c 6= 0 sind obige Algebren jeweils
isomorphe, nichttriviale zentrale Erweiterungen der Algebra der Vektorfelder.
Wenn wir die abstrakte Virasoro Algebra betrachten, so setzten wir deshalb
c = 1. Für c = 0 splitted die zentrale Erweiterung. Sei nun eine Darstellung
der abstrakten Virasoro Algebra gegeben, bei der das zentrale Element wie ein
Vielfaches der Identität id operiert. Für die zugeordneten Operatoren gilt dann
die Gleichung (1-3) wobei t durch id zu ersetzen ist. Das nun auftretende c
nennt man auch die zentrale Ladung der Darstellung. Eine Darstellung mit
zentraler Ladung 0 definiert eine Darstellung der Algebra der Vektorfelder.

Sei weiter ρ =
1
z
dz ein meromorphes Differential. Es hat Pole 1.ter Ord-

nung bei I und O mit den Residuen +1, bzw. −1.

u(z) = Re

∫ z

1

ρ = log |z| (1-5)

4Üblicherweise wird die Virasoro Algebra mit einer anderen Indizierung angegeben:
L′

n = Ln+2 . Um in Kohärenz mit dem Haupteil der Arbeit zu bleiben, habe ich dies nicht
übernommen.
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ist eine wohldefinierte harmonische Funktion auf X0.

Cτ = { z ∈ X0 | u(z) = τ } (1-6)

seien ihre Levellinien auf X0. Es sind offensichtlich Kreise um z = 0. Für
τ → −∞ sind es Kreise um I, für τ → +∞ Kreise um O. Diese Situation
kann stringtheoretisch interpretiert werden: Die Levellinie Cτ stellt den String
dar, τ ist die Eigenzeit des Stringes, “τ = −∞” entspricht dem Eintritt des
freien Stringes, “τ = +∞” dem Austritt des freien Stringes.
Multipliziert man v ∈ Fλ mit w ∈ F1−λ, so erhält man eine Differentialform
welche über Cτ integriert werden kann. Da Pole nur bei I und O vorliegen, ist
der Wert des Integrales unabhängig von τ . Die Basis (1-2) erfüllt die folgende
Dualitätsbeziehung

1
2πi

∮
Cτ

fn(λ) · f1−m(1− λ) = δn,m . (1-7)

Ist F (z) irgendein Feld, definiert auf X0 vom Gewicht λ, d.h. ein Schnitt in
Kλ, von dem wir wissen, daß es sich schreiben läßt als

F =
∞∑

n=−∞
anfn(λ), (1-8)

so gilt

an =
1

2πi

∮
Cτ

F · f1−n(1− λ) . (1-9)

Diese Entwicklung in der konformen Feldtheorie ist das Analogon der üblichen
Fourierentwicklung. Für das Folgende postuliert man nun, daß alle beteiligten
Felder und Operatoren solch eine Entwicklung besitzen. In der Darstellung
lehne ich mich an [KN2] an.

Sei M der world sheet und definiere X : M → RD die Einbettung. Die
Komponenten Xµ, µ = 1, . . . , D sind die Ortsvariablen des Stringes. Für
jeden Punkt P ∈M , der kein singulärer Punkt von Cτ ist, hat man eine Vari-
able σ entlang des Stringes und die oben eingeführte Variable τ in Richtung
der Stringbewegung. Der konjugierte Impuls Pµ der Ortvariablen Xµ ist
∂Xµ

∂τ
dτ .5 Aufgefaßt als Objekte auf M (unter Benutzung der Bewegungsgle-

ichung der Stringes ) ergibt sich : Xµ ist ein Feld vom Gewicht 0 und Pµ ein
Feld vom Gewicht 1. Wir erhalten folgende (beidseitig unendliche) Entwicklung

Xµ(Q) =
∑
n

Xµ
nAn(Q), Pµ(Q) =

∑
n

Pµn ωn(Q) . (1-10)

5Ich vernachläßige hier und auch weiterhin Faktoren von π.
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Hierbei sind Xµ
n und Pµn skalare Koeffizienten. Die Quantisierung im Oper-

atorformalismus6 besteht darin alle Felder als operatorwertige Felder aufzu-
fassen. Die Poissonklammer der Felder wird als Kommutatorrelation der Op-
eratoren, welche auf einem, üblicherweise nicht näher spezifizierten, linearen
Raum operieren, interpretiert. Dies ergibt hier für Q,Q′ ∈ Cτ

[Xµ(Q), P ν(Q′)] = ∆τ (Q,Q′) δµ,ν ,

[Xµ(Q), Xν(Q′)] = [Pµ(Q), P ν(Q′)] = 0 .
(1-11)

∆τ (Q,Q′) ist die “δ−Funktion ” auf Cτ . Genauer handelt es sich hierbei um
eine Funktion in der Variablen Q und ein Differential in der Variablen Q′. Sie
ist charakterisiert durch

f(Q) =
1

2πi

∮
Cτ

f(Q′)∆τ (Q,Q′) (1-12)

für Funktionen f auf Cτ . Mit (1-9) ergibt sich die Darstellung

∆τ (Q,Q′) =
∑
n

An(Q)ω1−n(Q′) . (1-13)

Zur Notationsvereinfachung werde ich im folgenden nur eine Komponente von
X und P betrachten und den Index weglassen. In den Darstellungen (1-10) wer-
den, aufgrund der Quantisierung, die Xn und Pn operatorwertige Koeffizienten.
Mit Hilfe von (1-11) rechnet sich aus7

[ Xn, P1−m ] = δm,n, [ Xn, X1−m ] = [ Pn, P1−m ] = 0 .

Der Impulstrom (genauer sein (1, 0)−Anteil) ist gegeben als das Differential

J(Q) =
∂X

∂σ
(Q)dσ + P (Q)

Als Objekt auf dem world sheet kann J entwickelt werden

J(Q) =
∑
n

(
XndAn(Q) + Pnωn(Q)

)
=
∑
n

a1−nωn(Q) . (1-14)

6Diese Quantisierung wird 2.Quantisierung genannt, da Felder quantisiert werden.
7Die Frage der Berechtigung von unendlichen Summen von Operatoren möchte ich hier

nicht diskutieren. Sie werden noch ein paar mal im physikalischen Teil auftreten. Der skeptis-
che Leser möge diese als heuristische Konzepte auffassen. Durch eine “Regularisierungsproze-
dur” (Normalordnung) ist sicherzustellen, daß die Aktion für die relevanten Operatorsummen
wohldefiniert ist. Siehe hierzu auch § 8.(b).
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Das Differential dAn kann mit der Dualität (1-9) berechnet werden

dAn =
∑
m

γn,1−m ωm mit γn,m =
1

2πi

∮
Cτ

dAn ·Am . (1-15)

Aufgrund der einfachen Gestalt bleibt für g = 0 nur ein einziger Summand

dAn = (n− 1)ωn−1, bzw. γn,m = (n− 1) δm,2−n .

Für die Koeffizienten

a1−n = Pn +
∑
m

γm,1−nXm

ergibt sich die Kommutatorrelation

[an, am] = −2γn,m (1-16)

bzw. für g = 0
[an, am] = 2(1− n)δm,2−n . (1-17)

Die operatorwertigen Koeffizienten des Stromes J bilden somit eine Oszil-
latoralgebra mit unendlich vielen Freiheitsgraden. Diese wird auch Heisen-
bergalgebra genannt. In § 6. werde ich ausführen wie man sie als zentrale
Erweiterung der abelschen Liealgebra LF0, der Funktionenalgebra, gewinnen
kann.

Der nächste Schritt ist die Behandlung des Energie-Impulstensors T . Der
Energie-Impulstensor ergibt sich als “Variation des Energiefunktionals (gle-
ich Flächeninhalt) des world sheets nach der Metrik des world sheets” (siehe
[GSW]). Im klassischen Bild ist er das Quadrat des Stromes (Sugawaraform),
somit eine Form vom Gewicht 2 (ein quadratisches Differential)

T (Q) = −1
2
(J(Q))2 = −1

2

(∑
n

a1−nωn(Q)

)2

=
∑
n

LnΩ1−n(Q) . (1-18)

Will man eine Beziehung zwischen den operatorwertigen Fourierkoeffizienten
an und Ln erhalten, um festzustellen wie diese operieren, so steht man vor
dem Problem daß die Form (1-18) unter der Annahme, daß alle Koeffizienten
Zahlen sind, gebildet wurde. Nun ist im allgemeinen an · am 6= am · an .
Es ist also nicht klar, welche Reihenfolge im Quadrat angenommen werden
sollte. Die Vorschrift einer gewissen Reihenfolge nennt man Normalordnung
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: anam : . Diese ist bestimmt durch gewisse Vorgaben. Für die Darstellung der
Quantentheorie wird gefordert, daß J(Q) angewendet auf den Grundzustand
(das “Vakuum”) |0〉 holomorph bei z = 0 ist (“Regularität des Vakuums”).
Dies bedeutet, es muß an|0〉 = 0 für n ≥ 1 gelten. Diese an heißen de-
shalb Vernichtungsoperatoren. Die Normalordnung besteht darin im Fall des
Nichtvertauschens von an und am, und falls einer der beiden ein Vernichtung-
soperator ist, diesen rechts aufzuführen. In unserem Fall (g = 0) vertauscht
nur dann an und am nicht, falls m = (2 − n) ist. Insbesondere ist die Nor-
malordnungsvorschrift eindeutig. Sie ergibt

: anam : :=
{
anam, m ≥ n
aman, m < n .

Der quantenmechanische Operator T ist definiert als

T (Q) = −1
2

: J(Q)2 := −1
2

∑
n,m

: anam : ω1−n(Q)ω1−m(Q) . (1-19)

Wiederum mit der Dualitätsformel gilt

Lk = −1
2

∑
n,m

lkn,m : anam : mit lkn,m =
1

2πi

∮
Cτ

ekω1−nω1−m . (1-20)

Im Fall g = 0 verschwindet der Koeffizient lkn,m falls (n+m− k) 6= 0 ist und
für n+m− k = 0 ist er 1. Somit

Lk = −1
2

∑
n

: ana(k−n) : . (1-21)

Durch direktes Nachrechnen auf den Darstellungen verifiziert man [KN2], daß
die Operatoren Lk eine Darstellung der Virasoro Algebra mit zentraler Ladung
c = 1 bilden. Führen wir alle Komponenten mit, so ist T die Summe von D

Termen, d.h. als gesamte zentrale Ladung tritt cX = D auf.

Der nächste Schritt der Quantentheorie besteht darin, die Kommutatorrela-
tionen der Operatoren auf entsprechenden Räumen zu realisieren.8 Die Kom-
ponenten Lk von T haben allerdings noch eine andere Bedeutung. Da sie den
meromorphen Vektorfeldern auf X entsprechen, die holomorph auf X0 sind,

8Weitere Schritte sind: Einführung eines Skalarproduktes, Berechnung von Eigenwerte
der Operatoren, usw. . Darauf werde ich hier jedoch nicht eingehen.
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sind sie “infinitesimale” Erzeugende von konformen Transformationen, d.h. Lk
ist “zugeordnet” dem (lokalen) konformen Fluß

Φk(t, z) : (z 7→ z + t · zk−1), t ∈ R .

Eine konforme Feldtheorie sollte abgeschlossen unter konformen Umparametri-
sierungen sein. Mit einem Feld Φ, oder mit einem Zustand |w〉 muß deshalb
auch das entsprechend “abgeleitete” Feld LkΦ , bzw. der Zustand Lk|w〉
in der Theorie vorhanden sein. Gesucht sind also Darstellungen der Virasoro
Algebra, die gewisse, für die Physik wichtige, Eigenschaften haben. Dies sind
etwa Unitarität, positive Eigenwerte des Energieoperators und die Existenz
eines Grundzustandes |0〉 mit

Ln|0〉 = 0, n ≥ 3, L2|0〉 = h|0〉, h ∈ C .

Solche Darstellungen wurden unter dem Namen Verma Darstellung, bzw. Höchst-
gewichtsdarstellungen ausführlich von Mathematikern und Physikern (siehe
Literaturhinweise in [KaR]) studiert.9 Eine Möglichkeit explizite Realisierun-
gen zu erhalten besteht darin, von der Aktion der Vektorfelder auf den Formen
(via Lieableitung) auszugehen. Es gilt

Len(fm(λ)) = en . fm(λ) = ((m− 1) + λ(n− 1)) fn+m−2 . (1-22)

Dies ergibt ebenfalls eine Aktion der Lk auf Fλ. Leider hat diese Darstellung
nicht die gewünschten Eigenschaften. Um solche zu konstruieren, kann man
ausgehend von Fλ(A) den semi-infiniten Wedgeraum (siehe § 7.) benutzen.
Dieser besitzt als Basis die (formalen) Wedgeformen

ψ = fi1 ∧ fi2 ∧ . . . fm ∧ fm+1 ∧ . . . (1-23)

mit i1 < i2 < . . . < m < . . . , wobei, beginnend von einem Index m der von
ψ abhängt, alle Indices auftreten müssen. Auf diesen Formen operieren die
Vektorfelder durch die Leibnizregel. D.h. das Vektorfeld e operiert auf einem
einzelnen Faktor, die anderen Faktoren bleiben unverändert und es wird über
alle Möglichkeiten summiert (siehe (7-2) zur genaueren Definition). Das ∧ Ze-
ichen deutet an, wie das Ergebnis in Standardform zu überführen ist. Für en,
mit n 6= 2, bleiben bei der Aktion nur endlich viele Terme übrig. Für e2 ist
diese Aktion nicht wohldefiniert, da sich in jedem Term das Ausgangsbasisele-
ment mit einem Faktor versehen reproduziert. Um eine wohldefinierten Aktion

9Tatsächlich treten Untermodule von Tensorprodukten verschiedener Vermadarstellungen
auf.
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zu erhalten, muß man “Regularisieren”. Allerdings definiert die regularisierte
Aktion nur noch eine Lieaktion einer zentralen Erweiterung der Algebra der
Vektorfelder, d.h. eine Lieaktion der Virasoro Algebra.

Diese semi-infiniten Wedgeprodukte spielen auch eine wichtige Rolle in einem
anderen Baustein der quantisierten Stringtheorie, den sogenannten b− c Syste-
men [Bo1]. Diese Felder (auch “ghost”-Felder genannt) haben keine klassische
Entsprechung. Es sind Operatorenfelder vom Gewicht 2, bzw. −1. Sie haben
somit eine Entwicklung

b(Q) =
∑
n

b1−nΩn(Q), c(Q) =
∑
n

c1−nen(Q) . (1-24)

Weiter gilt für Q,Q′ ∈ Cτ (d.h. zur selben “Zeit”)

{b(Q), c(Q′)} = b(Q) · c(Q′) + c(Q′) · b(Q) = ∆τ (Q,Q′)

{b(Q), b(Q′)} = {c(Q), c(Q′)} = 0 .
(1-25)

∆τ ist die “Delta-Funktion” für b− c Systeme.
In der geschlossenen bosonischen Stringtheorie führt man sie ein, um die Invar-
ianz des Pfadintegrales unter der Reparametrisierungsgruppe (das sind die Dif-
feomorphismen welche isotop zur Identität sind) bequem handhaben zu können.
Wie bereits erwähnt, wird über alle Einbettungen und alle Metriken “integri-
ert”. Aufgrund der Reparametrisierungsinvarianz kann die Metrik g lokal auf

Diagonalform g = eϕ ·
(

1 0
0 1

)
gebracht werden (ϕ eine reelle Funktion).

(In Physikerterminologie: Man wählt eine Eichung). Es kann dann das “Vol-
umen” der Reparametrisierungsgruppe abdividiert werden, indem transversal
zu den Orbits (d.h. über ein “gauge slice”) integriert wird. Vorher muß allerd-
ings das Integrationsmaß transformiert werden. Dies erfolgt entweder durch
Einführung von Zetafunktions-regularisierten Determinanten für den Laplace-
operator auf den quadratischen Differentialen [Bos] oder, hierzu äquivalent,
durch Einführung solcher b − c Systeme (Geister) und Ausführung einer Inte-
gration über antikommutierende Variable (Berezin-Integral). Dieses Verfahren
wird auch Faddeev-Popov-Prozedur genannt. (Siehe [GSW,p.122] zur näheren
Information.)
Mittlerweile haben die b − c Systeme als eine Klasse einfach zu behandelnder
feldtheoretischer Modelle eine eigenständige Bedeutung erfahren.

Zurück zur Formel (1-25). Analog zu den Ableitungen bei den klassischen
Feldern ergibt sich hier für die operatorwertigen Koeffizienten

{bn, cm} = δm,1−n, {bn, bm} = {cn, cm} = 0 . (1-26)
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Eine Darstellung solcher Systeme kann ausgehend von der semi-infiniten Form

|0〉 = Ω1 ∧ Ω2 ∧ Ω3 ∧ . . . (1-27)

erhalten werden. Die Aktion von cn besteht im “Einhängen” von Ωn, die Aktion
von bn im “Aushängen” von Ω1−n. Für eine semi-infinite Form w gilt also

cn.w = Ωn ∧ w, bn.w = ien
(w) .

Hierbei ist ien
definiert als die Kontraktion auf jedem Faktor

ien(Ωk) =
1

2πi

∮
Cτ

enΩk (1-28)

und die Fortsetzung dieser Aktion mit der (modifizierten) Leibnizregel

ien
(Ωj1 ∧ Ωj2 ∧ Ωj3 . . . ) =

∞∑
k=1

(−1)k−1(ienΩjk) ∧ Ωj1 ∧ . . . Ω̌jk . . . (1-29)

(Ω̌jk bdeutet, daß dieser Term ausgelassen wird). Dies definiert eine Darstel-
lung der von den bn und cn mit (1-26) erzeugten Cliffordalgebra. Die Wahl des
Vakuumvektors (1-27) bedeutet

bn|0〉 = cn|0〉 = 0 für n ≥ 1 .

Also sind b(Q)|0〉 und c(Q)|0〉 holomorph am Punkt z = 0.

Der (2, 0) Anteil des Energie-Impulstensors T ist in der lokalen Darstellung
gegeben als

T (z) = −Lc(b)(z) = −c(z) ∂b
∂z

(z)− 2
∂c

∂z
(z)b(z) =

∑
n

L1−kΩk(z) . (1-30)

Um die Lk in den bn bzw. cn auszudrücken muß wieder normalgeordnet werden.
Hier bedeutet dies, daß, falls die Operatoren nicht antikommutieren, derjenige
Operator am weitesten rechts aufgeführt wird, der das Vakuum (1-27) annul-
liert.

: cnbm : :=
{
cnbm, m > 0
−bmcn, m ≤ 0 .

(1-31)

Die operatorwertigen Koeffizienten in (1-30) können gegeben werden als

Lk =
∑
n

(k − n) : c1−nbn+k−2 :
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Sie bilden ebenfalls eine Darstellung der Virasoro Algebra, nun allerdings mit
zentraler Ladung cgh = −26 (siehe § 8.(b)). Die gesamte quantisierte bosonische
Stringtheorie besteht in den Xµ−Feldern und den ghost-Feldern. Der Gesamt-
darstellungsraum der Virasoro Algebra ist das Tensorprodukt der einzelnen
Darstellungen mit der Aktion

L(v ⊗ w) = L(v)⊗ w + v ⊗ L(w) .

Hierbei addieren sich die zentralen Ladungen. Diese ist ja der multiplikative
Faktor mit denen das zentrale Element operiert. Falls die gesamte zentrale
Ladung verschwindet, bedeutet dies, daß die Algebra der Vektorfelder auf den
Zuständen operiert. Dies heißt die quantisierte Theorie ist, wie die klassis-
che, “konform invariant”. Falls nicht, sprechen die Physiker von der “kon-
formen Anomalie” (hervorgerufen durch die Quantisierung). Fordert man das
Verschwinden der konformen Anomalie so bedeuted dies cgh = −cX , also
D = 26 . Man erhält somit eine Fixierung der Einbettungsdimension.10

Soweit die wichtigsten Aspekte der Geschlecht g = 0 Betrachtung. Sie wur-
den jedoch schon so formuliert, daß sie auf höheres Geschlecht übertragbar sind.
Die meist übliche Darstellung der physikalischen Theorie arbeitet vollständig in
der lokalen Koordinate z und mit lokaler Trivialisierung aller Bündel. Krichever
und Novikov [KN1], [KN2] haben die entsprechenden Konstruktionen bei höherem
Geschlecht ausgeführt. Die Virasoro Algebra wurde ersetzt durch ihre Verall-
gemeinerung, die Krichever - Novikov Algebra. Wie bereits erwähnt wurden
diese Konstruktionen von Physikern aufgegriffen um einen globalen Operator-
formalismus auf Riemannsche Flächen von höherem Geschlecht zu formulieren.
Krichever und Novikov haben sich allerdings auch nur auf 2 Polpunkte beschränkt.
In der obigen Interpretation in der Stringtheorie liegt es nahe statt zweier
Polpunkte, die dem Eintritts- und Austrittspunkt eines freien Stringes entsprechen,
mehrere einkommende und mehrere ausgehende Strings zu erlauben. Aufgrund
des Impulserhaltungssatzes muß allerdings, falls ein String eintritt, auch min-
destens einer austreten und umgekehrt. Die notwendigen algebraisch-geometrischen
Grundkonstruktionen durchzuführen, ist der Inhalt dieser Arbeit. Es sei nochmals
darauf hingewiesen, daß im folgenden kein Bezug mehr zur physikalischen An-
wendung gemacht wird (Ausnahme § 8.(b)). Insbesondere wird auch nicht
der Versuch unternommen, einen globalen Operatorformalismus der konfor-
men Feldtheorie auf Riemannschen Flächen von höherem Geschlecht zu kon-
struieren. Untersucht wird auch nicht die zweifellos sehr interessante Frage

10Um auf Dimension 4 der Raumzeit zu kommen, werden 22 Dimensionen als interne
Dimensionen “kompaktifiziert”.
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des mathematischen Zusammenhanges eines solchen globalen Formalismus mit
dem lokalen Operatorformalismus, dessen mathematische Grundlagen etwa in
[BS],[KNTY],[TUY],[Wi1] dargestellt werden. (Im lokalen Formalismus wird
an jedem Punkt des world sheets eine Virasoro Algebra “angeheftet”.)

Ich möchte nun eine Kurzfassung des Inhaltes geben. In § 2. wird der
allgemeine Rahmen erläutert. Gegeben sei eine Riemannsche Fläche X von
beliebigem Geschlecht (diese entspricht in der Stringtheorie dem world sheet).
A sei eine Menge von Punkten aus X aufgeteilt in 2 nichtleere Teilmengen
I und O. Die Punkte in I entsprechen den Eintrittsstellen freier Strings,
die Punkte in O den Austrittsstellen freier Strings. I und O können unter-
schiedliche Mächtigkeit haben. Die Punkte in A seien generisch gewählt. Sei
ρ ein meromorphes Differential, das genau Pole 1.ter Ordnung an den Punk-
ten aus A hat, mit positiven Residuen an den Punkten aus I und negativen
Residuen an den Punkten aus O und rein imaginären Perioden. Analog zu
(1-6) werden die Levellinien Cτ definiert. Allerdings können sie nun mehrere
Komponenten haben, bzw. sie können Singularitäten haben (an den Nullstellen
von ρ). Die Cτ bilden in der Interpretation der Stringtheorie die Stringkon-
figuration zur Eigenzeit τ . Insbesondere ist die Levellinie Cτ für τ � 0 eine
Kollektion von Kreislinien um die Punkte aus I und für τ � 0 eine Kollektion
von Kreislinien um die Punkte aus O. Fλ(A) sind die meromorphen λ−Formen
(Schnitte in Kλ), die holomorph auf X \A sind. F−1(A) sind die Vektorfelder.
Sie bilden unter dem üblichen Kommutator der Vektorfelder eine Liealgebra.
Diese nenne ich (verallgemeinerte) Krichever - Novikov Algebra KN (A). Durch
Lieableitung operiert KN (A) auf Fλ(A) und macht diesen zu einem Liemodul.
Daneben operiert auch F0(A) auf Fλ(A) durch Multiplikation mit den Funktio-
nen. KN (A) zusammen mit F0(A) (aufgefaßt als abelsche Liealgebra) bilden
die Liealgebra der Differentialoperatoren vom Grad ≤ 1 auf Fλ(A). Der Vi-
rasorofall ist als Spezialfall enthalten. Hierzu nehme man X = P1 mit der
Parametrisierung z, I = {z = 0} und O = {z = ∞}. Ebenso ist der von
Krichever und Novikov behandelte Fall enthalten. Hierbei enthält I und O

jeweils nur einen Punkt.

In § 3. wird mit Hilfe von Riemann-Roch ein Erzeugendensystem für Fλ(A)
angegeben. Jedes Element dieses Systemes wird durch vorgeschriebene Ord-
nungen an den Punkten aus A fixiert (bis auf Multiplikation mit einer Kon-
stanten). Hierbei wird benutzt, daß die Punkte in allgemeiner Lage sind.
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Nur in diesem Fall ist man in der Lage zu schließen, daß die Forderung nach
einer zusätzlichen Nullstelle der zu betrachtenden Schnitte von Kλ an einem
Punkt aus A die Dimension des entsprechenden Schnittraumes um 1 erniedrigt
(falls sie nicht schon 0 war). Durch schrittweises Erhöhen der Ordnungsvor-
gaben, erhält man die Eindeutigkeit der erzeugenden Elemente. Da K und
0 spezielle Divisoren sind, sind für λ = 0 und λ = 1 einige Sonderbetrach-
tungen notwendig. Insbesondere sind die Ordnungsvorschriften nicht immer
ausreichend zur Fixierung der Erzeugenden.

In § 4. gebe ich explizite Formen dieser Erzeugenden an. Im Fall g = 0 ist dies
trivialerweise durch rationale Ausdrücke analog zu (1-2) machbar. Im Fall g = 1
genügt wegen K = 0 die Konstruktion von Funktionen. Dies erfolgt mit Hilfe
der Weierstraßchen σ−Funktion. Im Fall g ≥ 1 benutze ich die Jacobiabbil-
dung um die Riemannsche Fläche X in ihre Jacobivarität Jac (X) einzubetten.
Mit Hilfe der “prime”-Formen (dies sind mehrwertige Formen auf X ×X vom
Gewicht −1/2 in jedem Argument) und Thetafunktionen können entsprechende
Erzeugende konkret angegeben werden. Hierbei bezieht sich “konkret” auf die
eingebettete Riemannnsche Fläche in Jac (X) . Solche explizite Formen sind
in zweifacher Weise nützlich. Zum einem werden sie von den Physikern benutzt
um “Übergangswahrscheinlichkeiten” zu berechnen [Bo1]. Zum anderen kann
der Effekt der Variation der Punkte aus A und der Variation der komplexen
Struktur von X studiert werden.

In § 5. erfolgt die Auszeichnung einer Basis. In § 3. und § 4. war die Zerlegung
A = I ∪O ohne Belang. Die Basis wird nun von der Zerlegung abhängen. Die
Punkte in I seien von 1 bis k numeriert. Es werden aus dem Erzeugendensystem
von Fλ(A) Elemente

fn,p(λ), n ∈ ZZ , p = 1, . . . , k

ausgewählt. Der Index n steht im Zusammenhang mit der Ordnung von fn,p(λ)
an den Punkten aus I . Genauer gilt

ord Pi
(fn,p(λ)) = n− δi,p, Pi ∈ I .

Die Ordnungen an den Punkten aus O sind gewählt, um Eindeutigkeit (bis
auf skalare Vielfache) zu erzwingen. Allerdings sollen ebenfalls noch gewisse
Eigenschaften gelten, die im folgenden aufgeführt werden. Die Wahlen sind so
gemacht, daß wiederum Dualität in Analogie zu (1-7) gilt

1
2πi

∮
Cτ

fn,p(λ)f1−m,r(1− λ) = δn,m · δp,r . (1-32)
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Die Methode, dies zu berechnen, besteht darin je nach Situation die Residuen
an den Punkten aus I, bzw. aus O zu berechnen. Die Dualität (1-32) ist funda-
mental. Jedes v ∈ Fλ(A) ist Linearkombination der fn,p(λ). Die Dualität er-
laubt es die Koeffizienten in der Linearkombination als Integral, bzw. Residuum
auszudrücken. Insbesondere kann man wiederum Entwicklungssummen, wie in
(1-8), in Bezug auf diese Basis hinschreiben.

Es gilt aber noch mehr. Führt man auf Fλ(A) eine Graduierung ein, derart
daß die Linearkombinationen der Elemente fn,p die homogenen Elemente vom
Grad n sind, dann ist Fλ(A) i.Allg. kein graduierter Modul über KN (A) mehr,
wie er er es im Virasoro Falle (1-22) war. Allerdings liegt eine verallgemeinert
graduierte Struktur vor. Genauer gilt

en,p . fm,r(λ) =
n+m+L∑
h=n+m−2

k∑
s=1

C
(h,s)
(n,p),(m,r)(λ) · fh,s(λ) . (1-33)

Hierbei ist en,p = fn,p(−1) und e . f = Le(f) die Lieableitung von f in
Richtung des Vektorfeldes e. Weiter ist L eine Konstante die weder von n noch
von m abhängt. Falls #I = #O (und für g = 0 noch zusätzlich #I = 1), so
gilt L = 3g − 2 für λ 6= 0, 1. Eine verallgemeinert graduierte Struktur ergibt
sich auch, wenn man Fλ(A) als Modul über der (assoziativen) Algebra F0(A)
auffaßt. Die Gleichung (1-33) ist, wie sich in § 7. zeigen wird, genau das was
man braucht um die Wedgeproduktdarstellung zu konstruieren. Natürlich ist
die Festlegung von Fλ(A) nicht gekoppelt mit der Aufspaltung von A in I

und O. Unterschiedliche Aufspaltungen induzieren auf Fλ(A) unterschiedliche
verallgemeinerte Graduierungen. Die Graduierung bleibt invariant unter Um-
numerierung der Punkte aus I. Werden die Punkte aus O umnumeriert, so
ändert sich zwar die Graduierung, nicht jedoch die Filtrierung. Im Gegensatz
dazu induziert eine andere Aufspaltung der Menge A eine nichtäquivalente Fil-
trierung.

Neben der Darstellung obiger Ideen besteht der zweite Teil von § 5. darin,
Regeln für die Festlegung der Ordnungen an den Punkten aus O für alle
Möglichkeiten von #I und #O und alle λ zu geben, derart daß die oben genan-
nten Eigenschaften (Basiseigenschaft, Dualität, verallgemeinert graduierte Struk-
tur) Gültigkeit haben. Insbesondere sind aufgrund der Dualitätsforderungen
die Basiselemente auch für λ = 0 und λ = 1 eindeutig fixiert.

Wie man im Virasoro Fall gesehen hat, benötigt man zentrale Erweiterun-
gen der Algebra der Vektorfelder. Diese werden in § 6. studiert. Zentrale Er-
weiterungen einer Liealgebra G werden durch antisymmetrische Bilinearformen
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χ auf G (mit Werten in C) gegeben, welche den Kozykelbedingungen

χ([f, g], h) + χ([g, h], f) + χ([h, f ], g) = 0

genügen. Um zentrale Erweiterungen K̂N (A) von KN (A) zu erhalten, kann ich
auch hier die von Krichever und Novikov verallgemeinerte Form des Virasoro
Kozykels benutzen. Sie funktioniert auch bei mehreren Polstellen. Es gilt

χ(e, h) =
1

24πi

∮
Cτ

(
1
2
(f ′′′t− ft′′′)−R · (f ′t− ft′)

)
dz (1-34)

Hierbei sind e = f ∂
∂z , bzw. h = t ∂∂z die lokalen Formen der Vektorfelder

und R ein holomorpher, projektiver Zusammenhang. R kompensiert gerade
die Tatsache, daß die erste Hälfte des Integranden unter Koordinatenwechsel
sich nicht wie ein Differential transformiert. R verschwindet für projektive
Transformationen. Deshalb wird er auch für g = 0 nicht benötigt.

Der Kozykel (1-34) erfüllt in Bezug auf die spezielle Basis von § 5. eine
wichtige Lokalitätseigenschaft. Es gilt nämlich

χ(en,p, em,r) = 0 für (n+m) ≥ 5 oder (n+m) ≤M ≤ 3 .

Hier ist M wiederum eine, weder von m noch von n abhängige, Konstante. Für
die n und m Werte an der oberen Grenze des Bereiches, an dem der Kozykel
nicht verschwindet, kann ich den Kozykel explizit berechnen. Es ergibt sich

χ(e2+i,p, e2−i,r) =
(

1
12

(i3 − i)
)
δp,r (1-35)

in Analogie zum Virasoro Fall. Im Virasoro Fall läßt sich leicht zeigen, daß
(bis auf kohomologe Abänderung und Multiplikation mit einem Skalar) dieser
Kozykel der einzige Kozykel ist. Im Fall zweier Punkte und beliebigem g

wird dies in [KN1] mit entsprechendem Aufwand gezeigt. Vermutlich wird es
auch für eine beliebige Anzahl von Punkten gelten. Ich gebe eine Skizze eines
möglichen Beweises, führe ihn jedoch nicht aus, da er ganz anders geartete
Methoden, als in der vorliegende Arbeit entwickelt, erfordern würde.

Neben der Krichever - Novikov Algebra studiere ich noch zentrale Erweiterun-
gen der (abelschen) Liealgebra LF0(A) der Funktionen. Hier ist ein nicht-
trivialer Kozykel gegeben durch

γ(f, g) =
1

2πi

∮
Cτ

f dg . (1-36)
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Die durch diesen Kozykel definierte zentrale Erweiterung von LF0(A) nenne
ich verallgemeinerte Heisenberg Algebra. Sie spezialisiert sich im Virasoro
Fall zu der schon angesprochenen Oszillatoralgebra (1-17). Der Vektorraum
D1(A) = KN (A) ⊕ F0(A) kann zu einer Liealgebra gemacht werden. Auf
jedem Summanden ist die Lieoperation wie vorgegeben . Durch

[e, h] = −[h, e] = Le(h), e ∈ KN (A), h ∈ F0(A)

wird D1(A) zu einer Liealgebra. Es ist die Liealgebra der Differentialoperatoren
vom Grad ≤ 1. Fλ(A) wird durch die Operation Lieableitung nach einem
Vektorfeld, bzw. Multiplikation mit einer Funktion zu einem Liemodul über
D1(A). Die obigen Kozykel (1-34) und (1-36) definieren auch Kozykel auf
D1(A). Daneben gibt es noch einen 3. linear unabhängigen Kozykel der KN (A)
mit F0(A) vertwisted. Dieser ist gegeben durch (f ist die lokale Darstellung
von e)

β(e, h) =
1

2πi

∮
Cτ

(fh′′ + T · fh′)dz . (1-37)

T ist ein “affiner Zusammenhang” der allerdings nicht holomorph auf X ist.
Er kann so gewählt, daß er lediglich einen Pol 1.Ordnung an einem Punkt aus
O besitzt. Sowohl für den Kozykel (1-36) als auch (1-37) gelten wiederum
gewisse Lokalitätsaussagen. Im Virasoro Fall ist H2(D1({0,∞})) von diesen 3
Kozykeln erzeugt (siehe [ACKP]). Ich führe die Algebra der kohärenten Differ-
entialoperatoren D(A) über die universelle einhüllende Algebra von D1(A) ein
(triviale Relationen werden aus dieser herausdividiert). Diese Namensgebung
wähle ich deshalb, da ihre Elemente als Differentialoperatoren auf allen Fλ(A)
simultan operieren.

In § 7. studiere ich Wedgeproduktdarstellungen der eingeführten Algebren.
Hierbei wird der Fall KN (A) ausführlich behandelt. Statt der Elemente fn(λ)
werden nun die Elemente fn,p(λ) in (1-23) zur Definition benutzt. Hλ(A)
bezeichne den Raum der semi-infiniten Formen. Die Anordnung bezieht sich
immer auf die lexikographische Ordnung der Doppelindices. Auch hier ist die
Aktion nicht für alle en,p wohldefiniert. Anders wie im Virasorofall sind es nun
mehrere, die Probleme bereiten. Aufgrund der verallgemeinert graduierten
Struktur sind es allerdings immer noch endlich viele. Genauer gilt: Die Aktion
der Unteralgebren

KN+(A) = 〈en,p | n ≥ 3, p = 1, . . . , k〉
KN−(A) = 〈en,p | n ≤ −1− L, p = 1, . . . , k〉

ist wohldefiniert. Für die Elemente “dazwischen” muß die Aktion abgeändert
werden. Diese abgeänderte Aktion ist nur noch eine projektive Aktion. Erst
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beim Übergang zu einer zentralen Erweiterung K̂N (A) wird die Aktion wieder
zu einer Lieaktion. Den Beweis der “Fortsetzung“ dieser Aktion führe ich zuerst
mit einer Methode, welche eine Verallgemeinerung der im Virasorofall ange-
wandten ist, wie sie in [KaR] dargestellt wurde. Aufgrund der Basiswahlen
definiert die Aktion von KN (A) auf Fλ(A) eine Einbettung in den Vektor-
raum der beidseitig unendlichen quadratischen Matrizen. Wegen der verallge-
meinert graduierten Struktur liegt KN (A) in gl(∞), der Algebra der Matrizen
mit nur endlich vielen Diagonalen. Diese Einbettung ist natürlich verträglich
mit der Aktion auf Fλ(A) (und Hλ(A) falls definiert). Für gl(∞) existiert
über eine wohldefinierte Abänderung der Aktion und einen wohldefinierten 2-
Kozyklus eine Aktion von ĝl(∞) auf Hλ(A). Aufgrund der Einbettung von
KN (A) existiert eine zentrale Erweiterung K̂N (A), die auf Hλ(A) operiert.
Der definierende Kozykel ist der Pullback (unter der Einbettung) des Kozykels
auf gl(∞). Dieser Pullback erfüllt wiederum die Lokalitätseigenschaft.

Eine zweite Methode dies alles zu zeigen, beruht auf einem Vorschlag von
R.Weissauer. Sie ist im wesentlichen äquivalent und führt zu einer isomorphen
zentralen Erweiterung. Die Operation von en,p auf den Formen wird modifiziert
durch die Vorschrift

en,p .
w
fm,r = wm · (en,p . fm,r) .

Hierbei ist w eine komplexe Variable. Ist ψ ein Basisvektor von Hλ(A), dann
ist die entsprechende Aktion opw(en,p)(ψ) für w < 1 immer eine wohldefinierte
lineare Aktion. Allerdings liegt auch hier keine Lieaktion mehr vor. Für w = 1
geht sie in die üblich Aktion über, falls diese wohldefiniert ist. Schwierigkeiten
machen jedoch Vielfache von ψ im Ergebnis. Diese tauchen bei opw(en,p) mit
einer Potenzreihe in w auf, welche im Falle der Nichtwohldefiniertheit bei
w = 1 einen Pol hat. Die Regularisierung besteht in der Subtraktion des Poles.
Diese regularisierte Aktion ist eine projektive Aktion. Erst nach Übergang zu
einer zentralen Erweiterung erhält man wieder eine Lieaktion. Dies gilt alles
unter der Voraussetzung der Konvergenz einer gewissen Potenzreihe, in der die
Strukturkonstanten als Koeffizienten auftreten. Im Fall g = 0 (N beliebig) ist
diese Voraussetzung erfüllt. Für beliebiges g habe ich dies noch nicht näher
untersuchen können.
In Prop. 7.2 werden die wesentlichen Eigenschaften dieser beiden Methoden
gesammelt.

Für gewisse Basiselemente kann der Kozykel wieder explizit berechnet wer-
den. Der (aufgrund beider Methoden) gefundene Kozykel hängt vom Gewicht λ
ab. Will man diese Abhängigkeit beseitigen, so bedeutet dies einen Basiswech-
sel in der Algebra K̂N (A), bzw. die Wahl anderer Lifts für die Elemente in
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KN (A). Führt man dies aus, so erhält man wieder einen Kozykel der die
Form (1-35) für diese speziellen Basiselemente besitzt. Das zentrale Element
t operiert durch Multiplikation mit dem Faktor

cλ = −2(6λ2 − 6λ+ 1) .

Ausgehend von
ΦT = fT,1 ∧ fT,2 · · · ∧ fT+1,1 · · ·

erhält man als Erzeugnis über K̂N (A) Untermodule von Hλ(A). Für die
Darstellung auf den Untermodulen gilt

KN+(A) .ΦT = 0

E2,p .ΦT = −1
2
(T − 1)(T − 2 + 2λ) ΦT

t .ΦT = −2(6λ2 − 6λ+ 1) ΦT .

Hier ist En,p ein geeigneter Lift von en,p, t ein zentrales erzeugendes Element
und KN+(A) wird als Untermodul von K̂N (A) aufgefaßt. Solche Darstellun-
gen sind das Analogon der Höchstgewichtsdarstellungen im Virasoro Fall. Dies
sind Quotienten von Verma Darstellungen. Ich definiere deren Analogon und
zeige deren Existenz. Paarungen zwischen rechts und links semi-infinite For-
men werden angesprochen. Es wird gezeigt, daß in Bezug auf eine natürliche
Paarung, die En,p selbstadjungiert sind.

Mit den gleichen Methoden erhält man auch eine Darstellung einer zentralen
Erweiterung von D1(A) und sogar einer zentralen Erweiterung der Algebra der
kohärenten Differentialoperatoren D(A) auf Hλ(A). Für gewisse Paare von
Basiselemente ist der definierende Kozykel für die Erweiterung identisch zu
einer festen Kombination der in § 6. eingeführten Kozykel. Im Virasoro Fall
enthalten diese Paare bereits alle, für die der Kozykel nicht verschwindet. Somit
ist der definierende Kozykel durch diese Kombination gegeben.
Vermutungsweise gilt dies auch allgemein.

In § 8. werden b−c Systeme behandelt. Hierbei ist b eine Form vom Gewicht
λ und c eine Form vom Gewicht 1− λ. (Im einführenden Beispiel g = 0 war b
ein quadratisches Differential und c ein Vektorfeld.) Wie dort sei

b =
∑
n,p

b1−n,pfn,p(λ), c =
∑
n,p

c1−n,pfn,p(1− λ) .

Das entscheidende Objekt, vom mathematischen Standpunkt, ist die von den
bn,p und cn,p erzeugte Clifford Algebra mit der Antikommutatorrelation

{bn,p, cm,r} = δm,1−nδp,r, {bn,p, bm,r} = {cn,p, cm,r} = 0 .
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Eine Darstellung dieser Algebra kann erhalten werden durch Operation auf
Hλ(A). Hierbei operiere cn,p durch “Einhängen” der Form fn,p(λ) und bn,p
durch “Aushängen” von f1−n,p(λ) (bzw. Kontraktion) mit Hilfe der Dualitäts-
beziehung (1-32). Es gelten interessante Kommutatorrelationen mit der eben-
falls auf Hλ(A) operierenden Algebra D̂1(A).

In § 9. wird eine andere Teilmenge des Erzeugendensystemes als Basis aus-
gewählt. Hierbei wird als Referenzpunkt ein fest gewählter Punkt PN in A

gewählt. Dies war die erste Basis, die ich im Verlauf dieser Untersuchun-
gen gewählt hatte [Schl2]. Leider besitzt die Algebra keine verallgemeinert
graduierte Struktur, in der diese Basiselemente homogene Elemente sind. Sie
ist also nicht geeignet zur Konstruktion der Wedgedarstellung. Sie besitzt
allerdings einige andere Vorzüge. So haben die Elemente jeweils höchstens
2 Polstellen. Desweiteren gibt es eine Teilmenge der Basis, die eine Basis
der globalen holomorphen λ−Formen ist. Globale holomorphe Formen (von
Physikern “zero modes” genannt), spielen in der physikalischen Theorie eine
wichtige Rolle. Sie repräsentieren globale Symmetrien. Aufgrund der Kon-
struktion der Basis (schrittweise mit steigendem #A) ist die Einbettung von
KN (B) in KN (A), falls PN ∈ B leicht sichtbar. Unter anderem werden in
diesem Paragraphen im Fall g = 0 die Strukturkonstanten von KN (A) explizit
berechnet.

Zu Anfang von § 9. findet sich auch eine Aufführung der Arbeiten an-
derer Mathematiker und Physiker die sich mit der Krichever- Novikov Alge-
bra mit mehreren Polstellen beschäftigt haben. In diesen Arbeiten werden im
wesentlichen aber nur Basen entsprechend denen in § 9. behandelt.

Danken möchte ich J. Wess dafür, daß er mein Interesse an der Krichever -
Novikov Algebra angeregt hatte. Ganz besonderen Dank gilt auch
R. Weissauer, der sich bereit erklärte die Arbeit zu betreuen und für wertvolle
Diskussionen und Anregungen zur Verfügung stand. Desweiteren gilt mein
Dank auch L. Bonora für Diskussionen und die Einladung zu einem einwöchigen
Aufenthalt bei SISSA, sowie R. Dick für Diskussionen im Anfangsstadium der
Arbeit. R. Kiehl sei herzlich gedankt für seine Unterstützung. Anerkannt wird
außerdem eine teilweise Unterstützung durch Mittel der Leibniz - Stiftung.
Danken möchte ich auch den Mitgliedern der Arbeitsgruppe Algebraische Ge-
ometrie - Geometrie - Theoretische Physik an der Fakultät für Mathematik
und Informatik der Universität Mannheim und am Institut für Theoretische
Physik, Universität Karlsruhe für anregende Diskussionen.
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§ 2. Die grundlegenden Definitionen

Im folgenden sei X eine kompakte Riemannsche Fläche, die ich, falls es
günstiger ist, auch als nichtsinguläre projektive komplexe Kurve auffassen werde.
Ihr Geschlecht g ist beliebig. Allerdings werde ich oft die üblichen Fallunter-
scheidungen g = 0, g = 1 oder g ≥ 2 machen müssen. Es seien N verschiedene
Punkte auf X (N ≥ 2) gewählt, die in generischer Position sind. In welchen
Sinn dieses “generisch” zu verstehen ist, wird in § 3. offensichtlich werden. A
sei die Menge dieser Punkte. Diese Punkte werde ich auch manchmal als Aus-
nahmepunkte bezeichne. A sei zerlegt in zwei disjunkte, nichtleere Teilmengen

I = {P1, P2, . . . , Pk}, O = {Q1, Q2, . . . , Ql}, N = k + l . (2-1)

Die Punkte seien in einer beliebigen, aber dann festgehaltenen, Reihenfolge
numeriert. Die Punkte in I nenne ich die “in” Punkte, die Punkte in O die
“out” Punkte.11 Desweiteren fixiere ich lokale Koordinaten

zi , i = 1, . . . , k, und wi , i = 1, . . . , l (2-2)

um die Punkte Pi ∈ I, bzw. Qi ∈ O (insbesondere gilt zi(Pi) = 0, bzw.
wi(Qi) = 0). Alle diesen Daten seien gewählt und dann festgehalten. Bei der
Angabe eines Erzeugendensystemes spielt nur A eine Rolle. In die Konstruktion
der Basen wird die Aufteilung

A = I ∪O

wesentlich eingehen. Die Numerierung der Punkte (speziell der in O) wird
einen Einfluß auf die Festlegung einer Basis haben (allerdings ohne die zen-
tralen Resultate zu beeinflussen) Die Festlegung der Koordinaten dient nur der
skalaren Normierung der Basiselemente, hat also keine wesentliche Bedeutung.

Definition. Die verallgemeinerte Krichever - Novikov Algebra zur Riemannsche
Fläche X vom Geschlecht g und den Ausnahmepunkten in A ist die Liealgebra
der meromorphen Vektorfelder auf X, welche holomorph auf X \ A sind. Sie
wird im folgenden mit KN (A) bezeichnet.

Wenn keine Unklarheiten auftreten können, werde ich die Angabe von A unter-
lassen. Desweiteren werde ich den Zusatz “verallgemeinert” meist weglassen.

11Bei entsprechender physikalischer Interpretation entsprechen die Punkte in I den Ein-
trittsstellen der freien Strings, die Punkte in O den Austrittsstellen.
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Die Liealgebrenstruktur ist das Lieprodukt der differenzierbaren Vektor-
felder auf X \ A. Seien v, w ∈ KN (A), dann gilt lokal an jedem Punkt in
einer holomorphen Koordinate z

v|(z) = f(z)
∂

∂z
, w|(z) = g(z)

∂

∂z
.

f und g sind lokale meromorphe Funktionen, welche Pole höchstens an den
Punkten aus A haben. Das Lieprodukt berechnet sich lokal zu

[v, w]|(z) =
(
f(z)

∂

∂z

)(
g(z)

∂

∂z

)
−
(
g(z)

∂

∂z

)(
f(z)

∂

∂z

)
=
(
f(z)

∂g

∂z
(z)− g(z)∂f

∂z
(z)
)
∂

∂z
.

(2-3)

Diese lokale Beschreibung zeigt, daß [v, w] wieder ein globales meromorphes
Vektorfeld ist. An den Punkten an denen v und w holomorph sind, ist das
Lieprodukt holomorph. Damit ist

[v, w] ∈ KN (A) .

