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Summary.

In the context of Conformal Field Theory in Theoretical Physics the Virasoro

Algebra and its representations play a fundamental role. The Virasoro Algebra
can be given as the Lie algebra of meromorphic vector fields on \P%E \{0,00} . In
view of the generalization of Conformal Field Theory to higher genus Riemann
Surfaces (for example, appearing in String Theory) Krichever and Novikov gen-
eralized the setting to higher genus allowing for the vector fields poles at two
arbitrary but fixed points. The natural modules over the algebra of such vector
fields (now usually called Krichever - Novikov algebra) are the vector spaces of
meromorphic forms of weight A with the same restrictions on the set of poles.
For the construction of the semi-infinite wedge representations of the Krichever
- Novikov algebra (yielding analogs of Verma modules, resp. heighest weight
modules) it is necessary to exhibit a bases in the algebra and the modules in
such a way that with respect to a grading induced by the indexing of the basis
the module structure is ‘generalized graded’.
In the setting of String Theory the two points where poles are allowed corre-
spond to an incoming free string, resp. an outgoing free string. The Riemann
surface correspond to the interaction. To incorporate more strings which are
in interaction it is necessary to allow poles at more than two points.

In this work the whole (mathematical) situation is generalized to the case
where more than two poles are present. The set of poles is divided into two non-
empty subsets, the ‘in’ and ‘out’- points. With respect to this partition, bases
of the algebra of vector fields and the modules of forms of integer weight A are
introduced in such a way, that they induce a generalized grading. The existence
and uniqueness of such a bases is shown by Riemann-Roch type arguments.
Explicit expressions in terms of rational functions, resp. o—functions, resp.
theta functions and prime forms are given. This setting contains the Virasoro
case and the Krichever - Novikov case as special examples. The bases obey
an important duality relation. It is obtained by integrating forms of weight
A against forms of weight 1 — A over the level lines of a suitable generalized
proper time function.

The whole procedure is extended to the algebra of meromorphic differential
operators (containing beside the algebra of vector fields also the algebra of
functions), again with the above restriction on the set of poles. ‘Local’ central
extensions of the involved algebras are introduced using geometrically defined
cocycles. The term ‘local’ depends again on the grading, hence on the partition.
For example, generalized Heisenberg algebras are obtained as central extensions
of the abelian Lie algebra of functions.



Central extensions inevitably appear in the construction of semi-infinite
wedge representation (starting with the modules of forms of weight \) as
analogs of heighest weight representations. By requiring, that the defining cocy-
cle for the extensions of the vector field algebra is independent of A, the central
element operates by multiplication with central charge ¢ = —2(6A% —6A+1) .
The value of the cocycle for the extension of the differential operator algebra for
certain index combinations of the bases elements is given, supplying confidence
to a conjectured form of the cocycle.

Finally the semi-infinite wedge space also provides a representation of the
Clifford algebra given by (again generalized) b — ¢ systems of weight
A, (1 —A) . Interesting commutator relations between the b resp. ¢ operators
and the operators corresponding to differential operators are given.



§1. Einleitung

Im Rahmen der “konformen Feldtheorie” in der theoretischen Physik hat
die Virasoro Algebra nebst ihren Darstellungen eine fundamentale Bedeutung.
Die Virasoro Algebra kann beschrieben werden als die universelle zentrale Er-
weiterung einer dichten Teilalgebra der komplexifizierten Liealgebra der an-
alytischen Vektorfelder auf der Kreissphire S'. Diese Algebra ist jedoch iso-
morph zur Liealgebra der meromorphen Vektorfelder auf P! (der Riemannschen
Zahlenkugel), welche holomorph auf IP'\ {0,00} sind. Diese zweite Betra-
chtungsweise hat sich als sehr niitzlich fiir die konforme Feldtheorie erwiesen.
Im Zuge der Erweiterung der konformen Feldtheorie auf Riemannsche Flachen
hoheren Geschlechtes, wie sie etwa in der Stringtheorie auftreten, stellt sich die
Frage der Verallgemeinerungen der Virasoro Algebra und ihrer Darstellungen.
Diese Verallgemeinerungen wurden von Krichever und Novikov [KN1][KN2]
1987 eingefithrt und deren Struktur untersucht. Kurz gesagt handelt es sich
bei der entsprechenden Algebra ebenfalls um eine zentrale Erweiterung der Al-
gebra der meromorphen Vektorfelder auf der kompakten Riemannschen Fliache
vom Geschlecht g > 1, welche holomorph sind auflerhalb zweier “generischer”
Punkte (welche festgehalten werden). Es ist heute allgemein iiblich diese Al-
gebra Krichever - Novikov Algebra zu nennen (mit oder ohne zentrale Er-
weiterung). Im folgenden bezeichne ich sie auch kurz mit KN Algebra. Dieser
Verallgemeinerungsschritt mag naheliegend erscheinen. Es darf jedoch nicht
vergessen werden, dafl nicht nur die Algebra sondern auch ihre Darstellungen
(speziell die “wedge”-Darstellung) wichtig sind. Zur Konstruktion der “wedge”-
Darstellung benutzt man im Virasoro Falle die Graduierung der Algebra und
der beteiligten Module, welche durch die Nullstellenordnung am Punkt z = 0 in-
duziert ist. Die KN Algebra ist nun keine graduierte Algebra im tiblichen Sinne
mehr. Durch Einfiihrung spezieller Basen kann man jedoch eine verallgemein-
erte Graduierung einfiihren, die es erlaubt die wesentlichen Schritte auch im
Falle hoheren Geschlechtes durchzufiihren. Physiker nahmen diese Konstruk-
tionen auf und benutzten sie zur Beschreibung der konformen Feldtheorie. [PA]
enthélt eine exemplarische Liste von Arbeiten von Physikern welche sich mit
diesen Anwendungen befassen.

Um eine Hinfithrung zu den Problemstellungen dieser Arbeit zu geben,
mochte ich im folgenden erldutern wie die Virasoro Algebra in der Stringtheo-
rie auftaucht. Der nicht an der physikalischen Motivation interessierte Mathe-
matiker mag die folgenden Seiten iiberschlagen. Im Hauptteil der Arbeit wird



keine Referenz mehr zu diesen gemacht.

Stringtheorie ist ein Beispiel einer zweidimensionalen konformen Feldthe-
orie. Konforme Feldtheorien auf zweidimensionalen orientierbaren Flachen
sind dadurch gekennzeichnet, daf} alle beteiligten Felder, bzw. Operatoren, bei
geeignet gewéhlter komplexer Struktur, vollstdndig in holomorphe und anti-
holomorphe Anteile faktorisieren. So sind beispielsweise die globalen (priméren)
Felder ® wie folgt gegeben: ® ist ein Schnitt in ein Biindel iiber der (Rie-
mannschen) Flache M. Es kann dargestellt werden als lokaler Ausdruck in den
lokalen Koordinaten z. Sei weiter w = w(z) ein holomorpher Koordinaten-
wechsel. @ heifit ein (priméres) Feld vom konformen Gewicht (o, ) falls fiir
seine lokalen Reprisentanten ®(z), bzw. ®(w) gilt!

i = (2) 7 (2) e o)

Zur genaueren Einfiihrung in die konforme Feldtheorie sei auf [BPZ] verwiesen.?
Zur Vereinfachung mochte ich im folgenden lediglich die («,0), bzw. holomor-
phen Anteile der Felder betrachten.

Die Stringtheorie war in den letzten Jahren die Hoffnung der theoretischen
Physiker alle fundamentalen Krifte (elektromagnetische, schwache, starke und
gravitative) als verschiedene “Aspekte” einer einzigen, universellen Kraft zu
beschreiben. Auch wenn dies (noch?) nicht gelungen ist, so hat sie jedoch
wesentliche Impulse sowohl in der theoretischen Physik (Quantenfeldtheorie)
als auch in der Mathematik (Modulraum der Kurven, unendlichdimension-
ale Liealgebren, Monstergruppe,...) gegeben. Um die wesentlichen Aspekte
darzustellen, sei die Situation vereinfacht. Ich betrachte nur die geschlossene,
bosonische Stringtheorie. Realistischere Modelle sind supersymmetrische Stringth-
eorien. Ein String im flachen euklidschen Raum? ist in der anschaulichen klass-
sischen Betrachtungsweise ein eingebetteter Kreis (mit Orientierung) im RP.
Hierbei ist die Dimension D des Einbettungsraum nicht a priori festgelegt. Ins-
besondere ist D nicht 4, bzw. 3. Dieser Kreis bewegt sich mit seiner Eigenzeit
im IRP. Anfangsbedingung ist eine feste Position A fiir den String, Endbedin-
gung eine feste Position B. Die klassische Bewegungsgleichung des Stringes,
formuliert als Variationsproblem fiir die Energie, lautet: Bewege dich von A

1Physiker verwenden gerne ®(z,%) statt ®(z) .

2Es treten z.Bsp. durch die Operatorproduktentwicklung in Bezug auf benachbarte Punkte
auch lokale (sekundéare) Felder auf.

3Auch hier sind realistischere Modelle Strings im Minkowski Raum, bzw. Strings in
beliebig gekriimmten Raumen.
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nach B in einer Weise, daf3 eine Flache minimalen Inhaltes ausgeschopft wird.
Dabei soll sich die Orientierung des Kreises nicht d&ndern. Die ausgeschopfte
Fléche ist eine orientierte Flache mit 2 Randkurven, kann also als (berandete
) Riemannsche Fliche aufgefafit werden. Diese Fliche heifit “world sheet” des
Strings (in Anlehnung an die bekannte Weltlinie eines Teilchens in der Rela-
tivitdtstheorie).

Eine Moglichkeit des Uberganges von der klassischen Theorie zur Quanten-
theorie ist die Pfadintegralmethode. In diesem Modell geht man davon aus,
dafl alle Méglichkeiten der Bewegung von A nach B mit gewissen Wahrschein-
lichkeiten realisiert werden. Diese Wahrscheinlichkeit ist jedoch umso kleiner,
je grofler die Energie, d.h. der Inhalt der ausgeschopften Fléache, ist. Dabei
ist in diesem Modell auch erlaubt, dafl sich ein String in zwei Strings teilt,
bzw. zwei Strings sich zu einem vereinigen. Dies heifit, die Wechselwirkung
mehrerer Strings ist automatisch berticksichtigt. Ein einzelner world sheet
ist nun eine (berandete) Riemannsche Flidche beliebigen Geschlechtes. Auf-
grund postulierter Invarianzen des Wahrscheinlichkeitsmafles (Unabhéngigkeit
von der speziellen lokalen Koordinatenwahl, Invarianz unter Multiplikation der
Metrik mit einer positiven reellen Funktion, Invarianz unter Translation im Ein-
bettungsraum) reduzieren sich die verschiedenen Moglichkeiten (alle Einbettun-
gen des world sheets in IR” und alle Metriken auf dem world sheet) auf die an-
alytischen Isomorphieklassen von Riemannschen Fléachen. Zur ausfiihrlicheren
Information konsultiere man den Bourbaki Exposé von Bost [Bos|, die Ein-
leitung von I. McArthur in [Schll], das Standardwerk {iber Stringtheorie [GSW],

Auf dem world sheet sind nun alle Felder, bzw. alle Operatoren definiert.
Dies ist in vollkommener Analogie zum “Teilchen im Raum” zu sehen. In
diesem Fall ist etwa der Ort des Teilchens, der Impuls und die Energie des
Teilchens eine Funktion auf der Bahnkurve. Aufgrund der Postulate der Stringth-
eorie ist die zu studierende Feldtheorie auf dem world sheet eine konforme
Feldtheorie. Der Fall Geschlecht g = 0 fiir das world sheet ist gut untersucht
und soll als Einstiegsbeispiel betrachtet werden. Allerdings ist die Darstel-
lungsweise etwas anders als tiblicherweise in der Physikliteratur anzutreffen. Ich
habe sie gewahlt unter dem Gesichtspunkt der Verallgemeinerung auf beliebiges
Geschlecht. Insbesondere werden Objekte und Notationen wie im Hauptteil der
Arbeit verwendet. Im Fall g = 0 ist der world sheet ein Zylinder. Dieser kann
konform auf IP*\ {I,0} abgebildet werden. Auf der komplex projektiven Ger-
ade sei eine globale Koordinate z gewahlt, derart dafl I dem Punkt z = 0
und O dem Punkt z = oo entspricht. Es sei X = IP' und Xy = IP*\ {I,0}.
Aufgrund (1-1) sind die interessanten Objekte meromorphe Schnitte in die Ten-



sorpotenzen des kanonischen Biindels K von X. Sie sollen auf Xy holomorph
sein. Sei F* der Raum solcher Schnitte in K*. A heifit das Gewicht. Der
Schnitt wird auch Form vom Gewicht A genannt. Ich fixiere eine Basis von F*
wie folgt

{ FaN) ] Fa(N)(2) = 2" d2)?, neZ}. (1-2)
Damit ist eine Graduierung von F* aufgrund der Numerierung der Basis gegeben.
Diese entspricht einer Graduierung in Bezug auf die Nullstellenordnung am
Punkt 7. Ubliche Bezeichnungen fiir Formen von speziellem Gewicht sind

en = fo(=1), wp:=fu(l), An:=fn(0), Q,:=fn(2).

Die Virasoro Algebra mit zentraler Ladung c ist die Liealgebra erzeugt (als
Vektorraum) von { L,,, n € Z; } und einem zentralen Element ¢ mit den
Kommutatorregeln*
[ Lna t } = 07
c

[ Lns L ] = (m = n) Lpym—2 + E((” - 2)3 —(n—2))0ma—n-t.
Offensichtlich ist die Virasoro Algebra eine graduierte Algebra. Die Vektor-
felder (d.h. die Formen vom Gewicht —1 ) bilden ebenfalls eine Algebra unter
dem {iiblichen Kommutator. Es gilt

(1-3)

[en,em] = (m —n)enim—2 , (1-4)

d.h. die Algebra der Vektorfelder F~! ist isomorph eingebettet in die Virasoro
Algebra mit zentraler Ladung ¢ = 0. Fiir ¢ # 0 sind obige Algebren jeweils
isomorphe, nichttriviale zentrale Erweiterungen der Algebra der Vektorfelder.
Wenn wir die abstrakte Virasoro Algebra betrachten, so setzten wir deshalb
¢ = 1. Fiir ¢ = 0 splitted die zentrale Erweiterung. Sei nun eine Darstellung
der abstrakten Virasoro Algebra gegeben, bei der das zentrale Element wie ein
Vielfaches der Identitét id operiert. Fiir die zugeordneten Operatoren gilt dann
die Gleichung (1-3) wobei t durch id zu ersetzen ist. Das nun auftretende c
nennt man auch die zentrale Ladung der Darstellung. Eine Darstellung mit
zentraler Ladung 0 definiert eine Darstellung der Algebra der Vektorfelder.

1
Sei weiter p = —dz ein meromorphes Differential. Es hat Pole 1.ter Ord-
z
nung bei I und O mit den Residuen +1, bzw. —1.

u(z) = Re /12 p = log |z| (1-5)

4Ublicherweise wird die Virasoro Algebra mit einer anderen Indizierung angegeben:
L), = Ly,+2 . Um in Kohédrenz mit dem Haupteil der Arbeit zu bleiben, habe ich dies nicht
iibernommen.



ist eine wohldefinierte harmonische Funktion auf Xj.
Cr={zeXo|ulz)=71} (1-6)

seien ihre Levellinien auf Xy. Es sind offensichtlich Kreise um z = 0. Fir
T — —oo sind es Kreise um I, fiir 7 — +o0o Kreise um O. Diese Situation
kann stringtheoretisch interpretiert werden: Die Levellinie C stellt den String
dar, 7 ist die Eigenzeit des Stringes, “7 = —o0” entspricht dem Eintritt des
freien Stringes, “7 = +00” dem Austritt des freien Stringes.

Multipliziert man v € F» mit w € F'~?, so erhilt man eine Differentialform
welche tiber C integriert werden kann. Da Pole nur bei I und O vorliegen, ist
der Wert des Integrales unabhéingig von 7. Die Basis (1-2) erfiillt die folgende
Dualitatsbeziehung

1

27

f%fam~ﬁﬂA1—Aw=%mﬂ (1-7)

Ist F(z) irgendein Feld, definiert auf X, vom Gewicht A, d.h. ein Schnitt in
K*, von dem wir wissen, daf es sich schreiben 148t als

= Z anfn(A)v (1_8)
so gilt
1
an = 5 . F-fi_,(1=X). (1-9)

Diese Entwicklung in der konformen Feldtheorie ist das Analogon der iiblichen
Fourierentwicklung. Fiir das Folgende postuliert man nun, dafl alle beteiligten
Felder und Operatoren solch eine Entwicklung besitzen. In der Darstellung
lehne ich mich an [KN2] an.

Sei M der world sheet und definiere X : M — IR die Einbettung. Die
Komponenten X*, y = 1,...,D sind die Ortsvariablen des Stringes. Fir
jeden Punkt P € M, der kein singuléarer Punkt von C; ist, hat man eine Vari-
able o entlang des Stringes und die oben eingefiihrte Variable 7 in Richtung

der Stringbewegung. Der konjugierte Impuls P* der Ortvariablen X#* ist
oXH

dr ° AufgefaBit als Objekte auf M (unter Benutzung der Bewegungsgle-
-

ichung der Stringes ) ergibt sich : X# ist ein Feld vom Gewicht 0 und P* ein
Feld vom Gewicht 1. Wir erhalten folgende (beidseitig unendliche) Entwicklung

XMQ) =D XhAu(Q), PYQ)=)_ Plw.(@). (1-10)

5Ich vernachlifige hier und auch weiterhin Faktoren von .



Hierbei sind X# und P/ skalare Koeffizienten. Die Quantisierung im Oper-
atorformalismus® besteht darin alle Felder als operatorwertige Felder aufzu-
fassen. Die Poissonklammer der Felder wird als Kommutatorrelation der Op-
eratoren, welche auf einem, iiblicherweise nicht naher spezifizierten, linearen
Raum operieren, interpretiert. Dies ergibt hier fur Q,Q’ € C

[(X*(Q), P*(Q")] = Ar(Q, Q) dpuws
[X*(Q), X*(Q")] = [P*(Q), P*(Q")] = 0.
AL (Q, Q") ist die “6—Funktion 7 auf C.. Genauer handelt es sich hierbei um

eine Funktion in der Variablen @ und ein Differential in der Variablen Q’. Sie
ist charakterisiert durch

(1-11)

1 /
— A / 1-12
1Q) = 55 , F@)8-@.Q) (1-12)
fiir Funktionen f auf C,. Mit (1-9) ergibt sich die Darstellung

AQ,Q) = An(Qwi-n(Q) . (1-13)

Zur Notationsvereinfachung werde ich im folgenden nur eine Komponente von
X und P betrachten und den Index weglassen. In den Darstellungen (1-10) wer-
den, aufgrund der Quantisierung, die X,, und P,, operatorwertige Koeffizienten.
Mit Hilfe von (1-11) rechnet sich aus”

[Xnapl—m]:§n1,na [XnaXl—m]:[Pn7P1—m}:O~

Der Impulstrom (genauer sein (1,0)—Anteil) ist gegeben als das Differential

7Q) = 22 Qo + P(@)

Als Objekt auf dem world sheet kann J entwickelt werden

J(Q) = (XndAn(Q) + Pown(Q)) =Y a1-nwn(Q) - (1-14)

n

6Diese Quantisierung wird 2.Quantisierung genannt, da Felder quantisiert werden.

"Die Frage der Berechtigung von unendlichen Summen von Operatoren méchte ich hier
nicht diskutieren. Sie werden noch ein paar mal im physikalischen Teil auftreten. Der skeptis-
che Leser moge diese als heuristische Konzepte auffassen. Durch eine “Regularisierungsproze-
dur” (Normalordnung) ist sicherzustellen, da§ die Aktion fiir die relevanten Operatorsummen
wohldefiniert ist. Siehe hierzu auch §8.(b).



Das Differential dA,, kann mit der Dualitét (1-9) berechnet werden
. 1
dA, = %:'Yn,l—m W MIt Ypm = % %CT dA, - A, . (1_15)

Aufgrund der einfachen Gestalt bleibt fiir ¢ = 0 nur ein einziger Summand
dA, =(n—1wp_1, bzw. Ypm=m—1)dpo—n .
Fiir die Koeffizienten

al—n = Pn + ZP)/m,lanm
m

ergibt sich die Kommutatorrelation

[an7am] = _2’Vn,m (1-16)

bzw. fir g =0
[@n, am] =2(1 —n)0m,2-n - (1-17)

Die operatorwertigen Koeffizienten des Stromes J bilden somit eine Oszil-
latoralgebra mit unendlich vielen Freiheitsgraden. Diese wird auch Heisen-
bergalgebra genannt. In §6. werde ich ausfiihren wie man sie als zentrale
Erweiterung der abelschen Liealgebra LFY, der Funktionenalgebra, gewinnen
kann.

Der néchste Schritt ist die Behandlung des Energie-Impulstensors 7' . Der
Energie-Impulstensor ergibt sich als “Variation des Energiefunktionals (gle-
ich Flacheninhalt) des world sheets nach der Metrik des world sheets” (siehe
[GSW]). Im klassischen Bild ist er das Quadrat des Stromes (Sugawaraform),
somit eine Form vom Gewicht 2 (ein quadratisches Differential)

2
T(Q) = 5 (7)) = (Zal_nwn@)) =Y L@ . (-18)

Will man eine Beziehung zwischen den operatorwertigen Fourierkoeflizienten
an, und L, erhalten, um festzustellen wie diese operieren, so steht man vor
dem Problem daf} die Form (1-18) unter der Annahme, dafl alle Koeffizienten
Zahlen sind, gebildet wurde. Nun ist im allgemeinen a, - G # QG - ap -
Es ist also nicht klar, welche Reihenfolge im Quadrat angenommen werden
sollte. Die Vorschrift einer gewissen Reihenfolge nennt man Normalordnung



D GpQy - . Diese ist bestimmt durch gewisse Vorgaben. Fiir die Darstellung der
Quantentheorie wird gefordert, dafl J(Q) angewendet auf den Grundzustand
(das “Vakuum”) [0) holomorph bei z = 0 ist (“Regularitidt des Vakuums”).
Dies bedeutet, es mul a,|0) = 0 fir n > 1 gelten. Diese a, heiflen de-
shalb Vernichtungsoperatoren. Die Normalordnung besteht darin im Fall des
Nichtvertauschens von a,, und a,,, und falls einer der beiden ein Vernichtung-
soperator ist, diesen rechts aufzufithren. In unserem Fall (¢ = 0) vertauscht
nur dann a, und a,, nicht, falls m = (2 — n) ist. Insbesondere ist die Nor-
malordnungsvorschrift eindeutig. Sie ergibt

Aplm, M>N
L Ap G o =

Amp, M <N .

Der quantenmechanische Operator T ist definiert als
1
TQ)=—5: J(Q)2 Y Z Fanm  w1—n (Q)w1-m(Q) (1-19)
Wiederum mit der Dualitatsformel gilt

1 : 1
Ly = 3 Zlfum DOpQpy o mit lfhm = on o CLWi1—nWi-m - (1-20)
n,m T

Im Fall g = 0 verschwindet der Koeffizient (%, = falls (n +m — k) # 0 ist und
fir n4+m — k =0 ist er 1. Somit

1
L, = -5 Z D nGk—p) ¢ - (1-21)

n

Durch direktes Nachrechnen auf den Darstellungen verifiziert man [KN2], da8
die Operatoren Ly, eine Darstellung der Virasoro Algebra mit zentraler Ladung
¢ = 1 bilden. Fiihren wir alle Komponenten mit, so ist T' die Summe von D
Termen, d.h. als gesamte zentrale Ladung tritt cx = D auf.

Der néchste Schritt der Quantentheorie besteht darin, die Kommutatorrela-
tionen der Operatoren auf entsprechenden Riumen zu realisieren.® Die Kom-
ponenten Ly von T haben allerdings noch eine andere Bedeutung. Da sie den
meromorphen Vektorfeldern auf X entsprechen, die holomorph auf X sind,

8Weitere Schritte sind: Einfithrung eines Skalarproduktes, Berechnung von Eigenwerte
der Operatoren, usw. . Darauf werde ich hier jedoch nicht eingehen.
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sind sie “infinitesimale” Erzeugende von konformen Transformationen, d.h. Ly
ist “zugeordnet” dem (lokalen) konformen Fluf

Bp(t,2) : (z—2z+t-2F71), telR.

Eine konforme Feldtheorie sollte abgeschlossen unter konformen Umparametri-
sierungen sein. Mit einem Feld @, oder mit einem Zustand |w) mufl deshalb
auch das entsprechend “abgeleitete” Feld Lji® , bzw. der Zustand Ly w)
in der Theorie vorhanden sein. Gesucht sind also Darstellungen der Virasoro
Algebra, die gewisse, flir die Physik wichtige, Eigenschaften haben. Dies sind
etwa Unitaritat, positive Eigenwerte des Energieoperators und die Existenz
eines Grundzustandes |0) mit

L,0)=0, n>3,  L0)=hl0), heC.

Solche Darstellungen wurden unter dem Namen Verma Darstellung, bzw. Hochst-
gewichtsdarstellungen ausfiihrlich von Mathematikern und Physikern (siehe
Literaturhinweise in [KaR]) studiert.” Eine Moglichkeit explizite Realisierun-
gen zu erhalten besteht darin, von der Aktion der Vektorfelder auf den Formen
(via Lieableitung) auszugehen. Es gilt

Le, (fm(N) = en - fm(A) = (m = 1) + A(n = 1)) frym—2 - (1-22)

Dies ergibt ebenfalls eine Aktion der Lj auf F*. Leider hat diese Darstellung
nicht die gewiinschten Eigenschaften. Um solche zu konstruieren, kann man
ausgehend von F*(A) den semi-infiniten Wedgeraum (sieche §7.) benutzen.
Dieser besitzt als Basis die (formalen) Wedgeformen

¢:fi1Afi2/\"'fm/\fm+1/\'~c (1'23)

mit 97 < iy < ... < m < ..., wobei, beginnend von einem Index m der von
1 abhéngt, alle Indices auftreten miissen. Auf diesen Formen operieren die
Vektorfelder durch die Leibnizregel. D.h. das Vektorfeld e operiert auf einem
einzelnen Faktor, die anderen Faktoren bleiben unverandert und es wird iiber
alle Moglichkeiten summiert (siehe (7-2) zur genaueren Definition). Das A Ze-
ichen deutet an, wie das Ergebnis in Standardform zu iiberfiihren ist. Fiir e,
mit n # 2, bleiben bei der Aktion nur endlich viele Terme {ibrig. Fiir es ist
diese Aktion nicht wohldefiniert, da sich in jedem Term das Ausgangsbasisele-
ment mit einem Faktor versehen reproduziert. Um eine wohldefinierten Aktion

9Tatsachlich treten Untermodule von Tensorprodukten verschiedener Vermadarstellungen
auf.
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zu erhalten, mul man “Regularisieren”. Allerdings definiert die regularisierte
Aktion nur noch eine Lieaktion einer zentralen Erweiterung der Algebra der
Vektorfelder, d.h. eine Lieaktion der Virasoro Algebra.

Diese semi-infiniten Wedgeprodukte spielen auch eine wichtige Rolle in einem
anderen Baustein der quantisierten Stringtheorie, den sogenannten b — ¢ Syste-
men [Bol]. Diese Felder (auch “ghost”-Felder genannt) haben keine klassische
Entsprechung. Es sind Operatorenfelder vom Gewicht 2, bzw. —1. Sie haben
somit eine Entwicklung

Q) =D bi-a(Q), Q)= ci-nea(@) - (1-24)

Weiter gilt fir Q, Q" € C (d.h. zur selben “Zeit”)

{6(Q), c(Q)} =b(Q) - ¢(Q') + ¢(Q) - b(Q) = A(Q, Q')
{6(Q),0(Q")} = {c(Q), (@)} =0

A ist die “Delta-Funktion” fiir b — ¢ Systeme.

In der geschlossenen bosonischen Stringtheorie fithrt man sie ein, um die Invar-
ianz des Pfadintegrales unter der Reparametrisierungsgruppe (das sind die Dif-
feomorphismen welche isotop zur Identitét sind) bequem handhaben zu kénnen.
Wie bereits erwahnt, wird iiber alle Einbettungen und alle Metriken “integri-

(1-25)

ert”. Aufgrund der Reparametrisierungsinvarianz kann die Metrik g lokal auf

Diagonalform g = e¥ - <1 0 gebracht werden (p eine reelle Funktion).

0 1
(In Physikerterminologie: Man wéhlt eine Eichung). Es kann dann das “Vol-
umen” der Reparametrisierungsgruppe abdividiert werden, indem transversal
zu den Orbits (d.h. iiber ein “gauge slice”) integriert wird. Vorher muf allerd-
ings das Integrationsmaf} transformiert werden. Dies erfolgt entweder durch
Einfithrung von Zetafunktions-regularisierten Determinanten fiir den Laplace-
operator auf den quadratischen Differentialen [Bos] oder, hierzu &quivalent,
durch Einfithrung solcher b — ¢ Systeme (Geister) und Ausfithrung einer Inte-
gration iiber antikommutierende Variable (Berezin-Integral). Dieses Verfahren
wird auch Faddeev-Popov-Prozedur genannt. (Siehe [GSW,p.122] zur néheren
Information.)

Mittlerweile haben die b — ¢ Systeme als eine Klasse einfach zu behandelnder
feldtheoretischer Modelle eine eigenstdndige Bedeutung erfahren.

Zuriick zur Formel (1-25). Analog zu den Ableitungen bei den klassischen
Feldern ergibt sich hier fiir die operatorwertigen Koeffizienten

{bn, Cm} = 5m,1—na {bmbm} = {Cnvcm} =0. (1'26)
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Eine Darstellung solcher Systeme kann ausgehend von der semi-infiniten Form
0) = A AQ3A ... (1-27)

erhalten werden. Die Aktion von ¢, besteht im “Einh&ngen” von §2,,, die Aktion
von b,, im “Aushéngen” von ;_,. Fir eine semi-infinite Form w gilt also

enw = Qp ANw,  bpaw =1, (w) .

Hierbei ist 4., definiert als die Kontraktion auf jedem Faktor

1
e, () = o fc en Sl (1-28)

und die Fortsetzung dieser Aktion mit der (modifizierten) Leibnizregel

oo
ey (U Ay Ao ) =) (1) e, ) AR, AL QL (1529)
k=1

(ij bdeutet, dafl dieser Term ausgelassen wird). Dies definiert eine Darstel-
lung der von den b,, und ¢, mit (1-26) erzeugten Cliffordalgebra. Die Wahl des
Vakuumvektors (1-27) bedeutet

bnl0) = ¢,[0) =0 fir n>1.

Also sind b(Q)|0) und ¢(@)[0) holomorph am Punkt z = 0.

Der (2,0) Anteil des Energie-Impulstensors T ist in der lokalen Darstellung
gegeben als

T(2) = ~Llb)() = (o) g ()~ 25 ) = T Lifu(a) - (150

Um die L, in den b,, bzw. ¢,, auszudriicken mufl wieder normalgeordnet werden.
Hier bedeutet dies, daf, falls die Operatoren nicht antikommutieren, derjenige
Operator am weitesten rechts aufgefiihrt wird, der das Vakuum (1-27) annul-
liert.

(1-31)

s Cpby =

{ eabm, M >0
—bmen, m<O0.

Die operatorwertigen Koeffizienten in (1-30) konnen gegeben werden als

Ly=> (k=n):ei_nbnir_z:

n
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Sie bilden ebenfalls eine Darstellung der Virasoro Algebra, nun allerdings mit
zentraler Ladung cg, = —26 (siehe §8.(b)). Die gesamte quantisierte bosonische
Stringtheorie besteht in den X*#—Feldern und den ghost-Feldern. Der Gesamt-
darstellungsraum der Virasoro Algebra ist das Tensorprodukt der einzelnen
Darstellungen mit der Aktion

Llv®@w)=L0w)@w+v® Lw) .

Hierbei addieren sich die zentralen Ladungen. Diese ist ja der multiplikative
Faktor mit denen das zentrale Element operiert. Falls die gesamte zentrale
Ladung verschwindet, bedeutet dies, dafl die Algebra der Vektorfelder auf den
Zustdnden operiert. Dies heifit die quantisierte Theorie ist, wie die klassis-
che, “konform invariant”. Falls nicht, sprechen die Physiker von der “kon-
formen Anomalie” (hervorgerufen durch die Quantisierung). Fordert man das
Verschwinden der konformen Anomalie so bedeuted dies c¢g, = —cx , also

D = 26 . Man erhilt somit eine Fixierung der Einbettungsdimension.'?

Soweit die wichtigsten Aspekte der Geschlecht g = 0 Betrachtung. Sie wur-
den jedoch schon so formuliert, daf sie auf hoheres Geschlecht tibertragbar sind.
Die meist iibliche Darstellung der physikalischen Theorie arbeitet vollsténdig in
der lokalen Koordinate z und mit lokaler Trivialisierung aller Biindel. Krichever
und Novikov [KN1], [KN2] haben die entsprechenden Konstruktionen bei héherem
Geschlecht ausgefiihrt. Die Virasoro Algebra wurde ersetzt durch ihre Verall-
gemeinerung, die Krichever - Novikov Algebra. Wie bereits erwéhnt wurden
diese Konstruktionen von Physikern aufgegriffen um einen globalen Operator-
formalismus auf Riemannsche Flachen von hoherem Geschlecht zu formulieren.
Krichever und Novikov haben sich allerdings auch nur auf 2 Polpunkte beschrankt.
In der obigen Interpretation in der Stringtheorie liegt es nahe statt zweier
Polpunkte, die dem Eintritts- und Austrittspunkt eines freien Stringes entsprechen,
mehrere einkommende und mehrere ausgehende Strings zu erlauben. Aufgrund
des Impulserhaltungssatzes muf} allerdings, falls ein String eintritt, auch min-
destens einer austreten und umgekehrt. Die notwendigen algebraisch-geometrischen
Grundkonstruktionen durchzufiihren, ist der Inhalt dieser Arbeit. Es sei nochmals
darauf hingewiesen, daf} im folgenden kein Bezug mehr zur physikalischen An-
wendung gemacht wird (Ausnahme §8.(b)). Insbesondere wird auch nicht
der Versuch unternommen, einen globalen Operatorformalismus der konfor-
men Feldtheorie auf Riemannschen Flachen von héherem Geschlecht zu kon-
struieren. Untersucht wird auch nicht die zweifellos sehr interessante Frage

10Um auf Dimension 4 der Raumzeit zu kommen, werden 22 Dimensionen als interne
Dimensionen “kompaktifiziert”.
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des mathematischen Zusammenhanges eines solchen globalen Formalismus mit
dem lokalen Operatorformalismus, dessen mathematische Grundlagen etwa in
[BS],[KNTY],[TUY],[Wil] dargestellt werden. (Im lokalen Formalismus wird
an jedem Punkt des world sheets eine Virasoro Algebra “angeheftet”.)

Ich mochte nun eine Kurzfassung des Inhaltes geben. In §2. wird der
allgemeine Rahmen erldautert. Gegeben sei eine Riemannsche Fliche X von
beliebigem Geschlecht (diese entspricht in der Stringtheorie dem world sheet).
A sei eine Menge von Punkten aus X aufgeteilt in 2 nichtleere Teilmengen
I und O. Die Punkte in I entsprechen den Eintrittsstellen freier Strings,
die Punkte in O den Austrittsstellen freier Strings. I und O koénnen unter-
schiedliche Mé&chtigkeit haben. Die Punkte in A seien generisch gew&hlt. Sei
p ein meromorphes Differential, das genau Pole 1.ter Ordnung an den Punk-
ten aus A hat, mit positiven Residuen an den Punkten aus I und negativen
Residuen an den Punkten aus O und rein imagindren Perioden. Analog zu
(1-6) werden die Levellinien C; definiert. Allerdings kénnen sie nun mehrere
Komponenten haben, bzw. sie konnen Singularitidten haben (an den Nullstellen
von p). Die C; bilden in der Interpretation der Stringtheorie die Stringkon-
figuration zur Eigenzeit 7. Insbesondere ist die Levellinie C; fiir 7 < 0 eine
Kollektion von Kreislinien um die Punkte aus I und fiir 7 > 0 eine Kollektion
von Kreislinien um die Punkte aus O. F*(A) sind die meromorphen A—Formen
(Schnitte in K*), die holomorph auf X \ A sind. F~1(A) sind die Vektorfelder.
Sie bilden unter dem {iblichen Kommutator der Vektorfelder eine Liealgebra.
Diese nenne ich (verallgemeinerte) Krichever - Novikov Algebra KN (A). Durch
Lieableitung operiert KA/(A) auf F*(A) und macht diesen zu einem Liemodul.
Daneben operiert auch F°(A) auf F*(A) durch Multiplikation mit den Funktio-
nen. KA (A) zusammen mit FO(A) (aufgefaBlt als abelsche Liealgebra) bilden
die Liealgebra der Differentialoperatoren vom Grad < 1 auf F*(A). Der Vi-
rasorofall ist als Spezialfall enthalten. Hierzu nehme man X = IP* mit der
Parametrisierung z, I = {z = 0} und O = {z = oo}. Ebenso ist der von
Krichever und Novikov behandelte Fall enthalten. Hierbei enthilt I und O
jeweils nur einen Punkt.

In §3. wird mit Hilfe von Riemann-Roch ein Erzeugendensystem fiir F*(A)
angegeben. Jedes Element dieses Systemes wird durch vorgeschriebene Ord-
nungen an den Punkten aus A fixiert (bis auf Multiplikation mit einer Kon-
stanten). Hierbei wird benutzt, dafl die Punkte in allgemeiner Lage sind.
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Nur in diesem Fall ist man in der Lage zu schlieflen, dafl die Forderung nach
einer zusitzlichen Nullstelle der zu betrachtenden Schnitte von K* an einem
Punkt aus A die Dimension des entsprechenden Schnittraumes um 1 erniedrigt
(falls sie nicht schon 0 war). Durch schrittweises Erhohen der Ordnungsvor-
gaben, erhilt man die Eindeutigkeit der erzeugenden Elemente. Da K und
0 spezielle Divisoren sind, sind fiir A = 0 und A = 1 einige Sonderbetrach-
tungen notwendig. Insbesondere sind die Ordnungsvorschriften nicht immer
ausreichend zur Fixierung der Erzeugenden.

In §4. gebe ich explizite Formen dieser Erzeugenden an. Im Fall g = 0 ist dies
trivialerweise durch rationale Ausdriicke analog zu (1-2) machbar. Im Fall g = 1
geniigt wegen K = 0 die Konstruktion von Funktionen. Dies erfolgt mit Hilfe
der WeierstraBchen o—Funktion. Im Fall g > 1 benutze ich die Jacobiabbil-
dung um die Riemannsche Fliche X in ihre Jacobivaritdt Jac (X) einzubetten.
Mit Hilfe der “prime”-Formen (dies sind mehrwertige Formen auf X x X vom
Gewicht —1/2 in jedem Argument) und Thetafunktionen kénnen entsprechende
Erzeugende konkret angegeben werden. Hierbei bezieht sich “konkret” auf die
eingebettete Riemannnsche Fléche in Jac (X). Solche explizite Formen sind
in zweifacher Weise niitzlich. Zum einem werden sie von den Physikern benutzt
um “Ubergangswahrscheinlichkeiten” zu berechnen [Bol]. Zum anderen kann
der Effekt der Variation der Punkte aus A und der Variation der komplexen
Struktur von X studiert werden.

In § 5. erfolgt die Auszeichnung einer Basis. In § 3. und § 4. war die Zerlegung
A = 1U O ohne Belang. Die Basis wird nun von der Zerlegung abhéangen. Die
Punkte in I seien von 1 bis k numeriert. Es werden aus dem Erzeugendensystem
von F*(A) Elemente

fap(X), neZ,p=1,...k

ausgew&hlt. Der Index n steht im Zusammenhang mit der Ordnung von f,, , ()
an den Punkten aus I . Genauer gilt

ord Pi(fmp()‘)) =n—- 5i,pa Pel.

Die Ordnungen an den Punkten aus O sind gewéahlt, um Eindeutigkeit (bis
auf skalare Vielfache) zu erzwingen. Allerdings sollen ebenfalls noch gewisse
Eigenschaften gelten, die im folgenden aufgefiihrt werden. Die Wahlen sind so
gemacht, daf} wiederum Dualitét in Analogie zu (1-7) gilt

1
27i

%CT FrpW) fr—mr(1 = A) = 6nm - Op,r - (1-32)
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Die Methode, dies zu berechnen, besteht darin je nach Situation die Residuen
an den Punkten aus I, bzw. aus O zu berechnen. Die Dualitét (1-32) ist funda-
mental. Jedes v € F*(A) ist Linearkombination der f, ,(\). Die Dualitiit er-
laubt es die Koeffizienten in der Linearkombination als Integral, bzw. Residuum
auszudriicken. Insbesondere kann man wiederum Entwicklungssummen, wie in
(1-8), in Bezug auf diese Basis hinschreiben.

Es gilt aber noch mehr. Fiihrt man auf F*(A) eine Graduierung ein, derart
dafl die Linearkombinationen der Elemente f, ;, die homogenen Elemente vom
Grad n sind, dann ist F*(A) i.Allg. kein graduierter Modul iiber JCNV'(A) mehr,
wie er er es im Virasoro Falle (1-22) war. Allerdings liegt eine verallgemeinert
graduierte Struktur vor. Genauer gilt

n+m-+L

enp - fma(N) = > ZC(Z =) oy V) s () (1-33)

h=n+m—2 s=1

Hierbei ist e, = fop(—1) und e.f = L.(f) die Lieableitung von f in
Richtung des Vektorfeldes e. Weiter ist L eine Konstante die weder von n noch
von m abhéngt. Falls #I = #0 (und fir g = 0 noch zusétzlich #I = 1), so
gilt L = 3g — 2 fiir A # 0,1. Eine verallgemeinert graduierte Struktur ergibt
sich auch, wenn man F*(A) als Modul iiber der (assoziativen) Algebra F°(A)
auffafit. Die Gleichung (1-33) ist, wie sich in §7. zeigen wird, genau das was
man braucht um die Wedgeproduktdarstellung zu konstruieren. Natiirlich ist
die Festlegung von F*(A) nicht gekoppelt mit der Aufspaltung von A in I
und O. Unterschiedliche Aufspaltungen induzieren auf F*(A) unterschiedliche
verallgemeinerte Graduierungen. Die Graduierung bleibt invariant unter Um-
numerierung der Punkte aus I. Werden die Punkte aus O umnumeriert, so
andert sich zwar die Graduierung, nicht jedoch die Filtrierung. Im Gegensatz
dazu induziert eine andere Aufspaltung der Menge A eine nichtéquivalente Fil-
trierung.

Neben der Darstellung obiger Ideen besteht der zweite Teil von §5. darin,
Regeln fiir die Festlegung der Ordnungen an den Punkten aus O fiir alle
Moglichkeiten von #1 und #0 und alle A zu geben, derart dafl die oben genan-
nten Eigenschaften (Basiseigenschaft, Dualitét, verallgemeinert graduierte Struk-
tur) Gultigkeit haben. Insbesondere sind aufgrund der Dualitétsforderungen
die Basiselemente auch fiir A = 0 und A = 1 eindeutig fixiert.

Wie man im Virasoro Fall gesehen hat, benétigt man zentrale Erweiterun-
gen der Algebra der Vektorfelder. Diese werden in §6. studiert. Zentrale Er-
weiterungen einer Liealgebra G werden durch antisymmetrische Bilinearformen



16
x auf G (mit Werten in C) gegeben, welche den Kozykelbedingungen

x(If 91, h) + x([g, 1], f) + x([h, f1,9) = 0

geniigen. Um zentrale Erweiterungen KA (A) von KN (A) zu erhalten, kann ich
auch hier die von Krichever und Novikov verallgemeinerte Form des Virasoro
Kozykels benutzen. Sie funktioniert auch bei mehreren Polstellen. Es gilt

(eh) = — ]{ <1(f”’tft”’)R.(f’tft’)> dz (1-34)
247i Jo \2

Hierbei sind e = f %7 bzw. h = ta% die lokalen Formen der Vektorfelder

und R ein holomorpher, projektiver Zusammenhang. R kompensiert gerade

die Tatsache, dafl die erste Halfte des Integranden unter Koordinatenwechsel

sich nicht wie ein Differential transformiert. R verschwindet fiir projektive

Transformationen. Deshalb wird er auch fiir g = 0 nicht benétigt.

Der Kozykel (1-34) erfiillt in Bezug auf die spezielle Basis von §5. eine
wichtige Lokalitatseigenschaft. Es gilt ndmlich

X(enp,emyr) =0 fir (n+m)>5 oder (n+m)<M<3.

Hier ist M wiederum eine, weder von m noch von n abhéngige, Konstante. Fir
die n und m Werte an der oberen Grenze des Bereiches, an dem der Kozykel
nicht verschwindet, kann ich den Kozykel explizit berechnen. Es ergibt sich

1. .
X(e24ip, €2—ir) = (12(@3 — z)) Sp.r (1-35)

in Analogie zum Virasoro Fall. Im Virasoro Fall 148t sich leicht zeigen, dafl
(bis auf kohomologe Abénderung und Multiplikation mit einem Skalar) dieser
Kozykel der einzige Kozykel ist. Im Fall zweier Punkte und beliebigem g
wird dies in [KN1] mit entsprechendem Aufwand gezeigt. Vermutlich wird es
auch fiir eine beliebige Anzahl von Punkten gelten. Ich gebe eine Skizze eines
moglichen Beweises, filhre ihn jedoch nicht aus, da er ganz anders geartete
Methoden, als in der vorliegende Arbeit entwickelt, erfordern wiirde.

