The Sixth International Workshop

Group Analysis
of Differential Equations
and Integrable Systems

Group Analysis
of Differential Equations
& Integrable Systems

Proceedings

Protaras, Cyprus

June 17-21, 2012



Vaneeva 0.0., Sophocleous C., Popovych R.O., Leach P.G.L., Boyko V.M. and
Damianou P.A. (Eds.), Proceedings of the Sixzth International Workshop “Group
Analysis of Differential Equations and Integrable Systems” (Protaras, Cyprus,
June 17-21, 2012), University of Cyprus, Nicosia, 2013, 248 pp.

This book includes papers of participants of the Sixth International Workshop
“Group Analysis of Differential Equations and Integrable Systems”. The topics
covered by the papers range from theoretical developments of group analysis of
differential equations, theory of Lie algebras, noncommutative geometry and inte-
grability to their applications in various fields including fluid mechanics, classical
mechanics, Hamiltonian mechanics, continuum mechanics, mathematical biology
and financial mathematics. The book may be useful for researchers and post
graduate students who are interested in modern trends in symmetry analysis,
integrability and their applications.

Editors: 0O.0. Vaneeva, C. Sophocleous, R.O. Popovych, P.G.L. Leach,
V.M. Boyko and P.A. Damianou

© 2013 Department of Mathematics and Statistics, University of Cyprus

All rights reserved. No part of this book may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording or by any information
storage and retrieval system, without permission in writing by the Head of the Department of
Mathematics and Statistics, University of Cyprus, except for brief excerpts in connection with
reviews or scholarly analysis.

ISBN 978-9963-700-63-9 University of Cyprus, Nicosia



International Workshop

Group Analysis of Differential Equations

and Integrable Systems
http://www2.ucy.ac.cy/~symmetry/

Organizing Commiattee of the Series

Pantelis Damianou
Nataliya Ivanova
Peter Leach
Anatoly Nikitin
Roman Popovych
Christodoulos Sophocleous
Olena Vaneeva

Organizing Committee of the Sixth Workshop

Stelios Charalambides
Marios Christou
Pantelis Damianou
Charalambos Evripidou
Nataliya Ivanova
Peter Leach
Anatoly Nikitin
Roman Popovych
Christodoulos Sophocleous
Anastasios Tongas
Christina Tsaousi
Olena Vaneeva

Sponsors

Department of Mathematics and Statistics
University of Cyprus
Department of Applied Research of the Institute of Mathematics of NASU
Cyprus Research Promotion Foundation
Tetyk Hotel Apartments
Mé&M Printings
PIASTR Copy Center



Contents

Preface . .o 5
Abd-el-Malek M.B., Fakharany M. and Amin A.M., Lie group method for solving

a problem of a heat mass transfer......... ... .. .. . 6
Boyko V.M. and Popovych R.O., Reduction operators of the linear rod equation ..... 17
Damianou P.A., Lotka—Volterra systems associated with graphs ..................... 30
Damianou P.A. and Petalidou F., Poisson brackets with prescribed Casimirs. IT..... 45
Dimas S., Andriopoulos K. and Leach P.G.L., The Miller—Weller equation:

complete group classification and conservation laws........... ... ... ... ... . 60
Dos Santos Cardoso-Bihlo E.M., Differential invariants for the Korteweg—de Vries

EQUALION o ottt 71
Dragovié V. and Kukié¢ K., Quad-graphs and discriminantly separable polynomials

OF B D P ettt et e 80
Estévez P.G., Construction of lumps with nontrivial interaction...................... 89

Grigoriev Yu.N., Meleshko S.V. and Suriyawichitseranee A., On the equation
for the power moment generating function of the Boltzmann equation.
Group classification with respect to a source function ............................ 98

Kiselev A.V., Towards an axiomatic noncommutative geometry of quantum space

and BIME . . ..o 111
Kiselev A.V. and Ringers S., A comparison of definitions for the Schouten bracket

O JEE SPACES . . ..ttt ettt et e e 127
Maldonado M., Prada J. and Senosiain M.J., On differential operators of infinite

OTder IN SEQUENICE SPACES . « « ¢ vt vttt ettt et e e et ettt e et e e e 142
Nesterenko M., S-expansions of three-dimensional Lie algebras...................... 147