Ein weiterer Baustein in der physikalischen Theorie sind die “Formen vom
konformen Gewicht λ”. Vom mathematischen Standpunkt sind dies gerade
die meromorphen Schnitte in das Bündel Kλ := K⊗λ . Hierbei ist K das
kanonische Geradenbündel (d.h. das holomorphe Kotangentialbündel). Auf-
grund der bekannten Äquivalenzen werde ich denselben Buchstaben K auch
zur Bezeichnung der Garbe der holomorphen Differentiale, der kanonischen Di-
visorenklasse und eines einzigen kanonischen Divisor benutzen. Ich beschränke
mich in dieser Arbeit auf ganzzahlige Tensorpotenzen λ. Es ist allerdings auch
möglich halbzahlige λ (nach Wahl einer Thetacharakteristik, d.h. eines Bündels
L mit L⊗2 = K) und sogar rationalzahlige λ (nach Übergang auf eine endliche
Überlagerung ) zu betrachten. Statt “Schnitte in das Bündel Kλ” werde ich
im folgenden auch die Bezeichnung “Formen vom Gewicht λ ” verwenden.

Definition. Fλ(A) bezeichne den Vektorraum der meromorphen Formen vom
Gewicht λ ∈ ZZ auf X, welche holomorph auf X \A sind. Fλ(A) heißt (verall-
gemeinerter) Krichever - Novikov Modul vom Gewicht λ.

Für λ = −1 ist dies wiederum KN (A), aufgefaßt als Vektorraum.

Proposition 2.1. Die Elemente der Krichever - Novikov Algebra KN (A)
operieren auf Fλ(A) durch die Lieableitung. Diese Operation macht Fλ(A)
zu einem Liealgebrenmodul über KN (A).
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Beweis. Sei e ein meromorphes Vektorfeld und f eine meromorphe Form vom
Gewicht λ, so sind diese lokal gegeben durch

e|(z) = α(z)
∂

∂z
, f|(z) = β(z) dzλ

mit lokalen meromorphen Funktionen α und β. Die Lieableitung ist in lokalen
Termen gegeben durch

Le(f)|(z) =
[
α(z)

∂β

∂z
(z) + λ · β(z)

∂α

∂z
(z)
]
dzλ . (2-4)

Mit Hilfe von [Be,p.22] ist leicht zu sehen, daß die Lieableitung für den Fall holo-
morpher Tensoren durch (2-4) ausgedrückt wird. Auf der rechten Seite steht
wiederum eine wohldefinierte meromorphe λ−Form. Le(f) ist holomorph an
den Punkten an denen e und f holomorph sind. D.h. für e ∈ KN (A) und
f ∈ Fλ(A) ist Le(f) ∈ Fλ(A). Zum Nachweis der Liealgebrenmoduleigen-
schaft ist zu zeigen

[Ld, Le] = L[d,e], (d, e ∈ KN (A)) .

Durch einfaches Nachrechnen in den lokalen Darstellungen verifiziert man je-
doch

L[d,e](f) = Ld(Le(f))− Le(Ld(f)) = [Ld, Le](f) . �

Statt Le(f) werde ich im folgenden meist e . f verwenden. Für λ = −1 ist
(2-4) natürlich das Lieprodukt der Vektorfelder (2-3).

Durch das Tensorprodukt der Formen (d.h. durch Multiplikation der lokalen
Repräsentanten ) erhält man eine Abbildung

Fµ(A)×Fλ(A) → Fµ+λ(A), (s, t) 7→ s⊗ t .

Ist µ = λ = 0, so ist dies die Multiplikation der meromorphen Funktionen. Of-
fensichtlich bildet F0(A) eine kommutative und assoziative Algebra. Ist µ = 0
und λ beliebig, so wird Fλ(A) ein Modul über F0(A).
Ist R eine assoziative Algebra, so wird R mit dem Kommutator
[f, g] = f · g− g · f eine Liealgebra. Diese Liealgebra, bestehend aus denselben
Elementen wie R, wird auch mit LR bezeichnet. Ist aus dem Zusammenhang
klar, welche Struktur gemeint ist, werde ich auch statt LR einfach R verwen-
den. Ist R kommutativ, so ist LR offensichtlich eine abelsche Liealgebra, da
der Kommutator verschwindet.
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Neben der Algebra der Vektorfelder spielt die Liealgebra der Funktionen LF0(A)
eine wichtige Rolle. In § 6.(b) werde ich verallgemeinerte “Heisenberg Al-
gebren” als gewisse zentrale Erweiterungen dieser Liealgebra einführen. Die
Liealgebra der Funktionen und die Liealgebra der Vektorfelder bilden zusam-
men die Liealgebra der Differentialoperatoren vom Grad ≤ 1. Diese werde ich
in § 6.(c) ausführlicher diskutieren.

Ich fixiere folgende Bezeichnungsweise (für g ≥ 1). Es seien

αi, βi, i = 1, . . . , g (2-5)

reelle Kurven auf der Riemannsche Fläche X die keine Punkte aus A enthalten
und eine kanonische Homologiebasis bilden, d.h.

H1(X,ZZ) =
g⊕
i=1

ZZ · [αi] ⊕
g⊕
i=1

ZZ · [βi]

mit [αi] . [αj ] = [βi] . [βj ] = 0 und [αi] . [βj ] = δi,j .

(2-6)

Der Homologiebasis zugeordnet ist eine Basis der holomorphen Differentiale
ωi, i = 1, . . . , g . D.h. es gilt∫

αi
ωj = δi,j und

∫
βi
ωj = πij mit Π = (πij) (2-7)

einer (komplexen) g × g Matrix, der Periodenmatrix. ImΠ ist positiv definit.
(Als Referenz für diese wohlbekannten Tatsachen siehe etwa [FaKr].)

Im folgenden werde ich eine Familie von reellen Kurven auf der Riemannsche
Fläche X \A betrachten, welche diese ausschöpfen. Hierzu benutze ich

Proposition 2.2. Sei X eine Riemannsche Fläche vom Geschlecht g,
Pi ∈ X, i = 1, . . . , N paarweise verschiedene Punkte und ci ∈ C für

i = 1, . . . , N mit
N∑
i=1

ci = 0 gegeben. Dann gibt es genau eine meromorphe

(1-)Differentialform ρ für die gilt:

(1) ρ ist holomorph auf X \ {P1, . . . , PN},
(2) res Pi(ρ) = ci, i = 1, . . . , N ,
(3) ρ hat rein imaginäre Perioden.
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Beweis. Der Beweis ist eine einfache Verallgemeinerung von [Schl1,p.116].
1. Eindeutigkeit: Erfülle ρ und ρ′ die Voraussetzungen, so ist γ = ρ − ρ′ ein
holomorphes Differential mit rein imaginären Perioden. Damit ist aber γ = 0.
Dies kann man z.Bsp. unter Zuhilfenahme der Riemannschen Bilinearrelation
[FaKr,III.3.3] zeigen. Sie besagt u.a. daß für ein holomorphes nichttriviales
Differential γ

Im

(
g∑
i=1

∫
ai
γ ·
∫
bi
γ

)
> 0 . (2-8)

gilt.
2. Existenz: Wir wählen Q ∈ X mit Q 6= Pi für i = 1, . . . , N . Sei σi ein
meromorphes Differential [Fakr,II.5], holomorph auf X\{Pi, Q} mit Polen 1.ter
Ordung an Pi und Q und den Residuen

res Pi
(σi) = 1, resQ(σi) = −1 .

Wir setzen

ρ′ :=
N∑
i=1

ci σi.

Dann gilt

res Pi(ρ
′) = ci, i = 1, . . . , N resQ(ρ′) =

N∑
i=1

ci = 0 .

Insbesondere ist ρ′ holomorph bei Q und erfüllt somit die Bedingungen (1) und
(2). Durch Addition eines holomorphen Differentials ω (nur notwendig im Fall
g ≥ 1) erhalten wir ein ρ welches auch (3) erfüllt. ω bestimmen wir in folgender
Weise: Sei ∫

ai
ρ′ = ai + ibi,

∫
bi
ρ′ = ei + idi

mit ai, bi, ei, di ∈ R, i = 1, . . . , g. Wir fassen zusammen

a = t(a1, a2, . . . , ag), e = t(e1, e2, . . . , eg) .

ImΠ ist positiv definit, also insbesondere regulär. D.h. es gibt ein

f = t(f1, f2, . . . , fg) ∈ Rg mit (ImΠ) · f = −e+ (ReΠ) · a .

Setzen wir

ω = −
g∑
i=1

(ai + ifi)ωi, ρ = ρ′ + ω
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so berechnet sich

Re

∫
ai
ρ = ai + Re

∫
ai
ω = ai −

g∑
j=1

ajδi,j = 0

und

Re

∫
bi
ρ = ei −

g∑
j=1

aj(Reπij) +
g∑
j=1

fj(Imπij) = 0 ,

wie behaupted wurde. �

Sei nun A die Menge der Polstellen.

A = I ∪O, k = #I, l = #O (2-9)

die Zerlegung in “in” und “out” Punkte. ρ sei das nach Proposition 2.2 ein-
deutig fixierte Differential, holomorph auf X \ A, mit Polen 1.ter Ordung an
den Punkten von A und den Residuen

res P (ρ) = +
1
k
, P ∈ I , resQ(ρ) = −1

l
, Q ∈ O (2-10)

welches nur rein imaginäre Perioden hat. Wir fixieren einen Punkt B ∈ X \A
und setzen

u(P ) := Re

∫ P

B

ρ . (2-11)

Da ρ nur imaginäre Perioden hat, ist u(P ) eine wohldefinierte (harmonische)
Funktion auf X \A. Die Wahl eines anderen Basispunktes B resultiert lediglich
in der Addition einer Konstante.

Proposition 2.3. Die Funktion u(P ) verhält sich bei Annäherung an die
Punkte von A in folgender Weise:

lim
R→P

u(R) = −∞, P ∈ I und lim
R→Q

u(R) =∞, Q ∈ O . (2-12)

Beweis. Sei z lokale Koordinate bei P ∈ A, d.h. es gilt in einer Umgebung von
P

ρ =
c

z
dz + f(z) dz, mit c ∈ R (2-13)

und f einer lokalen holomorphe Funktion. Sei S ein Punkt in einer Kreiss-
cheibenumgebung von P , dann gilt

lim
R→P

Re

∫ R

B

ρ = lim
R→P

Re

∫ R

S

ρ+ Re

∫ S

B

ρ .
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Der zweite Term ist endlich, interessiert also nicht. Desweiteren bleibt auch

Re
R∫
S

f(z) dz endlich. Zu untersuchen ist

lim
R→P

Re

∫ R

S

c

z
dz = c · lim

R→P
(log |z(R)| − log |z(S)|) = (−sign(c)) · ∞ . �

Mit Hilfe dieser Funktion können wir nun die Niveaulinien definieren

Cτ := { P ∈ X \A | u(P ) = τ } (2-14)

für τ ∈ R. Variieren wir τ , so ergibt sich eine (reelle) Faserung der Riemannsche
Fläche X \A, d.h.

X \A =
⋃
τ∈R

Cτ und Cτ ∩ Cτ ′ = ∅ falls τ 6= τ ′ .

Die Wahl eines anderen Basispunktes B ändert lediglich den Wert der Funktion
u auf den Niveaulinien, nicht jedoch die Faserung. Die Niveaulinien sind nicht
notwendig zusammenhängend. Sie zerfallen in disjunkte reelle Kurven. Dabei
können singuläre Punkte (Selbstüberschneidungen, Berührungen) nur an den
Punkten auftreten an denen ρ Nullstellen hat. Für τ → −∞ zerfällt Cτ in k

verschiedene Komponenten D1, . . . , Dk. Jedes Di ist eine Kreislinie in einer
entsprechenden Koordinatenumgebung um den Punkt Pi ∈ I. Dies folgt aus
der lokalen Gestalt (2-13) wie sie auch schon im Beweis von Proposition 2.3
benützt wurde. Für τ → +∞ erhalten wir die analoge Situation (also auch
wieder Kreislinien) um die Punkte Qi ∈M .

In der Interpretation in der Stringtheorie (siehe etwa [KN2]) bekommt τ
die Bedeutung der Eigenzeit auf dem “string world sheet”. In diesem Modell
können die Punkte Pi ∈ I als einlaufende freie Strings (τ � 0) und die Punkte
Qj ∈ O als auslaufende freie Strings (τ � 0) gedeutet werden. Das Aufsplitten
und das Vereinigen der Niveaulinien entspricht dem Aufsplitten, bzw. dem
Vereinigen der Strings die in Wechselwirkung stehen.

Für uns werden die Niveaulinien Cτ die Möglichkeit einer Paarung zwischen
den Formen vom Gewicht λ und den Formen vom Gewicht (1 − λ) bieten.
Multiplizieren wir nämlich beide, so erhalten wir eine Form vom Gewicht 1,
d.h. ein (1-)Differential, welches wir entlang Kurven integrieren können.
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Proposition 2.4. Integrieren wir v ∈ F1(A) entlang einer nichtsingulären
Niveaulinie Cτ (disjunkte Vereinigung nichtsingulärer Kurven), so ist der Wert
des Integrals unabhängig von τ ∈ R.

Beweis. Seien Cτ und Cσ (τ < σ) zwei nichtsinguläre Niveaulinien. Cτ − Cσ
der orientierte, glatte Rand der Untermannigfaltikeit Y =

⋃
τ≤λ≤σ

Cλ vonX\A.

Nach dem Satz von Stokes also∫
Cτ

v −
∫
Cσ

v =
∫∫

Y

dv = 0 . �

Bei der Definition (2-8) habe ich an jedem “in”-Punkt (bzw. “out”-Punkt)

dasselbe Residuum
1
k

(bzw.−1
l
) vorgeschrieben. Diese Vorschrift kann abge-

schwächt werden. Wir können beliebige reelle Residuen vorschreiben, welche
positiv an den “in”-Punkten sind, negativ an den “out”-Punkten sind und die
Summenbedingung “Gesamtresiduum = 0” erfüllen. Dabei wird das Differen-
tial ρ durch ein anderes ersetzt. Die Niveaulinien werden sich ändern (man
erhält eine andere Faserung (2-14) von X \ A). Allerdings wird der Wert des
Integrals aus Prop. 2.4 wieder unabhängig davon sein, ob die Niveaulinie, über
die integriert wird, zur neuen Faserung oder zur alten gewählt wurde.
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Da der Satz von Riemann-Roch in den nächsten Paragraphen eine wichtige
Rolle spielt, sei er aus Referenzgründen hier zitiert (siehe [FaKr],[Fo],[Schl1] für
die Details). Sei D ein Divisor, bzw. L ein Geradenbündel X, dann gilt

dimH0(X,D)− dimH0(X,K −D) = degD − g + 1, (2-15)

bzw.
dimH0(X,L)− dimH0(X,K ⊗ L∗) = degL− g + 1 . (2-16)

Wie schon vermerkt bezeichnet K sowohl einen kanonischen Divisor als auch
das kanonische Bündel. Weitere nützliche Tatsachen sind die folgenden: Ist
degD < 0, bzw. degL < 0, so gilt

dimH0(X,D) = 0, bzw. dimH0(X,L) = 0 . (2-17)

Für den kanonischen Divisor gilt

degK = 2g − 2 und dimH0(X,K) = g . (2-18)

Wir nennen einen Divisor D speziell, falls dimH0(X,K − D) 6= 0 gilt, d.h.
falls

dimH0(X,D) > degD − g + 1

gilt. Insbesondere ist K immer ein spezieller Divisor. Aus (2-17) sieht man,
daß Divisoren vom Grad ≥ 2g − 1 immer nicht speziell sind. Für sie gilt

dimH0(X,D) = degD − g + 1 . (2-19)

Für g ≥ 2 und λ > 0 (wie immer λ ∈ ZZ) berechnet sich

dimH0(X,λ ·K) = (2λ− 1)(g − 1) . (2-20)
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§ 3. Ein Erzeugendensystem für den Raum der Formen

(a) Ein einfaches, aber fundamentales Lemma

Proposition 3.1. Sei L ein Geradenbündel, P ∈ X ein generisch gewählter
Punkt, LP das dem Divisor [P ] zugeordnete Bündel, (d.h. c1(LP ) = [P ] ) und
L∗P das duale Bündel. Sei

dimH0(X,L) = l ,

dann gilt für n ∈ N

dimH0(X,L⊗ (L∗P )n) = max( l − n , 0) .

Hierbei bedeutet “generisch gewählter Punkt”, daß die Aussage für eine
nichtleere Zariski offene Teilmenge von X gilt (d.h. sie gilt für alle Punkte
bis auf eine endliche Anzahl von Punkten). Die Ausnahmemenge darf von L

abhängen.

Beweis. Sei m ∈ ZZ . Die globalen holomorphen Schnitte des Bündels L ⊗
(L∗P )m stehen in Bijektion zu den globalen meromorphen Schnitten des Bündels
L welche holomorph sind auf X \ {P} und am Punkt P eine Nullstelle von
Vielfachheit ≥ m haben [Schl1,p.107]. Wie üblich entsprechen negative Null-
stellenordnungen Polstellen. Um die Bezeichnung zu vereinfachen verwende ich
Divisorenschreibweise. Dem Bündel L entspreche der Divisor D (bzw. dessen
Klasse). Ist D′ ein beliebiger Divisor und gelte

dimH0(X,D′) = r ,

dann gilt
r − 1 ≤ dimH0(X,D′ − P ) ≤ r . (3-1)

Sei nämlich f, g ∈ H0(X,D′) , jedoch beide nicht in H0(X,D′−P ), so bedeutet
dies f(P ) 6= 0 und g(P ) 6= 0. Wir setzen µ = f(P )/g(P ) ∈ C (der Quotient
ist eine wohldefinierte Zahl). Nun ist

h = (f − µ · g) ∈ H0(X,D′ − P ),
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da h(P ) = 0 nach Konstruktion. Somit ist H0(X,D′)/H0(X,D′ − P )
höchstens eindimensional. Dies zeigt die Relation (3-1). Iterierte Anwendung
liefert

l − n ≤ dimH0(D − nP ) ≤ l . (3-2)

Die Behauptung des Lemmas ist wegen (3-1) und (3-2) genau dann erfüllt wenn

dimH0(D − lP ) = 0. (3-3)

Denn in diesem Fall muß die Dimension beim Übergang von D − rP auf
D−(r+1)P für (l−1) ≥ r ≥ 0 jeweils um 1 fallen. Es genügt also (3-3) für alle
bis auf endlich viele Punkte P zu zeigen. Dies zeige ich mit denselben Meth-
oden, die man verwendet um zu beweisen, daß die Anzahl Weierstraßpunkte
endlich ist. (Dieser Fall ergibt sich als Spezialfall der Proposition) [FaKr,II.5],
[Fo,18.4] .
Sei U = (Ui)i eine endliche, offene Überdeckung von X durch trivialisierende
Koordinatenumgebungen für das Bündel L. Dies bedeutet Ui besitzt die glob-
ale Koordinate zi und L|Ui

ist trivial. Die Überdeckung sei derart, daß eine
Schrumpfung V = (Vi)i mit Vi offen und Vi ⊂ Ui immer nochX überdeckt. Sei
s1, s2, . . . , sl eine Basis des Raumes H0(X,D). Wir wählen ein Ui und können
die Schnitte als lokale holomorphe Funktionen f1, f2, . . . , fl in der Variablen
zi repräsentieren. Da die Schnitte linear unabhängig sind, sind das auch die
Funktionen. Sei

s ∈ H0(X,D), s 6= 0, s =
l∑

j=1

cjsj

dann entspricht dem Schnitt s die holomorphe Funktion f =
∑l
j=1 cjfj .

P ∈ Ui ist mindestens k−fache Nullstelle von s falls gilt

f (m)(zi(P )) = 0, m = 0, 1, . . . , k − 1 .

Die Wronskideterminante ist definiert als

W = W (f1, f2, . . . , fl) = det


f1 f2 . . . fl
f ′1 f ′2 . . . f ′l
...

...
...

...
f

(l−1)
1 f

(l−1)
2 . . . f

(l−1)
l

 .

W ist eine lokale holomorphe Funktion, die nicht identisch verschwindet [Fo,18.4],
da die fi linear unabhängig sind. Damit ist aber W (zi(Q)) = 0 genau dann,
falls es nichttriviale cj ∈ C, j = 1, . . . , l gibt mit

0 =
l∑

j=1

cjf
(m)
j (zi(Q)), m = 0, 1, . . . , l − 1 .
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Ist nun W (zi(Q)) = 0, dann ist mit diesen Koeffizienten s =
∑l
j=1 cjsj ein

nichtverschwindender globaler Schnitt, der eine l−fache Nullstelle beiQ besitzt.
Umgekehrt bedeutet die Existenz eines Schnittes mit einer l−fachen Nullstelle
bei Q ∈ Ui, daß die Wronskideterminante W dort eine Nullstelle hat. Die
Nullstellenmenge von W ist aber eine diskrete Menge auf Ui, insbesondere eine
endliche Menge auf Vi. Da aber endlich viele Vi bereits X überdecken, gibt es
nur endlich viele Punkte Q1, Q2, . . . , Qr (hängen ab vom Bündel L), derart daß
ein nichttrivialer globaler Schnitt von L existiert, der an einem dieser Punkte
eine Nullstelle von mindestens der Ordung l besitzt. Bei der Wahl von P gilt
es diese zu vermeiden. �

(b) Der generische Fall

Im folgenden werde ich ein Erzeugendensystem für Fλ(A) angeben. Hierbei
ist die Aufspaltung der Menge A ohne Belang. Ich setze

A = {P1, P2, . . . , PN} .

Die Angabe des Erzeugendensystemes wird implizit mit Hilfe der Riemann-
Roch Formel und Prop. 3.1 erfolgen. In § 4. werde ich “explizite” Ausdrücke
geben. Das angebene Erzeugendensystem wird für N > 2 linear abhängig sein.
In § 5. werde ich in Abhängigkeit von der Aufspaltung A = I ∪O als Basis eine
Teilmenge auswählen, die für das weitere besonders interessante Eigenschaften
hat. In § 9. werde ich noch eine weitere Möglichkeit zur Basiswahl beschreiben.

In diesem Abschnitt betrachte ich nur den generischen Fall, also daß en-
tweder das Geschlecht g ≥ 2 ist und das Gewicht λ der Formen ungleich 0
oder 1 ist, oder daß g = 0 ist. Stillschweigend sei im weiteren immer λ ∈ ZZ

angenommen. Der Grund für diese Aufspaltung ist, daß in den anderen Fällen
λK spezielle Divisoren sind. Ich setze

M(λ) := (2λ− 1)g − 2λ = (2λ− 1)(g − 1)− 1 . (3-4)
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Proposition 3.2. Sei g ≥ 2, λ ∈ ZZ \ {0, 1} oder g = 0 und λ ∈ ZZ be-
liebig und seien P1, P2, . . . , PN generische Punkte auf X. Seien weiter gegeben
n1, . . . , nN ∈ ZZ mit

∑N
i=1 ni = M(λ), dann gilt

(a) dimH0(X,λ ·K −
∑N
i=1 niPi) = 1

(b) dimH0(X,λ ·K −
∑N
i=1 niPi − aPj) = 0 für a ∈ N und j = 1, . . . , N .

Bevor ich zum Beweis komme, will ich die Aussage der Proposition inter-
pretieren. Aufgrund (a) gibt es eine nichttriviale meromorphe Form w vom
Gewicht λ, die holomorph außerhalb A ist und an den Punkten Pi aus A
die Ordung ord Pi(w) ≥ ni hat. Es gilt sogar Gleichheit. Wäre nämlich
die Ordnung größer als nj an irgendeinem dieser Pj so läge w auch im unter
(b) angegebenen Vektorraum. Dieser verschwindet aber. Also wäre w trivial.
Widerspruch! Aufgrund von (a) wiederum sind alle solche w skalare Vielfache
eines einmal fixierten Elementes. Um w eindeutig festzulegen kann man nach
Wahl eines (einzigen) Punktes Pi ∈ A und einer lokalen Koordinate zi bei Pi
(d.h. zi(Pi) = 0) fordern

w| = zni
i (1 +O(zi))(dzi)λ . (3-5)

In diesem Paragraphen nehme ich als Referenzpunkt PN . In § 5. erfolgt eine
andere Normierung.

Definition. fλ(n1, n2, . . . , nN ) mit
∑N
i=1 ni = M(λ) sei die eindeutig fest-

gelegte Form vom Gewicht λ mit

ord Pi(f
λ(n1, n2, . . . , nN )) = ni, i = 1, . . . , N

und
fλ(n1, n2, . . . , nN )| = znN

N (1 +O(zN ))(dzN )λ .

Prop. 3.2 folgt offensichtlich aus der etwas allgemeineren Proposition, die
ich gleich beweisen werden.

Proposition 3.3. Sei g ≥ 2, λ ∈ ZZ \ {0, 1} oder g = 0 und λ ∈ ZZ be-
liebig und seien P1, P2, . . . , PN generische Punkte auf X. Seien weiter gegeben
n1, . . . , nN ∈ ZZ dann gilt

dimH0(X,λ ·K −
N∑
i=1

niPi) = max(M(λ)−
N∑
i=1

ni + 1 , 0 ) . (3-6)
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Beweis. Seien n1, . . . , nN ∈ ZZ beliebig. Es gilt

d := deg(λ ·K −
N∑
i=1

niPi) = λ · (2g − 2)−
N∑
i=1

ni .

Setzen wir h0(D) = dimH0(X,D), so erhalten wir nach dem Satz von Riemann-
Roch (2-15)

h0
(
λ ·K −

N∑
i=1

niPi
)
− h0

(
(1− λ) ·K +

N∑
i=1

niPi
)

= M(λ)−
N∑
i=1

ni + 1 .

Fall 1: g ≥ 2, λ ≥ 2. In diesem Fall ist λ ·K nicht speziell, insbesondere gilt
h0(λ ·K) = (2λ− 1)(g − 1). Addieren wir zuerst die Punkte Pl mit nl < 0, so
bleiben wir im Bereich der nichtspeziellen Divisoren. Nach Voraussetzung sind
alle Punkte in generischer Lage. Wir können für jeden Punkte Pl mit nl > 0
die Prop. 3.1 anwenden und erhalten

h0
(
λ ·K −

N∑
i=1

niPi
)

= max
(
(2λ− 1)(g − 1)−

N∑
i=1

ni , 0
)

.
Fall 2: g ≥ 2, λ ≤ −1. In diesem Fall ist (1−λ) ·K nicht speziell, d.h. analog
zu Fall 1

h0
(
(1− λ) ·K +

N∑
i=1

niPi
)

= max
(
(1− 2λ)(g − 1) +

N∑
i=1

ni , 0
)
.

Also

h0
(
λ·K−

N∑
i=1

niPi
)

= (2λ−1)(g−1)−
N∑
i=1

ni+max
(
(1−2λ)(g−1)+

N∑
i=1

ni , 0
)
.

Durch Einsetzen erhält man das gewünschte Ergebnis.
Fall 3: g = 0, λ ∈ ZZ . In diesem Fall ist M(λ) = −2λ, d.h.

deg(λ ·K −
N∑
i=1

niPi) = M(λ)−
N∑
i=1

ni .

Somit folgt die Aussage direkt aus Riemann- Roch ohne Annahmen über die
Lage der Punkte. �
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Proposition 3.4. Sei g ≥ 2, λ ∈ ZZ \ {0, 1} oder g = 0 und λ ∈ ZZ beliebig.
Dann gilt (a) Die Menge

{ fλ(n1, n2, . . . , nN ) | ni ∈ ZZ ,
N∑
i=1

ni = M(λ) }

bildet ein Erzeugendensystem für Fλ(A).

(b) Im Fall N = 2, d.h. A = {P1, P2}, ist diese Menge eine Basis.

Beweis. Ich betrachte zuerst den Fall N = 2. Dies ist der Fall der auch
in [KN1] behandelt wurde. Obige Menge stimmt mit der dort angegebenen
Menge überein. Der Beweis von Prop. 3.4(b) wurde in [Schl1] ausgeführt. Aus
Gründen der Vollständigkeit sei er wiederholt. Sei v ∈ Fλ(P1, P2) mit v 6= 0.
Sei weiter ord P1(v) = m1 und ord P2(v) = m2 . Setze n(0) = M(λ) −m1,
dann ist n(0) ≥ m2. Ansonsten wäre

v ∈ H0(X,λ ·K −m1P1 − (M(λ)−m1 + a)P2)

mit a = m2 − n(0) > 0. Nach Prop. 3.2(b) ist dieser Vektorraum trivial.
Dies ist ein Widerspruch. Subtrahieren wir von v ein geeignetes Vielfaches von
fλ(m1,M(λ)−m1) um die Ordnung bei P1 zu erhöhen, so erhalten wir v1 mit

ord P1(v1) = m
(1)
1 ≥ m1 + 1 und ord P2(v1) = m

(1)
2 ≥ m2 .

Ist v1 = 0, so ist die Behauptung (Erzeugendeneigenschaft) gezeigt. Ansonsten
gilt

n(1) = M(λ)−m(1)
1 ≤M(λ)− (m1 + 1) < n(0), m

(1)
2 ≥ m2 .

Dasselbe Argument wie oben auf v1 angewendet ergibt

n(0) > n(1) ≥ m(1)
2 ≥ m2 .

Durch fortwährende Ausführung erhalten wir eine Folge von vi mit n(i) eine
strikt fallende Folge ganzer Zahlen, die nach unten durch m2 beschränkt ist.
Damit muß das Verfahren abbrechen, d.h. irgendein vi ist identisch 0. Also ist
v Linearkombination der Elemente in (a). Im Fall N = 2 haben die Elemente
in (a) alle unterschiedliche Polordnung bei P1, damit sind sie linear unabhängig.
Dies beweist (b).
Sei nun N > 2 beliebig. Die Vektorräume Fi = Fλ(Pi, PN ) für i = 1, . . . , N−1
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sind Untervektorräume von Fλ(A). Eine Basis von Fi ist nach dem 1.ten Teil
des Beweises gegeben durch

fλ(0, . . . , 0, ni, 0, . . . ,M(λ)− ni), ni ∈ ZZ .

Diese Elemente sind in der Menge unter (a) enthalten. Sei v ∈ Fλ(A). Durch
Subtraktion von Linearkombinationen aus Basiselementen aus
Fi, i = 2, . . . , N − 1 erhält man ein v′ das keine Pole mehr an P2, . . . , PN−1

hat, d.h. v′ ∈ F1. Damit ist aber v′ Linearkombination der Basiselemente von
F1. Insgesamt ist also v Linearkombination der Elemente unter (a) . �

Wie man aus obigem Beweis sieht, ist für N > 2 das Erzeugendensystem
nicht linear unabhängig. So ist eine Form die nur Pole bei PN hat Element in
allen Fi, d.h. sie läßt sich in mehreren Weisen darstellen. Andererseits sieht
man auch wie man ein minimales Erzeugendensystem wählen kann: Aus F1

nimmt man alle Basiselemente, aus den Fi, i = 2, . . . , N − 1 nimmt man nur
die mit negativer Ordung an den Punkten Pi. Offensichtlich sind diese erzeu-
gend (nur diese wurden beim obigen Beweis benutzt) und wegen der unter-
schiedlichen Polordnungen an verschiedenen Punkten auch linear unabhängig.
Diese naheliegende Basis ist für das folgende allerdings nicht optimal geeignet,
sie induziert z.Bsp. keine verallgemeinert graduierte Struktur (siehe 5-19). De-
shalb wird in § 5. eine andere gewählt. Die obige werde ich im § 9. wieder
aufgreifen.

Wegen der Wichtigkeit spezieller Gewichte übernehme ich folgende Stan-
dardbezeichnungen aus der Quantenfeldtheorie

e(...) = f−1(...), Ω(...) = f2(...), A(...) = f0(...), ω(...) = f1(...) .
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(c) Die Sonderfälle

I. Die Bezeichnungen seien wie in § 3. (b). Ich betrachte zuerst λ = 1 und
g ≥ 2. Es gilt M(1) = g − 2.

Proposition 3.5. Seien P1, P2, . . . , PN generische Punkte auf X,
n1, . . . , nN ∈ ZZ . (a) Ist ein ni < 0, dann gilt

h0
(
K −

N∑
i=1

niPi
)

= max
(
g −

N∑
i=1

ni − 1 , 0
)
.

(b) Sind alle ni ≥ 0, dann gilt

h0
(
K −

N∑
i=1

niPi
)

= max
(
g −

N∑
i=1

ni , 0
)
.

Beweis. Fall (a): O.B.d.A. sei n1 < 0 . Damit ist wegen

deg(K − n1P1) = (2g − 2) + |n1| ≥ 2g − 1

(K − n1P1) ein nichtspezieller Divisor, d.h.

h0(K − n1P1) = g − 1− n1 .

Nun kann auf die Punkte P2, . . . , PN die Prop. 3.1 angewendet werden. Dies
ergibt das Resultat unter (a). Im Fall (b) müssen wir von K ausgehen. K ist
ein spezieller Divisor und es gilt h0(K) = g. Prop. 3.1 liefert auch hier das
Ergebnis unter (b). �

Dem Fall (a) entspricht die generelle Situation.

Proposition 3.6. Ein Erzeugendensystem für F1(A) ist gegeben durch die
Elemente
(a) ω(n1, n2, . . . , nN ) mit

∑N
i=1 ni = g − 2 = M(1) und mindestens ein

ni ≤ −2 oder mindestens zwei ni, nj ≤ −1 .
(b) ω(n1, n2, . . . , nN ) mit

∑N
i=1 ni = g − 1 und alle ni ≥ 0 .

(c)

ω(−1,−1, 0, . . . , 0), ω(−1, 0,−1, . . . , 0), . . . ω(0, 0, . . . , 0,−1,−1) .
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Dabei sind die Elemente unter (a) und (b) bis auf Multiplikation mit einem
Skalar eindeutig. Die Elemente unter (c) seien fixiert durch die Vorschrift
res Pi

(ω) = −1 an der Polstelle Pi und res Pj
(ω) = +1 an der Polstelle Pj für

i < j und durch die Bedingung, daß sie rein imaginäre Perioden haben.
Im Fall N > 2 werden die Elemente in (c) nicht benötigt.

Beweis. Zuerst zeigen wir die Existenz und Eindeutigkeit solcher Elemente. (c)
gewinnt man durch Anwendung von Prop. 2.2.
(a) Aufgrund der Bedingungen gilt nach Prop. 3.5(a) h0(K −

∑N
i=1 niPi) = 1,

d.h. es gibt ein Element f das “besser” oder gleich der vorgegebenen Ordnung
ist. Nehmen wir an, daß eine höhere Ordnung an irgendeinem der Punkte Pj
vorliegt. Damit ist f ∈ H0(X,K −

∑N
i=1 niPi − Pj). Aufgrund der Vorausset-

zungen sind wir aber immer noch im Bereich von Prop. 3.5(a) also ist dieser
Vektorraum wieder trivial. Dies zeigt wie im Beweis von Prop. 3.4 die Existenz
und Eindeutigkeit.
(b) Mit Prop. 3.5(b) ergibt sich h0(K −

∑N
i=1 niPi) = 1. Auch hier kann keine

höhere Ordnung auftreten, da immer noch Prop. 3.5(b) zuständig ist. Also
folgt auch hier Existenz und Eindeutigkeit.
Erzeugend: Sei v ∈ F1(A), so können durch Subtraktion von Vielfachen von

ω(0, . . . , ni, 0, . . . , g − 2− ni), ni ≤ −2

(Typ (a)) alle Pole von Ordnung ≥ 2 an den Punkten P1, . . . , PN−1 beseitigt
werden. Durch Subtraktion von Vielfachen von

ω(g, 0, . . . ,−1, 0, . . . ,−1)

(ebenfalls Typ(a)) werden alle Pole an den Punkten P2, . . . , PN−1 beseitigt.
Durch Subtraktion von Vielfachen von (Typ (a))

ω(n1, 0, . . . , 0, g − 2− n1), ω(g − 2− nN , 0, . . . , 0, nN )

erhält man eine Differentialform mit höchstens Polen erster Ordnung bei P1

und PN . Falls N > 2 kann der Pol bei P1 durch Subtraktion von Vielfachen
von (Typ (a))

ω(−1, g, 0, . . . , 0,−1)

beseitigt werden. Im Fall N = 2 durch Subtraktion von Vielfachen von (Typ
(c))

ω(−1, 0, . . . , 0,−1) .
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Da eine Differentialform wegen des Residuensatzes nicht die globale
Polordnung 1 haben kann verschwindet gleichzeitig auch der Pol bei PN . Übrig
bleibt eine globale holomorphe Differentialform v′. Die

ω(n1, 0, . . . , g − 1− n1), 0 ≤ n1 ≤ g − 1

sind g linear unabhängige holomorphe Differentiale. Sie sind somit eine Basis
der holomorphen Differentiale. D.h. v′ ist eine Linearkombination von Typ (b)
Elementen. Dies zeigt alles. Insbesondere sieht man auch, daß man für N > 2
ohne Typ (c) auskommt. �

Proposition 3.7. Sei N = 2. Dann bilden die Elemente

ω(n, g − 2− n), n ≤ −2 oder n ≥ g ,
ω(n, g − 1− n), 0 ≤ n ≤ g − 1 ,

ω(−1,−1)

eine Basis von F1(P1, P2).

Beweis. (Dies ist die von Krichever - Novikov[KN1] angegebene Basis.) Nach
Prop. 3.6 sind die obigen Elemente erzeugend. Da jedes Element eine andere
Polordnung bei P1 hat, sind sie auch linear unabhängig. �

II. Sei nun g ≥ 2 und λ = 0 oder g = 1 und λ ∈ ZZ beliebig. In letzterem
Fall ist wegen K ∼= O (O sei das triviale Bündel)

fλ(n1, n2, . . . , nN ) = A(n1, n2, . . . , nN ) dzλ . (3-7)

Hierbei sei z die Variable, die von der Quotientenbildung aus C herkommt.
Aus (3-7) folgt aber, daß die Angabe eines Erzeugendensystemes für λ = 0
auch ein solches für beliebiges λ ergibt. Achtung: Die Lieableitung hängt sehr
wohl von λ ab.

Es gelten weiterhin die Bezeichnungen aus § 3.(b). Wir erhalten M(0) = −g,
bzw. M(λ) = −1 für g = 1.

Proposition 3.8. Seien P1, P2, . . . , PN generische Punkte auf X,
n1, . . . , nN ∈ ZZ . (a) Ist ein ni > 0, dann gilt

h0
(
−

N∑
i=1

niPi
)

= max
(
−g −

N∑
i=1

ni + 1 , 0
)
.
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(b) Sind alle ni ≤ 0, dann gilt

h0
(
−

N∑
i=1

niPi
)

= max
(
−g −

N∑
i=1

ni + 1 , 1
)
.

Beweis. (Dies ist eine Dualisierung von Prop. 3.5.) Mit Riemann-Roch berech-
nen wir

h0
(
−

N∑
i=1

niPi
)
− h0

(
K +

N∑
i=1

niPi
)
= −

N∑
i=1

ni − g + 1 .

Ist nun ein ni > 0, so gilt nach Prop. 3.5(a)

h0
(
−

N∑
i=1

niPi
)

= −
N∑
i=1

ni − g + 1 + max
(
g +

N∑
i=1

ni − 1 , 0
)
,

also (a). Sind alle ni ≤ 0, so folgt mit Prop. 3.5(b)

h0
(
−

N∑
i=1

niPi
)

= −
N∑
i=1

ni − g + 1 + max
(
g +

N∑
i=1

ni , 0
)
,

also (b). �

Proposition 3.9. Ein Erzeugendensystem für F0(A) ist gegeben durch die
Elemente
(a) A(n1, n2, . . . , nN ) mit

∑N
i=1 ni = −g = M(0) und mindestens ein ni >

0 , (b) A(n1, n2, . . . , nN ) mit
∑N
i=1 ni = −g − 1 und alle ni ≤ 0.

(c) A(0, 0, . . . , 0) := 1
Dabei sind die Elemente unter (a) eindeutig bis auf Multiplikation mit einem
Skalar. Die Elemente unter (b) sind eindeutig bis auf Multiplikation mit einem
Skalar und Addition einer generischen Konstanten.

Beweis. Wir zeigen zuerst die Existenz und die Eindeutigkeit im angegebenem
Umfange. Im Fall (a) berechnet sich nach Prop. 3.8

h0
(
−

N∑
i=1

niPi
)

= 1, und h0
(
−

N∑
i=1

niPi − Pj
)

= 0 .

Also gilt hier nach denselben Schlußweisen wie in den anderen Fällen Existenz
und Eindeutigkeit (bis auf Multiplikation mit Skalar). Im Fall (b) berechnet
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sich h0(−
∑N
i=1 niPi) = 2. In dem Raum der Schnitte liegen die konstanten

Funktionen. Sei {1, f ′} eine Basis. Für die Punkte Pj mit nj < 0 hat f ′ genau
die angegebene Ordnung. Ansonsten wäre f ∈ H0(X,−

∑N
i=1 niPi − Pj). In

diesem Bereich ist immer noch Prop. 3.8(b) zuständig, d.h. der Raum ist 1-
dimensional. Er enthält die Konstanten, also f ′ = const. Widerspruch! An
den anderen Punkten aus A kann f ′ sehr wohl Nullstellen haben. Durch Addi-
tion einer generischen Konstanten c besitzt f = f ′ + c dort genau die Ordnung
0. Damit folgt die Existenz und Eindeutigkeit im angegebenem Rahmen.
Für die Erzeugendeneigenschaft gehen wir wiederum nach obigem Schema vor.
Durch Subtraktion von Linearkombination von Elementen (a) und (b) können
alle Pole bei P1 . . . , PN−1 beseitigt werden. Durch Subtraktion von Linear-
kombination von

A(−g − n, 0, . . . , n), n ≤ −g − 1

erhalten wir eine Funktion holomorph auf X \ {PN} mit Polordnung ≤ g bei
PN . Aufgrund der generischen Wahl der Punkte, kann dies nur eine Konstante
sein, da sonst PN ein Weierstraß-Punkt wäre. �

Wie oben erhalten wir

Proposition 3.10. Sei N = 2. Dann bilden die Elemente

A(n,−g − n), n ≤ −g − 1 oder n ≥ 1 ,

A(n,−g − 1− n), −g ≤ n ≤ −1 ,

A(0, 0)

eine Basis von F0(P1, P2).
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§ 4. “Explizite” Konstruktion der Erzeugenden

(a) Konstruktion mit Hilfe von Thetafunktionen im Fall ggg ≥ 1

In diesem Abschnitt mache ich eine Verallgemeinerung der im Fall N = 2
von Bonora und Mitarbeitern durchgeführten Konstruktion [Bo1].

Sei X eine Riemannsche Fläche vom Geschlecht g ≥ 1. Ich möchte zuerst die
für uns wichtigen Fakten der Bausteine der Konstruktion zusammenstellen. De-
tails sind in [Mum],[Fay] oder [Schl1] zu finden. Es sei eine kanonische Homolo-
giebasis und die zugeordnete Basis der holomorphen Differentiale ω1, ω2, . . . , ωg ,
wie in (2-5) – (2-7) beschrieben, gewählt. Π sei die Periodenmatrix. Die Jaco-
bivarität ist definiert als der g−dimensionale Torus

Jac (X) := Cg/L, L = ZZg ⊕Π · ZZg .

Die Thetafunktion auf Jac (X) ist definiert als (z ∈ Cg)

ϑ(z,Π) :=
∑

n ∈ ZZg
exp(πi tn ·Π · n+ 2πi tn · z) . (4-1)

Wir brauchen auch die Thetafunktionen mit Charakteristiken a, b ∈ Rg.

ϑ

[
a
b

]
(z,Π) := exp

(
πi ta ·Π · a+ 2πi ta · (z + b)

)
· ϑ (z + Π · a+ b,Π) . (4-2)

Dies sind holomorphe Funktionen in z. Sie haben das folgende quasiperiodische
Verhalten [Mum,I,p.123]

ϑ

[
a
b

]
(z +m,Π) = exp(2πi ta ·m) · ϑ

[
a
b

]
(z,Π) ,

ϑ

[
a
b

]
(z + Π ·m,Π) = exp(−2πi tb ·m) · exp(−πi tm ·Π ·m− 2πi tm · z)

· ϑ
[
a
b

]
(z,Π)

(4-3)
unter der Translationen von z mit Gittervektoren (m ∈ ZZg). Es ist

ϑ(z,Π) = ϑ

[
0
0

]
(z,Π) .
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Für diese wird der erste Exponentialterm in (4-3) immer zu 1 . Ich schließe

mich dem oft verwendeten Sprachgebrauch an und nenne ϑ

[
a
b

]
eine mehrw-

ertige Funktion auf X. Diese Sprechweise ist am besten für die Fragestellungen
geeignet, welche ich untersuchen will. Diese mehrwertigen Funktionen können
auch aufgefaßt werden als einwertige Funktionen auf der Überlagerung Cg,
bzw. als Schnitt eines geigneten Geradenbündels über Jac (X) . Da X fix-
iert ist, werde ich im folgenden die Periodenmatix nicht mehr explizit in die
Bezeichnung aufnehmen.

X ist eingebettet durch die Jacobi-Abbildung

X → Jac (X) , P 7→ J(P ) := (
∫ P

B

ω1,

∫ P

B

ω2, . . . ,

∫ P

B

ωg) mod L (4-4)

in Jac (X) . Hierbei ist B ein festgewählter Basispunkt mit B /∈ A. Der Pull-
back der Thetafunktion ϑ : P 7→ ϑ(J(P )) ist eine mehrwertige Funktion auf
X. Der Mehrwertigkeit entspricht die Wahl eines anderen Integrationsweges.
Dies kann beschrieben werden als “Bewegung des Punktes P um einen Homolo-
giezyklus”

P 7→ P ′ = P +
g∑
i=1

niai +
g∑
i=1

mibi (“ = P”) . (4-5)

Ich werde weiterhin mit J(P ) ∈ Cg auch einen beliebigen Repräsentanten von
J(P ) ∈ Jac (X) bezeichnen. Für die Punkte P1, P2, . . . , PN ∈ A sei dieser
Repräsentant J(Pi) jeweils gewählt und dann festgehalten.

Für uns wichtig ist die folgende

Proposition 4.1. (Satz von Riemann [Mum,I,p.149])
Es gibt einen Vektor ∆ ∈ Cg, so daß für alle w ∈ Cg gilt: Die Funktion
ϑ(w+J(P )) , aufgefaßt als mehrwertige Funktion im Argument P , verschwindet
entweder identisch auf X, oder sie hat genau g Nullstellen, welche gegeben sind
durch die Punkte Q1, Q2, . . . , Qg (mit Mehrfachnennungen) für die gilt

g∑
i=1

J(Qi) = −w + ∆ mod L . (4-6)

Im folgenden werden wir als Vektor w bestimmte Werte wählen, die von unseren
Punkten P1, P2, . . . , PN abhängen. Da wir diese generisch gewählt haben, wird
der erste Fall in Prop. 4.1 nie auftreten [FaKr,Theorem VI,3.3].
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Proposition 4.2. Die (mehrwertige) Funktion

P 7→ ϑ (J(P )− gJ(PN ) + ∆)

hat genau eine g−fache Nullstelle bei PN und sonst keine weiteren.

Beweis. Mit den Bezeichnungen von Prop. 4.1 setzen wir w = −gJ(PN ) + ∆
also ist

−w + ∆ = gJ(PN ) mod L .

Damit ist aber PN g−fache Nullstelle nach Prop. 4.1 . �

Der nächste Baustein ist die “prime form” [Mum,II,p.3.210]. Zur Definition

fixiert man eine Thetareihe mit halbzahliger Charakteristik c =
[
a
b

]
, so daß

gilt

ϑ

[
a
b

]
(0) = 0 und dzϑ

[
a
b

]
(0) 6= 0 .

Die Charakteristik c bestimmt ein Geradenbündel L mit

L⊗2 = K, und h0(X,L) = 1 .

Sei hc nichttrivialer Schnitt von L, dann ist h2
c ein Differential und es gilt sogar

h2
c(P ) =

g∑
i=1

∂ϑ[c]
∂zi

(0)ωi(P )

nach entsprechender skalaren Normierung. hc ist eine
(

1
2

)
− Form auf X. Die

“prime form” ist definiert als

E(P,R) :=
ϑ[c] (J(P )− J(R))
hc(P ) · hc(R)

. (4-7)

Da der Zähler noch vom Integrationsweg B nach P , bzw. B nach R abhängt ist
E(P,R) eine mehrwertige holomorphe Form auf X×X vom Gewicht

(
− 1

2

)
in

jedem Argument. Natürlich kann E(P,R) ebenfalls wieder beschrieben werden
als einwertige Form auf X̃ × X̃ (X̃ die universelle Überlagerung von X), oder
als Schnitt in ein passendes Geradenbündel über X ×X.
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Wir haben die folgenden Eigenschaften:

Proposition 4.3. [Mum,II,p.3.210]

(1) E(P,R) = −E(R,P )

(2) E(P,R) = 0⇐⇒ P = R

(3) Die Nullstelle entlang der Diagonale ist einfach.