Neben der Krichever - Novikov Algebra studiere ich noch zentrale Erweiterun-
gen der (abelschen) Liealgebra LF°(A) der Funktionen. Hier ist ein nicht-
trivialer Kozykel gegeben durch

v(f.9) = %7{; fdg . (1-36)
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Die durch diesen Kozykel definierte zentrale Erweiterung von LF°(A) nenne
ich verallgemeinerte Heisenberg Algebra. Sie spezialisiert sich im Virasoro
Fall zu der schon angesprochenen Oszillatoralgebra (1-17). Der Vektorraum
DYA) = KN(A) @ F°(A) kann zu einer Liealgebra gemacht werden. Auf
jedem Summanden ist die Lieoperation wie vorgegeben . Durch

[e,h] = —[h,e] = Lo(h), e€ KN(A), h€ F°(A)

wird D!(A) zu einer Liealgebra. Es ist die Liealgebra der Differentialoperatoren
vom Grad < 1. F*(A) wird durch die Operation Lieableitung nach einem
Vektorfeld, bzw. Multiplikation mit einer Funktion zu einem Liemodul tber
DY(A). Die obigen Kozykel (1-34) und (1-36) definieren auch Kozykel auf
DY(A). Daneben gibt es noch einen 3. linear unabhingigen Kozykel der XA/(A)
mit FY(A) vertwisted. Dieser ist gegeben durch (f ist die lokale Darstellung
von e

)

Ble, h) = % 7{0 (FB' + T fh')d= . (1-37)

T ist ein “affiner Zusammenhang” der allerdings nicht holomorph auf X ist.
Er kann so gewéhlt, daf er lediglich einen Pol 1.0rdnung an einem Punkt aus
O besitzt. Sowohl fiir den Kozykel (1-36) als auch (1-37) gelten wiederum
gewisse Lokalititsaussagen. Im Virasoro Fall ist H2(D'({0,00})) von diesen 3
Kozykeln erzeugt (siche [ACKP]). Ich fithre die Algebra der kohérenten Differ-
entialoperatoren D(A) iiber die universelle einhiillende Algebra von D!(A) ein
(triviale Relationen werden aus dieser herausdividiert). Diese Namensgebung
wiihle ich deshalb, da ihre Elemente als Differentialoperatoren auf allen F*(A)
simultan operieren.

In §7. studiere ich Wedgeproduktdarstellungen der eingefiihrten Algebren.
Hierbei wird der Fall KA/(A) ausfiihrlich behandelt. Statt der Elemente f,())
werden nun die Elemente f,, ,(A) in (1-23) zur Definition benutzt. H*(A)
bezeichne den Raum der semi-infiniten Formen. Die Anordnung bezieht sich
immer auf die lexikographische Ordnung der Doppelindices. Auch hier ist die
Aktion nicht fiir alle e,, ,, wohldefiniert. Anders wie im Virasorofall sind es nun
mehrere, die Probleme bereiten. Aufgrund der verallgemeinert graduierten
Struktur sind es allerdings immer noch endlich viele. Genauer gilt: Die Aktion
der Unteralgebren

KNt (A)=(enp | n>3,p=1,... k)
KN™(A)=(enp|n<—-1—-L, p=1,... k)

ist wohldefiniert. Fiir die Elemente “dazwischen” mufl die Aktion abgeédndert
werden. Diese abgeénderte Aktion ist nur noch eine projektive Aktion. Erst
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beim Ubergang zu einer zentralen Erweiterung KN (A) wird die Aktion wieder
zu einer Lieaktion. Den Beweis der “Fortsetzung“ dieser Aktion fithre ich zuerst
mit einer Methode, welche eine Verallgemeinerung der im Virasorofall ange-
wandten ist, wie sie in [KaR] dargestellt wurde. Aufgrund der Basiswahlen
definiert die Aktion von KAN(A) auf F*(A) eine Einbettung in den Vektor-
raum der beidseitig unendlichen quadratischen Matrizen. Wegen der verallge-
meinert graduierten Struktur liegt JCA'(A) in gl(co), der Algebra der Matrizen
mit nur endlich vielen Diagonalen. Diese Einbettung ist natiirlich vertraglich
mit der Aktion auf F*(A) (und H*(A) falls definiert). Fiir gl(co) existiert
iiber eine wohldefinierte Abanderung der Aktion und einen wohldefinierten 2-
Kozyklus eine Aktion von gl(co) auf H*(A). Aufgrund der Einbettung von
KN (A) existiert eine zentrale Erweiterung KN (A), die auf H*(A) operiert.
Der definierende Kozykel ist der Pullback (unter der Einbettung) des Kozykels
auf gl(00). Dieser Pullback erfiillt wiederum die Lokalitéitseigenschaft.

Eine zweite Methode dies alles zu zeigen, beruht auf einem Vorschlag von
R.Weissauer. Sie ist im wesentlichen dquivalent und fiihrt zu einer isomorphen
zentralen Erweiterung. Die Operation von e, , auf den Formen wird modifiziert
durch die Vorschrift

€n,p - fm,r =wm- (en,p . fm,r) .
w

Hierbei ist w eine komplexe Variable. Ist 1 ein Basisvektor von H*(A), dann
ist die entsprechende Aktion op., (e, p)(?) fir w < 1 immer eine wohldefinierte
lineare Aktion. Allerdings liegt auch hier keine Lieaktion mehr vor. Fiir w =1
geht sie in die iiblich Aktion iiber, falls diese wohldefiniert ist. Schwierigkeiten
machen jedoch Vielfache von ¢ im Ergebnis. Diese tauchen bei op,, (e, p) mit
einer Potenzreihe in w auf, welche im Falle der Nichtwohldefiniertheit bei

w = 1 einen Pol hat. Die Regularisierung besteht in der Subtraktion des Poles.
Diese regularisierte Aktion ist eine projektive Aktion. Erst nach Ubergang zu
einer zentralen Erweiterung erhalt man wieder eine Lieaktion. Dies gilt alles
unter der Voraussetzung der Konvergenz einer gewissen Potenzreihe, in der die
Strukturkonstanten als Koeffizienten auftreten. Im Fall g = 0 (N beliebig) ist
diese Voraussetzung erfiillt. Fiir beliebiges g habe ich dies noch nicht nédher
untersuchen konnen.

In Prop. 7.2 werden die wesentlichen Eigenschaften dieser beiden Methoden
gesammelt.

Fiir gewisse Basiselemente kann der Kozykel wieder explizit berechnet wer-
den. Der (aufgrund beider Methoden) gefundene Kozykel hiangt vom Gewicht A
ab. Will man diese Abhéngigkeit beseitigen, so bedeutet dies einen Basiswech-
sel in der Algebra KN (A), bzw. die Wahl anderer Lifts fiir die Elemente in
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KN(A). Fiihrt man dies aus, so erhédlt man wieder einen Kozykel der die
Form (1-35) fiir diese speziellen Basiselemente besitzt. Das zentrale Element
t operiert durch Multiplikation mit dem Faktor

ey = —2(6A% —6A+1) .

Ausgehend von
Sr = fraiAfra- A freia--

erhilt man als Erzeugnis iiber KN (A) Untermodule von H*(A). Fiir die
Darstellung auf den Untermodulen gilt

KNT(A). &7 =0
1
By, ®p = —§(T— (T — 24 2)\) &p
t.®p =26\ —6A+1)Dp .

Hier ist £, , ein geeigneter Lift von e, ;,, t ein zentrales erzeugendes Element
und KN (A) wird als Untermodul von KN (A) aufgefat. Solche Darstellun-
gen sind das Analogon der Hochstgewichtsdarstellungen im Virasoro Fall. Dies
sind Quotienten von Verma Darstellungen. Ich definiere deren Analogon und
zeige deren Existenz. Paarungen zwischen rechts und links semi-infinite For-
men werden angesprochen. Es wird gezeigt, dafl in Bezug auf eine natiirliche
Paarung, die E, , selbstadjungiert sind.

Mit den gleichen Methoden erhélt man auch eine Darstellung einer zentralen
Erweiterung von D!(A) und sogar einer zentralen Erweiterung der Algebra der
kohirenten Differentialoperatoren D(A) auf H*(A). Fiir gewisse Paare von
Basiselemente ist der definierende Kozykel fiir die Erweiterung identisch zu
einer festen Kombination der in §6. eingefithrten Kozykel. Im Virasoro Fall
enthalten diese Paare bereits alle, fiir die der Kozykel nicht verschwindet. Somit
ist der definierende Kozykel durch diese Kombination gegeben.
Vermutungsweise gilt dies auch allgemein.

In § 8. werden b—c Systeme behandelt. Hierbei ist b eine Form vom Gewicht
A und ¢ eine Form vom Gewicht 1 — A. (Im einfiihrenden Beispiel g = 0 war b
ein quadratisches Differential und ¢ ein Vektorfeld.) Wie dort sei

b= Z bi—npfap(A), c= Z Clonpfnp(l—A) .
n,p n,p
Das entscheidende Objekt, vom mathematischen Standpunkt, ist die von den

bn,p und ¢, , erzeugte Clifford Algebra mit der Antikommutatorrelation

{bn,p7 Cm,r} = 5m,1—n5p,r7 {bn,p7 bm,T} = {Cn,pa Cm,r} =0.
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Eine Darstellung dieser Algebra kann erhalten werden durch Operation auf
H*(A). Hierbei operiere ¢, , durch “Einhingen” der Form f, ,(\) und by,
durch “Aushéngen” von f1_, »(A\) (bzw. Kontraktion) mit Hilfe der Dualitéts-
beziehung (1-32). Es gelten interessante Kommutatorrelationen mit der eben-
falls auf H*(A) operierenden Algebra D!(A).

In §9. wird eine andere Teilmenge des Erzeugendensystemes als Basis aus-
gewéhlt. Hierbei wird als Referenzpunkt ein fest gewdhlter Punkt Py in A
gewahlt. Dies war die erste Basis, die ich im Verlauf dieser Untersuchun-
gen gewahlt hatte [Schl2]. Leider besitzt die Algebra keine verallgemeinert
graduierte Struktur, in der diese Basiselemente homogene Elemente sind. Sie
ist also nicht geeignet zur Konstruktion der Wedgedarstellung. Sie besitzt
allerdings einige andere Vorziige. So haben die Elemente jeweils hochstens
2 Polstellen. Desweiteren gibt es eine Teilmenge der Basis, die eine Basis
der globalen holomorphen A—Formen ist. Globale holomorphe Formen (von
Physikern ¢
wichtige Rolle. Sie représentieren globale Symmetrien. Aufgrund der Kon-
struktion der Basis (schrittweise mit steigendem #A) ist die Einbettung von
KN(B) in KN (A), falls Py € B leicht sichtbar. Unter anderem werden in
diesem Paragraphen im Fall g = 0 die Strukturkonstanten von XN (A) explizit
berechnet.

‘zero modes” genannt), spielen in der physikalischen Theorie eine

Zu Anfang von §9. findet sich auch eine Auffiihrung der Arbeiten an-
derer Mathematiker und Physiker die sich mit der Krichever- Novikov Alge-
bra mit mehreren Polstellen beschéftigt haben. In diesen Arbeiten werden im
wesentlichen aber nur Basen entsprechend denen in §9. behandelt.

Danken méchte ich J. Wess dafiir, dafl er mein Interesse an der Krichever -
Novikov Algebra angeregt hatte. Ganz besonderen Dank gilt auch
R. Weissauer, der sich bereit erklarte die Arbeit zu betreuen und fiir wertvolle
Diskussionen und Anregungen zur Verfiigung stand. Desweiteren gilt mein
Dank auch L. Bonora fiir Diskussionen und die Einladung zu einem einwtchigen
Aufenthalt bei SISSA, sowie R. Dick fiir Diskussionen im Anfangsstadium der
Arbeit. R. Kiehl sei herzlich gedankt fiir seine Unterstiitzung. Anerkannt wird
auferdem eine teilweise Unterstiitzung durch Mittel der Leibniz - Stiftung.
Danken mochte ich auch den Mitgliedern der Arbeitsgruppe Algebraische Ge-
ometrie - Geometrie - Theoretische Physik an der Fakultét fiir Mathematik
und Informatik der Universitdt Mannheim und am Institut fiir Theoretische
Physik, Universitat Karlsruhe fiir anregende Diskussionen.
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§ 2. Die grundlegenden Definitionen

Im folgenden sei X eine kompakte Riemannsche Fléche, die ich, falls es
glinstiger ist, auch als nichtsingulare projektive komplexe Kurve auffassen werde.
Ihr Geschlecht g ist beliebig. Allerdings werde ich oft die iiblichen Fallunter-
scheidungen g = 0,9 = 1 oder g > 2 machen miissen. Es seien N verschiedene
Punkte auf X (N > 2) gewihlt, die in generischer Position sind. In welchen
Sinn dieses “generisch” zu verstehen ist, wird in §3. offensichtlich werden. A
sei die Menge dieser Punkte. Diese Punkte werde ich auch manchmal als Aus-
nahmepunkte bezeichne. A sei zerlegt in zwei disjunkte, nichtleere Teilmengen

I:{P17P27"'7Pk}7 O:{QlaQ27"'7Ql}a N:k+l (2'1)

Die Punkte seien in einer beliebigen, aber dann festgehaltenen, Reihenfolge
numeriert. Die Punkte in I nenne ich die “in” Punkte, die Punkte in O die
“out” Punkte.!! Desweiteren fixiere ich lokale Koordinaten

zi, i=1,...,k, und w;, i=1,...,1 (2-2)

um die Punkte P, € I, bazw. Q; € O (insbesondere gilt z;(P;) = 0, bzw.
w;(Q;) = 0). Alle diesen Daten seien gewdhlt und dann festgehalten. Bei der
Angabe eines Erzeugendensystemes spielt nur A eine Rolle. In die Konstruktion
der Basen wird die Aufteilung

A=1UO0O

wesentlich eingehen. Die Numerierung der Punkte (speziell der in O) wird
einen Einflu} auf die Festlegung einer Basis haben (allerdings ohne die zen-
tralen Resultate zu beeinflussen) Die Festlegung der Koordinaten dient nur der
skalaren Normierung der Basiselemente, hat also keine wesentliche Bedeutung.

Definition. Die verallgemeinerte Krichever - Novikov Algebra zur Riemannsche
Flache X vom Geschlecht g und den Ausnahmepunkten in A ist die Liealgebra
der meromorphen Vektorfelder auf X, welche holomorph auf X \ A sind. Sie
wird im folgenden mit KN (A) bezeichnet.

Wenn keine Unklarheiten auftreten kénnen, werde ich die Angabe von A unter-
lassen. Desweiteren werde ich den Zusatz “verallgemeinert” meist weglassen.

11Bei entsprechender physikalischer Interpretation entsprechen die Punkte in I den Ein-
trittsstellen der freien Strings, die Punkte in O den Austrittsstellen.
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Die Liealgebrenstruktur ist das Lieprodukt der differenzierbaren Vektor-
felder auf X \ A. Seien v,w € KN(A), dann gilt lokal an jedem Punkt in
einer holomorphen Koordinate z

0 0

92 w‘(z) 29(2)& .

f und ¢ sind lokale meromorphe Funktionen, welche Pole héchstens an den
Punkten aus A haben. Das Lieprodukt berechnet sich lokal zu

= (102) (598) - (08) 195)

~ (106 - E o) 5

v(2) = f(2)

(2-3)

Diese lokale Beschreibung zeigt, dafi [v,w] wieder ein globales meromorphes
Vektorfeld ist. An den Punkten an denen v und w holomorph sind, ist das
Lieprodukt holomorph. Damit ist

[v,w] € KN(A) .

Ein weiterer Baustein in der physikalischen Theorie sind die “Formen vom
konformen Gewicht A”. Vom mathematischen Standpunkt sind dies gerade
die meromorphen Schnitte in das Biindel K* := K®* . Hierbei ist K das
kanonische Geradenbiindel (d.h. das holomorphe Kotangentialbiindel). Auf-
grund der bekannten Aquivalenzen werde ich denselben Buchstaben K auch
zur Bezeichnung der Garbe der holomorphen Differentiale, der kanonischen Di-
visorenklasse und eines einzigen kanonischen Divisor benutzen. Ich beschrénke
mich in dieser Arbeit auf ganzzahlige Tensorpotenzen A. Es ist allerdings auch
moglich halbzahlige A (nach Wahl einer Thetacharakteristik, d.h. eines Biindels
L mit L®? = K) und sogar rationalzahlige A (nach Ubergang auf eine endliche
Uberlagerung ) zu betrachten. Statt “Schnitte in das Biindel K*” werde ich
im folgenden auch die Bezeichnung “Formen vom Gewicht A ” verwenden.

Definition. F*(A) bezeichne den Vektorraum der meromorphen Formen vom
Gewicht A € Z auf X, welche holomorph auf X \ A sind. F*(A) heifit (verall-
gemeinerter) Krichever - Novikov Modul vom Gewicht .

Fir A = —1 ist dies wiederum KN (A), aufgefaBt als Vektorraum.

Proposition 2.1. Die Elemente der Krichever - Novikov Algebra KN (A)
operieren auf F*(A) durch die Lieableitung. Diese Operation macht F*(A)
zu einem Liealgebrenmodul iber KN (A).
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Beweis. Sei e ein meromorphes Vektorfeld und f eine meromorphe Form vom
Gewicht )\, so sind diese lokal gegeben durch

0

e(z) = a(z)a , fi(z) = B(2) d?

mit lokalen meromorphen Funktionen o und 3. Die Lieableitung ist in lokalen
Termen gegeben durch

L) = |al2) 9o (2) 44 B:) G2 (2)| a2 (24

Mit Hilfe von [Be,p.22] ist leicht zu sehen, daf die Lieableitung fiir den Fall holo-
morpher Tensoren durch (2-4) ausgedriickt wird. Auf der rechten Seite steht
wiederum eine wohldefinierte meromorphe A—Form. L.(f) ist holomorph an
den Punkten an denen e und f holomorph sind. D.h. fiir e € KN (A) und
f € FMA)ist Lo(f) € FAA). Zum Nachweis der Liealgebrenmoduleigen-
schaft ist zu zeigen

[Ld7 Le] - L[d,e]a (d76 € ICN(A)) :

Durch einfaches Nachrechnen in den lokalen Darstellungen verifiziert man je-
doch

Lig,e(f) = La(Le(f)) = Le(La(f)) = [La, Le](f) . D

Statt L.(f) werde ich im folgenden meist e. f verwenden. Fir A = —1 ist
(2-4) natiirlich das Lieprodukt der Vektorfelder (2-3).

Durch das Tensorprodukt der Formen (d.h. durch Multiplikation der lokalen
Représentanten ) erhélt man eine Abbildung

FHA) x FMA) — FrYMA), (s,t) — st .

Ist ©=X=0, so ist dies die Multiplikation der meromorphen Funktionen. Of-
fensichtlich bildet F°(A) eine kommutative und assoziative Algebra. Ist u = 0
und \ beliebig, so wird F*(A) ein Modul iiber F°(A).

Ist R eine assoziative Algebra, so wird R mit dem Kommutator
[f,g]=f-9—g-f eine Liealgebra. Diese Liealgebra, bestehend aus denselben
Elementen wie R, wird auch mit L R bezeichnet. Ist aus dem Zusammenhang
klar, welche Struktur gemeint ist, werde ich auch statt L R einfach R verwen-
den. Ist R kommutativ, so ist L R offensichtlich eine abelsche Liealgebra, da
der Kommutator verschwindet.
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Neben der Algebra der Vektorfelder spielt die Liealgebra der Funktionen LF°(A)
eine wichtige Rolle. In §6.(b) werde ich verallgemeinerte “Heisenberg Al-
gebren” als gewisse zentrale Erweiterungen dieser Liealgebra einfiihren. Die
Liealgebra der Funktionen und die Liealgebra der Vektorfelder bilden zusam-
men die Liealgebra der Differentialoperatoren vom Grad < 1. Diese werde ich
in §6.(c) ausfiihrlicher diskutieren.

Ich fixiere folgende Bezeichnungsweise (fir g > 1). Es seien
Ay, ﬂ’ia i = 1a g (2_5)

reelle Kurven auf der Riemannsche Flache X die keine Punkte aus A enthalten
und eine kanonische Homologiebasis bilden, d.h.

i=1 i=1

mit [od] . fog] = [8:].18] =0 und [a]. 8] = b -

Der Homologiebasis zugeordnet ist eine Basis der holomorphen Differentiale
wi, 1=1,...,9 . D.h. es gilt

/ wj = (51'7]‘ und / wj=my; mit II= (Trij) (2_7)
(67} 62

einer (komplexen) g x g Matrix, der Periodenmatrix. ImII ist positiv definit.
(Als Referenz fiir diese wohlbekannten Tatsachen siehe etwa [FaKr].)

Im folgenden werde ich eine Familie von reellen Kurven auf der Riemannsche
Flache X \ A betrachten, welche diese ausschépfen. Hierzu benutze ich

Proposition 2.2. Sei X eine Riemannsche Fliche vom Geschlecht g,

Pe X, i=1,...,N paarweise verschiedene Punkte und ¢; € C fiir
N
i=1,...,N mit Y ¢; = 0 gegeben. Dann gibt es genau eine meromorphe

=1
(1- ) Differentialform p fir die gilt:
(1) p ist holomorph auf X \ {Py,...,Pn},
(2) resp,(p)=c¢;, i=1,...,N,
(3) p hat rein imagindre Perioden.
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Beweis. Der Beweis ist eine einfache Verallgemeinerung von [Schll,p.116].

1. Eindeutigkeit: Erfiille p und p’ die Voraussetzungen, so ist v = p — p’ ein
holomorphes Differential mit rein imaginaren Perioden. Damit ist aber v = 0.
Dies kann man z.Bsp. unter Zuhilfenahme der Riemannschen Bilinearrelation
[FaKr,II1.3.3] zeigen. Sie besagt u.a. daf} fiir ein holomorphes nichttriviales

Im(i/ai'y-/bi7>>0. (2-8)
gilt. :

2. Existenz: Wir wéhlen Q € X mit Q # P; fwr ¢ = 1,... ,N. Sei og; ein
meromorphes Differential [Fakr,II1.5], holomorph auf X \ {P;, Q} mit Polen 1.ter
Ordung an P; und @ und den Residuen

Differential ~

res p,(0;) = 1, resg(o;) = —1.
Wir setzen
N
p/ = Zci ag;.
i=1

Dann gilt
resp,(p))=¢;, i=1,...,N resQ(p’):Zq:O.
i=1

Insbesondere ist p’ holomorph bei @ und erfiillt somit die Bedingungen (1) und
(2). Durch Addition eines holomorphen Differentials w (nur notwendig im Fall
g > 1) erhalten wir ein p welches auch (3) erfiillt. w bestimmen wir in folgender

Weise: Sei
/P/:aﬂribz, /P/:61:+idz‘
a; bz

mit a;,b;,e;,d; €IR, i =1,...,g. Wir fassen zusammen
a="ay,as,...,a,), e="(e1,e9,...,¢,) .
ImII ist positiv definit, also insbesondere reguldr. D.h. es gibt ein
F="fi,f2--, fy) €ERY mit (ImIl)- f=—e+ (Rell)-a .

Setzen wir
g

w=-Y (ai+if)w, p=p+w
i=1
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so berechnet sich

Re/ p:ai—i—Re/
a; a

% 7

g
W = a; —Zaj&’j =0
j=1
und
g g
Re /b p=€; — Zaj(Remj) + ij(lmmj) =0,
i =1 j=1

wie behaupted wurde. [

Sei nun A die Menge der Polstellen.
A=T1TUO, k=+#I, [=+#0 (2-9)

die Zerlegung in “in” und “out” Punkte. p sei das nach Proposition 2.2 ein-
deutig fixierte Differential, holomorph auf X \ A, mit Polen 1.ter Ordung an
den Punkten von A und den Residuen

1

1
o Pel, resg(p) =—-, Q€O (2-10)

res p(p) = + &
welches nur rein imaginére Perioden hat. Wir fixieren einen Punkt B € X \ A
und setzen
P
u(P) := Re/ p . (2-11)
B

Da p nur imaginére Perioden hat, ist u(P) eine wohldefinierte (harmonische)
Funktion auf X \ A. Die Wahl eines anderen Basispunktes B resultiert lediglich
in der Addition einer Konstante.

Proposition 2.3. Die Funktion w(P) wverhdlt sich bei Anndherung an die
Punkte von A in folgender Weise:

i . Pel I _ (212
Rgrlpu(R) 00, € und RlinQu(R) o0, Q€O (2-12)

Beweis. Sei z lokale Koordinate bei P € A, d.h. es gilt in einer Umgebung von
P c
p=—dz+ f(z)dz, mit c€R (2-13)
z

und f einer lokalen holomorphe Funktion. Sei S ein Punkt in einer Kreiss-
cheibenumgebung von P, dann gilt

R R s
}%EnpRe/B pz}%linPRe/S erRe/B p -
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Der zweite Term ist endlich, interessiert also nicht. Desweiteren bleibt auch

R
Re [ f(z) dz endlich. Zu untersuchen ist
5

R
lim Re/ —dz=c-
s

i, P lim (log|=(R)| — log |2(S)]) = (~sign(c) -o0 . O

Mit Hilfe dieser Funktion konnen wir nun die Niveaulinien definieren
C.={PecX\A | uP)=711} (2-14)

fiir 7 € IR. Variieren wir 7, so ergibt sich eine (reelle) Faserung der Riemannsche
Fliache X \ A, d.h.

X\A=|JC wd C.NCp=0 falls 7#7 .
reR

Die Wahl eines anderen Basispunktes B andert lediglich den Wert der Funktion
u auf den Niveaulinien, nicht jedoch die Faserung. Die Niveaulinien sind nicht
notwendig zusammenhéangend. Sie zerfallen in disjunkte reelle Kurven. Dabei
konnen singuldre Punkte (Selbstiiberschneidungen, Beriihrungen) nur an den
Punkten auftreten an denen p Nullstellen hat. Fiir 7 — —oo zerfallt C in k
verschiedene Komponenten Dy, ..., Dg. Jedes D; ist eine Kreislinie in einer
entsprechenden Koordinatenumgebung um den Punkt P; € I. Dies folgt aus
der lokalen Gestalt (2-13) wie sie auch schon im Beweis von Proposition 2.3
beniitzt wurde. Fiir 7 — o0 erhalten wir die analoge Situation (also auch
wieder Kreislinien) um die Punkte @Q; € M.

In der Interpretation in der Stringtheorie (siche etwa [KN2]) bekommt 7
die Bedeutung der Eigenzeit auf dem “string world sheet”. In diesem Modell
konnen die Punkte P; € I als einlaufende freie Strings (7 < 0) und die Punkte
Q; € O als auslaufende freie Strings (7 > 0) gedeutet werden. Das Aufsplitten
und das Vereinigen der Niveaulinien entspricht dem Aufsplitten, bzw. dem
Vereinigen der Strings die in Wechselwirkung stehen.

Fiir uns werden die Niveaulinien C; die Moglichkeit einer Paarung zwischen
den Formen vom Gewicht A und den Formen vom Gewicht (1 — \) bieten.
Multiplizieren wir ndmlich beide, so erhalten wir eine Form vom Gewicht 1,
d.h. ein (1-)Differential, welches wir entlang Kurven integrieren kénnen.
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Proposition 2.4. Integrieren wir v € F'(A) entlang einer nichtsinguliren
Niveaulinie C, (disjunkte Vereinigung nichtsinguldrer Kurven), so ist der Wert
des Integrals unabhdngig von T € IR.

Beweis. Seien C; und C, (7 < o) zwei nichtsingulére Niveaulinien. C, — C,

der orientierte, glatte Rand der Untermannigfaltikeit ¥ = U Cy von X\ A.
T7<A<0o
Nach dem Satz von Stokes also

o=l o

Bei der Definition (2-8) habe ich an jedem “in”-Punkt (bzw. “out”-Punkt)

dasselbe Residuum Z (bzw.—%) vorgeschrieben. Diese Vorschrift kann abge-
schwacht werden. Wir konnen beliebige reelle Residuen vorschreiben, welche
positiv an den “in”-Punkten sind, negativ an den “out”-Punkten sind und die
Summenbedingung “Gesamtresiduum = 0” erfiillen. Dabei wird das Differen-
tial p durch ein anderes ersetzt. Die Niveaulinien werden sich dndern (man
erhélt eine andere Faserung (2-14) von X \ A). Allerdings wird der Wert des
Integrals aus Prop. 2.4 wieder unabhéngig davon sein, ob die Niveaulinie, tiber
die integriert wird, zur neuen Faserung oder zur alten gewahlt wurde.
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Da der Satz von Riemann-Roch in den néchsten Paragraphen eine wichtige
Rolle spielt, sei er aus Referenzgriinden hier zitiert (siehe [FaKr],[Fo],[Schll] fiir
die Details). Sei D ein Divisor, bzw. L ein Geradenbiindel X, dann gilt

dim H°(X, D) — dim H(X, K — D) =degD — g + 1, (2-15)

bzw.

dim H*(X,L) —dim H*(X,K ® L*) =deg L — g+ 1 . (2-16)

Wie schon vermerkt bezeichnet K sowohl einen kanonischen Divisor als auch
das kanonische Biindel. Weitere niitzliche Tatsachen sind die folgenden: Ist
deg D < 0, bzw. deg L < 0, so gilt

dim H°(X,D) =0, bzw. dimH°(X,L)=0. (2-17)
Fiir den kanonischen Divisor gilt
deg K =2g—2 und dimH*(X,K)=g. (2-18)

Wir nennen einen Divisor D speziell, falls dim H°(X, K — D) # 0 gilt, d.h.
falls
dim H°(X,D) >degD — g +1

gilt. Insbesondere ist K immer ein spezieller Divisor. Aus (2-17) sieht man,
daf} Divisoren vom Grad > 2¢g — 1 immer nicht speziell sind. Fiir sie gilt

dim H*(X,D) =degD —g+1. (2-19)
Fir g > 2 und A > 0 (wie immer A € Z) berechnet sich

dim HO(X,\- K)=(2A—1)(g—1) . (2-20)
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§3. Ein Erzeugendensystem fiir den Raum der Formen

(a) Ein einfaches, aber fundamentales Lemma

Proposition 3.1. Sei L ein Geradenbiindel, P € X ein generisch gewdhlter
Punkt, Lp das dem Divisor [P] zugeordnete Biindel, (d.h. ¢1(Lp)=[P] ) und
L} das duale Biindel. Sei

dim H*(X,L) =1,
dann gilt fir n €N

dim H(X,L ® (L}p)") = max(l —n , 0) .

Hierbei bedeutet “generisch gewéhlter Punkt”, dafl die Aussage fiir eine
nichtleere Zariski offene Teilmenge von X gilt (d.h. sie gilt fiir alle Punkte
bis auf eine endliche Anzahl von Punkten). Die Ausnahmemenge darf von L
abhéngen.

Beweis. Sei m € Z. Die globalen holomorphen Schnitte des Biindels L ®
(L%)™ stehen in Bijektion zu den globalen meromorphen Schnitten des Biindels
L welche holomorph sind auf X \ {P} und am Punkt P eine Nullstelle von
Vielfachheit > m haben [Schll,p.107]. Wie iiblich entsprechen negative Null-
stellenordnungen Polstellen. Um die Bezeichnung zu vereinfachen verwende ich
Divisorenschreibweise. Dem Biindel L entspreche der Divisor D (bzw. dessen
Klasse). Ist D’ ein beliebiger Divisor und gelte

dim H*(X,D') =,

dann gilt
r—1<dimH(X,D'—P)<r. (3-1)

Sei namlich f,g € H°(X, D’) , jedoch beide nicht in H°(X, D' — P), so bedeutet
dies f(P) # 0 und g(P) # 0. Wir setzen p = f(P)/g(P) € C (der Quotient
ist eine wohldefinierte Zahl). Nun ist

h=(f-n-g)€HX,D' - P),
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da h(P) = 0 nach Konstruktion. Somit ist H°(X,D’)/H°(X,D’ — P)
hochstens eindimensional. Dies zeigt die Relation (3-1). Iterierte Anwendung
liefert

I —n <dimH(D—-nP)<I. (3-2)

Die Behauptung des Lemmas ist wegen (3-1) und (3-2) genau dann erfiillt wenn
dim H°(D — IP) = 0. (3-3)

Denn in diesem Fall muf3 die Dimension beim chrgang von D — rP auf
D—(r+1)P fir (I-1) > r > 0 jeweils um 1 fallen. Es geniigt also (3-3) fiir alle
bis auf endlich viele Punkte P zu zeigen. Dies zeige ich mit denselben Meth-
oden, die man verwendet um zu beweisen, dafy die Anzahl Weierstrafipunkte
endlich ist. (Dieser Fall ergibt sich als Spezialfall der Proposition) [FaKr,II.5],
[Fo,18.4] .

Sei U = (U;); eine endliche, offene Uberdeckung von X durch trivialisierende
Koordinatenumgebungen fiir das Biindel L. Dies bedeutet U; besitzt die glob-
ale Koordinate z; und Ly, ist trivial. Die Uberdeckung sei derart, daf} eine
Schrumpfung V = (V;); mit V; offen und V; C U; immer noch X {iberdeckt. Sei
51,82,... , 5 eine Basis des Raumes H°(X, D). Wir wihlen ein U; und kénnen
die Schnitte als lokale holomorphe Funktionen fi, fs,..., f; in der Variablen
z; reprasentieren. Da die Schnitte linear unabhéngig sind, sind das auch die
Funktionen. Sei

1
se H'(X,D), s#0, s= C;S;
35]

=1

dann entspricht dem Schnitt s die holomorphe Funktion f = 22:1 cifj -

P € U; ist mindestens k—fache Nullstelle von s falls gilt
f(z(P) =0, m=0,1,...,k—1.

Die Wronskideterminante ist definiert als

f1 fo ... fi

f/ f/ f/
W:W(flvaa"'7fl):det :1 :2 : :l

1(121) f2(zl1) _ fl(zi1)

W ist eine lokale holomorphe Funktion, die nicht identisch verschwindet [Fo,18.4],
da die f; linear unabhéingig sind. Damit ist aber W(z;(Q)) = 0 genau dann,
falls es nichttriviale ¢; € C, j =1,...,0 gibt mit

l
0= f™(2(Q), m=01,....1-1.
j=1
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Ist nun W(z;(Q)) = 0, dann ist mit diesen Koeffizienten s = Zé’:l ;s ein
nichtverschwindender globaler Schnitt, der eine [—fache Nullstelle bei Q) besitzt.
Umgekehrt bedeutet die Existenz eines Schnittes mit einer [—fachen Nullstelle
bei @ € U;, dal die Wronskideterminante W dort eine Nullstelle hat. Die
Nullstellenmenge von W ist aber eine diskrete Menge auf U;, insbesondere eine
endliche Menge auf V;. Da aber endlich viele V; bereits X iiberdecken, gibt es
nur endlich viele Punkte Q1, Qs, ... , @, (hdngen ab vom Biindel L), derart daf
ein nichttrivialer globaler Schnitt von L existiert, der an einem dieser Punkte
eine Nullstelle von mindestens der Ordung ! besitzt. Bei der Wahl von P gilt
es diese zu vermeiden. [J

(b) Der generische Fall

Im folgenden werde ich ein Erzeugendensystem fiir *(A) angeben. Hierbei
ist die Aufspaltung der Menge A ohne Belang. Ich setze

A={P,Py,... Py}.

Die Angabe des Erzeugendensystemes wird implizit mit Hilfe der Riemann-
Roch Formel und Prop. 3.1 erfolgen. In §4. werde ich “explizite” Ausdriicke
geben. Das angebene Erzeugendensystem wird fiir V > 2 linear abhéngig sein.
In §5. werde ich in Abhéngigkeit von der Aufspaltung A = TUO als Basis eine
Teilmenge auswéhlen, die fiir das weitere besonders interessante Eigenschaften
hat. In §9. werde ich noch eine weitere Moglichkeit zur Basiswahl beschreiben.

In diesem Abschnitt betrachte ich nur den generischen Fall, also daf} en-
tweder das Geschlecht g > 2 ist und das Gewicht A der Formen ungleich 0
oder 1 ist, oder dafl ¢ = 0 ist. Stillschweigend sei im weiteren immer \ € Z
angenommen. Der Grund fiir diese Aufspaltung ist, dafi in den anderen Féllen
MK spezielle Divisoren sind. Ich setze

M) =2 A—1)g—22= 2 —1)(g—1)—1. (3-4)
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Proposition 3.2. Sei g > 2, € Z \ {0,1} oder g = 0 und A € Z be-
liebig und seien Py, Ps, ..., Py generische Punkte auf X. Seien weiter gegeben
ni,...,ny € Z mit va:l n; = M()\), dann gilt

(a) dmHOY(X,\-K—SN nP)=1
(b) dim HO(X,A- K — SN n;P; —aP;) =0 fira €N und j=1,... N.

Bevor ich zum Beweis komme, will ich die Aussage der Proposition inter-
pretieren. Aufgrund (a) gibt es eine nichttriviale meromorphe Form w vom
Gewicht A, die holomorph auflerhalb A ist und an den Punkten P, aus A
die Ordung ord p,(w) > n; hat. Es gilt sogar Gleichheit. Wé&re nédmlich
die Ordnung gréBler als n; an irgendeinem dieser P; so lage w auch im unter
(b) angegebenen Vektorraum. Dieser verschwindet aber. Also wére w trivial.
Widerspruch! Aufgrund von (a) wiederum sind alle solche w skalare Vielfache
eines einmal fixierten Elementes. Um w eindeutig festzulegen kann man nach
Wahl eines (einzigen) Punktes P; € A und einer lokalen Koordinate z; bei P;
(d.h. z(P;) = 0) fordern

wy = 2" (1+ 0(2:))(dzi)* - (3-5)

In diesem Paragraphen nehme ich als Referenzpunkt Py. In §5. erfolgt eine
andere Normierung.

Definition. f*(ny,na,...,nx) mit Zf;l n; = M(\) sei die eindeutig fest-
gelegte Form vom Gewicht A mit

ord p,(f*(ni,n2,...,nx)) =n;, i=1,...,N
und
fk(nla’n‘% s 7TLN)‘ = ZxN(]' + O(ZN))(dZN)A .
Prop. 3.2 folgt offensichtlich aus der etwas allgemeineren Proposition, die

ich gleich beweisen werden.

Proposition 3.3. Sei g > 2\ € Z \{0,1} oder ¢ = 0 und \ € Z be-
liebig und seien Py, Ps, ..., Py generische Punkte auf X. Seien weiter gegeben
Nni,...,nN € Z dann gilt

N N
dim HO(X,A- K = n;P;) = max(M(A\) =Y ni+1,0). (3-6)
i=1 i=1
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Beweis. Seien ny,...,ny € Z beliebig. Es gilt

N

N
di=deg(A\-K =) niP)=X-(29-2)— > n;.

i=1 i=1

Setzen wir h%(D) = dim H°(X, D), so erhalten wir nach dem Satz von Riemann-
Roch (2-15)

N
'\ K - an ; K+an ) =MOA) =Y ni+1.
=1

Fall 1: g > 2, A > 2. In diesem Fall ist A - K nicht speziell, insbesondere gilt
RO(A- K) = (2X — 1)(g — 1). Addieren wir zuerst die Punkte P, mit n, < 0, so
bleiben wir im Bereich der nichtspeziellen Divisoren. Nach Voraussetzung sind
alle Punkte in generischer Lage. Wir konnen fiir jeden Punkte P, mit n; > 0
die Prop. 3.1 anwenden und erhalten

)\ K — an ») = max (2)\—1 (g—1)— an,

Fall 2: ¢ > 2, )\ < —1. In diesem Fall ist (1 —\)- K nicht speziell, d.h. analog
zu Fall 1

h K—|—anz —max(1—2/\ —1—|—Zn,,
Also

)\K an : (2A=1)( Znﬁ—max 1 20)(g— 1+an,

Durch Einsetzen erhalt man das gewiinschte Ergebnis.
Fall 3: ¢ =0, € Z. In diesem Fall ist M(\) = —2), d.h.

N N

deg(\- K = > niP)=M(M) = > n;.

=1 i=1

Somit folgt die Aussage direkt aus Riemann- Roch ohne Annahmen {iber die
Lage der Punkte. [
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Proposition 3.4. Sei g > 2, A € Z \ {0,1} oder g = 0 und X\ € Z beliebig.
Dann gilt (a) Die Menge

N
{ A n1,na, .. ony) | ni € Z, Y ni=M(\)}
i=1

bildet ein Erzeugendensystem fiir F*(A).
(b) Im Fall N =2, d.h. A= {Py, Py}, ist diese Menge eine Basis.

Beweis. Ich betrachte zuerst den Fall N = 2. Dies ist der Fall der auch
in [KN1] behandelt wurde. Obige Menge stimmt mit der dort angegebenen
Menge tiberein. Der Beweis von Prop. 3.4(b) wurde in [Schll] ausgefithrt. Aus
Griinden der Vollstindigkeit sei er wiederholt. Sei v € FA(Py, Py) mit v # 0.
Sei weiter ord p,(v) = m; und ord p,(v) = my . Setze n(®) = M()\) — my,
dann ist n(©® > mgq. Ansonsten wére

ve H(X, A K —miP, — (M(\) —my +a)Py)

mit @ = mg — n(® > 0. Nach Prop. 3.2(b) ist dieser Vektorraum trivial.
Dies ist ein Widerspruch. Subtrahieren wir von v ein geeignetes Vielfaches von
fA(my, M(X\) —m;) um die Ordnung bei Py zu erhéhen, so erhalten wir v; mit

ord p,(v1) = mgl) >mi;+1 und ord p,(v1) = mgl) >msy .

Ist v1 = 0, so ist die Behauptung (Erzeugendeneigenschaft) gezeigt. Ansonsten
gilt
n® =M\ —mP < M) = (m+1) <@, mf) >m, .

Dasselbe Argument wie oben auf v; angewendet ergibt
n® > pM® > mgl) > mo .

Durch fortwihrende Ausfithrung erhalten wir eine Folge von v; mit n(® eine
strikt fallende Folge ganzer Zahlen, die nach unten durch mso beschrankt ist.
Damit mufl das Verfahren abbrechen, d.h. irgendein v; ist identisch 0. Also ist
v Linearkombination der Elemente in (a). Im Fall N =2 haben die Elemente
in (a) alle unterschiedliche Polordnung bei Py, damit sind sie linear unabhéngig.
Dies beweist (b).

Sei nun N > 2 beliebig. Die Vektorriume F; = F>(P;, Py) firi =1,... ,N—1
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sind Untervektorriume von F*(A). Eine Basis von F; ist nach dem 1.ten Teil
des Beweises gegeben durch

f20,...,0,n:,0,... ,M(\) —n;), n€Z.

Diese Elemente sind in der Menge unter (a) enthalten. Sei v € F*(A). Durch
Subtraktion von Linearkombinationen aus Basiselementen aus

F;,i =2,...,N — 1 erhilt man ein v’ das keine Pole mehr an P,,... ,Py_1
hat, d.h. v' € Fy. Damit ist aber v" Linearkombination der Basiselemente von
F. Insgesamt ist also v Linearkombination der Elemente unter (a) . O

Wie man aus obigem Beweis sieht, ist fiir V > 2 das Erzeugendensystem
nicht linear unabhéngig. So ist eine Form die nur Pole bei Py hat Element in
allen F;, d.h. sie 148t sich in mehreren Weisen darstellen. Andererseits sieht
man auch wie man ein minimales Erzeugendensystem wihlen kann: Aus Fj
nimmt man alle Basiselemente, aus den F;,7 = 2,... , N — 1 nimmt man nur
die mit negativer Ordung an den Punkten P;. Offensichtlich sind diese erzeu-
gend (nur diese wurden beim obigen Beweis benutzt) und wegen der unter-
schiedlichen Polordnungen an verschiedenen Punkten auch linear unabhéngig.
Diese naheliegende Basis ist fiir das folgende allerdings nicht optimal geeignet,
sie induziert z.Bsp. keine verallgemeinert graduierte Struktur (siehe 5-19). De-
shalb wird in §5. eine andere gewahlt. Die obige werde ich im §9. wieder
aufgreifen.

Wegen der Wichtigkeit spezieller Gewichte iibernehme ich folgende Stan-
dardbezeichnungen aus der Quantenfeldtheorie

e() =71, QL) =20, AC) =£0(), wl) =),



37

(c) Die Sonderfille

I. Die Bezeichnungen seien wie in §3. (b). Ich betrachte zuerst A = 1 und
g>2. Esgilt M(1) =g — 2.

Proposition 3.5. Secien Py, Ps,... , Py generische Punkte auf X,
ni,...,ny € Z. (a) Ist ein n; <0, dann gilt

N N
hO(K — anpz) = max(g — an -1, 0) .
i=1 i=1

(b) Sind alle n; >0, dann gilt
N N
hO(Kf anPz) = max(gf an , O) .
i=1 i=1

Beweis. Fall (a): O.B.d.A. sei ny < 0. Damit ist wegen
deg(K —n1P) = (29 —2)+ |n1| >29g—1
(K — n1P1) ein nichtspezieller Divisor, d.h.
YK —mP)=g—1—n .

Nun kann auf die Punkte Ps,..., Py die Prop. 3.1 angewendet werden. Dies
ergibt das Resultat unter (a). Im Fall (b) miissen wir von K ausgehen. K ist
ein spezieller Divisor und es gilt h%(K) = g. Prop. 3.1 liefert auch hier das
Ergebnis unter (b). O

Dem Fall (a) entspricht die generelle Situation.

Proposition 3.6. Ein Erzeugendensystem fiir F'(A) ist gegeben durch die
Elemente

(a) w(ni,na,...,ny) mit Zil n; =¢g—2= M(1) und mindestens ein
n; < —2 oder mindestens zwei ng;,n; < —1 .
(b) w(ni,na,...,nn) mit vazl n,=g—1 und alle n; >0 .

(c)

w(=1,-1,0,...,0), w(-1,0,—1,....,0), ... w(0,0,...,0,—1,—1).
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Dabei sind die Elemente unter (a) und (b) bis auf Multiplikation mit einem
Skalar eindeutig. Die Elemente unter (c) seien fiziert durch die Vorschrift
res p,(w) = —1 an der Polstelle P; und res p,(w) = +1 an der Polstelle P; fiir
1 < j und durch die Bedingung, dafl sie rein imagindre Perioden haben.

Im Fall N > 2 werden die Elemente in (c) nicht bendtigt.

Beweis. Zuerst zeigen wir die Existenz und Eindeutigkeit solcher Elemente. (c)
gewinnt man durch Anwendung von Prop. 2.2.