Nikitin A.G., Superintegrable and supersymmetric systems of Schrodinger

EQUATIONS .« o vttt e e 155
Pocheketa O.A., Normalized classes of generalized Burgers equations................ 170
Popovych D.R., Generalized IW-contractions of low-dimensional Lie algebras........ 179
Rosenhaus V., On differential equations with infinite conservation laws ............. 192

Sardon C. and Fstévez P.G., Miura-reciprocal transformations for two integrable
hierarchies in 141 dimMenSioNS . .. .......uuu 203

Spichak S.V., Preliminary classification of realizations of two-dimensional Lie
algebras of vector fields on a circle ........ ... i 212

Stepanova 1. V., On some exact solutions of convection equations with
buoyancy force. ... ... 219

Vaneeva O.0., Popovych R.O. and Sophocleous C., Group classification of
the Fisher equation with time-dependent coefficients.......................... ... 225

Yehorchenko I., Hidden and conditional symmetry reductions of second-order
PDEs and classification with respect to reductions............................... 237

List of participants .. ... ... 246



Preface

The Sixth International Workshop “Group Analysis of Differential Equa-
tions and Integrable Systems” (GADEIS-VI) was conducted at Protaras,
Cyprus, during the period June 17-21, 2012. There were fifty three par-
ticipants from twenty one countries (Austria, Canada, Cyprus, Czech Re-
public, Egypt, France, Greece, Ireland, Italy, Norway, Poland, Romania,
Russia, Serbia, South Africa, Spain, Thailand, the Netherlands, Ukraine,
the United Kingdom and the United States of America) and thirty eight
lectures were presented. The topics of the Workshop ranged from theoret-
ical developments of group analysis of differential equations, theory of Lie
algebras, noncommutative geometry and integrability to their applications
in various fields including fluid mechanics, classical mechanics, Hamiltonian
mechanics, continuum mechanics, mathematical biology and financial math-
ematics. Twenty two papers are presented in this book of proceedings.

The Series of Workshops is a joint initiative by the Department of Mathe-
matics and Statistics, University of Cyprus, and the Department of Applied
Research of the Institute of Mathematics, National Academy of Sciences,
Ukraine. The Workshops evolved from close collaboration among Cypriot
and Ukrainian scientists. The first three meetings were held at the Athalassa
campus of the University of Cyprus (October 27, 2005, September 25-28,
2006, and October 4-5, 2007). The fourth (October 26-30, 2008), the fifth
(June 6-10, 2010) and the sixth meetings were held at the coastal resort of
Protaras.

We would like to thank all the authors who have published papers in the
Proceedings. All of the papers have been reviewed by one or two independent
referees. We express our appreciation of the care taken by the referees and
thank them for making constructive suggestions for improvement to most
of the papers. The importance of peer review in the maintenance of high
standards of scientific research can never be overstated.

The Editors
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Lie Group Method for Solving a Problem
of a Heat Mass Transfer

Mina B. ABD-EL-MALEK T, M. FAKHARANY % and Amr M. AMIN |

T Department of Engineering Mathematics and Physics, Faculty of Engineering,
Alexandria University, Alerandria 21544, Egypt
E-mail: minab@aucegypt.edu

! Department of Mathematics, Faculty of Science, Tanta University, Tanta, Eqypt

The problem of heat and mass transfer in non-Newtonian power law, two-
dimensional, laminar, boundary layer flow of a viscous incompressible fluid
over an inclined plate is considered. By employing the Lie group method to
this system, its symmetries are determined. Using the Lie reduction method
the analytic solutions of the given equations are found. Dimensionless velocity,
temperature and concentration profiles are studied and presented graphically
for different physical parameters and the power law exponents.

1 Introduction

The flow of non-Newtonian fluids, including the power-law model has many ap-
plications in food processing, polymer, petrol-chemical, geothermal, rubber, paint
and biological industries, as well as many engineering problems such as cool-
ing of nuclear reactors, the boundary layer control in aerodynamics, and crystal
growth. Lie symmetries provide a constructive method of reducing systems of par-
tial differential equations into system of ordinary differential equations. A number
of problems in science and engineering are solved using similarity analysis (see
Ibragimov [5], Olver [7], and Seshadri and Na [8]). Many physical applications
are illustrated by Abd-el-Malek et al. [1-4]. In 2006 Sivasankaran et al. [9], have
applied the Lie group analysis to study the same problem but without considering
the power-law fluid in the momentum equation, the heat generation in the energy
equation, and the thermo-phoretic velocity in the diffusion equation. In this work,
we construct analytical solutions and present qualitative discussion for the laminar
boundary-layer flow of non-Newtonian power law fluids using Lie group methods.