(4) Falls P um einen Homologiezyklus (4-5) bewegt wird, erhalten wir

E(P ′, R) = ε · exp
(
−πi tm ·Π ·m+ 2πi tm · (J(R)− J(P )

)
· E(P,R) . (4-8)

ε ist ein Vorzeichenfaktor der abhängt vom Zyklus und der Charakteristik.
Genauer gilt:

ε = (−1)2(
ta·n−tb·m) .

(5) Falls R um einen Homologiezyklus (analog zu (4-5)) bewegt wird, erhalten
wir

E(P,R′) = ε · exp
(
−πi tm ·Π ·m− 2πi tm · (J(R)− J(P )

)
· E(P,R) . (4-9)

mit
ε = (−1)2(

tb·m−ta·n) .

Der dritte Baustein ist das σ−Differential. Für meine Zwecke ist die folgende
Definition sinnvoll

σ(P ) = ϑ(J(P )− gJ(PN ) + ∆) · E(P, PN )−g (4-10)

Wieder handelt es sich um eine mehrwertige Form. Sie ist vom Gewicht
(g

2

)
.

Die Pole der “prime form” Terme werden von den Nullstellen der Thetafunktion
(Prop.4.2) annulliert. Deshalb ist σ eine holomorphe Form ohne Nullstellen.
Durch unmittelbares Nachrechnen unter Benutzung von (4-8) und (4-9) sieht
man sofort

Proposition 4.4. σ(P ) transformiert sich bei Bewegung um einen
Homologiezykel (4-5) wie folgt

σ(P ′) = εg · exp
(
iπ(g − 1)tm ·Π ·m− i2πtm ·

(
∆− (g − 1)J(P )

))
· σ(P ) .

(4-11)
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Ist nun σ′ eine andere
(g

2

)
Form mit demselben Transformationsverhalten

dann ist σ′/σ eine Funktion auf X, also eine Konstante. Damit stimmen
die in [Fay,p.31], bzw. [Bo1] gegebene Definition des σ− Differentials bis auf
Multiplikation mit einer Konstante mit der meinigen überein. Dasselbe gilt,
falls ein anderer Lift für J(PN ) gewählt wurde.

Mit diesen Bausteinen sind wir nun in der Lage die Erzeugenden
fλ(n1, n2, . . . , nN ) aus § 3. zu beschreiben.

Proposition 4.5. Sei g ≥ 2 und λ 6= 0, 1 und

n1, n2, . . . , nN ∈ ZZ ,
N∑
i=1

ni = M(λ) = (2λ− 1)(g − 1)− 1

dann gibt es eine Konstante D 6= 0, derart daß

fλ(n1, n2, . . . , nN )(P ) = D ·
N∏
i=1

E(P, Pi)ni · σ(P )(2λ−1) ×

×ϑ
(
J(P ) +

N∑
i=1

niJ(Pi)− (2λ− 1)∆
)
.

(4-12)

Beweis. Zu zeigen ist daß die rechte Seite in (4-12) eine wohldefinierte Form
vom Gewicht λ ist und genau die angegebenen Nullstellenordnungen an den
Punkten von A besitzt.
(a) Berechnung des Gewichtes: Jeder Faktor E(P, Pi) hat das Gewicht (− 1

2 ) in
der Variablen P . σ das Gewicht ( g2 ), ϑ das Gewicht 0. Zusammen also

N∑
i=1

ni ·
(
−1

2

)
+ (2λ− 1) · g

2
= λ .

(b) Wohldefiniertheit: Hierzu ist zu zeigen, daß die rechte Seite bei Bewegung
von P um einen Homologiezyklus (4-5) invariant bleibt. Dies ist genau dann
der Fall, wenn die angegebenen Automorphiefaktoren (4-3), (4-8) und (4-11)
sich zu 1 aufmultiplizieren. Die Rechnung ergibt

N∏
i=1

(
εni · exp

((
−πi tm ·Π ·m+ 2πi tm · (J(Pi)− J(P ))

)
· ni
))
·

εg·(2λ−1) · exp
((
πi(g − 1)tm ·Π ·m− 2πi tm · (∆− (g − 1)J(P ))

)
· (2λ− 1)

)
·

exp
(
−πi tm ·Π ·m− 2πi tm · (J(P ) +

N∑
i=1

niJ(Pi)− (2λ− 1)∆)
)

= 1 .
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(c) Nullstellenordnungen: Aufgrund der E(P, Pi)ni Faktoren hat die rechte
Seite mindestens die angegebenen Ordnungen ni an den Punkten Pi ∈ A.
Durch den ϑ−Funktionsfaktor treten an diesen Punkten jedoch keine weiteren
Nullstellen auf. Wäre nämlich die Nullstellenordung grösser als ni an irgen-
deinem der Punkte Pi, so wäre sie aufgrund von Prop. 3.2 identisch 012. Somit
ist aber die rechte Seite bis auf Multiplikation mit einer Konstanten D ∈ C,
D 6= 0 gleich dem links stehenden erzeugenden Elementes. Hierbei ist Ein-
deutigkeit, bis auf Multiplikation mit einem Skalar, gemeint. �

Bemerkung 1: Die g weiteren Nullstellen, welche die Form fλ(. . . ) als Schnitt
in das Bündel Kλ haben muß, sind die g Nullstellen des Thetafunktionsfaktors.

Bemerkung 2: Natürlich kann man in obiger Konstruktion das σ−Differential
durch seine Definition (4-10) ersetzen

fλ(n1, n2, . . . , nN )(P ) = D ·
N−1∏
i=1

E(P, Pi)ni · E(P, PN )nN−(2λ−1)g×

× ϑ
(
J(P )− gJ(PN ) + ∆

)(2λ−1) · ϑ
(
J(P ) +

N∑
i=1

niJ(Pi)− (2λ− 1)∆
)
,

verliert dadurch aber das symmetrische Erscheinungsbild der Punkte.

Bemerkung 3: Die angegebenen Formen sind im Fall N = 2 identisch zu den
von Bonora und Mitarbeitern gegebenen Formen [Bo1].

Bemerkung 4: Die Konstante D hängt auch von den gewählten Lifts
J(Pi) ∈ Cg ab, da alle Bausteine von diesen abhängen. Dies ist für meine
Zwecke unerheblich, da die Pi fixiert sind. Möchte man allerdings die Möglichkeit
einbeziehen die Punkte Pi zu variieren, so wird sich dies bei einer globalen Vari-
ation störend auswirken. Bewegt man einen Punkt Pi um einen Homologiezyk-
lus, so wird man i.Allg. nicht mehr zur selben Konstante zurückkommen. Durch
Hinzufügen geeigneter Kompensationskonstanten C(J(P1), . . . , J(PN )) kann
man allerdings erreichen

D = D1 · C(J(P1), J(P2), . . . , J(PN )) . (4-13)

D1 ist nun eine Konstante , die nur noch von den Punkten Pi, den Multi-
plizitäten ni und dem Gewicht λ abhängt, falls man etwa die Laurententwick-
lung an einem Punkt zur Normierung wählt. Zur Bestimmung einer solchen
Konstante C wähle ich einen generischen Punkt Q ∈ X, der nicht mit den

12Dies kann man auch mit Hilfe des Satzes von Riemann (Prop. 4.1) zeigen.
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Punkten Pi, den g weiteren Nullstellen von (4-12) und den Nullstellen des zur
Konstruktion der prime form benutzten Schnittes hc zusammenfällt. Ich setze

C =
h2λ
c (Q)

fλ(n1, n2, . . . , nN )(Q)
. (4-14)

Hierbei sei fλ(. . . ), der durch die rechte Seite in (4-12) gegebene Ausdruck. C
ist eine wohldefinierte Zahl, die abhängt von den Lifts J(Pi).

Proposition 4.6. Das Produkt aus der rechten Seite von (4-12) (ohne die
Konstante D) und der Konstante (4-14) ist unabhängig von der Wahl ver-
schiedener Lifts für J(Pi) , i = 1, . . . , N .

Beweis. Ich berechne zuerst das Verhalten von (4-12) unter der Bewegung von
Pj mit einem Homologiezyklus (4-5). Im folgenden seien nur die Automor-
phiefaktoren aufgeschrieben. Ich betrachte die rechte Seite von (4-12). Es sei
zuerst j 6= N , dann lautet dieser (Achtung: nj ist hier nicht der Zykelkoeffizient
sondern die Nullstellenordnung.)

εnj · exp
((
−πi tm ·Π ·m− 2πi tm · (J(Pj)− J(P )

)
nj

)
×

× exp
(
−πn2

j i
tm ·Π ·m− 2πnji tm · (J(P ) +

∑
i

niJ(Pi)− (2λ− 1)∆)
)
.

Für j = N tritt noch zusätzlich auf

ε−g · exp
((
−πi tm ·Π ·m− 2πi tm · (J(PN )− J(P )

)
(−g)

)
×

× exp
(
−πg2i tm ·Π ·m+ 2πgi tm · (J(P )− gJ(PN ) + ∆)

)
.

In beiden Fällen verschwindet jegliche J(P ) Abhängigkeit. Somit transformiert
sich der Faktor (4-14) nach Definition gerade entgegengesetzt, und das Produkt
ist invariant. �

Es bleiben die Sonderfälle aus § 3. zu behandeln.

g ≥ 2, λ = 1 Wir haben 3 verschiedene Typen von Erzeugenden. Typ (a) ist
derjenige, der durch direkte Spezialisierung aus beliebigem λ entsteht.
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Proposition 4.7. Sei g ≥ 2 und n1, n2, . . . , nN ∈ ZZ mit
∑N
i=1 ni = M(λ) =

g − 2, derart daß mindestens ein ni ≤ −2 oder mindestens zwei ni, nj ≤ −1
ist, dann gibt es eine Konstante D 6= 0, derart daß

ω(n1, n2, . . . , nN )(P ) = D ·
N∏
i=1

E(P, Pi)ni · σ(P ) ×

× ϑ
(
J(P ) +

N∑
i=1

niJ(Pi)−∆
)
. (4-15)

Der Beweis von Prop. 4.5 gilt auch für Prop. 4.7.

Typ (b) ist gegeben durch

ω(n1, n2, . . . , nN ), alle ni ≥ 0,
N∑
i=1

ni = (g − 1) . (4-16)

Wir wählen einen zusätzlichen Punkt R ∈ X \ A (etwa den Basispunkt B der
Jacobiabbildung). Er wird fixiert.

Proposition 4.8. Sei g ≥ 2 und n1, n2, . . . , nN ∈ ZZ , welche die Bedingung
in Formel (4-16) erfüllen, dann gibt es eine Konstante D, derart daß gilt

ω(n1, n2, . . . , nN )(P ) = D ·
N∏
i=1

E(P, Pi)ni · σ(P ) · E(P,R)−1 ×

×ϑ
(
J(P ) +

N∑
i=1

niJ(Pi)− J(R)−∆
)
.

(4-17)

Beweis. Da die angegebene Form der Situation im Beweis von Prop. 4.5 für
den Fall P1, . . . , PN , R (

∑N
i=1 ni + nr = g − 2 ) im Beweisteil (a) und (b)

entspricht, ist die rechte Seite eine wohldefinierte Form vom Gewicht 1, d.h. ein
Differential. Der Pol am Punkt R, hervorgerufen durch den Faktor E(P,R)−1

wird durch den Thetafunktionsfaktor wieder annuliert, da die rechte Seite sonst
eine Differentialform mit nur einem Pol 1.ter Ordung wäre. Wegen Prop. 3.5
kann die Thetafunktion die Nullstellenvielfachheit an den Punkten Pi nicht
erhöhen. �

Die Wahl des Punktes R geht nur in die Festlegung der Konstante ein. Auch
in diesem Fall gelten die Bemerkungen 1–4 , welche ich nach Prop. 4.5 gemacht
habe. Insbesondere kann man auch entsprechende Korrekturkonstanten analog
zu (4-14) wählen. Übrig bleibt der Typ (c) (der im FallN > 2 gar nicht benötigt
wird).
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Proposition 4.9. Sei

ωi,j := d

(
log

E(P, Pj)
E(P, Pi)

)
1 ≤ i < j ≤ N

und ω1, . . . , ωg die Basis der holomorphen Differentiale nach (2-7), dann gilt

ω(0, . . . ,−1, 0, . . . ,−1, . . . , 0) = ωi,j+

i
∑
r

(∑
s

((ImΠ)−1)rs · (Re

∮
bs
ωi,j)

)
ωr . (4-18)

Hierbei bezeichne i und j die Indices l mit nl = −1.

Beweis. ωi,j ist ein meromorphes Differential das holomorph auf X \ {Pi, Pj}
ist. An Pi und Pj hat es die Polordnung 1 und das Residuum −1, bzw. +1. Bei
der Integration um die Homologiezyklen welche nur aus den ai bestehen, ergibt
sich die Periode 0 [Mum,II,3.212]. Wie in Prop. 2.2 können wir durch Addition
von holomorphen Differentialen erreichen, daß alle Perioden rein imaginär wer-
den. In der vorgegebenen Situation spezialisiert sich die Formel dort zu (4-18).
Da ein derartiges Differential eindeutig fixiert ist (ebenfalls Prop. 2.2) ist die
rechte Seite identisch mit dem erzeugenden Element. �

g ≥ 2, λ = 0 oder g = 1, λ ∈ ZZ Wie in § 3. ausgeführt, genügt es im Fall
g = 1 den Wert λ = 0 zu betrachten. Es gilt M(0) = −g. Typ(a) entspricht
wiederum dem allgemeinen Typ, und wir erhalten durch Spezialisierung

Proposition 4.10. Seien n1, n2, . . . nN ∈ ZZ , mindestens ein ni > 0 und∑N
i=1 ni = −g, dann gibt es eine Konstante D mit

A(n1, n2, . . . , nN )(P ) = D ·
N∏
i=1

E(P, Pi)ni · σ(P )−1 ×

×ϑ
(
J(P ) +

N∑
i=1

niJ(Pi) + ∆
)
.

(4-19)

Für den Typ (b) führen wir wiederum einen weiteren Punkt R ∈ X \A ein.

Proposition 4.11. Seien n1, n2, . . . nN ∈ ZZ , alle ni ≤ 0 und∑N
i=1 ni = −(g + 1), dann gibt es eine Konstante D mit

A(n1, n2, . . . , nN )(P ) = D ·
N∏
i=1

E(P, Pi)ni · σ(P )−1 · E(P,R) ×

×ϑ
(
J(P ) +

N∑
i=1

niJ(Pi) + J(R) + ∆
)
.

(4-20)



51

Hierbei ist A(. . . ) ein erzeugendes Element mit den vorgeschriebenen Nullstel-
lenordnungen.

Beweis. Auch hier ist durch die Einführung eines zusätzlichen Punktes die
Gültigkeit der Aussage über das Gewicht und über die Wohldefiniertheit wieder
gesichert. Desweiteren folgt ebenso mit Prop. 3.8, daß die vorgeschriebene
Ordnung an den Punkten Pi genau ereicht wird. Allerdings wird nun von den
g zusätzlichen Nullstellen eine auf den Punkt R gelegt. Bei Variation von R

erhalten wir verschiedene rechte Seiten. Das stimmt mit unserer Erkenntnis
aus § 3. überein, daß die linke Seite in diesem Fall nur bis auf Addition einer
generischen Konstante und Multiplikation mit einem Skalar 6= 0 fixiert ist.
Deshalb dieser zusätzliche Freiheitsgrad. �

Der fehlende Erzeuger ist die konstante Funktion A(0, . . . , 0) ≡ 1 . Die Be-
merkungen 1–4 (einschließlich der entsprechenden Korrekturkonstanten) nach
Prop. 4.5 gelten auch in diesem Fall.

(b) Der Fall ggg === 111 (Weierstraßsche σσσ−Funktion)

Für den Fall g = 1 wurde für N = 2 in [KN1] die Erzeugenden mit Hilfe der
σ−Funktion angegeben. Dies möchte ich für beliebiges N verallgemeinern. Sei
T ein komplexer Torus (d.h. eine Riemannsche Fläche vom Geschlecht 1), die
gegeben ist als T = C/L mit einem Gitter L in C. Natürlich können wir uns,
falls bequem, auf Gitter L beschränken mit

L = ZZ ⊕ τ · ZZ , τ ∈ C, Imτ > 0 (4-21)

da ein beliebiger Torus komplex-analytisch isomorph zu einem derart gegebenem
ist. Die Weierstraßsche σ−Funktion ist definiert als

σ(z) := z ·
∏

w ∈ L \ {0}

(
(1− z

w
) exp

(
z

w
+

1
2
(
z

w
)2
))

. (4-22)

Als Referenz für die folgenden Eigenschaften siehe etwa [HuCo].

Proposition 4.12.

(a) σ ist eine holomorphe Funktion auf C.
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(b) σ hat an jedem Gitterpunkt eine Nullstelle 1.ter Ordung und sonst keine
weiteren Nullstellen.

(c) σ besitzt das folgende automorphe Verhalten: Sei w ∈ L, so gilt

σ(z + w) = v(w) exp
(
η(w) · (z +

w

2
)
)
· σ(z) (4-23)

mit v(w) = ±1 und η(w) = ζ(z+w)−ζ(z) . Hierbei ist ζ die Weierstraßsche
ζ−funktion. Es gilt

η(m · w) = m · η(w), m ∈ ZZ , w ∈ L . (4-24)

(d) Seien ai ∈ C und ni ∈ ZZ (i = 1, . . . ,m) gegeben. Dann definiert die
Funktion

f(z) =
m∏
i=1

(σ(z − ai))ni (4-25)

genau dann eine doppelperiodische Funktion unter dem Gitter L (d.h. eine
meromorphe Funktion auf dem Torus T ), falls gilt

(1)
m∑
i=1

ni = 0 und (2)
m∑
i=1

niai ∈ L . (4-26)

In diesem Fall hat f eine Nullstelle von der Ordnung ni am Punkt ai mod L.

Wir wählen nun ai ∈ C mit ai mod L = Pi, i = 1, . . . , N und fixieren diese.
Es sei

b = −

(
N∑
i=1

niai

)
. (4-27)

Wiederum haben wir die 3 Typen von Erzeugenden wie in Prop. 3.9 ausgeführt.
Wir betrachten zuerst Typ (a).

Proposition 4.13. Seien n1, n2, . . . , nN ∈ ZZ , mindestens ein ni > 0 und∑N
i=1 ni = −1, dann gibt es ein E ∈ C mit

A(n1, n2, . . . , nN )(z) = E ·
N∏
i=1

(σ(z − ai))ni · σ(z − b) . (4-28)

Beweis. Offensichtlich ist mit diesen Wahlen (4-26) erfüllt, d.h. die rechte Seite
ist eine wohldefinierte meromorphe Funktion auf dem Torus. Sind die Pi in all-
gemeiner Position gewählt, so kann b mod L niemals mit einem der Pi zusam-
menfallen, da sich sonst die Nullstellenordnung an einem dieser Punkte erhöhen
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würde. Dies ist im Widerspruch zu Prop. 3.8. D.h. die rechte Seite ist bis auf
Multiplikation mit einer Konstanten der gesuchte Erzeuger. �

Die Konstante E hängt von den Lifts ai ∈ C der Punkte Pi ab, da der
Ausdruck in den σ−Termen davon abhängt. Um die Polstellen selbst global
variieren zu können, ist allerdings die Unabhängigkeit vom Lift notwendig. Dies
erreiche ich, indem ich entsprechend normiere. Hierzu sei c ∈ C gewählt, derart
daß

c mod L 6= Pi, i = 1, . . . , N und c mod L 6= b mod L .

Proposition 4.14. Die modifizierte Funktion A(n1, n2, . . . , nN ) gegeben durch

A(n1, n2, . . . , nN )(z) = C−1 ·
N∏
i=1

(σ(z − ai))ni · σ(z − b) (4-29)

mit

C =
N∏
i=1

σ(c− ai)ni · σ(c− b) (4-30)

ist unabhängig von den gewählten Lifts ai für die Punkte Pi.

Beweis. (Offensichtlich hängt (4-30) nur von c mod L ab.) Ich berechne das
Verhalten von (4-28) und (4-30) unter der Translation aj → aj +w mit w ∈ L.
Mit Hilfe von Prop. 4.12(c) erhalten wir

E ·
∏
i 6=j

(. . . )σ(z − aj − w)nj · σ(z +
∑
i

niai + njw) =

= A(. . . )(z) · v(−w)nj exp
(
η(−w)(z − aj −

w

2
) · nj

)
×

× v(njw) exp
(
η(njw)(z +

∑
i

niai +
njw

2
)
)
.

Wegen (4-24) folgt (
η(−w) · nj + η(njw)

)
· z = 0 ,

also verschwindet die z Abhängigkeit des Faktors. Den Faktor für (4-30)
gewinnt man durch Ersetzung von z durch c in obiger Berechnung. In der
Definition des modifizierten Elementes wird aber der Quotient beider gebildet.
Somit kürzen sich die Faktoren gerade. Dies bedeutet die modifizierte Funktion
ist unabhängig von der Wahl der Lifts. �
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Typ (b) reduziert sich in diesem Fall durch die Bedingung “alle ni ≤ 0 und∑N
i=1 ni = −2” auf die beiden Fälle

A(0, . . . , 0,−2, 0, . . . , 0) und A(0, . . . ,−1, 0, . . . ,−1, 0, . . . , 0) .

Seien die Punkte mit ni 6= 0 repräsentiert durch ai, bzw. ai und aj mit i < j.
Wir bestimmen w1 und w2 derart, daß

w1 + w2 = 2ai bzw. w1 + w2 = (ai + aj) .

und
w1, w2 6= aj mod L für j = 1, . . . , N .

Hierzu kann z.Bsp. w2 generisch gewählt werden, und ω1 liegt dann fest. Per
Konstruktion gilt dann folgende

Proposition 4.15. Erzeugende für den Typ (b) sind gegeben durch

A(0, . . . , 0,−2, 0, . . . , 0) = Cσ(z − ai)−2 · σ(z − w1) · σ(z − w2) (4-31)

A(0, . . . ,−1, 0, . . . ,−1, 0, . . . , 0) = Cσ(z − ai)−1 · σ(z − aj)−1 · (4-32)

σ(z − w1) · σ(z − w2)

mit einer Konstanten C.

Wir können den Ausdruck wiederum unabhängig von den Lifts ai machen,
indem wir die gegebenen Ausdrücke durch

σ(c− ai)−2 · σ(c− w1) · σ(c− w2)

bzw.
σ(c− ai)−1 · σ(c− aj)−1σ(c− w1) · σ(c− w2)

dividieren, wobei c entsprechend oben gewählt wurde (insbesondere
c 6≡ w1, w2 mod L). Der Beweis ist identisch zum Beweis von Prop. 4.14. Zu
beachten ist noch, daß zu den Elementen vom Typ (b) generische Konstanten
addiert werden dürfen. Dies entspricht der Nichteindeutigkeit der Wahlen von
w1 und w2.

Der Erzeuger vom Typ (c) ist die konstante Funktion.
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(c) Der Fall ggg === 000 (rationale Funktionen)

Der Fall ist einfach und er sei nur aus Gründen der Vollständigkeit aufgeführt.
Ich wähle eine Parametrisierung z von P1, derart daß “z =∞” dem Punkt PN
entspricht. Die anderen Punkte seien gegeben durch

Pi ←→ z = ai ∈ C, i = 1, . . . , N − 1 .

Zur Fixierung der Parametrisierung kann man etwa noch zusätzlich fordern
a1 = 0 und a2 = 1 (falls N > 2 ist).

Proposition 4.16. Seien n1, n2, . . . , nN ∈ ZZ mit
∑N
i=1 ni = M(λ) = −2λ

dann gilt

fλ(n1, n2, . . . , nN )(z)| = B ·
N−1∏
i=1

(z − ai)ni dzλ (4-33)

mit einer Konstanten B ∈ C.

Beweis. Die rechte Seite definiert eine meromorphe Form vom Gewicht λ die
auf P1 \ {∞} von der gewünschten Gestalt ist. Zu berechnen ist lediglich, ob
die Nullstellenordnung bei z = ∞ tatsächlich nN beträgt. Hierzu rechnen wir
die Darstellung in der lokalen Koordinate w = 1/z bei PN aus.

dz = − 1
w2

dw, also dzλ = (−1)λ · w−2λ dwλ .

Somit

fλ(n1, n2, . . . , nN )(w)| = B(−1)λ
(
w−
∑N−1

i=1
ni

)N−1∏
i=1

(1− aiw)niw−2λ dwλ .

Also ord PN
(. . . ) = −

∑N−1
i=1 ni − 2λ = nN . �

Selbstverständlich kann man auch von beliebigen Parametrisierungen z aus-
gehen bei denen keiner der Punkte “z =∞” entspricht. Dann gilt

fλ(n1, n2, . . . , nN )(z)| = B ·
N∏
i=1

(z − ai)ni dzλ .

In diesem Fall zeigt man wie oben ord z=∞(...) = 0 .
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§ 5. Verallgemeinerte Graduierung induziert durch eine Basiswahl

(a) Das grundlegende Theorem und die Struktur der Basis

In diesem Paragraphen ist die Aufteilung der Ausnahmemenge A in
A = I ∪O von Bedeutung. Es sei also wie in § 2. angegeben

I = {P1, P2, . . . , Pk}, O = {Q1, Q2, . . . , Ql}, N = k + l .

Im folgenden werde ich eine Teilmenge der Erzeugenden aus § 3. für Fλ(A)
angeben, die eine Basis bildet. Deren Elemente sind

fn,p(λ), n ∈ ZZ , p = 1, . . . , k , (5-1)

werden also durch einen Doppelindex bezeichnet. Zur eindeutigen Festlegung
der fn,p(λ) sind Fallunterscheidungen, abhängig von k, l, λ und dem Geschlecht
g, notwendig. In diesem Abschnitt will ich nur den für alle gleichbleibenden
Teil beschreiben. Es ist fn,p(λ) ∈ Fλ(A), d.h. es ist eine Form vom Gewicht
λ, holomorph auf X \ A. Die Ordnung an den Punkten aus I ist vorgegeben
als

ord Pi
(fn,p(λ)) = n− δi,p, Pi ∈ I . (5-2)

Lokal gelte an dem Punkt Pp

fn,p(λ)|(z) = zn−1
p (1 +O(zp)) (dzp)

λ
. (5-3)

Zur Illustration, welcher Natur die weiteren Forderungen sind, seien diese für
k = l, g ≥ 2 und λ 6= 0, 1 bzw. für g = 0 angegeben

ord Qi
(fn,p(λ)) = −n, Qi ∈ O \ {Qk}

ord Qk
(fn,p(λ)) = −n+M(λ) + 1

(5-4)

(Mit M(λ) = (2λ− 1)(g− 1)− 1 nach (3-4).) Damit ist nach Prop.3.2 dies ein
wohldefiniertes Element aus der Menge der Erzeugenden.

Theorem 5.1. Für beliebiges λ ∈ ZZ und beliebige Zerlegungen von A in
A = I ∪ O mit nichtleeren Mengen I und O gelten die folgenden Aussagen
(k = #I):

(a) Die Elemente
fn,p(λ), n ∈ ZZ , p = 1, . . . , k , (5-5)



57

bilden eine Basis von Fλ(A) (, bzw. eine Basis von KN (A) für λ = −1).

(b) Die Basiselemente erfüllen die Dualitätsbeziehungen

1
2πi

∮
Cτ

fn,p(λ)f1−m,r(1− λ) = δn,m · δp,r . (5-6)

(c) Jedes v ∈ Fλ(A) kann beschrieben werden als endliche Linearkombination

v =
∑
n∈ZZ

k∑
p=1

Cn,pfn,p(λ), Cn,p ∈ C (5-7)

mit
Cn,p =

1
2πi

∮
Cτ

v · f1−n,p(1− λ) . (5-8)

(d) Die Struktur des Moduls Fλ(A) über der Algebra KN (A) ist gegeben durch
die Strukturgleichung

en,p . fm,r(λ) =
n+m+L∑
h=n+m−2

k∑
s=1

C
(h,s)
(n,p),(m,r)(λ) · fh,s(λ) (5-9)

mit C ..... ∈ C. Hierbei ist L eine Konstante die nur vom Geschlecht g, von den
Werten k und l und vom Gewicht λ abhängt.

(e) Die Koeffizienten am unteren Ende der Summe (5-9) sind

C
(n+m−2,s)
(n,p),(m,r) (λ) = δp,rδp,s((m− 1) + λ(n− 1)) . (5-10)

Beweis. (1.ter Teil) Natürlich bin ich nicht in der Lage ohne genaue Fixierung
der fn,p(λ) das Theorem vollständig zu beweisen. In diesem Abschnitt werden
nur die gemeinsamen Teile abgehandelt. Seien solche fn,p(λ) definiert welche
der Dualitätsbeziehung (5-6) genügen. Damit sind sie aber linear unabhängig.
Sei nämlich

0 =
∑
n,p

Cn,pfn,p(λ) ,

so erhalten wir

0 =
∑
n,p

Cn,p

(
1

2πi

∮
Cτ

fn,p(λ) · f1−m,r(1− λ)
)
.
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Also gilt Cm,r = 0 für alle m, r. Zu zeigen bleibt (im Teil 2), daß die Elemente
erzeugend sind. Nehmen wir also (a) an, so kann jedes v als Linearkombination
der fn,p geschrieben werden (5-7) und wegen der Dualität können die Koef-
fizienten, wie in (5-8) angegeben, durch Integration gewonnen werden. Dies
beweist (c). Um zur Strukturgleichung zu kommen benutze ich wiederum die
Dualitätsbeziehung. Seien en,p und fm,r fixiert, so können wir auf en,p . fm,r(λ)
Teil (c) anwenden. Insbesondere treten nur solche fh,s auf für die

1
2πi

∮
Cτ

(en,p . fm,r(λ)) · f1−h,s(1− λ) 6= 0 (5-11)

ist. Durch Berechnung der Residuen an den Punkten Pi (bzw. Qi im 2. Teil)
erhalten wir Schranken für h. Aufgrund der lokalen Gestalt gilt

ord Pi((en,p . fm,r) · f1−h,s) ≥ (n− δi,p +m− δi,r − 1)+

+(1− h)− δi,s = (n+m− h)− δi,p − δi,r − δi,s .
(5-12)

Damit sind für h ≤ (n + m) − 3 alle Ordnungen ≥ 0. Somit gibt es an den
Punkten Pi keine Residuen, also verschwinden alle Koeffizienten Ch,s. Dies
zeigt die untere Schranke im Teil (d). Wir sind auch in der Lage die genauen
Werte an der Schranke anzugeben. Falls nicht r = s = p ist, verschwindet der
Koeffizient auch für h = (n +m − 2). Sei also r = s = p und h = n +m − 2.
Die Residuen an den Punkten Pi für i 6= p verschwinden. Wir rechnen lokal
bei Pp ((

zn−1
p (1 +O(zp))

∂

∂zp

)
. (
(
zm−1
p (1 +O(zp)) (dzp)λ

))
·

(
(
z−n−m+2
p (1 +O(zp)) (dzp)1−λ

)
=

z−1
p ((m− 1) + λ · (n− 1)) (1 +O(zp)) dz =: ω .

Also gilt res Pp(ω) = (m− 1) + λ · (n− 1) . Dies zeigt Teil (e) des Theorems.
Wir haben bei der Berechnung der Konstante die skalare Normierung (5-3)
benützt. ( �)

In den nächsten Abschnitten werde ich die fehlenden Glieder des Beweises
nachholen. Dies sind 1. die Existenz und Eindeutigkeit solcher fn,p, 2. die
Dualitätseigenschaft, 3. die Erzeugendeneigenschaft und 4. der Beweis der
Existenz einer oberen Schranke in der Strukturgleichung (5-9).

Mit denselben Methoden wie im Beweis, kann man noch weitere Koeffizien-
ten berechnen. Hierzu muß man lediglich (5-12) etwas genauer anschauen und
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entsprechende Fallunterscheidungen machen. Für ω wie oben, erhält man für
s 6= p

C
(n+m−1,s)
(n,p),(m,p) (λ) = res Pp

(ω) = (m− 1) + λ(n− 1) . (5-13)

Für s = p kann keine Aussage gemacht werden (bis auf die triviale Fälle g = 0,
N = 2). Weiter gilt

C
(n+m−1,p)
(n,p),(m,r) (λ) = m+ λ(n− 1), p 6= r

C
(n+m−1,r)
(n,p),(m,r) (λ) = m− 1 + λn, p 6= r

C
(n+m−1,s)
(n,p),(m,r) (λ) = 0 p, r, s paarweise verschieden.

(5-14)

Sind p, r und s paarweise verschieden, so kann man noch eine Stufe tiefer gehen

C
(n+m,s)
(n,p),(m,r)(λ) = (3m+ 3λn− (λ+ 1)) . (5-15)

Im Virasoro Fall ist (5-10) der einzige auftretende Koeffizient.
Im Prinzip kann man alle Strukturkonstanten mit Hilfe der expliziten Darstel-
lungen aus § 4. und unter Benutzung der Formel (5-8) bestimmen. Für N = 2
und g = 1 wurde in [KN1] entsprechendes getan. Wie man dort sehen kann,
wird die Situation sehr unübersichtlich. Im Fall g = 0 ist dies jedoch mit Hilfe
entsprechender Binomialentwicklungen machbar. (Siehe auch § 9. für analoge
Berechnungen.) Für das spätere wichtig (§ 7.(c)) ist folgende interessante

Proposition 5.1. Sei das Geschlecht von X gleich Null. Dann gilt für k ≥ l

C
(m+d,s)
(n,p),(m,r) = α+ β ·m (5-16)

mit α und β Zahlen, welche von (n, p), r, d und s abhängen, jedoch nicht von m.
Für k < l gibt (5-16) ebenfalls. In diesem Fall hängen die α und β zusätzlich
noch von den Restklassen von m modulo b = (l − k) + 1 ab.

Der Beweis dieser Proposition wird ganz am Ende des Paragraphens geführt
werden.
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Zur besseren Referenz seien noch die Werte für die Schranke L in (5-9)
vorweggenommen: Es sei a = (k − l) + 1 und b = (l − k) + 1 gesetzt. Für
λ = 0 oder 1, bzw. g = 1 handelt es sich hierbei um die generische Schranke.
Es ergibt sich für L

k ≥ l −2 falls g = 0 k = l = 1
1 falls g = 0 l > 1

1 +
[
1
a
(3g − 3)

]
sonst

k < l −2 + 3b falls g = 0
−2 + (3g)b falls g ≥ 1 .

(5-17)

Mit Hilfe dieser Basis will ich nun eine Graduierung auf Fλ(A) einführen.
Ich setze deg(fn,p) := n und bezeichne die Elemente von

KNn(A) := 〈en,1, en,2, . . . , en,k〉
Fλn (A) := 〈fn,1(λ), fn,2(λ), . . . , fn,k(λ)〉 .

(5-18)

als homogene Elemente vom Grad n. Wegen der Basiseigenschaft gilt

KN (A) =
⊕
n∈ZZ

KNn(A), Fλ(A) =
⊕
n∈ZZ

Fλn (A) .

Theorem 5.1(d) (angewendet sowohl auf λ = −1 als auch auf beliebiges λ)
besagt

[KNn(A),KNm(A) ] ⊂
(n+m)+K1⊕

h=(n+m)−K0

KN h(A)

KNn(A) .Fλm(A) ⊂
(n+m)+L1⊕

h=(n+m)−L0

Fλh (A) .

(5-19)

Hierbei sind K0,K1, L0, L1 ganze Zahlen die nicht von n und m abhängen.
Bei uns gilt sogar K0 = L0 = 2. Gleichung (5-19) besagt nun, daß hier eine
verallgemeinert graduierte Struktur vorliegt [KN1]. Ich fasse zusammen

Proposition 5.2. Fλ(A) ist ein verallgemeinert graduierter Modul über KN (A)
mit der Graduierung induziert durch

deg fn,p(λ) := n, deg en,p := n .
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Die Bedeutung dieser Struktur wird erst in § 7. beim Studium der semi-
infiniten Formen vollständig klar werden.

Betrachte ich Fλ(A) als Modul über der assoziativen Algebra F0(A), dann
zeigt die entsprechende Berechnung wie im Beweis zu Theorem 5.1 (wiederum
unter Benutzung der Dualität (5-6)), daß die Graduierung (5-18) ebenfalls eine
verallgemeinert graduierte Struktur von Fλ(A) über F0(A) definiert. Darauf
werde ich nochmals in § 6.(b) eingehen.

Die Festlegung der Basis {fn,p} hängt nicht nur von der Zerlegung der Menge
A in A = I∪O, sondern auch von der Numerierung der Punkte in O ab. So war
es im Falle k = l notwendig einen der Punkte in O auszuzeichnen und an diesen
Punkt die geforderte Ordnung der Formen um M(λ) + 1 zu erhöhen, um das
Element eindeutig zu fixieren. Wird ein anderer Punkt aus O als Referenzpunkt
gewählt, so erhält man andere Basiselemente. Insbesondere ändert sich somit
auch die Graduierung für Fλ. Ich zeige nun, daß die, von der Graduierung
induzierte Filtrierung, invariant unter diesen Wahlen ist. Hierzu setze ich

Fλ(n)(A) =
⊕
m≥n

Fλm(A) = 〈fm,p | m ∈ ZZ ,m ≥ n, p = 1, . . . , k〉 (5-20)

und erhalte eine (absteigende) Filtrierung von Fλ(A)

Fλ(n)(A) ⊆ Fλ(n′)(A) n ≥ n′ .

(Diese Filtrierung ist eine aufsteigende Filtrierung im Sinne der Polordungen.)

Proposition 5.3.

Fλ(n)(A) = { f ∈ Fλ(A) | ord P (f) ≥ n− 1, ∀P ∈ I } . (5-21)

Beweis. Per Konstruktion gilt “⊆”. Zu zeigen bleibt “⊇”. Sei f ein Element
der Menge auf der rechten Seite. Nach Theorem 5.1 gilt

f =
∑
m∈ZZ

k∑
p=1

Am,pfm,p(λ)

mit
Am,p =

1
2πi

∮
Cτ

f · f1−m,p(1− λ) . (5-22)
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Es berechnet sich für P ∈ I

ord P (f · f1−m,p(1− λ)) ≥ (n− 1) + (1−m)− 1 = (n−m)− 1 .

D.h. für m < n sind alle Ordnungen an den Punkten P ∈ I positiv. Somit
verschwindet (5-22) für m < n. Also liegt f in Fλ(n)(A). �

Die Filtrierung (5-20) ist die Filtrierung, die durch die Graduierung

deg(fn,p(λ)) = n (5-23)

induziert wird. Prop. 5.3 liefert nun eine invariante Beschreibung der Fil-
trierung aufgrund der Ordnungen an den Punkten aus I. Damit folgt unmit-
telbar

Proposition 5.4. Die durch (5-23) induzierte Filtrierung ist unabhängig von
der Numerierung der Punkte Qi ∈ O, i = 1, . . . , l. Insbesondere ist sie un-
abhängig von der Wahl des Referenzpunktes Ql ∈ O.

Die Situation sei nochmals zusammengefaßt. Die Module Fλ(A) sind durch
die Menge der Punkte A festgelegt. Es sind Untermodule der meromorphen
Formen vom Gewicht λ auf X. Die Zerlegung der Menge A in nichtleere Teil-
mengen I und O und die Numerierung der Punkte in O fixiert eine Graduierung
der Module Fλ(A). In Bezug auf diese Graduierung bilden sie einen verallge-
meinert graduierten Liemodul überKN (A) (mit der entsprechenden Graduierung).
Umnumerierung der Punkte aus O ändert lediglich die Graduierung, nicht je-
doch die induzierte Filtrierung. In der Tat sind alle Größen, die ich im folgenden
berechnen werde, invariant unter der Umnumerierung der Punkte.

Eine andere Zerlegung von A in A = I∗ ∪ O∗ liefert ebenfalls eine Fil-
trierung. Bezeichne ∗ die Filtrierung, herkommend von dieser Zerlegung. Auf-
grund Prop. 5.3 gilt

I∗ ⊇ I ⇐⇒ Fλ(n)(A)∗ ⊆ Fλ(n)(A) . (5-24)

Die Filtrierungen sind nicht äquivalent. Sei P ∈ I∗, jedoch P 6∈ I, dann gibt
es Funktionen mit beliebig hoher Polordnung bei P , welche in Fλ(n)(A) liegen,
jedoch nicht in einem festen Fλ(n′)(A)∗. Deshalb kann es kein Fλ(n′)(A)∗ geben
mit

Fλ(n)(A) ⊆ Fλ(n′)(A)∗ .

Der Rest des Paragraphen § 5. besteht lediglich in der Angabe von Basisele-
menten für jede mögliche Kombination von k, l und λ, derart daß Theorem 5.1
gilt.
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(b) Beweis im Fall kkk === lll

Diesen Fall möchte ich in aller Ausführlichkeit diskutieren, da unbehindert
von allzu vielen technischen Details die Grundprinzipien klar hervortreten. Es
sei vorerst g ≥ 2 und λ 6= 0, 1, bzw. g = 0 und λ ∈ ZZ beliebig. Zusätzlich zu
den Forderungen (5-2) und (5-3) sei

ord Qi
(fn,p(λ)) = −n, Qi ∈ O \ {Ql}

ord Ql
(fn,p(λ)) = −n+M(λ) + 1 .

(5-25)

Es gilt ∑
Q∈A

ord Q(fn,p(λ)) = M(λ) .

Nach Prop.3.2 existiert genau eine Form mit den vorgegebenen Ordnungen.
(Die skalare Fixierung wird durch (5-3) ereicht.) Ich zeige zuerst, daß die
Dualität (5-6) gilt. Hierzu berechne ich für das Produkt

ω := fn,p(λ) · f1−m,r(1− λ) (5-26)

die Ordnungen an den Punkten von A.

ord Pi
(ω) = (n−m) + 1− δi,r − δi,p, Pi ∈ I

ord Qi(ω) = −(n−m)− 1, Qi ∈ O \ {Ql}
ord Ql

(ω) = −(n−m)− 1 +M(λ) +M(1− λ) + 2

= −(n−m)− 1 .

In der letzten Zeile habe ich benutzt

M(λ) +M(1− λ) = (2λ− 1)(g − 1)− 1 + ((2(1− λ)− 1)(g − 1)− 1) = −2 .

Für n ≥ m + 1 verschwinden die Residuen an den Punkten Pi ∈ I. Somit
verschwindet ebenfalls das Kurvenintegral. Für n = m verschwinden alle
Residuen (und somit das Kurvenintegral) falls r 6= p ist. Im Fall r = p gilt
ord Pp(ω) = −1 und ord Pi(ω) = 0 für i 6= p. Somit gilt hier aufgrund der
Normierung

1
2πi

∮
Cτ

fn,p(λ)f1−m,r(1− λ) = res Pp
(ω) = 1 .
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Diese Ergebnisse gelten natürlich auch für beliebige k, l und λ, da nur das
Verhalten an den Punkten Pi ∈ I von Bedeutung war. Für n ≤ m − 1 ist
die Ordnung an den Punkten Qi ∈ O nichtnegativ. Somit verschwindet auch
hier das Kurvenintegral über jeder glatten Niveaulinie Cτ . Dies zeigt Theorem
5.1(b) . Um zu zeigen, daß die fn,p(λ) erzeugend sind, setzen wir für n ∈ N

V (n) := H0(X,λ ·K +D(n)) (5-27)

mit

D(n) :=
k∑
i=1

(n+ 1)Pi +
l−1∑
i=1

nQi + (n− 1−M(λ)) ·Ql .

In V (n) sind die Formen vom Gewicht λ die maximal den Polstellendivisor
D(n) haben. Insbesondere sind die Elemente

fm,p , −n ≤ m ≤ n, p = 1, . . . , k

in V (n). Da die Punkte in generischer Lage sind, berechnet sich nach Prop.3.3

dimV (n) = dimH0(X,λ ·K −M(λ) ·Qk) + deg (D(n) +M(λ) ·Qk)
= 1 + degD(n) +M(λ) = k(2n+ 1) .

Genauso viele Elemente fm,p(λ) sind in V (n). Da diese aufgrund der Dualität
linear unabhängig sind, erzeugen sie V (n). Jedes v ∈ Fλ(A) liegt aber ab
einem gewissen n in den V (n). Dies zeigt die Basiseigenschaft. Für die obere
Schranke in (5-9) ist die Ordnung von ω = (en,p . fm,r(λ)) ·f1−h,s(1−λ) an den
Punkten Qi ∈ O analog zu (5-12) zu berechnen. Es gilt (mit M(−1) = −3g+2)

ord Qi(ω) ≥ −(n+m+ 2) + h, Qi ∈ O \ {Ql}
ord Ql

(ω) ≥ −(n+m)− 3g + 1 + h .
(5-28)

Die Koeffizienten Ch,s verschwinden auf jeden Fall, falls diese Ordnungen alle
≥ 0 sind. Bezeichne hmax den maximalen Wert für h, für den Ch,s 6= 0 möglich
ist, so berechnet sich dieser wie folgt. Für k = l = 1, d.h. N = 2 tritt der 1.te
Term nicht auf, also ergibt sich hmax = (n+m− 2 + 3g). Für k = l ≥ 2 gilt

hmax = max(n+m− 2 + 3g, n+m+ 1) .

Die Konstante L in Formel (5-9) beträgt somit

L =
{

1 , g = 0 und k > 1
3g − 2 , sonst .
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Insbesondere liegt die behauptete Unabhänigkeit von n und m vor. Im Fall
k = l = 1 erhalten wir genau die Basis die für N = 2 auch von Krichever und
Novikov [KN1] angegeben wurde (bis auf eine Verschiebung des Index) und die
dort berechnete Strukturgleichung. Diese spezialisiert sich für g = 0 auf die
Virasoro Algebra.

Wir kommen nun zu den Ausnahmewerten von λ. Für diese berechnet sich
M(0) = −g und M(1) = g − 2. Zuerst betrachten wir den Fall N = 2.

λ = 1, g ≥ 2, k = 1

Für n < 0 oder n > g sei ωn := ωn,1 wie im allgemeinen Fall oben festgelegt
durch

ord P1(ωn) = n− 1, ord Q1(ωn) = g − 1− n

und die Normierungsbedingung (5-3). ωn ist eindeutig nach Prop.3.6 . Für die
Werte 1 ≤ n ≤ g verwenden wir ωn mit

ord P1(ωn) = n− 1, ord Q1(ωn) = g − n

und der Normierungsbedingung (5-3). Auch hier ist ωn eindeutig nach Prop.3.6 .
Als ω0 verwenden wir das Differential ρ definiert in (2-10). Insbesondere gilt
für alle n ∈ ZZ ord P1(ωn) = n− 1.

λ = 0, g ≥ 1, k = 1

Hier sind neben der Normierungsbedingung (5-3) die entsprechenden Festle-
gungen für An := An,1

ord P1(An) = n− 1, ord Q1(An) = −g + 1− n

im Bereich n ≥ 2 oder n ≤ −g, bzw

ord P1(An) = n− 1, ord Q1(An) = −g − n (5-29)

im Bereich −g < n ≤ 0. Desweiteren sei A1 = 1. Aufgrund Prop.3.8 sind die
Erzeugenden vom ersten Typ eindeutig fixiert. Für den zweiten Typ haben
wir noch einen Freiheitsgrad, die Addition einer Konstante. Diese wollen wir
festlegen, derart daß die Dualitätsrelationen erfüllt sind. Sei A′n eine Funktion
die (5-29) erfüllt. Ich setze für g ≥ 2

An = A′n −
1

2πi

∮
Cτ

A′n · ω0
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und für g = 1

A0 = A′0 −
1
2

1
2πi

∮
Cτ

A′0 ·A′0 dz .