(a) Aufgrund der Bedingungen gilt nach Prop. 3.5(a) h%(K — Zi\; n,P;) =1,
d.h. es gibt ein Element f das “besser” oder gleich der vorgegebenen Ordnung
ist. Nehmen wir an, daf eine hohere Ordnung an irgendeinem der Punkte P;
vorliegt. Damit ist f € HO(X, K — Zfil n; P; — P;). Aufgrund der Vorausset-
zungen sind wir aber immer noch im Bereich von Prop. 3.5(a) also ist dieser
Vektorraum wieder trivial. Dies zeigt wie im Beweis von Prop. 3.4 die Existenz
und Eindeutigkeit.

(b) Mit Prop. 3.5(b) ergibt sich h°(K — Zil n;P;) = 1. Auch hier kann keine
hohere Ordnung auftreten, da immer noch Prop. 3.5(b) zustindig ist. Also
folgt auch hier Existenz und Eindeutigkeit.

Erzeugend: Sei v € F1(A), so kénnen durch Subtraktion von Vielfachen von

w(07...,ni,O,...,g—2—ni), ni§—2

(Typ (a)) alle Pole von Ordnung > 2 an den Punkten Py, ..., Py_; beseitigt
werden. Durch Subtraktion von Vielfachen von

w(g,0,...,-1,0,...,—1)

(ebenfalls Typ(a)) werden alle Pole an den Punkten Ps,..., Py_1 beseitigt.
Durch Subtraktion von Vielfachen von (Typ (a))

w(ni,0,...,0,g—2-—n1), w(g—2-—nn,0,...,0,ny)

erhélt man eine Differentialform mit héchstens Polen erster Ordnung bei Py
und Py. Falls N > 2 kann der Pol bei P; durch Subtraktion von Vielfachen

von (Typ (a))
w(_]-aga 0,... 70a _1)

beseitigt werden. Im Fall N = 2 durch Subtraktion von Vielfachen von (Typ

(c))
w(—1,0,...,0,—1) .
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Da eine Differentialform wegen des Residuensatzes nicht die globale
Polordnung 1 haben kann verschwindet gleichzeitig auch der Pol bei Py. Ubrig
bleibt eine globale holomorphe Differentialform v’. Die

w(ny,0,...,9 —1—ny), 0<ni<g-1

sind g linear unabhingige holomorphe Differentiale. Sie sind somit eine Basis
der holomorphen Differentiale. D.h. v’ ist eine Linearkombination von Typ (b)
Elementen. Dies zeigt alles. Insbesondere sieht man auch, daf§ man fiir N > 2
ohne Typ (¢) auskommt. O

Proposition 3.7. Sei N = 2. Dann bilden die Elemente

w(n,g—2—n), n< -2 oder n>g,
wn,g—1-n), 0<n<g-1,
w(=1,-1)

eine Basis von F1(Py, Py).

Beweis. (Dies ist die von Krichever - Novikov[KN1] angegebene Basis.) Nach
Prop. 3.6 sind die obigen Elemente erzeugend. Da jedes Element eine andere
Polordnung bei P; hat, sind sie auch linear unabhangig. [

II. Sei nun ¢ > 2 und A =0 oder g = 1 und A € Z beliebig. In letzterem
Fall ist wegen K = O (O sei das triviale Biindel)

fAni,ng, ... ,nn) = A(ny,ng, ... ,ny)dz" . (3-7)

Hierbei sei z die Variable, die von der Quotientenbildung aus C herkommt.
Aus (3-7) folgt aber, dafl die Angabe eines Erzeugendensystemes fir A = 0
auch ein solches fiir beliebiges A ergibt. Achtung: Die Lieableitung hingt sehr
wohl von A ab.

Es gelten weiterhin die Bezeichnungen aus § 3.(b). Wir erhalten M (0) = —g,
bzw. M(\) = —1 fiir g = 1.

Proposition 3.8. Secien Py, Ps, ..., Py generische Punkte auf X,
ni,...,ny € Z. (a) Ist ein n; >0, dann gilt

N N
ho(— ZniPi) = max(—g — an +1, 0) .
i=1 i=1
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(b) Sind alle n; <0, dann gilt

N

N
ho(— Znipi) = max(—g — Zni +1, 1) .
i=1

i=1

Beweis. (Dies ist eine Dualisierung von Prop. 3.5.) Mit Riemann-Roch berech-
nen wir

N N N
WO(=) niP) —h°(K +> niP)=—=> ni—g+1.
=1 =1 =1

Ist nun ein n; > 0, so gilt nach Prop. 3.5(a)

N N N
ho(—ZniPi) z—Zni—g—l—l—&—max(g—I—Zni—l , O) ,
i=1 i=1

i=1

also (a). Sind alle n; <0, so folgt mit Prop. 3.5(b)

N N N
ho(—ZniPi) = —Zni —g+ 1+max(g—|—2m , O) ,
i=1 i=1 i=1

also (b). O

Proposition 3.9. Ein Erzeugendensystem fiir F°(A) ist gegeben durch die
Elemente

(a) A(ni,na,...,ny) mit Zf\il n; = —g = M(0) und mindestens ein n; >
0, (b) A(ni,na,...,ny) mit Zil ni=—g—1 und alle n; <0.

(¢) A0,0,...,0):=1

Dabei sind die Elemente unter (a) eindeutig bis auf Multiplikation mit einem
Skalar. Die Elemente unter (b) sind eindeutig bis auf Multiplikation mit einem
Skalar und Addition einer generischen Konstanten.

Beweis. Wir zeigen zuerst die Existenz und die Eindeutigkeit im angegebenem
Umfange. Im Fall (a) berechnet sich nach Prop. 3.8

N N
RO(=Y miP) =1, und h°(=) niP;—P;)=0.
i=1 1=1

Also gilt hier nach denselben Schlufiweisen wie in den anderen Féllen Existenz
und Eindeutigkeit (bis auf Multiplikation mit Skalar). Im Fall (b) berechnet
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sich hO(— Zfil n;P;) = 2. In dem Raum der Schnitte liegen die konstanten
Funktionen. Sei {1, f'} eine Basis. Fiir die Punkte P; mit n; < 0 hat f’ genau
die angegebene Ordnung. Ansonsten wire f € HO(X, — Ef\il n, P, — P;). In
diesem Bereich ist immer noch Prop. 3.8(b) zustindig, d.h. der Raum ist 1-
dimensional. Er enthilt die Konstanten, also f* = const. Widerspruch! An
den anderen Punkten aus A kann f’ sehr wohl Nullstellen haben. Durch Addi-
tion einer generischen Konstanten c besitzt f = f’ + ¢ dort genau die Ordnung
0. Damit folgt die Existenz und Eindeutigkeit im angegebenem Rahmen.

Fiir die Erzeugendeneigenschaft gehen wir wiederum nach obigem Schema vor.
Durch Subtraktion von Linearkombination von Elementen (a) und (b) kénnen
alle Pole bei P, ..., Py_1 beseitigt werden. Durch Subtraktion von Linear-
kombination von

A(=g—n,0,...,n), n<-—-g-—1

erhalten wir eine Funktion holomorph auf X \ {Py} mit Polordnung < g bei
Py . Aufgrund der generischen Wahl der Punkte, kann dies nur eine Konstante
sein, da sonst Py ein Weierstra}-Punkt ware. [

Wie oben erhalten wir

Proposition 3.10. Sei N = 2. Dann bilden die Elemente

A(n,—g —n), n<—g—1 oder n>1,
A(na_g_l_n)u _ggng_lv
A(0,0)

eine Basis von FO(Py, Py).
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§4. “Explizite” Konstruktion der Erzeugenden

(a) Konstruktion mit Hilfe von Thetafunktionen im Fall g > 1

In diesem Abschnitt mache ich eine Verallgemeinerung der im Fall N = 2
von Bonora und Mitarbeitern durchgefiihrten Konstruktion [Bol].

Sei X eine Riemannsche Fliache vom Geschlecht g > 1. Ich méchte zuerst die
fiir uns wichtigen Fakten der Bausteine der Konstruktion zusammenstellen. De-
tails sind in [Mum],[Fay]| oder [Schll] zu finden. Es sei eine kanonische Homolo-
giebasis und die zugeordnete Basis der holomorphen Differentiale wi,ws, ... ,wy,
wie in (2-5) — (2-7) beschrieben, gew&hlt. II sei die Periodenmatrix. Die Jaco-
bivaritét ist definiert als der g—dimensionale Torus

Jac (X) :=CY/L, L=7%a11-Z9 .
Die Thetafunktion auf Jac (X) ist definiert als (z € C9)

I(z, 1) := Z exp(ri‘n - Il-n+2wi'n- 2) . (4-1)
neZ’

Wir brauchen auch die Thetafunktionen mit Charakteristiken a,b € IRY.

19[2}(2,1’[) =exp (ri'a-M-a+2ri'a- (z+0)) -9 (z+11-a+0b1I) . (4-2)

Dies sind holomorphe Funktionen in z. Sie haben das folgende quasiperiodische
Verhalten [Mum,I,p.123]

a

ﬁm(z+m,n) = exp(27ita - m) -ﬂ[b}(z,ﬂ) ,

9 [Z} (z +1I1-m,II) = exp(—27i'b - m) - exp(—7i‘m - I - m — 27i'm - 2)

a
- { b] (z,10)
(4-3)
unter der Translationen von z mit Gittervektoren (m € Z7). Es ist

9(z,T0) :0{8]@,11).
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Fiir diese wird der erste Exponentialterm in (4-3) immer zu 1 . Ich schliefle
]
b
ertige Funktion auf X. Diese Sprechweise ist am besten fiir die Fragestellungen
geeignet, welche ich untersuchen will. Diese mehrwertigen Funktionen koénnen

mich dem oft verwendeten Sprachgebrauch an und nenne o eine mehrw-

auch aufgefaBt werden als einwertige Funktionen auf der Uberlagerung €9,
bzw. als Schnitt eines geigneten Geradenbiindels iiber Jac(X). Da X fix-
iert ist, werde ich im folgenden die Periodenmatix nicht mehr explizit in die
Bezeichnung aufnehmen.

X ist eingebettet durch die Jacobi-Abbildung

P P P
X — Jac(X), Pw— J(P):= (/ wl,/ wg,...,/ wg) mod L (4-4)
B B B

in Jac (X). Hierbei ist B ein festgew&hlter Basispunkt mit B ¢ A. Der Pull-
back der Thetafunktion ¢ : P+ J(J(P)) ist eine mehrwertige Funktion auf
X. Der Mehrwertigkeit entspricht die Wahl eines anderen Integrationsweges.
Dies kann beschrieben werden als “Bewegung des Punktes P um einen Homolo-
giezyklus”

g g
PP =P+ nja;+ Y mb; (“=P"). (4-5)
=1 i=1

Ich werde weiterhin mit J(P) € C? auch einen beliebigen Repréasentanten von
J(P) € Jac(X) bezeichnen. Fiir die Punkte Pi, Ps,..., Py € A sei dieser
Repréasentant J(P;) jeweils gewidhlt und dann festgehalten.

Fiir uns wichtig ist die folgende

Proposition 4.1. (Satz von Riemann [Mum,I,p.149])

Es gibt einen Vektor A € C9, so daf fir alle w € €Y gilt: Die Funktion
Y w+J(P)) , aufgefafft als mehrwertige Funktion im Argument P, verschwindet
entweder identisch auf X, oder sie hat genau g Nullstellen, welche gegeben sind
durch die Punkte Q1,Q2,...,Qq (mit Mehrfachnennungen) fir die gilt

iJ(Qi) =—w+A modlL. (4-6)

i=1

Im folgenden werden wir als Vektor w bestimmte Werte wéhlen, die von unseren
Punkten Py, Ps, ..., Py abhingen. Da wir diese generisch gewahlt haben, wird
der erste Fall in Prop. 4.1 nie auftreten [FaKr,Theorem VI,3.3].
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Proposition 4.2. Die (mehrwertige) Funktion
P— 9 (J(P)—gJ(Pn)+A)
hat genau eine g—fache Nullstelle bei Py und sonst keine weiteren.

Beweis. Mit den Bezeichnungen von Prop. 4.1 setzen wir w = —gJ(Py) + A
also ist
—w+ A =gJ(Py) mod L .

Damit ist aber Py g—fache Nullstelle nach Prop. 4.1 . O

Der néchste Baustein ist die “prime form” [Mum,II,p.3.210]. Zur Definition

a} so daf

fixiert man eine Thetareihe mit halbzahliger Charakteristik ¢ = [b

gilt
a a
ﬁ{b](O) =0 und dzﬁ[b](O) #0.
Die Charakteristik ¢ bestimmt ein Geradenbiindel L mit

L®? =K, und R°(X,L)=1.

Sei h. nichttrivialer Schnitt von L, dann ist k2 ein Differential und es gilt sogar

n2P) =3 21 ) ()

2
i=1 9z

) — Form auf X. Die

nach entsprechender skalaren Normierung. h. ist eine (%

“prime form” ist definiert als

d(J(P) - J(R))

B(PR) = (4-7)

Da der Zahler noch vom Integrationsweg B nach P, bzw. B nach R abhangt ist
E(P, R) eine mehrwertige holomorphe Form auf X x X vom Gewicht (—%) in
jedem Argument. Natiirlich kann F(P, R) ebenfalls wieder beschrieben werden
als einwertige Form auf X xX ()~( die universelle Uberlagerung von X), oder
als Schnitt in ein passendes Geradenbiindel iiber X x X.
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Wir haben die folgenden Eigenschaften:

Proposition 4.3. [Mum,II,p.3.210]

(1) E(P,R)=—E(R,P)

(2) E(P,R)=0<= P=R

(8) Die Nullstelle entlang der Diagonale ist einfach.

(4) Falls P um einen Homologiezyklus (4-5) bewegt wird, erhalten wir
E(P',R)=¢-exp (—mi'm-1I-m+ 2ni'm- (J(R) — J(P)) - E(P,R) . (4-8)

€ ist ein Vorzeichenfaktor der abhdngt vom Zyklus und der Charakteristik.

Genauer gilt:
€ — (_1)2(’5a-n—tb~m) )

(5) Falls R wm einen Homologiezyklus (analog zu (4-5)) bewegt wird, erhalten
wir

E(P,R)=c¢-exp (—ﬂ'itm I -m —2wi'm - (J(R) — J(P)) -E(P,R) . (4-9)

mit
€ — (71)2(tb-m7"a-n) )

Der dritte Baustein ist das o—Differential. Fiir meine Zwecke ist die folgende
Definition sinnvoll

o(P) =9(J(P) = gJ(Pn)+A) - E(P, Py)™7 (4-10)

Wieder handelt es sich um eine mehrwertige Form. Sie ist vom Gewicht (Q)
Die Pole der “prime form” Terme werden von den Nullstellen der Thetafunktion
(Prop.4.2) annulliert. Deshalb ist o eine holomorphe Form ohne Nullstellen.
Durch unmittelbares Nachrechnen unter Benutzung von (4-8) und (4-9) sieht
man sofort

Proposition 4.4. o(P) transformiert sich bei Bewegung um einen
Homologiezykel (4-5) wie folgt

o(P') = €% - exp (iﬂ'(g —1im-I1-m —i27'm - (A — (g - l)J(P))) -o(P) .
(4-11)
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Ist nun ¢’ eine andere (g) Form mit demselben Transformationsverhalten

dann ist o¢'/o eine Funktion auf X, also eine Konstante. Damit stimmen
die in [Fay,p.31], bzw. [Bol] gegebene Definition des o— Differentials bis auf
Multiplikation mit einer Konstante mit der meinigen iiberein. Dasselbe gilt,
falls ein anderer Lift fiir J(Py) gewahlt wurde.

Mit diesen Bausteinen sind wir nun in der Lage die Erzeugenden
fAn1,n9,... ,ny) aus §3. zu beschreiben.

Proposition 4.5. Seig>2 und A #0,1 und
N
niy,No,...,NNy € Z, Zni:M()\):(Q)\—l)(g—l)—l
i=1

dann gibt es eine Konstante D # 0, derart dafs
N
g, ,ny)(P)=D-[[ E(P,P)™ - o(P)*1 x
v (4-12)
<9 (J(P)+ Y niJ(P) — (2X = 1)A) .

i=1

Beweis. Zu zeigen ist dafl die rechte Seite in (4-12) eine wohldefinierte Form
vom Gewicht A ist und genau die angegebenen Nullstellenordnungen an den
Punkten von A besitzt.

(a) Berechnung des Gewichtes: Jeder Faktor E(P, P;) hat das Gewicht (—3) in
der Variablen P. o das Gewicht (), ¥ das Gewicht 0. Zusammen also

éni-<—;)+(2>\—1)~g:)\.

(b) Wohldefiniertheit: Hierzu ist zu zeigen, dafi die rechte Seite bei Bewegung
von P um einen Homologiezyklus (4-5) invariant bleibt. Dies ist genau dann
der Fall, wenn die angegebenen Automorphiefaktoren (4-3), (4-8) und (4-11)
sich zu 1 aufmultiplizieren. Die Rechnung ergibt

N

11 <e"f -exp<(—7ritm AL-m + 2nitm - (J(P) — J(P))) m)) .

i=1

€9 (A1) exp((ﬁi (g—1D'm-I-m—27i'm- (A — (g —1)J(P))) - (2A — 1))

N
exp(—ﬂitm I0-m — 2rwitm - (J(P)+ ZmJ(Pi) —(2X — 1)A)) =1.
i=1
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(c¢) Nullstellenordnungen: Aufgrund der E(P, P;)™ Faktoren hat die rechte
Seite mindestens die angegebenen Ordnungen n; an den Punkten P; € A.
Durch den ¥—Funktionsfaktor treten an diesen Punkten jedoch keine weiteren
Nullstellen auf. Wére namlich die Nullstellenordung grosser als n; an irgen-
deinem der Punkte P;, so wire sie aufgrund von Prop. 3.2 identisch 0'2. Somit
ist aber die rechte Seite bis auf Multiplikation mit einer Konstanten D € C,
D # 0 gleich dem links stehenden erzeugenden Elementes. Hierbei ist Ein-
deutigkeit, bis auf Multiplikation mit einem Skalar, gemeint. [

Bemerkung 1: Die g weiteren Nullstellen, welche die Form f*(...) als Schnitt
in das Biindel K* haben mu8, sind die ¢ Nullstellen des Thetafunktionsfaktors.

Bemerkung 2: Natiirlich kann man in obiger Konstruktion das o—Differential
durch seine Definition (4-10) ersetzen

N-—-1
Fnng,... ny)(P)=D- [[ E(P,P)™ - E(P, Py) "~~~ 19x

i=1

@x-1)

N
x 0(J(P) — gJ(Py) + A) I(J(P)+ Y nid(P) — (2A—1)A),

verliert dadurch aber das symmetrische Erscheinungsbild der Punkte.

Bemerkung 3: Die angegebenen Formen sind im Fall N = 2 identisch zu den
von Bonora und Mitarbeitern gegebenen Formen [Bol].

Bemerkung 4: Die Konstante D héngt auch von den gewahlten Lifts

J(P;) € €7 ab, da alle Bausteine von diesen abhéngen. Dies ist fiir meine
Zwecke unerheblich, da die P; fixiert sind. M&chte man allerdings die Méglichkeit
einbeziehen die Punkte P; zu variieren, so wird sich dies bei einer globalen Vari-
ation storend auswirken. Bewegt man einen Punkt P; um einen Homologiezyk-
lus, so wird man i.Allg. nicht mehr zur selben Konstante zurtickkommen. Durch
Hinzufligen geeigneter Kompensationskonstanten C(J(Py),...,J(Py)) kann
man allerdings erreichen

D = Dy-C(J(P),J(P),...,J(Py)) . (4-13)

Dy ist nun eine Konstante , die nur noch von den Punkten P;, den Multi-
plizitdten n; und dem Gewicht \ abhingt, falls man etwa die Laurententwick-
lung an einem Punkt zur Normierung wahlt. Zur Bestimmung einer solchen
Konstante C' wéahle ich einen generischen Punkt ) € X, der nicht mit den

12Dies kann man auch mit Hilfe des Satzes von Riemann (Prop. 4.1) zeigen.
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Punkten P;, den g weiteren Nullstellen von (4-12) und den Nullstellen des zur
Konstruktion der prime form benutzten Schnittes h. zusammenfillt. Ich setze

he Q)
f)\(nlan27 oo 7”N)(Q) .

C= (4-14)

Hierbei sei f(...), der durch die rechte Seite in (4-12) gegebene Ausdruck. C
ist eine wohldefinierte Zahl, die abhéngt von den Lifts J(P;).

Proposition 4.6. Das Produkt aus der rechten Seite von (4-12) (ohne die
Konstante D) und der Konstante (4-14) ist unabhingig von der Wahl ver-
schiedener Lifts fir J(P;) ,i=1,... ,N.

Beweis. Ich berechne zuerst das Verhalten von (4-12) unter der Bewegung von
P; mit einem Homologiezyklus (4-5). Im folgenden seien nur die Automor-
phiefaktoren aufgeschrieben. Ich betrachte die rechte Seite von (4-12). Es sei

zuerst j # N, dann lautet dieser (Achtung: n; ist hier nicht der Zykelkoeffizient
sondern die Nullstellenordnung.)

€. exp((—witm AL-m —2ritm - (J(P)) — J(P))nj) X
X exp <7m?itm I -m = 27nitm - (J(P) + Z nJ(P;) — (2A — 1)A)> .
Fiir j = N tritt noch zuséatzlich auf
e exp((—witm AL-m —2xi'm - (J(Py) — J(P)) (—g)) X
X exp <—7rg2itm I -m+ 2mgitm - (J(P) — gJ(Pn) + A)) .

In beiden Féllen verschwindet jegliche J(P) Abhéngigkeit. Somit transformiert
sich der Faktor (4-14) nach Definition gerade entgegengesetzt, und das Produkt
ist invariant. O

Es bleiben die Sonderfille aus § 3. zu behandeln.

g>2,A=1| Wir haben 3 verschiedene Typen von Erzeugenden. Typ (a) ist
derjenige, der durch direkte Spezialisierung aus beliebigem A entsteht.
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Proposition 4.7. Sei g > 2 und ny,no,...,ny € Z mit Zfil n; = M(X\) =
g — 2, derart daf$ mindestens ein n; < —2 oder mindestens zwei n;,n; < —1
ist, dann gibt es eine Konstante D #£ 0, derart daf

N
w(ni,n, ... ,ny)(P) =D [[E(P,P)" - o(P) x

i=1

N
x 9(J(P)+ Y niJ(P) —A) . (4-15)
i=1

Der Beweis von Prop. 4.5 gilt auch fiir Prop. 4.7.

Typ (b) ist gegeben durch
N
w(ni,ne,...,ny), allen; >0, Zni:(g—l) . (4-16)
i=1
Wir wéhlen einen zusétzlichen Punkt R € X \ A (etwa den Basispunkt B der
Jacobiabbildung). Er wird fixiert.

Proposition 4.8. Sei g > 2 und ni,no,... ,ny € Z, welche die Bedingung
in Formel (4-16) erfiillen, dann gibt es eine Konstante D, derart daf8 gilt

N
w(ni,ng,... ,ny)(P)=D-[[ E(P,P)" -o(P)- E(P,R)™" x

=t (4-17)

N
xO(J(P) + > niJ(P) = J(R) = A) .

Beweis. Da die angegebene Form der Situation im Beweis von Prop. 4.5 fiir
den Fall Py,...,Py,R ( Zivzl n; +n, = g —2 ) im Beweisteil (a) und (b)
entspricht, ist die rechte Seite eine wohldefinierte Form vom Gewicht 1, d.h. ein
Differential. Der Pol am Punkt R, hervorgerufen durch den Faktor E(P, R)~!
wird durch den Thetafunktionsfaktor wieder annuliert, da die rechte Seite sonst
eine Differentialform mit nur einem Pol 1.ter Ordung ware. Wegen Prop. 3.5
kann die Thetafunktion die Nullstellenvielfachheit an den Punkten P; nicht
erhohen. [

Die Wahl des Punktes R geht nur in die Festlegung der Konstante ein. Auch
in diesem Fall gelten die Bemerkungen 1-4 | welche ich nach Prop. 4.5 gemacht
habe. Insbesondere kann man auch entsprechende Korrekturkonstanten analog
zu (4-14) wihlen. Ubrig bleibt der Typ (c) (der im Fall N > 2 gar nicht bendtigt
wird).



50

Proposition 4.9. Sei

E(P, P;) .
iji=d(log——-) 1< <N
und wi,...,wy die Basis der holomorphen Differentiale nach (2-7), dann gilt
w((),... ,—1,0,... 7—1,... ,O) :wi7j+
P2 (Z((Imml)m - (Re ]g wi,n) Wy (#18)
Hierbei bezeichne © und j die Indices | mit n; = —1.

Beweis. w; ; ist ein meromorphes Differential das holomorph auf X \ {P;, P;}
ist. An P; und P; hat es die Polordnung 1 und das Residuum —1, bzw. +1. Bei
der Integration um die Homologiezyklen welche nur aus den a; bestehen, ergibt
sich die Periode 0 [Mum,II,3.212]. Wie in Prop. 2.2 kénnen wir durch Addition
von holomorphen Differentialen erreichen, dafl alle Perioden rein imaginér wer-
den. In der vorgegebenen Situation spezialisiert sich die Formel dort zu (4-18).
Da ein derartiges Differential eindeutig fixiert ist (ebenfalls Prop. 2.2) ist die
rechte Seite identisch mit dem erzeugenden Element. [J

g>2A=0o0derg=1,\eZ ‘ Wie in §3. ausgefiihrt, geniigt es im Fall
g = 1 den Wert A = 0 zu betrachten. Es gilt M(0) = —g. Typ(a) entspricht
wiederum dem allgemeinen Typ, und wir erhalten durch Spezialisierung

Proposition 4.10. Seien ni,no,...ny € Z, mindestens ein n; > 0 und
Zf\il n; = —g, dann gibt es eine Konstante D mit

N
A(ny,ng,...,nn)(P)=D-[[ E(P, )" - o(P)" x

i=1

N (4-19)
xO(J(P)+ Y niJ(P)+A)
i=1

Fiir den Typ (b) fithren wir wiederum einen weiteren Punkt R € X \ A ein.

Proposition 4.11. Seien ny,ng,...ny € Z, alle n; <0 und
Zﬁl n; = —(g+ 1), dann gibt es eine Konstante D mit
N
A(ny,ng,...,nn)(P)=D-[[ E(P,P,)" - o(P)"" - E(P,R) x

i=1

N (4-20)
xO(J(P) + > niJ(P)+ J(R)+ A) .
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Hierbei ist A(...) ein erzeugendes Element mit den vorgeschriebenen Nullstel-
lenordnungen.

Beweis. Auch hier ist durch die Einfiihrung eines zusétzlichen Punktes die
Giiltigkeit der Aussage iiber das Gewicht und tiber die Wohldefiniertheit wieder
gesichert. Desweiteren folgt ebenso mit Prop. 3.8, dafl die vorgeschriebene
Ordnung an den Punkten P; genau ereicht wird. Allerdings wird nun von den
g zusétzlichen Nullstellen eine auf den Punkt R gelegt. Bei Variation von R
erhalten wir verschiedene rechte Seiten. Das stimmt mit unserer Erkenntnis
aus §3. uberein, dafl die linke Seite in diesem Fall nur bis auf Addition einer
generischen Konstante und Multiplikation mit einem Skalar # 0 fixiert ist.
Deshalb dieser zusatzliche Freiheitsgrad. [

Der fehlende Erzeuger ist die konstante Funktion A(0,...,0) =1 . Die Be-
merkungen 1-4 (einschlielich der entsprechenden Korrekturkonstanten) nach
Prop. 4.5 gelten auch in diesem Fall.

(b) Der Fall g =1 (Weierstraf3ische o —Funktion)

Fiir den Fall g = 1 wurde fiir N = 2 in [KN1] die Erzeugenden mit Hilfe der
o—Funktion angegeben. Dies mdchte ich fiir beliebiges N verallgemeinern. Sei
T ein komplexer Torus (d.h. eine Riemannsche Flache vom Geschlecht 1), die
gegeben ist als 7' = C/L mit einem Gitter L in C. Natiirlich kénnen wir uns,
falls bequem, auf Gitter L beschrénken mit

L=Zo7r-Z, 7€C Im7>0 (4-21)

da ein beliebiger Torus komplex-analytisch isomorph zu einem derart gegebenem
ist. Die Weierstraische o—Funktion ist definiert als

— _z z2 1z
o(z) =z 11 ((1 —)exp (w +5(=) )) : (4-22)
w e L\ {0}
Als Referenz fiir die folgenden Eigenschaften siche etwa [HuCo].

Proposition 4.12.

(a) o ist eine holomorphe Funktion auf C.
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(b) o hat an jedem Gitterpunkt eine Nullstelle 1.ter Ordung und sonst keine
weiteren Nullstellen.

(c) o besitzt das folgende automorphe Verhalten: Sei w € L, so gilt
w
oz +w) = v(w)exp (n(w) - ( + 5)) - o(2) (4-23)

mit v(w) = £1 und n(w) = ((z4+w)—C((2) . Hierbeiist { die Weierstrafische
(—funktion. Es gilt

nm-w)=m-nlw), meZ, wel. (4-24)

(d) Seien a; € C und n; € Z (i = 1,...,m) gegeben. Dann definiert die

Funktion
m

f) =1l —-a)™ (4-25)

i=1
genau dann eine doppelperiodische Funktion unter dem Gitter L (d.h. eine
meromorphe Funktion auf dem Torus T), falls gilt

(1) Y ni=0 und (2) > ma;€L. (4-26)
i=1 i=1
In diesem Fall hat f eine Nullstelle von der Ordnung n; am Punkt a; mod L.
Wir wéhlen nun a; € C mit a; mod L =P;, i=1,..., N und fixieren diese.
Es sei

N
b=— (Z na) . (4-27)

Wiederum haben wir die 3 Typen von Erzeugenden wie in Prop. 3.9 ausgefiihrt.
Wir betrachten zuerst Typ (a).

Proposition 4.13. Seien ni,ns,... ,ny € Z, mindestens ein n; > 0 und
Zﬁl n; = —1, dann gibt es ein £ € C mit

N
A(n1,na, ... ,nn)(z) = E-[J(o(z = a;))™ - (2 = b) . (4-28)
i=1

Beweis. Offensichtlich ist mit diesen Wahlen (4-26) erfiillt, d.h. die rechte Seite
ist eine wohldefinierte meromorphe Funktion auf dem Torus. Sind die P; in all-
gemeiner Position gewéhlt, so kann b mod L niemals mit einem der P; zusam-
menfallen, da sich sonst die Nullstellenordnung an einem dieser Punkte erhéhen
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wiirde. Dies ist im Widerspruch zu Prop. 3.8. D.h. die rechte Seite ist bis auf
Multiplikation mit einer Konstanten der gesuchte Erzeuger. [

Die Konstante E héngt von den Lifts a; € C der Punkte P; ab, da der
Ausdruck in den o—Termen davon abhéngt. Um die Polstellen selbst global
variieren zu koénnen, ist allerdings die Unabhéngigkeit vom Lift notwendig. Dies
erreiche ich, indem ich entsprechend normiere. Hierzu sei ¢ € C gewéhlt, derart
daB

cmod L#P;, i=1,...,N und c¢mod L # bmod L .

Proposition 4.14. Die modifizierte Funktion A(ny,na, ... ,ny) gegeben durch
N
A(ni,na, ... ,nn)(z) =C7t. H(o(z —a;))" - o(z—b) (4-29)
i=1
mit
N

C=]Jolc—a)" - o(c—b) (4-30)

=1

ist unabhdngig von den gewdhlten Lifts a; fur die Punkte P;.

Beweis. (Offensichtlich hangt (4-30) nur von ¢ mod L ab.) Ich berechne das
Verhalten von (4-28) und (4-30) unter der Translation a; — a; +w mit w € L.
Mit Hilfe von Prop. 4.12(c) erhalten wir

EH()U(Z —aj; —w)™ -a(z—|—Zniai + njw) =

i#£] i

= AL )(2) - o(=w) exp (n(-w)(z = a5 = 5) ;) %

x v(njw) exp (n(njw)(z + Zna + ”sz)> .

Wegen (4-24) folgt
(n(—w) - nj +n(njw)) - z=0,

also verschwindet die z Abhéngigkeit des Faktors. Den Faktor fiir (4-30)
gewinnt man durch Ersetzung von z durch ¢ in obiger Berechnung. In der
Definition des modifizierten Elementes wird aber der Quotient beider gebildet.
Somit kiirzen sich die Faktoren gerade. Dies bedeutet die modifizierte Funktion
ist unabhangig von der Wahl der Lifts. [
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Typ (b) reduziert sich in diesem Fall durch die Bedingung “alle n; < 0 und
Zf;l n; = —2” auf die beiden Fille

A(0,...,0,-2,0,...,0) und A(0,...,-1,0,...,-1,0,...,0) .

Seien die Punkte mit n; # 0 représentiert durch a;, bzw. a; und a; mit 7 < j.
Wir bestimmen w; und wsy derart, dafl

wy +wy =2a; bzw. wi; +we = (a; +a;) .
und
wy, w2 #ajmod L fir j=1,...,N.

Hierzu kann z.Bsp. ws generisch gewahlt werden, und w; liegt dann fest. Per
Konstruktion gilt dann folgende

Proposition 4.15. Erzeugende fiir den Typ (b) sind gegeben durch

A(0,...,0,-2,0,...,0) = Co(z —a;) % o(z —wy) -0z —wy) (4-31)
A0,...,-1,0,...,-1,0,...,0) = Co(z —a;) " - o(z —a;)"" - (4-32)

o(z—wy) o(z—ws)
mit einer Konstanten C'.

Wir kénnen den Ausdruck wiederum unabhéngig von den Lifts a; machen,
indem wir die gegebenen Ausdriicke durch

olc—a;)™% o(c—w)-olc—wy)

bzw.
o(c—a;) ™' -olc—aj;) to(c—w) - o(c—ws)

dividieren, wobei ¢ entsprechend oben gewéhlt wurde (insbesondere

¢ # wi,wy mod L). Der Beweis ist identisch zum Beweis von Prop. 4.14. Zu
beachten ist noch, dafi zu den Elementen vom Typ (b) generische Konstanten
addiert werden diirfen. Dies entspricht der Nichteindeutigkeit der Wahlen von
w1 und ws.

Der Erzeuger vom Typ (c) ist die konstante Funktion.
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(c) Der Fall g =0 (rationale Funktionen)

Der Fall ist einfach und er sei nur aus Griinden der Vollstandigkeit aufgefiihrt.
Ich wiihle eine Parametrisierung z von IP', derart daf “z = c0” dem Punkt Py
entspricht. Die anderen Punkte seien gegeben durch

P +— z=aq;¢C, i1=1,..., N—1.

Zur Fixierung der Parametrisierung kann man etwa noch zusétzlich fordern
a; =0 und ag =1 (falls N > 2 ist).

Proposition 4.16. Seien ny,ng,... ,ny € Z mit Zfil n; = M(A\) = =2\
dann gilt

A ni,na, ..., nn)(2) =B - H(z—ai)"’i dz* (4-33)
mit einer Konstanten B € C.

Beweis. Die rechte Seite definiert eine meromorphe Form vom Gewicht A\ die
auf IP'\ {oco} von der gewiinschten Gestalt ist. Zu berechnen ist lediglich, ob
die Nullstellenordnung bei z = oo tatsachlich ny betragt. Hierzu rechnen wir
die Darstellung in der lokalen Koordinate w = 1/z bei Py aus.

1
dz = —— dw

5 also  dz* = (=1)* - w P duw? .
w

3

Somit

No1 N-1
f)‘(nl,nz,...,nN)(w)‘ = B(—l)A (w_ Zi:l m) H(l —aiw)""w_w dw)‘ .
i=1

Also ord py(...) == "ni—2 =ny . O

Selbstverstandlich kann man auch von beliebigen Parametrisierungen z aus-
gehen bei denen keiner der Punkte “z = 00” entspricht. Dann gilt

N
f)‘(nl,ng,...,nN)(z)‘ =B H(z — )™ d2 .
i=1

In diesem Fall zeigt man wie oben ord ,—.(...) =0 .
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§5. Verallgemeinerte Graduierung induziert durch eine Basiswahl

(a) Das grundlegende Theorem und die Struktur der Basis

In diesem Paragraphen ist die Aufteilung der Ausnahmemenge A in
A=TUO von Bedeutung. Es sei also wie in §2. angegeben

I:{PlaPQa"'7Pk}a O:{Q17Q27"'7Ql}7 N:k+l

Im folgenden werde ich eine Teilmenge der Erzeugenden aus §3. fiir 7*(A)
angeben, die eine Basis bildet. Deren Elemente sind

fopX), neZ, p=1,... k, (5-1)

werden also durch einen Doppelindex bezeichnet. Zur eindeutigen Festlegung
der fi,p(A) sind Fallunterscheidungen, abhéngig von &, I, A und dem Geschlecht
g, notwendig. In diesem Abschnitt will ich nur den fiir alle gleichbleibenden
Teil beschreiben. Es ist f,, ,(A) € FA(A), d.h. es ist eine Form vom Gewicht
A, holomorph auf X \ A. Die Ordnung an den Punkten aus I ist vorgegeben
als

ord Pi(fmp()‘)) =n— (51'717, Pel. (5-2)

Lokal gelte an dem Punkt P,

FapW)(2) = 25711+ O(z)) (d2p)” (5-3)

Zur Illustration, welcher Natur die weiteren Forderungen sind, seien diese fiir
k=1,g>2und X # 0,1 bzw. fiir g = 0 angegeben

ord @, (fnp(A) =—n, Qi€ O\{Qw}

ord o, (fup(N) = —n+ M(A) + 1 (5-4)

(Mit M(A\) = (2A—1)(g — 1) — 1 nach (3-4).) Damit ist nach Prop.3.2 dies ein
wohldefiniertes Element aus der Menge der Erzeugenden.

Theorem 5.1. Fir beliebiges A € Z und beliebige Zerlequngen von A in
A = T U O mit nichtleeren Mengen I und O gelten die folgenden Aussagen
(k=+#I):

(a) Die Elemente
fap(N), neZ,p=1,... .k, (5-5)
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bilden eine Basis von F*(A) (, bzw. eine Basis von KN(A) fiir A = —1).

(b) Die Basiselemente erfillen die Dualitdtsbeziehungen

27T1 %‘ fn,p fl mr( - ) — 5n,m . 6}0,7“ . (5_6)

(c) Jedes v € FA) kann beschrieben werden als endliche Linearkombination

k
V=" Copfap(N), CnpeC (5-7)

neZ P=1

1

o b v fimnp(l=A) . (5-8)

n,p —

(d) Die Struktur des Moduls F(A) diber der Algebra IKN(A) ist gegeben durch
die Strukturgleichung

n+m+L

€n,p - fm,r ()‘) = Z Z C h,;; (m r) fh S( ) (5_9)

h=n+m-—2

mit C- € C. Hierbei ist L eine Konstante die nur vom Geschlecht g, von den
Werten k und | und vom Gewicht \ abhdngt.

(e) Die Koeffizienten am unteren Ende der Summe (5-9) sind

C(n+m7275)(>\) = 5p,r5p,8((m —D+An-1). (5-10)

(n,p),(m,r)

Beweis. (1.ter Teil) Natiirlich bin ich nicht in der Lage ohne genaue Fixierung
der fy p(A) das Theorem vollstdndig zu beweisen. In diesem Abschnitt werden
nur die gemeinsamen Teile abgehandelt. Seien solche f,, ,(A\) definiert welche
der Dualitatsbeziehung (5-6) geniigen. Damit sind sie aber linear unabhéngig.
Sei namlich

0= ch,pfn,p(/\) )

n,p

so erhalten wir

0= 3 Cop (535 f, sV Ficmr1=)

n,p
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Also gilt Cy, » = 0 fiir alle m,r. Zu zeigen bleibt (im Teil 2), daf die Elemente
erzeugend sind. Nehmen wir also (a) an, so kann jedes v als Linearkombination
der f,, geschrieben werden (5-7) und wegen der Dualitidt konnen die Koef-
fizienten, wie in (5-8) angegeben, durch Integration gewonnen werden. Dies
beweist (¢). Um zur Strukturgleichung zu kommen benutze ich wiederum die
Dualitétsbeziehung. Seien e, , und fy, , fixiert, so kénnen wir auf e,, , . frnr(A)
Teil (c) anwenden. Insbesondere treten nur solche f, s auf fir die

1

— np - S (N)) - fimns(1—A -11
i o o Fms ) Fronsl1 = 0) #0 (5-11)
ist. Durch Berechnung der Residuen an den Punkten P; (bzw. Q; im 2. Teil)
erhalten wir Schranken fiir h. Aufgrund der lokalen Gestalt gilt

ord p,((enp - fm.r) - fr-ns) = (0= 0ip+m —bip — 1)+ 519
+(1—=h)=bis=(n+m—h)—08;p—0ipr—0bis. (5-12)
Damit sind fiir h < (n+ m) — 3 alle Ordnungen > 0. Somit gibt es an den
Punkten P; keine Residuen, also verschwinden alle Koeffizienten C}, . Dies
zeigt die untere Schranke im Teil (d). Wir sind auch in der Lage die genauen
Werte an der Schranke anzugeben. Falls nicht r = s = p ist, verschwindet der
Koeffizient auch fir h = (n+m —2). Seialsor =s=pund h =n+m — 2.
Die Residuen an den Punkten P; fiir ¢ # p verschwinden. Wir rechnen lokal
bei P,

(5 a+0tnss) (G ta+ oG @)

(25" "1+ O(2p)) (dz)' ) =
7 (m—=1)+X(n—1))(14+0(z,))dz = w .

p
Also gilt res p,(w) = (m — 1)+ A-(n—1) . Dies zeigt Teil (e) des Theorems.
Wir haben bei der Berechnung der Konstante die skalare Normierung (5-3)
beniitzt. ( 0O)

In den néchsten Abschnitten werde ich die fehlenden Glieder des Beweises
nachholen. Dies sind 1. die Existenz und Eindeutigkeit solcher f, ,, 2. die
Dualitéatseigenschaft, 3. die Erzeugendeneigenschaft und 4. der Beweis der
Existenz einer oberen Schranke in der Strukturgleichung (5-9).

Mit denselben Methoden wie im Beweis, kann man noch weitere Koeffizien-
ten berechnen. Hierzu mufl man lediglich (5-12) etwas genauer anschauen und
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entsprechende Fallunterscheidungen machen. Fiir w wie oben, erhélt man fir

SF#DP

COtm b (A) = res p, () = (m— 1) + A(n — 1) . (5-13)

Fiir s = p kann keine Aussage gemacht werden (bis auf die triviale Falle g = 0,
N = 2). Weiter gilt

C(nerfl,p)()\) =m+ )\(’I”L _ 1)’ D 7& r

(n:p),(m,7)
o N =m=1+n,  p#r (5-14)
C((Z;;n(;nl TS))()\) =0 p,r, s paarweise verschieden.

Sind p, r und s paarweise verschieden, so kann man noch eine Stufe tiefer gehen

Cortmes) L) = (3m+3in — (A+1)) . (5-15)
Im Virasoro Fall ist (5-10) der einzige auftretende Koeffizient.

Im Prinzip kann man alle Strukturkonstanten mit Hilfe der expliziten Darstel-
lungen aus §4. und unter Benutzung der Formel (5-8) bestimmen. Fiir N = 2
und g = 1 wurde in [KN1] entsprechendes getan. Wie man dort sehen kann,
wird die Situation sehr uniibersichtlich. Im Fall g = 0 ist dies jedoch mit Hilfe
entsprechender Binomialentwicklungen machbar. (Siehe auch §9. fiir analoge
Berechnungen.) Fir das spétere wichtig (§7.(c)) ist folgende interessante

Proposition 5.1. Sei das Geschlecht von X gleich Null. Dann gilt fir k > 1

Clrvamiomsy = 0+ B-m (5-16)

mit a und 8 Zahlen, welche von (n,p),r,d und s abhdngen, jedoch nicht von m.
Fir k <1 gibt (5-16) ebenfalls. In diesem Fall hingen die o und [ zusdtzlich
noch von den Restklassen von m modulo b= (I — k) + 1 ab.

Der Beweis dieser Proposition wird ganz am Ende des Paragraphens gefiihrt
werden.
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Zur besseren Referenz seien noch die Werte fiir die Schranke L in (5-9)
vorweggenommen: Essei a=(k—10)+1 und b= (I —k)+1 gesetzt. Fiir
A =0 oder 1, bzw. g = 1 handelt es sich hierbei um die generische Schranke.
Es ergibt sich fir L

-2 fals ¢g=0 k=1=1
1

falls ¢g=0 [1>1

1
1+ [=(3g— i ]
+ L(iﬁg 3)] sons (5-17)
—2 4 3b falls  g=0
-2+ (3g)b falls g¢g>1.

Mit Hilfe dieser Basis will ich nun eine Graduierung auf F*(A) einfiihren.
Ich setze deg(f, ) :=n und bezeichne die Elemente von

KN (A) :=(en1,€n2s- -, enk)
Fa(A) = (fa1(A), faz(N), ooy fre(N)

als homogene Elemente vom Grad n. Wegen der Basiseigenschaft gilt

(5-18)

KN(A) = P kNu(4), FNA) = P 7 (4) .
neZ nez

Theorem 5.1(d) (angewendet sowohl auf A = —1 als auch auf belichiges \)

besagt
(n+m)+K,

[KNw(A),KNm(A)] ¢ @ KNw(4)
h=(n+m)—Ko
(n+m)+L1

KNn(A).FpA) ¢ @ F4).
h=(n4+m)—Lo

(5-19)

Hierbei sind Ky, K1, Lo, L1 ganze Zahlen die nicht von n und m abhangen.
Bei uns gilt sogar Ko = Lo = 2. Gleichung (5-19) besagt nun, daff hier eine
verallgemeinert graduierte Struktur vorliegt [KN1]. Ich fasse zusammen

Proposition 5.2. F*(A) ist ein verallgemeinert graduierter Modul iiber KN (A)
mit der Graduierung induziert durch

deg fn,p()\) =n, deg Cnp =M.
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Die Bedeutung dieser Struktur wird erst in §7. beim Studium der semi-
infiniten Formen vollstandig klar werden.