2 The mathematical formulation

We study the system proposed by Olajuwon in [6]. It consists of the continuity
equation

ou Ov
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the momentum equation

u@—l-v% _Va (_6u
Ox dy Oy

@)n +gB(T' —T) cosa + gB*(C' — C) cos a, (2)

the energy equation

or or k 0*°T Q@
ot =— s+ (- Tx),
hEr —H}(?y pc, 0y? + pc( ) (3)

the diffusion equation

oC oC 9’C 0
u%+v67y_D87y2787y(VT(07000)), (4)

and the associated boundary conditions

uw=v=0, T=1T, C=C, at y=0, (5)
u=0, T=T,, C=Cyx as y— o0.

Here u and v are velocity components; = and y are space coordinates; T, T,
and T, are the temperature of the fluid inside the boundary layer, the plate and
the fluid temperature in the free stream, respectively. The plate is maintained at
a temperature T},, and the free stream air is at a temperature T, where T, > T,
to a cold surface. C, C,, and C4, are the concentration of the fluid inside the
boundary layer, beside the plate, and the fluid concentration in the free stream,
respectively; v is the kinematic viscosity of the fluid; ¢ is the acceleration due to
gravity; B is the coefficient of thermal expansion; 8* is the coefficient of expansion
with concentration; k is the thermal conductivity of fluid; p is the density of the
fluid; ¢, is the specific heat of the fluid; @ is the heat generation constant; D is
the diffusion coefficient; « is the angle of inclination, n is the non-Newtonian
parameter (power index) and the thermophoretic velocity Vp can be written as

kv 0T
Vp=-—,
T, Oy
where T, is some reference temperature and v is the thermophoretic coefficient.
The non-dimensional variables are

jj_ono *_yUOO ﬂ_i @_L
- v ) y - v ) - Uoo ) - Voo b
_ T(xv y) — Too C(.CC, y) Coo
9(1‘7 y) - Tw o Too ’ ¢($, ) Cw _ Coo
The stream function formulation is @ = ¢, v = —,. Here and below the sub-

scripts of the functions ¢, v and 6 denote partial derivatives with respect to the
corresponding variables.
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Figure 1. The physical problem.

Using this assumption, equation (1) becomes an identity and the remaining
governing differential equations (2)—(4), after dropping the bars, transform to

U2n—2 B
Yy ey — Yty + % (—yy)" ! Yyyy — (Gré + Ge¢) cosa =0, (6)

14

where Gr and Gc are constants, namely, Gr = vgS(T,, — Too)UL> is the thermal
Grashof number, and Gc = vgf*(Cy — Cs)US is the solute Grashof number;

1
Yyly — P50y — P 0yy — He0 =0, (7)

Pr
where He = Qu/(pc,U2,) is the heat generation parameter, and Pr = vpc,/k is
the Prandtl number;

1
wyé’x - %Gy - Se ¢yy +7(¢ gyy + 0y¢y) =0, (8)

where Sc¢ = v/D is the Schmidt number, 7 = —k(Ty — T)/T; is the ther-
mophoretic parameter, and k = v"~1U% 2", The corresponding boundary and
initial conditions (5) become

%Z%IO, 021, ¢:1 at y:Ov (9)
Py =0, 0=0, ¢=0 as y— oo.

3 Solution of the problem
using Lie symmetry group method

In this section the symmetry group of equations (6)—(8) and the boundary con-
ditions (9) are calculated using Lie method. Under this transformation, the two
independent variables reduce to one and the equations (6)—(8) are transformed
into ordinary differential equations (ODEs), where the independent variable is
called similarity variable.
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Firstly we briefly discuss how to determine Lie point symmetry generators
admitted by equations (6)—(8), since the procedure is well known (see, e.g., [5,7]).
Consider the one-parameter Lie group of infinitesimal transformations in the space
of independent and dependent variables (x,y, 0, ¢, 1) given by

* =1+l +0(?), y =y+e&2+0(?),
0" =0+en' +0(e?), ¢*=¢p+en*+0(e?), ¥*=v+en’+0().

Here &' = &'(x,y,0,0,0), ¥ = 17 (x,y,0,9,9) with i = 1,2 and j = 1,2,3; € is
the Lie group parameter. A system of partial differential equations (6)—(8) is said
to admit a symmetry generated by the vector field

0 0
1 2
_ a9 < 10
ot T g T o, T oy (10)
if the transformation (x,y,0, v, ¥) — (z*,y*, 0, ¢*,1*) leaves this system invari-
ant.