Damit gilt weiterhin für alle n ord P1(An) = n− 1. Die Dualitätsrelation

1
2πi

∮
Cτ

Anω1−m = δn,m (5-30)

ist nach obigem sicherlich erfüllt, falls weder n noch 1 − m etwas mit den
entsprechenden Ausnahmewerten zu tun haben. Nach den allgemeinen Berech-
nungen ist nur n ≤ m− 1 zu untersuchen und in diesem Bereich zu zeigen daß
(5-30) Null wird. Hierbei sei Cτ ein Kreis um Q1. Es genügt zu zeigen, daß
ord Q1(Anω1−m) ≥ 0. Sei zuerst n 6= 1 und (1 − m) 6= 0. Für die Ordun-
gen berechnet sich (m− n)− 2,m− n und (m− n)− 1 aufgeteilt in die Fälle:
n ist Ausnahmefall, 1 − m ist Ausnahmefall und beide sind Ausnahmefälle.
Im Bereich n − m ≤ −1 könnte nur der erste Schwierigkeiten machen. Dies
kann aber nur in der Kombination 1−m = −n auftreten. Dann ist aber auch
1−m ein Ausnahmefall, d.h. die 3.te Formel ist zuständig. Somit treten keine
Schwierigkeiten auf. Nun zu den restlichen Fällen.

ord Q1(A1ω1−m) = ord Q1(ω1−m) ≥ a ∈ {g − 2 +m, g − 1 +m}

(nur für m ≥ 2). In diesem Bereich sind aber alle Ordungen positiv.

ord Q1(Anω0) = a ∈ {−g − n,−g − n− 1}

(nur n ≤ −1). Somit treten negative Ordnungen nur im Bereich −g < n < 0
auf . (Beachte für n = −g ist das 1.te Element der Wertemenge zuständig.)
In diesem Bereich können wir aber das Kurvenintegral direkt ausrechnen. Für
g ≥ 2:

1
2πi

∮
Cτ

Anω0 =
1

2πi

∮
Cτ

A′nω0 −
(

1
2πi

∮
Cτ

A′nω0

)
· 1
2πi

∮
Cτ

ω0 = 0,

da
1

2πi

∮
Cτ

ω0 =
1

2πi

∮
Cτ

A1ω0 = 1

gilt. Für g = 1 liegt nur n = 0 im kritischen Bereich. Es ist allerdings auch
ω0 = A0 dz. Ich setze

c =
1

2πi

∮
Cτ

A′0 ·A′0 dz
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und erhalte

1
2πi

∮
Cτ

A0A0 dz =
1

2πi

∮
Cτ

(A′0 −
c

2
)2 dz =

1
2πi

∮
Cτ

A′0
2
dz − c 1

2πi

∮
Cτ

A′0 dz +
c2

4
1

2πi

∮
Cτ

dz =

c− c · 1 + 0 = 0 .

Damit ist die Dualitätsrelation (5-30) erfüllt. Die Erzeugendeneigenschaft ist
genauso beweisbar wie im Fall λ 6= 0, 1. Man wähle n bei der Definition von
V (n) (5-27) nur entsprechend groß, so daß sich keine Spezialfälle aufgrund
der modifizierten Ordnungen bei den Qi ∈ O ergeben (sind nur endlich viele
Ausnahmen). Es bleibt die Strukturgleichung (5-9). Hat weder der Index m

des Elementes fm(λ) (noch der Index n des Elementes en im Falle g = 1)
noch der Bereich n + m − 2 bis n + m − 2 + 3g etwas mit den modifizierten
Basiselementen zu tun, so gilt der Struktursatz wie bewiesen. Anderenfalls
ergeben sich bei gewissen Kombinationen von n und m Änderungen an der
Obergrenze. D.h. die Konstante 3g−2 muß entsprechend vergrößert werden um
eine globale Konstante L zu erhalten. Mit den obigen Berechnungsvorschriften
ist es ohne Probleme möglich durch entsprechende Fallunterscheidungen die
jeweilige Konstante für n und m zu berechnen. Dies wurde z.Bsp. in [KN1]
gemacht.

Sei nun k ≥ 2. Auch hier nehme ich als ωn,p, bzw. An,p genau die Elemente
wie im Falle λ 6= 0, 1, außer in den Fällen, in denen dies zu Konflikten nach
§ 3. führen würde. In diesen Fällen sind diese gegeben durch die folgenden
Vorschriften.

λ = 1, n = 0, g ≥ 2, k ≥ 2

ord Pi(ω0,p) = −δi,p, Pi ∈ I,
ord Q1(ω0,p) = −1,

ord Qi(ω0,p) = 0, Qi ∈ O \ {Q1, Ql}
ord Ql

(ω0,p) = g .

(5-31)

λ = 1, n = 1, g ≥ 2, k = 2 .

ord Pi(ω1,p) = 1− δi,p, i = 1, 2

ord Q1(ω1,p) = 0,

ord Q2(ω1,p) = g − 2 .

(5-32)
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Durch die Normierungsvorschrift (5-3) sind die ωn,p eindeutig fixiert.

λ = 0, n = 0, g ≥ 1, k ≥ 2 .

Hier wähle ich zuerst beliebige A′0,p welche

ord Pi
(A′0,p) = −δi,p, Pi ∈ I,

ord Qi(A
′
0,p) = 0, Qi ∈ O \ {Ql},

ord Ql
(A′0,p) = −g .

(5-33)

und die Normierungsbedingung (5-3) erfüllen. Damit sind diese aber noch nicht
eindeutig fixiert. Wir berechnen zuerst

γp,r :=


1

2πi

∮
Cτ

A′0,pω0,r , g ≥ 2

1
2

1
2πi

∮
Cτ

A′0,pA
′
0,r dz , g = 1

und setzen

A0,p := A′0,p −
k∑
r=1

γp,rA1,r . (5-34)

Mit diesen derart modifizierten Elementen ist die Dualitätsrelation wieder ein-
deutig erfüllt. Dies kann man direkt Nachrechnen. Da ich aber in § 5.(e)
eine Ersetzungsvorschrift definiere, die obiges gerade als Spezialfall enthält,
möchte ich stattdessen auf diesen Abschnitt verweisen. Der Beweis der Erzeu-
gendeneigenschaft verläuft wie oben. Auch für die Strukturgleichung (und eine
eventuelle Berechnung von L) gilt dasselbe wie für N = 2 gesagt.
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(c) Beweis im Fall kkk >>> lll

Sei k > l. Ich setze a = (k − l) + 1 > 1. In diesem Abschnitt betrachte
ich nur g ≥ 2, λ 6= 0, 1 oder g = 0. Bei den anderen Werten sind endlich viele
Definitionen zu modifizieren. Die entsprechende Vorschrift gebe ich in § 5.(e).
Sei fn,p(λ) das eindeutig fixierte Element in Fλ(A) mit

ord Pi(fn,p(λ)) = n− δi,p, Pi ∈ I,
ord Qi

(fn,p(λ)) = −n, Qi ∈ O \ {Ql},
ord Ql

(fn,p(λ)) = −a · n+M(λ) + 1

(5-35)

welches die Normierungsvorschrift (5-3) erfüllt. Für

ω = fn,p(λ) · f1−m,r(1− λ) (5-36)

berechne ich die Ordungen

ord Pi(ω) = (n−m) + 1− δi,r − δi,p, Pi ∈ I
ord Qi

(ω) = −(n−m)− 1, Qi ∈ O \ {Ql}
ord Ql

(ω) = −a(n−m+ 1) .

Für n ≥ m sind die Dualitätsrelationen richtig, da hier der Beweis von § 5
(b) auch zutrifft. Es bleibt n − m ≤ −1 und die Untersuchung an den
Punkten Qi ∈ O. Für diese Punkte und in diesem Bereich sind jedoch alle
Ordnungen positiv. Somit verschwinden alle Kurvenintegralem, d.h. die Du-
alitätsrelationen sind gültig. Um die Erzeugendeneigenschaften zu sehen führen
wir wiederum

V (n) := H0(X,λ ·K +D(n)) (5-37)

mit

D(n) :=
k∑
i=1

(n+ 1)Pi +
l−1∑
i=1

nQi + (a · n− 1−M(λ)) ·Ql

ein. Genau wie in § 5 (b) berechnet sich auch hier

dimV (n) = 1 + k(n+ 1) + (l − 1)n+ an− 1 = k(2n+ 1) .

Wiederum entspricht diese Dimension der Anzahl fm,p(λ) die in V (n) liegen.
Und mit demselben Argument wie oben erhalten wir, daß diese ein Basis von
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Fλ(A) bilden. Zum Beweis der Strukturgleichung und Berechnung der Kon-
stante verfährt man wie oben (5-28). Mit den Bezeichnungen dort gilt

ord Qi
(ω) ≥ −(n+m+ 2) + h, Qi ∈ O \ {Ql}

ord Ql
(ω) ≥ −a(n+m− h)− 3g + 2− a .

(5-38)

Für l = 1 gilt somit hmax = n+m+ 1 + [ 3g−3
a ] und für l ≥ 2

hmax = max(n+m+ 1 + [
3g − 3
a

], n+m+ 1) .

[x] bezeichne die größte ganze Zahl ≤ x. Für die Konstante ergeben sich die
folgenden Werte

L =

{ 1 , g = 0, l ≥ 2

1 + [
3g − 3
a

] , sonst
(5-39)

Dies zeigt für diese λ das Theorem 5.1. Der Fall k = l und k > l hätte
zusammengefaßt werden können (a = 1!).

(d) Beweis im Fall kkk <<< lll

Auch hier betrachte ich in diesem Abschnitt nur die generischen Werte, d.h.
g ≥ 2 und λ 6= 0, 1 oder g = 0. Ich setze

b = (l − k) + 1 > 1 (5-40)

und führe die Restklassen εn, εn ∈ ZZ ein, mit

εn ≡ n mod b, εn ∈ {0, 1, . . . , b− 1}
εn ≡ n mod b, εn ∈ {−b+ 1, . . . ,−1, 0}

(5-41)

Das Element fn,p(λ) für n ∈ ZZ und p = 1, . . . , k ist eindeutig fixiert durch die
Forderungen

ord Pi(fn,p(λ)) = n− δi,p, Pi ∈ I,
ord Qi(fn,p(λ)) = −n, i = 1, . . . , k − 1 ,

(5-42)
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und für n ≥ 0 den weiteren Forderungen

ord Qi(fn,p(λ)) =
1
b
(−n+ εn) i = k, . . . , k + |εn| − 1

ord Qi
(fn,p(λ)) =

1
b
(−n+ εn) i = k + |εn|, . . . , l − 1

ord Ql
(fn,p(λ)) =

1
b
(−n+ εn) +M(λ) + 1 .

(5-43)

und der Normierungsbedingung (5-3). Für n < 0 werden gerade die Rollen
von εn und εn vertauscht in (5-43).

Wir berechnen für n ≥ 0∑
P∈A

ord P (fn,r) = kn− 1− (k − 1)n+
1
b
(−n+ εn)|εn|+

1
b
(−n+ εn)(b− |εn|)

+M(λ) + 1 = M(λ) +
1
b
(εn|εn| − εn|εn|) + εn .

Für n ≡ 0 mod b ergibt sich sofort M(λ) als Summe der Ordnungen. Für
n 6≡ 0 mod b berechnet sich der zusätzliche Term zu

1
b
(εn|εn| − (εn − b)|εn|) + εn = |εn|+ εn = 0 .

Also haben wir auch hier M(λ) als Summe der Ordungen. Dasselbe Ergebnis
erhalten wir auch für n < 0. Damit ist das Element aufgrund Prop. 3.2
eindeutig fixiert.

Proposition 5.5. Die Dualitätsrelationen (5-6) sind erfüllt.

Beweis. Sei w = fn,p(λ) · fm,r(1 − λ) . Der Fall n + m > 0 wurde schon
im Beweis in § 5.(b) erledigt. Es bleibt (n + m) ≤ 0 zu untersuchen und
zu zeigen, daß alle Residuen an den Punkten Qi ∈ O verschwinden. An den
Punkten Qi aus (5-42) liegt die Situation wie für k = l vor, d.h. diese machen
keine Probleme. Es sind also nur die Qi aus (5-43) zu untersuchen.
Fall 1: n,m ≤ 0: Klar ist, daß die kleinste Ordnung für w

1
b

(
− (n+m) + εn + εm

)
(5-44)

beträgt. Nun gilt aber n ≤ εn und m ≤ εn, somit ist (5-44) ≥ 0.
Fall 2: O.B.d.A. sei n > 0, also m < 0. Ich betrachte zuerst die Kombination

v :=
1
b

(
− (n+m) + εn + εm

)
. (5-45)
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Dies ist eine ganze Zahl. Es ist

1
b
(−(n+m)) ≥ 0 und

1
b
(εn + εm) > −1 .

Somit ist v > −1, also v ≥ 0. Dasselbe gilt auch für die Kombination (εn+ εm)
und (εn + εm). Es bleibt

v :=
1
b

(
− (n+m) + εn + εm

)
. (5-46)

In dieser Kombination könnte in der Tat v < 0 sein. Allerdings tritt sie nicht
immer auf. Ist n ≡ 0 mod b oder m ≡ 0 mod b, so ist (εn + εm)/b > −1 ,
also treten in diesem Fall keine Probleme auf. Sei also im folgenden keine der
Kongruenzen erfüllt. Die Kombination tritt dann nur auf falls εm > |εn| ist.
In der Definition hatte ich nämlich festgelegt, daß die ersten |εn| Punkte Qi im
uns interessierenden Bereich für fn,p(λ) als Zusatzterm εn haben sollen (n > 0).
Für fm,r(1−λ) haben die ersten εm Punkte den Zusatzterm εm (m < 0). Damit
(5-46) auftritt, muß gelten εm = b+ εm > |εn|, d.h. εm + εn > −b. Damit gilt
(εm + εn)/b > −1 und wir erhalten ebenso v ≥ 0. �

Proposition 5.6. Die angegebenen Elemente sind erzeugend.

Beweis. Dies zeige ich analog zu den anderen Fällen.
Sei n ∈ N mit n ≡ 0 mod b und

V (n) := H0(X,λ ·K +D(n))

mit

D(n) :=
k∑
i=1

(n+ 1)Pi +
k−1∑
i=1

nQi +
l−1∑
i=k

n

b
Qi + (

n

b
− 1−M(λ)) ·Qk .

Wir berechnen auch hier

dimV (n) = 1 + k(n+ 1) + (k − 1)n+ (l − k + 1)
n

b
− 1 = k(2n+ 1) .

Mit derselben Schlußweise wie in § 5.(b) sieht man, daß die fm,p eine Basis von
Fλ(A) bilden. �

Zum Beweis der Strukturgleichung und zur Berechnung der Konstante L
verfährt man wie in den anderen Fällen. Wir benötigen
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(Bezeichnung wie bei (5-28))

ord Qi
(w) ≥ −(n+m+ 2) + h, i = 1, . . . , k − 1

ord Qi
(w) ≥ 1

b

(
− (n+m) + h+ εn

∗ + εm
∗ + ε1−h

∗ − 1
)
− 1, i = k, . . . , l − 1

ord Ql
(w) ≥ 1

b

(
− (n+m) + h+ εn

∗ + εm
∗ + ε1−h

∗ − 1
)
− 3g + 2 .

Hierbei bezeichne εn∗ entweder εn oder εn, usw. . hmax kann man bei vorge-
gebenem n und m exakt berechnen, indem man die obigen Ordnungen gleich
−1 setzt und h aus den 3 Gleichungen bestimmt. hmax ist dann das Maximum
dieser 3 Werte (bzw. 2 falls k = 1 ist). Da wir uns nur für den “schlechtesten”
Fall interessieren, nehmen wir

εn
∗ = εm

∗ = ε1−h
∗ = −b+ 1

an und berechnen hi, i = 1, 2, 3 wie angegeben. Dies ergibt

h1 = (n+m+ 1), h2 = (n+m− 2) + 3b, h3 = (n+m− 2) + 3gb .

Da allerdings b ≥ 1 ist, gilt immer h2 ≥ h1 . Die Konstante L berechnet sich
zu

L =
{ −2 + 3b, g = 0
−2 + 3gb, g ≥ 1 .

(5-47)

Damit ist alles gezeigt.

(e) Die Ausnahmedefinitionen

In den Ausnahmefällen g ≥ 2, λ 6= 0, 1, bzw. g = 1, λ ∈ ZZ müssen auf-
grund der Ergebnisse aus § 3.(c) endlich viele der Basiselemente modifiziert
werden. Hierzu seien zuerst die Ordnungen, nach dem Schema wie in § 5.(b)–
(d) gegeben, hingeschrieben. Diese Vorgaben haben ebenfalls in diesem Fall
Gültigkeit, falls nicht durch die folgende Vorschriften, bzw. Operationen Än-
derungen vorgenommen werden. Diese Operationen ändern nicht die Ordnung
an den Punkten Pi ∈ I. Die Vorschriften lauten wie folgt: Sei zuerst λ = 1,
d.h. wir wollen ωn,p fixieren.
(1) Tritt nur eine negative Ordnung auf und diese sei −1 an einem Punkt
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Pi ∈ I, so ist notwendigerweise n = 0. Abhängig von l = #O haben wir die
Alternativen:
(1.a) Ist l > 1, so ersetzen wir ord Q1 = 0 durch ord Q1 = −1 und erhöhen die
Ordnung bei Ql um 1.
(1.b) Ist l = 1, so setzen wir die Ordnung bei Ql auf −1 und nehmen noch die
Bedingung “Realteil aller Perioden = 0” zur Fixierung.
(2) Tritt nur eine negative Ordnung auf und diese sei −1 an irgendeinem der
Punkte Qi ∈ O, so ersetzen wir diese durch die Ordnung 0.
(3) Sind alle Ordnungen ≥ 0, so erhöhen wir die Ordnung bei Ql um 1.
Für λ = 0, d.h. Am,r haben wir die Vorschriften:
(4) Sind alle Ordnungen = 0, nur die Ordnung bei Ql beträgt −g, so erset-
zen wir dieses Element durch die Konstante 1. Diese Möglickeit kann nur bei
m = 1 und k = 1 auftreten. Insbesondere wird in diesem Fall die Ordnung bei
Ql ebenfalls erhöht.
(5) Es seien alle Ordnungen ≤ 0 und es sei nicht die Bedingung unter (4) erfüllt.
Insbesondere muß dann auch m ≤ 0 gelten. In diesem Fall erniedrigen wir die
Ordnung bei Ql um 1.

Da die Summen der Ausgangsordnungen durch M(λ) festgeschrieben sind,
folgt daß jeweils nur endlich viele Modifikationen vorzunehmen sind. Zu modi-
fizieren sind immer die Elemente ω0,p und A0,r. Je nach den Parametern k und
l auch noch weitere. Durch diese Modifikation habe ich erreicht, daß die ωn,p
eindeutig und die Am,r bis auf Addition einer Konstanten eindeutig fixiert sind
(jeweils immer bis auf Multiplikation mit einem Skalar). Offensichtlich sind
diese wieder linear unabhängig falls die Dualitätsrelation (5-8) erfüllt bleibt.
Wählt man im Beweis der Erzeugendeneigenschaft die Zahl n in (5-27) groß
genug, so gilt für diese Ausnahmewerte für λ der Beweis genau wie für die
generischen λ. Die Obergrenze L in der Strukturgleichung (5-9) kann ebenfalls
nach dem allgemeinen Schema berechnet werden, indem man für die Ausnah-
mewerte von m (und von n = 1 im Fall g = 1) die modifizierten lokalen Formen
ansetzt und mit den Dualitätsrelationen die obere Schranke berechnet. (Die
untere ist ja unabhängig von k, l und λ). Da nur endlich viele Ausnahmewerte
vorkommen, kann man das Maximum dieser Möglichkeiten und des generischen
L, wie in es in § 5.(b)–(d) angegeben wurde, bestimmen. Dieses gibt dann die
Schranke L in (5-9).

Es bleiben somit lediglich die Dualitätsrelationen zu verifizieren. Die un-
veränderten Elemente erfüllen natürlich auch hier die Dualitätsrelation (5-8).
Ich möchte nun zeigen, daß für die modifizierten Elemente diese ebenfalls gilt.
Hierzu werden allerdings weitere Modifikationen bei den Am,p notwendig sein.
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Ich betrachte zuerst λ = 1. Sei w = ωn,p ·Am,r . Da bei Pi nichts verändert
wurde, gelten die Aussagen für m > −n. Damit ist zu zeigen, daß

1
2πi

∮
Cτ

w = 0 (5-48)

auch in den restlichen Fällen gilt. Sei ωn,p ein modifiziertes Element und
erfülle Am,r das Standardschema der Ordnungen. Die Operationen (2) und
(3) erhöhen lediglich die Ordnung an den Punkten Qi, d.h. (5-48) gilt auch.
Die Operation (1.a) ist nur notwendig für n = 0, und die Ordnung macht
deshalb nur Schwierigkeiten, falls ord Q1(Am,r) ≤ 0 gilt. Da nur m ≤ 0 zu
untersuchen ist, bedeutet dies m = 0. Somit gehört Am,r zu den Ausnahmew-
erten. Die Operation (1.b) entspricht l = 1. Das Schema (−1, 0, . . . |g − 1)
wurde ersetzt durch (−1, 0, . . . | − 1) . Das Standardschema der Am,r lautet
(m − 1,m, . . . | − k · m − g + 1) . Somit ist ord Ql

(w) = −k · m − g . Es
interessiert nur m ≤ 0. Es bestehen nur Schwierigkeiten falls (−k ·m− g) < 0
gilt. In diesem Fall hat das Schema von Am,r jedoch nur Ordnungen ≤ 0. D.h.
diese Werte sind zu modifizieren, bleiben somit außer Betracht.

Seien nun die modifizierten Am,r gegeben. Wir berechnen die Dualität
gegenüber den ωn,p, n 6= 0. Die Operation (4) macht keine Probleme. Bei
der Operation (5) wird die Ordnung bei Ql um 1 erniedrigt. Es gilt m ≤ 0 und
es genügt n ≤ −m zu untersuchen. Für n < −m wird die Ordnungserniedri-
gung durch die Ordnung von ωn,p kompensiert. Es bleibt n = −m. Da bei den
Am,r jedoch alle Ordnungen ≤ 0 sind, sind für bei den wn,p alle Ordnungen ≥ 0
(beachte n 6= 0). Somit werden die Ordnungen von wn,p bei Ql um 1 erhöht.
Somit kompensieren sich die Korrekturen.

Damit sind alle Relationen erfüllt bis auf die Paarung

1
2πi

∮
Cτ

ω0,p ·Am,r = 0 (5-49)

für die Ausnahmeelemente Am,r mit m ≤ 0. Sei g ≥ 2. Zuerst wähle ich A′m,r
wie durch die Ordnungen gegeben. Ich setze für die Ausnahmewerte

γmr,p :=
1

2πi

∮
Cτ

A′m,rω0,p (5-50)

und

Am,r := A′m,r −
k∑
s=1

γmr,sA1,s . (5-51)
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Per Konstruktion gilt sodann auch für m ≤ 0

1
2πi

∮
Cτ

Am,r · ω0,p = 0 .

Die anderen Dualitätsrelationen werden nicht gestört.

Für g = 1 müssen wir ein wenig anders vorgehen, da die ω mit den A

zusammenfallen. Wir setzen zuerst (siehe auch § 5.(b))

γ0
r,p :=

1
2

1
2πi

∮
Cτ

A′0,r ·A′0,p dz = γ0
p,r (5-52)

und

A0,r := A′0,r −
k∑
s=1

γ0
r,sA1,s . (5-53)

Damit ist ω0,p = A0,p dz fixiert. Gibt es noch weitere Ausnahmewerte m,
so setzen wir für diese γmp,r wie in (5-50) und machen ebenfalls die Korrektur
(5-51). Dies zeigt die entsprechende Dualität.

Für gegebenes k und l sind die Ordnungen der modifizierten Elemente ohne
Probleme angebbar. Da ich im weiteren jedoch nicht an deren konkreter Form
interessiert bin, verzichte ich hier darauf. Die in § 5.(b) angegebenen Elemente
sind Beispiele dafür.
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Zum Abschluß des Paragraphens steht noch aus:

Beweis der Prop. 5.1. Sei g = 0 und (vorerst) k ≥ l. Ich benutze die Darstel-
lung der Basisvektoren gegeben in § 4.(c). Die Parametrisierung sei so gewählt,
daß der Punkt Ql dem Wert z =∞, die Punkte Pi ∈ I z = ai und die restlichen
Punkte Qi ∈ O z = bi entsprechen. Die Formen werden mit ihren Funktionen
in der Standardkoordinate z identifiziert. Die Angabe des λ−Wertes erübrigt
sich, da dieser nur in die Ordnung am Punkt Ql eingeht. z identifiziert. Die
Angabe des λ−Wertes erübrigt sich. Der Koeffizient (5-16) berechnet sich we-
gen der Dualität als

C
(m+d,s)
(n,p),(m,r) =

1
2πi

∮
Cτ

(en,p . fm,r) · f1−(m+d),s .

Die Entwicklung der relevanten Terme lautet

fm,r =
k∏
i=1

(z − ai)m−δi,r ·
l−1∏
i=1

(z − bi)−m .

Damit gilt

en,p . fm,r =

(
k∑
i=1

m− δi,p
z − ai

+
l−1∑
i=1

−m
z − bi

+ λ · ∂en,p
∂z

)
· fm,r

= (m · g(z) + h(z)) · fm,r

mit g(z) und h(z) meromorphe Funktionen, welche nicht von m abhängen.
Multiplizieren wir diesen Ausdruck mit f1−(m+d),s, so erhalten wir als Inte-
granden

(m · g(z) + h(z)) ·
k∏
i=1

(z − ai)1−d−δi,p−δi,r ·
l−1∏
i=1

(z − bi)d−1 . (5-54)

Die beiden letzten Faktoren hängen nicht vonm ab. Durch Integration erhalten
wir die Formel (5-16). Für k < l sind die entsprechenden Modifikationen an
den Punkten z = bi nach § 5.(d) vorzunehmen. Es zeigt sich, daß (5-54) in
Abhängigkeit von der Restklasse m mod b verschiedene Terme z − bi enthält.
Somit besteht genau die behauptete Abhängigkeit. �
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§ 6. Zentrale Erweiterungen der Algebren

(a) Die Krichever - Novikov Algebra

Ausgehend von KN (A) will ich in diesem Paragraphen zentrale Erweiterun-
gen

0 −→ C
ϕ−→ K̂N (A)

ψ−→ KN (A) −→ 0 (6-1)

studieren.Im nächsten Paragraphen werde ich versuchen die Aktion von KN (A)
auf Fλ(A) zu einer Aktion auf den semi-infiniten Formen von Fλ(A) zu trans-
ferieren. Es wird sich zeigen, daß dies nicht für KN (A) sondern nur für eine
zentrale Erweiterung K̂N (A) möglich ist.

Sei en,p ein Basiselement von KN (A) wie in § 5. bestimmt. Ich wähle einen
beliebigen Lift En,p dieses Elementes, d.h. es gelte ψ(En,p) = en,p . Dieser sei
für das folgende festgehalten. Desweiteren sei ein zentrales Element t = ϕ(a)
mit a ∈ C∗ in K̂N (A) fixiert.

Proposition 6.1. K̂N (A) ist erzeugt durch die Basis

{ En,p | n ∈ ZZ , p = 1, . . . k } ∪ {t} .

Seine Liealgebrenstruktur ist gegeben durch die Strukturgleichungen

[En,p, t] = 0

[En,p, Em,r] =
n+m+L∑
h=n+m−2

k∑
s=1

C
(h,s)
(n,p),(m,r)(−1) · Eh,s + χ(en,p, em,r) · t .

(6-2)

Hierbei sind C
(...)
(...),(...)(−1) die Strukturkonstanten (5-9) von KN (A) und

χ : KN ×KN → C ist ein 2-Kozyklel.

Beweis. Die Basiseigenschaft ist klar aufgrund (6-1). Ebenso die 1.te Formel
der Strukturgleichungen. [En,p, Em,r] kann als Linearkombination

[En,p, Em,r] =
∑
h,s

D
(h,s)
(h,s),(m,r)Eh,s + F · t

geschrieben werden. Da allerdings ψ in (6-1) ein Homomorphismus von Lieal-
gebren ist, muß gelten

ψ([En,p, Em,r]) = [ψ(En,p), ψ(Em,r)] = [en,p, em,r] .
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Als Bild der Linearkombination ergibt sich∑
h,s

D
(h,s)
(n,p),(m,r)eh,s + F · 0 .

Der Vergleich beider Ausdrücke liefert, daß die Konstanten D(...)
(...),(...) gleich den

Strukturkonstanten von KN (A) sein müssen. F ist eine Konstante, die von
En,p und Em,r, bei festem Lift also nur von en,p und em,r, abhängt. Sie ändert
das Vorzeichen bei Vertauschung der Rolle dieser zwei Elemente. Wir benennen
sie mit χ(en,p, em,r). Sie kann zu einer bilinearen Abbildung

χ : KN (A)×KN (A)→ C

fortgesetzt werden, da wir wissen was auf der Basis geschieht. Da K̂N (A)
eine Liealgebra ist, kann man aus der Jacobi-Identität berechnen, daß die
Kozykelbedingungen

χ(f, g) = −χ(f, g) (6-3)

χ([f, g], h) + χ([g, h], f) + χ([h, f ], g) = 0 . (6-4)

erfüllt sein müssen (f, g, h ∈ KN (A)). �

Umgekehrt definiert jeder solcher Kozykel eine Liealgebrenstruktur auf dem
Vektorraum K̂N (A). Dies ergibt sich mit Hilfe der Liealgebrenkohomologie,
siehe etwa [Fu1] oder ein sonstiges Standardwerk der homologischen Algebra.
Obwohl dies wohlbekannte Tatsachen sind, möchte ich wegen ihrer Wichtigkeit
im folgenden, etwas ausführlicher darauf eingehen. Die Klassen zentraler Er-
weiterungen einer Liealgebra G sind in natürlicher Korrespondenz mit der 2.
Kohomologiegruppe H2(G,C) . Zur Definition dieser Gruppen kann man fol-
gende Konstruktion benutzen [Fu1]. SeiM ein Modul über G. Es sei Cq(G,M)
der Vektorraum der antisymmetrischen q−Linearformen mit Werten in M . Der
Korandoperator

d = dq : Cq(G,M)→ Cq+1(G,M)

ist definiert wie folgt. Sei c ∈ Cq(G,M), so setzen wir

dqc(g1, g2, . . . , gq+1) =∑
1≤s<t≤q+1

(−1)s+t−1c([gs, gt], g1, . . . , ǧs, . . . , ǧt, . . . , gq+1)+

+
∑

1≤s≤q+1

(−1)sgs · c(g1, . . . , ǧs, . . . , gq+1) . (6-5)
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Hierbei sind g1, g2, . . . , gq+1 ∈ G und ǧ bezeichne wie üblich die Auslassung
des Elementes g in der Auflistung. Direktes Nachrechnen liefert d ◦ d = 0. Die
q−te Kohomologiegruppe mit Werten in M ist definiert als

Hq(G,M) =
Kern dq

Bild dq−1
,

mit der Verabredung

C0(G,M) = M und dq = 0, q < 0 .

Die Elemente des Kernes heißen auch Kozykel, die Elemente des Bildes Koränder.
Uns interessiert hier nur M = C aufgefaßt als trivialer Modul, d.h. G · C = 0.
Somit verschwindet die 2. Summe in (6-5). Schreiben wir (6-5) für q = 2 aus,
so erhalten wir

d2c(f, g, h) = c([f, g], h)− c([f, h], g) + c([g, h], f) .

Aus d2c(f, g, h) = 0 folgt mit der Antisymmetrie (6-4). Ist ein 2-Kozykel ein
Korand, so läßt er sich schreiben als

c(f, g) = κ([f, g]) (6-6)

mit einer Linearform κ auf G. Mit Hilfe eines 2−Kozykels kann man die
zugehörige zentrale Erweiterung Ĝ in folgender Weise konstruieren [Fu1].
Als Vektorraum ist Ĝ die direkte Summe C ⊕ G . Das Lieprodukt ist gegeben
durch

[(µ, g), (ν, f)] = (c(g, f), [g, f ]) .

Ich wähle die (lineare) Splittingabbildung

Φ : G → Ĝ, f 7→ Φ(f) = (0, f)

und bezeichne mit t das Element (1, 0). Damit kann obiges auch geschrieben
werden als

[Φ(g),Φ(f)] = Φ([g, f ]) + c(g, f) · t und [Φ(g), t] = 0 ,

womit wir bei der Darstellung (6-2) wären. Die Wahl einer anderen Splitting-
abbildung Φ′ , d.h. die Wahl eines anderen Liftes für die Elemente aus G,
entspricht der Wahl einer Linearform φ auf G durch

Φ′(g) = (φ(g), g), bzw. Φ′(g) = Φ(g) + φ(g) · t .
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Ich berechne

[Φ′(g),Φ′(f)] = [Φ(g),Φ(f)] = Φ([g, f ]) + c(g, f) · t =

Φ′([g, f ])− φ([g, f ]) · t+ c(g, f) · t = Φ′([g, f ]) + c′(g, f) · t .

Es gilt somit
c′(g, f) = c(g, f) + d1(−φ)(g, f),

d.h. unterschiedliche Lifts bestimmen kohomologe Kozykel. Durch die Umkehrung
der obigen Vorgehensweise kann man die kohomologe Abänderung eines Kozykels
auch als Wahl eines anderen Liftes beschreiben.

Um Kozykeln für die Algebra KN (A) zu erhalten, verallgemeinere ich die
Methode in [KN2].

Definition. Sei (Uα, za) eine Überdeckung von X durch Koordinatenumgebun-
gen und seien zβ = fαβ(zα) die Übergangsfunktionen für nichtleeres Uα ∩Uβ.
Ein holomorpher (meromorpher) projektiver Zusammenhang ist eine Kollektion
lokaler holomorpher (meromorpher) Funktionen Rα(za) die auf nichtleerem
Uα ∩ Uβ in folgender Weise in Beziehung stehen

Rβ(zβ)
(
∂zβ
∂zα

)2

= Rα(zα) + S(fαβ) . (6-7)

Hierbei ist S(h) die Schwartzsche Ableitung. Sie ist definiert als

S(h) =
h′′′

h′
− 3

2

(
h′′

h′

)2

. (6-8)

(′ bezeichne die Ableitung nach der lokalen Variablen zα.)

Nach [HaS][Gu] existiert immer ein holomorpher projektiver Zusammenhang
R0. Im Fall g = 0 und g = 1 und bei Wahl der Standardkoordinaten z, 1/z bzw.
z−a kann R0 = 0 gewählt werden. Für diese Kartenwechsel gilt nämlich S(h) =
0. Dies ist im Fall g = 1 klar und kann im Fall g = 0 explizit nachgerechnet
werden. (6-7) besagt, daß die Differenz zweier projektiver Zusammenhänge ein
Differential vom Gewicht 2 (ein quadratisches Differential) ist. Somit erhält
man alle Zusammenhänge, indem man zu R0 (holomorphe oder meromorphe)
quadratische Differentiale hinzuaddiert.
Seien nun e und h Vektorfelder die lokal dargestellt werden als

e|(z) = f(z)
∂

∂z
, h|(z) = t(z)

∂

∂z



82

Proposition 6.2.

χ̄(e, h) :=
(

1
2
(f ′′′t− ft′′′)−R · (f ′t− ft′)

)
dz (6-9)

ist eine wohldefinierte (meromorphe) 1-form.

Beweis. Seien (Uα, zα) und (Uβ , zβ) Koordinatenumgebungen mit nichtleerem
Durchschnitt. Zu zeigen ist, daß (6-9), sowohl in zα als auch in zβ ausgedrückt,
dasselbe ergibt. Sei zβ = h(zα) der Koordinatenwechsel, fα und fβ , bzw. tα
und tβ die lokalen Repräsentanten der Vektorfelder in den lokalen Koordinaten.
Wir erhalten folgende Transformationsregeln

fβ(zα) =
∂h

∂zα
(zα) · fα(za) ,

entsprechend für tβ , weiter gilt

dzβ =
∂h

∂zα
(zα)dzα

Rβ(zα) =
(
∂h

∂zα
(zα)

)−2

(Rα(zα) + S(h)) .

Wir schreiben nun (6-9) in Bezug auf die Variable zβ und setzen die obigen
Größen ein. Hierzu müssen wir entsprechend oft die Kettenregel anwenden, da ′

die Ableitung nach zβ bedeutet. Nach längerer, aber unkomplizierter Rechnung
folgt die Behauptung. Hier sei nur ein Zwischenschritt notiert. f ′′′t− ft′′′ in
Bezug auf zβ , erhält nach Umrechnung in Bezug auf die Variable zα die Form

1
h′

(f ′′′t− t′′′f) +

(
2h′′′

(h′)2
− 3(h′′)2

(h′)3

)
(f ′t− t′f) . (6-10)

Hier bezeichne nun ′ die Ableitung nach zα. Der zweite Term wird genau durch
die Schwarzsche Ableitung kompensiert. �

Aus (6-10) sieht man auch sofort, daß der zu kompensierende Term ver-
schwindet, falls etwa gilt h′ = const, wie dies im Fall des Torus mit den Stan-
dardkoordinaten der Fall ist, bzw. falls allgemeiner gilt S(h) = 0. Wählt man
nur Koordinaten die S(h) erfüllen, so kommt man mit dem 1.ten Teil von (6-9)
aus, siehe [KN1].
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Proposition 6.3. Sei c ∈ C eine beliebige Konstante , C eine beliebige
nichtsinguläre (nicht notwendigerweise zusammenhängende) Kurve auf X, dann
definiert

χ(e, h) =
c

24πi

∮
C

χ̄(e, h) (6-11)

ein 2-Kozykel.

Beweis. Aus der Definition (6-9) von χ̄(e, h) ersieht man sofort, daß χ(.., ..)
eine antisymmetrische Biliniearform ist. Insbesondere gilt χ(e, h) = −χ(h, e),
also (6-3). Sei P ein Punkt im (nicht notwendigerweise zusammenhängenden)
Gebiet welches von C umschlossen wird. Ich identifiziere die Vektorfelder f, g, h
mit ihren lokalen Funktionen am Punkt P . Sei

ψ := χ̄([f, g], h) + χ̄([g, h], f) + χ̄([h, f ], g) . (6-12)

Ich zeige, daß res P (ψ) = 0 gilt. Damit ist das Kurvenintegral über ψ identisch
0, was (6-4) zeigt. Um res P (ψ) = 0 zu zeigen, zeige ich, daß sich ψ schrieben

läßt als ψ =
∂ϕ

∂z
dz mit einer lokalen meromorphen Funktion ϕ. Aus

ϕ(z) =
∞∑
n≥m

cnz
n =

−1∑
n≥m

cnz
n +

∞∑
n≥0

cnz
n

folgt

∂ϕ

∂z
(z) dz =

( −2∑
n≥m−1

cn+1(n+ 1)zn +
∞∑
n≥0

cn+1(n+ 1)zn
)
dz .

Also verschwindet das Residuum.
Aufgrund der Identifikationen Vektorfelder mit lokalen Funktionen gilt
[f, g] = fg′ − f ′g ( ∂∂z wird unterdrückt). Es ergibt sich somit

χ̄([f, g], h) =
1
2

[
(fg′ − f ′g)(3)h− h(3)(fg′ − f ′g)

]
−R · [(fg′′ − f ′′g)h+ (f ′g − g′f)h′] .

(6-13)

Die anderen Terme ergeben sich durch zyklische Vertauschung. Der Faktor bei
R verschwindet bei der Aufsummation über alle zyklischen Vertauschungen.
Übrig bleibt der erste Term F , wobei der Faktor 1

2 ohne Bedeutung ist. Es gilt

F = ((fg′ − f ′g)h)(3) − 3 ((fg′ − f ′g)′h′)′ − 2
(
h(3)(fg′ − f ′g)

)
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wie man durch direktes Ausrechnen verifiziert. Da die ersten beiden Terme
Ableitungen sind, verschwindet deren Residuen. Den letzten Term forme ich
um

h(3)(fg′ − f ′g) =
(
h(2)(fg′ − gf ′)

)′
− h(2)(fg′ − gf ′)′ .

Auch hier ist der erste Term eine Ableitung, trägt also nichts zum Residuum
bei. Es bleibt nach Aufsummation über alle zyklischen Vertauschungen

h(2)(fg′ − gf ′)′ + f (2)(gh′ − hg′)′ + g(2)(hf ′ − fh′)′ = 0 . �

Eigentlich müßte man sowohl die Konstante c, als auch den projektiven
Zusammenhang R in die Notation aufnehmen, da der Kozykel von beiden
anhängt. Die Abhängigkeit von c spielt keine Rolle. Sie bedeutet lediglich
einen Automorphismus des zentralen Anteiles. Deshalb wird er im folgenden
immer zu 1 normiert werden. Die Abhängigkeit von R ist allerdings auch prob-
lemlos wegen

Proposition 6.4. Seien χR und χR∗ Kozykel gebildet nach der Vorschrift
(6-9) und (6-11) mit derselben Konstante c und den meromorphen projektiven
Zusammenhängen R, bzw. R∗, dann sind beide kohomolog.

Beweis. Sei S = R − R∗ , dann ist Ω| = S(z)dz ein globales meromorphes
quadratisches Differential. Mit den Notationen in obigem Beweis gilt

χR(f, g)− χR∗(f, g) =
c

24πi

∮
C

S(fg′ − f ′g)dz =
c

24πi

∮
C

Ω · ([f, g]) .

Die Abbildung

γ : KN (A)→ C, e→ γ(e) =
c

24πi

∮
C

Ω · e

definiert eine Linearform auf KN (A). Somit gilt

χR(f, g)− χR∗(f, g) = γ([f, g])

und die beiden Kozykel sind nach (6-6) kohomolog. �

Im folgenden interessieren uns speziell diejenigen Kozykel, die durch Inte-
gration über die Levellinien Cτ zustande kommen.
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Proposition 6.5. Sei die zentrale Erweiterung K̂N (A) gegeben durch den
Kozykel

χ(e, h) =
c

24πi

∮
Cτ

(
1
2
(f ′′′t− ft′′′)−R · (f ′t− ft′)

)
dz (6-14)

mit einem meromorphen projektiven Zusammenhang R, der holomorph auf X \
A ist und höchstens Pole 2. Ordnung an den Punkten von A hat. Dann gilt

χ(en,p, em,r) = 0 für (n+m) ≥ 5 oder (n+m) ≤ T ≤ 3 . (6-15)

Hierbei besitzt die Konstante T ∈ ZZ für g 6= 1 die in der Tabelle aufgeführten
Werte (a = (k − l) + 1, b = (l − k) + 1)

k = l k = 1 g beliebig T = −6g + 3
k > 1 g = 0 T = −3

g > 0 T = −6g + 3

k > l l = 1 g beliebig T = [
−6g + 3

a
]

l > 1 0 ≤ g ≤ 1
2 (a+ 1) T = −3

g ≥ 1
2 (a+ 1) T = −6g + 3

k < l g = 0 T = −5b+ 2
g > 0 T = −6gb+ b+ 2 .

Für g = 1 gilt diese Schranke für generische n und m.

Beweis. Sei en,p lokal repräsentiert durch die meromorphe Funktion f und em,r
durch die meromorphe Funktion t. Ich betrachte zuerst die Ordnungen an den
Punkten Pi ∈ I.

ord Pi(f) = n− δi,p, ord Pi(f
′) ≥ n− 1− δi,p, ord Pi(f

′′′) = n− 3− δi,p,

Analoge Ausdrücke erhalten wir auch für t. Unmittelbar aus der Definition
folgt

ord Pi(χ̄(en,p, em,r)) ≥
max(n+m− 3− δi,p − δi,r , n+m− 1− δi,p − δi,r + ord Pi

(R))

= n+m− 3− δi,p − δi,r .
(6-16)
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Ist n + m ≥ 5, so sind alle Ordnungen positiv, d.h. das Kurvenintegral über
Cτ verschwindet. Dies zeigt den ersten Teil von (6-15). Für den zweiten Teil
müssen wir die Abschätzungen an den Punkten Qi studieren. Die Berechnung
ist einfach aber es sind wiederum abhängig von k und l verschiedene Fälle zu
studieren. (Zur Definition von a, b, εn∗, εm∗ siehe § 5.) Es sei g 6= 1.
1.) ord Qi(f) = −n, ord Qi(t) = −m, dann gilt
ord Qi(χ̄(en,p, em,r) ≥ −n−m− 3
2.) ord Ql

(f) = −n− 3g + 3, ord Ql
(t) = −m− 3g + 3, dann gilt

ord Ql
(....) ≥ −n−m− 6g + 3

3.) ord Ql
(f) = −an− 3g + 3, ord Ql

(t) = −am− 3g + 3, dann gilt
ord Ql

(....) ≥ a(−n−m)− 6g + 3
4.) ord Qi(f) = 1

b (−n+ εn
∗), ord Qi(t) = 1

b (−m+ εm
∗), dann gilt

ord Qi
(....) ≥ 1

b (−n−m+ εn
∗ + εm

∗)− 3
5.) ord Ql

(f) = 1
b (−n+ εn

∗)− 3g + 3, ord Ql
(t) = 1

b (−m+ εm
∗)− 3g + 3

ord Ql
(....) ≥ 1

b (−n−m+ εn
∗ + εm

∗)− 6g + 3 .
Hierbei wurde überall benutzt daß ord Qi

(R) ≥ −2 ist. Ist n +m sehr stark
negativ, so sind alle diese Ordnungen positiv., d.h. das Kurvenintegral ver-
schwindet. Die genaue Schranke ist durch Einzelinspektion festzustellen. Ist
k = l = 1, so tritt nur Typ 2.) auf, also χ̄(en,p, em,r) = 0 für n+m ≤ −6g+3.
Für k = l > 1 tritt Typ 1.) und 2.) auf. Für das Verschwinden des Kurvenin-
tegrales muß n +m so klein gewählt werden, daß beide Ordnungen ≥ 0 sind.
Dies liefert genau die Ergebnisse in der Tabelle. Für k > l und l = 1 tritt 3.)
auf, falls l > 1 tritt 1.) und 3.) auf. Für k < l betrachten wir nur den schlecht-
esten Fall für εn∗ und εm

∗. Auf jeden Fall gilt jedoch εn
∗ + εm

∗ ≥ −2b + 2.
Für k = 1 ist 4.) und 5.) zu betrachten, für k > 1 zusätzlich 1.) (tatsächlich
spielt diese neue Möglichkeit keine Rolle). Für g = 1 gibt es noch endlich
viele Möglichkeiten für n und m, an denen Abweichungen von obigem Schema
auftreten. In diesem Fall sind diese einzeln zu untersuchen und für T das Max-
imum aus diesen endlich vielen Schranken und der obigen generischen Schranke
zu nehmen. An der Existenz einer solchen Schranke ändert sich nichts. �

Hätte ich statt R mit erlaubten Polen von Ordnung 2 an den Punkten von
A ein holomorphes R gefordert, so hätten sich die Grenzen in (6-15) nicht
geändert. In Anlehnung an [KN2] nenne ich einen beliebigen 2-Kozykel einen
lokalen Kozykel falls er der Bedingung (6-15) mit T = −2L− 3 +

[
2
k

]
genügt.

Durch Vergleich der Tabelle (5-17) mit den angegebenen T Werten in Prop. 6.5
sieht man sofort, daß (6-14) einen lokalen Kozykel definiert. Ich nenne eine
Kozykel lokal im weiteren Sinne, falls er den Bedingungen (6-15), nun allerdings
mit eventuell weiteren Schranken (anstatt 5, bzw. T ) genügt. Solche entste-



87

hen typischerweise bei Verwendung eines meromorphen projektiven Zusammen-
hanges mit Polen höherer als zweiter Ordnung an den Punkten aus A.

Es ist zu beachten, daß der Begriff “lokal” von der Aufspaltung A = I ∪ O
abhängt. Im folgenden möchte ich berechnen, wie der Kozykel an der oberen
Grenze des Bereiches, in dem er nicht verschwindet, aussieht.

Proposition 6.6. Sei χ ein Kozykel gegeben wie in (6-14) mit c = 1. Der
projektive Zusammenhang R habe in einer Umgebung der Punkte Pp ∈ I die
lokale Gestalt (αp ∈ C)

R|(zp) = αpz
−2
p + z−1

p (O(1)), (6-17)

dann gilt

χ(e2+i,p, e2−i,r) =
(

1
12

(i3 − i− 2αpi)
)
δp,r . (6-18)

Beweis. In diesem Fall ist n = 2− i und m = 2 + i, also n+m = 4. Wir sind
somit gerade an der oberen Schranke von Prop.6.4 des Bereiches an dem ein
nichtverschwindender Kozyklel möglich ist. Für p 6= r folgt aus den Ordnungs-
betrachtungen (6-16), daß diese ≥ 0 ist, d.h. der Kozykel verschwindet. Sei also
p = r. (6-16) zeigt in diesem Fall, daß eine negative Ordnung nur am Punkt
Pp auftritt, d.h. nur das Residuum dort kann zum Wert des Kurvenintegrales
beitragen. Es gilt

e2−i,p|(z) = z1−i
p (1 +O(zp))

∂

∂z

e2+i,p|(z) = z1+i
p (1 +O(zp))

∂

∂z
.

Damit berechnet sich

χ̄(e2−i,p, e2+i,p) =
1
2
((1− i)(−i)(−1− i)− (1 + i)(i)(−1 + i)

− 2αp[(1− i)− (1 + i)])z−1
p (1 +O(zp)) dz

= −(i3 − i− 2αpi)z−1
p (1 +O(zp)) dz .

Nach Integration erhalten wir Formel (6-18) . �

Selbstverständlich kann der Term −2αpi, der von den Polen des projektiven
Zusammenhanges herkommt, durch kohomologe Abänderung des Kozykels be-
seitigt werden. Diese Abänderung können wir auch über einen Basiswechsel
ausdrücken. Benutzen wir die Strukturgleichung (5-9), so erhalten wir

[E2−i,p, E2+i,p] = 2iE2,p +
∑
n≥3

∑
r

C ....En,r + χ(e2−i,p, e2+i,p) · t .
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Machen wir nun einen Basiswechsel, indem wir E′2,p = E2,p + 1
12αpt setzen, so

ändert sich auf der linken Seite nichts. Rechts steht

2iE′2,p +
∑
n≥3

∑
r

C ....En,r +
(
χ(e2−i,p, e2+i,p)−

2i
12
· αP

)
· t .