Betrachte ich F*(A) als Modul iiber der assoziativen Algebra F°(A), dann
zeigt die entsprechende Berechnung wie im Beweis zu Theorem 5.1 (wiederum
unter Benutzung der Dualitét (5-6)), dafi die Graduierung (5-18) ebenfalls eine
verallgemeinert graduierte Struktur von F*(A) iiber F°(A) definiert. Darauf
werde ich nochmals in §6.(b) eingehen.

Die Festlegung der Basis { f,, , } hdngt nicht nur von der Zerlegung der Menge
Ain A = TUO, sondern auch von der Numerierung der Punkte in O ab. So war
es im Falle £ = [ notwendig einen der Punkte in O auszuzeichnen und an diesen
Punkt die geforderte Ordnung der Formen um M (X) + 1 zu erhéhen, um das
Element eindeutig zu fixieren. Wird ein anderer Punkt aus O als Referenzpunkt
gewahlt, so erhilt man andere Basiselemente. Insbesondere éndert sich somit
auch die Graduierung fiir F*. Ich zeige nun, daB die, von der Graduierung
induzierte Filtrierung, invariant unter diesen Wahlen ist. Hierzu setze ich

f()‘n)(A) = @ FMA) = (fmp|lmeZ m>n, p=1,... k) (5-20)

m>n
und erhalte eine (absteigende) Filtrierung von F*(A)

Fon(A) S Fon(4)  n>n'.

(Diese Filtrierung ist eine aufsteigende Filtrierung im Sinne der Polordungen.)

Proposition 5.3.

Fhoy(A) ={f e FMA) lord p(f) >n—1, VP eI} . (5-21)

Beweis. Per Konstruktion gilt “C”. Zu zeigen bleibt “2”. Sei f ein Element
der Menge auf der rechten Seite. Nach Theorem 5.1 gilt

k
F=33 Anpfmp)

meZ p=1

mit )
Amap = % fc"r f : flfm,p(]- - )\) . (5-22)
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Es berechnet sich fir P € I
ord p(f - fi—mp(l=A)>n—-1)+(1-m)—1=(n—m)—1.

D.h. fiir m < n sind alle Ordnungen an den Punkten P € I positiv. Somit
verschwindet (5-22) fiir m < n. Also liegt f in ff‘n) (4). O

Die Filtrierung (5-20) ist die Filtrierung, die durch die Graduierung

deg(fnp(A) =n (5-23)

induziert wird. Prop. 5.3 liefert nun eine invariante Beschreibung der Fil-
trierung aufgrund der Ordnungen an den Punkten aus I. Damit folgt unmit-
telbar

Proposition 5.4. Die durch (5-23) induzierte Filtrierung ist unabhéingig von
der Numerierung der Punkte Q; € O, i = 1,...,l. Insbesondere ist sie un-
abhdngig von der Wahl des Referenzpunktes Q; € O.

Die Situation sei nochmals zusammengefaft. Die Module F*(A) sind durch
die Menge der Punkte A festgelegt. Es sind Untermodule der meromorphen
Formen vom Gewicht A auf X. Die Zerlegung der Menge A in nichtleere Teil-
mengen I und O und die Numerierung der Punkte in O fixiert eine Graduierung
der Module F*(A). In Bezug auf diese Graduierung bilden sie einen verallge-
meinert graduierten Liemodul tiber KN (A) (mit der entsprechenden Graduierung).
Umnumerierung der Punkte aus O andert lediglich die Graduierung, nicht je-
doch die induzierte Filtrierung. In der Tat sind alle Gréf8en, die ich im folgenden
berechnen werde, invariant unter der Umnumerierung der Punkte.

Eine andere Zerlegung von A in A = I* U O* liefert ebenfalls eine Fil-
trierung. Bezeichne * die Filtrierung, herkommend von dieser Zerlegung. Auf-
grund Prop. 5.3 gilt

D1 = Fyy(A)" C Fy(A) . (5-24)

Die Filtrierungen sind nicht dquivalent. Sei P € I*, jedoch P ¢ I, dann gibt
es Funktionen mit beliebig hoher Polordnung bei P, welche in ]-"()‘n) (A) liegen,
jedoch nicht in einem festen F{, ,,(A)*. Deshalb kann es kein F7,,,(4)* geben
mit

")
]:();L)(A) c 7'-(\n/)(A)* .

Der Rest des Paragraphen §5. besteht lediglich in der Angabe von Basisele-
menten fiir jede mogliche Kombination von &, und A, derart dal Theorem 5.1
gilt.
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(b) Beweis im Fall k=1

Diesen Fall mochte ich in aller Ausfithrlichkeit diskutieren, da unbehindert
von allzu vielen technischen Details die Grundprinzipien klar hervortreten. Es
sei vorerst ¢ > 2 und A # 0,1, bzw. g = 0 und A\ € Z beliebig. Zusétzlich zu
den Forderungen (5-2) und (5-3) sei

ord o, (fap(N) = —n, Q; € 0\ {Q:}

ord Qu(fap(N) = —n+ MO+ 1. (5:25)

Es gilt
3 ord gfup(N) = M(N) .

QeA

Nach Prop.3.2 existiert genau eine Form mit den vorgegebenen Ordnungen.
(Die skalare Fixierung wird durch (5-3) ereicht.) Ich zeige zuerst, dafl die
Dualitédt (5-6) gilt. Hierzu berechne ich fiir das Produkt

W i= fn,p()\) : fl—m,r(l - /\) (5—26)
die Ordnungen an den Punkten von A.

ord p,(w)=(n—m)+1—25, — 0;p, Pel

ord g, (w) = =(n—m) -1, Qi € O\ {Qu}
ord g,(w)=—(n—m) =1+ MN)+ M1 - +2
=—(n-m)—1.

In der letzten Zeile habe ich benutzt
MM +MI1-N=2A\-D(g-1)—-1+(20-N-1)(g—-1)—-1)=-2.

Fir n > m + 1 verschwinden die Residuen an den Punkten P; € I. Somit
verschwindet ebenfalls das Kurvenintegral. Fir n = m verschwinden alle
Residuen (und somit das Kurvenintegral) falls r # p ist. Im Fall r = p gilt
ord p,(w) = =1 und ord p,(w) = O fiir i # p. Somit gilt hier aufgrund der
Normierung

1
27i

%CT fngp()\)flfm,r(]- - )\) =res pp(w) =1.
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Diese Ergebnisse gelten natiirlich auch fiir beliebige k,! und A, da nur das
Verhalten an den Punkten P; € I von Bedeutung war. Fir n < m — 1 ist
die Ordnung an den Punkten @; € O nichtnegativ. Somit verschwindet auch
hier das Kurvenintegral iiber jeder glatten Niveaulinie C;.. Dies zeigt Theorem
5.1(b) . Um zu zeigen, daB die f, ,()\) erzeugend sind, setzen wir fiir n € IN

V(n):= H'(X,\- K + D(n)) (5-27)
mit i o
D(n):= 3 (n+1)Pi+ 3 nQi+ (n—1-MQN)-Q: .

In V(n) sind die Formen vom Gewicht A die maximal den Polstellendivisor
D(n) haben. Insbesondere sind die Elemente

fm,pa _n§m§n7 p:17ak
in V(n). Da die Punkte in generischer Lage sind, berechnet sich nach Prop.3.3

dim V' (n) = dim H*(X,\- K — M(\) - Qg) + deg (D(n) + M(\) - Qx)
=1+degD(n)+ M) =k(@2n+1).

Genauso viele Elemente f,, ,(A) sind in V(n). Da diese aufgrund der Dualitét
linear unabhingig sind, erzeugen sie V(n). Jedes v € F*(A) liegt aber ab
einem gewissen n in den V(n). Dies zeigt die Basiseigenschaft. Fiir die obere
Schranke in (5-9) ist die Ordnung von w = (enp - fm.r(A)) - fi—n,s(1—A) an den
Punkten @Q; € O analog zu (5-12) zu berechnen. Es gilt (mit M (—1) = —3g+2)

ord ¢, (w) (n+m+2)+h, Q €0\{Qi}
w

> _
_ 5-28
ord g,(w) > —(n+m) —39g+1+h. (5-28)

Die Koeffizienten C}, s verschwinden auf jeden Fall, falls diese Ordnungen alle
> 0 sind. Bezeichne hy,,, den maximalen Wert fiir h, fiir den C}, s # 0 moglich
ist, so berechnet sich dieser wie folgt. Fir k =1 =1, d.h. N = 2 tritt der 1.te
Term nicht auf, also ergibt sich Apar = (n+m — 2+ 3g). Fir k=1 > 2 gilt

Phmaz ZmaX(ﬂ+m—2+3g,n—|—m—|—l) .
Die Konstante L in Formel (5-9) betrégt somit

{1 ,g=0und k > 1
L:

3g —2 , sonst .
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Insbesondere liegt die behauptete Unabhéanigkeit von n und m vor. Im Fall
k =1 =1 erhalten wir genau die Basis die fiir N = 2 auch von Krichever und
Novikov [KN1] angegeben wurde (bis auf eine Verschiebung des Index) und die
dort berechnete Strukturgleichung. Diese spezialisiert sich fiir ¢ = 0 auf die
Virasoro Algebra.

Wir kommen nun zu den Ausnahmewerten von \. Fir diese berechnet sich
M(0) = —g und M (1) = g — 2. Zuerst betrachten wir den Fall N = 2.

A=1lg>2k=1]

Firn < 0odern > gsei wy :=wy,1 wie im allgemeinen Fall oben festgelegt
durch

ord p (wp) =n—1, ord g,(wp)=9g—1—n
und die Normierungsbedingung (5-3). w, ist eindeutig nach Prop.3.6 . Fiir die
Werte 1 < n < g verwenden wir w,, mit

ord p (wp) =n—1, ord g,(w,) =9g—n

und der Normierungsbedingung (5-3). Auch hier ist w,, eindeutig nach Prop.3.6 .
Als wo verwenden wir das Differential p definiert in (2-10). Insbesondere gilt
fir alle n € Z ord p,(w,) =n — 1.

A:QgZLk:q

Hier sind neben der Normierungsbedingung (5-3) die entsprechenden Festle-
gungen fiir A, = Ay 1

ord p (An)=n—1, ord g,(An)=—-9g+1—n
im Bereich n > 2 oder n < —g, bzw
ord p,(A,) =n—1, ord g,(4,) =—g—n (5-29)
im Bereich —g < n < 0. Desweiteren sei A; = 1. Aufgrund Prop.3.8 sind die
Erzeugenden vom ersten Typ eindeutig fixiert. Fiir den zweiten Typ haben
wir noch einen Freiheitsgrad, die Addition einer Konstante. Diese wollen wir

festlegen, derart dafl die Dualitétsrelationen erfiillt sind. Sei A}, eine Funktion
die (5-29) erfiillt. Ich setze fir g > 2
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und fir g =1

11
Ag=Al —=—— ¢ A Al dz.
0= 227ri7{CT 0o d2

Damit gilt weiterhin fiir alle n ord p, (A,) =n — 1. Die Dualitétsrelation

1
Py An m — Yn,m -
ot o Wim =6 (5-30)

ist nach obigem sicherlich erfiillt, falls weder n noch 1 — m etwas mit den
entsprechenden Ausnahmewerten zu tun haben. Nach den allgemeinen Berech-
nungen ist nur n < m — 1 zu untersuchen und in diesem Bereich zu zeigen dafl
(5-30) Null wird. Hierbei sei C; ein Kreis um @;. Es geniigt zu zeigen, daf
ord ¢, (Apwi—m) > 0. Sei zuerst n # 1 und (1 —m) # 0. Fir die Ordun-
gen berechnet sich (m —n) —2,m —n und (m — n) — 1 aufgeteilt in die Félle:
n ist Ausnahmefall, 1 — m ist Ausnahmefall und beide sind Ausnahmefalle.
Im Bereich n — m < —1 konnte nur der erste Schwierigkeiten machen. Dies
kann aber nur in der Kombination 1 — m = —n auftreten. Dann ist aber auch
1 —m ein Ausnahmefall, d.h. die 3.te Formel ist zustdndig. Somit treten keine
Schwierigkeiten auf. Nun zu den restlichen Féllen.

ord g, (Aiwi—m) =ord @, (Wi—m) >a€{g—2+m,g—1+m}
(nur fiir m > 2). In diesem Bereich sind aber alle Ordungen positiv.
ord @, (Anwo) =a € {—g—n,—g—n—1}

(nur n < —1). Somit treten negative Ordnungen nur im Bereich —g < n < 0
auf . (Beachte fiir n = —g ist das 1.te Element der Wertemenge zusténdig.)
In diesem Bereich konnen wir aber das Kurvenintegral direkt ausrechnen. Fiir
g>2:

1 1 1 1
— Apwo = — Alwo — | =— Al C— =
2ri Jo, 0T om C. n0 (27Ti 7{07 "w()) 27i 7{0T wo =0,

1
— A =1
27 Jo, ~om % 190 =

gilt. Fir g = 1 liegt nur n = 0 im kritischen Bereich. Es ist allerdings auch

= Ao dz. Ich setze
=51 % Af - Ay dz
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und erhalte

1 _ O, —
M‘%CT AOAO dz = omi fCT(AO 2) dz =

A24 iy{ Al d +éi dz —
0T % Jo. 0 T Ao Jo, T

1
27 Jo,
c—c-14+40=0.

Damit ist die Dualitatsrelation (5-30) erfiillt. Die Erzeugendeneigenschaft ist
genauso beweisbar wie im Fall A # 0,1. Man wéhle n bei der Definition von
V(n) (5-27) nur entsprechend grof, so daf sich keine Spezialfille aufgrund
der modifizierten Ordnungen bei den @; € O ergeben (sind nur endlich viele
Ausnahmen). Es bleibt die Strukturgleichung (5-9). Hat weder der Index m
des Elementes f,,,(\) (noch der Index n des Elementes e, im Falle g = 1)
noch der Bereich n + m — 2 bis n + m — 2 + 3g etwas mit den modifizierten
Basiselementen zu tun, so gilt der Struktursatz wie bewiesen. Anderenfalls
ergeben sich bei gewissen Kombinationen von n und m Anderungen an der
Obergrenze. D.h. die Konstante 3g—2 muf} entsprechend vergréfiert werden um
eine globale Konstante L zu erhalten. Mit den obigen Berechnungsvorschriften
ist es ohne Probleme moglich durch entsprechende Fallunterscheidungen die
jeweilige Konstante fiir n und m zu berechnen. Dies wurde z.Bsp. in [KNI]
gemacht.

Sei nun k£ > 2. Auch hier nehme ich als wy, p, bzw. A, , genau die Elemente
wie im Falle A\ # 0,1, aufler in den Féllen, in denen dies zu Konflikten nach
§3. fiihren wiirde. In diesen Fallen sind diese gegeben durch die folgenden
Vorschriften.

]A:Ln:mgzzkzﬂ

ord P; (UJOJ, _5i,p7 P, e I,
L,

07 QZGO\{QMQZ}
g .

ord g, (wo,p (5-31)

)

(wo,p)

ord g, (wo p)
(wo,p)

ord g, (wo.p

)

A:Ln:ngzk:2y

ord p,(w1p) =1—0;p, ©=1,2
ord g, (w1,p) =0, (5-32)
ord Q2 (wl,p) =4g—- 2.
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Durch die Normierungsvorschrift (5-3) sind die wy, , eindeutig fixiert.

AzO,nzO,gzl,kZQ‘.

Hier wihle ich zuerst beliebige A , welche

ord P; (Ag)p) = _5i,p7 P el,
ord @,(4p,) =0, Qi € O\{Qu}, (5-33)
ord QI(A6,p> =—9.

und die Normierungsbedingung (5-3) erfiillen. Damit sind diese aber noch nicht
eindeutig fixiert. Wir berechnen zuerst

1 !
pr %C Ap pwo,r ,g>2
Yp,r = T

11

- A/ A/ d — 1

2 97i CT 0,p*-0,r zZ 59

und setzen .
AO,P = Aé),p - Z’)’p,rAl,r . (5—34)
r=1

Mit diesen derart modifizierten Elementen ist die Dualitétsrelation wieder ein-
deutig erfiillt. Dies kann man direkt Nachrechnen. Da ich aber in §5.(e)
eine Ersetzungsvorschrift definiere, die obiges gerade als Spezialfall enthélt,
mochte ich stattdessen auf diesen Abschnitt verweisen. Der Beweis der Erzeu-
gendeneigenschaft verlauft wie oben. Auch fiir die Strukturgleichung (und eine
eventuelle Berechnung von L) gilt dasselbe wie fiir N = 2 gesagt.
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(c) Beweis im Fall k >

Sei k > I. Ich setze a = (k—1)+1 > 1. In diesem Abschnitt betrachte
ich nur g > 2,A # 0,1 oder g = 0. Bei den anderen Werten sind endlich viele
Definitionen zu modifizieren. Die entsprechende Vorschrift gebe ich in §5.(e).
Sei fnp()) das eindeutig fixierte Element in F*(A) mit

ord p,(fap(N) =n—=dip, Piel,

ord g, (fnp(A) = —n, Qi € O\{Qu}, (5-35)
ord @, (fnp(A) = —a-n+ M) +1

welches die Normierungsvorschrift (5-3) erfiillt. Fiir

w = fnp(A) -+ fimmr(1—A) (5-36)
berechne ich die Ordungen

OrdPi(w):(n_m)+1_6i,r_5i,p7 Pel
ord Qi(w)zf(nim)f]-v Qzeo\{Ql}
ord g,(w) = —a(n —m+1) .

Fir n > m sind die Dualitétsrelationen richtig, da hier der Beweis von §5
(b) auch zutrifft. Es bleibt n —m < —1 und die Untersuchung an den
Punkten @; € O. Fiir diese Punkte und in diesem Bereich sind jedoch alle
Ordnungen positiv. Somit verschwinden alle Kurvenintegralem, d.h. die Du-
alitatsrelationen sind giiltig. Um die Erzeugendeneigenschaften zu sehen fithren
wir wiederum

V(n):= H(X,\- K 4+ D(n)) (5-37)
mit . .
D(n) := Z(n +1)P; + ZnQi +(a-n—1—MN)-Q

ein. Genau wie in §5 (b) berechnet sich auch hier
dmV(n)=14+k(n+1)+(l—-1n+an—-1=k2n+1).

Wiederum entspricht diese Dimension der Anzahl f,, ,(\) die in V(n) liegen.
Und mit demselben Argument wie oben erhalten wir, dafi diese ein Basis von
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FA(A) bilden. Zum Beweis der Strukturgleichung und Berechnung der Kon-
stante verfihrt man wie oben (5-28). Mit den Bezeichnungen dort gilt

ord g, () i :(n +m+2)+h, Q €0\{Q} (5-38)

ord g, (w) aln+m—nh)—3g+2—a.

Fir [ =1 gilt somit hyee =n+m+1+ [%} und fur [ > 2

39 —

3
himar = max(n +m+ 14| ,n+m+1).

[x] bezeichne die grofite ganze Zahl < z. Fiir die Konstante ergeben sich die

folgenden Werte
1 Lg=0,1>2
L= 3g—3 5-39
{ 14 g | ,sonst (5-39)

Dies zeigt fiir diese A das Theorem 5.1. Der Fall £ = [ und k£ > [ hétte
zusammengefafit werden konnen (a = 1!).

(d) Beweis im Fall k <1

Auch hier betrachte ich in diesem Abschnitt nur die generischen Werte, d.h.
g>2und X\ # 0,1 oder g = 0. Ich setze

b=(—k)+1>1 (5-40)

und fiithre die Restklassen €, €, € Z ein, mit

€n =n modb, €,€{0,1,...,b—1}

5-41
e =n modb, € €{-b+1,...,-1,0} (5-41)
Das Element f, ,()\) fir n € Z und p=1,... ,k ist eindeutig fixiert durch die
Forderungen

ord p,(fnp(X) =n—10ip, P;€l,

5-42
ord Qz:(fn,p()\)):—n, i=1,...,k—1, ( )
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und fiir n > 0 den weiteren Forderungen
ord 0, (fup (V) = 3 (-n+6n) i =kyon kot ] = 1
ord (s (V) = (-n &) =kt -1 (5-43)
ord ,(fp (V) = 3 (=n+80) + M) +1.

und der Normierungsbedingung (5-3). Fiir n < 0 werden gerade die Rollen
von €, und €, vertauscht in (5-43).

Wir berechnen fir n > 0

Z ord p(frr) =kn—1—(k—1)n+ %(—n+ €n) || + %(—n +&,)(b—[e])
PcA

1
HMA) + 1= M) + 5 (enlen] —€alen]) + & -

Fiir n = 0mod b ergibt sich sofort M(A) als Summe der Ordnungen. Fiir
n # 0 mod b berechnet sich der zusétzliche Term zu

(enl&nl — (en —D)|ER|) + & = & + €& =0 .

S =

Also haben wir auch hier M () als Summe der Ordungen. Dasselbe Ergebnis
erhalten wir auch fiir n < 0. Damit ist das Element aufgrund Prop. 3.2
eindeutig fixiert.

Proposition 5.5. Die Dualitdtsrelationen (5-6) sind erfillt.

Beweis. Sei w = fnp(A) -+ frnr(1 —A) . Der Fall n+m > 0 wurde schon
im Beweis in §5.(b) erledigt. Es bleibt (n+ m) < 0 zu untersuchen und
zu zeigen, dafl alle Residuen an den Punkten @; € O verschwinden. An den
Punkten Q; aus (5-42) liegt die Situation wie fiir k¥ = vor, d.h. diese machen
keine Probleme. Es sind also nur die @; aus (5-43) zu untersuchen.

Fall 1: n,m < 0: Klar ist, da die kleinste Ordnung fiir w

1

(- (+m)+ &+ ) (5-44)
betrdgt. Nun gilt aber n <&, und m < &,, somit ist (5-44) > 0.

Fall 2: O.B.d.A. sei n > 0, also m < 0. Ich betrachte zuerst die Kombination
1

v:zz(—(n—km)—l—en—&—@). (5-45)
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Dies ist eine ganze Zahl. Es ist
1 1 _
g(—(n—km)) >0 und g(en—l—em) >—1.

Somit ist v > —1, also v > 0. Dasselbe gilt auch fir die Kombination (€, + €,,)
und (e, + €,,). Es bleibt

(—(n+m)+e +&) . (5-46)

V=

S| =

In dieser Kombination kénnte in der Tat v < 0 sein. Allerdings tritt sie nicht
immer auf. Ist n = 0modb oder m = 0mod b, so ist (&, +&,)/b > —1,
also treten in diesem Fall keine Probleme auf. Sei also im folgenden keine der
Kongruenzen erfiillt. Die Kombination tritt dann nur auf falls €, > |&,| ist.
In der Definition hatte ich ndmlich festgelegt, dafi die ersten |€,| Punkte Q; im
uns interessierenden Bereich fiir f,, ,(\) als Zusatzterm e,, haben sollen (n > 0).
Fir f,, (1—X) haben die ersten ¢, Punkte den Zusatzterm €,, (m < 0). Damit
(5-46) auftritt, muB gelten €,, = b+ €, > |&,|, d.h. €, + €, > —b. Damit gilt
(€n +€,)/b> —1 und wir erhalten ebenso v > 0. O

Proposition 5.6. Die angegebenen Elemente sind erzeugend.

Beweis. Dies zeige ich analog zu den anderen Féllen.
Sei n € IN mit n = 0 mod b und

V(n):= H°(X,\- K 4+ D(n))
mit
k k—1 -1 n n
D(n) = (n+ )Pty nQi+y 5 Qi+ —1-MN) Q.
=1 =1 i=k

Wir berechnen auch hier
dim V(n) = 1+k(n—|—1)+(k—1)n+(l—k+1)% —1=k2n+1).

Mit derselben Schlufiweise wie in §5.(b) sieht man, daf8 die fi,, , eine Basis von
FA(A) bilden. O

Zum Beweis der Strukturgleichung und zur Berechnung der Konstante L
verfihrt man wie in den anderen Féllen. Wir benotigen
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(Bezeichnung wie bei (5-28))
ord g,(w) > —(n+m+2)+h, i=1,..., k-1

ord g, (w) > (—(n—l—m)—i—h—l—en*—i—em*—i—el,h*—l)—1, i=k,...,l—1

vV
S = o

ord g, (w) > (= (n+m)+h+e  + e +en”—1) —3g+2.

* entweder ¢, oder €,, usw. . h;q, kann man bei vorge-

Hierbei bezeichne ¢,
gebenem n und m exakt berechnen, indem man die obigen Ordnungen gleich
—1 setzt und A aus den 3 Gleichungen bestimmt. hy,q, ist dann das Maximum
dieser 3 Werte (bzw. 2 falls k = 1 ist). Da wir uns nur fiir den “schlechtesten”

Fall interessieren, nehmen wir

* *

e =€ =€ =-b+1
an und berechnen h;, ¢ = 1, 2,3 wie angegeben. Dies ergibt
hi=mn+m+1), ha=Mm+m—2)+3b, hy=(n+m—2)+3gb.

Da allerdings b > 1 ist, gilt immer hs > hy . Die Konstante L berechnet sich
zZu

243, g=0
— { g (5-47)

—243gb, g>1.

Damit ist alles gezeigt.

(e) Die Ausnahmedefinitionen

In den Ausnahmefillen g > 2,A # 0,1, bzw. ¢ = 1, A € Z miissen auf-
grund der Ergebnisse aus §3.(c) endlich viele der Basiselemente modifiziert
werden. Hierzu seien zuerst die Ordnungen, nach dem Schema wie in §5.(b)—
(d) gegeben, hingeschrieben. Diese Vorgaben haben ebenfalls in diesem Fall
Giiltigkeit, falls nicht durch die folgende Vorschriften, bzw. Operationen An-
derungen vorgenommen werden. Diese Operationen dndern nicht die Ordnung
an den Punkten P; € I. Die Vorschriften lauten wie folgt: Sei zuerst A = 1,
d.h. wir wollen w,, , fixieren.

(1) Tritt nur eine negative Ordnung auf und diese sei —1 an einem Punkt
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P; € I, so ist notwendigerweise n = 0. Abhéangig von [ = #0O haben wir die
Alternativen:

(L.a) Ist I > 1, so ersetzen wir ord g, = 0 durch ord ¢, = —1 und erhdhen die
Ordnung bei @; um 1.

(1.b) Ist I = 1, so setzen wir die Ordnung bei Q; auf —1 und nehmen noch die
Bedingung “Realteil aller Perioden = 0” zur Fixierung.

(2) Tritt nur eine negative Ordnung auf und diese sei —1 an irgendeinem der
Punkte Q; € O, so ersetzen wir diese durch die Ordnung 0.

(3) Sind alle Ordnungen > 0, so erhthen wir die Ordnung bei ; um 1.

Fir A =0, d.h. A,, ; haben wir die Vorschriften:

(4) Sind alle Ordnungen = 0, nur die Ordnung bei @Q; betrigt —g, so erset-
zen wir dieses Element durch die Konstante 1. Diese Moglickeit kann nur bei
m =1 und k = 1 auftreten. Insbesondere wird in diesem Fall die Ordnung bei
(; ebenfalls erhoht.

(5) Es seien alle Ordnungen < 0 und es sei nicht die Bedingung unter (4) erfiillt.
Insbesondere mufl dann auch m < 0 gelten. In diesem Fall erniedrigen wir die
Ordnung bei @; um 1.

Da die Summen der Ausgangsordnungen durch M ()) festgeschrieben sind,
folgt daf} jeweils nur endlich viele Modifikationen vorzunehmen sind. Zu modi-
fizieren sind immer die Elemente wq , und Ay . Je nach den Parametern & und
l auch noch weitere. Durch diese Modifikation habe ich erreicht, daf die w, p
eindeutig und die A,, , bis auf Addition einer Konstanten eindeutig fixiert sind
(jeweils immer bis auf Multiplikation mit einem Skalar). Offensichtlich sind
diese wieder linear unabhéngig falls die Dualitdtsrelation (5-8) erfiillt bleibt.
Wahlt man im Beweis der Erzeugendeneigenschaft die Zahl n in (5-27) grof3
genug, so gilt fiir diese Ausnahmewerte fiir A der Beweis genau wie flir die
generischen A. Die Obergrenze L in der Strukturgleichung (5-9) kann ebenfalls
nach dem allgemeinen Schema berechnet werden, indem man fiir die Ausnah-
mewerte von m (und von n = 1 im Fall g = 1) die modifizierten lokalen Formen
ansetzt und mit den Dualitétsrelationen die obere Schranke berechnet. (Die
untere ist ja unabhéingig von &, und A). Da nur endlich viele Ausnahmewerte
vorkommen, kann man das Maximum dieser Méglichkeiten und des generischen
L, wie in es in §5.(b)—(d) angegeben wurde, bestimmen. Dieses gibt dann die
Schranke L in (5-9).

Es bleiben somit lediglich die Dualitdtsrelationen zu verifizieren. Die un-
verdnderten Elemente erfiillen natiirlich auch hier die Dualitatsrelation (5-8).
Ich mochte nun zeigen, daf fiir die modifizierten Elemente diese ebenfalls gilt.
Hierzu werden allerdings weitere Modifikationen bei den A,, , notwendig sein.
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Ich betrachte zuerst A = 1. Sel w = w,, p- A . Da bei P; nichts verdndert
wurde, gelten die Aussagen fiir m > —n. Damit ist zu zeigen, daf}

— =0 5-48
27 Jo, v ( )

auch in den restlichen Fillen gilt. Sei w,, ein modifiziertes Element und
erfillle A4,,, das Standardschema der Ordnungen. Die Operationen (2) und
(3) erhohen lediglich die Ordnung an den Punkten @, d.h. (5-48) gilt auch.
Die Operation (1.a) ist nur notwendig fiir n = 0, und die Ordnung macht
deshalb nur Schwierigkeiten, falls ord g, (Am,r) < 0 gilt. Da nur m < 0 zu
untersuchen ist, bedeutet dies m = 0. Somit gehort A, , zu den Ausnahmew-
erten. Die Operation (1.b) entspricht I = 1. Das Schema (—1,0,...]g — 1)
wurde ersetzt durch (—1,0,...| —1) . Das Standardschema der A,, , lautet

(m—=1m,...|—k-m—g+1). Somit ist ord g,(w) = —k-m —g . Es
interessiert nur m < 0. Es bestehen nur Schwierigkeiten falls (—k-m—g) <0
gilt. In diesem Fall hat das Schema von A, , jedoch nur Ordnungen < 0. D.h.
diese Werte sind zu modifizieren, bleiben somit aufler Betracht.

Seien nun die modifizierten A,,, gegeben. Wir berechnen die Dualitét
gegentiber den wy, ,,n # 0. Die Operation (4) macht keine Probleme. Bei
der Operation (5) wird die Ordnung bei @; um 1 erniedrigt. Es gilt m < 0 und
es geniligt n < —m zu untersuchen. Fir n < —m wird die Ordnungserniedri-
gung durch die Ordnung von wy, ,, kompensiert. Es bleibt n = —m. Da bei den
Ay, jedoch alle Ordnungen < 0 sind, sind fiir bei den wy, ;, alle Ordnungen > 0
(beachte n # 0). Somit werden die Ordnungen von w, , bei ¢; um 1 erhéht.
Somit kompensieren sich die Korrekturen.

Damit sind alle Relationen erfiillt bis auf die Paarung

1

- Ay, = 4
oni Jo wo,p , 0 (5-49)

fiir die Ausnahmeelemente A, mit m < 0. Sei g > 2. Zuerst wihle ich A7, ,
wie durch die Ordnungen gegeben. Ich setze fiir die Ausnahmewerte

m 1
Trp = 5 j’% Al 2 wo,p (5-50)

und

k
A=Al = A A (5-51)
s=1
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Per Konstruktion gilt sodann auch fir m < 0

1
— Apr-wop=0.
2ri Jo, 0P
Die anderen Dualitatsrelationen werden nicht gestort.

Fir ¢ = 1 miissen wir ein wenig anders vorgehen, da die w mit den A
zusammenfallen. Wir setzen zuerst (siehe auch §5.(b))

11
2L, = 550 %C Ay, Ay ,dz = ), (5-52)

und .
A= Af, =Y W0 Ars . (5-53)

s=1

Damit ist wp,p, = Aopdz fixiert. Gibt es noch weitere Ausnahmewerte m,
so setzen wir fiir diese 7, wie in (5-50) und machen ebenfalls die Korrektur
(5-51). Dies zeigt die entsprechende Dualitét.

Fiir gegebenes k und [ sind die Ordnungen der modifizierten Elemente ohne
Probleme angebbar. Da ich im weiteren jedoch nicht an deren konkreter Form
interessiert bin, verzichte ich hier darauf. Die in §5.(b) angegebenen Elemente
sind Beispiele dafiir.
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Zum Abschlufl des Paragraphens steht noch aus:

Beweis der Prop. 5.1. Sei g = 0 und (vorerst) k > [. Ich benutze die Darstel-
lung der Basisvektoren gegeben in §4.(c). Die Parametrisierung sei so gewéhlt,
dafl der Punkt @; dem Wert z = oo, die Punkte P; € I z = a; und die restlichen
Punkte Q; € O z = b; entsprechen. Die Formen werden mit ihren Funktionen
in der Standardkoordinate z identifiziert. Die Angabe des A—Wertes eriibrigt
sich, da dieser nur in die Ordnung am Punkt @Q; eingeht. z identifiziert. Die
Angabe des A—Wertes ertibrigt sich. Der Koeffizient (5-16) berechnet sich we-
gen der Dualitét als

(m+ds) 1

(n,p),(m,r) — oni C (6"71’ ) me) ’ fl*(m+d)a5 :

Die Entwicklung der relevanten Terme lautet

=(m-g(z)+h(2)) - fmr

mit g(z) und h(z) meromorphe Funktionen, welche nicht von m abhéngen.
Multiplizieren wir diesen Ausdruck mit fi_(p,14),s, S0 erhalten wir als Inte-
granden

-1

k
(m-g(z) + h(z)) - H<Z _ ai)l—d_éi,p—éw . H(Z _ bi)d—l _ (5-54)

i=1 i=1

Die beiden letzten Faktoren hangen nicht von m ab. Durch Integration erhalten
wir die Formel (5-16). Fiir k < [ sind die entsprechenden Modifikationen an
den Punkten z = b; nach §5.(d) vorzunehmen. Es zeigt sich, daf (5-54) in
Abhéangigkeit von der Restklasse m mod b verschiedene Terme z — b; enthalt.
Somit besteht genau die behauptete Abhéngigkeit. [
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§6. Zentrale Erweiterungen der Algebren

(a) Die Krichever - Novikov Algebra

Ausgehend von KN (A) will ich in diesem Paragraphen zentrale Erweiterun-

gen

0— € 2 KN(A) -5 KN(A) — 0 (6-1)
studieren.Im néchsten Paragraphen werde ich versuchen die Aktion von N (A)
auf F*(A) zu einer Aktion auf den semi-infiniten Formen von F*(A) zu trans-
ferieren. Es wird sich zeigen, daf dies nicht fiir KN (A) sondern nur fiir eine
zentrale Erweiterung KN (A) moglich ist.

Sei ey, ein Basiselement von KN (A) wie in §5. bestimmt. Ich wéhle einen
beliebigen Lift E,, , dieses Elementes, d.h. es gelte ¥(E,, ;) = €y, . Dieser sei
fiir das folgende festgehalten. Desweiteren sei ein zentrales Element ¢t = ¢(a)
mit a € C* in KN(A) fixiert.

Proposition 6.1. EN'(A) ist erzeugt durch die Basis
{EwplneZ, p=1,...k}u{t}.

Seine Liealgebrenstruktur ist gegeben durch die Strukturgleichungen

[E ’pﬂt] =0
n+m+L (6—2)

[Enps Emr] = Z Z O((Z ;g (m, r) —1) - Eps + X(€n,ps €mr) - t -
h=n+m-—2 s=1

Hierbei sind C’ ) . )(—1) die Strukturkonstanten (5-9) von KN (A) und
X : KN x KN — C ist ein 2-Kozyklel.

Beweis. Die Basiseigenschaft ist klar aufgrund (6-1). Ebenso die 1.te Formel
der Strukturgleichungen. [E,, ,, Ey, ] kann als Linearkombination

[Enps £ ZD(hstr)EhvﬁF't

geschrieben werden. Da allerdings v in (6-1) ein Homomorphismus von Lieal-
gebren ist, muf} gelten

V([Bnps Em,r]) = [V(Enp) ¥(Em,)] = [enp, em,r] -
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Als Bild der Linearkombination ergibt sich

S Dt ens+F 0.

(n,p),(m,r)
h,s

Der Vergleich beider Ausdriicke liefert, dafi die Konstanten DE? () gleich den
Strukturkonstanten von KN (A) sein miissen. F ist eine Konstante, die von
E, pund E,, ,, bei festem Lift also nur von e, , und ey, ,, abhangt. Sie andert
das Vorzeichen bei Vertauschung der Rolle dieser zwei Elemente. Wir benennen

sie mit Xx(€n p, em,r). Sie kann zu einer bilinearen Abbildung
X KN(A) x KN(A) — C

fortgesetzt werden, da wir wissen was auf der Basis geschieht. Da KN (4)
eine Liealgebra ist, kann man aus der Jacobi-Identitit berechnen, da die
Kozykelbedingungen

x(f,9) = —x(f,9) (6-3)
x([f, g1, h) + x(lg; ], f) + x([h, fl,9) =0 . (6-4)

erfiillt sein miissen (f,g,h € KN (A)). O

Umgekehrt definiert jeder solcher Kozykel eine Liealgebrenstruktur auf dem
Vektorraum KN (A). Dies ergibt sich mit Hilfe der Liealgebrenkohomologie,
siche etwa [Ful] oder ein sonstiges Standardwerk der homologischen Algebra.
Obwohl dies wohlbekannte Tatsachen sind, mochte ich wegen ihrer Wichtigkeit
im folgenden, etwas ausfiihrlicher darauf eingehen. Die Klassen zentraler Er-
weiterungen einer Liealgebra G sind in natiirlicher Korrespondenz mit der 2.
Kohomologiegruppe H?(G,C) . Zur Definition dieser Gruppen kann man fol-
gende Konstruktion benutzen [Ful]. Sei M ein Modul iiber G. Essei C%(G, M)
der Vektorraum der antisymmetrischen g—Linearformen mit Werten in M. Der
Korandoperator

d=d, : C(G,M)— C™(g, M)

ist definiert wie folgt. Sei ¢ € C(G, M), so setzen wir

dqc(917927 e 7gq+1) =

Z (_1)s+t_lc<[gs7gt}7gl7 e 7987 e 7gt7 e 7gq+1)+
1<s<t<g+1

+ 3 (1 eAgi e e Ggrr) - (65)
1<s<q+1
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Hierbei sind g1, 62,...,94+1 € G und g bezeichne wie iiblich die Auslassung
des Elementes g in der Auflistung. Direktes Nachrechnen liefert d o d = 0. Die
q—te Kohomologiegruppe mit Werten in M ist definiert als

Kern d,
HY M= ——"""9
(g’ ) Bild dgq—1 ’

mit der Verabredung
C%G,M)=M und d,=0, ¢<0.

Die Elemente des Kernes heiflen auch Kozykel, die Elemente des Bildes Korédnder.
Uns interessiert hier nur M = C aufgefafit als trivialer Modul, d.h. G- C = 0.
Somit verschwindet die 2. Summe in (6-5). Schreiben wir (6-5) fiir ¢ = 2 aus,
so erhalten wir

doc(f,9,h) = c([f, 9], h) — e([f, hl, 9) + ellg, bl f) -

Aus dac(f,g,h) = 0 folgt mit der Antisymmetrie (6-4). Ist ein 2-Kozykel ein
Korand, so 148t er sich schreiben als

c(f,9) = s([f, 9) (6-6)

mit einer Linearform x auf G. Mit Hilfe eines 2—Kozykels kann man die
zugehorige zentrale Erweiterung G in folgender Weise konstruieren [Ful].
Als Vektorraum ist G die direkte Summe C @ G . Das Lieprodukt ist gegeben
durch

(1, 9), (v, )] = (g, 1), L9, f1) -
Ich wéhle die (lineare) Splittingabbildung
®:G -G, fr®(f)=(0,f)

und bezeichne mit ¢ das Element (1,0). Damit kann obiges auch geschrieben
werden als

[®(9), ®(f)] = @([g, f]) +c(g, f) -t und [®(g),t] =0,

womit wir bei der Darstellung (6-2) wéren. Die Wahl einer anderen Splitting-
abbildung @’ , d.h. die Wahl eines anderen Liftes fiir die Elemente aus G,
entspricht der Wahl einer Linearform ¢ auf G durch

'(g9) = (¢(9),9), bzw. @'(g) =0(g)+d(g)-t.
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Ich berechne

[@'(9), ' (f)] = [®(9), @(f)] = @([g, f]) + c(g, f) -t =
' ([g, 1) — &(lg, f]) -t +clg, [) -t = ®'(lg, f]) + (g, f) - ¢ .

Es gilt somit
Cl(g7f) = C(g,f) + dl(_¢)(gaf)7

d.h. unterschiedliche Lifts bestimmen kohomologe Kozykel. Durch die Umkehrung
der obigen Vorgehensweise kann man die kohomologe Abanderung eines Kozykels
auch als Wahl eines anderen Liftes beschreiben.

Um Kozykeln fiir die Algebra KA (A) zu erhalten, verallgemeinere ich die
Methode in [KN2].

Definition. Sei (Uy, z,) eine Uberdeckung von X durch Koordinatenumgebun-
gen und seien zg = fop(zq) die Ubergangsfunktionen fiir nichtleeres Uy N Us.
Ein holomorpher (meromorpher) projektiver Zusammenhang ist eine Kollektion
lokaler holomorpher (meromorpher) Funktionen Ry (z,) die auf nichtleerem
U, NUgs in folgender Weise in Beziehung stehen

Ri(z) () — Ra(za) + S(fup) - (6-7)

Hierbei ist S(h) die Schwartzsche Ableitung. Sie ist definiert als

w 3 /R 2
Sty == -5 <h> . (6-8)

(' bezeichne die Ableitung nach der lokalen Variablen z,.)

Nach [HaS][Gu] existiert immer ein holomorpher projektiver Zusammenhang
Ry. Im Fall g = 0 und g = 1 und bei Wahl der Standardkoordinaten z,1/z bzw.
z—a kann Ry = 0 gewéhlt werden. Fiir diese Kartenwechsel gilt ndamlich S(h) =
0. Dies ist im Fall ¢ = 1 klar und kann im Fall ¢ = 0 explizit nachgerechnet
werden. (6-7) besagt, dafl die Differenz zweier projektiver Zusammenhénge ein
Differential vom Gewicht 2 (ein quadratisches Differential) ist. Somit erhalt
man alle Zusammenhénge, indem man zu Ry (holomorphe oder meromorphe)
quadratische Differentiale hinzuaddiert.

Seien nun e und h Vektorfelder die lokal dargestellt werden als

0 0

&a h‘(Z) = t(z)i

e|(z) = f(2) e
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Proposition 6.2.

xeh) = (5= f) < R (- ) ds (69

ist eine wohldefinierte (meromorphe) 1-form.

Beweis. Seien (Uy, zq) und (Ug, zg) Koordinatenumgebungen mit nichtleerem
Durchschnitt. Zu zeigen ist, dafl (6-9), sowohl in z, als auch in zg ausgedriickt,
dasselbe ergibt. Sei zg = h(z,) der Koordinatenwechsel, f, und fg, bzw. t,
und tg die lokalen Représentanten der Vektorfelder in den lokalen Koordinaten.
Wir erhalten folgende Transformationsregeln

Fo(a) = 5o (za) - falza)

(0%

entsprechend fiir ¢, weiter gilt

Wir schreiben nun (6-9) in Bezug auf die Variable zg und setzen die obigen
Grofen ein. Hierzu missen wir entsprechend oft die Kettenregel anwenden, da’
die Ableitung nach zg bedeutet. Nach langerer, aber unkomplizierter Rechnung
folgt die Behauptung. Hier sei nur ein Zwischenschritt notiert. [/t — f¢” in
Bezug auf zg, erhélt nach Umrechnung in Bezug auf die Variable z, die Form

2R B 3(h”)2
(n)? ()’

U )+ ( ) (fe=¢h) . (©10)

Hier bezeichne nun ’ die Ableitung nach z,. Der zweite Term wird genau durch
die Schwarzsche Ableitung kompensiert. [

Aus (6-10) sieht man auch sofort, dafl der zu kompensierende Term ver-
schwindet, falls etwa gilt A’ = const, wie dies im Fall des Torus mit den Stan-
dardkoordinaten der Fall ist, bzw. falls allgemeiner gilt S(h) = 0. Wahlt man
nur Koordinaten die S(h) erfiillen, so kommt man mit dem 1.ten Teil von (6-9)
aus, siehe [KN1].
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Proposition 6.3. Sei ¢ € C eine beliebige Konstante , C' eine beliebige
nichtsinguldre (nicht notwendigerweise zusammenhdangende) Kurve auf X, dann
definiert

& _
x(eh) = 3 § x(eh) (6-11)
ein 2-Kozykel.

Beweis. Aus der Definition (6-9) von ¥(e, h) ersieht man sofort, da§ x(..,..)
eine antisymmetrische Biliniearform ist. Insbesondere gilt x(e,h) = —x(h,e),
also (6-3). Sei P ein Punkt im (nicht notwendigerweise zusammenhéngenden)
Gebiet welches von C umschlossen wird. Ich identifiziere die Vektorfelder f, g, h
mit ihren lokalen Funktionen am Punkt P. Sei

'(/):: X([fvg]’h)+X([g7h]’f)+>z([hvf}vg) : (6'12)

Ich zeige, dafl res p(¢) = 0 gilt. Damit ist das Kurvenintegral tiber ¢ identisch
0, was (6-4) zeigt. Um res p(¢)) = 0 zu zeigen, zeige ich, daB sich 1 schrieben

148t als ¢ = g—(p
z

dz mit einer lokalen meromorphen Funktion ¢. Aus

e’} —1 [e%s}
o(z) = Z ezt = Z cp2" + Z 2"

n>m n>m n>0
folgt

-2 00
%(2) dz = ( Z Cnt1(n+1)2" + Z cni1(n+1)2") dz .