A vector field X given by (10) is said to be a Lie point symmetry for equa-
tions (6)—(8) if the action of the third prolongation X ) of the operator X

3 0
“ 0y

5 0
Y awy
0 ) ~ 9 0
+&ymg— toua— T +& +&

gyy aeyy fyy a(’pyy &- Y awxy é-yy awyy éyyy awyyy

d d
x® = X+§x87+§y80 +§2 +§2 +§ +¢

on the left hand sides of equations (6)—(8) results to differential functions iden-
tically vanishing on the manifold defined by the system (6)—(8) in the prolonged
space. The formulas for calculation of the coefficients appearing in the opera-
tor X®) can be found, e.g., in [7]. After some cumbersome calculations we get

dog-g-t=g=0 g-g-g=g=0
m=ny=n=n=n0,=0 n =n*=0.

Solving this system we obtain
'=c, €=F@), n'=0, 1*=0, 7°=c,

where ¢; and ¢ are arbitrary constants, F'(x) is an arbitrary smooth function of
the variable z. Therefore, system (6)—(8) admits the symmetry generator

0 0 0

If ¢; # 0, then without loss of generality we can set ¢; = 1 and F(z) = 0 using
the adjoint action of the corresponding algebra.

X:CI
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To get the transformation of the independent and dependent variables which
reduces system (6)—(8) to the system of ODEs we should solve the following chara-
cteristic system

dv _dy _do _dy _ dy
1 0 0 0 e

Its general solution is

n(x,y) =y, ¢m) =Cz+Fi(n), «0)=rm), 00 =7Fn),
v=—th=—C, u=1,=F@),

where C' = ¢, Fj(n), j = 1,2,3, are arbitrary functions. The corresponding
boundary conditions are

Fy(n) =1, Fa(n)=1, Fi(n)=
Fy(n) =0, Fy(n) =0, Fi(n) =
Then equation (7) becomes

F{ + CPrF;+PrHeF; = 0.

0 at n=020,
0 as n— oo.

Since practically |He| < 1, then the solution of this differential equation is
0 =F3(n)=e ", CvVPr>vVHe,

where r = 2C Pr + 1/(CPr)2 — 4PrHe.
Equation (8) reduces to the ODE

FY + CSc Fy — 7Sc(FoFY + FyF}) =0,

whose solution is

c3 [ exp(—Scte ™™ + CScn)dn + ¢
90:F2(77): 3f Xp( T 77) n 4

exp(—ScTe™"™ 4 C Scn)

9

where c3 and c4 are arbitrary constants. We take e™™ = 1 — rn and apply
boundary conditions to give

o =Fy(n)=e™, where m=(rr+C)Sc.
Substituting the obtained expressions into equation (6) we get the ODE

n(UZ2) d(Fp)"
pn—l dn

Exact solutions of equation (11) can found for n = 1. In this case it becomes

+ CF/ + Greosae " + Geceosae™ ™ = 0. (11)

F" + CF{ + Grcosae " + Geeos ae™ ™ = 0,

whose solution for m,r # C can be written in the form
Grcos Gcceosa

—F(n) = — " (e — e Cny 4 727

Y 1(7) r(C —r) (6 ¢ ) m(C —m)

For n # 1 we have solved (11) numerically.

(e7™ — e*C").
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u u
n =0.5,0.6,0.8, 1 n—=1,11,13,1.5
0.6
0.6
A4
0 0.4
0.2 0.24
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Figure 2. Effect of the power indexn <1  Figure 3. Effect of the power indexn > 1
on the velocity profiles across the boundary  on the velocity profiles across the boundary

layer for C = 1, Pr = 1, He = 0.2, Sc = layer for C = 1, Pr = 1, He = 0.2, Sc =
022, v=1,7=1,Usx =1, Gr =09, 022, v=1,7=1, Uy =1, Gr = 0.9,
Gec = 1.0, a = 60°. Gec=1, a=060°.

4 Illustration of the results

In this section, we explore the properties of the characteristics of the flow that
obtained using Lie method. The effect of a various parameters such as the non-
Newtonian parameter n, the Prandtl number Pr, the heat generation parame-
ter He, and the Schmidt number Sc on the velocity components, temperature and
concentration profiles are studied.