Als neuer Kozykel ergibt sich

χ(e2+i,p, e2−i,r) =
(

1
12

(i3 − i)
)
δp,r . (6-19)

Natürlich hätte ich noch −i “beseitigen” können. Bei der Virasoro Algebra
ist es allerdings üblich den Kozykel in dieser Form zu schreiben. Deshalb
habe ich mich auch hierzu entschieden. Der Grund dieser Normierung ist, daß
im Virasoro Fall der Kozykel auf der Unteralgebra der globalen holomorphen
Vektorfelder

〈e1, e2, e3〉 ∼= sl(2,C)

bereits identisch verschwindet und nicht erst nach kohomologer Abänderung.
(Nach den Sätzen von Whitehead [HiSt] muß er kohomologisch trivial sein.)

Für p 6= r kann der Kozykel χ(en,p, em,r) auch für n+m = 3 ausgerechnet
werden. Hierzu geht man entsprechend des Beweises von Prop.6.6 vor. Das
Residuum ist an den Punkten Pp und Pr zu bilden und zu addieren. Dies
ergibt

χ(en,p, e3−n,r) =
1
12
(
(n−1)(n−2)(2n−3)−2αp(n−2)−2αr(n−1)

)
. (6-20)

Der obige Basiswechsel beseitigt auch hier die Terme, welche von den Polen
des projektiven Zusammenhanges herkommen (siehe die Strukturkonstanten
(5-14)).

Proposition 6.7. Der Kozykel (6-14) definiert eine nichttriviale zentrale Er-
weiterung.

Beweis. Ich wähle je einen Punkt P aus I und einen PunktQ ausO. KN ({P,Q})
liegt als Unteralgebra inKN (A). Der Kozykel (6-14) ist genau der von Krichever
und Novikov angegebene, falls er auf diese Unteralgebra eingeschränkt wird.
Insbesondere ist er nach [KN2] eine nichttriviale Kohomologieklasse auf der
Unteralgebra und somit auf KN (A) selbst. �
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Vermutung 6.1. Jeder lokale (im weiteren Sinne) Kozykel von KN (A) läßt
sich nach kohomologer Abänderung wie in (6-14) mit einem passenden mero-
morphen Zusammenhang R schreiben. Insbesondere gibt es nur eine solche
Kohomologieklasse.

Im folgenden werde ich eine “Beweisskizze” für die Vermutung geben. Ich
verwende hierzu Methoden und Techniken welche für N = 2 in [KN1], [KN2]
benutzt wurden, um das entsprechende Resultat zu zeigen. Da ich nicht in
der Lage war, deren Gültigkeit verifizieren zu können, bzw. ich noch nicht die
Verallgemeinerungen der Techniken in allen Details ausgeführt habe, verwende
ich die Bezeichnung Vermutung. Darüberhinaus werden Methoden herange-
zogen, die den Bereich der Algebraischen Geometrie, bzw. Funktionentheorie
verlassen (Fourierentwicklung auf S1, Liealgebra der C∞-Vektorfelder auf S1).
Nach meiner Meinung wäre es ein gutes Ziel die Vermutung/Proposition durch
rein algebraische, bzw. algebraisch-geometrische Methoden zu zeigen. Im fol-
genden werde ich keinen Gebrauch von der Vermutung machen.

“Beweisskizze”. Zuerst verändere man die Residuenvorschrift für das, die Lev-
ellinien definierende Differential ρ, derart daß es ein Cτ gibt, welches diffeo-
morph zu S1 ist. Sodann zeige man wie in [KN1] daß sich jedes C∞-Vektorfeld
E schreiben läßt als (Q ∈ Cτ )

E(Q) =
∑
n,p

en,p(Q)
1

2πi

∮
Cτ

E(Q′)Ω1−n,p(Q′) . (6-21)

Die Methode dies zu zeigen, ist vollkommen analog zum N = 2 Falle in
[KN1],[KN2] und benutzt “diskrete Baker - Akhiezer - Funktionen” [KN3].
Die Gültigkeit von (6-21) wird in [KN1] im wesentlich auf das dortige Lemma
2 zurückgeführt. Dieses ist ebenfalls in diesem allgemeinen Rahmen gültig. Die
dort auftauchenden Funktionen ψn und ψ+

n sind hier natürlich durch entsprechende
ψn,p, ψ

+
n,p zu ersetzen mit den entsprechenden modifizierten Ordnungen. So

ist etwa für k = l zu setzen

ord Pi
(ψn,p) = n− δi,p, Pi ∈ I, ord Qi

(ψn,p) = −n+ δi,l, Qi ∈ O,

und für die duale Kollektion

ord Pi(ψ
+
n,p) = −n+ δi,p, Pi ∈ I, ord Qi(ψ

+
n,p) = n− δi,l, Qi ∈ O .

Für k 6= l, sind die § 5. entsprechenden Ordnungsverteilungen vorzunehmen.
Ebenso sind mehrere Funktionen λp statt einer einzigen Funktion λ in den For-
malismus aufzunehmen (Das Theorem 3. in [Kri]) erlaubt dies. Nun kann mit



90

[KN2,nach Formel 1.21], bzw. [KN1,Lemma 6] das Problem auf den Gelfand-
Fuks Kozykel der Algebra L der C∞-Vektorfelder zurückgeführt werden. Hi-
erbei ist die Grundidee, daß ein lokaler Kozykel für KN (A), bei Wahl von Cτ
diffeomorph zu S1, einen stetigen Kozykel für L definiert. Von Gelfand und
Fuks [GF] wurde gezeigt daß H2(L,C) ≡ C gilt und daß die Kozykel wie
behauptet gegeben werden können.

Unter der einschränkenden Bemerkung, daß die Details noch nicht aus-
geführt wurden, gilt natürlich auch, daß sich jede C∞−Form F vom Gewicht
λ auf Cτ entwickeln läßt als

F (Q) =
∑
n,p

fn,p(λ)(Q)
1

2πi

∮
Cτ

F (Q′)f1−n,p(1− λ)(Q′) . (6-22)

Dies ist eine entsprechende Aussage zum Entwicklungssatz (5-7).
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(b) Die Heisenberg Algebra

Die Vektorräume Fλ(A) bilden Module über der Algebra F0(A). Diese
besteht aus den globalen meromorphen Funktionen die Polstellen nur an den
Punkten von A haben. Die Modulstruktur ist gegeben durch die Multiplikation
der Formen mit den Funktionen (siehe § 2.). Zur Erinnerung: In § 5. hatte ich

Fλn (A) := 〈fn,1(λ), fn,2(λ), . . . , fn,k(λ)〉

eingeführt als die homogenen Formen von Grad n und gezeigt, daß in Bezug
auf diese Graduierung die Fλ(A) verallgemeinert graduierte Liealgebrenmodule
über KN (A) sind. Ich zeige zuerst, daß mit derselben Graduierung die Fλ(A)
auch verallgemeinert graduierte Module über F0(A) sind. Hierbei sei F0(A)
aufgefaßt als assoziative (und kommutative) Algebra. Wie üblich verwende ich
Am,p := fm,p(0).

Proposition 6.8. (a) Es gibt eine Konstante M , derart daß für alle (n, p)
und (m, r) gilt

An,p · fm,r(λ) =
n+m+M∑
h=n+m−1

k∑
s=1

D
(h,s)
(n,p)(m,r) fh,s(λ) . (6-23)

Die Konstante M hängt ab vom Geschlecht g, Gewicht λ und von k = #I und
l = #O, jedoch nicht von n und m.

(b) Die Koeffizienten an der unteren Grenze lauten

D
(n+m−1,s)
(n,p)(m,r) = δp,r · δp,s . (6-24)

(c) Es gilt

F0
n(A) · Fλm(A) ⊆

n+m+M⊕
h=n+m−1

Fλh (A), (6-25)

d.h. Fλ(A) ist ein verallgemeinert graduierter Modul über F0(A),

Beweis. (c) Da die homogenen Teile von den fm,r, bzw. An,p erzeugt werden,
folgt (6-25) sofort aus (6-23). Nun ist (6-25) angewendet sowohl auf F0(A)
als auch auf Fλ(A) genau die Definition von einer verallgemeinert graduierten
Struktur (siehe 5-19). D.h. aus (a) folgt sofort (c).
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(a) und (b): w = An,p·fm,r(λ) ist ein λ−Form. Somit existiert eine Darstellung
wie in (6-23) mit einer endlichen Summation über den ganzen Indexbereich
(h, s). Zu bestimmen sind die Grenzen. Nach dem Entwicklungssatz (Theorem
5.1) gilt

D
(h,s)
(n,p)(m,r) =

1
2πi

∮
Cτ

w · f1−h,s(1− λ) . (6-26)

Dieses Integral kann man mit Hilfe von Ordnungs- und Residuenbetrachtung
auswerten. Diese Technik hatte ich schon mehrfach vorgeführt, so daß ich mich
hier kurz fassen kann. Es gilt

ord Pi(w) = n+m− h+ 1− δi,r − δi,p − δi,s, Pi ∈ I .

Für h ≤ (n + m − 2) ist diese Ordnung ≥ 0. Dies zeigt die untere Grenze.
Für h = n +m − 2 ist sie negativ nur falls i = p = r. Aufgrund der lokalen
Normierung berechnet sich res Pp(w) = 1 . Damit folgt die Aussage über
die Koeffizienten an der unteren Grenze (6-24). Zur Berechnung der oberen
Grenze sind die Punkte Qi ∈ O zu betrachten. Es sind analog zum Beweis
von Prop. 6.5 die dortigen Alternativen zu untersuchen. Da uns jedoch nicht
die konkrete Schranke interessiert, sondern nur deren Existenz, genügen die
folgenden Betrachtungen. Als Ordnungen an den Punkten Qi ergeben sich
Ausdrücke der Art

c · (−(n+m) + h) + b (6-27)

mit b und c Konstanten und c > 0 . Ist nun h ≥ (n+m)− b/c , dann ist obige
Ordnung positiv. Die Konstante M ist nun so zu wählen, daß M ≥ −b/c− 1
für alle Kombinationen die auftreten können, gilt. Damit sind auch die endlich
vielen Sonderfälle, die für gewisse λ (insbesondere auch für λ = 0) auftreten,
erfaßt. Entscheidend ist hierbei natürlich, daß nur endlich viele Ausdrücke der
Form (6-27) zu betrachten sind. �

Die Berechnung der konkreten Obergrenze ist einfach. Durch entsprechende
Fallunterscheidungen kann man Tabellen aufstellen. Hier möchte ich nur an
einem Beispiel die Vorgehensweise demonstrieren. Hierzu sei k = l. Für die
Nichtausnahmeelemente erhalten wir für w wie oben

ord Qi
(w) = h− (n+m)− 1, i 6= l, ord Ql

(w) = h− (n+m)− g . (6-28)

Für k = 1 tritt nur der zweite Term auf, d.h. die Ordnung ist ≥ 0, falls gilt
h ≥ (n+m) + g. Ist k > 1, so sind alle Ordnungen ≥ 0, falls gilt

h ≥ max
(
n+m+ 1 , n+m+ g

)
.
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Ist g = 0, so gibt es keine Ausnahmewerte. Im anderen Fall beschänken wir
uns auf g ≥ 2 und λ 6= 0, 1. Es bleiben die Ausnahmewerte für die An,p. Für
diese berechnet sich

ord Qi
(w) = h− (n+m)−1, i 6= l, ord Ql

(w) = h− (n+m)−g−1 . (6-29)

Als Ausnahmewerte treten für k ≥ 2 nur n = 0 auf. Für k = 1 sind es
−g ≤ n ≤ 0 (siehe (5-29)). Beim ebenfalls auftretenden Ausnahmewert A1

für k = 1 treten keine negativen Ordnungen auf. Damit erhalten wir als Ober-
grenze die folgenden Werte.

M =


−1, g = 0, k = 1
0, g = 0, k > 1
g, g ≥ 2, λ 6= 0, 1 .

(6-30)

Versehen wir die Algebra F0(A) mit dem Kommutator [f, g] = f · g− g · f ,
so erhalten wir die abelsche Liealgebra LF0(A).

Proposition 6.9. Die Abbildung F0(A)×F0(A)→ C gegeben durch

γ(f, g) =
1

2πi

∮
Cτ

f dg (6-31)

definiert einen nichttrivialen 2−Kozykel (d.h. er ist nicht kohomolog zu 0 ) für
die Liealgebra LF0(A).

Beweis. Die Bilinearität ist klar. Antisymmetrie: Es gilt

res P (d(f · g)) = res P (g · df) + res P (f · dg) .

Das Residuum des Differentials einer Funktion verschwindet. Somit gilt res P (g·
df) = −res P (f · dg) . Wird über den geschlossenen Weg Cτ integriert folgt

γ(f, g) =
1

2πi

∮
Cτ

f dg = − 1
2πi

∮
Cτ

g df = −γ(g, f) .

Da LF0(A) eine abelsche Liealgebra ist, ist (6-4) trivialerweise erfüllt. Somit
ist γ(.., ..) ein 2−Kozykel. Ein nichtverschwindender Kozykel einer abelschen
Liealgebra kann nicht Korand sein. Wäre er Korand, so müßte er sich schreiben
lassen als γ(f, g) = κ([f, g]) mit einer Linearform κ (6-6). Da aber [f, g] = 0,
gilt γ(f, g) = 0, also verschwindet der Kozykel selbst. Da die Funktionen f

und g Pole besitzen können, wird γ(.., ..) nicht identisch verschwinden (siehe
(6-34)). �

Dieser 2−Kozykel ergibt eine nichttriviale zentrale Erweiterung. In Verall-
gemeinerung von [KN2] definiere ich
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Definition. Die (verallgemeinerte) Heisenberg Algebra H ist die zentrale Er-
weiterung der Liealgebra LF0(A) erzeugt von den Elementen

αn,p, n ∈ ZZ , p = 1, . . . , k, und t;

mit dem Lieprodukt

[αn,p, αm,r] = γ(An,p, Am,r) · t und [αn,p, t] = 0 . (6-32)

Die αn,p sind Lifts der An,p. In Bezug auf diese Basis erfüllte der Kozykel
γ(.., ..) wiederum eine Lokalitätseigenschaft:

Proposition 6.10. Es gibt eine Konstante S, so daß für alle (n, p) und
(m, r) gilt

γ(An,p, Am,r) = 0, für n+m ≥ 3 oder n+m ≤ S ≤ 1 . (6-33)

Die Konstante S hängt nur von k und l und vom Geschlecht g ab. An der
oberen Grenze gilt

γ(An,p, A2−n,r) = (1− n) · δp,r . (6-34)

Beweis. Sei w = An,p · d(Am,r) , dann gilt an den Punkten Pi ∈ I

ord Pi(w) = n+m− δi,p − δi,r − 1 . (6-35)

Ist n+m ≥ 3, sind alle Ordnungen ≥ 0, also verschwindet das Kurvenintegral.
Im Fall n+m = 2 tritt nur ein Residuum auf, falls i = p = r gilt. Als Residuum
ergibt sich (1−n) aufgrund der lokalen Berechnung. Um die Existenz von S zu
zeigen, sind die Ordnungen von w an den Punkten Qi ∈ O zu untersuchen. Der
entsprechende Beweisteil von Prop. 6.8, gilt modifiziert auch hier. Daß S ≤ 1
sein muß, ergibt sich aufgrund des nichtverschwindenden Wertes (6-34). �

Für p 6= r kann man eine Stufe tiefer gehen und berechnen

γ(An,p, A1−n,r) = (1− 2n) . (6-35a)

Die Schranke S in obiger Proposition kann bei Bedarf für alle Fälle konkret
berechnet werden. Ich möchte wiederum nur ein Beispiel geben. Sei k = l und
entweder g = 0 oder g ≥ 1 und weder n noch m seien Ausnahmewerten. Es
berechnet sich

ord Qi
(w) = −(n+m)− 1, i 6= l ord Ql

(w) = −(n+m) + 1− 2g .
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Ist k = 1, so verschwindet der Kozykel für n + m ≤ −2g + 1 . Für k > 1
muß gelten n +m ≤ min(−1,−2g + 1) . Will man noch die Ausnahmewerte
einbeziehen, so kann man dies wie folgt: Der “schlechteste” Fall ist der, wenn
n und m beides Ausnahmewerte sind. In diesem Fall verschwindet der Kozykel
erst für n+m ≤ −2g − 1. Somit ergibt sich

S =


1, g = 0, k = 1
−1, g = 0, k > 1
−2g − 1, g ≥ 1 .

Für k = l = 1 wurden diese Schranken auch von Krichever und Novikov in
[KN2,Formel 1.4] angegegeben (mit einem entsprechenden Indexshift).

Im Virasorofalle, d.h. k = l = 1 und g = 0 tritt nur ein nichtverschwindender
Term auf

γ(An, A2−n) = 1− n.

Die einzigen nichtverschwindenden Kommutatoren lauten somit

[αn, α2−n] = (1− n) · t .

Setze ich für k > 0

qk = αk+1, pk = α−k+1 und p0 = q0 = α1, (6-36)

so ergibt sich für k, l ≥ 0

[qk, ql] = [pk, pl] = 0, [qk, pk] = −k · t, [qk, t] = [pk, t] = 0 . (6-37)

Somit spezialisiert sich alles in diesem Fall auf die “übliche” Heisenberg Alge-
bra, d.h. auf die Oszillatoralgebra mit unendlich vielen Freiheitsgraden.
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(c) Die Algebra der Differentialoperatoren vom Grad ≤≤≤ 111

Es sei
D1(A) = KN (A)⊕ LF0(A) (6-38)

die direkte Summe der Vektorräume. Ich führe auf D1(A) eine Liestruktur ein
durch

[(e, g), (f, h)] =
(
[e, f ], Le(h)− Lf (g)

)
(6-39)

für e, f ∈ KN (A), g, h ∈ F0(A) (semidirektes Produkt). Es ist Le(h) die
Lieableitung (2-4) für Funktionen. Dies ist wegen λ = 0 das Anwenden der
Derivation e auf h. Mit der lokalen Form e(z)| = a(z) ∂∂z somit

Le(h)|(z) = a(z)
∂h

∂z
.

Proposition 6.11. D1(A) ist eine Liealgebra, die KN (A) und LF0(A) als
Unteralgebren enthält. LF0(A) ist ein Ideal und es gilt die kurze exakte Sequenz
von Liealgebren

0 → LF0(A) → D1(A) → KN (A) → 0 . (6-40)

Beweis. Nachzuprüfen ist die Jacobi-Identität. Seien 3 Elemente (e1, h1), (e2, h2)
und (e3, h3) gegeben, so berechnet sich

[[(e1, h1), (e2, h2)], (e3, h3)] =(
[[e1, e2], e3], L[e1,e2](h3)− Le3(Le1(h2)− Le2(h1))

)
.

Die Jacobi-Identität auf der ersten Komponente ist erfüllt, da sie für KN (A)
gilt. Mit

L[e1,e2](h3) = Le1Le2(h3)− Le2Le1(h3),

ergibt sich für die zweite Komponente

Le1Le2(h3)− Le2Le1(h3)− Le3Le1(h2) + Le3Le2(h1) .

Summiert über alle zyklischen Vertauschungen ergibt sich 0. Somit ist D1(A)
eine Liealgebra. KN (A) und LF0(A) sind offensichtlich Unteralgebren. Wegen
(6-39) ist LF0(A) sogar ein Ideal. Die kurze exakte Sequenz (6-40) ist somit
klar. �
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Proposition 6.12. Fλ(A) ist ein D1(A) Liemodul mit der Operation

(e, h) . f = Le(f) + h · f, (e, h) ∈ D1(A), f ∈ Fλ(A) . (6-41)

(h · f ist die Multiplikation der Form f mit der Funktion h.)

Beweis. Dies verifiziert man durch Nachrechnen. Es ist

[(e1, h1), (e2, h2)] . f = L[e1,e2](f) + Le1(h2) · f − Le2(h1) · f . (6-42)

Andererseits

(e1, h1) . ((e2, h2) . f) = (e1, h1) . (Le2(f) + h2 · f) =

Le1Le2(f) + Le1(h2 · f) + h1 · Le2(f) + h1h2 · f (6-43)

Vertauscht man die Indices 1 und 2, so erhält man einen entsprechenden Aus-
druck (6-43’). Für (6-42) – (6-43) +(6-43’) ergibt sich

Le1(h2)·f−Le2(h1)·f−Le1(h2 ·f)−h1 ·Le2(f)+Le2(h1 ·f)+h2 ·Le1(f) . (6-44)

Benutze ich nun das untenstehende Lemma 6.1 über die Derivationseigenschaft
der Lieableitung, so folgt daß (6-44) verschwindet. Also gilt die Behaup-
tung. �

Lemma 6.1. Sei f ∈ Fλ(A), h ∈ Fµ(A), e ∈ KN (A), so gilt

Le(f ⊗ h) = Le(f)⊗ h+ f ⊗ Le(h) , (6-45)

d.h. Le ist eine Derivation in
⊕

λ∈ZZ F
λ(A) , (aufgefaßt als Ring mit dem

Tensorprodukt der Formen als Operation).

Beweis. Seien e, h, f identifiziert mit ihren lokalen Repräsentanten. Mit (2-4)
gilt

Le(f · h) = e
∂(f · h)
∂z

+ (λ+ µ) f · h∂e
∂z

= (e
∂f

∂z
+ λ f

∂e

∂z
) · h+ f · (e∂h

∂z
+ µh

∂e

∂z
) . �

Ich führe auf D1(A) eine ZZ−Graduierung ein. Die Elemente des Vektor-
raumes

D1
n(A) = 〈 en,p, p = 1, . . . , k 〉 ⊕ 〈 An−1,p, p = 1, . . . , k 〉 (6-46)

seien die homogenen Elemente vom Grad n. Auf Fλ(A) hatte ich in (5-18)
bereits eine Graduierung eingeführt.
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Proposition 6.13. Es gilt

D1
n(A) .Fλm(A) =

n+m+P⊕
h=n+m−2

Fλh (A) (6-47)

mit P = max (L,M − 1 ) . Hierbei ist L die Konstante aus der Strukturgle-
ichung (5-9) und M die Konstante aus der Strukturgleichung (6-23). Somit ist
Fλ(A) ein verallgemeinert graduierter Modul über D1(A).

Der Beweis ergibt sich sofort aus den Aussagen in Theorem 5.1 bzw. Prop. 6.8
über die Erzeugenden.

Um “höhere Ableitungen ” der Formen Fλ(A) zu bilden, mache ich folgende
Konstruktion. Es sei W := UD1(A) die universelle Einhüllende von D1(A)
[HiSt],[Hu]. Aufgrund deren Eigenschaften operiert W auf Fλ(A). Nach dem
Poincaré - Birkhoff - Witt Theorem wird sie von den aufsteigenden Ketten der
Basiselemente von D1(A) (nach einer beliebig vorgegebenen Ordnung) gebildet.
Insbesondere ist in dieser Algebra das mehrmalige Anwenden der Lieableitung
definiert. Diese Algebra enhält viele Elemente, die, aufgrund ihrer Aktion auf
allen Fλ(A), nicht unterschieden werden können. So hat etwa An,p � Am,r
(� in W ) nichts mit An,p · Am,r (· in F0(A) ) zu tun. Trotzdem operieren
beide Elemente gleich auf allen Fλ(A). Ich bilde das (beidseitige) Ideal J in
W erzeugt von den Elementen

a� b− a · b, 1− 1 (6-48)

mit 1, a, b,∈ F0(A) und 1 das Einselement in W . Ich setze

D(A) = UD1(A)/J (6-49)

und nenne D(A) die Algebra der kohärenten Differentialoperatoren auf X.

Proposition 6.14. Fλ(A) ist ein Modul über der assoziativen Algebra D(A)

Beweis. Es ist zu zeigen, daß die Elemente

w � (a� b)� v − w � (a · b)� v, w � v − w � 1� v

trivial auf f ∈ Fλ(A) operieren. Es sei g = v . f ∈ Fλ(A). Es ist

(a� b) . g = a� (b . g) = a . (b . g) = (a · b) . g
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und 1 . f = 1. Damit folgt die Behauptung. �

Es ist zu beachten, daß a � e für e ein Vektorfeld, nicht durch a · e ersetzt
werden kann, da (mit der Notation des Beweises) gilt

(a� e) . g = a� (Le(g)) = a · Le(g) .

Andererseits jedoch

(a · e) . g = La·e(g) 6= a · Le(g) .

Wie man leicht durch lokales Nachrechnen verifiziert gilt nämlich

La·e(g) = a · Le(g) + λ(Le(a)) · g . (6-50)

Gleichheit herrscht lediglich für λ = 0.

Die üblichen (algebraischen) Differentialoperatoren Fλ(A)→ Fλ(A) werden
wie folgt definiert:

Definition. Eine C−lineare Abbildung D : Fλ(A) → Fλ(A) heißt Differen-
tialoperator vom Grad ≤ n mit n ≥ 0, falls gilt
(a) ist n = 0, so ist D = b, die Multiplikation mit einer Funktion b ∈ F0(A).
(b) ist n > 0, so gilt

[D, a] : Fλ(A)→ Fλ(A) (6-51)

ist ein Differentialoperator vom Grad ≤ (n−1). Hierbei ist a ∈ F0(A) und a ist
aufzufassen als Multiplikationsoperator. [.., ..] ist der Kommutator der linearen
Abbildungen.

Siehe [EGA, IV,16.8,16.11] und [BGG] zur Definition. Die Menge der Dif-
ferentialoperatoren beliebigen Grades bilden eine Unteralgebra der Algebra
EndFλ(A).

Sei D ∈ D(A). Dann besitzt D die Darstellung (in der universellen Algebra)

D = a0 � e1 � a1 � e2 · · · an−1 � en � an (6-52)

mit ai ∈ F0(A) und ei ∈ KN (A)

Proposition 6.15. Sei D wie in (6-52) gegeben. Dann operiert D in natür-
licherweise durch die Lieableitung und Multiplikation mit Funktionen als Dif-
ferentialoperator vom Grad ≤ n auf Fλ(A).
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Beweis. Der Beweis erfolgt durch vollständige Induktion nach der Anzahl Vek-
torfelder in der Darstellung von D. Ist n = 0, so gilt D = a0. Somit ist D per
Definition ein Differentialoperator vom Grad 0. Besitze nun D eine Darstellung
mit n auftauchenden Termen wie in (6-52). a ∈ F0(A) und
f ∈ Fλ(A) seien gegeben. Ich setze g = an · f .

[a,D](f) = a · a0 · Le1 · · ·Len(g)− a0 · Le1 · · ·Len(a · g) . (6-53)

Ich forme nun den 2. Term um. Es gilt

Len(a · g) = Len(a) · g + a · Len(g) .

Len
(a) ist eine Funktion, d.h. der entsprechende Term im 2. Ausdruck (6-53)

ist per Induktion ein Differentialoperator vom Grad ≤ (n − 1). Den zweiten
Term kann man nun durch sukzessives Anwenden obigen Schrittes und unter
Abspalten von Operatoren vom Grad ≤ (n − 1) in genau die Form des ersten
Ausdruckes bringen. Somit heben sie sich auf. �

Natürlich enthält D(A) sehr viele verschiedene Elemente, welche identisch
auf Fλ(A) (bei festem λ) operieren. Da jede nichtvollständige Kurve (also auch
X \A) affin ist [Ha,p.297], gilt allerdings, daß D(A), aufgefaßt als Operatoren
auf Fλ(A) alle Differentialoperatoren darstellt [EGA],[BGG,p.27]. Da wir dies
im folgenden nicht benützen, soll darauf nicht weiter eingegangen werden.

Statt D(A) kann man durch Quotientenbildung (in Abhängigkeit von λ) eine
etwas kleinere Algebra erhalten. Hierzu dividiere ich durch das Ideal Jλ erzeugt
von den Elementen (6-48) und

a� e− a · e+ λLe(a), a ∈ F0(A), e ∈ KN (A) . (6-54)

Ich setze
Dλ(A) = UD1(A)/Jλ . (6-55)

Proposition 6.16. Fλ(A) ist ein Modul über der assoziativen Algebra Dλ(A).

Beweis. Die Notation sei dieselbe wie im Beweis von Prop. 6.14. Es gilt

(a� e) . g = a · Le(g) .

Andererseits
(a · e) . g = La·e(g) = a · Le(g) + λLe(a) · g.

Somit operiert auch das erzeugende Element (6-54) trivial auf Fλ(A). �
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Selbstverständlich faktorisiert die Abbildung D(A) nach den Differentialop-
eratoren auf Fλ(A) über Dλ(A).

Ich komme nun zu den zentralen Erweiterungen von D1(A). Der Kozykel
χ von KN (A) (6-9),(6-11) definiert einen Kozykel χ∗ auf D1(A) durch die
Festsetzung

χ∗
(
(e1, h1), (e2, h2)

)
= χ(e1, e2) . (6-56)

Da nur die erste Komponente beteiligt ist, gilt die Kozykeleigenschaft trivialer-
weise. (χ∗ ist der Pullback von χ unter (6-40).)

Proposition 6.17. Die Festsetzung

γ∗
(
(e1, h1), (e2, h2)

)
= γ(h1, h2) (6-57)

mit dem Kozykel γ der Algebra F0(A) gegegen in (6-31) definiert einen Kozykel
von D1(A).

Beweis. Die Antisymmetrie ist klar. Zu zeigen ist lediglich die Kozykeleigen-
schaft. Zur Vereinfachung der Notation identifiziere ich (e, 0) mit e und (0, h)
mit h. Aufgrund der Linearität genügt es die Kozykeleigenschaft

γ∗([a, b], c) + γ∗([b, c], a) + γ∗([c, a], b) = 0 (6-58)

mit Elementen vom “reinem Typ” Vektorfeld bzw. Funktion zu zeigen. Sind
alle 3 Elemente Vektorfelder, so verschwindet jeder Term in (6-58). Sind alle 3
Elemente Funktionen, so gilt (6-58) wegen der Kozykeleigenschaft von γ. Sind
a und b Vektorfelder , c eine Funktion, so ist [a, b] ein Vektorfeld, d.h. die Terme
in (6-58) verschwinden einzeln. Zu untersuchen bleibt lediglich der Fall a ein
Vektorfeld und b und c Funktionen. Die linke Seite von (6-58) ergibt

γ(La(b), c) + γ(−La(c), b) .
Die Behauptung ist also gezeigt, falls gilt

1
2πi

∮
Cτ

La(b) dc =
1

2πi

∮
Cτ

La(c) db .

Nun ist
1

2πi

∮
Cτ

La(b) dc =
1

2πi

∮
Cτ

La(b dc)−
1

2πi

∮
Cτ

b La(dc)

Wegen des untenstehenden Lemma 6.2(a) verschwindet das erste Integral auf
der rechten Seite. Die Lieableitung vertauscht mit der äußeren Ableitung
(Lemma 6.2(c)) und es folgt mit der Antisymmetrie des Kozykels

1
2πi

∮
Cτ

La(b)dc = − 1
2πi

∮
Cτ

b dLa(c) =
1

2πi

∮
Cτ

La(c)db . �
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Lemma 6.2. (a) Sei w ∈ F1(A), e ∈ KN (A), dann gilt für alle P ∈ X

res P (Le(w)) = 0; also auch
1

2πi

∮
Cτ

Le(w) = 0 . (6-59)

(b) Sei f ∈ Fλ(A), h ∈ F1−λ(A), e ∈ KN (A), dann gilt

1
2πi

∮
Cτ

h · Le(f) = − 1
2πi

∮
Cτ

Le(h) · f . (6-60)

(c) Sei f ∈ F0(A), e ∈ KN (A), d die äußere Ableitung, dann gilt

Le(df) = d(Le(f)) . (6-61)

Beweis. Es gilt [AM]
Le(w) = ie(dw) + d(iew) . (6-62)

Hierbei ist ie das innere Produkt, also ieα(.., ....) = α(e, ....). Für holomorphe
Formen gilt dw = 0. Somit ist Le(w) = d(w(e)), also das Differential einer
meromorphen Funktion, besitzt somit kein Residuum. Will man (6-62) nicht
benutzen, kann man (6-59 auch in lokalen Koordinaten ausrechnen.
Die Form h · f ist eine 1−Form. Mit Lemma 6.1 gilt

Le(h · f) = Le(h) · f + h · Le(f) .

Nach (a) verschwindet bei der Integration über Cτ das Integral. Es folgt (b).
(c) ist ebenfalls eine wohlbekannte Tatsache über die Lieableitung von Differen-
tialformen [AM]. Auch hier kann man (6-61) einfach durch eine lokale Rechnung
verifizieren. �

Damit haben obige Kozykel auf KN (A), bzw. auf F0(A) eine Fortsetzung.
Natürlich sind sie linear unabhängig. Statt χ∗, bzw. γ∗ werde ich im folgenden
einfach auch χ, bzw. γ für die fortgesetzten Kozykel benutzen. Daneben gibt
es aber noch einen weiteren linear unabhängigen Kozykel. Dieser verbindet
KN (A) mit F0(A). Hierzu verallgemeinere ich den im Virasoro Fall in [ACKP]
angegebenen Kozykel. Um die dortige lokale Definition koordinatenunabhängig
zu machen muß ich zuerst das folgende Objekt einführen. Sei (zα) ein System
von Koordinaten für X, zβ = h(zα) ein Koordinatenwechsel. Desweiteren sei
Tα(zα) ein System von lokalen meromorphen Funktionen. T nenne ich einen
affinen Zusammenhang, falls gilt

Tβ(zβ) = Tα(zα) · (h′)−1 +
h′′

(h′)2
. (6-63)
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Hierbei bedeutet ′ die Ableitung nach zα. Falls h′′ = 0 ist, d.h. falls ein
affiner Koordinatenwechsel vorliegt, transformiert sich T wie ein Differential.
Aufgrund (6-63) ergibt sich, daß die Differenz zweier affiner Zusammenhänge
ein (meromorphes) Differential definiert. Anders formuliert: Ausgehend von
einem affinen Zusammenhang, erhält man alle Zusammenhänge, indem man
beliebige Differentiale addiert. Die Existenz von globalen holomorphen affinen
Zusammenhängen für beliebiges Geschlecht wird man nicht erwarten können.
Es gilt jedoch die folgende Proposition die ich weiter unten beweisen werde.

Proposition 6.18. Es gibt einen meromorphen affinen Zusammenhang auf X
der holomorph auf X \ {Ql} ist und bei Ql höchstens einen Pol 1. Ordnung
hat.

Proposition 6.19. (a) Sei e = (e, 0), t = (0, t) ∈ D1(A), e = f ∂
∂z eine lokale

Darstellung, dann definiert

β(e, h) = −β(h, e) =
1

2πi

∮
Cτ

(ft′′ + T · ft′)dz . (6-64)

mit der Festlegung, daß β sowohl auf KN (A) als auch auf F0(A) verschwindet,
einen Kozykel auf D1(A). Hierbei bedeutet ′ in (6-64) die Ableitung nach der
lokalen Variablen z.
(b) Die Kohomologieklasse von β ist unabhängig vom gewählten affinen Zusam-
menhang T .

Beweis. (a) 1. Damit die Definition überhaupt Sinn macht muß sie unabhängig
von der Variablen z und von der Wahl des τ−Parameters der Kurve Cτ sein.
Zu zeigen ist also, daß der Integrand in F1(A) liegt. Hierzu seien Koordinaten
wie oben gegeben. Ich gehe analog zu Prop. 6.2 vor. Es gilt
(′ bezeichne die Ableitung nach zα)

fβ(zα) = h′(zα) · fα(zα), dzβ = h′(zα) dzα
∂t

∂zβ
(zα) =

∂t

∂zα
(zα) · (h′)−1(zα)

∂2t

∂z2
β

(zα) =
∂2t

∂z2
α

(zα) · (h′)−2(zα)− ∂t

∂zα
(zα) · (h′)−3(zα) · h′′(zα) .

Schreiben wir den Integranden in der Variablen zβ und machen obige Erset-
zungen, so erhalten wir

h′fα(t′′(h′)−2 − t′h′′(h′)−3)h′dzα +
(
Tα(h′)−1 + h′′(h′)−2

)
fαh

′(h′)−1t′h′dzα

= fαt
′′dzα + Tα · fαt′dzα ,
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also in der Tat ein wohldefinierte Differential. Da Pole nur an Punkten aus A
auftreten, folgt daß der Integrand in F1(A) liegt.
2. Die Antisymmetrie ist klar aufgrund der Festlegung. Es bleibt die Kozykeleigen-
schaft zu zeigen. Die Notation sei wie im Beweis zu Prop. 6.17. Sind a, b, c alle
vom selben Typ, so verschwindet der Kozykel trivialerweise. Sei a ein Vektor-
feld, b und c Funktionen, so verschwinden alle Terme separat. Es bleibt der
Fall a und b Vektorfelder und c eine Funktion. Ich zeige, daß die Residuen an
jedem Punkt verschwinden. Hierzu rechne ich in der lokalen Darstellung. Es
gilt

[a, b] = a · b′ − b · a′, [a, c] = a · c′, [b, c] = b · c′ .

Ich betrachte zuerst den Term bei T . Direktes Rechnen liefert

(ab′ − ba′)c′ − a(bc′)′ + b(ac′)′ = 0 .

Somit verschwindet die Summe über alle 3 zyklischen Vertauschungen. Für die
Summe über den ersten Term unter dem Integral erhalte ich

(ab′ − ba′)c′′ − a(bc′)′′ + b(ac′)′′ = (−ab′c′ + a′bc′)′ .

Damit ist diese das Differential einer meromorphen Funktion, das Residuum
verschwindet, also auch das Integral.

(b) Sei T ∗ ein zweiter affiner Zusammenhang, dann ist w| = (T − T ∗)dz
ein meromorphes Differential. Es gilt

βT (e, h)− βT∗(e, h) =
1

2πi

∮
Cτ

w · (f · t′) =
1

2πi

∮
Cτ

w · Le(h)

=
1

2πi

∮
Cτ

w · [e, h] = ψ([e, h])

mit der Linearform

ψ : D1(A)→ C, (f, g) 7→ 1
2πi

∮
Cτ

w · g, f ∈ KN (A), g ∈ F0(A) . �
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Proposition 6.20. Sei T ein affiner Zusammenhang der von der Art ist, wie
in Prop. 6.18. Dann gilt: (a) Es gibt eine Konstante Sβ, so daß für alle (n, p)
und (m, r) gilt

β(en,p, Am,r) = 0, für n+m ≥ 4 oder n+m ≤ Sβ . (6-65)

Die Konstante Sβ hängt nur vom Geschlecht g, von k und l ab.
(b) An der oberen Grenze gilt

β(en,p, A3−n,r) = (2− n)(1− n) · δp,r . (6-66)

Beweis. Der Beweis ist vollkommen analog zu den entsprechenden Beweisen
für die Kozykel χ (Prop. 6.5) und γ (Prop. 6.10), so daß ich mich kurz fassen
kann. Für Pi ∈ I gilt für den Integranden ω

ord Pi(ω) ≥ n+m− 2− δi,p − δi,r .

(Da ord Pi
(T ) ≥ 0 ist, hat der zweite Term keinen Einfluß.) Also verschwinden

für (n + m) ≥ 4 alle Residuen an den Punkten aus I. Somit ebenfalls das
Kurvenintegral. Die Abschätzung nach unten gewinnt man durch analoge Be-
trachtungen an den Punkten aus O. Ein möglicher Pole von T an Ql ist von
1.Ordnung stört also nicht.
Im Grenzfall n + m = 3 tritt nur ein Residuum auf, falls p = r gilt. Dieses
liegt am Punkt Pp und es ergibt sich der Ausdruck (6-66). �

Auch hier kann man für p 6= r den Wert des Kozykels “eine Stufe tiefer”
entsprechend ausrechnen

β(en,p, A2−n,r) = 2(1− n)2, für p 6= r . (6-67)

Im Virasoro Fall spezialisiert sich der Kozykel genau zu dem in [ACKP] angegebenem.

Mit diesen 3 linear unabhängigen Kozykeln kann man eine zentrale Er-
weiterungen konstruieren mit 3-dimensionalen Zentrum:

D̃1(A) = D1(A)⊕ C3 .

Die Algebrenstruktur ist konkret gegeben durch
(v1, v2 ∈ C3, t1 = (1, 0, 0), t2 = (0, 1, 0), t3 = (0, 0, 1) ∈ C3)

[((e1, h1), v1), ((e2, h2), v2)] = (6-68)

([(e1, h1), (e2, h2)], cχχ(e1, e2)t1 + cγγ(h1, h2)t2 + cβ(β(e1, h2)− β(e2, h1))t3 .
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Hierbei sind cχ, cγ , cβ Konstanten. Im Virasoro Fall wurde in [ACKP,S.14]
dimH2(D1({0,∞}) = 3 gezeigt. Der Raum wird somit von diesen 3 Kozykeln
erzeugt. Also definiert für cχ · cγ · cβ 6= 0 (6-68) die universelle zentrale Er-
weiterung. Will man eine zentrale Erweiterung haben mit eindimensionalem
Zentrum, so erhält man diese durch Faktorisieren nach dem Ideal erzeugt von

t1 − r2t2, t1 − r3t3, r2, r3 ∈ C \ {0} .

Es bleibt Prop.6.18 zu zeigen, d.h. die Existenz eines affinen Zusammen-
hanges mit höchstens einem Pol. Seien (Uα, zα), α ∈ J ein System von
Kartenumgebungen. zβ = h(zα) sei der Kartenwechsel der falls Uβ ∩ Uα 6= ∅
definiert ist. Ich definiere die folgende Übergangsmatrix

Cβα =

 (h′)−1 (h′′)(h′)−2

0 1

 . (6-69)

Hierbei bezeichne ′ die Ableitung nach zα.
Offensichtlich ist Cβα ∈ GL(O(Uβ ∩ Uα)).

Proposition 6.21. Cβα definiert einen Kozykel vom Rang 2 auf X und somit
ein Rang 2 Vektorbündel E.

Beweis. Zu zeigen ist lediglich die Kozykeleigenschaft auf Cα ∩ Cβ ∩ Cγ 6= ∅

Cγα = Cγβ · Cβα .

Es sei zγ = g(zβ), also zγ = k(zα) = (g ◦ h)(zα) . ∗ bezeichne die Ableitung
nach zβ . Es gilt

Cγβ · Cβα =

 (g∗)−1 · (h′)−1 (g∗)−1(h′′)(h′)−1 + (g∗∗)(g∗)−2

0 1

 .

Offensichtlich ist k′ = g∗ · h′. Es bleibt lediglich das Element (1, 2) zu unter-
suchen. Es gilt

k′′ = (g∗ · h′)′ = g∗∗(h′)2 + g∗h′′,

also stimmen auch die Elemente (1, 2) überein. �

Ist v ein globaler holomorpher Schnitt, so kann er lokal durch ein Paar von
holomorphen Funktionen vα = t(sα,1, sα,2) mit sα,1, sα,2 ∈ O(Uα) repräsentiert
werden. Die vα transfomieren sich als

vβ = Cβα · vα,

(sβ,1, sβ,2) =
(
sα,1 · (h′)−1 +

h′′

(h′)2
· sα,2 , sα,2

)
.

(6-70)
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Verschwindet die zweite Komponente nicht identisch, so transfomiert sich der
Quotient

tα =
sα,1
sα,2

(6-71)

wie ein meromorpher affiner Zusammenhang.

Aufgrund des Kozykels (6-69) erhält man eine kurze exakte Sequenz von
Vektorbündeln

0 → K → E → O → 0 (6-72)

(K das kanonische Bündel, O das triviale Bündel). Schnitte in K sind auch
Schnitte in E . Sie entsprechen den Schnitten mit verschwindender zweiter Kom-
ponente. Sei P ∈ O ein festgewählter Punkt. LP das zugeordnete Punktbündel,
d.h. das Bündel welches genau einen linear unabhängigen Schnitt sP hat. Dieser
hat eine Nullstelle bei P (siehe [Schl1,p.105]). Ist W ein Vektorbündel und w

ein holomorpher Schnitt in W ⊗ LP , so definiert w/sP einen Schnitt über
X \ {P} in das Bündel W, für den die lokalen Komponentenfunktionen bei P
einen Pol von höchstens 1. Ordnung bei P haben. Tensorieren wir (6-72) mit
LP , und gehen wir zur langen Kohomologiesequenz über, so erhalten wir nach
Anwendung der Serre-Dualität

0→ H0(X,K⊗LP )→ H0(X, E⊗LP )→ H0(X,LP )→ H0(X,L∗P )→ (6-73)

Es ist H0(X,L∗P ) = 0 und dimH0(X,LP ) = 1 , also

dimH0(X, E ⊗ LP ) = 1 + dimH0(X,K ⊗ LP ) = 1 + dimH0(X,K) = 1 + g .

(6-74)
Insbesondere gibt es immer einen meromorphen Schnitt v in E , dessen
2. Komponente (in den lokalen Repräsentanten) nicht identisch verschwindet.
Sei (sα,2)α die Kollektion der zweiten Komponenten von v. (6-69) besagt, daß
die sβ und sα auf Uα ∩ Uβ übereinstimmen, also eine globale meromorphe
Funktion s mit s|Uα

= sα definieren. Die Funktion s hat höchstens einen Pol
1. Ordnung bei P und ist sonst holomorph. Wir bilden nun (tα) wie in
(6-71) definiert. Mögliche Polstellen sind der Punkt P und die Nullstellen der
Funktion s. Für g ≥ 1 muß s allerdings konstant sein, das es keine Funktion
mit totaler Polordnung 1 gibt. In diesem Fall sind wir somit fertig. Für g =
0 kann s durchaus nichttrivial sein. Ist s nichtkonstant, so hat s genau an
einem einzigen Punkt Q eine Nullstelle. Diese ist von erster Ordnung. Der
affine Zusammenhang hat somit höchstens Pole bei P und Q. Ist nun T ein
meromorpher affiner Zusammenhang und ω ein meromorphes Differential, so
ist T+ω ebenfalls ein meromorpher affiner Zusammenhang. Durch Subtraktion
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eines meromorphen Differential mit Polen 1. Ordnung bei P und Q kann der
Pol von T am Punkt Q beseitigt werden, ohne die Polordnung 1 am Punkt P
zu erhöhen. Dies zeigt Prop. 6.18. �

Für P1 kann in Bezug auf die Standardkoordinaten (z, w = 1/z) ein affiner
Zusammenhang explizit angegeben werden

T = (tα, tβ) = ( 0 ,
2
w

) .

Mit obigen Methoden kann man für g ≥ 2 auch die Existenz eines holomorphen
projektiven Zusammenhanges zeigen. Dies sei kurz angedeutet. Die Notation
sei wie oben

Dβα =

 (h′)−2 h′′′

(h′)3
− 3

2

(
h′′

(h′)2

)2

0 1

 (6-75)

erfüllt ebenfalls die Kozykelbedingung, wie man durch Nachrechnen verifiziert.
Somit wird ebenfalls ein Rang 2 Vektorbündel gegeben. Aufgrund der Gestalt
(6-75) folgt die exakte Sequenz

0 → K2 → F → O → 0 . (6-76)

Die lange Kohomologiesequenz bricht ebenfalls ab nach der 0. Stufe:

0→ H0(X,K2)→ H0(X,F)→ H0(X,O)→ H0(X,K∗) = 0 (6-77)

und wir können weiter wie oben schließen.



109

§ 7. Semi-infinite Formen und die Wedge-Darstellung

(a) Die Konstruktion der Darstellung für KN (A)

Das Ziel in diesem Paragraphen ist es, die Aktion von KN (A) auf die For-
men vom Gewicht λ (d.h. auf Fλ(A)) zu einer Aktion auf den semi-infiniten
Formen zu erweitern. Diese Technik wurde im Fall der Virasoro Algebra (ist
ein Spezialfall der hier betrachteten Situation) benutzt um Darstellungen mit
gewissen Eigenschaften (mathematischer und physikalischer Natur) zu erhal-
ten. Es handelt sich hierbei um sogenannte Höchstgewichtsdarstellungen, bzw.
Verma Darstellungen (7-32). Siehe hierzu auch [KaP],[FF] und [KaR]. Es wird
sich auch hier zeigen, daß es ebenso wie dort notwendig ist zu einer lokalen zen-
tralen Erweiterung K̂N (A) überzugehen. In § 7.(d) werde ich die entsprechen-
den Konstruktionen auch für die Heisenberg-Algebra bzw. die Algebra der Dif-
ferentialoperatoren vom Grad ≤ 1 ausführen.