0z
n>m—1 n>0

Also verschwindet das Residuum.
Aufgrund der Identifikationen Vektorfelder mit lokalen Funktionen gilt

[f.gl=Fd —f'g (% wird unterdriickt). Es ergibt sich somit

<ol ) = 5 [~ 79)&h— 9 (59~ f'g)]

—R-[(fg" = f"g)h+ (f'g—g' )] .

(6-13)

Die anderen Terme ergeben sich durch zyklische Vertauschung. Der Faktor bei
R verschwindet bei der Aufsummation iiber alle zyklischen Vertauschungen.
Ubrig bleibt der erste Term F', wobei der Faktor % ohne Bedeutung ist. Es gilt

F=((fg = F'on™ =3((rg' = fo/n") =2 (b9 (fg' - '9))
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wie man durch direktes Ausrechnen verifiziert. Da die ersten beiden Terme
Ableitungen sind, verschwindet deren Residuen. Den letzten Term forme ich
um

O~ f9) = (K (g — ")) ~ WD (fg ~ ')

Auch hier ist der erste Term eine Ableitung, tragt also nichts zum Residuum
bei. Es bleibt nach Aufsummation {iber alle zyklischen Vertauschungen

K (fg' —gf") + fP(gh' — hg')' + g@(hf' — f1) =0. O

Eigentlich miiite man sowohl die Konstante ¢, als auch den projektiven
Zusammenhang R in die Notation aufnehmen, da der Kozykel von beiden
anhéngt. Die Abhéingigkeit von ¢ spielt keine Rolle. Sie bedeutet lediglich
einen Automorphismus des zentralen Anteiles. Deshalb wird er im folgenden
immer zu 1 normiert werden. Die Abhéngigkeit von R ist allerdings auch prob-
lemlos wegen

Proposition 6.4. Secien xr und xgr- Kozykel gebildet nach der Vorschrift
(6-9) und (6-11) mit derselben Konstante ¢ und den meromorphen projektiven
Zusammenhdngen R, bzw. R*, dann sind beide kohomolog.

Beweis. Sei S = R— R* , dann ist ] = S(z)dz ein globales meromorphes
quadratisches Differential. Mit den Notationen in obigem Beweis gilt

wnlf.0) = i (.9) = 5= § SU = Fodz = 3= § 0 (f.al)

Die Abbildung

c
v:KN(A) — C, e—>fy(e):24m,jiﬂ-e

definiert eine Linearform auf KA (A). Somit gilt
xr(f,9) = xr-(f,9) = (f,9])

und die beiden Kozykel sind nach (6-6) kohomolog. O

Im folgenden interessieren uns speziell diejenigen Kozykel, die durch Inte-
gration tiber die Levellinien C zustande kommen.
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Proposition 6.5. Sei die zentrale Erweiterung W(A) gegeben durch den
Kozykel

x(e,h) = 24; fCT (;(f’”t — ") =R (f't— ft’)) dz (6-14)

mit einem meromorphen projektiven Zusammenhang R, der holomorph auf X \
A ist und hochstens Pole 2. Ordnung an den Punkten von A hat. Dann gilt

X(€enpsemyr) =0 fir (n+m)>5 oder (n+m)<T<3. (6-15)

Hierbei besitzt die Konstante T € Z fiir g # 1 die in der Tabelle aufgefiihrten
Werte (a=(k—-0)+1,b=(10—-k)+1)

k=1 g beliebig T=—-6g+3
k>1 ¢g=0 T=—
g>0 T=—6g9+3
—69+ 3
=1 g beliebig T = [917
a
I>1 0<g<i(a+1l) T=-3
g>3(a+1) T=—-6g+3

g=0 T = —5b+2

g>0 T=—-6gb+b+2.
Fur g =1 gilt diese Schranke fiir generische n und m.

Beweis. Sei e, p, lokal représentiert durch die meromorphe Funktion f und e, ,
durch die meromorphe Funktion t. Ich betrachte zuerst die Ordnungen an den
Punkten P; € I.

ord p,(f) =n—20;p, ord p(f)>n—1-0;,, ord p,(f")=n—3-10,,

Analoge Ausdriicke erhalten wir auch fir ¢. Unmittelbar aus der Definition
folgt

ord P; ()Z(en,zn em,r)) Z
max(n+m—3 -6, — i, n+m—1-10;, — 6, +ord p(R)) (6-16)
=n+m-—3—20,p—di,.
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Ist n +m > 5, so sind alle Ordnungen positiv, d.h. das Kurvenintegral tiber
C, verschwindet. Dies zeigt den ersten Teil von (6-15). Fiir den zweiten Teil
miissen wir die Abschiatzungen an den Punkten @; studieren. Die Berechnung
ist einfach aber es sind wiederum abhéngig von k und ! verschiedene Fille zu
studieren. (Zur Definition von a, b, €,*, €,,* siehe §5.) Es sei g # 1.
1.) ord @,(f) = —n, ord @, (t) = —m, dann gilt
ord ¢, (x(enp,emyr) > —n—m—3
2.) ord g,(f) = —n—3g+3, ord g, (t) = —m — 3g + 3, dann gilt
ord ¢,(....) > —n—m — 69+ 3
3.) ord g,(f) = —an —3g + 3, ord @, (t) = —am — 3¢g + 3, dann gilt

)

ord ¢, (....) > a(—n —m) — 6g + 3
4.) ord q,(f) = t(—n+€,*), ord @, (t) = $(—m + €,,*), dann gilt
ord g,(....) > (-n—m+e* +€,%) — 3

5.) ord g,(f) = 3(-n+e,") =39+ 3, ord ,(t) = $(-m + €,*) =39+ 3

ord g,(....) > 3(—n—m+e,* +en*) —6g+3 .

Hierbei wurde iiberall benutzt da8 ord ¢, (R) > —2 ist. Ist n + m sehr stark
negativ, so sind alle diese Ordnungen positiv., d.h. das Kurvenintegral ver-
schwindet. Die genaue Schranke ist durch Einzelinspektion festzustellen. Ist
k =1=1,so tritt nur Typ 2.) auf, also X(enp,em,r) =0 fir n+m < —6g+3.
Fiir k =1> 1 tritt Typ 1.) und 2.) auf. Fiir das Verschwinden des Kurvenin-
tegrales mufl n + m so klein gewahlt werden, dafl beide Ordnungen > 0 sind.
Dies liefert genau die Ergebnisse in der Tabelle. Fiir k > [ und [ = 1 tritt 3.)
auf, falls [ > 1 tritt 1.) und 3.) auf. Fiir & < [ betrachten wir nur den schlecht-
esten Fall fir €,* und €,,*. Auf jeden Fall gilt jedoch €,* + €, > —2b + 2.
Fiir K = 1 ist 4.) und 5.) zu betrachten, fiir & > 1 zusétzlich 1.) (tatséchlich
spielt diese neue Moglichkeit keine Rolle). Fiir ¢ = 1 gibt es noch endlich

viele Moglichkeiten fiir n und m, an denen Abweichungen von obigem Schema
auftreten. In diesem Fall sind diese einzeln zu untersuchen und fiir T' das Max-
imum aus diesen endlich vielen Schranken und der obigen generischen Schranke
zu nehmen. An der Existenz einer solchen Schranke dndert sich nichts. O

Hitte ich statt R mit erlaubten Polen von Ordnung 2 an den Punkten von
A ein holomorphes R gefordert, so hétten sich die Grenzen in (6-15) nicht
gedndert. In Anlehnung an [KN2] nenne ich einen beliebigen 2-Kozykel einen
lokalen Kozykel falls er der Bedingung (6-15) mit 7'= —2L —3+ [2] geniigt.
Durch Vergleich der Tabelle (5-17) mit den angegebenen T' Werten in Prop. 6.5
sieht man sofort, dafl (6-14) einen lokalen Kozykel definiert. Ich nenne eine
Kozykel lokal im weiteren Sinne, falls er den Bedingungen (6-15), nun allerdings
mit eventuell weiteren Schranken (anstatt 5, bzw. T') geniigt. Solche entste-
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hen typischerweise bei Verwendung eines meromorphen projektiven Zusammen-
hanges mit Polen hoherer als zweiter Ordnung an den Punkten aus A.

Es ist zu beachten, dafl der Begriff “lokal” von der Aufspaltung A =1U O
abhéngt. Im folgenden mochte ich berechnen, wie der Kozykel an der oberen
Grenze des Bereiches, in dem er nicht verschwindet, aussieht.

Proposition 6.6. Sei x ein Kozykel gegeben wie in (6-14) mit ¢ = 1. Der
projektive Zusammenhang R habe in einer Umgebung der Punkte P, € I die
lokale Gestalt (o, € C)

Ry(zp) = oz, 2 + 2, 1 (0(1)), (6-17)
dann gilt
1.5 .
Werrignea-ir) = (150 =i =200 ) 3,0 (6-18)

Beweis. In diesem Fall ist n = 2 — ¢ und m = 2 4 ¢, also n + m = 4. Wir sind
somit gerade an der oberen Schranke von Prop.6.4 des Bereiches an dem ein
nichtverschwindender Kozyklel moglich ist. Fiir p # r folgt aus den Ordnungs-
betrachtungen (6-16), dafl diese > 0 ist, d.h. der Kozykel verschwindet. Sei also
p =r. (6-16) zeigt in diesem Fall, daf} eine negative Ordnung nur am Punkt
P, auftritt, d.h. nur das Residuum dort kann zum Wert des Kurvenintegrales
beitragen. Es gilt

r-i01(2) = 751+ O(zp)) ot
avipi() = 24714 0) 5

Damit berechnet sich

%((1 —i)(=))(=1—=14) = (1 + (@) (=1 +7)
—20p[(1 — i) — (1 +14)])z, (1 + O(zp)) dz
= (3 —i— 2041,1‘),2;1(1 +O(zp))dz .

X(e2—ip,21ip) =

Nach Integration erhalten wir Formel (6-18) . O

Selbstverstandlich kann der Term —2ayi, der von den Polen des projektiven
Zusammenhanges herkommt, durch kohomologe Abanderung des Kozykels be-
seitigt werden. Diese Abadnderung konnen wir auch iiber einen Basiswechsel
ausdriicken. Benutzen wir die Strukturgleichung (5-9), so erhalten wir

[Baips Baripl = 2iBsp+ > > C Eny+x(€a-ip €atip) 1t -

n>3 r
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Machen wir nun einen Basiswechsel, indem wir £ , = Fy ,, + Sapt setzen, so
andert sich auf der linken Seite nichts. Rechts steht

) 21
2+, D CiBny + <X(€2—i,pv e2+ip) = 1o 'OéP) t.

n>3 r

Als neuer Kozykel ergibt sich

1. .
Mersimenin) = (1500 =) 6y (6-19)

Natiirlich hétte ich noch —i “beseitigen” kénnen. Bei der Virasoro Algebra
ist es allerdings iiblich den Kozykel in dieser Form zu schreiben. Deshalb
habe ich mich auch hierzu entschieden. Der Grund dieser Normierung ist, dafl
im Virasoro Fall der Kozykel auf der Unteralgebra der globalen holomorphen
Vektorfelder

(e1,ez2,e3) = sl(2,C)

bereits identisch verschwindet und nicht erst nach kohomologer Abénderung.
(Nach den Satzen von Whitehead [HiSt] mufl er kohomologisch trivial sein.)

Fiir p # r kann der Kozykel x(ep p,€m,») auch fiir n +m = 3 ausgerechnet
werden. Hierzu geht man entsprechend des Beweises von Prop.6.6 vor. Das
Residuum ist an den Punkten P, und P, zu bilden und zu addieren. Dies
ergibt

1
X(€np,€3-nr) = 1 ((n—=1)(n—2)(2n—3) —2a,(n—2) — 20, (n—1)) . (6-20)
Der obige Basiswechsel beseitigt auch hier die Terme, welche von den Polen
des projektiven Zusammenhanges herkommen (siehe die Strukturkonstanten

(5-14)).

Proposition 6.7. Der Kozykel (6-14) definiert eine nichttriviale zentrale Er-
weiterung.

Beweis. Ich wihle je einen Punkt P aus I und einen Punkt @ aus O. KN ({P, Q})
liegt als Unteralgebra in KN (A). Der Kozykel (6-14) ist genau der von Krichever
und Novikov angegebene, falls er auf diese Unteralgebra eingeschrinkt wird.
Insbesondere ist er nach [KN2| eine nichttriviale Kohomologieklasse auf der
Unteralgebra und somit auf KN (A) selbst. O
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Vermutung 6.1. Jeder lokale (im weiteren Sinne) Kozykel von KN (A) laft
sich nach kohomologer Abdnderung wie in (6-14) mit einem passenden mero-
morphen Zusammenhang R schreiben. Insbesondere gibt es nur eine solche
Kohomologieklasse.

Im folgenden werde ich eine “Beweisskizze” fiir die Vermutung geben. Ich
verwende hierzu Methoden und Techniken welche fiir N = 2 in [KN1], [KN2]
benutzt wurden, um das entsprechende Resultat zu zeigen. Da ich nicht in
der Lage war, deren Giiltigkeit verifizieren zu kénnen, bzw. ich noch nicht die
Verallgemeinerungen der Techniken in allen Details ausgefiithrt habe, verwende
ich die Bezeichnung Vermutung. Dariiberhinaus werden Methoden herange-
zogen, die den Bereich der Algebraischen Geometrie, bzw. Funktionentheorie
verlassen (Fourierentwicklung auf S1, Liealgebra der C*°-Vektorfelder auf S*).
Nach meiner Meinung wére es ein gutes Ziel die Vermutung/Proposition durch
rein algebraische, bzw. algebraisch-geometrische Methoden zu zeigen. Im fol-
genden werde ich keinen Gebrauch von der Vermutung machen.

“Beweisskizze”. Zuerst verandere man die Residuenvorschrift fiir das, die Lev-
ellinien definierende Differential p, derart dafl es ein C, gibt, welches diffeo-
morph zu S* ist. Sodann zeige man wie in [KN1] daB sich jedes C'*°-Vektorfeld
E schreiben 148t als (Q € C;)

1 / !/
BQ) = ens @y f, P@(@). (6-21)
Die Methode dies zu zeigen, ist vollkommen analog zum N = 2 Falle in

[KN1],[KN2] und benutzt “diskrete Baker - Akhiezer - Funktionen” [KN3].
Die Giiltigkeit von (6-21) wird in [KN1] im wesentlich auf das dortige Lemma

2 zuriickgefithrt. Dieses ist ebenfalls in diesem allgemeinen Rahmen giiltig. Die
dort auftauchenden Funktionen v, und ;" sind hier natiirlich durch entsprechende
U ps w,tp zu ersetzen mit den entsprechenden modifizierten Ordnungen. So
ist etwa fir k = zu setzen

ord P; (d’n,p) =n—- 51',[)’ Pt c Iv ord Qi (¢n,p) =-n+ 5i,l7 Q’i S 07
und fiir die duale Kollektion
ord Pi(w’rtp) =-n+0di, Pel, ord Qi( TT,IJ) =n—204; Q;€0.

Fir k # [, sind die §5. entsprechenden Ordnungsverteilungen vorzunehmen.
Ebenso sind mehrere Funktionen A, statt einer einzigen Funktion A in den For-
malismus aufzunehmen (Das Theorem 3. in [Kri]) erlaubt dies. Nun kann mit
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[KN2nach Formel 1.21], bzw. [KN1,Lemma 6] das Problem auf den Gelfand-
Fuks Kozykel der Algebra £ der C'°°-Vektorfelder zuriickgefiihrt werden. Hi-
erbei ist die Grundidee, dafl ein lokaler Kozykel fiir KN (A), bei Wahl von C,
diffeomorph zu S!, einen stetigen Kozykel fiir £ definiert. Von Gelfand und
Fuks [GF] wurde gezeigt da H?(L,C) = C gilt und daB die Kozykel wie
behauptet gegeben werden kénnen.

Unter der einschriankenden Bemerkung, dafl die Details noch nicht aus-
gefithrt wurden, gilt natiirlich auch, daf sich jede C*°—Form F vom Gewicht
A auf C; entwickeln 148t als

1

2mi

FQ =Y fN(Q) 740 F(Q) frnp(1 - N(@) . (6-22)

Dies ist eine entsprechende Aussage zum Entwicklungssatz (5-7).
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(b) Die Heisenberg Algebra

Die Vektorriume F*(A) bilden Module iiber der Algebra F°(A). Diese
besteht aus den globalen meromorphen Funktionen die Polstellen nur an den
Punkten von A haben. Die Modulstruktur ist gegeben durch die Multiplikation
der Formen mit den Funktionen (siehe §2.). Zur Erinnerung: In §5. hatte ich

FA) = (fa1 V), faz(N), o, fan(N)

eingefiihrt als die homogenen Formen von Grad n und gezeigt, dal in Bezug
auf diese Graduierung die F*(A) verallgemeinert graduierte Liealgebrenmodule
iiber KN'(A) sind. Ich zeige zuerst, daB mit derselben Graduierung die F*(A)
auch verallgemeinert graduierte Module iiber F°(A) sind. Hierbei sei F°(A)
aufgefafit als assoziative (und kommutative) Algebra. Wie iiblich verwende ich

p = Jmp(0).

Proposition 6.8. (a) Es gibt eine Konstante M, derart daf$ fir alle (n,p)
und (m,r) gilt

n+m+M

Anp frnacN) = Y ZD(h 2y fs(V) (6-23)

h=n+m-—1 s=1

Die Konstante M hdngt ab vom Geschlecht g, Gewicht X\ und von k = #I und
I = #0, jedoch nicht von n und m.

(b) Die Koeffizienten an der unteren Grenze lauten

(n+m—1,s) _
(1) = G G - (6-24)
(c) Es gilt
n+m+M
FA)-FuA) S D A, (6-25)
h=n+m-—1

d.h. F(A) ist ein verallgemeinert graduierter Modul tiber F°(A),

Beweis. (c) Da die homogenen Teile von den fy, ., bzw. A, , erzeugt werden,
folgt (6-25) sofort aus (6-23). Nun ist (6-25) angewendet sowohl auf FY(A)
als auch auf F*(A) genau die Definition von einer verallgemeinert graduierten
Struktur (siehe 5-19). D.h. aus (a) folgt sofort (c).



92

(a) und (b): w = Ay, p- fm,r(A) ist ein A—Form. Somit existiert eine Darstellung
wie in (6-23) mit einer endlichen Summation {iber den ganzen Indexbereich
(h, s). Zu bestimmen sind die Grenzen. Nach dem Entwicklungssatz (Theorem
5.1) gilt
(h,s) _
(n.p)(msr) T o

W fions(1= ) . (6-26)
.
Dieses Integral kann man mit Hilfe von Ordnungs- und Residuenbetrachtung
auswerten. Diese Technik hatte ich schon mehrfach vorgefiihrt, so dal ich mich
hier kurz fassen kann. Es gilt

OrdPi(w):n+m—h+1—(5i7r—(5i7p—(5i7s, Pel.

Fir A < (n+m —2) ist diese Ordnung > 0. Dies zeigt die untere Grenze.
Fir h =n+m — 2 ist sie negativ nur falls ¢ = p = r. Aufgrund der lokalen
Normierung berechnet sich resp (w) = 1 . Damit folgt die Aussage iiber
die Koeffizienten an der unteren Grenze (6-24). Zur Berechnung der oberen
Grenze sind die Punkte @); € O zu betrachten. Es sind analog zum Beweis
von Prop. 6.5 die dortigen Alternativen zu untersuchen. Da uns jedoch nicht
die konkrete Schranke interessiert, sondern nur deren Existenz, geniigen die
folgenden Betrachtungen. Als Ordnungen an den Punkten @Q; ergeben sich
Ausdriicke der Art

c-(—(n+m)+h)+b (6-27)

mit b und ¢ Konstanten und ¢ > 0. Ist nun h > (n+m)—b/c, dann ist obige
Ordnung positiv. Die Konstante M ist nun so zu wihlen, dal M > —b/c — 1
fiir alle Kombinationen die auftreten konnen, gilt. Damit sind auch die endlich
vielen Sonderfille, die fiir gewisse A (insbesondere auch fiir A = 0) auftreten,
erfa3t. Entscheidend ist hierbei natiirlich, dafl nur endlich viele Ausdriicke der
Form (6-27) zu betrachten sind. O

Die Berechnung der konkreten Obergrenze ist einfach. Durch entsprechende
Fallunterscheidungen kann man Tabellen aufstellen. Hier mochte ich nur an
einem Beispiel die Vorgehensweise demonstrieren. Hierzu sei k = [. Fiir die
Nichtausnahmeelemente erhalten wir fiir w wie oben

ord g,(w)=h—(n+m)—1, i #1, ord g (w)=h—(n+m)—g. (6-28)

Fir k£ = 1 tritt nur der zweite Term auf, d.h. die Ordnung ist > 0, falls gilt
h>(n+m)+g. Ist k> 1, so sind alle Ordnungen > 0, falls gilt

h > max(n+m+1 , n+m—|—g) .
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Ist ¢ = 0, so gibt es keine Ausnahmewerte. Im anderen Fall beschianken wir
uns auf g > 2 und A # 0,1. Es bleiben die Ausnahmewerte fiir die A,, ,,. Fiir
diese berechnet sich

ord g,(w) =h—(n+m)—1,i#1, ord g, (w)=h—(n+m)—g—1. (6-29)
Als Ausnahmewerte treten fir £ > 2 nur n = 0 auf. Fur &£ = 1 sind es
—g < n <0 (siche (5-29)). Beim ebenfalls auftretenden Ausnahmewert A
fiir £ = 1 treten keine negativen Ordnungen auf. Damit erhalten wir als Ober-
grenze die folgenden Werte.
-1, g=0,k=1
M=<0 g¢g=0k>1 (6-30)
9, 9g>2,A2#0,1.

Versehen wir die Algebra F°(A) mit dem Kommutator [f,g]=f-g—g-f,
so erhalten wir die abelsche Liealgebra LF?(A).

Proposition 6.9. Die Abbildung ]—'O(A) x FO(A) — C gegeben durch

1.9)= 0 . fo (6-31)

definiert einen nichttrivialen 2— Kozykel (d.h. er ist nicht kohomolog zu 0 ) fir
die Liealgebra LF°(A).

Beweis. Die Bilinearitat ist klar. Antisymmetrie: Es gilt

res p(d(f - g)) =resp(g-df) +resp(f-dg) .

Das Residuum des Differentials einer Funktion verschwindet. Somit gilt res p(g-
df) = —res p(f - dg) . Wird tiber den geschlossenen Weg C. integriert folgt

fig QIffg——ffgf—— (9, ) -

Da LF°(A) eine abelsche Liealgebra ist, ist (6-4) trivialerweise erfiillt. Somit
ist v(..,..) ein 2—Kozykel. Ein nichtverschwindender Kozykel einer abelschen
Liealgebra kann nicht Korand sein. Ware er Korand, so miif3te er sich schreiben
lassen als y(f,g) = k([f,g]) mit einer Linearform « (6-6). Da aber [f,g] =

gilt v(f,g) = 0, also verschwindet der Kozykel selbst. Da die Funktionen f
und g Pole besitzen kénnen, wird +(..,..) nicht identisch verschwinden (siehe
(6-34)). O

Dieser 2—Kozykel ergibt eine nichttriviale zentrale Erweiterung. In Verall-
gemeinerung von [KN2] definiere ich
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Definition. Die (verallgemeinerte) Heisenberg Algebra H ist die zentrale Er-
weiterung der Liealgebra LF°(A) erzeugt von den Elementen

Opp, NEZ,p=1,...k und t
mit dem Lieprodukt

(@ ps Q] = V(Appy Amr) -t und o p,t] =0 . (6-32)

Die oy, sind Lifts der A, ,. In Bezug auf diese Basis erfiillte der Kozykel
~(..,..) wiederum eine Lokalitétseigenschaft:

Proposition 6.10. Es gibt eine Konstante S, so daf fir alle (n,p) und
(m,r) gilt

Y(Anp Amy) =0, firn+m>3 oder n+m<S<1. (6-33)

Die Konstante S hingt nur von k und | und vom Geschlecht g ab. An der
oberen Grenze gilt

V(A ps Aoepy) =(1—n) - dpr . (6-34)

Beweis. Sei w = A, - d(Am,r) , dann gilt an den Punkten P, € T

ord P[_(w) :n—}—m—(si’p—(sir —1. (6—35)

s

Ist n+m > 3, sind alle Ordnungen > 0, also verschwindet das Kurvenintegral.
Im Fall n+m = 2 tritt nur ein Residuum auf, falls i = p = r gilt. Als Residuum
ergibt sich (1—n) aufgrund der lokalen Berechnung. Um die Existenz von S zu
zeigen, sind die Ordnungen von w an den Punkten @; € O zu untersuchen. Der
entsprechende Beweisteil von Prop. 6.8, gilt modifiziert auch hier. Dal S <1
sein muB, ergibt sich aufgrund des nichtverschwindenden Wertes (6-34). O

Fiir p # r kann man eine Stufe tiefer gehen und berechnen

Y(Anps A1) = (1 - 2n) . (6-35a)

Die Schranke S in obiger Proposition kann bei Bedarf fiir alle Falle konkret
berechnet werden. Ich mochte wiederum nur ein Beispiel geben. Sei & = [ und
entweder ¢ = 0 oder g > 1 und weder n noch m seien Ausnahmewerten. Es
berechnet sich

ord g,(w) =—(n+m) —1, i #1 ord g, (w) =—(n+m)+1—2g .
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Ist £ = 1, so verschwindet der Kozykel fir n+m < —2g+ 1. Fir k > 1
muf} gelten n + m < min(—1,—2¢g + 1) . Will man noch die Ausnahmewerte
einbeziehen, so kann man dies wie folgt: Der “schlechteste” Fall ist der, wenn
n und m beides Ausnahmewerte sind. In diesem Fall verschwindet der Kozykel
erst fir n +m < —2¢g — 1. Somit ergibt sich

1, g=0k=1
§=1 -1, g=0,k>1

Fir k = [ = 1 wurden diese Schranken auch von Krichever und Novikov in
[KN2,Formel 1.4] angegegeben (mit einem entsprechenden Indexshift).

Im Virasorofalle, d.h. Kk = = 1 und g = 0 tritt nur ein nichtverschwindender
Term auf
Y(An, As_y) =1 —n.

Die einzigen nichtverschwindenden Kommutatoren lauten somit
[an,aa_p]=(1—n)-t.
Setze ich fiir k > 0
Gk = Qp41, P =0Q—k41 und po=qo = o, (6-36)
so ergibt sich fir k,1 > 0
gk @) = [propi] = 0, gk, pk] = =k -1, [qk,t] = [pr,t] =0 . (6-37)

Somit spezialisiert sich alles in diesem Fall auf die “iibliche” Heisenberg Alge-
bra, d.h. auf die Oszillatoralgebra mit unendlich vielen Freiheitsgraden.
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(c) Die Algebra der Differentialoperatoren vom Grad <1

Es sei
D' (A) = KN(A) @ LF°(A) (6-38)
die direkte Summe der Vektorrdume. Ich fithre auf D!(A) eine Liestruktur ein
durch
[(679)7(]07}1’)} = ([67.}0}7[/6(}7’) 7Lf(g)) (6_39)
fir e, f € KN(A), g,h € FY(A) (semidirektes Produkt). Es ist L.(h) die

Lieableitung (2-4) fiir Funktionen. Dies ist wegen A = 0 das Anwenden der
Derivation e auf h. Mit der lokalen Form e(z); = a(z)% somit

Oh

Le(h)|(2) = a(z)g .

Proposition 6.11. D!(A) ist eine Liealgebra, die KN(A) und LF°(A) als
Unteralgebren enthdlt. LF°(A) ist ein Ideal und es gilt die kurze exakte Sequenz
von Liealgebren

0 — LF°(A) — DY (A) — KN(A) — 0. (6-40)

Beweis. Nachzupriifen ist die Jacobi-Identitét. Seien 3 Elemente (e1, hy), (e2, ha)
und (es, h3) gegeben, so berechnet sich

[[(e1, 1), (€2, ha)], (€3, h3)] =
( Hely 62]7 63]7 L[el,ez] (h?)) - L83 (Lel (hg) - Lez (hl)) ) .
Die Jacobi-Identitat auf der ersten Komponente ist erfillt, da sie fiir KA (A)

gilt. Mit
L[el,62] (h3) = Le, Le, (h3) — Ley Le, (h3)’

ergibt sich fiir die zweite Komponente
L€1L€2 (h3) - L€2L€1 (h3) - L€3L61 (h2) + L€3L€2 (hl) :

Summiert iiber alle zyklischen Vertauschungen ergibt sich 0. Somit ist D'(A)
eine Liealgebra. KA (A) und LF°(A) sind offensichtlich Unteralgebren. Wegen
(6-39) ist LFY(A) sogar ein Ideal. Die kurze exakte Sequenz (6-40) ist somit
klar. O
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Proposition 6.12. F*(A) ist ein D'(A) Liemodul mit der Operation
(e;h).f=Le(f) +h-f, (e;h) € DHA), feFNA). (6-41)
(h - f ist die Multiplikation der Form f mit der Funktion h.)

Beweis. Dies verifiziert man durch Nachrechnen. Es ist

[(e1,h1), (e2,h2)] - f = Lie e (f) + Ley (h2) - f = Ley (1) - f . (6-42)

Andererseits

(e1,h1) . ((e2,h2) . f) = (e1,h1) . (Le, (f) + ha - f) =
LelLez(f) + Lel (h2 : f) + hl : Lez(f) + hlh? : f (6_43)

Vertauscht man die Indices 1 und 2, so erhélt man einen entsprechenden Aus-
druck (6-43’). Fir (6-42) — (6-43) 4(6-43") ergibt sich

Ley(ha)-f =Ley(h1)-f=Le, (ha ) =ha-Ley (f)+ Ley (1 f) +ho-Le, (f) - (6-44)

Benutze ich nun das untenstehende Lemma 6.1 iiber die Derivationseigenschaft
der Lieableitung, so folgt dafi (6-44) verschwindet. Also gilt die Behaup-
tung. O

Lemma 6.1. Sei f € FNA), h € F*(A), e € KN(A), so gilt
Le(f ®@h) = Le(f) @ h+ f @ Le(h) (6-45)

d.h. L ist eine Derivation in @, gz F*(A) , (aufgefaft als Ring mit dem
Tensorprodukt der Formen als Operation).

Beweis. Seien e, h, f identifiziert mit ihren lokalen Repréasentanten. Mit (2-4)
gilt

_O(f-h) Oe
Le(f-h)=e py +()‘+M)f'h$
o af . L0e oh . de

Ich fithre auf D!(A) eine Z —Graduierung ein. Die Elemente des Vektor-
raumes

DY(A) ={enp, p=1,... . k)Y®(Apn_1p, p=1,...,k) (6-46)

seien die homogenen Elemente vom Grad n. Auf F*(A) hatte ich in (5-18)
bereits eine Graduierung eingefiihrt.
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Proposition 6.13. FEs gilt
n+m+P

DL(A).Fad)= P R4 (6-47)

h=n+m-—2

mit P = max(L,M — 1) . Hierbei ist L die Konstante aus der Strukturgle-
ichung (5-9) und M die Konstante aus der Strukturgleichung (6-23). Somit ist
FAMA) ein verallgemeinert graduierter Modul tiber D*(A).

Der Beweis ergibt sich sofort aus den Aussagen in Theorem 5.1 bzw. Prop. 6.8
iiber die Erzeugenden.

Um “héhere Ableitungen ” der Formen F*(A) zu bilden, mache ich folgende
Konstruktion. Es sei W := UD!(A) die universelle Einhiillende von D!(A)
[HiSt],[Hu]. Aufgrund deren Eigenschaften operiert W auf F*(A). Nach dem
Poincaré - Birkhoff - Witt Theorem wird sie von den aufsteigenden Ketten der
Basiselemente von D!(A) (nach einer beliebig vorgegebenen Ordnung) gebildet.
Insbesondere ist in dieser Algebra das mehrmalige Anwenden der Lieableitung
definiert. Diese Algebra enhélt viele Elemente, die, aufgrund ihrer Aktion auf
allen }"’\(A)7 nicht unterschieden werden konnen. So hat etwa A, , © Ay,
(® in W) nichts mit A, p - Apr (- in F°(A) ) zu tun. Trotzdem operieren
beide Elemente gleich auf allen F*(A). Ich bilde das (beidseitige) Ideal J in
W erzeugt von den Elementen

a®b—a-b, 1-1 (6-48)
mit 1,a,b, € FO(A) und 1 das Einselement in W. Ich setze

D(A) = UDY(A))J (6-49)
und nenne D(A) die Algebra der kohéirenten Differentialoperatoren auf X.
Proposition 6.14. F*(A) ist ein Modul iiber der assoziativen Algebra D(A)
Beweis. Es ist zu zeigen, dafl die Elemente

we(@Eb)Ov—we(a-b)Ov, WOV—wWwO1lOV

trivial auf f € F*(A) operieren. Es sei g =v. f € F*(A). Es ist

(a®@b).g=a®(b.g)=a.(b.g)=(a-b).g
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und 1. f = 1. Damit folgt die Behauptung. O

Es ist zu beachten, dafl a ® e fiir e ein Vektorfeld, nicht durch a - e ersetzt
werden kann, da (mit der Notation des Beweises) gilt

(a®e).g=a® (Le(g)) =a- Le(g) -

Andererseits jedoch

(a-e).g=Laelg) #a-Le(g) -

Wie man leicht durch lokales Nachrechnen verifiziert gilt nadmlich

Lac(g) = a-Le(9) + ALe(a)) - g - (6-50)

Gleichheit herrscht lediglich fiir A = 0.

Die iiblichen (algebraischen) Differentialoperatoren F*(A) — F*(A) werden
wie folgt definiert:

Definition. Eine C—lineare Abbildung D : F*(A) — F*(A) heifit Differen-
tialoperator vom Grad <n mitn > 0, falls gilt

(a) ist n =0, so ist D = b, die Multiplikation mit einer Funktion b € F°(A).
(b) ist n >0, so gilt

[D,a) : FAA) — F}A) (6-51)
ist ein Differentialoperator vom Grad < (n—1). Hierbeiist a € F(A) und a ist
aufzufassen als Multiplikationsoperator. [..,..] ist der Kommutator der linearen
Abbildungen.

Siehe [EGA, 1V,16.8,16.11] und [BGG] zur Definition. Die Menge der Dif-
ferentialoperatoren beliebigen Grades bilden eine Unteralgebra der Algebra
End FA(A).

Sei D € D(A). Dann besitzt D die Darstellung (in der universellen Algebra)
D=agy®e10a1®er - ap_10e,®an, (6-52)
mit a; € F°(A) und e; € KN(A)

Proposition 6.15. Sei D wie in (6-52) gegeben. Dann operiert D in natiir-
licherweise durch die Lieableitung und Multiplikation mit Funktionen als Dif-
ferentialoperator vom Grad < n auf F*(A).
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Beweis. Der Beweis erfolgt durch vollstdndige Induktion nach der Anzahl Vek-
torfelder in der Darstellung von D. Ist n =0, so gilt D = ag. Somit ist D per
Definition ein Differentialoperator vom Grad 0. Besitze nun D eine Darstellung
mit n auftauchenden Termen wie in (6-52). a € F°(A) und

f € F*(A) seien gegeben. Ich setze g =a, - f .

la,D](f)=a-ao-Le, -+ Le,(9) —ao+ Le, -+ Le,(a-g) . (6-53)
Ich forme nun den 2. Term um. Es gilt

Le,(a-g)=Le,(a) - g+a-Le,(g) -

L., (a) ist eine Funktion, d.h. der entsprechende Term im 2. Ausdruck (6-53)
ist per Induktion ein Differentialoperator vom Grad < (n — 1). Den zweiten
Term kann man nun durch sukzessives Anwenden obigen Schrittes und unter
Abspalten von Operatoren vom Grad < (n — 1) in genau die Form des ersten
Ausdruckes bringen. Somit heben sie sich auf. [

Natiirlich enthélt D(A) sehr viele verschiedene Elemente, welche identisch
auf F*(A) (bei festem \) operieren. Da jede nichtvollstindige Kurve (also auch
X \ A) affin ist [Ha,p.297], gilt allerdings, dafl D(A), aufgefait als Operatoren
auf F*(A) alle Differentialoperatoren darstellt [EGA],[BGG,p.27]. Da wir dies
im folgenden nicht beniitzen, soll darauf nicht weiter eingegangen werden.

Statt D(A) kann man durch Quotientenbildung (in Abhéngigkeit von \) eine
etwas kleinere Algebra erhalten. Hierzu dividiere ich durch das Ideal J) erzeugt
von den Elementen (6-48) und

a®e—a-e+AL.(a), acF°(A), ec KN(A). (6-54)

Ich setze
Di(A) = UD'(A)/Jy . (6-55)

Proposition 6.16. F*(A) ist ein Modul iiber der assoziativen Algebra Dy(A).
Beweis. Die Notation sei dieselbe wie im Beweis von Prop. 6.14. Es gilt
((J‘@e)'g:a'Le(g) :

Andererseits
(a : e) -9 = La~e(g) =a- Le(g) + )‘LE(a) °g-

Somit operiert auch das erzeugende Element (6-54) trivial auf F*(A4). O
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Selbstverstandlich faktorisiert die Abbildung D(A) nach den Differentialop-
eratoren auf F*(A) iiber Dy (A).

Ich komme nun zu den zentralen Erweiterungen von D!(A). Der Kozykel
x von KN(A) (6-9),(6-11) definiert einen Kozykel x* auf D'(A) durch die
Festsetzung
X*((El,hl),(€2,h2)) = X(61,€2) . (6—56)
Da nur die erste Komponente beteiligt ist, gilt die Kozykeleigenschaft trivialer-
weise. (x* ist der Pullback von x unter (6-40).)

Proposition 6.17. Die Festsetzung

v*((e1, h1), (e2, ha)) = v(ha, ha) (6-57)
mit dem Kozykel v der Algebra F°(A) gegegen in (6-31) definiert einen Kozykel
von D(A).

Beweis. Die Antisymmetrie ist klar. Zu zeigen ist lediglich die Kozykeleigen-
schaft. Zur Vereinfachung der Notation identifiziere ich (e,0) mit e und (0, h)
mit h. Aufgrund der Linearitit geniigt es die Kozykeleigenschaft

7" ([a, 8] ¢) +7*([b, o], @) + 7" ([e, a], ) = O (6-58)
mit Elementen vom “reinem Typ” Vektorfeld bzw. Funktion zu zeigen. Sind
alle 3 Elemente Vektorfelder, so verschwindet jeder Term in (6-58). Sind alle 3
Elemente Funktionen, so gilt (6-58) wegen der Kozykeleigenschaft von . Sind
a und b Vektorfelder , ¢ eine Funktion, so ist [a, b] ein Vektorfeld, d.h. die Terme
in (6-58) verschwinden einzeln. Zu untersuchen bleibt lediglich der Fall a ein
Vektorfeld und b und ¢ Funktionen. Die linke Seite von (6-58) ergibt

Y(La(b),¢) +v(=La(c),b) .
Die Behauptung ist also gezeigt, falls gilt

! La(b)de = —— ]{C La(c)db .

2 C. 2mi

Nun ist

1 1 1
L - ¢ L R L
o(b) dc - o(bdc) 51 %C'T b L, (dc)

27 C, -~ 2mi
Wegen des untenstehenden Lemma 6.2(a) verschwindet das erste Integral auf
der rechten Seite. Die Lieableitung vertauscht mit der dufleren Ableitung
(Lemma 6.2(c)) und es folgt mit der Antisymmetrie des Kozykels
1 1 1
— L,(b)dc = —— bdL,(c) = —]{ Lo(c)db. O
27 Jo, 27 Jo 271 Jo,

T
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Lemma 6.2. (a) Sei w € F1(A), e € KN(A), dann gilt fiir alle P € X

1
res p(Le(w)) = 0;  also auch oy o Le(w)=0. (6-59)

(b) Sei f € FMNA), h € F1=NA), e € KN(A), dann gilt

1 1

oy - h-L.(f) = 9 . L.(h)- f . (6-60)

(c) Sei f € FO(A), e € KN(A), d die duflere Ableitung, dann gilt

Le(df) = d(Le(f)) - (6-61)

Beweis. Es gilt [AM]
L.(w) = i.(dw) + d(i.w) . (6-62)
Hierbei ist i, das innere Produkt, also i.af..,....) = ale,....). Fiir holomorphe

Formen gilt dw = 0. Somit ist L.(w) = d(w(e)), also das Differential einer
meromorphen Funktion, besitzt somit kein Residuum. Will man (6-62) nicht
benutzen, kann man (6-59 auch in lokalen Koordinaten ausrechnen.

Die Form h - f ist eine 1—Form. Mit Lemma 6.1 gilt

Le(h'f):Le(h)'f+h'Le(f)'

Nach (a) verschwindet bei der Integration iiber C, das Integral. Es folgt (b).
(c) ist ebenfalls eine wohlbekannte Tatsache tiber die Lieableitung von Differen-
tialformen [AM]. Auch hier kann man (6-61) einfach durch eine lokale Rechnung
verifizieren. 0O

Damit haben obige Kozykel auf KN (A), bzw. auf FY(A) eine Fortsetzung.
Natiirlich sind sie linear unabhéngig. Statt x*, bzw. v* werde ich im folgenden
einfach auch y, bzw. v fiir die fortgesetzten Kozykel benutzen. Daneben gibt
es aber noch einen weiteren linear unabhéngigen Kozykel. Dieser verbindet
KN (A) mit F°(A). Hierzu verallgemeinere ich den im Virasoro Fall in [ACKP]
angegebenen Kozykel. Um die dortige lokale Definition koordinatenunabhéngig
zu machen muf ich zuerst das folgende Objekt einfithren. Sei (z,) ein System
von Koordinaten fiir X, z3 = h(z,) ein Koordinatenwechsel. Desweiteren sei
Tw(za) ein System von lokalen meromorphen Funktionen. 7' nenne ich einen
affinen Zusammenhang, falls gilt

hl/

Ts(2) = Ta(za) - (W)™ + Wy (6-63)
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Hierbei bedeutet ’ die Ableitung nach z,. Falls " = 0 ist, d.h. falls ein
affiner Koordinatenwechsel vorliegt, transformiert sich T' wie ein Differential.
Aufgrund (6-63) ergibt sich, daf die Differenz zweier affiner Zusammenhénge
ein (meromorphes) Differential definiert. Anders formuliert: Ausgehend von
einem affinen Zusammenhang, erhélt man alle Zusammenhénge, indem man
beliebige Differentiale addiert. Die Existenz von globalen holomorphen affinen
Zusammenhéngen fiir beliebiges Geschlecht wird man nicht erwarten konnen.
Es gilt jedoch die folgende Proposition die ich weiter unten beweisen werde.

Proposition 6.18. FEs gibt einen meromorphen affinen Zusammenhang auf X
der holomorph auf X \ {@Q} ist und bei Q; hdchstens einen Pol 1. Ordnung
hat.

Proposition 6.19. (a) Seie = (e,0), t = (0,t) € D}(A), e = fZ eine lokale
Darstellung, dann definiert

Bleh) = —B(he) = % fc (FE" +T - ft')dz | (6-64)

mit der Festlegung, dafi 3 sowohl auf KN (A) als auch auf F°(A) verschwindet,
einen Kozykel auf D'(A). Hierbei bedeutet ' in (6-64) die Ableitung nach der
lokalen Variablen z.

(b) Die Kohomologieklasse von (3 ist unabhdangig vom gewdhlten affinen Zusam-
menhang T.

Beweis. (a) 1. Damit die Definition iiberhaupt Sinn macht muf} sie unabhéngig
von der Variablen z und von der Wahl des 7—Parameters der Kurve C, sein.
Zu zeigen ist also, da8 der Integrand in F!(A) liegt. Hierzu seien Koordinaten
wie oben gegeben. Ich gehe analog zu Prop. 6.2 vor. Es gilt

(" bezeichne die Ableitung nach z,)

f8(2a) = W (za) - falza), dzp = h'(z4)dza
ot ot (Za) ) (hl)_l(za)

87%(2&) = 070
0%t %t o ot e y
aizg(za) = @(Za) (W) (2a) — %(za) - (h') 3(Zoz) b (za) -

Schreiben wir den Integranden in der Variablen zg und machen obige Erset-
zungen, so erhalten wir
hlfa(t//<hl)—2 _ tlh//(h/)_3)h/dza + (Ta(h/)—l + h//(hl)_Q)fah/(hl)_lt/hldza
= fot"dzq + Ty - fot'dze ,
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also in der Tat ein wohldefinierte Differential. Da Pole nur an Punkten aus A
auftreten, folgt daBl der Integrand in F'(A) liegt.
2. Die Antisymmetrie ist klar aufgrund der Festlegung. Es bleibt die Kozykeleigen-
schaft zu zeigen. Die Notation sei wie im Beweis zu Prop. 6.17. Sind a, b, ¢ alle
vom selben Typ, so verschwindet der Kozykel trivialerweise. Sei a ein Vektor-
feld, b und ¢ Funktionen, so verschwinden alle Terme separat. Es bleibt der
Fall ¢ und b Vektorfelder und c eine Funktion. Ich zeige, dafl die Residuen an
jedem Punkt verschwinden. Hierzu rechne ich in der lokalen Darstellung. Es
gilt

[a,b] =a-b —b-d, [a,dJ=a-c, [bc=0b-c".

Ich betrachte zuerst den Term bei T. Direktes Rechnen liefert
(@b —ba’)c —a(bd) +bac’) =0 .

Somit verschwindet die Summe iiber alle 3 zyklischen Vertauschungen. Fiir die
Summe {iiber den ersten Term unter dem Integral erhalte ich

(ab — ba’ )" — a(bc')" + blac')" = (—ab'c’ + a'bc’) .

Damit ist diese das Differential einer meromorphen Funktion, das Residuum
verschwindet, also auch das Integral.