4.1. Effect of the power index n on the velocity components. Figs. 2
and 3 illustrate the effect of n on the dimensionless velocity components profiles
across the boundary layer. Since for n = 1;1.1;1.5 the corresponding values of
n = 7;9;16, it is clear that the thickness of velocity boundary layer increases with
the increase of the non-Newtonian parameter n.

4.2. Effect of the Prandtl number Pr.

o On the temperature. Fig. 4 displays the effects of Pr on the temperature profiles.
Physically speaking, Pr is an important parameter in heat transfer processes as it
characterizes the ratio of thicknesses of the viscous and thermal boundary layers.
Increasing the value of Pr causes the fluid temperature and its boundary layer
thickness to decrease significantly as seen from Fig. 4. This decrease in temper-
ature produces a net reduction of the thermal buoyancy effect in the momentum
equation which results in less induced flow along the plate and consequently, the
fluid velocity decreases.

o On the concentration. Fig. 5 displays the effects of Pr on the concentration
profiles. It is observed that the concentration distribution inside the boundary
layer also decreases.
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6(()72 Pr=1,3,10 ,a((]r]g Pr—1,3, 10
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0 2 4 6 8 n 0 2 4 6 '8 n

Figure 4. Effect of Pr on the temperature  Figure 5. Effect of Pr on the concentra-

profiles across the boundary layer for C' =  tion profiles across the boundary layer for

1,He =0.2,S¢=0.22,Gr=0.9,Gc=1.0, C =1, He = 0.2, Sc = 0.22, Gr = 0.9,

a=60°U,=1v=17=1,n=028. Ge=10,a=60°, U =1, v=1,7 =1,
n =0.8.

0.8) Pr—1,3,10

0.71
0.6

0.31
0.2

0.17

Figure 6. Effect of Pr on the velocity profiles across the boundary layer for C = 1,
He=0.2,5¢=0.22, Gr=0.9,Gc=10,a=60°, U, =1,v=1,7=1,n=0.8.

o On the wvelocity. Fig. 6 shows the effect of the Prandtl number Pr on the
velocity profiles across the boundary layer. We observe that the velocity decreases
monotonically with the increase of Pr.

4.3. Effect of the heat generation parameter He.

o On the temperature. Fig. 7 shows the temperature profile for various values of
He. It is observed that the fluid temperature increases with increase of He. This
is expected since heat generation causes the thermal boundary layer to become
thicker and the fluid become warmer. Also, it is clear that the temperature
approaches zero faster for small values of He.

o On the concentration. Fig. 8 shows the concentration profile for various values
of He. It is observed that the fluid concentration decreases with the increase of
He and it goes to minimum faster with a big value of He.
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0(n)
0.9
0.8

0.7
0.6

0.5
0.4

0.3
0.2

0.1

He = 0, 0.1, 0.2, 0.25

0 2 4 6 8 0

Figure 7. Effect of He on the temperature profiles across the boundary layer C' = 1,
Pr=1,S¢=022, Gr=09,Gc=1.0,a=60°, U =1,v=1,7=1,n=0.8.

e(n)
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

He =0,0.5,08,1

0 2 4 6 8 10 12 14 16 18 n

Figure 8. Effect of He on the dimensionless concentration profiles across the boundary
layer for C' =1, Pr=1,Sc¢=0.22, Gr=0.9, Gc=1.0,a=60°, U, =1, v=1,7=1,
n =0.8.

4.4. Effect of the Schmidt number Sc. Fig. 9 illustrates the influence of Sc on
the concentration profiles. By analogy with the Prandtl number Pr, the Schmidt
number Sc is an important parameter in mass transfer processes as it characterizes
the ratio of thicknesses of the viscous and concentration boundary layers. Its
effect on the species concentration boundary-layer thickness has similarities to
the Pr effect on the thermal boundary-layer thickness. That is, increases in the
values of Sc cause the species concentration boundary layer thickness to decrease
significantly.