Sei Fλ(A) der Krichever - Novikov Modul vom Gewicht λ. Der Vektorraum
Hλ(A) der semi-infiniten Wedgeprodukte vom Gewicht λ ist der Vektorraum
erzeugt von den formalen Elementen

ψ = fi1,p1 ∧ fi2,p2 ∧ · · · fm,1 ∧ fm,2 · · · ∧ fm+1,1 ∧ · · · . (7-1)

Hierbei sind die fn,p = fn,p(λ) die Basiselemente, wie sie in § 5. eingeführt wur-
den. Die Multiindices seien in strikt aufsteigender lexikographischer Ordnung
angeordnet. Desweiteren sei gefordert, daß, beginnend mit einem Index (m, p)
(darf von ψ abhängen), alle Indices (m′, p′) mit (m′, p′) > (m, p) auftreten.
Siehe etwa [KaR] zu dieser Definition. (Warnung: Dieses Wedgeprodukt hat
nichts mit dem Wedgeprodukt der Differentialformen zu tun.) Die Definition
von Hλ(A) hängt ab von der Basis welche in Fλ(A) gewählt wurde. Insbeson-
dere hängt sie also von der Aufteilung A = I ∪O ab.

Ich möchte nun die Aktion von en,p auf Fλ(A), d.h. die Lieableitung, auf
Hλ(A) übertragen. Hierzu versuche ich zuerst die naive Definition, daß en,p
auf jedem Faktor separat wirken soll und alle solche Terme addiert werden
(Leibniz-Regel).

en,p . ψ := (en,p . fi1,p1) ∧ fi2,p2 ∧ · · ·
+fi1,p1 ∧ (en,p . fi2,p2) ∧ · · ·

+fi1,p1 ∧ fi2,p2 ∧ · · · .

(7-2)

Das Symbol ∧ zeigt nun an, wie die rechte Seite umzuformen ist, so daß eine
Linearkombination von Elementen (7-1) dort steht. Seien v und w endliche
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Nachbarstücke, ψ ein unendliches Nachbarstück, i ein Multiindex und ci ∈ C,
dann gilt

v ∧ fj ∧ w ∧ fi ∧ ψ := −v ∧ fi ∧ w ∧ fj ∧ ψ, j > i (7-3)

v ∧ fi ∧ w ∧ fi ∧ ψ := 0 (7-4)

v ∧

(
r∑
i=1

cifi

)
∧ ψ :=

r∑
i=1

ci (v ∧ fi ∧ ψ) . (7-5)

Die Definition (7-2) macht allerdings nur dann Sinn, falls auf der rechten Seite
nur endlich viele Summanden auftauchen. Um zu zeigen, daß dies i. Allg. nicht
der Fall ist, führe ich das später benötigte Basiselement (T ∈ ZZ )

ΦT = fT,1 ∧ fT,2 · · · ∧ fT+1,1 · · · (7-6)

ein, in welchem alle Indices ≥ (T, 1) erscheinen. Ich nenne ΦT den Vakuumvek-
tor vom Niveau T (und Gewicht λ). Aufgrund der Strukturgleichung (5-9) gilt

e2,p . fm,r = (m− 1 + λ)δp,rfm,p +
∑
h>m

∑
s

C ....fh,s . (7-7)

Ist nun (h, s) ein Index auf der rechten Seite, der in ΦT auftritt und gilt (h, s) 6=
(m, r), so verschwindet dieser Summand in (7-2), da fh,s durch seine Nach-
barterme annulliert wird. Es taucht also nur ein einziger nichtverschwindender
Term auf, nämlich derjenige, der von fm,r herrührt. Als Summanden in (7-2)
erhalten wir (m − 1 + λ)ΦT für alle m ≥ T . Insbesondere sind es unendlich
viele. An diesem Negativbeispiel erkennt man allerdings schon welche en,p keine
Probleme machen. Ich setze

KN+(A) = 〈en,p | n ≥ 3, p = 1, . . . , k〉
KN−(A) = 〈en,p | n ≤ −1− L, p = 1, . . . , k〉 .

(7-8)

Proposition 7.1. (a) KN+(A) und KN−(A) sind Unteralgebren von KN (A).

(b) Für diese Unteralgebren ist die Aktion (7-2) auf Hλ(A) wohldefiniert.
Sie macht Hλ(A) zu einem Liealgebrenmodul über diese Unteralgebren.

Beweis. Sei en,p ∈ KN+(A), dann treten aufgrund (7-7) im Ergebnis von
en,p . fm,r(λ) nur Elemente fh,s(λ) mit h ≥ m + n − 2 ≥ m + 1 auf. Nimmt
man en,p ∈ KN−(A), so erhält man für h die Schranken

n+m− 2 ≤ h ≤ n+m+ L ≤ (m− 1) . (7-9)



111

Wählt man für fm,r nun Elemente aus KN+(A) bzw. KN−(A) selbst, so
zeigen obige Abschätzungen sofort, daß die Ergebnisse wieder in KN+(A), bzw.
KN−(A) liegen. Dies zeigt die Behauptung (a). Sei nun ψ wie in (7-1) gegeben.
(m0, 1) sei der Index ab dem alle Indices auftreten. Für en,p ∈ KN+(A) wird
en,p . fm,r(λ) für m ≥ m0 von den nachfolgenden fh,s im Wedgeprodukt aus-
gelöscht. Somit treten nur endlich viele Summanden in (7-2) auf. Die Aktion
ist also wohldefiniert. Sei en,p ∈ KN−(A). Ist m ≥ m0 + 2 − n , dann gilt
wegen (7-9)

m− 1 ≥ h ≥ n+m− 2 ≥ m0 .

Somit werden alle Terme von en,p . fm,r(λ) durch benachbarte Elemente in ψ

annulliert. Also ist auch hier die Aktion wohldefiniert. Es handelt sich hierbei
um eine Liealgebrenaktion. Seien e und h in KN+(A), bzw. in KN−(A),
dann ergibt sich daß in e . (h . ψ)− h . (e . ψ) nur Terme auftreten, die von der
Aktion von [e, h] auf jeden Faktor im Wedgeprodukt herkommen. Die Terme,
bei denen e und h auf verschiedenen Faktoren operieren, heben sich auf. Somit
überträgt sich die Liemoduleigenschaft von Fλ(A) auf Hλ(A). �

Ich habe somit die Zerlegung als (Vektorraum-) direkte Summe

KN (A) = KN−(A)⊕ 〈en,r | −L ≤ n ≤ 2, r = 1, . . . , p〉 ⊕KN+(A) . (7-10)

Die Aktion obiger Unteralgebren auf Hλ(A) kann zu einer Aktion einer zen-
tralen Erweiterung K̂N (A) vonKN (A) fortgesetzt werden. Hier geht wesentlich
ein, daß Fλ(A) ein verallgemeinert graduierter Modul ist mit der Graduierung
induziert durch die Basiswahl, welche auch benutzt wurde zur Konstruktion
von Hλ(A). Ich formuliere zuerst das wesentliche Resultat. Dies werde ich in
§ 7.(b), unter Benutzung von unendlichen Matrizenalgebren durch eine Verall-
gemeinerung der Methode wie sie in [KaR] für den Virasoro Fall dargestellt
wird, zeigen. In § 7.(c) gebe ich noch eine zweite Methode an, um zum sel-
ben Resultat zu kommen. Sie arbeitet mit “Potenzreihenregularisierung” nach
einer Idee von R. Weissauer. Im wesentlichen ist sie äquivalent zur ersten Meth-
ode. Sie liefert bis auf kohomologe Abänderung dieselbe zentrale Erweiterung,
benützt jedoch nicht den “Umweg” über die Matrizenalgebren. Allerdings muß
ich hier die Konvergenz einer gewissen Potenzreihen, in der Strukturkonstan-
ten auftauchen, voraussetzen. Die Gültigkeit dieser Voraussetzung konnte ich
bisher nur im Fall g = 0 (mit N beliebig) zeigen.
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Proposition 7.2. Es gibt eine zentrale Erweiterung K̂N (A)

φ : K̂N (A)→ KN (A) ,

Lifts En,p der Basiselemente en,p und eine Liealgebrenaktion von K̂N (A) auf
Hλ(A), derart daß die folgenden Eigenschaften gelten (ψ ∈ Hλ(A)).

(a) Für en,p ∈ KN+(A)⊕KN−(A) gilt

op(en,p)(ψ) := En,p . ψ = en,p . ψ . (7-11)

(b) Im kritischen Bereich −L ≤ n ≤ 2 gilt für Basiselemente ψ

op(en,p)(ψ) := En,p . ψ = en,p � ψ + r(n, p, ψ) · ψ . (7-12)

Hierbei erhält man en,p � ψ durch Ignorieren von Vielfachen von ψ auf der
rechten Seite von (7-2). Die Zahl r(n, p, ψ) ∈ C ist durch die Konstruktionen
in § 7.(b), bzw. § 7.(c) festgelegt.

(c) Für das zentrale Basiselement t gilt

t . ψ = id(ψ) = ψ . (7-13)

(d)
E2,p .Φ0 = 0, p = 1, . . . , k . (7-14)

(e) Der 2−Kozykel χ, welcher die Erweiterung definiert, ist lokal.

Ich möchte hier zuerst einige Bemerkungen zur Proposition machen.
(1) Ist en,p ∈ KN+(A), bzw. ∈ KN−(A) und ψ ein Basiselement, so gilt daß
en,p . ψ überhaupt keine Vielfache von ψ enthalten kann. Um dies zu sehen seien
die Basiselemente (7-1) lexikographisch geordnet. Seien ψj die auftretenden
Basiselemente in en,p . ψ, dann gilt ψj > ψ falls en,p ∈ KN+(A), bzw. ψj < ψ

falls en,p ∈ KN−(A). Insbesondere gilt für solche en,p

op(en,p)(ψ) = En,p . ψ = en,p . ψ = en,p � ψ . (7-15)

Wie man sofort nachrechnet gilt also

En,p .ΦT = 0 für n ≥ 3 . (7-16)

(2) Die Aussage (7-14) ergibt sich aufgrund einer speziellen Wahl einer (lin-
earen) Splittingabbildung KN (A)→ K̂N (A), d.h. durch Wahl eines speziellen
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Liftes E2,p. Wählen wir statt E2,p als Lift E′2,p = E2,p + α · t mit α ∈ C, so
gilt E′2,p ·Φ0 = α ·Φ0, ohne daß die anderen Eigenschaften beeinflußt werden.
Davon werde ich weiter unten Gebrauch machen.
Durch Anwendung von (7-12) rechnet man sofort nach

E2,p .ΦT = h(T, p) · ΦT (7-17)

mit einer geigneten Konstante h(T, p) ∈ C. Diese ist abhängig vom jeweils
gewählten α.
(3) Statt t kann aber auch t′ = αt für α ∈ C, α 6= 0 als zentrales Basiselement
verwendet werden. Insbesondere kann auch (7-13) verändert werden zu
t′ . ψ = α · ψ.
(4) Da der Kozykel ein lokaler Kozykel ist, kann er, falls die Vermutung 6.1 gilt,
wie in (6-14) gegeben werden, nachdem man ihn bei Bedarf in Abhängigkeit
von λ kohomolog abgeändert hat. Insbesondere erhalten wir den Ausdruck
(6-19) für die Kozykel spezieller Elemente.

Die Form (6-19) kann ich allerdings auch, lediglich unter Zuhilfenahme der
Eigenschaften von Prop. 7.2, zeigen. Dies werde ich im folgenden tun.

Die wohldefinierte Liealgebra-Aktion von K̂N (A) auf Hλ(A) erzwingt

[ op(en,p), op(em,r) ] = op([ en,p, em,r ]) + χ(en,p, em,r) · id . (7-18)

Der Kozykel χ(en,p, em,r) kann somit berechnet werden mit Hilfe von

([ op(en,p), op(em,r) ]− op([ en,p, em,r ])) (Φ0) = χ(en,p, em,r) Φ0 . (7-19)

Zur Berechnung benutze ich für i > 0

[ e2−i,p, e2+i,r ] = 2iδp,re2,p +
∑
h≥3

∑
s

C ......eh,s . (7-20)

Nach (7-16) gilt für h ≥ 3 eh,s .ΦT = 0. Desweiteren gilt wegen (7-12)
e2,p �Φ0 = 0. Somit operiert in (7-19) der 2. Term auf der linken Seite trivial
auf Φ0 falls (7-19) für die Elemente in (7-20) angesetzt wird. Es bleibt

χ(e2−i,p, e2+i,r) · Φ0 = −op(e2+i,r)(op(e2−i,p)(Φ0)) = −e2+i,r . (e2−i,p � Φ0) .
(7-21)

Für das letzte “=” beachte man, daß op(e2+i,r) die “normale” Aktion ist und
diese Vielfache von Φ0, die in op(e2−i,p)(Φ0) auftreten können, annulliert. Ich
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berechne nun die rechte Seite von (7-21). Zur späteren Verwendung rechne ich
vorläufig statt mit Φ0 allgemeiner mit ΦT . Es gilt

e2−i,p . fm,s = ((m− 1) + λ(1− i)) fm−i,pδp,s + höhere Glieder .

e2−i,p�ΦT besteht somit aus endlich vielen Termen, die sich ergeben aus den
Zerlegungen von e2−i,p . fm,s für T ≤ m ≤ T + i− 1. Für größere m werden
entweder alle Ergebnisterme annulliert durch Nachbarelemente oder tragen nur
als Vielfache von ΦT bei. Wendet man e2+i,r auf die nichtverschwindenden
Teile an, so gilt

e2+i,r . fm−i,p = ((m− i− 1) + λ(1 + i)) fm,rδp,r + höhere Glieder .

Übrig bleibt

e2+i,r . (e2−i,p � ΦT )

=

(
T+i−1∑
m=T

(
(m− 1) + λ(1− i)

)(
(m− i− 1) + λ(1 + i)

))
δp,r · ΦT .

(7-22)

Alle anderen Zwischenterme werden durch die Aktion von e2+i,r annulliert, wie
man etwa durch Nachrechnen verifizieren kann. Man kann dies allerdings auch
direkt sehen, da wegen (7-18) nur Vielfache von ΦT auftreten können und diese
Kombination die einzig mögliche ist.

Spezialisieren wir in (7-22) T = 0, ergibt sich durch direktes Ausrechnen als
Kozykel

χ(e2−i,p, e2+i,r) =

(
i−1∑
m=0

(
(m− 1) + λ(1− i)

)(
(m− i− 1) + λ(1 + i)

))
δp,r

= −i ·
(

(i− 1)(2i− 1)
6

+
1
2
(i− 1)(−i+ 2λ− 2)+

(i+ 1) + λ(i2 − i− 2) + λ2(1− i2)
)
· δp,r .

Dieser Kozykel hängt von λ ab. Die Festlegung der Operation der En,p auf
Φ0 im kritischen Bereich für n und der Operation des zentralen Elementes t,
wie sie oben gemacht wurden, war in gewissen Grenzen willkürlich. Mein Ziel
ist es durch Umdefinition der Aktion obigen Kozykel von λ unabhängig zu
machen. Dies bedeutet nichts anderes als für alle Gewichte λ einen kohärenten
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Lift En,p für en,p zu wählen. Diese Umnormierung kann gegeben werden durch
Konstanten a, b ∈ C, die von λ abhängen dürfen. Es gilt dann

χ(e2−i,p, e2+i,r)Φ0 = (2iδp,r(E2,p + a(λ)t) .Φ0 + χ∗(e2−i,p, e2+i,r)b(λ)Φ0 .

(7-23)
Bei gegebenem a und b kann der neue Kozykel χ∗(.., ..) berechnet werden. Mein
Ziel ist es a(λ) und b(λ) so zu bestimmen, daß χ∗(.., ..) angewendet auf obige
spezielle Basiselemente von λ unabhängig wird. Aus (7-23) folgt für p 6= r

ebenfalls χ∗(e2−i,p, e2+i,r) = 0. Sei also p = r. Ich mache den Ansatz

a(λ) = a0 + a1λ+ a2λ
2, b(λ) = b0 + b1λ+ b2λ

2,

χ∗(e2−i,p, e2+i,p) = c0 + c1i+ c2i
2 + c3i

3

und führe Koeffizientenvergleich durch. Es berechnet sich c0 = c2 = 0. Mit
der (willkürlichen) Normierung b2 = −12 ergibt sich weiter b0 = −2, b1 =
12, c3 = − 1

12 . Der Kozykel berechnet sich also zu − 1
12 i

3 + c0i. c0 ist ein
frei verfügbarer Parameter. Wie in § 6. ausgeführt, bedeutet der lineare Term
lediglich die Verschiebung innerhalb der Kozykelklasse. In Übereinstimmung
mit der üblichen Normierung im Virasoro Falle wähle ich c0 = 1

12 . Damit gilt
notwendigerweise a0 = −1, a1 = 1 und a2 = 0. Als Kozykel ergibt sich somit

χ∗(e2−i,p, e2+i,r) = − 1
12

(i3 − i) · δp,r . (7-24)

Eine Probe zeigt, daß diese Werte tatsächlich (7-23) lösen. Die transformierten
Elemente lauten

E∗2,p = E2,p + (λ− 1) · t und t∗ = −2(6λ2 − 6λ+ 1) · t . (7-25)

Das Polynom 6x2−6x+1 hat keine rationalzahlige Nullstellen. Damit definiert
(7-25) eine Basistransformation. Diese Elemente operieren auf Φ0 wie folgt

E∗2,p .Φ0 = hλ(0, p) · Φ0 = (λ− 1)Φ0

t∗ .Φ0 = cλ · Φ0 = −2(6λ2 − 6λ+ 1)Φ0 .

Im folgenden seien diese Transformationen vorgenommen. Da nur noch diese
Elemente auftreten, lasse ich ∗ in der Bezeichnung weg.

Ich möchte nun die Aktion von E2,p auf ΦT berechnen. Es sei

E2,p .ΦT = hλ(T, p) · ΦT
t .ΦT = cλ · ΦT .

(7-26)
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Hierzu sei wieder

[E2−i,p, E2+i,p ] .ΦT = (2ihλ(T, p) + χ(e2−i,p, e2+i,p)cλ) · ΦT . (7-27)

Im Fall i = 1 gilt χ(e1,p, e3,p) = 0. Somit berechnet sich mit (7-22)

−
(
(T − 1) + 0λ

)(
(T − 2) + 2λ

)
= 2hλ(T, p),

also

hλ(T, p) = −1
2
(T − 1)(T − 2 + 2λ) .

cλ besitzt natürlich den oben schon berechneten Wert. Wir können diesen noch
einmal berechnen, ohne obige Rechnung zu benutzen (genauer: wir benutzen
nur den Kozykel in der Form (7-24) wie er schon in (6-19) angegeben wurde).13

Hierzu müssen wir noch den Fall i = 2 in (7-22) ausführen. Es gilt

−(T − 1− λ)(T − 3 + 3λ)− (T − λ)(T − 2 + 3λ)

= −2hλ(T, p)−
1
12

(23 − 2)cλ .

Durch direktes Rechnen ergibt sich wiederum cλ = −2(6λ2 − 6λ+ 1).

Ich fasse zusammen

Theorem 7.1. Die Aktion von KN (A) auf Fλ(A) kann zu einer Aktion einer
zentralen Erweiterung K̂N (A) auf dem Raum der semi-infiniten Wedgeprodukte
Hλ(A) transferiert werden. Wird der Kozykel χ der zentralen Erweiterung so
normiert, daß er für die Paare von Basiselemente (e2−i,p, e2+i,r) von λ un-
abhängig ist und sich zum Virasoro Kozykel spezialisiert, so gilt für die Oper-
ation auf dem Vakuumvektor ΦT vom Niveau T und Gewicht λ

En,p .ΦT = 0 n ≥ 3 (7-28)

E2,p .ΦT = hλ(p, T ) · ΦT = −1
2
(T − 1)(T − 2 + 2λ)ΦT (7-29)

t .ΦT = cλ · ΦT = −2(6λ2 − 6λ+ 1)ΦT . (7-30)

Hierbei sind die En,p die wie oben angegebenen Lifts der Basiselemente en,p von
KN (A) und t ist das (entsprechend normierte) zentrale Element von K̂N (A).

13Bei Richtigkeit der Vermutung 6.1 können wir diese Form z.Bsp. sofort annehmen.
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Sei HλT (A) der von dem Vakuumvektor ΦT über K̂N (A) erzeugte Unter-
modul von Hλ(A). Dieser Modul wird als Vektorraum erzeugt von den Ele-
menten (Φ = ΦT )

w = En1,p1 . En2,p2 . . . Enr,pr
.Φ (7-31)

mit
(n1, p1) ≤ (n2, p2) ≤ (nr, pr) < (2, 1) .

Dies werde ich gleich im allgemeinerem Rahmen zeigen. Zuerst möchte ich
jedoch in Anlehnung zum Virasoro Fall [KaR], bzw. N = 2 Fall [KN1] Verma
Darstellungen definieren.

Definition. Eine Darstellung von K̂N (A), die erzeugt wird von einem Ele-
ment Φ, derart, daß die Elemente gebildet wie in (7-31) eine Basis des Darstel-
lungsraumes bilden und daß weiter gilt

En,p .Φ = 0, n ≥ 3, p = 1, . . . , k,

E2,p .Φ = h(p)Φ, p = 1, . . . , k

t .Φ = cΦ
(7-32)

heißt Verma Darstellung (oder Verma Modul) mit den Gewichten

(c, h(1), h(2), . . . , h(k)) ∈ Ck+1 .

Sie wird mit M(c, h(1), h(2), . . . , h(k)) bezeichnet. Der Wert c wird auch
zentrale Ladung der Darstellung genannt.

Proposition 7.3. Zu jedem Gewicht (c, h(1), . . . , h(k)) ∈ Ck+1 existiert eine
Verma Darstellung.

Beweis. (Analog zu [KaR] im Virasoro Fall). Sei U := U(K̂N (A)) die
universelle einhüllende Algebra von K̂N (A), 1 das Einselement in U , J das
Linksideal erzeugt von den Elementen.

En,p, n ≥ 3, p = 1, . . . , k, E2,p − h(p) · 1, p = 1, . . . k, t− c · 1 .

Wir bilden den Quotienten

M := M(c, h(1), h(2), . . . , h(k)) := U/J . (7-33)

Dann operiert K̂N (A) auf M durch Linksmultiplikation. Diese Operation ist
eine Liealgebrendarstellung. Setzen wir Φ = 1 mod J , so sind die Relationen
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(7-32) offensichtlich erfüllt und die Darstellung wird von Φ erzeugt. Wir führen
auf den Basiselementen von K̂N (A) wie üblich die lexikographische Ordnung
für En,p ein mit der Zusatzvorschrift

(2, k) < ord (t) < (3, 1) .

Nach dem Poincaré-Birkhoff-Witt Satz [HiSt],[Hu] wird die Basis von U durch
aufsteigende Ketten der Basiselemente gebildet. Eine Basis von J ist gegeben
durch die Ketten die mit En,p, n ≥ 3 enden, sowie durch die Differenzen

w · E2,p − h(p)w, w · t− cw .

Hierbei ist w eine aufsteigende Kette, deren größter Index ≤ (2, p), bzw.
≤ ord (t) ist. Damit ist aber eine Basis des (Vektorraum-) Komplementes
gegeben durch die aufsteigenden Ketten deren größtes Element < (2, 1) ist.
Insbesondere bilden diese Ketten mod J eine Basis von M . �

Eine Darstellung von K̂N (A) aufHλT (A) setzt sich fort zu einer Darstellung
von U(K̂N (A)) auf HλT (A). Wegen (7-28) bis (7-30) faktorisiert diese über

M(cλ, hλ(T, 1), . . . , hλ(T, k)) → HλT (A)

mit der Fixierung Φ → ΦT . Insbesondere ist HλT (A) Quotient einer Verma
Darstellung. Solche Quotienten seien wiederum (in Analogie zum Virasoro
Falle) Höchstgewichtsdarstellungen genannt. Die Wedge-Darstellungen enthal-
ten somit als Untermodule Höchstgewichtsdarstellungen der Krichever - Novikov
Algebra. Da allerdings

hλ(T, 1) = hλ(T, 2) = . . . = hλ(T, k)

gilt, wird man mit dieser einfachen Konstruktion nicht alle erhalten können.

Analog zu den rechts semi-infiniten Formen kann man auch links semi-
infinite Formen einführen. Hierzu machen wir Fλ(A) zu einem Rechts-Modul
durch

f(λ) . e := −e . f(λ), f ∈ Fλ(A), e ∈ KN (A) . (7-34)

Dann gilt nämlich

(f . e) . g − (f . g) . e = g . (e . f)− e . (g . f) = [g, e] . f = f . [e, g] .
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Die links semi-infiniten Formen sind Linearkombinationen von Basiselementen

. . . fm−1,1 ∧ . . . fm,1 ∧ fm,2 . . . ∧ f(i2) ∧ f(i1) .

Hierbei bezeichne (ik) ein Doppelindex. Die Elemente f(ik) seien lexikographisch
geordnet und bis zu einem endlichen Indexwert treten alle auf.

Wiederum ist die (Rechts-)Aktion von KN+(A), bzw KN−(A) wohldefiniert
und kann “fortgesetzt” werden zu einer Aktion einer zentralen Erweiterung
K̂N auf den links semi-infiniten Formen. Allerdings muß statt des Kozykels
α (siehe (7-55)) der Kozykel −α gewählt werden, da in die andere Richtung
zu “regularisieren” ist. Im Vorgriff auf § 7.(b) setzen wir statt (7-64) für die
Aktion der Matrizen

ř(Eii) = r(Eii)− id, i ≤ −1 .

Dies entspricht noch einer zusätzlichen kohomologischen Abänderung des Kozykels.
Dadurch erhält man isomorphe zentrale Erweiterungen von KN (A). Dieser Iso-
morphismus sei

h : K̂N r(A)→ K̂N l(A)

(r (l) bezeichne die Erweiterung auf die Rechts-(Links)formen). Auf KN+(A)
und KN−(A) ist er die Identität. Hλ+(A) bezeichne die rechts semi-infinite
Formen, Hλ−(A) bezeichne die links semi-infinite Formen. In der Physik
benötigt man zur Berechnung von Übergangswahrscheinlichkeiten Paarungen
dieser Darstellungsräume. Folgende zwei Möglichkeiten einer Paarung möchte
ich erwähnen.

1. Sei ψ ein Basiselement aus Hλ+(A) und φ ein Basiselement aus Hλ−(A).
Wir bilden (formal) das beidseitig unendliche Wedgeprodukt φ∧ψ . Tauchen
nicht alle fn,p auf, oder tauchen manche mehrfach auf, so setzen wir 〈φ, ψ〉 = 0 ,
ansonsten setzen wir

〈φ, ψ〉 = sign(σ), (7-35)

wobei σ die (endliche) Permutation ist, welche benötigt wird, um die vollständige
Ordnung aller Elemente in φ ∧ ψ zu erhalten. Der Rest erfolgt durch lineare
Fortsetzung.

2. Eine natürlichere Paarung besteht in einer Paarung von H1−λ
− (A) mit

Hλ+(A) . Hierbei sei bei der Konstruktion der Linksformen die Ordnungsre-
lation im zweiten Indexargument derart gewählt, daß (m, p) < (m, p′) für
p > p′. Seien die jeweiligen Basiselemente gegeben durch (mit vorgeschriebener
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ansteigender oder absteigender Indizierung)

ψ = f(j1)(λ) ∧ f(j2)(λ) . . . ∧ f(jk)(λ) . . .

φ = . . . ∧ f(ik)(1− λ) ∧ . . . f(i2)(1− λ) ∧ f(i1)(1− λ) .

Wir setzen
〈φ, ψ〉 =

∏
k ∈ N

1
2πi

∮
Cτ

f(ik)(1− λ) · f(jk)(λ) . (7-36)

Der Rest erfolgt durch lineare Fortsetzung. Aufgrund der Dualität (5-6) tauchen
jeweils nur Faktoren 0 oder 1 auf.
Seien fn,p(λ) und fm,r(1 − λ) gegeben. Mit der Derivationseigenschaft der
Lieableitung gilt

Le
(
fn,p(λ) ·fm,r(1−λ)

)
= Le

(
fn,p(λ)

)
·fm,r(1−λ)+fn,p(λ) ·Le

(
fm,r(1−λ)

)
.

Da das Residuum der Lieableitung eines Differentials verschwindet (siehe
(6-59)) folgt

1
2πi

∮
Cτ

fm,r(1− λ) ·
(
e . fn,p(λ)

)
= − 1

2πi

∮
Cτ

(
e . fm,r(1− λ)

)
· fn,p(λ)

=
1

2πi

∮
Cτ

(
fm,r(1− λ) . e

)
· fn,p(λ) . (7-37)

Damit gilt aber für e ∈ KN+(A) oder e ∈ KN−(A)

〈φ, e . ψ〉 = 〈φ . e, ψ〉 ,

d.h. die Operationen von En,p mit n > 2 oder n < −L sind unter dieser Paarung
selbstadjungiert, also

〈φ,En,p . ψ〉 = 〈φ .En,p, ψ〉 . (7-38)

Das duale Element zum Vakuumvektor ΦT ist gegeben durch

Φ∗T = . . . ∧ f−T,1(1− λ) ∧ . . . f1−T,2(1− λ) ∧ f1−T,1(1− λ) . (7-39)

Für dieses gilt (p = 1, . . . , k)

Φ∗T . En,p = 0, n < −L,
Φ∗T . E−L,p = h−1−λ(p, T ) Φ∗T ,

Φ∗T . t = c−1−λ Φ∗T .

(7-40)

Diese Werte können genauso wie für die rechts semi-infiniten Formen berechnet
werden. Ist t− für die Linksformen derart gewählt, daß gilt t− = h(t+), so gilt

c−1−λ = c1−λ = cλ .

Eine genauere Analyse zeigt
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Proposition 7.4. Die Elemente En,p sind unter der Paarung (7-36)
selbstadjungiert, d.h. es gilt

〈Ψ, En,p .Φ〉 = 〈Ψ . h(En,p),Φ〉 . (7-41)

Der Beweis verwendet an einigen Stellen Methoden aus den folgenden
Abschnitten. Ich möchte ihn allerdings schon hier ausführen.

Beweis. Aufgrund (7-37) gilt die Gleichheit (7-41) falls die Aktion en,p� statt
der Aktion En,p . = op(en,p) verwendet wird. Der Unterschied beider Aktionen
besteht im Ignorieren der Vielfachen von fm,r im Produkt en,p . fm,r. Dies
bedeutet, daß in der Matrizendarstellung in § 7(b) A0(µ) ignoriert wird. (A0(µ)
jeweils analog zu (7-71) gebildet.) Seien Φ und Ψ gegeben und seien w und y

endliche Teilstücke gleicher Länge, derart daß in

Φ = w ∧ Φ1, Ψ1 ∧ y = Ψ

die Elemente Φ1 und Ψ1 gleichförmig ansteigende, bzw. fallende Indices haben.
Entsprechend (7-81) gilt

En,p .Φ = (en,p . w) ∧ Φ1 + w ∧ En,p .Φ,
Ψ . h(En,p) = Ψ1 . h(En, p) ∧ y + Ψ1 ∧ (y . en,p) .

Somit also

〈Ψ, En,p .Φ〉 = 〈y, en,p . w〉 · 〈Ψ1,Φ1〉+ 〈y, w〉 · 〈Ψ1, En,p .Φ1〉 .

Analog ergibt sich

〈Ψ . h(En,p),Φ〉 = 〈y . en,p, w〉 · 〈Ψ1,Φ1〉+ 〈y, w〉 · 〈Ψ1 . h(En,p),Φ1〉 .

Hierbei ist das Skalarprodukt auf den endlichen Abschnitten, analog zu (7-36)
definiert. Auf den endlichen Teilen liegt Selbstadjungiertheit vor. Gilt sie auch
auf den Ψ1, bzw. Φ1 Teilen, so gilt sie allgemein. Es genügt deshalb diese auf
solchen Elementen zu zeigen. Bezeichne A0(µ) die entsprechende Matrix für die
Aktion auf den Rechtsformen, A∗0(µ

∗) die Matrix für die Aktion auf den Links-
formen. Die Elemente µ und µ∗ werden gebildet aus den Strukturkonstanten.
Für das folgende benötigen wir die Dualität

C
(m,r)
(n,p),(m,r)(λ) = −C(1−m,r)

(n,p),(1−m,r)(1− λ) (7-42)
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die sich nach (7-37) berechnet. Das Minuszeichen wird von der Rechtsaktion
aufgenommen. Es seien sowohl Ψs als auch Φt Elemente mit gleichförmigen
Indexdifferenzen. Die Proposition ist gezeigt, falls die folgende Behauptung
gezeigt ist

〈Ψsř(A∗0(µ
∗)),Φt〉 = 〈Ψs, r(A0(µ))Φt〉 . (7-43)

Beide beteiligten Operatoren operieren als Multiplikationsoperatoren. (7-43)
gilt somit sicherlich, falls Ψs nicht dual zu Φt ist, da in diesem Fall beide Seiten
verschwinden. Im folgenden können wir also Φt = ΦT und Ψs = Φ∗T annehmen
und den entsprechenden Multiplikator ausrechnen. Dies werden wir jetzt tun.
Es ist zu beachten, daß der Kozykel α von § 7(b) kohomolog abgeändert wurde
durch (7-25). Es gilt

r̂(Eii) = r(Eii)− id, i ≥ k

und damit

r̂(A0(µ))Φt =

{ ∑k−1
r=t µrΦt, t < k

−
∑t−1
r=k µrΦt, t ≥ k .

(7-44)

Ψ̌sř(A∗0(µ
∗)) =

{ ∑s
r=k Ψsµ

∗
r , s ≥ k

−
∑k−1
r=s+1 Ψsµ

∗
r , t ≥ k .

(7-45)

O.B.d.A. sei k = 1 (für k > 1 wird lediglich die Indizierung etwas aufwendiger).
Dann gilt wegen (7-42)

µn = µ∗1−n, (allgemein µn = µ∗(2k−1)−n)

und wegen der Dualität s = 1− t.
Sei t < 1, damit gilt s ≥ 1 und für die jeweiligen Multiplikatoren gilt

0∑
r=t

µr =
0∑
r=t

µ∗1−r =
s∑
r=1

µ∗r .

Damit sind die Multiplikationsfaktoren gleich. Im Fall t ≥ 1 schließt man
genauso mit den zweiten Formeln. �
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(b) Ein Hilfsmittel: ggg lll (((∞∞∞)))

In diesem Abschnitt zeige ich die Proposition 7.2 mit Hilfe unendlicher
Matrizenalgebren. Hierbei handelt es sich im wesentlichen um eine Verallge-
meinerung der Methoden wie sie für den Fall der Virasoro Algebra von Kac und
Raina in [KaR] dargestellt wurden. Sie wurden unabhängig voneinander von
Kac und Peterson [KaP] und Date, Jimbo, Kashiwara und Miwa [DJKM] im
Jahre 1981 entwickelt. Siehe hierzu auch [Ver]. Ich führe zuerst die folgenden
unendlichen Matrizen, bzw. Matrizenalgebren ein. mat(∞) sei der Vektorraum
aller (beidseitig) unendlichen komplexen Matrizen

A = (aij)i,j∈ZZ , aij ∈ C . (7-46)

Gegeben seien weiter die Unterräume

gl(∞) = { A = (aij) | aij = 0 fast immer } (7-47)

gl(∞) = { A = (aij) | es gibt ein r so daß aij = 0 falls |i− j| > r }
(7-48)

Die Matrizen in gl(∞) haben “endlichen Träger”, die Matrizen in gl(∞) haben
nur endlich viele “Diagonalen” (r in der Definition darf von Matrix zu Matrix
variieren).14 Führen wir die Elementarmatrizen

Ekl = (δi,k · δl,j)i,j∈ZZ (7-49)

ein, so sehen wir sofort, daß diese eine Basis von gl(∞) bilden.
Ist A = (aij) ∈ gl(∞) so gilt

A =
∑
i,j

aijEij (7-50)

wobei der Summationsbereich endlich bleibt. Für die Matrizen in gl(∞) können
wir ein Erzeugendensystem angeben. Sei µ ∈ CZZ ,
d.h. µ = (. . . , µ−1, µ0, µ1, . . . ) , so setzen wir für r ∈ ZZ

Ar(µ) =
∑
i

µiEi,i+r . (7-51)

14Der Gebrauch der Symbole ist von Literaturquelle zu Literaturquelle unterschiedlich.
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Die Summe symbolisiert lediglich eine bequeme Schreibweise für die unendlichen
Matrizen. Die Menge

{ Ar(µ) | r ∈ ZZ , µ ∈ CZZ }

erzeugt gl(∞). Selbstverständlich bildet sie keine Basis.

Das Matrizenprodukt für die Matrizen A = (aij) und B = (bkl) ist definiert
wie im endlichdimensionalen als

C = A ·B, C = (cil), cil =
∑
j∈ZZ

aij · bjl (7-52)

falls alle auftretenden Summen endlich sind. Für Matrizen aus gl(∞) ist dies
trivialerweise immer der Fall. Das Produkt ist allerdings auch für alle Matrizen
aus gl(∞) wohldefiniert. Sei nämlich r ≥ 0, derart daß aij = 0 für |i − j| > r

so erstreckt sich die Summe in (7-52) nur über den Bereich i − r bis i + r,
d.h. C ist eine wohldefinierte Matrix. Sei nun s ≥ 0, derart daß bij = 0 für
|i − j| > s so verschwindet für |i − l| > r + s das Element cil, d.h. C ∈
gl(∞). Insbesondere ist gl(∞) also eine assoziative Algebra. Indem wir gl(∞),
bzw. gl(∞) mit dem üblichen Matrixkommutator versehen, machen wir sie zu
unendlich dimensionalen Liealgebren. Es ist

[Eij , Ekl] = δj,kEil − δi,lEjj . (7-53)

Umgekehrt legt (7-53) aufgrund der Darstellung (7-50), bzw. (7-51) den Kom-
mutator insgesamt fest.

Für diese Liealgebren möchte ich nun einen Kozykel definieren (siehe [Fu1]).
Sei A = (aij), so setzen wir π(A) = (π(A)ij) die Matrix mit

π(A)ij =
{
aij , i ≥ 0, j ≥ 0
0, sonst.

Die Matrix
ρ(A,B) = π([A,B])− [π(A), π(B)] (7-54)

besitzt endlichen Träger, ist also in gl(∞). Insbesondere ist Spurbildung möglich.
Wir führen ein

α(A,B) = Tr ρ(A,B) . (7-55)
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Proposition 7.5. α(.., ..) definiert einen Kozykel von gl(∞), der nicht ko-
homolog zu Null ist. Desweitern gilt H2

cont(gl(∞),C) ist eindimensional, also
erzeugt von der Klasse [α].

Für den Beweis siehe [Fu1],[FF],[DJKM]. Allerdings werde ich die Aussage über
die Eindeutigkeit im folgenden nicht benötigen, und daß α ein Kozykel ist rech-
net man leicht selber nach. Es ist wohlbekannt, daß gl(∞) keine nichttriviale
zentrale Erweiterung besitzt [Fu1]. In der Tat kann man obigen Kozykel für
Matrizen aus der Unteralgebra gl(∞) auch als Korand des Zykels

γ(A) = Trπ(A) (7-56)

beschreiben. Für A ∈ gl(∞) ist (7-56) nicht wohldefiniert.

Ich berechne nun den Kozykel für die Elementarmatrizen

α(Eij , Eml) = Tr
(
π(δj,mEil − δi,lEjm)− [π(Eij), π(Eml)]

)
. (7-57)

Sind alle i, j,m, l ≥ 0, so gilt π(Eij) = Eij und π(Eml) = Eml. Insbesondere
verschwindet dann (7-57). Für i oder j < 0, bzw. m oder l < 0 verschwindet
der 2. Term in (7-57). Da in die Spurbildung nur Diagonalmatrizen eingehen
erhalten wir

α(Eij , Eml) =


1, i = l ≥ 0, j = m < 0
−1, j = m ≥ 0, i = l < 0
0, sonst.

(7-58)

Wie in § 6.(a) ausgeführt wurde, definiert solch ein Kozykel eine zentrale Er-
weiterung ĝl(∞) von gl(∞) , erzeugt von Lifts Êij der Eij und einem zentralen
Element t mit der Strukturgleichung

[Êij , Êml] = δj,mÊil − δi,lÊjm + α(Eij , Eml) t . (7-59)

Sei nun vs ∈ CZZ die beidseitig unendliche Folge mit vs = (δi,s)i∈ZZ . Ich
setze

V = ⊕s ∈ ZZC · vs .

Durch
Eij · vs = δj,svi (7-60)

erhalten wir ein Operation von gl(∞) auf V , welche die Operation Matrix ×
Vektor in Cn auf ∞−liche Objekte verallgemeinert. Hierbei ist zu beachten,
daß Ar(µ) eine wohldefinierte Aktion auf V besitzt wegen

Ar(µ) · vs =
∑
i∈ZZ

µiEi,i+r · vs = µs−rvs−r . (7-61)
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Da die Elemente in gl(∞) endliche Linearkombinationen solcher Ak(µ) sind,
ist diese Operation auch auf gl(∞) definiert.

Die Aktion von KN (A) auf Fλ(A) definiert nach Wahl jeweils einer Basis
eine Einbettung von KN (A) in gl(∞). Hierzu sei λ festgehalten. Wir setzen

fnk+p−1 := fn,p(λ), n ∈ ZZ , p = 1, . . . k .

Damit werden die Basiselemente durch ZZ numeriert. Die Strukturgleichung
umgeschrieben lautet nun

en,p . fm =
s∑

h=r

Chn,p;mfh

mit
r ≥ m+ k(n− 2), s ≤ m+ k(n+ 1 + L)− 1 . (7-62a)

Proposition 7.6. Die Abbildung

ψ : KN (A)→ gl(∞), en,p 7→ ψ(en,p) := (aij), aij = Cin,p;j

ist eine Einbettung von Liealgebren.

Beweis. Die Elemente aij sind ungleich Null lediglich für i im Bereich

[ j + k(n− 2) , j + k(n+ 1 + L)− 1 ] .

Somit ist aij 6= 0 lediglich für k(n − 2) ≤ i − j ≤ k(n + 1 + L) − 1 .
Insbesondere ist ψ(en,p) in gl(∞). Daß ψ ein Liehomomorphismus ist, ist klar,
da ψ die Zuordnung der Strukturkonstanten des Liemoduls Fλ(A) über KN (A)
ist. Insbesondere gilt (siehe § 2.) [Ld, Le] = L[d,e] also auch

[ψ(en,p), ψ(em,r)] = ψ([en,p, em,r]) . �

In den Beweis der Prop. 7.6 ging ganz wesentlich die verallgemeinert graduierte
Struktur ein. Wir können nun auch schreiben (im formalen Sinne)

ψ(en,p) =
∑
i,j

Cin,p;jEij .

Hierbei ist allerdings die Summe nicht endlich. Identifizieren wir die Basis des
Vektorraumes, auf dem gl(∞), bzw. gl(∞) operiert, mit den Elementen fm, so
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operiert gl(∞) auch auf Fλ(A) via Matrixmultiplikation Eij · fm = δj,mfi .
Wir berechnen

ψ(en,p) · fm =
∑
i,j

Cin,p;jδj,mfi = en,p . fm .

D.h. beide Operationen sind verträglich (so war ψ ja gerade definiert).

Unser Ziel ist es mit Hilfe dieser Einbettung die Aktion von KN (A) oder
genauer einer zentralen Erweiterung K̂N (A) auf den semi-infiniten Wedgepro-
dukten zu definieren. Hierzu studieren wir zuerst die semi-infinite Wedgedarstel-
lung ausgehend von gl(∞) (siehe [KaR]). Hλ(A) ist der Raum wie er in (7-1)–
(7-6) eingeführt wurde. Hierbei ist die Aktion in (7-2) natürlich durch die
Matrixmultiplikation zu ersetzen. Beschränken wir uns auf die Unteralgebra
gl(∞), ist die Aktion wohldefiniert, da für A ∈ gl(∞) gilt A · fm = 0 für m
groß genug. Die Algebra gl(∞) macht jedoch Schwierigkeiten. Nach (7-61) ist

Ar(µ) · fm = µm−rfm−r .

Somit ist r 6= 0 ebenfalls unproblematisch, da letztendlich (wie in § 7.(a) aus-
geführt) für m� 0 das Resultat durch die Nachbarterme annulliert wird. Für
r = 0 gilt allerdings daß sich fm immer wieder reproduziert. Insbesondere ist
die Aktion nicht definiert. Man nehme als Vektor etwa

Φm = fm ∧ fm+1 ∧ fm+2 . . . , (7-62)

dann gilt

EiiΦm =
{

Φm, i ≥ m
0, i < m .

Wir erhalten somit

A0(µ)Φm =

( ∞∑
r=m

µr

)
Φm . (7-63)

Diese unendliche Summe wird im allgemeinen jedoch nicht konvergieren. Kac
und Raina [KaR] folgend, definiere ich die Aktion nun um.15 Zur Deutlichkeit
bezeichne ich mit r die Aktion auf Hλ(A) welche von der Matrixmultiplikation
herkommt, mit r̂ die wie folgt umdefinierte Aktion

r̂(Eij) := r(Eij), i 6= j oder i = j < 0

r̂(Eii) := r(Eii)− id, i ≥ 0 .
(7-64)

15Im Gegensatz zu [KaR] wähle ich aufsteigende semi-infinite Formen.
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Damit gilt

r̂(A0(µ))(Φm) =


(∑−1

r=m µr

)
Φm, m < 0(

−
∑m−1
r=0 µr

)
Φm, m > 0

0, m = 0 .

(7-65)

Die Aktion ist also wohldefiniert. Allerdings handelt es sich nicht mehr um
eine Liealgebrenaktion. Hierzu müßten ebenfalls die Kommutatorregeln

[r̂(Eij), r̂(Eml)] = δj,mr̂(Eil)− δi,lr̂(Emj) (7-66)

gelten. Ersetzen wir in (7-66) r̂ durch r, so gelten sie natürlich. Andererseits
verschwinden auf der linken Seite alle Anteile von id. Es sind also lediglich
alle Möglichkeiten für die rechten Seiten zu betrachten bei denen r̂ tatsächlich
verschieden von r ist. Man erhält in diesen Fällen statt (7-66) die richtige
Formel

[r̂(Eij), r̂(Eji)] = r̂(Eii)− r̂(Ejj) + β(Eij , Eji) · id . (7-67)

Direkte Rechnung liefert

β(Eij , Eji) =


0, i, j < 0
0, i, j ≥ 0
1, i ≥ 0, j < 0
−1, j ≥ 0, i < 0 .

(7-68)

Dies stimmt mit dem Kozykel α überein der zur Konstruktion der zentralen
Erweiterung ĝl(∞) in (7-58) gegeben wurde. Setzen wir r̂(Êi,j) = r̂(Ei,j) und
r̂(t) = id , so definiert dies in der Tat eine Aktion von ĝl(∞) auf Hλ(A).

Aufgrund der Einbettung ψ : KN (A) → gl(∞) ist die Aktion r̂ ebenfalls
auf KN (A) definiert und die zentrale Erweiterung ĝl(∞), definiert durch den
Kozykel α, definiert ebenfalls eine zentrale Erweiterung K̂N (A), gegeben durch
den Kozykel χ = ψ∗α mit einer entsprechenden Fortsetzung der Aktion.
ψ̂ : K̂N (A) → ĝl(∞) sei die entsprechende Einbettung. Der Kozykel χ kann
“explizit” angegeben werden

χ(en,p, em,r) = α(ψ(en,p), ψ(em,r)) =
∑
i,j,s,t

Cin,p;jC
s
m,r;tα(Eij , Est)

=
∑
i,j

Cin,p;jC
j
m,r;iα(Eij , Eji) .
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Aufgrund der Abschätzungen (7-62a) gilt, daß die Koeffizientenpaare lediglich
im Indexbereich (i, j) der den Bedingungen

j + k(n− 2) ≤ i ≤ j + k(n+ 1 + L)− 1

i+ k(m− 2) ≤ j ≤ i+ k(m+ 1 + L)− 1

genügt, simultan 6= 0 sein können. Addieren wir beide Gleichungen und Sub-
trahieren (i+ j) so erhalten wir

k(n+m− 4) ≤ 0 ≤ k(m+ n+ 2 + 2L)− 2 .

Ist
(n+m) ≥ 5 oder (m+ n) ≤ −2L− 3 + [

2
k

]

so ist der zulässige Indexbereich leer. D.h. der Kozykel verschwindet. Also ist
χ ein lokaler Kozykel. Dies zeigt Prop. 7.2(e).

En,p seien die Lifts der Elemente en,p gegeben duch

ψ̂(En,p) =
∑
i,j

Cin,p;jÊij . (7-69)

Falls en,p ∈ KN+(A), bzw. ∈ KN−(A), tritt im Resultat von en,p . fm,r kein
fm,r auf. Somit tritt in ψ(en,p) kein Eii auf, Insbesondere stimmt also die
Aktion von En,p mit der Aktion von en,p überein. Also Prop.7.2 (a).
Die Darstellungsweise für die Aktion im kritischen Bereich als (Prop. 7.2(b))

En,p . w = en,p � w + r(n, p, w) · w (7-70)

ergibt sich aufgrund einer solchen Darstellung für die Aktion von ĝl(∞). Natürlich
kann En,p . w konkret angegeben werden. Uns genügt jedoch die Berechnung
von E2,p .Φ0. Es gilt

ψ(e2,p) = A0(µ) +
∑
i>m

αimEim, αim ∈ C (7-71)

mit

µm =
{ m−p+1

k − 1 + λ, k | (m− p+ 1)
0, sonst.