(b) Sei T* ein zweiter affiner Zusammenhang, dann ist wy = (T'—T*)dz
ein meromorphes Differential. Es gilt

27 T 27

1

= ot fo e, h] = ¥([e, h])

Brleh) = freh) = 5§ w-(f0) =g d we L

mit der Linearform

27i

VD A) - € (fig) > ) weg JERNW), g F4). O
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Proposition 6.20. Sei T ein affiner Zusammenhang der von der Art ist, wie
in Prop. 6.18. Dann gilt: (a) Es gibt eine Konstante Sg, so daf fir alle (n,p)
und (m,r) gilt

Blenp, Amyr) =0, firn+m>4 oder n+m<Ss. (6-65)

Die Konstante Sg hdangt nur vom Geschlecht g, von k und l ab.
(b) An der oberen Grenze gilt

Blenp, Az—nr) =2—-—n)(1—n) 5, . (6-66)

Beweis. Der Beweis ist vollkommen analog zu den entsprechenden Beweisen
fiir die Kozykel x (Prop. 6.5) und v (Prop. 6.10), so dafl ich mich kurz fassen
kann. Fiir P; € I gilt fiir den Integranden w

ord p,(w) >n+m—2—10;p —0;, .

(Da ord p,(T) > 0 ist, hat der zweite Term keinen Einfluf}.) Also verschwinden
fir (n +m) > 4 alle Residuen an den Punkten aus I. Somit ebenfalls das
Kurvenintegral. Die Abschatzung nach unten gewinnt man durch analoge Be-
trachtungen an den Punkten aus O. Ein moglicher Pole von T an Q; ist von
1.0rdnung stort also nicht.

Im Grenzfall n+m = 3 tritt nur ein Residuum auf, falls p = r gilt. Dieses
liegt am Punkt P, und es ergibt sich der Ausdruck (6-66). O

Auch hier kann man fiir p # r den Wert des Kozykels “eine Stufe tiefer”
entsprechend ausrechnen

Blenp, Aonr) =2(1—n)? fir p£7r. (6-67)

Im Virasoro Fall spezialisiert sich der Kozykel genau zu dem in [ACKP] angegebenem.

Mit diesen 3 linear unabhingigen Kozykeln kann man eine zentrale Er-
weiterungen konstruieren mit 3-dimensionalen Zentrum:

DY(A)=D'(4)® C.

Die Algebrenstruktur ist konkret gegeben durch
(U171)2 € Cgvtl = (1707 0),t2 = (07 170)3t3 = (0707 1) € Cg)

[((ehhl)vvl)v((627}7’2)7”2)} = (6'68)
([(e1, h1), (e2, h2)], exx(er, e2)ts + cyy(ha, ha)ta + ca(B(er, ha) — Blea, hi))ts
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Hierbei sind ¢y, ¢y, cg Konstanten. Im Virasoro Fall wurde in [ACKP,S.14]
dim H%(D ({0, 0}) = 3 gezeigt. Der Raum wird somit von diesen 3 Kozykeln
erzeugt. Also definiert fiir ¢, - ¢, - ¢z # 0 (6-68) die universelle zentrale Er-
weiterung. Will man eine zentrale Erweiterung haben mit eindimensionalem
Zentrum, so erhélt man diese durch Faktorisieren nach dem Ideal erzeugt von

t1 —rota, t; —r3ts, ro,r3 € C\ {0} .

Es bleibt Prop.6.18 zu zeigen, d.h. die Existenz eines affinen Zusammen-
hanges mit hochstens einem Pol. Seien (U,,z.), o € J ein System von
Kartenumgebungen. zg = h(z,) sei der Kartenwechsel der falls Ug N U, # 0
definiert ist. Ich definiere die folgende Ubergangsmatrix

(h/)—l (h//)(h/)—Q
Cpa = . (6-69)
0 1

Hierbei bezeichne ’ die Ableitung nach z,,.
Offensichtlich ist Cgo € GL(O(Ug NU,)).

Proposition 6.21. Cg, definiert einen Kozykel vom Rang 2 auf X und somit
ein Rang 2 Vektorbiindel €.

Beweis. Zu zeigen ist lediglich die Kozykeleigenschaft auf C, NCgNCy # 0
Cya =Cyp - Cpa -

Es sei z, = g(23), also z, = k(za) = (g o h)(2a) . * bezeichne die Ableitung
nach zg. Es gilt

(g) 1 ()71 (g") )W)+ (g7 (g*) 2
0 1

Offensichtlich ist &' = ¢g* - h’. Es bleibt lediglich das Element (1,2) zu unter-
suchen. Es gilt

Cyp - Cpa =

k” _ (g* . h/)/ _ g**(h/)Q —l—g*h",
also stimmen auch die Elemente (1,2) tiberein. O

Ist v ein globaler holomorpher Schnitt, so kann er lokal durch ein Paar von
holomorphen Funktionen vy, = (54,1, Sa,2) Mit Sa,1, Sa,2 € O(U,) reprasentiert
werden. Die v, transfomieren sich als

vg = Cgq - Va,

h 6-70
(55,1785,2) = <Sa,1 : (h/)_l + W “Sa,2 Sa,z) . ( )
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Verschwindet die zweite Komponente nicht identisch, so transfomiert sich der
Quotient
s
by = 221 (6-71)
Sa,2

wie ein meromorpher affiner Zusammenhang.

Aufgrund des Kozykels (6-69) erhdlt man eine kurze exakte Sequenz von
Vektorbiindeln
0 - K—-¢&—>0—-0 (6-72)

(K das kanonische Biindel, O das triviale Biindel). Schnitte in K sind auch
Schnitte in £. Sie entsprechen den Schnitten mit verschwindender zweiter Kom-
ponente. Sei P € O ein festgewahlter Punkt. Lp das zugeordnete Punktbiindel,
d.h. das Biindel welches genau einen linear unabhéngigen Schnitt sp hat. Dieser
hat eine Nullstelle bei P (siehe [Schll,p.105]). Ist W ein Vektorbiindel und w
ein holomorpher Schnitt in W ® Lp, so definiert w/sp einen Schnitt {iber
X \ {P} in das Biindel W, fiir den die lokalen Komponentenfunktionen bei P
einen Pol von hochstens 1. Ordnung bei P haben. Tensorieren wir (6-72) mit
Lp, und gehen wir zur langen Kohomologiesequenz iiber, so erhalten wir nach
Anwendung der Serre-Dualitat

0— HYX,K®Lp) - H'(X,E®Lp) — H°(X,Lp) — H*(X,L}) — (6-73)
Esist H(X,L%)=0 und dim H°(X,Lp) =1, also

dim H(X, €@ Lp) =1 +dim H(X, K ® Lp) = 1 +dim H*(X,K) =1+g .
(6-74)
Insbesondere gibt es immer einen meromorphen Schnitt v in £, dessen
2. Komponente (in den lokalen Reprasentanten) nicht identisch verschwindet.
Sei (Sq,2)a die Kollektion der zweiten Komponenten von v. (6-69) besagt, daf
die s3 und s, auf U, N Uy iibereinstimmen, also eine globale meromorphe
Funktion s mit sy, = s, definieren. Die Funktion s hat hochstens einen Pol
1. Ordnung bei P und ist sonst holomorph. Wir bilden nun (¢,) wie in
(6-71) definiert. Mogliche Polstellen sind der Punkt P und die Nullstellen der
Funktion s. Fiir ¢ > 1 muB s allerdings konstant sein, das es keine Funktion
mit totaler Polordnung 1 gibt. In diesem Fall sind wir somit fertig. Fiir g =
0 kann s durchaus nichttrivial sein. Ist s nichtkonstant, so hat s genau an
einem einzigen Punkt ) eine Nullstelle. Diese ist von erster Ordnung. Der
affine Zusammenhang hat somit hochstens Pole bei P und Q. Ist nun 7' ein
meromorpher affiner Zusammenhang und w ein meromorphes Differential, so
ist T'+w ebenfalls ein meromorpher affiner Zusammenhang. Durch Subtraktion
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eines meromorphen Differential mit Polen 1. Ordnung bei P und @ kann der
Pol von T' am Punkt @) beseitigt werden, ohne die Polordnung 1 am Punkt P
zu erhohen. Dies zeigt Prop. 6.18. [J

Fiir P! kann in Bezug auf die Standardkoordinaten (z,w = 1/z) ein affiner
Zusammenhang explizit angegeben werden

T = (tasts) = (0,2

Mit obigen Methoden kann man fiir g > 2 auch die Existenz eines holomorphen
projektiven Zusammenhanges zeigen. Dies sei kurz angedeutet. Die Notation

. B 3 B 2
Do — | M7 T 2 ((h/)?) (6-75)

0 1

sei wie oben

erfiillt ebenfalls die Kozykelbedingung, wie man durch Nachrechnen verifiziert.
Somit wird ebenfalls ein Rang 2 Vektorbiindel gegeben. Aufgrund der Gestalt
(6-75) folgt die exakte Sequenz

0 - K> - F -0 —0. (6-76)
Die lange Kohomologiesequenz bricht ebenfalls ab nach der 0. Stufe:
0— H°(X,K?) — H°(X,F) - H(X,0) — H°(X,K*) =0 (6-77)

und wir konnen weiter wie oben schlieflen.
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§7. Semi-infinite Formen und die Wedge-Darstellung

(a) Die Konstruktion der Darstellung fiir JCA/(A)

Das Ziel in diesem Paragraphen ist es, die Aktion von KN (A) auf die For-
men vom Gewicht A (d.h. auf F*(A)) zu einer Aktion auf den semi-infiniten
Formen zu erweitern. Diese Technik wurde im Fall der Virasoro Algebra (ist
ein Spezialfall der hier betrachteten Situation) benutzt um Darstellungen mit
gewissen Eigenschaften (mathematischer und physikalischer Natur) zu erhal-
ten. Es handelt sich hierbei um sogenannte Hochstgewichtsdarstellungen, bzw.
Verma Darstellungen (7-32). Siehe hierzu auch [KaP],[FF] und [KaR]. Es wird
sich auch hier zeigen, dafl es ebenso wie dort notwendig ist zu einer lokalen zen-
tralen Erweiterung KN (A) tiberzugehen. In §7.(d) werde ich die entsprechen-
den Konstruktionen auch fiir die Heisenberg-Algebra bzw. die Algebra der Dif-
ferentialoperatoren vom Grad < 1 ausfiithren.

Sei F*(A) der Krichever - Novikov Modul vom Gewicht A. Der Vektorraum
H*(A) der semi-infiniten Wedgeprodukte vom Gewicht \ ist der Vektorraum
erzeugt von den formalen Elementen

U} = fil,pl /\fi27p2 A "'fm,l /\fm,2"' /\fm+1,1 /AR (7‘1)

Hierbei sind die f,, , = fn,p(A) die Basiselemente, wie sie in § 5. eingefiihrt wur-
den. Die Multiindices seien in strikt aufsteigender lexikographischer Ordnung
angeordnet. Desweiteren sei gefordert, dafl, beginnend mit einem Index (m, p)
(darf von ¢ abhéngen), alle Indices (m/,p’) mit (m’,p’) > (m,p) auftreten.
Siche etwa [KaR] zu dieser Definition. (Warnung: Dieses Wedgeprodukt hat
nichts mit dem Wedgeprodukt der Differentialformen zu tun.) Die Definition
von H*(A) hiingt ab von der Basis welche in F*(A) gewihlt wurde. Insbeson-
dere héngt sie also von der Aufteilung A =1 U O ab.

Ich méchte nun die Aktion von e, , auf F*(A), d.h. die Lieableitung, auf
H*(A) iibertragen. Hierzu versuche ich zuerst die naive Definition, daf8 e,
auf jedem Faktor separat wirken soll und alle solche Terme addiert werden
(Leibniz-Regel).

enp P = (en,P : fihm) N figpa N
+fi1,p1 A (en,P : fizypz) AR (7_2)
+fi17;l71 A fiz»p’z ARRE
Das Symbol A zeigt nun an, wie die rechte Seite umzuformen ist, so dafl eine
Linearkombination von Elementen (7-1) dort steht. Seien v und w endliche
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Nachbarstiicke, ¥ ein unendliches Nachbarstiick, ¢ ein Multiindex und ¢; € C,
dann gilt

VA ANWNA iy :=—vNfi AwA fj A, j>i (7-3)
U/\fi/\W/\fi/\’l/JIZO (7—4)

v A (Zcifz) /\w::ZCi(UAfi/\1/J) . (7-5)
i=1

=1

Die Definition (7-2) macht allerdings nur dann Sinn, falls auf der rechten Seite
nur endlich viele Summanden auftauchen. Um zu zeigen, dafl dies i. Allg. nicht
der Fall ist, fiihre ich das spéter bendtigte Basiselement (T' € Z )

Qr = fraAfro- N freia- (7-6)

ein, in welchem alle Indices > (7', 1) erscheinen. Ich nenne &7 den Vakuumvek-
tor vom Niveau T' (und Gewicht ). Aufgrund der Strukturgleichung (5-9) gilt

€ap- frnw = (m =1+ N0y, frmp + Z Z C frs - (7-7)

h>m s

Ist nun (h, s) ein Index auf der rechten Seite, der in @7 auftritt und gilt (h, s) #
(m,r), so verschwindet dieser Summand in (7-2), da f5 s durch seine Nach-
barterme annulliert wird. Es taucht also nur ein einziger nichtverschwindender
Term auf, némlich derjenige, der von f, , herriihrt. Als Summanden in (7-2)
erhalten wir (m — 1+ \)®p fiir alle m > T'. Insbesondere sind es unendlich
viele. An diesem Negativbeispiel erkennt man allerdings schon welche e,, ;, keine
Probleme machen. Ich setze

KNt (A)=(enp |n>3,p=1,... k)

_ (7-8)
KNT(A)=(enp|n<—-1—-L, p=1,... k) .

Proposition 7.1. (a) KN (A) und KN~ (A) sind Unteralgebren von KN (A).

(b) Fiir diese Unteralgebren ist die Aktion (7-2) auf H*(A) wohldefiniert.
Sie macht HM(A) zu einem Liealgebrenmodul tiber diese Unteralgebren.

Beweis. Sei e,, € KNT(A), dann treten aufgrund (7-7) im Ergebnis von
énp - fm,r(A) nur Elemente fj, s(\) mit A > m+n—2 > m+ 1 auf. Nimmt
man e, , € KN (A), so erhélt man fiir h die Schranken

n+m—-2<h<n+m+L<(m-1). (7-9)
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Wihlt man fiir f,,, nun Elemente aus KA (A4) bzw. KN~ (A) selbst, so
zeigen obige Abschitzungen sofort, dafl die Ergebnisse wieder in KA/ (A), bzw.
KN~ (A) liegen. Dies zeigt die Behauptung (a). Sei nun 1) wie in (7-1) gegeben.
(Mo, 1) sei der Index ab dem alle Indices auftreten. Fiir e, , € KN (A) wird
en,p - fm,r(A) fir m > my von den nachfolgenden f; s im Wedgeprodukt aus-
geloscht. Somit treten nur endlich viele Summanden in (7-2) auf. Die Aktion
ist also wohldefiniert. Sei e, , € KN~ (A4). Ist m > mo + 2 —n , dann gilt
wegen (7-9)
m—1>h>n+m-—22>mg .

Somit werden alle Terme von ey, . fm,r(A) durch benachbarte Elemente in 1)
annulliert. Also ist auch hier die Aktion wohldefiniert. Es handelt sich hierbei
um eine Liealgebrenaktion. Seien e und h in KN (A), bzw. in KN~ (A),
dann ergibt sich daf in e.(h.v)—h.(e.4) nur Terme auftreten, die von der
Aktion von [e, h] auf jeden Faktor im Wedgeprodukt herkommen. Die Terme,
bei denen e und h auf verschiedenen Faktoren operieren, heben sich auf. Somit
{ibertriigt sich die Liemoduleigenschaft von F*(A) auf H*(A). O

Ich habe somit die Zerlegung als (Vektorraum-) direkte Summe
KN(A)=KN (A) @ {en, | -L<n<2,r=1,...,p) ® KNT(A). (7-10)

Die Aktion obiger Unteralgebren auf H*(A) kann zu einer Aktion einer zen-
tralen Erweiterung KA (A) von KN (A) fortgesetzt werden. Hier geht wesentlich
ein, dal F*(A) ein verallgemeinert graduierter Modul ist mit der Graduierung
induziert durch die Basiswahl, welche auch benutzt wurde zur Konstruktion
von HA(A). Ich formuliere zuerst das wesentliche Resultat. Dies werde ich in
§7.(b), unter Benutzung von unendlichen Matrizenalgebren durch eine Verall-
gemeinerung der Methode wie sie in [KaR] fiir den Virasoro Fall dargestellt
wird, zeigen. In §7.(c) gebe ich noch eine zweite Methode an, um zum sel-
ben Resultat zu kommen. Sie arbeitet mit “Potenzreihenregularisierung” nach
einer Idee von R. Weissauer. Im wesentlichen ist sie Aquivalent zur ersten Meth-
ode. Sie liefert bis auf kohomologe Abédnderung dieselbe zentrale Erweiterung,
beniitzt jedoch nicht den “Umweg” iiber die Matrizenalgebren. Allerdings muf}
ich hier die Konvergenz einer gewissen Potenzreihen, in der Strukturkonstan-
ten auftauchen, voraussetzen. Die Giiltigkeit dieser Voraussetzung konnte ich
bisher nur im Fall ¢ = 0 (mit N beliebig) zeigen.
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Proposition 7.2. FEs gibt eine zentrale Erweiterung IEN(A)
¢ KN(A) — KN(A) |

Lifts E,, , der Basiselemente e, , und eine Liealgebrenaktion von IE/\\/(A) auf
HMN(A), derart daf die folgenden Eigenschaften gelten (b € H*(A)).

(a) Fir e,, € KNT(A) @ KN (A) gilt
op(enp) (W) =Epp. ) =€pnp .. (7-11)

(b) Im kritischen Bereich —L <n < 2 gilt fiir Basiselemente 1

Op(en,p)(d}) = En,p L) = enp © d) + r(n,p, ¢) . (7_12)

Hierbei erhdlt man ey, © v durch Ignorieren von Vielfachen von v auf der
rechten Seite von (7-2). Die Zahl r(n,p,v) € C ist durch die Konstruktionen
in §7.(b), bzw. § 7.(c) festgelegt.

(¢) Fir das zentrale Basiselement t gilt
t.p=idW) = . (7-13)

(d)

Eyp . ® =0, p=1,... k. (7-14)
(e) Der 2—Kozykel x, welcher die Erweiterung definiert, ist lokal.

Ich mochte hier zuerst einige Bemerkungen zur Proposition machen.

(1) Ist en, € KNT(A), bzw. € KN (A) und ¢ ein Basiselement, so gilt daf
€n,p - ¥ liberhaupt keine Vielfache von v enthalten kann. Um dies zu sehen seien
die Basiselemente (7-1) lexikographisch geordnet. Seien v; die auftretenden
Basiselemente in e,, , .9, dann gilt ¥; > ¢ falls e, , € KN (A), bzw. 1; < 1
falls ey, , € KN~ (A). Insbesondere gilt fiir solche e,,

op(enp) () = Enp. v =e€np. ) =e€np 09 . (7-15)
Wie man sofort nachrechnet gilt also

E,, . ®or=0 fir n>3. (7-16)

(2) Die Aussage (7-14) ergibt sich aufgrund einer speziellen Wahl einer (lin-
earen) Splittingabbildung KN (A) — KN (A), d.h. durch Wahl eines speziellen
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Liftes . Wahlen wir statt Ep, als Lift Fj , = Eyp,+a-t mit a € C, so
gilt Eéyp - ®y = a - Pg, ohne dafl die anderen Eigenschaften beeinflufit werden.
Davon werde ich weiter unten Gebrauch machen.

Durch Anwendung von (7-12) rechnet man sofort nach

Esp.- @7 =h(T,p)- 1 (7-17)

mit einer geigneten Konstante h(T,p) € C. Diese ist abhingig vom jeweils
gewahlten a.

(3) Statt ¢ kann aber auch ¢’ = at fiir o € C, @ # 0 als zentrales Basiselement
verwendet werden. Insbesondere kann auch (7-13) verdndert werden zu

.y =a-.

(4) Da der Kozykel ein lokaler Kozykel ist, kann er, falls die Vermutung 6.1 gilt,
wie in (6-14) gegeben werden, nachdem man ihn bei Bedarf in Abhéngigkeit
von A\ kohomolog abgedndert hat. Insbesondere erhalten wir den Ausdruck
(6-19) fur die Kozykel spezieller Elemente.

Die Form (6-19) kann ich allerdings auch, lediglich unter Zuhilfenahme der
Eigenschaften von Prop. 7.2, zeigen. Dies werde ich im folgenden tun.

Die wohldefinierte Liealgebra-Aktion von KN (A) auf H*(A) erzwingt

[op(en.p), op(em,r)] = op([enps €m,r]) + X(€n,ps €m,r) - id - (7-18)

Der Kozykel x(en,p;€m,») kann somit berechnet werden mit Hilfe von

([op(en.p), op(emr) ] = op([en,ps em.r 1)) (Bo) = X(en.p,€m,r) Po . (7-19)

Zur Berechnung benutze ich fiir i > 0

[62_1'7[), eQ—i—i,r] = 2i5p7r62’p + Z Z O.'.'.'Bh,s . (7—20)

h>3 s

Nach (7-16) gilt fiir h > 3 e 5. p = 0. Desweiteren gilt wegen (7-12)
e2p © ®o = 0. Somit operiert in (7-19) der 2. Term auf der linken Seite trivial
auf @ falls (7-19) fiir die Elemente in (7-20) angesetzt wird. Es bleibt

X(€2—ip,€atir) - Po = —op(ez+ir)(op(ea—ip)(Po)) = —€atiyr- (€2-ip © Po) .
(7-21)

Fiir das letzte “=” beachte man, dafl op(esy;,) die “normale” Aktion ist und

diese Vielfache von @, die in op(ea—; p)(Po) auftreten kénnen, annulliert. Ich
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berechne nun die rechte Seite von (7-21). Zur spéteren Verwendung rechne ich
vorlaufig statt mit ®y allgemeiner mit . Es gilt

ea—ip- fms = ((Mm—=1) + AX(1 = 1)) fin—ipdp s + hohere Glieder .
€2—ip © P besteht somit aus endlich vielen Termen, die sich ergeben aus den
Zerlegungen von ex_;p. fm,s fir T <m < T 44— 1. Fiir groflere m werden
entweder alle Ergebnisterme annulliert durch Nachbarelemente oder tragen nur

als Vielfache von ®p bei. Wendet man ey, ;, auf die nichtverschwindenden
Teile an, so gilt

€atip - fmoip=((m—1—=1)+ A1 +14)) fmrOpr + hohere Glieder .
Ubrig bleibt
eatinr-(ea—ip © Pr)

T+i—1
= ( Z ((m—1)+A(1—i))((m—i—1)+/\(1+i))> Spr - @

m=T

(7-22)

Alle anderen Zwischenterme werden durch die Aktion von ey ; » annulliert, wie
man etwa durch Nachrechnen verifizieren kann. Man kann dies allerdings auch
direkt sehen, da wegen (7-18) nur Vielfache von ®7 auftreten kénnen und diese
Kombination die einzig mogliche ist.

Spezialisieren wir in (7-22) T' = 0, ergibt sich durch direktes Ausrechnen als
Kozykel

m=0

((2_1 (2i — 1)

X(€2—ipy€2tir) = <Z 1)+ A1=0)((m—i—1)+ A1+ i))) Spor

+ (i —1)(—i+2X—2)+

N |

1)+ A% =i —2) + \3(1 — 42 ))~6p7r

Dieser Kozykel hiangt von A ab. Die Festlegung der Operation der F, , auf
®y im kritischen Bereich fiir n und der Operation des zentralen Elementes t,
wie sie oben gemacht wurden, war in gewissen Grenzen willkiirlich. Mein Ziel
ist es durch Umdefinition der Aktion obigen Kozykel von A unabhingig zu
machen. Dies bedeutet nichts anderes als fiir alle Gewichte A einen koharenten
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Lift E,, , fir e, p zu wahlen. Diese Umnormierung kann gegeben werden durch
Konstanten a,b € C, die von A abhéngen diirfen. Es gilt dann

X(egfi)p, 62+i7r)q)0 = (22'(51777‘(E2}p + a()\)t) LDy + X’k(eg,i)p, 62+i7r>b()\)¢0 .
(7-23)
Bei gegebenem a und b kann der neue Kozykel x*(..,..) berechnet werden. Mein
Ziel ist es a(A) und b(\) so zu bestimmen, dafl x*(..,..) angewendet auf obige
spezielle Basiselemente von A unabhéngig wird. Aus (7-23) folgt fir p # r
ebenfalls x*(ea—; p, €2+ir) = 0. Sei also p = r. Ich mache den Ansatz

a(N) = ag + ai X + ax)?,  b(\) = by + b\ + ba)?,

" . 2 3
X" (€2—i,p, €24i,p) = Co + €17 + 20" + c3i

und fithre Koeffizientenvergleich durch. Es berechnet sich ¢y = ¢; = 0. Mit
der (willkiirlichen) Normierung bo = —12 ergibt sich weiter by = —2, b; =
12, c3 = —1—12. Der Kozykel berechnet sich also zu —%i?’ + cot. co ist ein
frei verfiigharer Parameter. Wie in §6. ausgefiihrt, bedeutet der lineare Term
lediglich die Verschiebung innerhalb der Kozykelklasse. In Ubereinstimmung
mit der iiblichen Normierung im Virasoro Falle wahle ich ¢y = 1—12 Damit gilt
notwendigerweise ag = —1, a; = 1 und ay = 0. Als Kozykel ergibt sich somit

1

—E(i?’ — i) Opr - (7-24)

X*(eQ—i7p7 62+i,r) =

Eine Probe zeigt, dafl diese Werte tatséchlich (7-23) 16sen. Die transformierten
Elemente lauten

Ej,=Fap+(A—1)-t und ¢ =26\ —6A+1)-t. (7-25)

Das Polynom 622—6x+41 hat keine rationalzahlige Nullstellen. Damit definiert
(7-25) eine Basistransformation. Diese Elemente operieren auf ®, wie folgt

B3, @0 = hx(0,p) - Po = (A—1)Pg
t*. By =cy-Pp = —2(6A% =61+ 1) .
Im folgenden seien diese Transformationen vorgenommen. Da nur noch diese
Elemente auftreten, lasse ich * in der Bezeichnung weg.

Ich moéchte nun die Aktion von E,, auf ® berechnen. Es sei

Eyp. @7 = ha(T,p) - @7

(7-26)
t. (I)T = C) - (I)T .
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Hierzu sei wieder
[Eaip, Earipl. ®r = (2ihx(T,p) + x(€2—i p, €24ip)cr) - Pr . (7-27)
Im Fall ¢ = 1 gilt x(e1,p,e3,) = 0. Somit berechnet sich mit (7-22)
—((T = 1)+ 0X) (T — 2) + 2X) = 2h\(T, p),
also
ha(T,p) = —%(T )T —2+2)) .

¢y, besitzt natiirlich den oben schon berechneten Wert. Wir konnen diesen noch
einmal berechnen, ohne obige Rechnung zu benutzen (genauer: wir benutzen
nur den Kozykel in der Form (7-24) wie er schon in (6-19) angegeben wurde).!3
Hierzu miissen wir noch den Fall ¢ = 2 in (7-22) ausfiihren. Es gilt

—(T=1=N(T =343\ — (T —\)(T —2+3))

1
= —2hx\(T.,p) — 5(23 —2)ex .

Durch direktes Rechnen ergibt sich wiederum ¢y = —2(6A% — 6\ + 1).

Ich fasse zusammen

Theorem 7.1. Die Aktion von KN (A) auf F*(A) kann 2u einer Aktion einer
zentralen Erweiterung E./T/'(A) auf dem Raum der semi-infiniten Wedgeprodukte
HMA) transferiert werden. Wird der Kozykel x der zentralen Erweiterung so
normiert, daf$ er fir die Paare von Basiselemente (ea—; p,€24ir) vON A un-
abhdangig ist und sich zum Virasoro Kozykel spezialisiert, so gilt fur die Oper-
ation auf dem Vakuumvektor ®r vom Niwveau T und Gewicht A

Epp ®r=0 n=>3 (7-28)

1
Bap- @7 =ha(p,T) - &7 = =5 (T = 1)(T = 2+ 2)) @ (7-29)
t.®p =cy O = —2(60% — 61+ 1)Pr . (7-30)

Hierbei sind die Ey, ,, die wie oben angegebenen Lifts der Basiselemente e, , von
KN (A) und t ist das (entsprechend normierte) zentrale Element von KN (A).

13Bei Richtigkeit der Vermutung 6.1 kénnen wir diese Form z.Bsp. sofort annehmen.
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Sei H 7 (A) der von dem Vakuumvektor ®r iiber KN (A) erzeugte Unter-
modul von H*(A). Dieser Modul wird als Vektorraum erzeugt von den Ele-
menten (¢ = &)

w=FE, p Enypy o Enp,. . ® (7-31)
mit
(nlapl) S (n27p2) S (n’rap’r) < (27 1) .
Dies werde ich gleich im allgemeinerem Rahmen zeigen. Zuerst mochte ich

jedoch in Anlehnung zum Virasoro Fall [KaR], bzw. N = 2 Fall [KN1] Verma
Darstellungen definieren.

Definition. Eine Darstellung von @(A), die erzeugt wird von einem Ele-
ment ®, derart, daf$ die Elemente gebildet wie in (7-31) eine Basis des Darstel-
lungsraumes bilden und daff weiter gilt

E,,. ®=0, n>3, p=1,...,k,
Eyp,.®=h(p)®, p=1,...,k (7-32)
t.d=cd

heifit Verma Darstellung (oder Verma Modul) mit den Gewichten
(¢, h(1),R(2),... ,h(k)) € CFT .

Sie wird mit M(c, h(1),h(2),...,h(k)) bezeichnet. Der Wert ¢ wird auch
zentrale Ladung der Darstellung genannt.

Proposition 7.3. Zu jedem Gewicht (c,h(1),... ,h(k)) € C*' ezistiert eine
Verma Darstellung.

Beweis. (Analog zu [KaR] im Virasoro Fall). Sei U := U(/E/V(A)) die
universelle einhiillende Algebra von KN (A), 1 das Einselement in U, J das
Linksideal erzeugt von den Elementen.

Enp,n>3, p=1,...,k, Eyp—h(p) -1, p=1,...k, t—c-1.
Wir bilden den Quotienten

M = M(c,h(1), h(2), ...  h(k)) == U/J . (7-33)

Dann operiert KA(A) auf M durch Linksmultiplikation. Diese Operation ist
eine Liealgebrendarstellung. Setzen wir ® = Imod J, so sind die Relationen
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(7-32) offensichtlich erfiillt und die Darstellung wird von ® erzeugt. Wir fithren
auf den Basiselementen von KN (A) wie iiblich die lexikographische Ordnung
fir E, p ein mit der Zusatzvorschrift

(2,k) <ord(t) < (3,1) .

Nach dem Poincaré-Birkhoff-Witt Satz [HiSt],[Hu] wird die Basis von U durch
aufsteigende Ketten der Basiselemente gebildet. Eine Basis von J ist gegeben
durch die Ketten die mit E, ;,, n > 3 enden, sowie durch die Differenzen

w-Eop—hp)w, w-t—cw.

Hierbei ist w eine aufsteigende Kette, deren grofiter Index < (2,p), bzw.
< ord(t) ist. Damit ist aber eine Basis des (Vektorraum-) Komplementes
gegeben durch die aufsteigenden Ketten deren grofites Element < (2,1) ist.
Insbesondere bilden diese Ketten mod J eine Basis von M. O

Eine Darstellung von KA (A) auf H 7 (A) setzt sich fort zu einer Darstellung
von U(KN(A)) auf H p(A). Wegen (7-28) bis (7-30) faktorisiert diese iiber

M(cx, ha(T, 1), ... ha(T, k) — H p(A)

mit der Fixierung ® — ®7 . Insbesondere ist H*7(A) Quotient einer Verma
Darstellung. Solche Quotienten seien wiederum (in Analogie zum Virasoro
Falle) Hochstgewichtsdarstellungen genannt. Die Wedge-Darstellungen enthal-
ten somit als Untermodule Hochstgewichtsdarstellungen der Krichever - Novikov
Algebra. Da allerdings

ha(T, 1) = ha(T,2) = ... = hy(T, k)

gilt, wird man mit dieser einfachen Konstruktion nicht alle erhalten kénnen.

Analog zu den rechts semi-infiniten Formen kann man auch links semi-
infinite Formen einfiihren. Hierzu machen wir F*(A) zu einem Rechts-Modul
durch

fN).e:=—e.f(N), feFMNA), ec KN(A). (7-34)

Dann gilt namlich

(f.e).g—(f.9).e=g.(e.f)—e.(g.f)=1lg,¢e] . f=[.lesg] .
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Die links semi-infiniten Formen sind Linearkombinationen von Basiselementen

A fm,171 AL fm71 A fm72 VAN f(iQ) A f(il) .

Hierbei bezeichne (i) ein Doppelindex. Die Elemente f(;, ) seien lexikographisch
geordnet und bis zu einem endlichen Indexwert treten alle auf.

Wiederum ist die (Rechts-)Aktion von KN (A), bzw KN~ (A) wohldefiniert
und kann “fortgesetzt” werden zu einer Aktion einer zentralen Erweiterung
KN auf den links semi-infiniten Formen. Allerdings muf} statt des Kozykels
a (siehe (7-55)) der Kozykel —a gew#hlt werden, da in die andere Richtung
zu “regularisieren” ist. Im Vorgriff auf §7.(b) setzen wir statt (7-64) fiir die
Aktion der Matrizen

’f‘(E”) = ’I“(En‘) — id, 7 S —-1.

Dies entspricht noch einer zusétzlichen kohomologischen Abénderung des Kozykels.
Dadurch erhilt man isomorphe zentrale Erweiterungen von KA/ (A). Dieser Iso-
morphismus sei

h:@T(A) —>/€./T/'1(A)

(r (1) bezeichne die Erweiterung auf die Rechts-(Links)formen). Auf XN (A)
und KN~ (A) ist er die Identitit. H*, (A) bezeichne die rechts semi-infinite
Formen, H*_(A) bezeichne die links semi-infinite Formen. In der Physik
benotigt man zur Berechnung von Ubergangswahrscheinlichkeiten Paarungen
dieser Darstellungsrdume. Folgende zwei Moglichkeiten einer Paarung mochte
ich erwéhnen.

1. Sei ¢ ein Basiselement aus H*, (A) und ¢ ein Basiselement aus H* _(A).
Wir bilden (formal) das beidseitig unendliche Wedgeprodukt ¢ A . Tauchen
nicht alle f, , auf, oder tauchen manche mehrfach auf, so setzen wir (¢,¢) =0,
ansonsten setzen wir

(6, 4) = sign(o), (7-35)

wobei o die (endliche) Permutation ist, welche bendtigt wird, um die vollstdndige
Ordnung aller Elemente in ¢ A ¢ zu erhalten. Der Rest erfolgt durch lineare
Fortsetzung.

2. Eine natiirlichere Paarung besteht in einer Paarung von H!™*(A) mit
H*, (A) . Hierbei sei bei der Konstruktion der Linksformen die Ordnungsre-
lation im zweiten Indexargument derart gewihlt, dafi (m,p) < (m,p’) fir
p > p'. Seien die jeweiligen Basiselemente gegeben durch (mit vorgeschriebener
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ansteigender oder absteigender Indizierung)

Y= fi) (A A [y A) oo A fGy(A) .
= NSy (L= A fany (=X A fap(1=A) .
Wir setzen
o= 15 5 (=0 o) (7-36)
Der Rest erfolgt durch lineare Fortsetzung. Aufgrund der Dualitét (5-6) tauchen
jeweils nur Faktoren 0 oder 1 auf.

Seien fy, p(A) und fi, (1 — X) gegeben. Mit der Derivationseigenschaft der
Lieableitung gilt

Le (fn,p()\) : fm,r(]- - >\)) = Le (fn,p()\)) : fm,r(]- - >\) +fn,p()\) . Le (fm,r(]- - >\)) .

Da das Residuum der Lieableitung eines Differentials verschwindet (siehe
(6- 59) ) folgt

2ri % frnr (1= ( (A )) - _% C. (e~fmm(1 - )\)) ey
- 2711'1 (fm’”( —A).e) - fup(A) - (7-37)

Damit gilt aber fiir e € KN (A) oder e € KN~ (A)
(9,e.9) = (¢.e,9) ,

d.h. die Operationen von E,, , mit n > 2 oder n < —L sind unter dieser Paarung
selbstadjungiert, also

(6, Enp-¥) = (¢ Enp, ) (7-38)
Das duale Element zum Vakuumvektor ® ist gegeben durch
Pr=.. Afera(L=MNA.. ficr2(L =X A fimra(1=A) . (7-39)
Fir dieses gilt (p=1,...,k)
o . E,, =0, n < —L,
O . E_,=h_,\(p,T)®7, (7-40)

Or.t=c;_, Pp .
Diese Werte konnen genauso wie fiir die rechts semi-infiniten Formen berechnet
werden. Ist ¢_ fiir die Linksformen derart gewéhlt, daf§ gilt ¢ = h(ty), so gilt

Cl_y=C1-\=20Cx -

Eine genauere Analyse zeigt
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Proposition 7.4. Die Elemente E,, ,, sind unter der Paarung (7-36)
selbstadjungiert, d.h. es gilt

(U, Epp.®) = (0. h(E,,),®) . (7-41)

Der Beweis verwendet an einigen Stellen Methoden aus den folgenden
Abschnitten. Ich mochte ihn allerdings schon hier ausfiithren.

Beweis. Aufgrund (7-37) gilt die Gleichheit (7-41) falls die Aktion e, ,® statt
der Aktion E,, . = op(en,p) verwendet wird. Der Unterschied beider Aktionen
besteht im Ignorieren der Vielfachen von f,, im Produkt e, ;. fn . Dies
bedeutet, dafl in der Matrizendarstellung in § 7(b) Ao(u) ignoriert wird. (Ag(u)
jeweils analog zu (7-71) gebildet.) Seien ® und ¥ gegeben und seien w und y
endliche Teilstiicke gleicher Lange, derart daf} in

q):’UJ/\(I)l, \IflAy:\II

die Elemente ®; und ¥, gleichférmig ansteigende, bzw. fallende Indices haben.
Entsprechend (7-81) gilt

Enp . ©=(enp w)ANO1+wAE,,.?,
U h(Eny) =Y1. h(Ewyp) Ay+T1A(y.enyp) -

)

Somit also
(W, Enp.®) = (Y, enp-w) - (¥1, 1) + (y,w) - (¥1, By p . P1)
Analog ergibt sich
(U h(Enp), ®) = (y.enp,w) - (U1, 1) + (y,w) - (V1. h(Epp), P1)

Hierbei ist das Skalarprodukt auf den endlichen Abschnitten, analog zu (7-36)
definiert. Auf den endlichen Teilen liegt Selbstadjungiertheit vor. Gilt sie auch
auf den Uy, bzw. ®; Teilen, so gilt sie allgemein. Es gentigt deshalb diese auf
solchen Elementen zu zeigen. Bezeichne Ag(u) die entsprechende Matrix fiir die
Aktion auf den Rechtsformen, Af(u*) die Matrix fiir die Aktion auf den Links-
formen. Die Elemente p und p* werden gebildet aus den Strukturkonstanten.
Fiir das folgende bendtigen wir die Dualitéat

cimn )y =t ) (7-42)

(n,p),(m,r) T (n,p),(1—m,r)
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die sich nach (7-37) berechnet. Das Minuszeichen wird von der Rechtsaktion
aufgenommen. Es seien sowohl ¥y als auch ®; Elemente mit gleichférmigen
Indexdifferenzen. Die Proposition ist gezeigt, falls die folgende Behauptung
gezeigt ist

(Wi (Ag(p7)), ®e) = (W, (Ao (1)) Ps) - (7-43)

Beide beteiligten Operatoren operieren als Multiplikationsoperatoren. (7-43)
gilt somit sicherlich, falls ¥ nicht dual zu ®; ist, da in diesem Fall beide Seiten
verschwinden. Im folgenden kénnen wir also ®; = ®7 und ¥V, = @7, annehmen
und den entsprechenden Multiplikator ausrechnen. Dies werden wir jetzt tun.
Es ist zu beachten, dafi der Kozykel « von § 7(b) kohomolog abgeéndert wurde
durch (7-25). Es gilt

und damit -
—_; 1Py, t<k
(Ao (1)) P: = Z“fff ' (7-44)
- Zr:k ur®y, t>k.
5 s Uk, s>k
Wi (Ag(p")) = Z“f,l 8 (7-45)
- Zr:s+1 \:[15/"“:’? t 2 k .

O.B.d.A. sei k =1 (fiir £ > 1 wird lediglich die Indizierung etwas aufwendiger).
Dann gilt wegen (7-42)

Hn = /J/EI'_(fn’ (allgemein Hn = /[(kzk*l)*n)

und wegen der Dualitdt s =1 —¢.
Sei t < 1, damit gilt s > 1 und fiir die jeweiligen Multiplikatoren gilt

0 0 s
ZMT = Z/ff—r = ZM: .
r=t r=t r=1

Damit sind die Multiplikationsfaktoren gleich. Im Fall ¢ > 1 schlieft man
genauso mit den zweiten Formeln. [J
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(b) Ein Hilfsmittel: g (00)

In diesem Abschnitt zeige ich die Proposition 7.2 mit Hilfe unendlicher
Matrizenalgebren. Hierbei handelt es sich im wesentlichen um eine Verallge-
meinerung der Methoden wie sie fiir den Fall der Virasoro Algebra von Kac und
Raina in [KaR] dargestellt wurden. Sie wurden unabhéngig voneinander von
Kac und Peterson [KaP] und Date, Jimbo, Kashiwara und Miwa [DJKM] im
Jahre 1981 entwickelt. Siehe hierzu auch [Ver]. Ich fithre zuerst die folgenden
unendlichen Matrizen, bzw. Matrizenalgebren ein. mat(co) sei der Vektorraum
aller (beidseitig) unendlichen komplexen Matrizen

A= (aij)i,jez R ai; € C. (7—46)
Gegeben seien weiter die Unterrdume

gl(co) ={ A= (a;;) | a;; =0 fast immer } (7-47)
{A

= (ai;) | es gibt ein r so daB a;; =0 falls |[i — j| > r }
(7-48)

Die Matrizen in gl(co) haben “endlichen Triiger”, die Matrizen in gl(co) haben
nur endlich viele “Diagonalen” (r in der Definition darf von Matrix zu Matrix
variieren).!* Fiihren wir die Elementarmatrizen

B = ik 613), ,e7 (7-49)

ein, so sehen wir sofort, daf diese eine Basis von gl(o0) bilden.
Ist A= (a;;) € gl(o0) so gilt

A = ZaijEij (7—50)
,J

wobei der Summationsbereich endlich bleibt. Fiir die Matrizen in gl(co) kénnen

wir ein Erzeugendensystem angeben. Sei u € CZ,
dh. p=(..,pu_1,p0,11,---) , SO setzen wir fir r € Z

Ar(ﬂ) = ZMiEi7i+’l‘ . (7—51)

4 Der Gebrauch der Symbole ist von Literaturquelle zu Literaturquelle unterschiedlich.



124

Die Summe symbolisiert lediglich eine bequeme Schreibweise fiir die unendlichen
Matrizen. Die Menge

(A rez.pec?)

erzeugt gl(co). Selbstverstindlich bildet sie keine Basis.

Das Matrizenprodukt fiir die Matrizen A = (a;;) und B = (by;) ist definiert
wie im endlichdimensionalen als

C=A- B7 C = (Cil), Cjl — Z Qij - bjl (7—52)
jeZ

falls alle auftretenden Summen endlich sind. Fiir Matrizen aus gl(co) ist dies
trivialerweise immer der Fall. Das Produkt ist allerdings auch fiir alle Matrizen
aus gl(oco) wohldefiniert. Sei némlich r > 0, derart daf a;; = 0 fiir [i — j| > r
so erstreckt sich die Summe in (7-52) nur iiber den Bereich ¢ — r bis i + r,
d.h. C ist eine wohldefinierte Matrix. Sei nun s > 0, derart daf§ b;; = 0 fiir
|i —j] > s so verschwindet fiir |[¢ —I| > r + s das Element ¢;, d.h. C €
gl(00). Insbesondere ist gl(co) also eine assoziative Algebra. Indem wir gl(oco),
bzw. gl(oo) mit dem iiblichen Matrixkommutator versehen, machen wir sie zu
unendlich dimensionalen Liealgebren. Es ist

Umgekehrt legt (7-53) aufgrund der Darstellung (7-50), bzw. (7-51) den Kom-
mutator insgesamt fest.

Fiir diese Liealgebren méchte ich nun einen Kozykel definieren (siehe [Ful]).
Sei A = (a;5), so setzen wir m(A) = (7(A);;) die Matrix mit

@5, { Z 07] Z 0
(A = { 0, sonst.
Die Matrix
p(A,B) = n([A, B]) — [n(A), n(B)] (7-54)

besitzt endlichen Tréger, ist also in gl(o0). Insbesondere ist Spurbildung méglich.
Wir fiithren ein
a(A,B) =Trp(A,B) . (7-55)
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Proposition 7.5. af..,..) definiert einen Kozykel von gl(cco), der nicht ko-
homolog zu Null ist. Desweitern gilt H2, ,(gl(c0),C) ist eindimensional, also
erzeugt von der Klasse [a].

Fiir den Beweis siehe [Ful],[FF],[DJKM]. Allerdings werde ich die Aussage {iber
die Eindeutigkeit im folgenden nicht bendtigen, und dafl « ein Kozykel ist rech-
net man leicht selber nach. Es ist wohlbekannt, da§ gi(oo) keine nichttriviale
zentrale Erweiterung besitzt [Ful]. In der Tat kann man obigen Kozykel fiir
Matrizen aus der Unteralgebra gl(co) auch als Korand des Zykels

v(A) = Trm(A) (7-56)
beschreiben. Fiir A € gl(oo) ist (7-56) nicht wohldefiniert.

Ich berechne nun den Kozykel fiir die Elementarmatrizen
Oé(Eij, Eml) =Tr (77(5j,mEil — 51'7[Ejm) — [W(Eij), W(Eml)]) . (7—57)

Sind alle 4, j,m,l > 0, so gilt 7(E;;) = E;; und n(E,,) = E,,;. Insbesondere
verschwindet dann (7-57). Fiir ¢ oder j < 0, bzw. m oder | < 0 verschwindet
der 2. Term in (7-57). Da in die Spurbildung nur Diagonalmatrizen eingehen
erhalten wir

1, i=1>0j=m<0
a(Bijy Em) =4 =1, j=m>0,i=1<0 (7-58)

0, sonst.

Wie in §6.(a) ausgefiihrt wurde, definiert solch ein Kozykel eine zentrale Er-

weiterung gl(oo) von gl(oco) , erzeugt von Lifts Eij der E;; und einem zentralen
Element ¢ mit der Strukturgleichung

[Eij7 Aml] = 6j,7rLEil - 5i,lEjm +a(Eij, Epy) t . (7-59)

Sei nun vy € CZ die beidseitig unendliche Folge mit v, = (Jivs)ieZ' Ich
setze
V= @s cZ C- vy .
Durch
Eij-vs =0 sv; (7-60)

erhalten wir ein Operation von gl(oo) auf V, welche die Operation Matrix x
Vektor in €" auf oo—liche Objekte verallgemeinert. Hierbei ist zu beachten,
dal A,(u) eine wohldefinierte Aktion auf V' besitzt wegen

Ar(ﬂ) cVs = Z Hi Ei,i+r *Vs = Us—rVUs—r - (7-61)
Y/
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Da die Elemente in gl(cc) endliche Linearkombinationen solcher Ay (u) sind,
ist diese Operation auch auf gl(occo) definiert.

Die Aktion von KN (A) auf F*(A) definiert nach Wahl jeweils einer Basis
eine Einbettung von KN (A) in gl(oc). Hierzu sei A festgehalten. Wir setzen

frktp—1 = fup(N), neZ,p=1,...k.

Damit werden die Basiselemente durch Z numeriert. Die Strukturgleichung
umgeschrieben lautet nun

S
h
en,p . fm = Z Cn’p;mfh

h=r

mit
r>m+k(n—2), s<m+k(n+1+L)—-1. (7-62a)

Proposition 7.6. Die Abbildung
¥ KN(A) — gl(o0), enp > Ylenp) = (aij), ai; = ZL,p;j
ist eine Einbettung von Liealgebren.
Beweis. Die Elemente a;; sind ungleich Null lediglich fiir ¢ im Bereich
[j+k(n—2), j+kn+14+L)—1].
Somit ist a;; # 0 lediglich fir k(n—2) < i—j < k(n+1+L)-1.
Insbesondere ist 1(ey, ;) in gl(co). Dafl 9 ein Lichomomorphismus ist, ist klar,

da 9 die Zuordnung der Strukturkonstanten des Liemoduls F*(A) iiber A(A)
ist. Insbesondere gilt (siehe §2.) [Lg, Lc] = Lig,e] also auch

w)(en,p)v d)(em,r)] = 1/1([6n,p, em,r]) .

In den Beweis der Prop. 7.6 ging ganz wesentlich die verallgemeinert graduierte
Struktur ein. Wir kénnen nun auch schreiben (im formalen Sinne)

w(en,p) = Z sz,p;jEij
‘7j

Hierbei ist allerdings die Summe nicht endlich. Identifizieren wir die Basis des
Vektorraumes, auf dem gl(co), bzw. gl(co) operiert, mit den Elementen f,,, so
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operiert gl(co) auch auf F*(A) via Matrixmultiplikation E;; - f, = 6j.mfi -
Wir berechnen

w(en,p) : fm = Z C’fl,p;jaj,mfi =€np- fm .
4,

D.h. beide Operationen sind vertraglich (so war ¢ ja gerade definiert).

Unser Ziel ist es mit Hilfe dieser Einbettung die Aktion von KN (A) oder
genauer einer zentralen Erweiterung KN (A) auf den semi-infiniten Wedgepro-
dukten zu definieren. Hierzu studieren wir zuerst die semi-infinite Wedgedarstel-
lung ausgehend von gl(co) (siehe [KaR]). H*(A) ist der Raum wie er in (7-1)-
(7-6) eingefithrt wurde. Hierbei ist die Aktion in (7-2) natiirlich durch die
Matrixmultiplikation zu ersetzen. Beschrénken wir uns auf die Unteralgebra
gl(c0), ist die Aktion wohldefiniert, da fir A € gl(c0) gilt A - f,, = 0 fiir m
gro8 genug. Die Algebra gl(co) macht jedoch Schwierigkeiten. Nach (7-61) ist

AT(M) ' fm = Mmfrfmfr .

Somit ist r # 0 ebenfalls unproblematisch, da letztendlich (wie in §7.(a) aus-
gefithrt) fiir m > 0 das Resultat durch die Nachbarterme annulliert wird. Fiir
r = 0 gilt allerdings daf sich f,, immer wieder reproduziert. Insbesondere ist
die Aktion nicht definiert. Man nehme als Vektor etwa

(I)m = fm A\ fm+1 A\ fm+2 cee (7-62)
dann gilt
{ (D77L7 Z 2 m
Eii®m = ,
0, 1<m.

Wir erhalten somit
o)y = (Z ur> @ (7-63)

Diese unendliche Summe wird im allgemeinen jedoch nicht konvergieren. Kac
und Raina [KaR] folgend, definiere ich die Aktion nun um.'® Zur Deutlichkeit
bezeichne ich mit r die Aktion auf H*(A) welche von der Matrixmultiplikation
herkommt, mit 7 die wie folgt umdefinierte Aktion

f(EZ]) = T(Eij), ’L;é] oder 1 =75<0

F(Ey) :=7(Ey) —id, 1>0. (7-64)

15Tm Gegensatz zu [KaR] wihle ich aufsteigende semi-infinite Formen.
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Damit gilt

(Zy;lm ur) P, m<O
(Ao (1)) (Prm) = <_ st ur) B, m>0 (7-65)
0, m=0.

Die Aktion ist also wohldefiniert. Allerdings handelt es sich nicht mehr um
eine Liealgebrenaktion. Hierzu miiiten ebenfalls die Kommutatorregeln

)

[F(Eij); (Emi)] = 6,mP(Eit) — 0517 (Emj) (7-66)

gelten. Ersetzen wir in (7-66) 7 durch r, so gelten sie natiirlich. Andererseits
verschwinden auf der linken Seite alle Anteile von id. Es sind also lediglich
alle Moglichkeiten fiir die rechten Seiten zu betrachten bei denen 7 tatsdchlich
verschieden von r ist. Man erhélt in diesen Féllen statt (7-66) die richtige
Formel

[7(Eij), 7(Eji)) = #(Ei) — 7(Ej;) + B(Eij, Eji) - id . (7-67)

Direkte Rechnung liefert

0, 4,j<0

0, i,7>0
Eii Ey) = 7-68
B(Eij, Eji) L i=0.j<0 (7-68)

~1, j>0,i<0.

Dies stimmt mit dem Kozykel « iiberein der zur Konstruktion der zentralen
Erweiterung gl(co) in (7-58) gegeben wurde. Setzen wir f(E\”) =7(E; ;) und
#(t) = id , so definiert dies in der Tat eine Aktion von gl(cc) auf H*(A).
Aufgrund der Einbettung v : KN(A) — gl(co) ist die Aktion 7 ebenfalls
auf KN'(A) definiert und die zentrale Erweiterung gl(cc), definiert durch den
Kozykel «, definiert ebenfalls eine zentrale Erweiterung KN (A), gegeben durch
den Kozykel x = 1¥*« mit einer entsprechenden Fortsetzung der Aktion.
12; KN (A) — g?l(oo) sei die entsprechende Einbettung. Der Kozykel y kann
“explizit” angegeben werden

X(en,p; em,r) = a(w(en,p em r Z Cl n,pij fn r;ta(EzJa Es )

%,7,8,t

,Zczm S i0(Eij, Bjq) -
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Aufgrund der Abschitzungen (7-62a) gilt, dafl die Koeffizientenpaare lediglich
im Indexbereich (i,j) der den Bedingungen

J+kn—-2) <i < j+k(n+1+L)-1
i+k(m—2) < j < i+k(m+1+L)—1

geniigt, simultan # 0 sein kénnen. Addieren wir beide Gleichungen und Sub-
trahieren (i + j) so erhalten wir

kln+m—-4) <0 < k(m+n+2+2L)—2.

Ist

2
(n+m) > 5 oder (m+mn) < —2L—3+[%]

so ist der zuldssige Indexbereich leer. D.h. der Kozykel verschwindet. Also ist

X ein lokaler Kozykel. Dies zeigt Prop. 7.2(e).

E, , seien die Lifts der Elemente e,, , gegeben duch

U(Enp) = > Ch,Eij . (7-69)
i\

Falls e, , € KNT(A), bzw. € KN~ (A), tritt im Resultat von e, , . fy.» kein
fm,r auf. Somit tritt in (e, ) kein E;; auf, Insbesondere stimmt also die
Aktion von E, , mit der Aktion von e, , iiberein. Also Prop.7.2 (a).

Die Darstellungsweise fiir die Aktion im kritischen Bereich als (Prop. 7.2(b))

Enpw=epp,Qw+rn,pw)- w (7-70)

ergibt sich aufgrund einer solchen Darstellung fiir die Aktion von gAl (00). Natiirlich
kann F, ,.w konkret angegeben werden. Uns geniigt jedoch die Berechnung
von Es . $g. Es gilt

1/)(62,10) - AO(,U‘) + Z aimEi7n7 Qim, € C (7—71)
i>m

mit S

i :{ = -1+ k[ (m—-p+1)

" 0, sonst.

Da #(Ao(u))(®9) = 0 (7-65) und ebenfalls #(E;,)(Po) = 0 gilt, folgt
E;,.%9 = 0, also Prop. 7.2(c). Natiirlich kann durch Addition eines be-
liebigen Vielfachen des zentralen Elementes ¢ zu Es,, auch anders normiert
werden. Dies entspricht der kohomologen Abénderung des Kozykels.
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(c) Ein Hilfsmittel: w—Regularisierung

In diesem Abschnitt mochte ich Prop. 7.2 mit einer zweiten Methode be-
handeln. Die Methode hat unter anderem den Vorteil, dafl die Einfithrung der
Matrizenalgebren und somit der Ubergang von der Graduierung deg(fnp) =n
auf eine Z —Graduierung nicht notwendig ist. Ich folge hierbei einer Idee von
R. Weissauer.

Im folgenden sei w eine komplexe Variable. Die Aktion von KA (A) auf
FAA) wird nun modifiziert

€n,p “ fm,r =w™ (en,p . fm,r) . (7—72)

Diese Aktion ist weiterhin linear. Jedoch liegt lediglich fiir w = 1 eine Lieaktion
vor. Die modifizierte Aktion wird durch genau dieselben Vorschriften wie in
§7.(a) auf die semi-infiniten Formen iibertragen. Die derart erhaltene Aktion
(unter der Voraussetzung, daf§ sie wohldefiniert ist) wird mit op,, bezeichnet.
Zuerst ist zu untersuchen unter welchen Bedingungen Wohldefiniertheit vor-
liegt.

Seien {t;}jcs die Basiselemente von H*(A) und ) ein festes Basiselement.

Dann gilt
OPw(€np) (W) = g;(w)h; + go(w)tho (7-73)

jeJ
70

mit Laurentreihen g;(w), j € J in der Variablen w. Aufgrund der verallge-
meinert graduierten Struktur ist die Summe endlich und der Koeffizient vor
¥; fir j # 0 kann durch Aktion von e, , auf endlich viele Faktoren von
erhalten werden. Um dies zu sehen, beachte man, dafl fiir m > 0 die Elemente
im Produkt e, . fm, bis auf einen eventuell vorhandenen f,, , Anteil durch
Nachbarelemente in 1y annulliert werden. Somit tauchen neben vy Termen
nur endlich viele andere Terme auf, also auch nur endlich viele Basiselemente.
(Dies ist dieselbe Uberlegung wie in §7.(a) bzw. (b).) Somit ist g; fiir j # 0
ein Laurentpolynom, d.h. ein Polynom in w und w~?. Ist gg ebenfalls ein Lau-
rentpolynom, wie dies etwa falls e, , nicht im “kritischen Bereich” liegt gilt,
so konnen wir w = 1 setzen und erhalten die gewiinschte Aktion. Klar ist
ebenfalls, daf§ gy auf jeden Fall eine nach unten abbrechende Laurentreihe ist.
Schwierigkeiten treten auf, falls go nicht nach oben abbricht. In diesen Fall
wird gp im allgemeinen fiir w = 1 nicht mehr konvergieren. Als Koeffizienten
in der Potenzreihe treten Strukturkonstanten von F*(A) auf. Die Potenzreihe
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go héngt auch vom Basiselement (und natiirlich auch von e, ,) ab. Wihlen
wir als Basiselement ®q (7-6), so differiert ¢y von ®y nur in endlich vielen
Faktoren. Wir konnen somit schreiben

go(w) = p(w) + g(w) (7-74)

mit einem Laurentpolynom p und der entsprechenden Laurentreihe g fiir das
Basiselement ®(. In p kann ohne Probleme w = 1 gesetzt werden und g ist
eine Potenzreihe. Im folgenden machen wir die

Voraussetzung 7.1. Die Potenzreihe g konvergiere fir alle w mit |w| < 1.
Weiter gelte

h(w) = i al—w), ¢w=>al-w), aecC, (7-75)
l=m 1=0

wobei g"(w) eine fir w =1 konvergierende Potenzreihe ist.

Die w—regularisierte Aktion op besteht darin zu setzen

op(en,p) (o) = E:g] )i + go(1)bo (7-76)
jed
Jj#0

mit gj(w) = p(w) + ¢g"(w) . Dies kann auch umformuliert werden zu

oplenp) (1) = Tim (opu(enp) () = h(w)isy) (7-77)

h(w) ist der durch (7-75) gegebene Hauptteil der Funktion g(w) bei w = 1.
Dieser hangt ab von e, p, jedoch nicht von ;.

Bemerkung 1: Die Vorschrift (7-76) (die alles andere in kohérenter Weise
festlegt) unterscheidet sich, von der in §7.(b) durch die Vorgabe (7-64) in-
duzierten, lediglich dadurch, daf§ dort statt E, , der Lift E, , + ¢"(1) - ¢ fiir
en,p gewdhlt wiirde. Somit wissen wir bei Benutzung von § 7.(b) natiirlich, daf
diese Aktion, die Aktion einer zentralen Erweiterung definiert. Das Ziel dieses
Abschnittes ist es jedoch §7.(b) zu vermeiden.

Bemerkung 2: (iiber die Giiltigkeit der Voraussetzung) Isolieren wir den

Term in der Strukturgleichung, welcher uns interessiert, so erhalten wir

€n,p - fm,r = C((':;;)r’)‘?('rn,r) (A) . fm,r + Rest .
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Somit gilt

oo

glw) =" CmD ()™ (7-78)

m=0

In die Koeffizienten C' gehen die Entwicklungskoeffizienten der Formen ein.
Im Virasoro Fall ist die Voraussetzung erfiillt. Dann gilt ndmlich

CrlN) =(m—1+X)6n2 .

Also gilt fiir das Element eq

glw) =D (m—1+X)-w™ = a _lw)2 - f__i : (7-79)
n=0

Insbesondere ist dies ein reiner Hauptteil, also g" = 0. Fiir e, mit n # 0 ergibt
sich immer g(w) = 0.

Die Voraussetzung ist sogar ganz allgemein im Fall Geschlecht g = 0 erfiillt.
Aufgrund Prop. 5.1 gilt ndmlich

(m,r)

(np), () = @ FB-m

mit o und B Konstanten, welche fiir £ > [ nicht von m und fiir £ < [ nur von
der Restklasse von m mod b (b = (I — k) + 1) abhéingen. Damit konvergiert die
Reihe entsprechend zu Formel (7-79). Fiir k£ > [ erhalten wir wiederum einen
reinen Hauptteil. Somit gilt hier, dal die Operation op identisch mit der in
§.7.(b) ist.

Fiir hoheres Geschlecht wird man vermutlich mit Hilfe der expliziten Formen
und analog zum Beweis von Prop. 5.1 zeigen konnen, dafl die Vermutung gilt.

Die folgenden Propositionen folgen unter der Annahme der Giiltigkeit der
Voraussetzung. Vorab jedoch eine einfache, aber niitzliche Formel.
Sei 1 A ® ein Basisvektor, y ein endliches Teilstiick und sei ey, , . y entsprechend
der Definition fiir die unendlichen Formen definiert. Falls e,, , . ® definiert ist,
gilt
enp -V ="_(>enp YANL+YA(en,.P). (7-80)

Offensichtlich gilt (7-80) auch fiir die op,,—Aktion. Da der Hauptteil h(w) nur
von e, , abhéngt, gilt (7-80) auch fiir die regularisierte op—Aktion

op(enp) (V) = (enyp-y) N @ +y Aoplenp)(P) . (7-81)
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Proposition 7.7. Die Operation op ist eine projektive Aktion von KN (A) auf
H A), d.h. es gilt fiir e,g € KN(A)

lop(e), op(g)] = op(le, g]) + x(e, 9) - id, x(e,g) € C. (7-82)

Beweis. Sei S die lineare Abbildung

S = [op(e), op(g)] — op([e, g]) -

(a) Wir zeigen zuerst, da§ S wie ein Vielfaches der Identitét auf jedem Basisele-
ment ¢ wirkt. hg bezeichne den zum Element d € KN (A) gehorende Hauptteil
nach (7-75). Es gilt

S(¥) = [ lim (0pu(€) — he(w)id), lim (opu(g) — hy(w)id)] ()
~ Tim (0pu([e,g]) — e (w)id) ()
= lim ([opu(e), 0pu(9)] — opu(le, g]) + hpe g (w)id) () .
Betrachten wir im Endresultat nur die Basiselemente # v, so konnen wir den

Limes durch Einsetzen ausfiihren. Insbesondere sind hierbei auch im Resultat
von

eﬁ}(gﬁ}fm,r) _gﬁ}(eq;}fm,r)u bzw. [evg]ﬁ}fm,r

auch die Anteile von f, , nicht zu beachten. Fiir diese stellt die Aktion die
iibliche dar. Also folgt S(¢) enthélt auler ¢ keine Komponenten.
(b) Sei ¢ = y AP mit einem endlichen Teilstiick y gegeben. Nach (7-81) also

op(e)(op(9)(¥)) = (e (g-9)) A @7 + (e.y) A op(g)(Pr)+
(g-y) Nop(e)(Pr) +y A op(e)(op(g)(Pr)) -

Ein entsprechendes Resultat erhédlt man fiir die vertauschte Reihenfolge. Somit
insgesamt

Syner)=(e.(g.y)—g.(e.y) —le,g9].y) AN®r +yAS(Pr)

=y AS(®r) (7-83)

(¢) Nach (a) gilt S(®r) = ¢(T') - @ mit einer Konstanten ¢(T"). Seien nun ®&p
und &y mit T # U gegeben. O.B.d.A. sei U < T. Dann gibt es ein endliches
Teilstiick y mit ®y =y A @7 , also

S(@y) =cU) -y =y ANS(@r) =y A ((T) - Pp) = c(T) - 2(U) .
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Damit folgt ¢(T)) = ¢(U) = ¢. Da sich jedes Basiselement schreiben 148t als
=y AN®(T), folgt wie oben S(¢) = ¢- 1 . Das bedeutet jedoch S operiert
wie c-id. U

Sei LEnd H*(A) die Liealgebra der linearen Endomorphismen von H*(A)
mit dem Kommutator [C,D]=CoD — DoC als Lieprodukt.

J={a-id|aeC} (=C)

ist ein (Lie-)Ideal. J ist offensichtlich zentral. PEnd H*(A) ist die Faktor-
algebra nach J. Dies ist dquivalent dazu, da LEnd H*(A) eine zentrale Er-
weiterung von PEnd H*(A) ist. Prop. 7.7 besagt zusammen mit der trivialen
Tatsache op(e + g) = op(e) + op(g) , daB

op : KN (A) — PEnd H*(A)
ein Liehomomorphismus ist. Dieser definiert eine Liehomomorphismus
op: lE/T/'(A) — LEnd H*(A)

ausgehend von einer zentralen Erweiterung KA'(A) von KA(A). Die zentrale
Erweiterung JCA(A) ist definiert nach dem Mechanismus von §6. durch eine
Kozykel x mit (e, f € KN (A))

x(e, f) - id = [op(e), op(f)] — op(le; f1]) - (7-84)

(7-84) ist nach Konstruktion antisymmetrisch. Die 2-Kozykeleigenschaft ist
ebenfalls automatisch erfiillt. Es gilt ndmlich

lop([e, f1), op(9)] — op([[e; f1, 9])
[lop(e), op(f)] + x(f, g) - id,op(g)] — op([[e, f], 9])
[[op(e), op(f)], op(g)] — op([[e, £1, 9]) -

Mit der Jacobiidentitiit in LEnd H*(A) bzw. in KN'(A) und der Benutzung
der Linearitdt von op, ergibt sich, dafl die Summe iiber alle zyklischen Ver-
tauschungen verschwindet. Also in der Tat die Kozykeleigenschaft. (Dies hat
natiirlich nichts mit der speziellen Situation zu tun, sondern ist eine allgemeine

=
=
=
©
[

Eigenschaft solcher projektiven Darstellungen.)

Somit ist nun durch

r: KN(A) = KN(A) & € — LEnd HMA), r(e,s) = op(e) +s-id (7-85)
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ein Liehomomorphismus definiert. Die Elemente (e p,0) bezeichne ich wieder
als E,, ,,, das Element (0, 1) als ¢. Diese Elemente bilden ein Basis von KN (A).

Nun bin ich in der Lage Prop. 7.2 (unter der Voraussetzung 7.1) zu beweisen.
Die Teile (a),(b),(c) folgen unmittelbar aus der Definition. Um Teil (d) zu
zeigen, rechne ich die op,,—Aktion aus. Es gilt

€2+ Jrnr = W (M =L+ Mo frup+ Y o frs -
h>m

Somit (da alle anderen Elemente annulliert werden)

oPw(e2,)(Po) = <Z(m —1+2) w) By — ((1 71w)2 N f‘i) .

m=0

Es liegt ein reiner Hauptteil vor, also

E27p . (bo = op(egﬁp)(iﬁo) =0.

Dies war zu zeigen.
Die Behauptung (e) ist die Lokalitat des Kozykels.

X(€n,ps €m,r) - id = [op(en,p), op(emr)] — op([en,p, €m.r]) - (7-86)

Natiirlich geniigt es dies auf irgendeinem der Vektoren auszurechnen. Dieser sei
®. Desweiteren miissen wir unsere Aufmerksamkeit nur auf die Moglichkeiten
richten, welche eine Beitrag zu ® im Ergebnis liefern konnen. Ist n+m > 5 oder
n+m < —1 — 2L, so tauchen im Produkt [e, p,em,»] nur Elemente auf, fiir
welche die op—Aktion die gewOhnliche ist. Also reproduziert sich ® nicht bei
Anwendung des zweiten Termes von (7-86). Sei also einer dieser Bedingungen
erfiillt. Es gilt dann

X(en,pa emJ’) ' Zd = 7})1511 [OpW(e’mp)7 Opw(em,r)]

(die Vielfachen der Identitdt verschwinden innerhalb des Kommutators). Es
bleiben nur die Elemente iibrig bei denen sowohl e,, ;, als auch e,, , auf densel-
ben Faktor wirken. An der unteren Grenze erhalten wir folgende Kette

fh,s - fn+h—2,s - fn+m+h—4,s

an der oberen Grenze

fh,s - fn+h+L,s - fn+m+2L,s .

Nach Voraussetzung ist n +m > 5 oder n +m < —2L — 1. Es konnen sich
also die Elemente nicht reproduzieren, d.h. es taucht kein ® auf. Dies zeigt die
Lokalitat.
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(d) Die Darstellung fiir D!(A)

Da die F*(A) verallgemeinert graduierte Module iiber D'(A) sind (6-47),
kann man nach genau demselben Verfahren wie fiir die Unteralgebra KN (A)
Wedge-Darstellungen fiir diese Algebra konstruieren. Hierzu benutze ich zur
Argumentation die Methode welche in §7.(b) entwickelt wurde. Es sei D!(A)
aufgrund der Aktion auf F*(A) in gl(co) eingebettet.

Zur Erinnerung seien die folgenden Formeln nochmals notiert (f € F*(A))

n+m—+M
A"-,p . fm,r =1- fn—i—m—l,pépﬂ" -+ Z Z . fh7s, (7_87)
h=n+m s
n+m-+L
Enp fm,r = (m -1+ )\(77, - 1))fn+m—2,p§p,r + Z Z . fh,s .
h=n+m—1 s (7-88)

Proposition 7.8. Die Unterrdume

DY (A) = (enp | n>3p=1,...,k)® (Anp|n>2,p=1,...,k)
DY (A)=(enp | n<—L—-1p=1,... k) ®{Apnp|n<-M—-1p=1,...,k)

sind Unteralgebren von DY(A). Sie besitzen eine wohldefinierte Aktion auf

HMA).

Beweis. Fiir beide Unterrdume gilt, dafl jeweils die Summanden fiir sich be-
trachtet unter der Operation abgeschlossen sind. Es bleiben lediglich die gemein-
samen Teile zu untersuchen. Hierzu untersuche man (7-88) fiir die “schlecht-
esten” Falle. Auch da gilt es wie man sofort verifiziert. Da fiir solche A, ,
im Resulat von A,, - frp kein f,, , auftreten kann, liegt mit genau denselben
Argumenten, die im Beweis von Prop.7.1 angewendet wurden, eine Lieaktion
vor. [J

Der “kritische Bereich” fiir den die Aktion nicht wohldefiniert ist, ist wiederum
endlichdimensional. Die Prop. 7.2 gilt fiir die Algebra F°(A) in entsprechender
Ubersetzung. Aufgrund (7-87) gilt mit den Bezeichnungen aus § 7.(b)

W(A1p) = Ao(w) + Y Eim

i>m
mit passendem pu € cZ entsprechend (7-71). Also gilt mit (7-65)
Op(Al,p)((bT) =-T. (7—89)
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Sei p = ¥*(«) der Pullback des Kozykels a (7-55). p eingeschrankt auf
KN (A) ist natiirlich der Kozykel x, wie er in § 7.(a) diskutiert wurde. Wir be-
trachten nun seine Einschrinkung auf 7°(A). Man kann mit denselben Metho-
den wie in § 7.(a) zeigen, daB dieser entsprechende Lokalititseigenschaften hat.
Insbesondere gilt p(A,, p, Am,r) = 0 fiir (n+m) > 3. Der Kozykel kann gegeben
werden durch

[Op(An,p)a Op(Am,T)] = Op([An,vam,TD + p(An,vam,r) = :0(An,pv Am,r) -t

Im Grenzfall m =2 —n gilt (fir n > 2)

[op(An,p); 0p(A2—pr)](P0) = 0p(Anp)(0p(A2—nr)(Po) - (7-90)
Nach (7-87)
As_yv fer = fe—n+1, + hohere Glieder .

Die hoheren Glieder werden bei der Anwendung von A,, , wieder durch Nach-
barterme annulliert. Lediglich

Anr - fi—nt1,r = fur + hohere Glieder

liefert einen Beitrag. (Falls p # r ergibt sich 0.) Allerdings mufl k& den Bedin-
gungen
0<k und k—n+1<-1

gentigen. Das heift, wir erhalten als Resultat (7-90) (n — 1)@ . Der Kozykel
bestimmt sich somit zu

1—n
App Ao )= —o- .. -91
P( n,ps 412 TL,T) 2(6)\2—6>\+1) 6?,7 (79 )

Hierbei ist zu beachten, daB ¢ aufgrund der Normierung auf JCA/(A) bereits so
festgelegt war, daf} gilt

t-®g=—2(6A% —6A+1)-Pg .

Insbesondere sind wir nach dieser Fixierung nicht mehr in der Lage, durch
Umdefinition der Aktion, die A—Abhéngigkeit des Kozykels zu beseitigen.

Ich komme nun zum Pullback des Kozykels @ auf die gemischten Teile.
Wiederum erfiillt er eine Lokalitatseigenschaft. Insbesondere gilt

plenp, Am ) =0 falls n+m>4.
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Im Grenzfall berechnet sich

Op(en,p)(OP(A?»fn,T)(q)O)) - OP(A?)fn,r)(Op(en,p)(q)O)) = p(en,p» A3fn,r)t D .
(7-92)
Das Produkt berechnet sich zu

enyp-As_nr =(2—n)A;, + hohere Glieder .

D.h. alle Terme im Produkt annullieren ®.

Fall 1: n > 3. In diesem Fall bleibt lediglich der erste Term. Wiederum ist das
Ergebnis nur fiir p = r nichttrivial. Entsprechend zu obigem fiihre ich lediglich
diejenigen Terme aus, welche einen Beitrag liefern:

AS—n,p ’ .fk,p =1 fk+2—n,p +...
€n,p karQ,n’p = ((k —n+ 1) + )\(n — ].)) . fk,p + ...

Die Beschrankungen fiir £ sind nun
0<k und k—n+2<-1.

Als Faktor vor t - ®¢ ergibt sich

n—3

Z(k—n+1+)\(n—l)):%(n—2)((n—1)(2/\—1)—2) .

k=0
Machen wir nun die Basistransformation in der zentralen Erweiterung

PR 1
A=At oo (7-93)

so erhalten wir als Kozykel

(n—=1)(n—2)(1-2X)

6N oAt 1) T (7-94)

p(en,;m A37n,r) =

und es gilt Af’p - Py =1-dy . Auch hier sei der Basiswechsel vorgenommen
und dann der * in der Notation wieder unterdriickt.

Fall 2: n = 2. Hier verschwinden beide Terme auf der linken Seite von (7-92)
im Einklang mit der Formel (7-94).

Fall 3: n < 1. Liefert dasselbe Resultat wie der Fall 1. Ich fasse zusammen
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Theorem 7.2. Die Aktion von D'(A) auf F (A) kann zu einer Aktion einer

zentralen Erweiterung ﬁl(A) auf HN(A) “fortgesetzt” werden, derart dafs mit

geez’gneten Lifts B, der Basiselemente e, , € KN(A) und A, , der Elemente
np € FO(A) folgende Eigenschaften gelten:

(a) np — BEnp und An, — A,, definiert eine Einbettung von D+ (A)

und DY~ (A) in DY(A), welche mit der Aktion auf H(A) vertriglich ist.

(b) Es gilt

En, . ®r=0, n>3 Apy &7 =0, n>2,
t.®p =26\ —6)A+1)-Pp

(¢) Der definierende Kozykel, in Bezug auf die obigen Lifts, kann fiir spezielle
Basiselemente gegeben werden durch

p(en,pa €4-n, 'r n-— 2)3 - (TL - 2)) . 51)71"7

-3 A
n— n—2 2A -1
p(en’paAB nr = < ( )) .610’7‘7

n —
p(An,paA27n r) = ( pr7

mit cy = —2(6A% —6X+1) .

Theorem 7.2(c) besagt, dafi der Kozykel p = ¢*(a), eingeschrankt auf
spezielle Basiselemente, gegeben werden kann als entsprechende Linearkom-
bination der Kozykel x,~y, 8 welche in §6. eingefiihrt wurden.

Vermutung 7.1. FEs gilt

p=vle) =x+— =B+ (7-95)
bis auf kohomologe Abanderung.

Im Virasoro Fall besteht der kritische Streifen nur aus den Elementen eo

und A;. Insbesondere ergibt sich, dafi die Paare in Theorem 7.2(c) die einzi-
gen Terme sind fiir die der Kozykel nicht verschwindet (bis auf kohomologe
Abédnderung). Somit gilt die Vermutung in diesem Falle. Dies wurde ebenfalls
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in [ACKP] bewiesen. Im allgemeinen Fall verifiziert man wie oben, daf§ (7-95)
auch fiir die Paare

(en,pve?)—n,r)v (en,p7A2—77,,7‘)7 (An,paAl—n,r)

gilt. Fir p # r kann man den Wert des Kozykels, ohne Einfiihrung héherer
Entwicklungskoeffizienten der Elemente A, ,, bzw. e, ,, angeben. Man erhalt
die Ausdriicke, wie sie in (6-20),(6-35a) und (6-67) gegeben wurden. Fir p = r
werden die Entwicklungskoeffizienten benotigt. Zusétzlich bendtigt man auch
eine kohomologe Abdnderung

A/

0p = Ao’p +a-t, Ei’p =F,+ G-t

falls diese Elemente noch im kritschen Streifen liegen.

Was fiir D}(A) gemacht wurde, kann auch fiir die Algebra der kohirenten
Differentialoperatoren D(A) (bzw. fiir Dy(A) ) ausgefithrt werden. Nach §6.
besitzt D(A) als erzeugende Elemente aufsteigende Ketten von Basiselementen
von D!(A). Die Basiselemente waren aber in Bezug auf die Z —Graduierung
geordnet. Hierbei galt

deg(enp) =n, deg(An—1p)=n.

Um eine vollstdndige Ordnung zu erhalten, ordnen wir zuerst nach deg und in-
nerhalb desselben deg Wertes nach dem zweiten Index mit der Festsetzung, dafl
die Elemente A,,_1, “kleiner” als die Elemente e, , sind. D(A) bildet unter
dem Kommutator der Ringelemente eine Liealgebra LD(A), welche D!(A) als
Unteralgebra enthélt. Sei D ein Basiselement gebildet als “Produkt” von r
Basiselementen aus D!(A). Sei m die Summe iiber deg der auftretenden Ba-
siselementen, so gilt

n+m-+Lr k

D.fop= >, > s (7-96)

h=n+m-—2r s=1

Es liegt also auch eine verallgemeinert graduierte Struktur vor. Insbesondere
besitzt LD(A) ebenfalls eine Einbettung in gl(co). (Natiirlich kann man dies
auch ohne Benutzung der Basis, nur mit Hilfe der Eigenschaften der universellen
einhiillenden Algebra zeigen.) Damit definiert der Ubergang F*(A) auf H*(A)

mit Hilfe der Erweiterung gl(oo) auf é\l(oo) ebenfalls eine zentrale Erweiterung
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von LD(A), welche D! (A) als Unteralgebra enthélt. Selbstversténdlich ist der
Kozykel abhingig von A, da er dies schon im Fall der Restriktion auf D!(A)
ist.

Mit den dargestellten Methoden ist es auch méglich das Analogon der Formel
[KNTY,3.22] fiir den “Schwinger Term” p zu berechnen. Dies wiederum nichts
anderes als der Kozykel.

Proposition 7.9. Sei
ul = Apgniip - (e1p), kneZ, k>0.
Die Potenzierung sei in D(A) aufgefafit. Dann gilt fir den Kozykel

puf ul )=0, fir n+m>0. (7-97)

n,p> Ym,r
Fir n+m=0 gilt (mit cy = —2(6A2 —6A+1) )

k

i _H (n+37)6pyr - (7-98)

=—1

e (=¥ kNl
p(un,pv u—n,'r‘) - e (k + l + 1
Im Virasoro Fall ist (7-98) der einzige nichtverschwindende Term.

Beweis. Es gilt

k
Appnirp - (€5, fir) = [[G = i) fi4np Opr + hohere Glieder . (7-99)

i=1

(Im Virasoro Fall verschwinden die héheren Glieder.) Wir rechnen den Kozykel
auf dem Vakuumvektor ®; aus. Ist n > 0, so gilt

Op(u'];,p(q)l)) =0.

Fiir n = 0 ergibt sich aufgrund der Normalisierung (7-65) ebenfalls 0. Fiir
n < 0 erhélt man
op(uf (®1)) = ufw OP1+a-P;, acC.

n,p

(Im Virasorofall & = 0.) Wir rechnen nun

w = op(uy, ,) (op(uy, ;) (®1))
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aus. Fiir n > 0 gilt w = 0. Fir n < 0 und m > 0 erhalten wir
w = Op(uﬁ’b,r)(uiL,r O] (I)l) .

(Im Virasoro Fall ist fiir n < 0 und m < 0 die op—Aktion die iibliche Aktion.)
Nach Definition gilt

[Op(uﬁ,p)a Op(u )] ¢, — Op[ Up,psr U, r] ¢, = p( Unp,p> in r) cx Py (7_100)

Aufgrund (7-99) sieht man, dafl fiir m und n > 0 der Kozykel verschwindet, da
beide Terme auf der linken Seite verschwinden. Sei nun n > 0 und m < 0. Ist
m +mn > 0, so werden aufgrund der Kette in

fi. = Fitm,. = Fit(m+n)..

in (7-99) alle Terme durch die Nachbarelemente annulliert. Fiir m+n = 0 fithrt
die Kette nur falls p = r ist, wieder zuriick. Dieser Fall ist im folgenden zu
betrachten. (Da im Virasorofall keine hoheren Glieder auftreten, ist die Opera-
tion die gewohnliche Operation, also verschwindet der Kozykel fiir m +n < 0.)
Sei also p = r und m = —n < 0. Es sind wiederum nur die Kombinationen zu

betrachten, welche ®; reproduzieren. Wenden wir !

m,p an so erhalten wir

fjvp - H(J - i)fj+m,pv 1<53< -

u’fhp angewandt ergibt

l k
fj,p—’H(j_Z HJ"'m_SfJ,p'
s=1

Damit gilt zum einen

op[ufb’p,ul_n’p]q)l =0
und weiter
n l k
B =cy - p(uf Up oy 7n’p ZH]—Z (j—n—2s). (7-101)
j=1l1i=1 s=1

Nicht verschwindende Terme treten erst ab j =1+ 1, bzw. n=1+1 auf.
Nach Substitution n = (I + 1) + p ergibt sich

u z+s (k+(p—9))
B kz —sl

1R zi:()(ltS) . (k+p(€ss)> .
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Nach untenstehendem Lemma somit

I+k+1+ k1! b ,

Lemma 7.1. Sei [, k,p €Ny, dann gilt

;(ZJ;S)(/%JF({SS))(l+k+1+p>' (7-102)

p p

Beweis. (Dies ist sicherlich eine bekannte Formel aus der Kombinatorik, leider
habe ich keine Referenz gefunden) Der Beweis erfolgt mit vollstdndiger Induk-
tion nach p. Fiir p = 0 ist (7-102) sicherlich richtig. Sei sie nun richtig fiir

p.
’il I+s s)+1
= S —s+1

() EIEE )

S=

Z<l+i—r>+§:<k+l+i—t+1)> _ (k+;l)i]i+2> .

r=0 t=

Hierbei wurde mehrfach die wohlbekannte Formel [Rot,p.11]

SHE Y

benutzt. O
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§8. b—c Systeme

(a) Mathematische Definition

Der Begriff “b — ¢” System ist ein Begriff aus der konformen Feldtheorie.
Im Abschnitt (b) werde ich (abweichend vom generellen Prinzip) kurz die
physikalische Seite ansprechen. Vorab jedoch die Erinnerung: Seien D und
FE Elemente eines Ringes, z.Bsp. Operatoren auf einem Vektorraum, so ist der
Antikommutator definiert als

(D,E}Y=DoE+EoD. (8-1)

Sei H} (A) der Raum der rechts semi-infiniten Formen vom Gewicht A (kurz
Rechtsformen genannt) und H'~*(A) der Raum der links semi-infiniten Formen
vom Gewicht 1 — A (Linksformen). Zur Notationsvereinfachung verwende ich
frp = fnpN) und by, , = frp(1—=X). Desweiteren bezeichne (jj) einen Doppel-
index. Die Vektorriume F*(A) und F'~*(A) operieren auf den semi-infiniten
Formen wie folgt: Sei f € F*(A) und h € F!=*(A). Wir setzen

cr.w=fAw, by.w=iy(w), w € HY (A) (8-2)
w.cp = (w)ig, wh,=wAh, — weHTINA). (8-3)

Hierbei ist 75 die Kontraktion. Sie ist auf jedem Faktor f,, , definiert als

ih(fmﬂ') = L j{C' h - fmﬂ‘ (8'4)

27

und auf
w=fiy NGy - NFgy N

durch die (modifizierte) Leibnizregel

ih(w) = Z(—l)l_lih(f(jl)) . f(jl) AN f(jl) AN (8-5)

=1

~

f(;1) bezeichne (wie iiblich), daB dieser Faktor ausgelassen wird. Die Definition
auf den Linksformen ist entsprechend. Offensichtlich sind diese Abbildungen
linear. Sie sind aber auch linear im Index, d.h. es gilt cc4f = c. + ¢y und
bg+n = by +by. Fiir die Operatoren, welche den Basiselementen f,, ,,, bzw. hy, p
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zugeordnet sind, verwende ich auch ¢, ;,, bzw. b, ,. Anschaulich bedeutet das
Operieren (auf den Rechtsformen) von ¢, , dem “Einhéngen” von f,, , und das
Operieren von b, , dem “Aushangen” von f;_, . Auf den Linksformen ist es
gerade umgekehrt. Daf die Kontraktion (8-5) wohldefiniert ist, ist wiederum
eine Folgerung der verallgemeinert graduierten Struktur, bzw. der Dualitét (5-
6). Damit bleiben in der Summe (8-5) nur endlich viele Terme {ibrig.

Proposition 8.1. Sowohl fiir die Operatoren auf den Rechts- als auch auf den
Linksformen gilt

{bg.bn} =0, g.he FITNA),  {eeies} =0, e f€F(A), (86)
{bn,pa Cm,r} = 6771,17716]),7“ . (8-7)
Beweis. Ich betrachte lediglich die Rechtsformen. Der Beweis fiir die Linksfor-
men ist entsprechend. Da
eNfAw=—-fNeAw

gilt, folgt direkt {c.,cs} =0.
Fir k # [ sei abkiirzend gesetzt

v = in(fG) 1o (fG) - T A - Ty Ao Fag Ao

Es gilt mit w wie oben

o0 k—l ) [eS)
=3 G V7o N N G Ll S D ¥
k=1 l:l k=11l=k+1
=3 (1) g+ Z 1)ty
Kl
<k l>k

Bei Anderung der Reihenfolge von h und g werden gerade die Rollen von k
und [ vertauscht. Somit ergibt sich das Negative des obigen Ausdruckes, also

{bg,b1,} = 0.
Es bleibt die letzte Relation.

bnp - (Cm,r . w) =bnyp- (fm,r ANw) = ihn,p (fm,r) W= [ A ihn,p (w),
Cmp - (bnp - W) = o - (in, , (W) = frur Nin, (W) .
Somit gilt

{b%p’ Cmﬂ”} = Z.hn,p(fm,r) W = 6m,1—7z5p,r cw . O
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Proposition 8.2. (a) Die Operatoren b, , und c,, ouf den Rechts- und
Linksformen sind in Bezug auf die Dualititspaarung (7-36) selbstadjungiert,
d.h. es gilt fir ¢ € HMA), ¢ € H(A)

(@-Cnp,¥) = (b, cnp-¥) (8-8)
<¢ . bn,pv ¢> = <¢7 bn,p . ¢> (8'9)

(b) Sei ®r der Vakuumvektor vom Gewicht A\ und Level T (7-6), ®% der
duale Vakuumuvektor (7-39). Dann gilt

Cnyp-Pr =0, fir n>T, Or.cnp=0, fir n<T-1(810)
bpp - @r=0, fir n>2-T; ®5.b,, =0, fir n<1-T.(811)

Beweis. (a) Es sei ¢, , gegeben. Fall 1: Taucht f,, in ¢ auf, gilt ¢, , .9 = 0.
cn.p auf ¢ angewandt hangt das Element h;_,, ), aus, falls vorhanden. In diesem
Fall besitzt f,, , keinen Partner mehr, d.h. die Paarung ergibt Null. Ist h;_,, ,
nicht vorhanden, dann ergibt sich ¢.c,, = 0. Also auch hier Null. Fall 2:
Taucht nun f,, in ¢ nicht auf und sei (n,p) kleiner als der kleinste Index
in 9, dann ist die Paarung # 0, genau dann wenn hi_, , als erstes Element
in ¢ steht und alle folgenden paarweise zu den Elementen in ¢ dual sind.
Derselbe Wert des Skalarproduktes ergibt sich auch bei der Betrachtung der
Operation auf ¢. Taucht f,, nicht in ¢ auf, aber sei (n,p) grofer als der
kleinste Index, dann mufl durch vorzeichenbehaftetes Vertauschen fy, , an die
richtige Stelle gebracht werden. Dies entspricht genau dem Vorzeichenfaktor
bei der Kontraktion mit hi_,, , auf ¢. Also gilt (8-8). Dasselbe Argument gilt
auch fir (8-9).

(b) ¢np ist auf den Rechtsformen das Einhéngen von f, ,. Dieses Element
taucht aber schon in @7 auf, falls n > T gilt. b, ,, ist das Aushangen von fi_, p.
Fiir n > 2 — T tritt dieses Element jedoch gar nicht auf. Entsprechendes gilt
fiir die Linksformen. O

Nach Prop. 8.2(b) kénnen die ¢, bzw. b, , mit hinreichend grofiem n als
Vernichtungsoperatoren auf den Rechtsformen aufgefafit werden, falls &1 als
Grundzustand interpretiert wird. Fir 7' = 1 haben die Formeln (8-10) und
(8-11) eine besonders symmetrische Gestalt.

Auf H?} (A) und H'*(A) operieren auer F*(A) und F1~*(A) auch KN (A),
bzw. 131(14). Es bestehen folgende interessante Kommutatorrelationen.
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Proposition 8.3. Sei é € D'(A) ein Lift cines Vektorfeldes e € KN(A),

a € ﬁl(A) ein Lift einer Funktion a € FY(A), t ein zentrales Element in
DY(A), f € FMA) und h € F'=*(A) . Dann gilt

[é,crl=cr.p), [&bn]=bL.(n),
[&7Cf] = Cq-f, [&7bh] = bfa»h (8-12)
[t,Cf] = [t,bh] = 0 .

Insbesondere bildet der von D*(A) , ¢(FMA)) und b(F'*(A)) aufgespannte
Unterraum von LEnd H} (A) eine Unteralgebra (als Liealgebra).