Da r̂(A0(µ))(Φ0) = 0 (7-65) und ebenfalls r̂(Eim)(Φ0) = 0 gilt, folgt
E2,p .Φ0 = 0 , also Prop. 7.2(c). Natürlich kann durch Addition eines be-
liebigen Vielfachen des zentralen Elementes t zu E2,p auch anders normiert
werden. Dies entspricht der kohomologen Abänderung des Kozykels.
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(c) Ein Hilfsmittel: www−−−Regularisierung

In diesem Abschnitt möchte ich Prop. 7.2 mit einer zweiten Methode be-
handeln. Die Methode hat unter anderem den Vorteil, daß die Einführung der
Matrizenalgebren und somit der Übergang von der Graduierung deg(fn,p) = n

auf eine ZZ−Graduierung nicht notwendig ist. Ich folge hierbei einer Idee von
R. Weissauer.

Im folgenden sei w eine komplexe Variable. Die Aktion von KN (A) auf
Fλ(A) wird nun modifiziert

en,p .
w
fm,r = wm(en,p . fm,r) . (7-72)

Diese Aktion ist weiterhin linear. Jedoch liegt lediglich für w = 1 eine Lieaktion
vor. Die modifizierte Aktion wird durch genau dieselben Vorschriften wie in
§ 7.(a) auf die semi-infiniten Formen übertragen. Die derart erhaltene Aktion
(unter der Voraussetzung, daß sie wohldefiniert ist) wird mit opw bezeichnet.
Zuerst ist zu untersuchen unter welchen Bedingungen Wohldefiniertheit vor-
liegt.

Seien {ψj}j∈J die Basiselemente vonHλ(A) und ψ0 ein festes Basiselement.
Dann gilt

opw(en,p)(ψ0) =
∑
j∈J
j 6=0

gj(w)ψj + g0(w)ψ0 (7-73)

mit Laurentreihen gj(w), j ∈ J in der Variablen w. Aufgrund der verallge-
meinert graduierten Struktur ist die Summe endlich und der Koeffizient vor
ψj für j 6= 0 kann durch Aktion von en,p auf endlich viele Faktoren von ψ0

erhalten werden. Um dies zu sehen, beachte man, daß für m� 0 die Elemente
im Produkt en,p . fm,r bis auf einen eventuell vorhandenen fm,r Anteil durch
Nachbarelemente in ψ0 annulliert werden. Somit tauchen neben ψ0 Termen
nur endlich viele andere Terme auf, also auch nur endlich viele Basiselemente.
(Dies ist dieselbe Überlegung wie in § 7.(a) bzw. (b).) Somit ist gj für j 6= 0
ein Laurentpolynom, d.h. ein Polynom in w und w−1. Ist g0 ebenfalls ein Lau-
rentpolynom, wie dies etwa falls en,p nicht im “kritischen Bereich” liegt gilt,
so können wir w = 1 setzen und erhalten die gewünschte Aktion. Klar ist
ebenfalls, daß g0 auf jeden Fall eine nach unten abbrechende Laurentreihe ist.
Schwierigkeiten treten auf, falls g0 nicht nach oben abbricht. In diesen Fall
wird g0 im allgemeinen für w = 1 nicht mehr konvergieren. Als Koeffizienten
in der Potenzreihe treten Strukturkonstanten von Fλ(A) auf. Die Potenzreihe
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g0 hängt auch vom Basiselement (und natürlich auch von en,p) ab. Wählen
wir als Basiselement Φ0 (7-6), so differiert ψ0 von Φ0 nur in endlich vielen
Faktoren. Wir können somit schreiben

g0(w) = p(w) + g(w) (7-74)

mit einem Laurentpolynom p und der entsprechenden Laurentreihe g für das
Basiselement Φ0. In p kann ohne Probleme w = 1 gesetzt werden und g ist
eine Potenzreihe. Im folgenden machen wir die

Voraussetzung 7.1. Die Potenzreihe g konvergiere für alle w mit |w| < 1.
Weiter gelte

g(w) = h(w) + gr(w),

h(w) =
−1∑
l=m

al(1− w)l, gr(w) =
∞∑
l=0

al(1− w)l, al ∈ C ,
(7-75)

wobei gr(w) eine für w = 1 konvergierende Potenzreihe ist.

Die w−regularisierte Aktion op besteht darin zu setzen

op(en,p)(ψ0) =
∑
j∈J
j 6=0

gj(1)ψj + gr0(1)ψ0 (7-76)

mit gr0(w) = p(w) + gr(w) . Dies kann auch umformuliert werden zu

op(en,p)(ψ0) = lim
w→1−

(opw(en,p)(ψj)− h(w)ψj) . (7-77)

h(w) ist der durch (7-75) gegebene Hauptteil der Funktion g(w) bei w = 1.
Dieser hängt ab von en,p, jedoch nicht von ψj .

Bemerkung 1: Die Vorschrift (7-76) (die alles andere in kohärenter Weise
festlegt) unterscheidet sich, von der in § 7.(b) durch die Vorgabe (7-64) in-
duzierten, lediglich dadurch, daß dort statt En,p der Lift En,p + gr(1) · t für
en,p gewählt würde. Somit wissen wir bei Benutzung von § 7.(b) natürlich, daß
diese Aktion, die Aktion einer zentralen Erweiterung definiert. Das Ziel dieses
Abschnittes ist es jedoch § 7.(b) zu vermeiden.

Bemerkung 2: (über die Gültigkeit der Voraussetzung) Isolieren wir den
Term in der Strukturgleichung, welcher uns interessiert, so erhalten wir

en,p . fm,r = C
(m,r)
(n,p),(m,r)(λ) · fm,r + Rest .
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Somit gilt

g(w) =
∞∑
m=0

C
(m,r)
(n,p),(m,r)(λ) · wm . (7-78)

In die Koeffizienten C ..... gehen die Entwicklungskoeffizienten der Formen ein.
Im Virasoro Fall ist die Voraussetzung erfüllt. Dann gilt nämlich

Cmn,m(λ) = (m− 1 + λ) · δn,2 .

Also gilt für das Element e2

g(w) =
∞∑
n=0

(m− 1 + λ) · wm =
1

(1− w)2
+
λ− 2
1− w

. (7-79)

Insbesondere ist dies ein reiner Hauptteil, also gr = 0. Für en mit n 6= 0 ergibt
sich immer g(w) = 0.
Die Voraussetzung ist sogar ganz allgemein im Fall Geschlecht g = 0 erfüllt.
Aufgrund Prop. 5.1 gilt nämlich

C
(m,r)
(n,p),(m,r) = α+ β ·m

mit α und β Konstanten, welche für k ≥ l nicht von m und für k < l nur von
der Restklasse von m mod b (b = (l− k) + 1) abhängen. Damit konvergiert die
Reihe entsprechend zu Formel (7-79). Für k ≥ l erhalten wir wiederum einen
reinen Hauptteil. Somit gilt hier, daß die Operation op identisch mit der in
§.7.(b) ist.
Für höheres Geschlecht wird man vermutlich mit Hilfe der expliziten Formen
und analog zum Beweis von Prop. 5.1 zeigen können, daß die Vermutung gilt.

Die folgenden Propositionen folgen unter der Annahme der Gültigkeit der
Voraussetzung. Vorab jedoch eine einfache, aber nützliche Formel.
Sei ψ∧Φ ein Basisvektor, y ein endliches Teilstück und sei en,p . y entsprechend
der Definition für die unendlichen Formen definiert. Falls en,p .Φ definiert ist,
gilt

en,p . ψ = (en,p . y) ∧ Φ + y ∧ (en,p .Φ) . (7-80)

Offensichtlich gilt (7-80) auch für die opw−Aktion. Da der Hauptteil h(w) nur
von en,p abhängt, gilt (7-80) auch für die regularisierte op−Aktion

op(en,p)(ψ) = (en,p . y) ∧ Φ + y ∧ op(en,p)(Φ) . (7-81)
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Proposition 7.7. Die Operation op ist eine projektive Aktion von KN (A) auf
Hλ(A), d.h. es gilt für e, g ∈ KN (A)

[op(e), op(g)] = op([e, g]) + χ(e, g) · id, χ(e, g) ∈ C . (7-82)

Beweis. Sei S die lineare Abbildung

S = [op(e), op(g)]− op([e, g]) .

(a) Wir zeigen zuerst, daß S wie ein Vielfaches der Identität auf jedem Basisele-
ment ψ wirkt. hd bezeichne den zum Element d ∈ KN (A) gehörende Hauptteil
nach (7-75). Es gilt

S(ψ) =
[

lim
w→1

(opw(e)− he(w)id), lim
w→1

(opw(g)− hg(w)id)
]
(ψ)

− lim
w→1

(opw([e, g])− h[e,g](w)id)(ψ)

= lim
w→1

(
[opw(e), opw(g)]− opw([e, g]) + h[e,g](w)id

)
(ψ) .

Betrachten wir im Endresultat nur die Basiselemente 6= ψ, so können wir den
Limes durch Einsetzen ausführen. Insbesondere sind hierbei auch im Resultat
von

e .
w

(g .
w
fm,r)− g .

w
(e .
w
fm,r), bzw. [e, g] .

w
fm,r

auch die Anteile von fm,r nicht zu beachten. Für diese stellt die Aktion die
übliche dar. Also folgt S(ψ) enthält außer ψ keine Komponenten.
(b) Sei ψ = y∧ΦT mit einem endlichen Teilstück y gegeben. Nach (7-81) also

op(e)(op(g)(ψ)) = (e . (g . y)) ∧ ΦT + (e . y) ∧ op(g)(ΦT )+

(g . y) ∧ op(e)(ΦT ) + y ∧ op(e)(op(g)(ΦT )) .

Ein entsprechendes Resultat erhält man für die vertauschte Reihenfolge. Somit
insgesamt

S(y ∧ ΦT ) =
(
e . (g . y)− g . (e . y)− [e, g] . y

)
∧ ΦT + y ∧ S(ΦT )

= y ∧ S(ΦT )
(7-83)

(c) Nach (a) gilt S(ΦT ) = c(T ) ·ΦT mit einer Konstanten c(T ). Seien nun ΦT
und ΦU mit T 6= U gegeben. O.B.d.A. sei U < T . Dann gibt es ein endliches
Teilstück y mit ΦU = y ∧ ΦT , also

S(ΦU ) = c(U) · ΦU = y ∧ S(ΦT ) = y ∧ (c(T ) · ΦT ) = c(T ) · Φ(U) .
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Damit folgt c(T ) = c(U) = c. Da sich jedes Basiselement schreiben läßt als
ψ = y ∧ Φ(T ) , folgt wie oben S(ψ) = c · ψ . Das bedeutet jedoch S operiert
wie c · id. �

Sei LEnd Hλ(A) die Liealgebra der linearen Endomorphismen von Hλ(A)
mit dem Kommutator [C,D] = C ◦D −D ◦ C als Lieprodukt.

J = {α · id | α ∈ C} (∼= C)

ist ein (Lie-)Ideal. J ist offensichtlich zentral. PEnd Hλ(A) ist die Faktor-
algebra nach J . Dies ist äquivalent dazu, daß LEnd Hλ(A) eine zentrale Er-
weiterung von PEnd Hλ(A) ist. Prop. 7.7 besagt zusammen mit der trivialen
Tatsache op(e+ g) = op(e) + op(g) , daß

op : KN (A)→ PEnd Hλ(A)

ein Liehomomorphismus ist. Dieser definiert eine Liehomomorphismus

ôp : K̂N (A)→ LEnd Hλ(A)

ausgehend von einer zentralen Erweiterung K̂N (A) von KN (A). Die zentrale
Erweiterung K̂N (A) ist definiert nach dem Mechanismus von § 6. durch eine
Kozykel χ mit (e, f ∈ KN (A))

χ(e, f) · id = [op(e), op(f)]− op([e, f ]) . (7-84)

(7-84) ist nach Konstruktion antisymmetrisch. Die 2-Kozykeleigenschaft ist
ebenfalls automatisch erfüllt. Es gilt nämlich

χ([e, f ], g) = [op([e, f ]), op(g)]− op([[e, f ], g])

= [[op(e), op(f)] + χ(f, g) · id, op(g)]− op([[e, f ], g])

= [[op(e), op(f)], op(g)]− op([[e, f ], g]) .

Mit der Jacobiidentität in LEnd Hλ(A) bzw. in KN (A) und der Benutzung
der Linearität von op, ergibt sich, daß die Summe über alle zyklischen Ver-
tauschungen verschwindet. Also in der Tat die Kozykeleigenschaft. (Dies hat
natürlich nichts mit der speziellen Situation zu tun, sondern ist eine allgemeine
Eigenschaft solcher projektiven Darstellungen.)

Somit ist nun durch

r : K̂N (A) = KN (A)⊕ C → LEnd Hλ(A), r(e, s) = op(e) + s · id (7-85)
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ein Liehomomorphismus definiert. Die Elemente (en,p, 0) bezeichne ich wieder
als En,p, das Element (0, 1) als t. Diese Elemente bilden ein Basis von K̂N (A).

Nun bin ich in der Lage Prop. 7.2 (unter der Voraussetzung 7.1) zu beweisen.
Die Teile (a),(b),(c) folgen unmittelbar aus der Definition. Um Teil (d) zu
zeigen, rechne ich die opw−Aktion aus. Es gilt

e2,p .
w
fm,r = wm(m− 1 + λ)δp,r · fm,p +

∑
h>m

· · · fh,s .

Somit (da alle anderen Elemente annulliert werden)

opw(e2,p)(Φ0) =

( ∞∑
m=0

(m− 1 + λ) · wm
)

Φ0 =
(

1
(1− w)2

+
λ− 2
1− w

)
Φ0 .

Es liegt ein reiner Hauptteil vor, also

E2,p .Φ0 = op(e2,p)(Φ0) = 0 .

Dies war zu zeigen.
Die Behauptung (e) ist die Lokalität des Kozykels.

χ(en,p, em,r) · id = [op(en,p), op(em,r)]− op([en,p, em,r]) . (7-86)

Natürlich genügt es dies auf irgendeinem der Vektoren auszurechnen. Dieser sei
Φ. Desweiteren müssen wir unsere Aufmerksamkeit nur auf die Möglichkeiten
richten, welche eine Beitrag zu Φ im Ergebnis liefern können. Ist n+m ≥ 5 oder
n +m ≤ −1 − 2L, so tauchen im Produkt [en,p, em,r] nur Elemente auf, für
welche die op−Aktion die gewöhnliche ist. Also reproduziert sich Φ nicht bei
Anwendung des zweiten Termes von (7-86). Sei also einer dieser Bedingungen
erfüllt. Es gilt dann

χ(en,p, em,r) · id = lim
w→1

[opw(en,p), opw(em,r)]

(die Vielfachen der Identität verschwinden innerhalb des Kommutators). Es
bleiben nur die Elemente übrig bei denen sowohl en,p als auch em,r auf densel-
ben Faktor wirken. An der unteren Grenze erhalten wir folgende Kette

fh,s → fn+h−2,s → fn+m+h−4,s

an der oberen Grenze

fh,s → fn+h+L,s → fn+m+2L,s .

Nach Voraussetzung ist n + m ≥ 5 oder n + m ≤ −2L − 1. Es können sich
also die Elemente nicht reproduzieren, d.h. es taucht kein Φ auf. Dies zeigt die
Lokalität.
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(d) Die Darstellung für D1(A)

Da die Fλ(A) verallgemeinert graduierte Module über D1(A) sind (6-47),
kann man nach genau demselben Verfahren wie für die Unteralgebra KN (A)
Wedge-Darstellungen für diese Algebra konstruieren. Hierzu benutze ich zur
Argumentation die Methode welche in § 7.(b) entwickelt wurde. Es sei D1(A)
aufgrund der Aktion auf Fλ(A) in gl(∞) eingebettet.
Zur Erinnerung seien die folgenden Formeln nochmals notiert (f ∈ Fλ(A))

An,p · fm,r = 1 · fn+m−1,pδp,r +
n+m+M∑
h=n+m

∑
s

. . . fh,s, (7-87)

en,p · fm,r = (m− 1 + λ(n− 1))fn+m−2,pδp,r +
n+m+L∑
h=n+m−1

∑
s

. . . fh,s .
(7-88)

Proposition 7.8. Die Unterräume

D1,+(A) = 〈en,p | n ≥ 3, p = 1, . . . , k〉 ⊕ 〈An,p | n ≥ 2, p = 1, . . . , k〉
D1,−(A) = 〈en,p | n ≤ −L− 1, p = 1, . . . , k〉 ⊕ 〈An,p | n ≤ −M − 1, p = 1, . . . , k〉

sind Unteralgebren von D1(A). Sie besitzen eine wohldefinierte Aktion auf
Hλ(A).

Beweis. Für beide Unterräume gilt, daß jeweils die Summanden für sich be-
trachtet unter der Operation abgeschlossen sind. Es bleiben lediglich die gemein-
samen Teile zu untersuchen. Hierzu untersuche man (7-88) für die “schlecht-
esten” Fälle. Auch da gilt es wie man sofort verifiziert. Da für solche Am,r
im Resulat von Am,r · fn,p kein fn,p auftreten kann, liegt mit genau denselben
Argumenten, die im Beweis von Prop.7.1 angewendet wurden, eine Lieaktion
vor. �

Der “kritische Bereich” für den die Aktion nicht wohldefiniert ist, ist wiederum
endlichdimensional. Die Prop. 7.2 gilt für die Algebra F0(A) in entsprechender
Übersetzung. Aufgrund (7-87) gilt mit den Bezeichnungen aus § 7.(b)

ψ(A1,p) = A0(µ) +
∑
i>m

Eim

mit passendem µ ∈ CZZ entsprechend (7-71). Also gilt mit (7-65)

op(A1,p)(ΦT ) = −T . (7-89)
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Sei ρ = ψ∗(α) der Pullback des Kozykels α (7-55). ρ eingeschränkt auf
KN (A) ist natürlich der Kozykel χ, wie er in § 7.(a) diskutiert wurde. Wir be-
trachten nun seine Einschränkung auf F0(A). Man kann mit denselben Metho-
den wie in § 7.(a) zeigen, daß dieser entsprechende Lokalitätseigenschaften hat.
Insbesondere gilt ρ(An,p, Am,r) = 0 für (n+m) > 3. Der Kozykel kann gegeben
werden durch

[op(An,p), op(Am,r)] = op([An,p, Am,r]) + ρ(An,p, Am,r) · t = ρ(An,p, Am,r) · t .

Im Grenzfall m = 2− n gilt (für n ≥ 2)

[op(An,p), op(A2−n,r)](Φ0) = op(An,p)(op(A2−n,r)(Φ0) . (7-90)

Nach (7-87)
A2−n,r · fk,r = fk−n+1,r + höhere Glieder .

Die höheren Glieder werden bei der Anwendung von An,p wieder durch Nach-
barterme annulliert. Lediglich

An,r · fk−n+1,r = fk,r + höhere Glieder

liefert einen Beitrag. (Falls p 6= r ergibt sich 0.) Allerdings muß k den Bedin-
gungen

0 ≤ k und k − n+ 1 ≤ −1

genügen. Das heißt, wir erhalten als Resultat (7-90) (n− 1)Φ0 . Der Kozykel
bestimmt sich somit zu

ρ(An,p, A2−n,r) =
1− n

2(6λ2 − 6λ+ 1)
· δp,r . (7-91)

Hierbei ist zu beachten, daß t aufgrund der Normierung auf KN (A) bereits so
festgelegt war, daß gilt

t · Φ0 = −2(6λ2 − 6λ+ 1) · Φ0 .

Insbesondere sind wir nach dieser Fixierung nicht mehr in der Lage, durch
Umdefinition der Aktion, die λ−Abhängigkeit des Kozykels zu beseitigen.

Ich komme nun zum Pullback des Kozykels α auf die gemischten Teile.
Wiederum erfüllt er eine Lokalitätseigenschaft. Insbesondere gilt

ρ(en,p, Am,r) = 0 falls n+m ≥ 4 .
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Im Grenzfall berechnet sich

op(en,p)(op(A3−n,r)(Φ0))− op(A3−n,r)(op(en,p)(Φ0)) = ρ(en,p, A3−n,r) t · Φ0 .

(7-92)
Das Produkt berechnet sich zu

en,p . A3−n,r = (2− n)A1,p + höhere Glieder .

D.h. alle Terme im Produkt annullieren Φ0.
Fall 1: n ≥ 3. In diesem Fall bleibt lediglich der erste Term. Wiederum ist das
Ergebnis nur für p = r nichttrivial. Entsprechend zu obigem führe ich lediglich
diejenigen Terme aus, welche einen Beitrag liefern:

A3−n,p · fk,p = 1 · fk+2−n,p + . . .

en,p · fk+2−n,p = ((k − n+ 1) + λ(n− 1)) · fk,p + . . . .

Die Beschränkungen für k sind nun

0 ≤ k und k − n+ 2 ≤ −1 .

Als Faktor vor t · Φ0 ergibt sich

n−3∑
k=0

(k − n+ 1 + λ(n− 1)) =
1
2
(n− 2)

(
(n− 1)(2λ− 1)− 2

)
.

Machen wir nun die Basistransformation in der zentralen Erweiterung

Â∗1,p = Â1,p +
1

−2(6λ2 − 6λ+ 1)
· t (7-93)

so erhalten wir als Kozykel

ρ(en,p, A3−n,r) =
(n− 1)(n− 2)(1− 2λ)

4(6λ2 − 6λ+ 1)
δp,r . (7-94)

und es gilt Â∗1,p · Φ0 = 1 · Φ0 . Auch hier sei der Basiswechsel vorgenommen
und dann der ∗ in der Notation wieder unterdrückt.
Fall 2: n = 2. Hier verschwinden beide Terme auf der linken Seite von (7-92)
im Einklang mit der Formel (7-94).
Fall 3: n ≤ 1. Liefert dasselbe Resultat wie der Fall 1. Ich fasse zusammen
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Theorem 7.2. Die Aktion von D1(A) auf Fλ(A) kann zu einer Aktion einer
zentralen Erweiterung D̂1(A) auf Hλ(A) “fortgesetzt” werden, derart daß mit
geeigneten Lifts En,p der Basiselemente en,p ∈ KN (A) und Ân,p der Elemente
An,p ∈ F0(A) folgende Eigenschaften gelten:
(a) en,p → En,p und An,p → Ân,p definiert eine Einbettung von D1,+(A)
und D1,−(A) in D̂1(A), welche mit der Aktion auf Hλ(A) verträglich ist.
(b) Es gilt

En,p .ΦT = 0, n ≥ 3, Ân,p .ΦT = 0, n ≥ 2,

t .ΦT = −2(6λ2 − 6λ+ 1) · ΦT

E2,p .ΦT = −1
2
(T − 1)(T − 2 + 2λ) · ΦT ,

Â1,p .ΦT = (1− T ) · ΦT .

(c) Der definierende Kozykel, in Bezug auf die obigen Lifts, kann für spezielle
Basiselemente gegeben werden durch

ρ(en,p, e4−n,r) =
1
12
(
(n− 2)3 − (n− 2)

)
· δp,r,

ρ(en,p, A3−n,r) =
(

(n− 1)(n− 2)(2λ− 1)
2cλ

)
· δp,r,

ρ(An,p, A2−n,r) =
(n− 1)
cλ

· δp,r,

mit cλ = −2(6λ2 − 6λ+ 1) .

Theorem 7.2(c) besagt, daß der Kozykel ρ = ψ∗(α), eingeschränkt auf
spezielle Basiselemente, gegeben werden kann als entsprechende Linearkom-
bination der Kozykel χ, γ, β welche in § 6. eingeführt wurden.

Vermutung 7.1. Es gilt

ρ = ψ∗(α) = χ+
(2λ− 1)

2cλ
β +
−1
cλ
γ (7-95)

bis auf kohomologe Abänderung.

Im Virasoro Fall besteht der kritische Streifen nur aus den Elementen e2
und A1. Insbesondere ergibt sich, daß die Paare in Theorem 7.2(c) die einzi-
gen Terme sind für die der Kozykel nicht verschwindet (bis auf kohomologe
Abänderung). Somit gilt die Vermutung in diesem Falle. Dies wurde ebenfalls
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in [ACKP] bewiesen. Im allgemeinen Fall verifiziert man wie oben, daß (7-95)
auch für die Paare

(en,p, e3−n,r), (en,p, A2−n,r), (An,p, A1−n,r)

gilt. Für p 6= r kann man den Wert des Kozykels, ohne Einführung höherer
Entwicklungskoeffizienten der Elemente An,p, bzw. en,p, angeben. Man erhält
die Ausdrücke, wie sie in (6-20),(6-35a) und (6-67) gegeben wurden. Für p = r

werden die Entwicklungskoeffizienten benötigt. Zusätzlich benötigt man auch
eine kohomologe Abänderung

Â′0,p = Â0,p + α · t, E′1,p = E1,p + β · t

falls diese Elemente noch im kritschen Streifen liegen.

Was für D1(A) gemacht wurde, kann auch für die Algebra der kohärenten
Differentialoperatoren D(A) (bzw. für Dλ(A) ) ausgeführt werden. Nach § 6.
besitzt D(A) als erzeugende Elemente aufsteigende Ketten von Basiselementen
von D1(A). Die Basiselemente waren aber in Bezug auf die ZZ−Graduierung
geordnet. Hierbei galt

deg(en,p) = n, deg(An−1,p) = n .

Um eine vollständige Ordnung zu erhalten, ordnen wir zuerst nach deg und in-
nerhalb desselben deg Wertes nach dem zweiten Index mit der Festsetzung, daß
die Elemente An−1,p “kleiner” als die Elemente en,r sind. D(A) bildet unter
dem Kommutator der Ringelemente eine Liealgebra LD(A), welche D1(A) als
Unteralgebra enthält. Sei D ein Basiselement gebildet als “Produkt” von r

Basiselementen aus D1(A). Sei m die Summe über deg der auftretenden Ba-
siselementen, so gilt

D . fn,p =
n+m+Lr∑
h=n+m−2r

k∑
s=1

. . . fh,s . (7-96)

Es liegt also auch eine verallgemeinert graduierte Struktur vor. Insbesondere
besitzt LD(A) ebenfalls eine Einbettung in gl(∞). (Natürlich kann man dies
auch ohne Benutzung der Basis, nur mit Hilfe der Eigenschaften der universellen
einhüllenden Algebra zeigen.) Damit definiert der Übergang Fλ(A) auf Hλ(A)
mit Hilfe der Erweiterung gl(∞) auf ĝl(∞) ebenfalls eine zentrale Erweiterung



141

von LD(A), welche D̂1(A) als Unteralgebra enthält. Selbstverständlich ist der
Kozykel abhängig von λ, da er dies schon im Fall der Restriktion auf D̂1(A)
ist.

Mit den dargestellten Methoden ist es auch möglich das Analogon der Formel
[KNTY,3.22] für den “Schwinger Term” ρ zu berechnen. Dies wiederum nichts
anderes als der Kozykel.

Proposition 7.9. Sei

ukn,p = Ak+n+1,p · (e1,p)k, k, n ∈ ZZ , k ≥ 0 .

Die Potenzierung sei in D(A) aufgefaßt. Dann gilt für den Kozykel

ρ(ukn,p, u
l
m,r) = 0, für n+m > 0 . (7-97)

Für n+m = 0 gilt (mit cλ = −2(6λ2 − 6λ+ 1) )

ρ(ukn,p, u
l
−n,r) =

(−1)k

cλ

k! l!
(k + l + 1)!

·
k∏

j=−l

(n+ j) · δp,r . (7-98)

Im Virasoro Fall ist (7-98) der einzige nichtverschwindende Term.

Beweis. Es gilt

Ak+n+1,p · (ek1,p . fj,r) =
k∏
i=1

(j − i)fj+n,p δp,r + höhere Glieder . (7-99)

(Im Virasoro Fall verschwinden die höheren Glieder.) Wir rechnen den Kozykel
auf dem Vakuumvektor Φ1 aus. Ist n > 0, so gilt

op(ukn,p(Φ1)) = 0 .

Für n = 0 ergibt sich aufgrund der Normalisierung (7-65) ebenfalls 0. Für
n < 0 erhält man

op(ukn,p(Φ1)) = ukn,p � Φ1 + α · Φ1, α ∈ C .

(Im Virasorofall α = 0.) Wir rechnen nun

w = op(ukm,r)(op(u
l
n,r)(Φ1))
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aus. Für n ≥ 0 gilt w = 0. Für n < 0 und m > 0 erhalten wir

w = op(ukm,r)(u
l
n,r � Φ1) .

(Im Virasoro Fall ist für n < 0 und m < 0 die op−Aktion die übliche Aktion.)
Nach Definition gilt

[op(ukn,p), op(u
l
m,r)] Φ1 − op[ukn,p, ulm,r] Φ1 = ρ(ukn,p, u

l
m,r) · cλ · Φ1 . (7-100)

Aufgrund (7-99) sieht man, daß für m und n ≥ 0 der Kozykel verschwindet, da
beide Terme auf der linken Seite verschwinden. Sei nun n ≥ 0 und m < 0. Ist
m+ n > 0, so werden aufgrund der Kette in

fj,. → fj+m,. → fj+(m+n),.

in (7-99) alle Terme durch die Nachbarelemente annulliert. Für m+n = 0 führt
die Kette nur falls p = r ist, wieder zurück. Dieser Fall ist im folgenden zu
betrachten. (Da im Virasorofall keine höheren Glieder auftreten, ist die Opera-
tion die gewöhnliche Operation, also verschwindet der Kozykel für m+n < 0.)
Sei also p = r und m = −n < 0. Es sind wiederum nur die Kombinationen zu
betrachten, welche Φ1 reproduzieren. Wenden wir ulm,p an so erhalten wir

fj,p →
l∏
i=1

(j − i)fj+m,p, 1 ≤ j ≤ −m .

ukn,p angewandt ergibt

fj,p →
l∏
i=1

(j − i)
k∏
s=1

(j +m− s)fj,p .

Damit gilt zum einen
op[ukn,p, u

l
−n,p]Φ1 = 0

und weiter

B = cλ · ρ(ukn,p, ul−n,p) =
n∑
j=1

l∏
i=1

(j − i)
k∏
s=1

(j − n− s) . (7-101)

Nicht verschwindende Terme treten erst ab j = l + 1 , bzw. n = l + 1 auf.
Nach Substitution n = (l + 1) + p ergibt sich

B = (−1)k
p∑
s=0

(l + s)!
s!

· (k + (p− s))!
(p− s)!

=

= (−1)kk! l!
p∑
s=0

(
l + s

s

)
·
(
k + (p− s)
p− s

)
.
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Nach untenstehendem Lemma somit

B = (−1)kk! l!
(
l + k + 1 + p

p

)
= (−1)k

k! l!
(k + l + 1)!

·
k∏

j=−l

(n+ j) . �

Lemma 7.1. Sei l, k, p ∈ N0, dann gilt

p∑
s=0

(
l + s

s

)
·
(
k + (p− s)
p− s

)
=
(
l + k + 1 + p

p

)
. (7-102)

Beweis. (Dies ist sicherlich eine bekannte Formel aus der Kombinatorik, leider
habe ich keine Referenz gefunden) Der Beweis erfolgt mit vollständiger Induk-
tion nach p. Für p = 0 ist (7-102) sicherlich richtig. Sei sie nun richtig für
p.

p+1∑
s=0

(
l + s

s

)
·
(
k + (p− s) + 1
p− s+ 1

)
=

(
l + p+ 1
p+ 1

)
+

p∑
s=0

(
l + s

s

) k∑
t=0

(
k + (p− s)− t

p− s

)
=

l∑
r=0

(
l + p− r

p

)
+

k∑
t=0

(
k + l + p− t+ 1)

p

)
=
(
k + l + p+ 2

p+ 1

)
.

Hierbei wurde mehrfach die wohlbekannte Formel [Rot,p.11]

(
n+ 1
r + 1

)
=
n−r∑
t=0

(
n− t
r

)

benutzt. �
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§ 8. bbb−−− ccc Systeme

(a) Mathematische Definition

Der Begriff “b − c” System ist ein Begriff aus der konformen Feldtheorie.
Im Abschnitt (b) werde ich (abweichend vom generellen Prinzip) kurz die
physikalische Seite ansprechen. Vorab jedoch die Erinnerung: Seien D und
E Elemente eines Ringes, z.Bsp. Operatoren auf einem Vektorraum, so ist der
Antikommutator definiert als

{D,E} = D ◦ E + E ◦D . (8-1)

Sei Hλ+(A) der Raum der rechts semi-infiniten Formen vom Gewicht λ (kurz
Rechtsformen genannt) undH1−λ

− (A) der Raum der links semi-infiniten Formen
vom Gewicht 1 − λ (Linksformen). Zur Notationsvereinfachung verwende ich
fn,p = fn,p(λ) und hn,p = fn,p(1−λ). Desweiteren bezeichne (jk) einen Doppel-
index. Die Vektorräume Fλ(A) und F1−λ(A) operieren auf den semi-infiniten
Formen wie folgt: Sei f ∈ Fλ(A) und h ∈ F1−λ(A). Wir setzen

cf . w = f ∧ w, bh . w = ih(w), w ∈ Hλ+(A) (8-2)

w . cf = (w)if , w.βh = w ∧ h, w ∈ H1−λ
− (A) . (8-3)

Hierbei ist ih die Kontraktion. Sie ist auf jedem Faktor fm,r definiert als

ih(fm,r) =
1

2πi

∮
Cτ

h · fm,r (8-4)

und auf
w = f(j1) ∧ f(j2) . . . ∧ f(jl) ∧ . . .

durch die (modifizierte) Leibnizregel

ih(w) =
∞∑
l=1

(−1)l−1ih(f(jl)) · f(j1) ∧ . . . ∧ f̌(jl) ∧ . . . . (8-5)

f̌(jl) bezeichne (wie üblich), daß dieser Faktor ausgelassen wird. Die Definition
auf den Linksformen ist entsprechend. Offensichtlich sind diese Abbildungen
linear. Sie sind aber auch linear im Index, d.h. es gilt ce+f = ce + cf und
bg+h = bg+ bh. Für die Operatoren, welche den Basiselementen fn,p, bzw. hn,p
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zugeordnet sind, verwende ich auch cn,p, bzw. bn,p. Anschaulich bedeutet das
Operieren (auf den Rechtsformen) von cn,p dem “Einhängen” von fn,p und das
Operieren von bn,p dem “Aushängen” von f1−n,p. Auf den Linksformen ist es
gerade umgekehrt. Daß die Kontraktion (8-5) wohldefiniert ist, ist wiederum
eine Folgerung der verallgemeinert graduierten Struktur, bzw. der Dualität (5-
6). Damit bleiben in der Summe (8-5) nur endlich viele Terme übrig.

Proposition 8.1. Sowohl für die Operatoren auf den Rechts- als auch auf den
Linksformen gilt

{bg, bh} = 0, g, h ∈ F1−λ(A), {ce, cf} = 0, e, f ∈ Fλ(A), (8-6)

{bn,p, cm,r} = δm,1−nδp,r . (8-7)

Beweis. Ich betrachte lediglich die Rechtsformen. Der Beweis für die Linksfor-
men ist entsprechend. Da

e ∧ f ∧ w = −f ∧ e ∧ w

gilt, folgt direkt {ce, cf} = 0.
Für k 6= l sei abkürzend gesetzt

ykl = ih(f(jk)) · ig(f(jl)) · f(j1) ∧ . . . f̌(il) ∧ . . . f̌(ik) ∧ . . . .

Es gilt mit w wie oben

ig(ih(w)) =
∞∑
k=1

k−1∑
l=1

(−1)k−1(−1)l−1 ykl +
∞∑
k=1

∞∑
l=k+1

(−1)k−1(−1)l−2 ykl

=
∑
k,l
l<k

(−1)k+l ykl +
∑
k,l
l>k

(−1)k+l−1 ykl .

Bei Änderung der Reihenfolge von h und g werden gerade die Rollen von k

und l vertauscht. Somit ergibt sich das Negative des obigen Ausdruckes, also
{bg, bh} = 0.
Es bleibt die letzte Relation.

bn,p . (cm,r . w) = bn,p . (fm,r ∧ w) = ihn,p(fm,r) · w − fm,r ∧ ihn,p(w),

cm,r . (bn,p . w) = cm,r . (ihn,p
(w)) = fm,r ∧ ihn,p

(w) .

Somit gilt

{bn,p, cm,r} = ihn,p
(fm,r) · w = δm,1−nδp,r · w . �
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Proposition 8.2. (a) Die Operatoren bn,p und cn,p auf den Rechts- und
Linksformen sind in Bezug auf die Dualitätspaarung (7-36) selbstadjungiert,
d.h. es gilt für φ ∈ H1−λ

− (A), ψ ∈ Hλ+(A)

〈φ . cn,p, ψ〉 = 〈φ, cn,p . ψ〉 (8-8)

〈φ . bn,p, ψ〉 = 〈φ, bn,p . ψ〉 (8-9)

(b) Sei ΦT der Vakuumvektor vom Gewicht λ und Level T (7-6), Φ∗T der
duale Vakuumvektor (7-39). Dann gilt

cn,p .ΦT = 0, für n ≥ T ; Φ∗T . cn,p = 0, für n ≤ T − 1 (8-10)

bn,p .ΦT = 0, für n ≥ 2− T ; Φ∗T . bn,p = 0, für n ≤ 1− T. (8-11)

Beweis. (a) Es sei cn,p gegeben. Fall 1: Taucht fn,p in ψ auf, gilt cn,p . ψ = 0.
cn,p auf φ angewandt hängt das Element h1−n,p aus, falls vorhanden. In diesem
Fall besitzt fn,p keinen Partner mehr, d.h. die Paarung ergibt Null. Ist h1−n,p
nicht vorhanden, dann ergibt sich φ . cn,p = 0. Also auch hier Null. Fall 2:
Taucht nun fn,p in ψ nicht auf und sei (n, p) kleiner als der kleinste Index
in ψ, dann ist die Paarung 6= 0, genau dann wenn h1−n,p als erstes Element
in φ steht und alle folgenden paarweise zu den Elementen in ψ dual sind.
Derselbe Wert des Skalarproduktes ergibt sich auch bei der Betrachtung der
Operation auf φ. Taucht fn,p nicht in ψ auf, aber sei (n, p) größer als der
kleinste Index, dann muß durch vorzeichenbehaftetes Vertauschen fm,p an die
richtige Stelle gebracht werden. Dies entspricht genau dem Vorzeichenfaktor
bei der Kontraktion mit h1−n,p auf φ. Also gilt (8-8). Dasselbe Argument gilt
auch für (8-9).
(b) cn,p ist auf den Rechtsformen das Einhängen von fn,p. Dieses Element
taucht aber schon in ΦT auf, falls n ≥ T gilt. bn,p ist das Aushängen von f1−n,p.
Für n ≥ 2 − T tritt dieses Element jedoch gar nicht auf. Entsprechendes gilt
für die Linksformen. �

Nach Prop. 8.2(b) können die cn,p bzw. bn,p mit hinreichend großem n als
Vernichtungsoperatoren auf den Rechtsformen aufgefaßt werden, falls ΦT als
Grundzustand interpretiert wird. Für T = 1 haben die Formeln (8-10) und
(8-11) eine besonders symmetrische Gestalt.

AufHλ+(A) undH1−λ
− (A) operieren außer Fλ(A) und F1−λ(A) auch K̂N (A),

bzw. D̂1(A). Es bestehen folgende interessante Kommutatorrelationen.
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Proposition 8.3. Sei ê ∈ D̂1(A) ein Lift eines Vektorfeldes e ∈ KN (A),
â ∈ D̂1(A) ein Lift einer Funktion a ∈ F0(A), t ein zentrales Element in
D̂1(A), f ∈ Fλ(A) und h ∈ F1−λ(A) . Dann gilt

[ ê, cf ] = cLe(f), [ ê, bh ] = bLe(h),

[ â, cf ] = ca·f , [ â, bh ] = b−a·h

[ t, cf ] = [ t, bh ] = 0 .

(8-12)

Insbesondere bildet der von D̂1(A) , c(Fλ(A)) und b(F1−λ(A)) aufgespannte
Unterraum von LEnd Hλ+(A) eine Unteralgebra (als Liealgebra).

Beweis. Nach (7-81) gilt in der dortigen Notation

op(e)(w ∧ ψ) = (e . w) ∧ ψ + w ∧ op(e)(ψ) .

Ein beliebiger Lift ê operiert auf Hλ+(A) als

ê . = op(e) + α · id, α ∈ C .

Somit gilt ebenfalls

ê . (w ∧ ψ) = (e . w) ∧ ψ + w ∧ (ê . ψ) . (8-13)

Sei nun φ ∈ Hλ+(A) zerlegt in w∧ψ , derart daß weder ψ, noch ê . ψ etwas mit
den Indices, auf denen ih und iLe(h) wirken, “zu tun haben”. Es gilt dann

ê . (f ∧ φ) = (e . (f ∧ w)) ∧ ψ + f ∧ w ∧ (ê . ψ)

und
f ∧ (ê . φ) = f ∧ (e . w) ∧ ψ + f ∧ w ∧ (ê . ψ),

also
[ê, f∧]φ = ([e, f∧] . w) ∧ ψ . (8-14)

Entsprechend

ê . (ih(φ)) = ê . (ih(w) ∧ ψ) = (e . ih(w)) ∧ ψ + ih(w) ∧ (ê . ψ),

ih(ê(φ)) = ih(e . w ∧ ψ + w ∧ (ê . ψ)) = ih(e . w) ∧ ψ + ih(w) ∧ (ê . ψ),

also
[ê, ih]φ = ([e, ih]w) ∧ ψ . (8-15)
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Gelten nun die Formeln auf den endlichen Teilbereichen, so folgt

[ê, f∧]φ = Le(f) ∧ w ∧ ψ = Le(f) ∧ φ,
[ê, ih]φ = iLe(w) ∧ ψ = iLe(φ) .

Damit genügt es, die Formeln auf den endlichen Teilbereichen zu beweisen.
Zuerst zur ersten Formel. Es gilt

e . (f ∧ w) = e . f ∧ w + f ∧ (e . w) also [e, f∧]w = Le(f) ∧ w,

was zu zeigen war. Für die zweite berechnet man (n = Länge von w)

e . (ih(w)) = e .

(
n∑
k=0

(−1)k−1ih(f(jk)) · f(j1) ∧ . . . f̌(jk) ∧ . . . f(jn)

)

=
n∑

k,l=0
l 6=k

(−1)k−1ih(f(jk)) · f(j1) ∧ . . . (e . f(il)) . . . f̌(jk) ∧ . . . f(jn) .

In der umgekehrten Reihenfolge ergibt sich

ih(e . w) =
n∑

k,l=0
l 6=k

(−1)k−1ih(f(jk)) · f(j1) ∧ . . . f̌(jk) ∧ (e . f(il)) . . . f(jn)

+
n∑
l=0

(−1)l−1ih(e . f(jl)) · f(j1) ∧ . . . f̌(jl) ∧ . . . f(jn) .

Als Differenz somit

[e, ih](w) = −
n∑
l=0

(−1)l−1ih(e . f(jl)) · f(j1) ∧ . . . f̌(jl) ∧ . . . f(jn) .

Nach Lemma 6.(b) (6-60) gilt

ih(e . f(il)) =
1

2πi

∮
Cτ

h · Le(f(il)) = − 1
2πi

∮
Cτ

Le(h) · f(il), (8-16)

also

[e, ih](w) =
n∑
l=0

(−1)l−1iLe(h)(f(jl)) · f(j1) ∧ . . . f̌(jl) ∧ . . . f(jn)

= iLe(h)(w) .
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Die Überlegungen oben gelten (fast) unverändert für â ∈ H(A) ⊂ D̂1(A).
Le(f) ist durch (a · f) zu ersetzen. Statt (8-16) gilt nun allerdings

ih(a · f(il)) =
1

2πi

∮
Cτ

h · a · f(il) = ia·h(f(il))

ohne Vorzeichenänderung. Deshalb das andere Vorzeichen im Endergebnis. Die
Aussagen, an denen das zentrale Element beteiligt ist, sind trivial. �

Entsprechende Formeln gelten auch für die Aktion auf den Linksformen. In
der Tat sind die durch diese Algebra gegebene Operatoren, diejenigen welche
in der Physik wichtig sind. Siehe hierzu auch die Formeln 3.32 in [KNTY] für
den Virasoro Fall.

(b) Verwendung in der Physik

Es sind operatorwertige Felder b und c vom Gewicht λ, bzw. 1− λ auf dem
world sheet gegeben [Bo1]. Sie haben keine Entsprechung in der klassischen
Theorie. Aufgrund des Entwicklungspostulates der konformen Feldtheorie be-
sitzen sie die (formale) Darstellung als beidseitig unendliche Summen

b(Q) =
∞∑

n=−∞

k∑
p=1

bn,pf1−n,p(λ)(Q),

c(Q) =
∞∑

n=−∞

k∑
p=1

cn,pf1−n,p(1− λ)(Q)

(8-17)

mit operatorwertigen Koeffizienten bn,p und cn,p. Hier tauchen, wie bere-
its in der Einleitung, unendliche Summen von Operatoren auf. Diese seien
in formaler Weise verstanden. Operieren die Operatoren auf entsprechenden
Räumen, so muß unter Umständen eine Regularisierungsprozedur angegeben
werden, die dafür sorgt, daß zumindestens für alle phyikalisch relevanten Op-
eratoren (z.Bsp. für den Energie-Impulsoperator) die Aktion zu einer linearen
Aktion im üblichen Sinne wird. Diese Betrachtungen sollen jedoch hier nicht
weiter vertieft werden.

Die b − c Felder erfüllen für Q,Q′ ∈ Cτ (d.h. sie werden zur selben Zeit
betrachtet) die Antikommutatorrelationen

{b(Q), c(Q′)} = ∆τ (Q,Q′),

{b(Q), b(Q′)} = {c(Q), c(Q′)} = 0 .
(8-18)
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Hierbei ist ∆τ (Q,Q′) die “Delta-Funktion” für (λ, 1 − λ) Systeme auf Cτ ,
d.h. für ein Feld h vom Gewicht λ gilt

h(Q) =
1

2πi

∮
Cτ

h(Q′) ·∆τ (Q,Q′), (8-19)

wobei über die Variable Q′ integriert wird. Aufgrund der Dualität bzw. des En-
twicklungssatzes (5-9), der nun im formalen Sinne auf die Operatoren angewen-
det wird, gilt

∆τ (Q,Q′) =
∑
n,p

fn,p(λ)(Q) · f1−n,r(1− λ)(Q′) . (8-20)

Rechnen wir den Antikommutator aus

{b(Q), c(Q′)} =
∑

n,m,p,r

{bn,p, cm,r} f1−n,p(λ)(Q) · f1−m,r(1− λ)(Q′),

so erhalten wir für die Koeffizienten genau die Relationen welche in (8-7)
gegeben wurden. Deshalb sind die unter § 8.(a) studierten Darstellungen, Darstel-
lungen für die physikalischen Operatoren.

Der Energie-Impulstensor für b− c Systeme ist definiert als

T (z) = : (1− λ) c(z)
∂b

∂z
(z)− λ∂c

∂z
(z)b(z) : . (8-21)

Hierbei seien c(z) und b(z) lokale Repräsentanten für die c und b Felder,
: .. : bedeutet Normalordnung, auf welche ich gleich näher eingehen werde.
Durch direktes Nachrechnen verifiziert man, daß T (z) eine operatorwertige
Form vom Gewicht 2 ist.

Normalordnung bedeutet, daß im Produkt zweier Operatoren, der Vernich-
tungsoperator rechts stehen soll. Da wir allerdings antikommutierende Größen
haben, muß beim Vertauschen die Reihenfolge geändert werden, damit im Fall,
daß beide antikommutieren kein Widerspruch auftritt. Aufgrund der Antikom-
mutatorrelation gilt

cn,p · bm,r = −bm,r · cn,p + δm,1−nδp,r .

Die übliche Darstellungsweise für die Normalordnung ist (in Bezug auf die
Darstellung auf dem von Φ1 erzeugten Modul)

: cn,pbm,r : :=
{
cn,pbm,r, m ≥ 1
−bm,rcn,p, m ≤ 0 .

(8-22)
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Die beiden Alternativen können auch formuliert werden als

: cn,pbm,r : :=


cn,pbm,r, m 6= (1− n)
cn,pb1−n,r, m = (1− n), r 6= p

cn,p · b1−n,p, m = (1− n), r = p, n ≤ 0
cn,p · b1−n,p − 1, m = (1− n), r = p, n ≥ 1 .