Beweis. Nach (7-81) gilt in der dortigen Notation
op(e)(w A %) = (e.w) A +w A op(e) (1)
Ein beliebiger Lift é operiert auf H} (A) als
é. =ople)+a-id, aeC.
Somit gilt ebenfalls
e (wAY)=(e.w)ANp+wA(é.P). (8-13)

Sei nun ¢ € Hi(A) zerlegt in w A1), derart dafl weder 1, noch é. 1 etwas mit
den Indices, auf denen iy, und iy, ;) wirken, “zu tun haben”. Es gilt dann

e(fAD) = (e (FAW)AD+fAwA @)

und
fAE.¢)=fA(ew) N+ fAwA(E.Y),
also
&, fA ¢ = (le, fA].w) Ao (8-14)
Entsprechend
é.(in(0)) =é.(in(w) AY) = (e.in(w)) A +in(w) A (é.7),
in(é(@) =inle.wAY+wA(é.v¥)) =ip(e.w) AN+ in(w) A(é. 1),
also

[€,in] & = (e, in] w) Adp (8-15)
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Gelten nun die Formeln auf den endlichen Teilbereichen, so folgt

[6,fAl¢ = Le(f) Nw Aty = Le(f) N @,
[€,in] ¢ = ir, (w) N =L (@) .

Damit geniigt es, die Formeln auf den endlichen Teilbereichen zu beweisen.
Zuerst zur ersten Formel. Es gilt

e.(fArw)=e.fAw+ fA(e.w) also [e, fA]w=Le(f) ANw,

was zu zeigen war. Fir die zweite berechnet man (n = Linge von w)
e.(in(w)) =e. (Z(l)“ih(fm)) fay N T A f(n))

Z in(fi) - oo A (e fay) - T A Fa -

in(e.w) = Zn: (=D Yin(Fg) - Fan A Fao Ale-fan) - fou
kl,;:ko
+Zn:(—1)l*1ih(e.f(jl)) fao N Fan N fa
=0
Als Differenz somit
evinl Z o) Fa ATy A By

Nach Lemma 6.(b) (6-60) gilt

(e fia) = 55 B, B Lellia) = =57 §, LW fue (510

2mi

also

leyinl(w) = > (=1 Yir (fan) - fao A Fan A T
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Die Uberlegungen oben gelten (fast) unverindert fir a € H(A) C 251(14).
L.(f) ist durch (a - f) zu ersetzen. Statt (8-16) gilt nun allerdings

) 1 .
in(a - f(il)) = %%C h-a- f(u) = Za~h(f(il))

ohne Vorzeichenanderung. Deshalb das andere Vorzeichen im Endergebnis. Die
Aussagen, an denen das zentrale Element beteiligt ist, sind trivial. O

Entsprechende Formeln gelten auch fiir die Aktion auf den Linksformen. In
der Tat sind die durch diese Algebra gegebene Operatoren, diejenigen welche
in der Physik wichtig sind. Siehe hierzu auch die Formeln 3.32 in [KNTY] fiir
den Virasoro Fall.

(b) Verwendung in der Physik

Es sind operatorwertige Felder b und ¢ vom Gewicht A\, bzw. 1 — A auf dem
world sheet gegeben [Bol]. Sie haben keine Entsprechung in der klassischen
Theorie. Aufgrund des Entwicklungspostulates der konformen Feldtheorie be-
sitzen sie die (formale) Darstellung als beidseitig unendliche Summen

[e%) k
b(Q) = D> D bupfi-np(N(Q),

n=-—oo p=1

%) k
Q= > enpfinp(l=N(Q)

n=-—oo p=1

(8-17)

mit operatorwertigen Koeflizienten b, , und c,,. Hier tauchen, wie bere-
its in der Einleitung, unendliche Summen von Operatoren auf. Diese seien
in formaler Weise verstanden. Operieren die Operatoren auf entsprechenden
Raumen, so mufl unter Umstdnden eine Regularisierungsprozedur angegeben
werden, die dafiir sorgt, dafl zumindestens fir alle phyikalisch relevanten Op-
eratoren (z.Bsp. fir den Energie-Impulsoperator) die Aktion zu einer linearen
Aktion im tblichen Sinne wird. Diese Betrachtungen sollen jedoch hier nicht
weiter vertieft werden.

Die b — ¢ Felder erfiillen fir Q,Q" € C, (d.h. sie werden zur selben Zeit
betrachtet) die Antikommutatorrelationen
{6(Q), c(@)} = A (@, Q"),

{6(Q),b(Q")} = {c(Q),e(Q")} =0 (8-18)



150

Hierbei ist A-(Q,Q’) die “Delta-Funktion” fiir (A, 1 — ) Systeme auf C,
d.h. fiir ein Feld h vom Gewicht A gilt

1
Coni

MQ) = 3 f, M@)-A-@.Q). (5-19)
wobei iiber die Variable @’ integriert wird. Aufgrund der Dualitat bzw. des En-
twicklungssatzes (5-9), der nun im formalen Sinne auf die Operatoren angewen-
det wird, gilt

A (@ Q) =D fapMN(Q) - fronr (1= N)(Q") . (8-20)

Rechnen wir den Antikommutator aus

(@), @)= D Abnps cmir} Fronp(WN(Q) + fromar (1= N)(Q"),

n,m,p,r

so erhalten wir fiir die Koeffizienten genau die Relationen welche in (8-7)
gegeben wurden. Deshalb sind die unter § 8.(a) studierten Darstellungen, Darstel-
lungen fiir die physikalischen Operatoren.

Der Energie-Impulstensor fiir b — ¢ Systeme ist definiert als

T(z)=: (1-2X) c(z)%(z) - )\%(z)b(z) S (8-21)

Hierbei seien ¢(z) und b(z) lokale Représentanten fiir die ¢ und b Felder,

. : bedeutet Normalordnung, auf welche ich gleich néher eingehen werde.
Durch direktes Nachrechnen verifiziert man, dal T'(z) eine operatorwertige
Form vom Gewicht 2 ist.

Normalordnung bedeutet, dal im Produkt zweier Operatoren, der Vernich-
tungsoperator rechts stehen soll. Da wir allerdings antikommutierende Gréfien
haben, mufl beim Vertauschen die Reihenfolge gedndert werden, damit im Fall,
dafl beide antikommutieren kein Widerspruch auftritt. Aufgrund der Antikom-
mutatorrelation gilt

Cn,p * bm,'r = _bm,r “Cppt+ 5m,1—n5p,'r .
Die iibliche Darstellungsweise fiir die Normalordnung ist (in Bezug auf die
Darstellung auf dem von ®; erzeugten Modul)

(8-22)

. . Cn,pbm,ra m2>1
CCnpbmr T 1=

—bmrCnp, MZ0.
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Die beiden Alternativen konnen auch formuliert werden als

Cnpbm,r, m# (1 —n)
n b —n,r =(1- y
by = 4 PO m={=n), r#p (8-23)
Cn,p'blfn,pv m = (]-_n)a r=p,n n <0
Cnp -binp—1, m=(1-n), r=p, n>1.
Setzen wir die Entwicklungen (8-17) in (8-21) ein, so erhalten wir
T= 3 :cinpbme: P(fap(l= A fioms (V) (8-24)
n,m,r,p
mit der abkiirzenden Notation
af oh
Ph, f)=(1-XNh=——X— 8-25
(h )= -NrSL AT (:25)

wobei f und h mit ihren lokalen Représentanten identifiziert werden. Nach
dem Entwicklungspostulat gilt allerdings

T = Z Ly s ks (8-26)
k,s

mit operatorwertigen Koeffizienten Lj . Aufgrund der Dualitét konnen sie
berechnet werden durch

1 (m.r)
Lys = o C’ ek = n; “Clid npy L —=A) s i pbmye s . (8-27)

Hierbei ist C(]Tég)(n (1 =A) die Strukturkonstante von F1=2(A) iiber KN (A)

(siche 5-9). Um dies einzusehen, beniitzen wir folgendes

Lemma 8.1. Sei f € FMNA), h € F'=* und e € KN(A), dann gilt

1 1

ari f, PP e=—gp o L) f (8-28)

Beweis. Wir bilden w = P(h, f) e+ Le(h) - f in einer Karte mit Koor-
dinate z, wobei wir wie tiblich die Formen mit ihren lokalen Représentanten
identifizieren:

nof

(1= Aeh>

S Pt e (LN RE = (1= X) 2 (eh)
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Der Integrand ist somit das Differential einer globalen meromorphen Funk-
tion. Differentiale von meromorphen Funktionen haben kein Residuum, somit
verschwindet das Integral iiber w. Also folgt (8-28). O

Bemerkung: Fiir A = 2 kann (8-28) auch noch etwas anders bewiesen werden.
Aufgrund Lemma 6.2(b) gilt

1 1 1
3o o PO S e =g b I e= 5 d I

1 1

= % CT[h,e]f:—% CTLe(h)f .

Die Konstante in (8-27) berechnet sich nun zu

1
ot Jp DU =2, frome ) - eis =
1 _ (m,r)
o C, (ek,s : fnyp(l - )‘)) Sromr = _C(k,s),(nyp)(l —) -

Fir den Fall A = 2, d.h. fiir den Fall der Standard b — c¢-Systeme erhalten
wir (bis auf ein Vorzeichen) die Strukturkonstanten der Krichever - Novikov
Algebra. Im Fall N = 2 wurde gezeigt [PA], daB die Ly eine Darstellung
einer zentralen Erweiterung von KA (A) sind. Dies wird sich im allgemeinen
Fall vermutlich (mit entsprechendem Rechenaufwand) auch zeigen lassen. Dies
soll jedoch nicht weiter vertieft werden. Hier mochte ich nur zeigen, dafi die
formalen Operatoren Lj s ohne Normalordnung in der Tat eine “Darstellung”
fir die Algebra KN(A) (ohne zentrale Erweiterung) darstellen. Es seien die
Elemente

Lo = 3 (= O (= M) erongbins

n,m,r,s
L= 3 (- Ol N) v
n’,m’,r’ s’
gegeben. Es gilt nun [Ly s, L] zu berechnen. Hierzu sind im Produkt
Ljs- Ly, die 2-er Paare
Cl—n'p’ bm/,r’cl—n,pbm,r (8_29)

zu vertauschen, damit sie sich im Kommutator wegheben konnen. Die Elemente
b und c antikommutieren alle untereinander. Fiir die gemischten Terme erhalten
wir

bn,p Cmyr = —Cmr - bn,pa p 7é r oder p=rT, m 7é (1 - TL)

brp - Clonp =1=Clonp - bnp .
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Damit ergibt sich fiir jeden Term (8-29)
—Cl—n/ p/ Cl—n pbm/ 7 b (8-30)
und fir m’ =n, v’ = p der zusatzliche Term
1t b - (8-31)

n (8-30) konnen nun die ¢ und b Terme untereinander vertauscht werden.
Anschlieflend vertauschen wir die mittleren Terme wieder und erhalten aufler

Cl—n,pbm,rcl—n’,p’bm’,r’ (8‘32)

noch fir n’ =m, p’' =r

*Cl—n,pbm/,r’ . (8—33)
Der Ausdruck (8-32) hebt sich bei der Bildung des Kommutators weg. Es
bleiben lediglich die Terme (8-31) und (8-33). Nach Umbenennung der Sum-

mationsindices tritt als Koeflizient fiir den Term ¢j_y, pbm,» der folgende Aus-
druck auf (u=1-X)

(m,r) (n,p") (m,r) (n',p")
> ( Clirmy. . 1) Cd iy W FCGY ) (1) C ey iy (B >> - (8-34)

Y
n.,p

Da F1=*(A) ein Liemodul ist, gilt da8 dieser Ausdruck identisch zu

(u#'u) (m T)
D Clmni (D - Ol (1) (8-35)

u,v

ist. Hierbei ist zu beachten, daf} als erste Faktoren in (8-35) die Strukturkon-
stanten der Algebra KN'(A) auftreten. Die Identitét verifiziert man leicht,
indem man sie auf das Element f, ,(1 — ) anwendet. Somit gilt aber

(u,0)
[Lis, L Z% D (D Ly - (8-36)

Es sei noch einmal darauf hingewiesen, dafl obige Umformungen nur im for-
malen Sinne zu interpretieren sind. Insbesondere definieren die Lj s ohne
Normalordnung keine Aktion auf H*(A), da bei der Aktion unendlich viele
Terme auftreten kénnen. Erst die Normalordnung macht die Aktion wieder
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wohldefiniert. Allerdings ist die modifizierte Aktion keine Lieaktion mehr. De-
shalb benotigt man hier wiederum eine zentrale Erweiterung. Dies sei im klas-
sischen Virasoro Fall und A = 2 demonstriert. Bezeichne L; die Elemente mit
Normalordnung, L, diejenigen ohne. Mit (8-23) gilt

p=Li=> (k—n)ci_pbpir—2, k#2 (8-37)

n

Ly = (2—n)ci—nbn, (8-38)

n

Ly=Y (2=n)cinbn + »_(2=n)(c1-nbp — 1) . (8-39)

n>1 n<0

Angewendet auf die Basisvektoren ® von H*(A) sieht man, daf fiir k # 2 der
Operator c¢1_pb,1k—2 nur fir endlich viele n ungleich dem Nulloperator ist.
Insbesondere ist die Aktion wohldefiniert. b, hingt das Element £;_,, aus,
falls vorhanden, und ¢;_, héngt es wieder aus. Somit operiert ¢;_,b, auf ®
wie die Identitat falls Q;_,, auftritt. Damit ist aber L} nicht wohldefiniert.
Erst Lo macht keine Probleme.

Da bereits alle Hilfsmittel zur Verfiigung stehen, mochte ich hier den Kozykel
x explizit ausrechnen. Insbesondere will ich im Hinblick auf die Einleitung
zeigen, da die zentrale Ladung in der Tat —26 betrdgt. Natiirlich ist dies
wohlbekannt. Es sei ®; der Vakuumvektor vom Gewicht A und Level 1. Es gilt
fiire >0

[LQ_H', Lg_i] . q)l = (—QZ)LQ . (I)l + X(2 + i, 2 — ’L) (I)l .
Es berechnet sich unmittelbar
Loy; . ®1 =0, Ly. 91 =0. (8-40)

Somit gilt

L2+1‘ . (LQ,i . (I)l) = X(2 + i, 2 — ’L) (I)l .
Da sich in diesem Fall die unendlichen Summen reduzieren auf endliche, ergibt
sich

LQ,Z‘ . <I>1 = 2(2 — 17— TL)Cl,nbn,i . (I)l

n=1

LQ_H' . (Lg_i . q)l) = Z 2(2 — 11— n)(2 +1i— m)cl—mbm+icl—nbn—i . @1 .

m n=1
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Die Operatoren unter der Summe konnen unter Beachtung der Antikommu-
tatorrelationen vertauscht werden, so dafl die Terme mit Index m ganz rechts
auftauchen. Diese annullieren jedoch ®;. Durch eine entsprechende Rechnung

wie oben ergibt sich

L2+i . (LQ,Z' (I)l) = i(? — 17— TL)(2 + 21 — TL) @1 .

n=1
Durch Aufaddition gewinnt man

—26
244,2—4) = —— (i — i
X@+i2—i) = 2 —0),

also gerade das (—26) fache des Virasoro Kozykels (siehe (6-19).

(8-41)
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§9. Eine zweite Basiswahl

In diesem Paragraphen greife ich die Ausfiihrungen von § 3. auf. Dort hatte

ich eine Menge von Erzeugenden fiir 7*(A) angegeben. Entlang des Beweises
der Erzeugendeneigenschaft kann man durch geringe Zusatziiberlegungen ein
minimales Erzeugendensystem, d.h. eine Basis, konstruieren. Leider ist diese
Basis, wie in (b) klar werden wird, nicht geeignet die verallgemeinert graduierte
Struktur zu definieren. Diese wird jedoch bendtigt, um die semi-infinite Wedge-
Darstellung zu konstruieren. Allerdings bietet diese zweite Basis auch gewisse
Vorteile. So kann z. Bsp. eine Teilmenge der Gesamtbasis von F*(A) aus-
gewdhlt werden, die eine Basis der globalen holomorphen Formen ist. Dies war
im Allg. bei der Basis aus §5. nicht der Fall. Die globalen holomorphen Dif-
ferentiale, auch “zero modes” in der Physikerterminologie genannt wegen ihres
Zusammenhangs mit dem Laplaceoperator, spielen fiir die Anwendungen in der
Quantenfeldtheorie eine Sonderrolle (meist reprisentieren sie globale Symme-
trien). Somit kann diese zweite Basis durchaus von gewissem Nutzen sein und
ich nehme sie deshalb in diese Arbeit auf. Es handelt sich hierbei in diesem
Paragraphen um meine im Frithjahr 89 durchgefiihrten Untersuchungen deren
Resultate im April 89 als preprint erschienen [Schl2]. Im wesentlichen diesselbe
Basis wurde ungefiahr zur selben Zeit unabhéngig von Rainer Dick [Dil] gefun-
den. Ausgangspunkt fiir diese Arbeiten war eine von mir an der Universitit
Karlruhe gehaltene Vorlesung [Schll] in der der 2-Punkt Krichever - Novikov
Fall [KN1],[KN2] behandelt wurde. Im wesentlichen gleichzeitig haben wir
auch explizite Formen fiir die Basiselemente gegeben [Schl3],[Di2]. Daneben
hatte sich auch eine chinesische Arbeitsgruppe mit den entsprechenden Ver-
allgemeinerungen befafft. Ebenfalls im Frithjahr behandelten sie den ¢ = 0
Fall [Gul]. Im August 89 verallgemeinerten sie auf beliebiges Geschlecht [Gu2]
ohne allerdings die Sonderfélle A = 0 und A = 1 zu beachten. Zwischenzeitlich
hat die vorgeschlagene Basis, nebst den Entwicklungskoeffizienten in (d) schon
Eingang in die Physikliteratur gefunden [Mat1,p.82-86],[Di3],[Ch1].
Kurz vor Abschluf} dieser Arbeit erhielt ich auch ein Papier von Krichever und
Novikov [KN4] indem im Anhang gesagt wird, daf} sie ebenfalls entsprechende
Verallgemeinerungen erreicht hatten. Sie deuten dies allerdings nur durch ein
Beispiel fiir & = [ an. Es ist jedoch reichlich obstruiert durch Fehler (sehr
wahrscheinlich Tippfehler), so dal es mir nicht méglich war dieses Beispiel mit
meiner Konstruktion zu vergleichen.
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(a) Das Festlegen einer Basis

Fir diese Basis nehme ich den Punkt Py mit der lokalen Koordinate zp als
Referenzpunkt. Falls das erzeugende Element f € F*(A) die Ordnung ny bei
Py hat, so sei es immer derart skalar normiert, daf gilt

fi =23 (1+ O(zn)) dzp - (9-1)

Dies sei im folgenden immer stillschweigend angenommen. Es sei zuerst g > 2
und A # 0,1, bzw. g = 0 und \ beliebig (€ Z). Ich benutze die Bezeichnung
von §3. und fiihre folgende Erzeugende ein

fn(A) := fA(n,0,...,00M(\) —n), n>0  Typl (9-2)
fnN) == fA(n,0,...,0,M(\) —n), n<0 Typll (9-3)
FIN) = f20,...,n,...,0,M(\) —n), n<0 TyplI, (9-4)
Hierbei ist n € Z und j durchlduft 2,3,... ,N — 1. Dieses j gibt an, an
welcher Position in der Auflistung der Ordnungen sich n befindet. Falls es aus

Bezeichnungsgriinden bequem ist, werde ich auch f}()\) zur Benennung der
Erzeugenden vom Typ I und II verwenden.

Proposition 9.1. Seig>2, A#0,1 oder g =0 und A\ € Z, dann bilden die
fu(AN), n€eZ und 2\, neZn<—1, mit 2<j<N -1
eine Basis von F(A).

Beweis. Im Ablauf des Beweises von Prop.3.4 wurde gezeigt, dafl wir mit diesen
Elementen auskommen. Sei

N-1
DD e, =0
Jj=1 n;

Aufgrund der unterschiedlichen Polstellen und Polordnungen miissen alle Ko-
effizienten c{;j mit negativen n; verschwinden. Es bleiben lediglich Kombi-
nationen von f}“ mit n; > 0. Diese haben allerdings alle unterschiedliche
Nullstellenordnung bei P, also verschwinden alle Koeffizienten. [
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Wir kommen nun zu den Ausnahmewerten. Es sei zuerst ¢ > 2 und A = 1.
Wir setzen (w = f(1))

50,g—2—n), n>

Wy, 1= { 1( g ) =9 Typ I (9-5)
f( 3079_1_n) OSnSg_l
! ..,0,—1), =-1

Wy = {fl( ) " Typ II (9-6)
f(na ,0,g—2—n), n§_2

. 0,0rey—1,...,0,—1), -1

Wi ;—{ ( ) " Typ II;  (9-7)
fl((),..., n,...,0,g—2-mn), n<-2

Genau wie oben beweist man nun

Proposition 9.2. Sei g > 2, dann bilden die
Wn, N €Z und wfl, neZ,n<-1, mit 2<j<N-1
eine Basis von F1(A).
W ; ist das durch die Bedingung “Realteil aller Perioden verschwindet” ein-

deutig fixierte Differential mit obigen Polordnungen und Residuen res p, = +1

und res py, = —1. Wie in §3. ausgefilhrt kann man fiir N > 2 dieses etwa
ersetzen durch

= 1,00, ,-1)
W’ 1 ::f (9,0,...,-1,0,...,-1), 2<j<N-1.
Dies wurde z. Bsp. in [Dil] gemacht.

Es bleibt ¢ > 2und A =0, bzw. ¢ =1 und A € Z. Wir setzen
(Az=7:(0))

0(n,0,...,0,—g — >0

Ay, :—{f (m, —g-n) n Typ I (9-8)
f(OOO L0)=1, n=0

0,. ,0,— —1-n), —g<n<0

A, ;:{f 0(” g n) —gsn Typ II (9-9)
f(n07...,07—g—n), n<—(g+1)
°0,...,n,...,0,—g—1—-mn), —g<n<0

Al = { fo( " g n), —gsn Typ 11
f(oaan7707igin)a TLS*(Q‘FI) (9_10)

Nun sind allerdings die Elemente in der ersten Alternative von (9-9) und
(9-10) nicht eindeutig fixiert. Wie in §3.(c) ausgefiihrt, kann eine generische
Konstante addiert werden. Diese Konstante sei vorlaufig beliebig gewahlt. In
(d) wird sich eine Normierung aufgrund gewisser Dualitdtsbeziehungen ergeben.
Wiederum wie oben ergibt sich unmittelbar
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Proposition 9.3. Seig > 2, oder g =1, dann bilden die
A,, neZ und Afw neZ,n<—-1, mit 2<j<N-1
eine Basis von FO(A).

Eine Basis der globalen holomorphen Formen kann sofort gefunden werden
durch Aussortieren der Elemente aus oberer Basis die keine Pole haben. Unter
Benutzung von M(A) = (2A—1)(g — 1) — 1 folgt

A<0 fa(N) 0<n<—2X
A=0 Ao
A>0 keine
g=1 fo(\) = Agdz*
g>2 A<0 keine
A=0 Ay
A>0  fa(N) 0<n<(2A-1)(g—-1)—1.

Nach der Riemann-Roch Formel sind dies tatséchlich die notige Anzahl Basise-
lemente.

(b) Die Strukturkonstanten

In diesem Abschnitt will ich die Strukturkonstanten C7 , von F A(A) iiber
KN (A) in Bezug auf die Basis aus (a) berechnen

ea-f5(N) =Y C3f (M) - (9-11)

Hierbei seien «, § und +y verallgemeinerte Indices. Genauer gesagt: Ich gebe
Bereiche an, fiir welche die Strukturkonstanten nicht verschwinden. Konkrete
Werte werden nur in den Spezialféllen (9-13) gegeben. In Abschnitt (¢) werden
fiir ¢ = 0 numerische Werte berechnet. Zur Bestimmung werde ich lokale
Berechnungen entsprechend §5. ausfithren. Hier haben wir zwar die Dualitét
nicht zur Verfiigung, konnen allerdings durch Subtraktion von Basiselementen
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sukzessive die Pole des Resultates (9-11) beseitigen. Ich beschrinke mich auf
g=0oder g > 2und A # 0,1. Selbstverstdndlich ist das Vorgehen in den
Ausnahmeféllen identisch. Die Formeln modifizieren sich nur ein wenig in den
Fallen bei denen ( (und « im Falle ¢ = 1) und der Bereich fiir -y irgendetwas mit
den endlich vielen modifizierten Elementen, die nicht dem generellen Schema
entsprechen, zu tun hat. Der einzige Unterschied ist, dafl entsprechend viele
Fallunterscheidungen benotigt werden.

Proposition 9.4. (a) Sein; > 0, dann gibt es ¢; € C,r = 0,...,n; mit
c?j =1, so daf$ gilt (nj an der j—ten Position)

0, my, o M) —ny) Zcrf’\ M) —r7).
(b) Seiny >0, dann gibt es ¢; € C,r =0,... ,n1 mit é}“ =1, so daf gilt

fAn1,0,..., M(\) —ny) Zafﬂ M) =) .

Beweis. (a) Ich lasse A in den Benennungen weg. Fiir r =0, 1,... ,n; erhalten
wir die lokale Entwicklung bei P; mit a] € C

n;j—1
f(r,0,... ., M r-(ZarzZ+O )> dz])»‘.

Es gibt eine nichttriviale Losung ¢}, cj, ... ,¢;’, so da
f=> 0, . M) —1)£0
r=0

und f mindestens eine Nullstelle der Ordnung n; bei P; hat. Diese Bedingung
definiert nédmlich ein homogenes Gleichungssystem mit n; Gleichungen und
n; + 1 Unbekannten. Wir berechnen

ord py(f) > min (ord py(f(r,... ,M(A) —7)) = M(\) —n,.

r=0,...,n;

Nach Prop. 3.2 kann f allerdings nirgendswo an den Punkten von A eine hohere
Ordnung haben, als

OI‘dPi(f):O, 27&.]7 Ordpj(f):nj, OI‘dPN(f):M()\)—nj-
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Bis auf eine Reskalierung der ¢} ist f identisch zu f(0,... ,n;,... , M(X\) —n;).
Weiter ist auch c;” # 0, da sonst ord p,(f) > M(X) — n; wére. Aufgrund
der lokalen Normierung bei Py gilt sogar daf3 der reskalierte Koeffizient 1 ist.
Als Nebenresultat ergibt sich, dafl obiges lineares Gleichungssystem den Rang
n; hat, da der Losungsraum eindimensional ist. Teil (b) gewinnt man durch
Vertauschung der Rolle von P, und P;. U

Sind e, und fg = fg(\) Basiselemente vom Typ I, bzw. Typ II, so sind
wir genau in der Situation N = 2, d.h. A = {Py, Py} wie sie in §5. studiert
wurde. Zu beachten ist allerdings ein Indexshift und eine andere Skalierung.

Proposition 9.5.
n+m—143g

en-fm= D, AN (9-12)

r=n+m-—1

mat
APt m=IH89(X) = —(m + An) — g(1 4 \),
9-13
AT = (m o ) 22 -
’ bn-l—m—l

Hierbei ist a, (bzw. by, ) der fihrende Koeffizient von e, (bzw. fn,) am
Punkt P; .

Beweis. Esgilt e}, = Cpent1,1 und fL, = Dy, fr41,1 mit passenden Konstanten
Cy, und D,,. Unter Benutzung von (5-9) folgt (9-12). Die genaue Bestimmung
der Strukturkonstanten an den Randern erfolgt durch Berechnung der lokalen
Form bei P, bzw. Py. Es gilt bei P;

en - fm| = (m+ M) by 28T 1 4 O(21)) d2y
bzw. bei Py mit M(—1) = —3g + 2
en - fruy = (—(m+An) — g(A + 1))z "IN L O(2y)) dz)y

Damit berechnet sich (9-13). Natiirlich hétte man (9-12) auch aus den obigen
lokalen Abschétzungen ohne Benutzung von § 5. berechnen kénnen [Schll]. O

Insbesondere sieht man aus (9-13), daf fiir n = m = 0 der unterste Koef-
fizient immer 0 ergibt. Dies muf} natiirlich so sein, da das Resultat holomorph
bei P; sein muf. Bei A = —1, d.h. die Krichever - NovikovAlgebra selbst, treten
fiir n # m die beiden Randterme auf jeden Fall auf.

Ich komme nun zu den weiteren Strukturkonstanten. Zuerst betrachte ich
(Typ I, Typ III;) und umgekehrt. Dazu ist zu beachten, daB fiir jeden Punkt
P; eine Formel analog zu (9-12) existiert, da ja die Auswahl des Punktes P;
willktirlich war.
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Proposition 9.6.

n+m—1+43g

min(—1,n+m—1+43g)

en-fh= Y, AN+ > AN 1]
r=0 r=m-—1 (9—14)
n+m—1+3g min(—1,n+m—1+3g)
e fm= Y Bil.fit > B (V]
r=0 r=n—1 (9-15)

Beweis. Ich zeige nur (9-14). Die zweite Formel ergibt sich analog. Sei also
n > 0 und m < 0. Nach Prop. 9.4 gilt

en:Zége(O,... Ty, —=3g+2—1),
r=0

somit unter Benutzung von (9-12)

en.fgl:Zé;e(O,...,r,...7—3g+2—r).f{;L
r=0

n r+m—1+3g

=S"a N DO, s
r=0

s=r+m-—1

n+m—1+3g (strl

> > a;pg;%) F0,... 5., M()\) —s).

s=m—1 r=0

M) = s)

Die auflere Summe wird aufgespalten

n+m—143g min(—1,n+m—1+3g)
s=0 s=m—1

Ist die erste Summe nicht leer, so werden die f(...) in dieser Summe mit Hilfe
von Prop. 9.4 in Termen von f! mit r=0,... ,n+m — 1+ 3g ausgedriickt.
Die zweite Summe ist bereits ein Ausdruck in den Basiselementen. Es ergibt
sich somit (9-14). O

Aus (9-15) sieht man, daB fiir ), (j # 1) mit n < 0, egal wie groB m gewéhlt
wird, immer die Terme f}_, bis f7, auftreten.
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Proposition 9.7. (Typ III;, Typ 11I;)

n+m—1+3g min(—1,n+m—1+3g)

e-fh=>, C.Wh+ > Cra (N (9-16)
r=0

r=n+m-—1

Beweis. Es kann alles in KA (P;, Py), bzw. FA(P;, Py) berechnet werden und
wir erhalten die Resultate von Prop. 9.5. Die f(0,...,s,...,M(\) — s) mit
s > 0 werden mit Hilfe von Prop. 9.4 umgerechnet in Linearkombinationen
fH(X) mit 7 > 0. Dies ergibt die Resultate (9-16). O

Proposition 9.8. (Typ III;, Typ III},), j # h, bzw. (Typ II, Typ III;)

-1 -1 n+m—1+43g
eh-Sm= Y DRSO+ Y B+ Y ER S
r=n—1 r=m-—1 r=0

(9-17)
Beweis. Hierbei ist n,m < 0 und es sind 3 Polstellen beteiligt. Es gilt

ord p,(el, . fh)y>n—1
ord p, (el . fhy>m —1

ord py (el f) = M(A) = (n+m —1+3g) .
Durch Subtraktion geeigneter Vielfacher von

J.oon—1<s<-1, und f', m-1<r<-1
konnen vom Ergebnis die Polstellen bei P; und P, beseitigt werden. Dabei gilt
fiir das derart modifizierte Element

ord py(...) = min (M(A) — (n+m—1+43g), M(A\)+1) .

Da im Rest allerdings kein Pol bei P, auftritt, ist dieser Linearkombination
von fi,k > 0. Nun gilt ord p(f}) = (M(\) — k), d.h. k durchlauft nur die
Werte 0,1,... ,n+m+ 3g — 1. Dieser Bereich ist allerdings nichtleer nur falls
—(n+m) < 3g —1 ist. Zusammen erhalten wir die in (9-17) behauptete
Form. O

Im Gegensatz zum 3. Term in (9-17), der verschwinden kann, werden im
allgemeinen die ersten beiden Summen sich iiber den vollen Bereich erstrecken.
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(Siehe (c) fiir ein numerisches Beispiel.) D.h. im Produkt e/ . f* steigt die An-
zahl Summanden linear mit m. Fordern wir, dal die Algebra und die Module
eine Graduierung tragen sollen, induziert durch die Basiselemente, derart dafl
die Dimensionen der einzelnen homogenen Teile eine gemeinsame Schranke be-
sitzen, und daf} die Struktur dann eine verallgemeinerte graduierte Struktur ist
(5-19), so sehen wir daf insbesondere die Anzahl Elemente im Produkt e, . f7
eine Schranke unabhéngig von m und n besitzen mufl. Dies bedeutet: Die obige
Basis kann so etwas nicht leisten.

Im ersten Ansatz mag man daran denken die Forderung nach der Dimensionss-
chranke fallen zu lassen, in der Hoffnung, dafl trotzdem alles gutgehen. Leider
sieht man dann, da8 die in §7. notwendige Abbildung KA (A) — gl(cc), in-
duziert durch die Operation der Elemente von ICA/(A) auf der Basis von F*(A),
nicht mehr funktioniert, da e, fiir n < 0 nicht auf eine Matrix mit endlich vielen
Diagonalen abgebildet wird.

(c) Ein Beispiel: g=0

In diesem Abschnitt will ich die Strukturkonstanten von A (A) in Bezug auf
die in (a) eingefiihrte Basis im Fall Geschlecht g = 0 berechnen. Diese Formeln
konnen ohne Probleme auf beliebiges A, d.h. zur Berechnung der Strukturkon-
stanten der Moduln, verallgemeinert werden.

Ich wahle eine Parametrisierung z von X = IP! derart, daf
Py & z=00, P, & z=aqa; i=1,...,N—1 (9-18)

wobei a; = 0 gesetzt sei. Die konkrete Angabe der Basis erfolgte bereits in

§4.(c)

, 0
el :(z—ai)”a—, neZ firi=1, neZ,n<0, firi=2,... N—1.
2

n

Hierbei habe ich, um Vorzeichenfaktoren zu vermeiden, derart normalisiert,
daB bei z = co (entspricht w = 1 = 0) der niedrigste Koeffizient —1 betrigt.

z
Direktes Ausrechnen zeigt

”6 ma — m,n—la
[(z—a) 5 (z—a) a]—(m—n)(z—a) + 5 (9-19)
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Fiir j = 1 erhalten wir somit

[ens em] = (m —n)ep, 0 (9-20)
Zur Berechnung von
[eled], §7>2, m<0,n>0

setzen wir

na - k8
e = (z—a+a)" Z() z—a)a.

k=0

Somit mit @ = a; und 8(%%) =

k=0

n m—+k—1

n —k -1 s.m s
s (Paetemen > co("TETY) "

k=—m-+1 s=0

Nach Umsortieren erhélt man
m+n—1 min(—1,m+n—1)
el el ] Z A e + Z Al el n>0 (9-21)
r=m-—1

mit 7 =2,..., N — 1 und den Koeffizienten

m+n—1
. t n
R — —1)ttr 1 _ ntm—1—r N
ARl < g (-1) (7“) (t R 1) (2m—1 t)) aj , r(f 0

= 9-22)
A= ()T =), <o (9-23)

Direkt berechnet sich

[e{“ efn] =(m—n) eZL+m_1, n,m <0 . (9-24)
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Wir betrachten nun Typ (III;,III;) mit ¢ # j. Hierbei sei auch zugelassen, dafl
einer der Indices gleich 1 ist. Es sei

Y =[w 0 (w—a) %], n,m <0 . (9-25)

Wir entwickeln den 2. Faktor in eine Potenzreihe mit Hilfe von

m _ (_1\ym,m _gm__m,m m_rgr

(w—a)™ = (—1)"a (1 a) = (~1)™a Z(T)( 1) (a) .
r>0

Innerhalb des Giiltigkeitsbereiches der binomischen Reihe erhalten wir

Y = (-1 Y (m) (—1)a (= myurtr1 2

r ow
r>0

Somit gilt

-1
m 0
Y = ~1 m4n—1—k _m+4n—1—k k—2 1 k Y VA
Dl A

mit bei w = 0 holomorphem Z. Setzen wir w = (2 — a;) und a = (a; — a), so
erhalten wir mit

0 0 0 0 0 0

(e-a) g s ma) ) =l w-a) o), o= o

ow ow
die Darstellung
-1 -1
el = 3 Difilei+ X2 Eilel (9-26)
s=n—1 s=m—1

mit den Koeffizienten (¢ = m +n — 1))

s,t,7 m —s
Db = (s s 1) (ar —a;)T (s —2n+1) (9-27)
Byl = (1) Dy (9-28)

Dabei wurden die Konstanten D wie oben bestimmt. Statt die Konstanten
E zu berechnen habe ich die Antisymmetrie des Lieproduktes benutzt und
erhalte (9-28). Weitere Terme gibt es wegen (9-6) nicht (n +m —1 <0 !).

Insbesondere sieht man, daf in (9-26) alle Terme von e’ ,,_; bis e |, bzw.
e’ .., bis ¢’ | auftauchen.
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(d) Die Entwicklungsformel

Per Definition kann man jedes v € F*(A) als Linearkombination der angegebe-
nen Basiselemente schreiben. In §5. waren wir aufgrund der starken Dualitat
zwischen den dortigen Basiselementen der A—Formen und den (1 — A)—Formen
(5-6) in der Lage die Entwicklungskoeffizienten direkt durch Kurvenintegration
(bzw. was daselbe ist: durch Residuenberechnung) zu gewinnen. Als Integra-
tionskurve haben wir dort Kurven die homolog zu C, waren benutzt. Hier-
bei wurde zur Definition von C; ein spezielles 1—Differential, abhéingig von
A = I U O, benutzt. Aufgrund der Interpretation von 7 als “Eigenzeit des
Stringes” bezeichnen die Physiker (siehe etwa [Di3]) dies auch als “equal time
decomposition”. Eine analoge Situation liegt in Bezug auf die zweite Basis
nicht vor. Allerdings kann man durch Integration gegen gewisse “duale” Ba-
siselemente auch hier die Koeflizienten bestimmen. Jedoch kann man nicht
immer dieselbe Integrationskurve wéahlen. Ich fiihre zuerst das Differential

N
_ J
P=N_-1 Z w_1 (9-29)
Jj=1
ein. Es hat Residuum — an den Punkten Pi,..., Py_1 und Residuum

+1 am Punkt Py. Nach dem in §2. ausgefiihrten sind die Levellinien C;
in Bezug auf p fiir 7 < 0 homolog zu einem Kreis um Py und fiir 7 > 0
homolog zu disjunkten Kreisen um Pi,..., Py_1. Daneben betrachte ich noch
die orientierten Kreise C¥ um P; mit j = 1,... ,N. Fiir w € F!(A) gilt (mit
der entsprechenden Orientierung)

N-1
1 1 1
v L 7{ v w= W (9-30)
=1 2mi Ci 2mi C. 2mi CcN
Das Ziel dieses Abschnittes ist

Proposition 9.9. Sei g > 2 und X\ # 0,1 oder ¢ = 0 und A\ € Z. Habe
v € FMNA) die Darstellung

v = Z/rnfn()\) + Z/rnfn(/\)—k

n>0 n<0

N—-1
Do s,

j=2 n<0

(9-31)
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dann konnen die Koeffizienten wie folgt berechnet werden

Ty = % b vofni(1=2) = % fcr v fopo1(1=A), n> (()9_32)

- % ) v Ffona(l=X)  n<o0 (9-33)
sl = % o v fo(1=) (9-34)
sj_z = % CjU'f1<1_>\)_5];104];1,1()‘>

| . 1 L
s, = 2 S v froa(l=A) = ; Ly p 1 (A) -

Hierbei sei definiert (r > 0,t <0)

: 1 .
j — J()) . _ -
od ) = oz OV F1-). (9-35)
Es ergibt sich
ajfnfl,n()\) =1 und a{,w()\) =0 fallsm<-n-—1. (9-36)

Beweis. Klar ist, dafi eine Darstellung wie in (9-31) existiert. Ich betrachte
zuerst fiir n,m € Z

w = fn(/\) : fm(l - )‘)

und berechne
ord py(w) =—n—m—2, ord p,(w) =n+m, ord p,(w) =0, 7 sonst.

w besitzt also ein nichtverschwindendes Residuum bei Py nur fiir
m = —n—1. Aufgrund der Normierung der beteiligten Elemente bei Py betragt
dieses gerade 1. Somit gilt

1
% on fn()‘) : fm(l - )\) = 6m,—n—1 .

Statt iiber CN kann auch iiber C', bzw. iiber C, integriert werden. Sei nun
m < 0, (und n < 0) und

w=FI0) - fml(1 =N .
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Es gilt ord p, (w) = —n—m—2 > 0. D.h. das Residuum bei Py verschwindet,
somit ebenfalls das Integral von w entlang CV, bzw. C,. Multipliziert man
deshalb (9-31) mit f_,,_1(\) mit n > 0 und integriert man iiber C, oder C¥V,
so erhélt man den Koeffizienten r,, fiir n > 0 wie in (9-32) angegeben.
Sein>0

w=fl,(N) - fa(L =) (9-37)

dann gilt
ord py(w) =—n—-—m—2, ord p(w)=n >0,
() ) = 039
ord p,(w) =m <0, ord p,(w)=0, isonst.

Dies bedeutet res p, (w) = 0, also verschwindet das Integral von w iiber C*
(aber nicht notwendigerweise iiber C;). Multipliziert man nun v wie in (9-31)

gegeben mit f_,,_1(1 — A\) mit n < 0 und integriert man iiber C*, so erhilt
man

L a-n= (

27 Cc1

L fn(A)f—n—l(l_)\)> Tn =Tn -

27 c1
Das letzte Gleichheitszeichen folgt aus

o P B Fan =N =52 § ) -2 =1

27 Ot o ?

Zur Berechnung der Koeffizienten s/ betrachten wir nochmal (9-37) mit den
obigen Ordnungen (9-38). Wir setzen fiir n > 0

ohnN) = 3 § T Ful1 ). (0-39)

Hierbei kann sich die Integration auch iiber CV, bzw. C; erstrecken. Aufgrund
der Ordnungsbetrachtungen bei Py, sehen wir o, ,,(A\) =0 fir m < —n —2.

J

Desweiteren ist O, g

Da fiir r # j gilt

(A\) = 1 aufgrund der Residuenberechnung bei Py .

L oy -y =0,

27i Ci

erhalten wir

% v fa(l=N) =Y s, (Qiiﬁjﬁﬁ(/\)'fn(l—/\o

e m<0

n
=5, -1+ Zsﬂpaﬂp’n(/\) .
p=1
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Somit
, 1 "o
Sj_n_l Py v - fn(l - A) - Z ijpa-]fp;n(/\) .

= 2mi Ci =1

Insbesondere ist zu beachten, dafl die zur Berechnung bendtigten Grofien sl
schon in vorherigen Schritten berechnet wurden. [

p

Bemerkung 1: Zur Berechnung der Koeffizienten s/, kann man auch die nicht
zur Basis gehérenden Elemente (da —n — 1 > 0)

o A=N =70, —n—=1,0,.. , M(1=X)+n+1)

benutzen. Mit obigen Argumenten, statt fiir P, nun fiir P; angewendet, erhalt
man )

il vy 1)) =g’ 9-40
i o v ffnfl( ) Sn ( )
(siehe hierzu auch [Di3]). Will man allerdings nur die Basis benutzen, so rechnet
man mit Hilfe von Prop. 9.4 um

—n—1

Faa=x= > ci"fli-\). (9-41)

s=0

Es ist Cfﬁ_l = 1. Die weiteren Koeffizienten konnen berechnet werden durch
Integration

. 1 .
Cim = g b Fana=0 £ (9-42)

Setzt man nun (9-42) in (9-41) und weiter in (9-40) ein, so erhalten wir wiederum
sJ, und gewisse Beziehungen zwischen den C™ und den o, ,,.

Bemerkung 2: Statt des Kurvenintegrales um den Punkt P; kann ich natiirlich
auch das Symbol res p, schreiben.
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Sei nun g > 2. Wir benutzen wiederum w fiir (1) und A fir f--(0). Wir
betrachten w=w_1-AJ firm=-1,-2,...,—gundj=1,... ,N—1. Da
gilt

ord py (W) =—g—m—2< -2

und w noch weitere Pole hat, wird man nicht erwarten kénnen, dafl das Integral

c, =— w_qy - Al 9-43
m i o 1 m ( )
verschwindet. Allerdings waren die Elemente A7, nur bis auf Addition einer
Konstanten fixiert. Ersetzen wir A7, durch A7 — ¢l . welches wir wiederum

J ; 1 _
A], nennen, so ist wegen 5y §onw_1 =1

1 .
— 1AL =0. 9-44
27 CcN w1 m ( )

Proposition 9.10. Mit diesen modifizierten Basiselementen im Fall g > 2 gilt
Prop. 9.9 auch im Fall A =0 und A = 1.

Beweis. Mit dieser Fixierung kann man den Beweis von Prop.9.9 inspizieren
und sehen, dafl alles unverédndert gilt. Hierbei muf} lediglich das Verhalten
bei Py iiberpriift werden, da an den anderen Punkten die Ordnungen wie im
allgemeinen Fall sind. [

Ubrig bleibt ¢ = 1. Da hier alle Formen durch Funktionen reprasentiert
werden betrachten wir zuerst

’w:A_l'A_le.

Daord p,(w) = —2und ord p, (w) = —2 verschwindet auch hier nicht notwendi-
gerweise
1
C= — Afl'Afle.
2mi cN

Wir ersetzen A_; durch A_; — g und berechnen

i (401 5) 4o

1 1 21
= — Azldzfc—, A_lderC——, dz=0
2mi Jon 271 Jon 4271 Jon
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unter Benutzung von ﬁf(ﬂ\f A_ydz =1 und 5 $on dz = 0. Mit diesem

modifizierten A_; berechnen wir fir j =2,... ,N —1
! Al A d
c; = — -A_1dz
J 27Ti CN -1 !

und ersetzen A’ ; durch AT 1 — ¢;, wobei wir wieder die alte Bezeichnung ver-
wenden. Dann gilt

1 )
— AV A 4 dz=0; j=1,...,N—1.
271 CcN

Analog zu obigem haben wir auch hier

Proposition 9.11. Mit diesen modifizierten Basiselementen gilt im Fall g = 1
ebenfalls die Prop. 9.9 .
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