(8-23)

Setzen wir die Entwicklungen (8-17) in (8-21) ein, so erhalten wir

T =
∑

n,m,r,p

: c1−n,pbm,r : P (fn,p(1− λ), f1−m,r(λ)) (8-24)

mit der abkürzenden Notation

P (h, f) = (1− λ)h
∂f

∂z
− λ∂h

∂z
f , (8-25)

wobei f und h mit ihren lokalen Repräsentanten identifiziert werden. Nach
dem Entwicklungspostulat gilt allerdings

T =
∑
k,s

Lk,sΩ1−k,s (8-26)

mit operatorwertigen Koeffizienten Lk,s. Aufgrund der Dualität können sie
berechnet werden durch

Lk,s =
1

2πi

∮
Cτ

T · ek,s =
∑

n,m,p,r

−C(m,r)
(k,s),(n,p)(1− λ) : c1−n,pbm,r : . (8-27)

Hierbei ist C
(m,r)
(k,s),(n,p)(1−λ) die Strukturkonstante von F1−λ(A) über KN (A)

(siehe 5-9). Um dies einzusehen, benützen wir folgendes

Lemma 8.1. Sei f ∈ Fλ(A), h ∈ F1−λ und e ∈ KN (A), dann gilt

1
2πi

∮
Cτ

P (h, f) · e = − 1
2πi

∮
Cτ

Le(h) · f . (8-28)

Beweis. Wir bilden w = P (h, f) · e + Le(h) · f in einer Karte mit Koor-
dinate z, wobei wir wie üblich die Formen mit ihren lokalen Repräsentanten
identifizieren:

(1− λ)eh
∂f

∂z
− λef ∂h

∂z
+ ef

∂h

∂z
+ (1− λ)fh

∂e

∂z
= (1− λ)

∂

∂z
(ehf) .



152

Der Integrand ist somit das Differential einer globalen meromorphen Funk-
tion. Differentiale von meromorphen Funktionen haben kein Residuum, somit
verschwindet das Integral über w. Also folgt (8-28). �

Bemerkung: Für λ = 2 kann (8-28) auch noch etwas anders bewiesen werden.
Aufgrund Lemma 6.2(b) gilt

1
2πi

∮
Cτ

P (h, f) · e = − 1
2πi

∮
Cτ

Lh(f) · e =
1

2πi

∮
Cτ

Lh(e) · f

=
1

2πi

∮
Cτ

[h, e] · f = − 1
2πi

∮
Cτ

Le(h) · f .

Die Konstante in (8-27) berechnet sich nun zu

1
2πi

∮
Cτ

P (fn,p(1− λ), f1−m,r(λ)) · ek,s =

− 1
2πi

∮
Cτ

(
ek,s . fn,p(1− λ)

)
· f1−m,r = −C(m,r)

(k,s),(n,p)(1− λ) .

Für den Fall λ = 2, d.h. für den Fall der Standard b − c-Systeme erhalten
wir (bis auf ein Vorzeichen) die Strukturkonstanten der Krichever - Novikov
Algebra. Im Fall N = 2 wurde gezeigt [PA], daß die Lk eine Darstellung
einer zentralen Erweiterung von KN (A) sind. Dies wird sich im allgemeinen
Fall vermutlich (mit entsprechendem Rechenaufwand) auch zeigen lassen. Dies
soll jedoch nicht weiter vertieft werden. Hier möchte ich nur zeigen, daß die
formalen Operatoren Lk,s ohne Normalordnung in der Tat eine “Darstellung”
für die Algebra KN (A) (ohne zentrale Erweiterung) darstellen. Es seien die
Elemente

Lk,s =
∑

n,m,r,s

(
− C(m,r)

(k,s),(n,p)(1− λ)
)
c1−n,pbm,r

Lj,t =
∑

n′,m′,r′,s′

(
− C(m′,r′)

(j,t),(n′,p′)(1− λ)
)
c1−n′,p′bm′,r′

gegeben. Es gilt nun [Lk,s, Lj,t] zu berechnen. Hierzu sind im Produkt
Lj,t · Lk,s die 2-er Paare

c1−n′,p′bm′,r′c1−n,pbm,r (8-29)

zu vertauschen, damit sie sich im Kommutator wegheben können. Die Elemente
b und c antikommutieren alle untereinander. Für die gemischten Terme erhalten
wir

bn,p · cm,r = −cm,r · bn,p, p 6= r oder p = r, m 6= (1− n)

bn,p · c1−n,p = 1− c1−n,p · bn,p .
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Damit ergibt sich für jeden Term (8-29)

−c1−n′,p′c1−n,pbm′,r′bm,r (8-30)

und für m′ = n, r′ = p der zusätzliche Term

c1−n′,p′bm,r . (8-31)

In (8-30) können nun die c und b Terme untereinander vertauscht werden.
Anschließend vertauschen wir die mittleren Terme wieder und erhalten außer

c1−n,pbm,rc1−n′,p′bm′,r′ (8-32)

noch für n′ = m, p′ = r

−c1−n,pbm′,r′ . (8-33)

Der Ausdruck (8-32) hebt sich bei der Bildung des Kommutators weg. Es
bleiben lediglich die Terme (8-31) und (8-33). Nach Umbenennung der Sum-
mationsindices tritt als Koeffizient für den Term c1−n,pbm,r der folgende Aus-
druck auf (µ = 1− λ)

∑
n′,p′

(
−C(m,r)

(k,s),(n′,p′)(µ)·C(n′,p′)
(j,t),(n,p)(µ)+C(m,r)

(j,t),(n′,p′)(µ)·C(n′,p′)
(k,s),(n,p)(µ)

)
. (8-34)

Da F1−λ(A) ein Liemodul ist, gilt daß dieser Ausdruck identisch zu∑
u,v

C
(u,v)
(k,s),(j,t)(−1) · C(m,r)

(u,v),(n,p)(µ) (8-35)

ist. Hierbei ist zu beachten, daß als erste Faktoren in (8-35) die Strukturkon-
stanten der Algebra KN (A) auftreten. Die Identität verifiziert man leicht,
indem man sie auf das Element fn,p(1− λ) anwendet. Somit gilt aber

[Lk,s, Lj,t] =
∑
u,v

C
(u,v)
(k,s),(j,t)(−1) · Lu,v . (8-36)

Es sei noch einmal darauf hingewiesen, daß obige Umformungen nur im for-
malen Sinne zu interpretieren sind. Insbesondere definieren die Lk,s ohne
Normalordnung keine Aktion auf Hλ(A), da bei der Aktion unendlich viele
Terme auftreten können. Erst die Normalordnung macht die Aktion wieder
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wohldefiniert. Allerdings ist die modifizierte Aktion keine Lieaktion mehr. De-
shalb benötigt man hier wiederum eine zentrale Erweiterung. Dies sei im klas-
sischen Virasoro Fall und λ = 2 demonstriert. Bezeichne Lk die Elemente mit
Normalordnung, L′k diejenigen ohne. Mit (8-23) gilt

L′k = Lk =
∑
n

(k − n) c1−nbn+k−2, k 6= 2 (8-37)

L′2 =
∑
n

(2− n) c1−nbn, (8-38)

L2 =
∑
n≥1

(2− n)c1−nbn +
∑
n≤0

(2− n)(c1−nbn − 1) . (8-39)

Angewendet auf die Basisvektoren Φ von Hλ(A) sieht man, daß für k 6= 2 der
Operator c1−nbn+k−2 nur für endlich viele n ungleich dem Nulloperator ist.
Insbesondere ist die Aktion wohldefiniert. bn hängt das Element Ω1−n aus,
falls vorhanden, und c1−n hängt es wieder aus. Somit operiert c1−nbn auf Φ
wie die Identität falls Ω1−n auftritt. Damit ist aber L′2 nicht wohldefiniert.
Erst L2 macht keine Probleme.

Da bereits alle Hilfsmittel zur Verfügung stehen, möchte ich hier den Kozykel
χ explizit ausrechnen. Insbesondere will ich im Hinblick auf die Einleitung
zeigen, daß die zentrale Ladung in der Tat −26 beträgt. Natürlich ist dies
wohlbekannt. Es sei Φ1 der Vakuumvektor vom Gewicht λ und Level 1. Es gilt
für i > 0

[L2+i, L2−i] .Φ1 = (−2i)L2 .Φ1 + χ(2 + i, 2− i) Φ1 .

Es berechnet sich unmittelbar

L2+i .Φ1 = 0, L2 .Φ1 = 0 . (8-40)

Somit gilt
L2+i . (L2−i .Φ1) = χ(2 + i, 2− i) Φ1 .

Da sich in diesem Fall die unendlichen Summen reduzieren auf endliche, ergibt
sich

L2−i .Φ1 =
i∑

n=1

(2− i− n)c1−nbn−i .Φ1

L2+i . (L2−i .Φ1) =
∑
m

i∑
n=1

(2− i− n)(2 + i−m)c1−mbm+ic1−nbn−i .Φ1 .
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Die Operatoren unter der Summe können unter Beachtung der Antikommu-
tatorrelationen vertauscht werden, so daß die Terme mit Index m ganz rechts
auftauchen. Diese annullieren jedoch Φ1. Durch eine entsprechende Rechnung
wie oben ergibt sich

L2+i . (L2−i .Φ1) =
i∑

n=1

(2− i− n)(2 + 2i− n) Φ1 .

Durch Aufaddition gewinnt man

χ(2 + i, 2− i) =
−26
12

(i3 − i) , (8-41)

also gerade das (−26) fache des Virasoro Kozykels (siehe (6-19).
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§ 9. Eine zweite Basiswahl

In diesem Paragraphen greife ich die Ausführungen von § 3. auf. Dort hatte
ich eine Menge von Erzeugenden für Fλ(A) angegeben. Entlang des Beweises
der Erzeugendeneigenschaft kann man durch geringe Zusatzüberlegungen ein
minimales Erzeugendensystem, d.h. eine Basis, konstruieren. Leider ist diese
Basis, wie in (b) klar werden wird, nicht geeignet die verallgemeinert graduierte
Struktur zu definieren. Diese wird jedoch benötigt, um die semi-infinite Wedge-
Darstellung zu konstruieren. Allerdings bietet diese zweite Basis auch gewisse
Vorteile. So kann z. Bsp. eine Teilmenge der Gesamtbasis von Fλ(A) aus-
gewählt werden, die eine Basis der globalen holomorphen Formen ist. Dies war
im Allg. bei der Basis aus § 5. nicht der Fall. Die globalen holomorphen Dif-
ferentiale, auch “zero modes” in der Physikerterminologie genannt wegen ihres
Zusammenhangs mit dem Laplaceoperator, spielen für die Anwendungen in der
Quantenfeldtheorie eine Sonderrolle (meist repräsentieren sie globale Symme-
trien). Somit kann diese zweite Basis durchaus von gewissem Nutzen sein und
ich nehme sie deshalb in diese Arbeit auf. Es handelt sich hierbei in diesem
Paragraphen um meine im Frühjahr 89 durchgeführten Untersuchungen deren
Resultate im April 89 als preprint erschienen [Schl2]. Im wesentlichen diesselbe
Basis wurde ungefähr zur selben Zeit unabhängig von Rainer Dick [Di1] gefun-
den. Ausgangspunkt für diese Arbeiten war eine von mir an der Universität
Karlruhe gehaltene Vorlesung [Schl1] in der der 2-Punkt Krichever - Novikov
Fall [KN1],[KN2] behandelt wurde. Im wesentlichen gleichzeitig haben wir
auch explizite Formen für die Basiselemente gegeben [Schl3],[Di2]. Daneben
hatte sich auch eine chinesische Arbeitsgruppe mit den entsprechenden Ver-
allgemeinerungen befaßt. Ebenfalls im Frühjahr behandelten sie den g = 0
Fall [Gu1]. Im August 89 verallgemeinerten sie auf beliebiges Geschlecht [Gu2]
ohne allerdings die Sonderfälle λ = 0 und λ = 1 zu beachten. Zwischenzeitlich
hat die vorgeschlagene Basis, nebst den Entwicklungskoeffizienten in (d) schon
Eingang in die Physikliteratur gefunden [Mat1,p.82–86],[Di3],[Ch1].
Kurz vor Abschluß dieser Arbeit erhielt ich auch ein Papier von Krichever und
Novikov [KN4] indem im Anhang gesagt wird, daß sie ebenfalls entsprechende
Verallgemeinerungen erreicht hätten. Sie deuten dies allerdings nur durch ein
Beispiel für k = l an. Es ist jedoch reichlich obstruiert durch Fehler (sehr
wahrscheinlich Tippfehler), so daß es mir nicht möglich war dieses Beispiel mit
meiner Konstruktion zu vergleichen.
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(a) Das Festlegen einer Basis

Für diese Basis nehme ich den Punkt PN mit der lokalen Koordinate zN als
Referenzpunkt. Falls das erzeugende Element f ∈ Fλ(A) die Ordnung nN bei
PN hat, so sei es immer derart skalar normiert, daß gilt

f| = znN

N (1 +O(zN )) dzλN . (9-1)

Dies sei im folgenden immer stillschweigend angenommen. Es sei zuerst g ≥ 2
und λ 6= 0, 1, bzw. g = 0 und λ beliebig (∈ ZZ). Ich benutze die Bezeichnung
von § 3. und führe folgende Erzeugende ein

fn(λ) := fλ(n, 0, . . . , 0,M(λ)− n), n ≥ 0 Typ I (9-2)

fn(λ) := fλ(n, 0, . . . , 0,M(λ)− n), n < 0 Typ II (9-3)

f jn(λ) := fλ(0, . . . , n, . . . , 0,M(λ)− n), n < 0 Typ IIIj (9-4)

Hierbei ist n ∈ ZZ und j durchläuft 2, 3, . . . , N − 1. Dieses j gibt an, an
welcher Position in der Auflistung der Ordnungen sich n befindet. Falls es aus
Bezeichnungsgründen bequem ist, werde ich auch f1

n(λ) zur Benennung der
Erzeugenden vom Typ I und II verwenden.

Proposition 9.1. Sei g ≥ 2, λ 6= 0, 1 oder g = 0 und λ ∈ ZZ , dann bilden die

fn(λ), n ∈ ZZ und f jn(λ), n ∈ ZZ , n ≤ −1, mit 2 ≤ j ≤ N − 1

eine Basis von Fλ(A).

Beweis. Im Ablauf des Beweises von Prop.3.4 wurde gezeigt, daß wir mit diesen
Elementen auskommen. Sei

N−1∑
j=1

∑
nj

cjnj
f jnj

(λ) = 0 .

Aufgrund der unterschiedlichen Polstellen und Polordnungen müssen alle Ko-
effizienten cjnj

mit negativen nj verschwinden. Es bleiben lediglich Kombi-
nationen von f1

n1
mit n1 ≥ 0. Diese haben allerdings alle unterschiedliche

Nullstellenordnung bei P1, also verschwinden alle Koeffizienten. �
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Wir kommen nun zu den Ausnahmewerten. Es sei zuerst g ≥ 2 und λ = 1.
Wir setzen ( ω.... = f .... (1) )

ωn :=
{
f1(n, 0, . . . , 0, g − 2− n), n ≥ g
f1(n, 0, . . . , 0, g − 1− n), 0 ≤ n ≤ g − 1

Typ I (9-5)

ωn :=
{
f1(−1, 0, . . . , 0,−1), n = −1
f1(n, 0, . . . , 0, g − 2− n), n ≤ −2

Typ II (9-6)

ωjn :=
{
f1(0, . . . ,−1, . . . , 0,−1), n = −1
f1(0, . . . , n, . . . , 0, g − 2− n), n ≤ −2

Typ IIIj (9-7)

Genau wie oben beweist man nun

Proposition 9.2. Sei g ≥ 2, dann bilden die

ωn, n ∈ ZZ und ωjn, n ∈ ZZ , n ≤ −1, mit 2 ≤ j ≤ N − 1

eine Basis von F1(A).

ωj−1 ist das durch die Bedingung “Realteil aller Perioden verschwindet” ein-
deutig fixierte Differential mit obigen Polordnungen und Residuen res Pj

= +1
und res PN

= −1. Wie in § 3. ausgeführt kann man für N > 2 dieses etwa
ersetzen durch

ω1
−1

′ := f1(−1, g, 0, . . . ,−1)

ωj−1
′ := f1(g, 0, . . . ,−1, 0, . . . ,−1), 2 ≤ j ≤ N − 1 .

Dies wurde z. Bsp. in [Di1] gemacht.

Es bleibt g ≥ 2 und λ = 0, bzw. g = 1 und λ ∈ ZZ . Wir setzen
( A.... = f .... (0) )

An :=
{
f0(n, 0, . . . , 0,−g − n), n > 0
f0(0, 0, 0, . . . , 0) ≡ 1, n = 0

Typ I (9-8)

An :=
{
f0(n, 0, . . . , 0,−g − 1− n), −g ≤ n < 0
f0(n, 0, . . . , 0,−g − n), n ≤ −(g + 1)

Typ II (9-9)

Ajn :=
{
f0(0, . . . , n, . . . , 0,−g − 1− n), −g ≤ n < 0
f0(0, . . . , n, . . . , 0,−g − n), n ≤ −(g + 1)

Typ IIIj
(9-10)

Nun sind allerdings die Elemente in der ersten Alternative von (9-9) und
(9-10) nicht eindeutig fixiert. Wie in § 3.(c) ausgeführt, kann eine generische
Konstante addiert werden. Diese Konstante sei vorläufig beliebig gewählt. In
(d) wird sich eine Normierung aufgrund gewisser Dualitätsbeziehungen ergeben.
Wiederum wie oben ergibt sich unmittelbar
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Proposition 9.3. Sei g ≥ 2, oder g = 1, dann bilden die

An, n ∈ ZZ und Ajn, n ∈ ZZ , n ≤ −1, mit 2 ≤ j ≤ N − 1

eine Basis von F0(A).

Eine Basis der globalen holomorphen Formen kann sofort gefunden werden
durch Aussortieren der Elemente aus oberer Basis die keine Pole haben. Unter
Benutzung von M(λ) = (2λ− 1)(g − 1)− 1 folgt

g = 0 λ < 0 fn(λ) 0 ≤ n ≤ −2λ
λ = 0 A0

λ > 0 keine

g = 1 f0(λ) = A0 dz
λ

g ≥ 2 λ < 0 keine
λ = 0 A0

λ > 0 fn(λ) 0 ≤ n ≤ (2λ− 1)(g − 1)− 1 .

Nach der Riemann-Roch Formel sind dies tatsächlich die nötige Anzahl Basise-
lemente.

(b) Die Strukturkonstanten

In diesem Abschnitt will ich die Strukturkonstanten Cγα,β von Fλ(A) über
KN (A) in Bezug auf die Basis aus (a) berechnen

eα . fβ(λ) =
∑
γ

Cγα,βfγ(λ) . (9-11)

Hierbei seien α, β und γ verallgemeinerte Indices. Genauer gesagt: Ich gebe
Bereiche an, für welche die Strukturkonstanten nicht verschwinden. Konkrete
Werte werden nur in den Spezialfällen (9-13) gegeben. In Abschnitt (c) werden
für g = 0 numerische Werte berechnet. Zur Bestimmung werde ich lokale
Berechnungen entsprechend § 5. ausführen. Hier haben wir zwar die Dualität
nicht zur Verfügung, können allerdings durch Subtraktion von Basiselementen
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sukzessive die Pole des Resultates (9-11) beseitigen. Ich beschränke mich auf
g = 0 oder g ≥ 2 und λ 6= 0, 1. Selbstverständlich ist das Vorgehen in den
Ausnahmefällen identisch. Die Formeln modifizieren sich nur ein wenig in den
Fällen bei denen β (und α im Falle g = 1) und der Bereich für γ irgendetwas mit
den endlich vielen modifizierten Elementen, die nicht dem generellen Schema
entsprechen, zu tun hat. Der einzige Unterschied ist, daß entsprechend viele
Fallunterscheidungen benötigt werden.

Proposition 9.4. (a) Sei nj ≥ 0, dann gibt es crj ∈ C, r = 0, . . . , nj mit
c
nj

j = 1, so daß gilt (nj an der j−ten Position)

fλ(0, . . . , nj , . . . ,M(λ)− nj) =
nj∑
r=0

crjf
λ(r, 0, . . . ,M(λ)− r) .

(b) Sei n1 ≥ 0, dann gibt es ĉrj ∈ C, r = 0, . . . , n1 mit ĉn1
j = 1, so daß gilt

fλ(n1, 0, . . . ,M(λ)− n1) =
n1∑
r=0

ĉrjf
λ(0, . . . , r, . . . ,M(λ)− r) .

Beweis. (a) Ich lasse λ in den Benennungen weg. Für r = 0, 1, . . . , nj erhalten
wir die lokale Entwicklung bei Pj mit ari ∈ C

f(r, 0, . . . ,M(λ)− r)| =

(
nj−1∑
i=0

ari z
i
j +O(znj

j )

)
dzλj .

Es gibt eine nichttriviale Lösung c0j , c
1
j , . . . , c

nj

j , so daß

f =
nj∑
r=0

crjf(r, 0, . . . ,M(λ)− r) 6≡ 0

und f mindestens eine Nullstelle der Ordnung nj bei Pj hat. Diese Bedingung
definiert nämlich ein homogenes Gleichungssystem mit nj Gleichungen und
nj + 1 Unbekannten. Wir berechnen

ord PN
(f) ≥ min

r=0,... ,nj

(ord PN
(f(r, . . . ,M(λ)− r)) = M(λ)− nj .

Nach Prop. 3.2 kann f allerdings nirgendswo an den Punkten von A eine höhere
Ordnung haben, als

ord Pi(f) = 0, i 6= j, ord Pj (f) = nj , ord PN
(f) = M(λ)− nj .
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Bis auf eine Reskalierung der cri ist f identisch zu f(0, . . . , ni, . . . ,M(λ)−ni).
Weiter ist auch c

nj

j 6= 0, da sonst ord PN
(f) > M(λ) − nj wäre. Aufgrund

der lokalen Normierung bei PN gilt sogar daß der reskalierte Koeffizient 1 ist.
Als Nebenresultat ergibt sich, daß obiges lineares Gleichungssystem den Rang
nj hat, da der Lösungsraum eindimensional ist. Teil (b) gewinnt man durch
Vertauschung der Rolle von P1 und Pj . �

Sind eα und fβ = fβ(λ) Basiselemente vom Typ I, bzw. Typ II, so sind
wir genau in der Situation N = 2, d.h. A = {P1, PN} wie sie in § 5. studiert
wurde. Zu beachten ist allerdings ein Indexshift und eine andere Skalierung.

Proposition 9.5.

en . fm =
n+m−1+3g∑
r=n+m−1

Arn,m(λ)fr . (9-12)

mit
An+m−1+3g
n,m (λ) = −(m+ λn)− g(1 + λ),

An+m−1
n,m (λ) = (m+ λn)

anbm
bn+m−1

.
(9-13)

Hierbei ist an (bzw. bm) der führende Koeffizient von en (bzw. fm) am
Punkt P1.

Beweis. Es gilt e1n = Cnen+1,1 und f1
m = Dmfm+1,1 mit passenden Konstanten

Cn und Dm. Unter Benutzung von (5-9) folgt (9-12). Die genaue Bestimmung
der Strukturkonstanten an den Rändern erfolgt durch Berechnung der lokalen
Form bei P1, bzw. PN . Es gilt bei P1

en . fm| = (m+ λn)anbmzn+m−1
1 (1 +O(z1)) dzλ1 ,

bzw. bei PN mit M(−1) = −3g + 2

en . fm| = (−(m+ λn)− g(λ+ 1))z−(m+n−1)−3g+M(λ)
N (1 +O(zN )) dzλN .

Damit berechnet sich (9-13). Natürlich hätte man (9-12) auch aus den obigen
lokalen Abschätzungen ohne Benutzung von § 5. berechnen können [Schl1]. �

Insbesondere sieht man aus (9-13), daß für n = m = 0 der unterste Koef-
fizient immer 0 ergibt. Dies muß natürlich so sein, da das Resultat holomorph
bei P1 sein muß. Bei λ = −1, d.h. die Krichever - NovikovAlgebra selbst, treten
für n 6= m die beiden Randterme auf jeden Fall auf.

Ich komme nun zu den weiteren Strukturkonstanten. Zuerst betrachte ich
(Typ I,Typ IIIj) und umgekehrt. Dazu ist zu beachten, daß für jeden Punkt
Pj eine Formel analog zu (9-12) existiert, da ja die Auswahl des Punktes P1

willkürlich war.
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Proposition 9.6.

en . f
j
m =

n+m−1+3g∑
r=0

Ar,jn,m(λ)fr +
min(−1,n+m−1+3g)∑

r=m−1

Ar,jn,m(λ)f jr
(9-14)

ejn . fm =
n+m−1+3g∑

r=0

Br,jn,m(λ)fr +
min(−1,n+m−1+3g)∑

r=n−1

Br,jn,m(λ)f jr
(9-15)

Beweis. Ich zeige nur (9-14). Die zweite Formel ergibt sich analog. Sei also
n ≥ 0 und m < 0. Nach Prop. 9.4 gilt

en =
n∑
r=0

ĉrj e(0, . . . , r, . . . ,−3g + 2− r) ,

somit unter Benutzung von (9-12)

en . f
j
m =

n∑
r=0

ĉrj e(0, . . . , r, . . . ,−3g + 2− r) . f jm

=
n∑
r=0

ĉrj

r+m−1+3g∑
s=r+m−1

Ds,j
r,mf(0, . . . , s, . . . ,M(λ)− s)

=
n+m−1+3g∑
s=m−1

(
s−m+1∑
r=0

ĉrjD
s,j
r,m

)
f(0, . . . , s, . . . ,M(λ)− s) .

Die äußere Summe wird aufgespalten

n+m−1+3g∑
s=0

. . . +
min(−1,n+m−1+3g)∑

s=m−1

. . . .

Ist die erste Summe nicht leer, so werden die f(. . . ) in dieser Summe mit Hilfe
von Prop. 9.4 in Termen von f1

r mit r = 0, . . . , n+m− 1 + 3g ausgedrückt.
Die zweite Summe ist bereits ein Ausdruck in den Basiselementen. Es ergibt
sich somit (9-14). �

Aus (9-15) sieht man, daß für ejn (j 6= 1) mit n < 0, egal wie groß m gewählt
wird, immer die Terme f jn−1 bis f j−1 auftreten.
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Proposition 9.7. (Typ IIIj,Typ IIIj)

ejn . f
j
m =

n+m−1+3g∑
r=0

Cr,jn,m(λ)fr +
min(−1,n+m−1+3g)∑

r=n+m−1

Cr,jn,m(λ)f jr . (9-16)

Beweis. Es kann alles in KN (Pj , PN ), bzw. Fλ(Pj , PN ) berechnet werden und
wir erhalten die Resultate von Prop. 9.5. Die f(0, . . . , s, . . . ,M(λ) − s) mit
s ≥ 0 werden mit Hilfe von Prop. 9.4 umgerechnet in Linearkombinationen
f1
r (λ) mit r ≥ 0. Dies ergibt die Resultate (9-16). �

Proposition 9.8. (Typ IIIj,Typ IIIh), j 6= h, bzw. (Typ II ,Typ IIIj)

ejn . f
h
m =

−1∑
r=n−1

Dr,j,h
n,m (λ)f jr +

−1∑
r=m−1

Er,j,hn,m (λ)fhr +
n+m−1+3g∑

r=0

F r,j,hn,m (λ)fr .

(9-17)

Beweis. Hierbei ist n,m < 0 und es sind 3 Polstellen beteiligt. Es gilt

ord Pj (e
j
n . f

h
m) ≥ n− 1

ord Ph
(ejn . f

h
m) ≥ m− 1

ord PN
(ejn . f

h
m) ≥M(λ)− (n+m− 1 + 3g) .

Durch Subtraktion geeigneter Vielfacher von

f js , n− 1 ≤ s ≤ −1, und fhr , m− 1 ≤ r ≤ −1

können vom Ergebnis die Polstellen bei Pj und Ph beseitigt werden. Dabei gilt
für das derart modifizierte Element

ord PN
(. . . ) ≥ min

(
M(λ)− (n+m− 1 + 3g) , M(λ) + 1

)
.

Da im Rest allerdings kein Pol bei P1 auftritt, ist dieser Linearkombination
von f1

k , k ≥ 0. Nun gilt ord PN
(f1
k ) = (M(λ) − k), d.h. k durchläuft nur die

Werte 0, 1, . . . , n+m+ 3g − 1. Dieser Bereich ist allerdings nichtleer nur falls
−(n + m) ≤ 3g − 1 ist. Zusammen erhalten wir die in (9-17) behauptete
Form. �

Im Gegensatz zum 3. Term in (9-17), der verschwinden kann, werden im
allgemeinen die ersten beiden Summen sich über den vollen Bereich erstrecken.
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(Siehe (c) für ein numerisches Beispiel.) D.h. im Produkt ejn . f
h
m steigt die An-

zahl Summanden linear mit m. Fordern wir, daß die Algebra und die Module
eine Graduierung tragen sollen, induziert durch die Basiselemente, derart daß
die Dimensionen der einzelnen homogenen Teile eine gemeinsame Schranke be-
sitzen, und daß die Struktur dann eine verallgemeinerte graduierte Struktur ist
(5-19), so sehen wir daß insbesondere die Anzahl Elemente im Produkt ejn . f

h
m

eine Schranke unabhängig von m und n besitzen muß. Dies bedeutet: Die obige
Basis kann so etwas nicht leisten.
Im ersten Ansatz mag man daran denken die Forderung nach der Dimensionss-
chranke fallen zu lassen, in der Hoffnung, daß trotzdem alles gutgehen. Leider
sieht man dann, daß die in § 7. notwendige Abbildung KN (A) → gl(∞), in-
duziert durch die Operation der Elemente von KN (A) auf der Basis von Fλ(A),
nicht mehr funktioniert, da en für n < 0 nicht auf eine Matrix mit endlich vielen
Diagonalen abgebildet wird.

(c) Ein Beispiel: ggg === 000

In diesem Abschnitt will ich die Strukturkonstanten von KN (A) in Bezug auf
die in (a) eingeführte Basis im Fall Geschlecht g = 0 berechnen. Diese Formeln
können ohne Probleme auf beliebiges λ, d.h. zur Berechnung der Strukturkon-
stanten der Moduln, verallgemeinert werden.

Ich wähle eine Parametrisierung z von X = P1 derart, daß

PN ↔ z =∞, Pi ↔ z = ai, i = 1, . . . , N − 1 (9-18)

wobei a1 = 0 gesetzt sei. Die konkrete Angabe der Basis erfolgte bereits in
§ 4.(c)

ein = (z − ai)n
∂

∂z
, n ∈ ZZ für i = 1, n ∈ ZZ , n < 0, für i = 2, . . . , N − 1 .

Hierbei habe ich, um Vorzeichenfaktoren zu vermeiden, derart normalisiert,
daß bei z = ∞ (entspricht w = 1

z = 0) der niedrigste Koeffizient −1 beträgt.
Direktes Ausrechnen zeigt

[(z − a)n ∂
∂z

, (z − a)m ∂

∂z
] = (m− n)(z − a)m+n−1 ∂

∂z
. (9-19)
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Für j = 1 erhalten wir somit

[e1n, e
1
m] = (m− n)e1m+n−1 (9-20)

Zur Berechnung von

[e1n, e
j
m], j ≥ 2, m < 0, n ≥ 0

setzen wir

zn
∂

∂z
= (z − a+ a)n

∂

∂z
=

n∑
k=0

(
n

k

)
an−k(z − a)k ∂

∂z
.

Somit mit a = aj und ∂
∂(z−aj)

= ∂
∂z

[e1n, e
i
m] =

n∑
k=0

(
n

k

)
an−k(m− k)(z − a)m+k−1 ∂

∂z
=

=
−m∑
k=0

(
n

k

)
an−k(m− k)em+k−1+

+
n∑

k=−m+1

(
n

k

)
an−k(m− k)

m+k−1∑
s=0

(−1)s
(
m+ k − 1

s

)
aszm+k−1−s ∂

∂z
.

Nach Umsortieren erhält man

[e1n, e
j
m] =

m+n−1∑
r=0

Ar,jn,mer +
min(−1,m+n−1)∑

r=m−1

Ar,jn,me
j
r n ≥ 0 (9-21)

mit j = 2, . . . , N − 1 und den Koeffizienten

Ar,jn,m =

(
m+n−1∑
t=r

(−1)t+r
(
t

r

)(
n

t−m+ 1

)
(2m− 1− t)

)
an+m−1−r
j , r ≥ 0

(9-22)

Ar,jn,m =
(

n

r −m+ 1

)
· an+m−1−r
j · (2m− 1− r), r < 0 (9-23)

Direkt berechnet sich

[ejn, e
j
m] = (m− n) ejn+m−1, n,m < 0 . (9-24)
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Wir betrachten nun Typ (IIIj ,IIIt) mit t 6= j. Hierbei sei auch zugelassen, daß
einer der Indices gleich 1 ist. Es sei

Y := [wn
∂

∂w
, (w − a)m ∂

∂w
], n,m < 0 . (9-25)

Wir entwickeln den 2. Faktor in eine Potenzreihe mit Hilfe von

(w − a)m = (−1)mam
(
1− w

a

)m
= (−1)mam

∑
r≥0

(
m

r

)
(−1)r

(w
a

)r
.

Innerhalb des Gültigkeitsbereiches der binomischen Reihe erhalten wir

Y| = (−1)mam
∑
r≥0

(
m

r

)
(−1)ra−r(r − n)wn+r−1 ∂

∂w
.

Somit gilt

Y =
−1∑

k=n−1

(
m

k − n+ 1

)
(−1)m+n−1−kam+n−1−k(k − 2n+ 1)wk

∂

∂w
+ Z

mit bei w = 0 holomorphem Z. Setzen wir w = (z − at) und a = (aj − at), so
erhalten wir mit

[(z − at)n
∂

∂z
, (z − aj)m

∂

∂z
] = [wn

∂

∂w
, (w − a)m ∂

∂w
],

∂

∂z
=

∂

∂w

die Darstellung

[etn, e
j
m] =

−1∑
s=n−1

Ds,t,j
n,m ets +

−1∑
s=m−1

Es,t,jn,m ejs (9-26)

mit den Koeffizienten (q = m+ n− 1))

Ds,t,j
n,m =

(
m

s− n+ 1

)
(at − aj)q−s(s− 2n+ 1) (9-27)

Es,t,jn,m = (−1)Ds,j,t
m,n . (9-28)

Dabei wurden die Konstanten D..
.. wie oben bestimmt. Statt die Konstanten

E.... zu berechnen habe ich die Antisymmetrie des Lieproduktes benutzt und
erhalte (9-28). Weitere Terme gibt es wegen (9-6) nicht (n+m− 1 < 0 !).

Insbesondere sieht man, daß in (9-26) alle Terme von et−n−1 bis et−1, bzw.
ej−m−1 bis ej−1 auftauchen.
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(d) Die Entwicklungsformel

Per Definition kann man jedes v ∈ Fλ(A) als Linearkombination der angegebe-
nen Basiselemente schreiben. In § 5. waren wir aufgrund der starken Dualität
zwischen den dortigen Basiselementen der λ−Formen und den (1−λ)−Formen
(5-6) in der Lage die Entwicklungskoeffizienten direkt durch Kurvenintegration
(bzw. was daselbe ist: durch Residuenberechnung) zu gewinnen. Als Integra-
tionskurve haben wir dort Kurven die homolog zu Cτ waren benutzt. Hier-
bei wurde zur Definition von Cτ ein spezielles 1−Differential, abhängig von
A = I ∪ O, benutzt. Aufgrund der Interpretation von τ als “Eigenzeit des
Stringes” bezeichnen die Physiker (siehe etwa [Di3]) dies auch als “equal time
decomposition”. Eine analoge Situation liegt in Bezug auf die zweite Basis
nicht vor. Allerdings kann man durch Integration gegen gewisse “duale” Ba-
siselemente auch hier die Koeffizienten bestimmen. Jedoch kann man nicht
immer dieselbe Integrationskurve wählen. Ich führe zuerst das Differential

ρ =
1

N − 1

N−1∑
j=1

ωj−1 (9-29)

ein. Es hat Residuum − 1
N − 1

an den Punkten P1, . . . , PN−1 und Residuum

+1 am Punkt PN . Nach dem in § 2. ausgeführten sind die Levellinien Cτ
in Bezug auf ρ für τ � 0 homolog zu einem Kreis um PN und für τ � 0
homolog zu disjunkten Kreisen um P1, . . . , PN−1. Daneben betrachte ich noch
die orientierten Kreise Cj um Pj mit j = 1, . . . , N . Für w ∈ F1(A) gilt (mit
der entsprechenden Orientierung)

N−1∑
j=1

1
2πi

∮
Cj

ω =
1

2πi

∮
Cτ

ω =
1

2πi

∮
CN

ω. (9-30)

Das Ziel dieses Abschnittes ist

Proposition 9.9. Sei g ≥ 2 und λ 6= 0, 1 oder g = 0 und λ ∈ ZZ . Habe
v ∈ Fλ(A) die Darstellung

v =
∑
n≥0

′
rnfn(λ) +

∑
n<0

′
rnfn(λ)+

N−1∑
j=2

∑
n<0

′
sjnf

j
n(λ) ,

(9-31)
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dann können die Koeffizienten wie folgt berechnet werden

rn =
1

2πi

∮
CN

v · f−n−1(1− λ) =
1

2πi

∮
Cτ

v · f−n−1(1− λ), n ≥ 0
(9-32)

rn =
1

2πi

∮
C1
v · f−n−1(1− λ) n < 0 (9-33)

sj−1 =
1

2πi

∮
Cj

v · f0(1− λ) (9-34)

sj−2 =
1

2πi

∮
Cj

v · f1(1− λ)− sj−1α
j
−1,1(λ)

· · ·

sj−r =
1

2πi

∮
Cj

v · fr−1(1− λ)−
r−1∑
p=1

sj−pα
j
−p,r−1(λ) .

Hierbei sei definiert (r ≥ 0, t < 0)

αjt,r(λ) =
1

2πi

∮
Cj

f jt (λ) · fr(1− λ) . (9-35)

Es ergibt sich

αj−n−1,n(λ) = 1 und αjm,n(λ) = 0 falls m < −n− 1 . (9-36)

Beweis. Klar ist, daß eine Darstellung wie in (9-31) existiert. Ich betrachte
zuerst für n,m ∈ ZZ

w = fn(λ) · fm(1− λ)

und berechne

ord PN
(w) = −n−m− 2, ord P1(w) = n+m, ord Pi(w) = 0, i sonst.

w besitzt also ein nichtverschwindendes Residuum bei PN nur für
m = −n−1. Aufgrund der Normierung der beteiligten Elemente bei PN beträgt
dieses gerade 1. Somit gilt

1
2πi

∮
CN

fn(λ) · fm(1− λ) = δm,−n−1 .

Statt über CN kann auch über C1, bzw. über Cτ integriert werden. Sei nun
m < 0 , (und n < 0) und

w = f jn(λ) · fm(1− λ) .
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Es gilt ord PN
(w) = −n−m−2 ≥ 0. D.h. das Residuum bei PN verschwindet,

somit ebenfalls das Integral von w entlang CN , bzw. Cτ . Multipliziert man
deshalb (9-31) mit f−n−1(λ) mit n ≥ 0 und integriert man über Cτ oder CN ,
so erhält man den Koeffizienten rn für n ≥ 0 wie in (9-32) angegeben.
Sei n ≥ 0

w = f jm(λ) · fn(1− λ) (9-37)

dann gilt
ord PN

(w) = −n−m− 2, ord P1(w) = n ≥ 0,

ord Pj
(w) = m < 0, ord Pi

(w) = 0, i sonst.
(9-38)

Dies bedeutet res P1(w) = 0, also verschwindet das Integral von w über C1

(aber nicht notwendigerweise über Cτ ). Multipliziert man nun v wie in (9-31)
gegeben mit f−n−1(1 − λ) mit n < 0 und integriert man über C1, so erhält
man

1
2πi

∮
C1
v · f−n−1(1− λ) =

(
1

2πi

∮
C1
fn(λ) · f−n−1(1− λ)

)
rn = rn .

Das letzte Gleichheitszeichen folgt aus

1
2πi

∮
C1
fn(λ) · f−n−1(1− λ) =

1
2πi

∮
CN

fn(λ) · f−n−1(1− λ) = 1 .

Zur Berechnung der Koeffizienten sjn betrachten wir nochmal (9-37) mit den
obigen Ordnungen (9-38). Wir setzen für n ≥ 0

αjm,n(λ) =
1

2πi

∮
Cj

f jm(λ) · fn(1− λ) . (9-39)

Hierbei kann sich die Integration auch über CN , bzw. Cτ erstrecken. Aufgrund
der Ordnungsbetrachtungen bei PN , sehen wir αjm,n(λ) = 0 für m ≤ −n− 2.
Desweiteren ist αj−n−1,n(λ) = 1 aufgrund der Residuenberechnung bei PN .
Da für r 6= j gilt

1
2πi

∮
Cj

frm(λ) · fn(1− λ) = 0 ,

erhalten wir

1
2πi

∮
Cj

v · fn(1− λ) =
∑
m<0

sjm

(
1

2πi

∮
Cj

f jm(λ) · fn(1− λ)
)

= sj−n−1 · 1 +
n∑
p=1

sj−pα
j
−p,n(λ) .
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Somit

sj−n−1 =
1

2πi

∮
Cj

v · fn(1− λ)−
n∑
p=1

sj−pα
j
−p,n(λ) .

Insbesondere ist zu beachten, daß die zur Berechnung benötigten Größen sj−p
schon in vorherigen Schritten berechnet wurden. �

Bemerkung 1: Zur Berechnung der Koeffizienten sjn kann man auch die nicht
zur Basis gehörenden Elemente (da −n− 1 ≥ 0)

f j−n−1(1− λ) := f1−λ(0, . . . ,−n− 1, 0, . . . ,M(1− λ) + n+ 1)

benutzen. Mit obigen Argumenten, statt für P1 nun für Pj angewendet, erhält
man

1
2πi

∮
Cj

v · f j−n−1(1− λ) = sjn (9-40)

(siehe hierzu auch [Di3]). Will man allerdings nur die Basis benutzen, so rechnet
man mit Hilfe von Prop. 9.4 um

f j−n−1(1− λ) =
−n−1∑
s=0

Cj,ns f1
s (1− λ) . (9-41)

Es ist Cj,n−n−1 = 1. Die weiteren Koeffizienten können berechnet werden durch
Integration

Cj,ns =
1

2πi

∮
CN

f j−n−1(1− λ) · f1
−s−1(λ) . (9-42)

Setzt man nun (9-42) in (9-41) und weiter in (9-40) ein, so erhalten wir wiederum
sjn und gewisse Beziehungen zwischen den Cj,ns und den αjm,n.

Bemerkung 2: Statt des Kurvenintegrales um den Punkt Pi kann ich natürlich
auch das Symbol res Pi

schreiben.
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Sei nun g ≥ 2. Wir benutzen wiederum ω.... für f .... (1) und A.... für f .... (0). Wir
betrachten w = ω−1 ·Ajm für m = −1,−2, . . . ,−g und j = 1, . . . , N − 1. Da
gilt

ord PN
(w) = −g −m− 2 ≤ −2

und ω noch weitere Pole hat, wird man nicht erwarten können, daß das Integral

cjm =
1

2πi

∮
CN

ω−1 ·Ajm (9-43)

verschwindet. Allerdings waren die Elemente Ajm nur bis auf Addition einer
Konstanten fixiert. Ersetzen wir Ajm durch Ajm − cjm, welches wir wiederum
Ajm nennen, so ist wegen 1

2πi

∮
CN ω−1 = 1

1
2πi

∮
CN

ω−1 ·Ajm = 0 . (9-44)

Proposition 9.10. Mit diesen modifizierten Basiselementen im Fall g ≥ 2 gilt
Prop. 9.9 auch im Fall λ = 0 und λ = 1.

Beweis. Mit dieser Fixierung kann man den Beweis von Prop.9.9 inspizieren
und sehen, daß alles unverändert gilt. Hierbei muß lediglich das Verhalten
bei PN überprüft werden, da an den anderen Punkten die Ordnungen wie im
allgemeinen Fall sind. �

Übrig bleibt g = 1. Da hier alle Formen durch Funktionen repräsentiert
werden betrachten wir zuerst

w = A−1 ·A−1 dz .

Da ord P1(w) = −2 und ord PN
(w) = −2 verschwindet auch hier nicht notwendi-

gerweise

c =
1

2πi

∮
CN

A−1 ·A−1 dz .

Wir ersetzen A−1 durch A−1 −
c

2
und berechnen

1
2πi

∮
CN

(
A−1 −

c

2

)2

dz =

=
1

2πi

∮
CN

A2
−1dz − c

1
2πi

∮
CN

A−1dz +
c2

4
1

2πi

∮
CN

dz = 0
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unter Benutzung von 1
2πi

∮
CN A−1 dz = 1 und 1

2πi

∮
CN dz = 0. Mit diesem

modifizierten A−1 berechnen wir für j = 2, . . . , N − 1

cj =
1

2πi

∮
CN

Aj−1 ·A−1 dz

und ersetzen Aj−1 durch Aj−1 − cj , wobei wir wieder die alte Bezeichnung ver-
wenden. Dann gilt

1
2πi

∮
CN

Aj−1 ·A−1 dz = 0; j = 1, . . . , N − 1 .

Analog zu obigem haben wir auch hier

Proposition 9.11. Mit diesen modifizierten Basiselementen gilt im Fall g = 1
ebenfalls die Prop. 9.9 .
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Publ. Math. I.H.E.S. 28 (1966).



174

[FaKr] H. M. Farkas, I. Kra, Riemann Surfaces, Springer, 1980.

[Fay] J.D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in
Math. Vol.352, Springer, 1973.

[FeT] B.L. Feigin, B.L. Tsygan, Cohomology of Lie Algebras of Generalized
Jacobian Matrices, Funktsional. Anal. i Prilozhen 17 (1983), no. (2),
86–87.

[FF] B.L. Feigin, D.B. Fuks, Invariant Skew-Symmetric Differential Op-
erators on the Line and Verma Moduls over the Virasoro Algebra,
Funktsional. Anal. i Prilozhen 16 (1982), no. (2), 47–63.

[Fo] O. Forster, Riemannsche Flächen, Springer, 1977.
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Mannheim, 1972.

[Gu1] H-y. Guo, J-s . Na, J-m. Shen, S-k. Wang, Q-h . Yu, The Algebras of
Meromorphic Vector Fields and Realization on the Space of Meromor-
phic λ - Differentials on Riemann surfaces(I), preprint AS-ITP-10-89.

[Gu2] H-y. Guo, J-s. Na, J-m. Shen, S-k. Wang, Q-h. Yu, The Algebras
of Meromorphic Vector Fields and Meromorphic λ - Differentials on
Riemann surfaces, preprint August 89.

[Ha] R. Hartshorne, Algebraic Geometry, Springer Press, 1977.

[HaS] N.S. Hawley, M. Schiffer, Half Order Differentials on Riemann Sur-
faces, Acta Math. 115 (1966), 199–236.

[HiSt] P.J. Hilton, U. Stammbach, A Course in Homological Algebra, Springer,
1971.

[Hu] J.E. Humphreys, Introduction to Lie Algebras and Representation The-
ory, Springer, 1972.

[HuCo] A. Hurwitz, R. Courant, Allgemeine Funktionentheorie und elliptische
Funktionen, Springer, 1964.

[KaP] V.G. Kac, D.H. Peterson, Spin and Wedge Representations of Infinite-



175

dimensional Lie Algebras and Groups, Proc. Nat. Acad. Sci. USA 78
(1981), 3308-3312.

[KaR] V.G. Kac, A.K. Raina, Highest Weight Representations of Infinite
Dimensional Lie Algebras, Adv. Ser. in Math. Physics Vol.2, World
Scientific, 1987.

[KN1] I.M. Krichever, S.P. Novikov, Algebras of Virasoro Type, Riemann
Surfaces and Structures of the Theory of Solitons, Funktsional. Anal.
i Prilozhen 21 (1987), no. (2), 46.

[KN2] I.M. Krichever, S.P. Novikov, Virasoro Type Algebras, Riemann Sur-
faces and Strings in Minkowski Space, Funktsional. Anal. i Prilozhen
21 (1987), no. (4), 47.

[KN3] I.M. Krichever, S.P. Novikov, Algebras of Virasoro Type, Energy -
Momentum Tensors and Decompositions of Operators on Riemann
Surfaces, Funktsional. Anal. i Prilozhen 23 (1989), no. (1), 19–33.

[KN4] I.M. Krichever, S.P. Novikov, Riemann Surfaces, Operator Fields,
Strings. Analogues of the Fourier-Laurent Bases., IHES (1989).

[KNTY]N. Kawamoto, Y. Namikawa, A. Tsuchiya, Y. Yamada, Geometric Re-
alization of Conformal Field Theory on Riemann Surfaces, Commun.
Math. Phys. 116 (1988), 247–308.

[Kri1] I.M. Krichever, Algebraic Curves and Non-Linear Difference equa-
tions, Uspekhi Mat. Nauk 33 (1978), no. 4, 215–216.

[Mat1] M. Matone, Conformal Field Theories in Higher Genus, Thesis at
SISSA (October 89).

[Mum] D. Mumford, Tata Lectures on Theta I,II, Birkhäuser, 1983(1984).
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