4.5. Effect of the Grashof number Gc. Fig. 10 illustrates the influence of Ge
on the velocity profiles across the boundary layer. Its effect on the velocity across
the boundary-layer thickness is to increase the velocity by increasing the values
of Ge. It is clear that the maximum value of the velocity at different values of Ge
occurs at about n = 1.5.
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o(n)
0.9
0.8
0.7
0.6/

Sc=1,2,5

0.5
0.4+
0.3
0.2
0.14

0 2 4 6 8 n

Figure 9. Effect of Sc on the dimensionless concentration profiles across the boundary
layer C =1, Pr=1.0,He=0.2,S¢=0.22, Gr=0.9, Gc=1.0,a=60°, U, =1, v =1,
7=1,n=08.

u
Gec =0.2,0.6,0.9

0.1
0.08
0.06

0.04

0.02

0 2 4 6 8 0

Figure 10. Effect of Gc on the velocity profiles across the boundary layer for C' = 1,
Pr=1,He=0.2,Sc=022 Gr=09, Gc=10,a=60°,Uyr,=1,v=1,7=1,n=0.8.

4.6. Effect of the thermal Grashof number Gr. Fig. 11 illustrates the
influence of Gr on the velocity profiles across the boundary layer. Its effect on
the velocity across the boundary-layer thickness is to increase the velocity by
increasing the values of Gr. It is clear that the maximum value of the velocity at
different values of Gr occurs at about n = 1.5.

4.7. Effect of the inclination angle. Fig. 12 illustrates the effect of the
inclination angle « on the velocity profiles across the boundary layer. The velocity
is reduced significantly by the deviation of the plate from the vertical direction,
i.e. by the increase of the angle.

4.8. Effect of the parameter C. Parameter C represents the component of
velocity normal to surface of the plate in opposite direction, i.e., C = —v. Fig. 13
shows that increase of C' causes the decrease of temperature across the boundary
layer. Also the thermal boundary layer is decreased by the increase of C.
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0.6 1

0.5 F

041

0.3 [

0.2 H

0.1

Gr = 0.75, 1.5, 2.5

Figure 11. Effect of Gr on the velocity profiles across the boundary layer for C = 1,
Pr=1,He=0.2,5¢=022,Gr=09,Gc=1.0,a=60°, U =1,v=1,7=1,n=0.8.

a =0, 30°, 60
0.3
0.2
0.1
0 ‘ ‘ ‘ ;
0 2.5 5 7.5 n

Figure 12. Effect of the inclination angle
« on the temperature profiles across the
boundary layer for C = 1, Pr = 1, He =
0.2, Sc =0.22, Gr = 0.9, Gc = 1.0, Uy, =
Lv=17=1,n=0.8.

0(n)
0.9 C=1,25
0.8
0.7
0.6
0.5
0.4
0.3

0.2
0.1

0 2 4 6 8 n

Figure 13. Effect of the constant C on the
temperature profiles across the boundary
layer for Pr = 2, He = 0.2, Sc = 0.22,
Gr = 0.9, Gc = 1.0, a = 60°, Uy = 1,
v=171=1,n=08.

5 Conclusion and discussion

Lie group method is proved to be a useful approach for solving the two-dimen-
sional boundary-layer flow of non-Newtonian power-law fluids and obtaining the
velocity profiles for different cases. Through the application of the Lie method,
we succeeded to study the effect of different physical and geometrical parameters
such as: the Prandtl number Pr, the heat generation parameter He, the Schmidt
number Sc, the solute Grashof number Ge, the thermal Grashof number Gr, the
power law index n, the component of velocity normal to the surface C' = —v, and
the inclination angle o on the temperature, the concentration, and the component
of velocity that is in direction of the plate, across the boundary layer thickness.
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Increasing the value of Pr causes the fluid temperature and its boundary layer
thickness to decrease significantly and consequently, the fluid velocity decreases.
In addition, the concentration distribution inside the boundary layer also de-
creases. The fluid temperature increases with increase in the He, and the rate
at which the temperature goes to zero is fast with a low value of He. The fluid
concentration goes to maximum faster with a high value of He. Increasing val-
ues of Sc cause the species concentration boundary layer thickness to decrease
significantly. The velocity component u increases with the increase of both Gce
and Gr and decreases with the increase of a and C. The power law index n has
two different effects on u, for the case of n < 1, the velocity u increases with the
increase of n, while for n > 1, the velocity u decreases with the increase of n.
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We study reduction operators (called also nonclassical or conditional symme-
tries) of the (141)-dimensional linear rod equation. In particular, we prove
and illustrate a new theorem on linear reduction operators of linear partial
differential equations.

1 Introduction

For linear partial differential equations, there exist well-developed classical meth-
ods of their analytical solution, which, in particular, includes the separation of
variables, different integral transforms, Fourier series and their generalizations. At
the same time, the study of symmetry properties of such equations is important,
first of all, for the development of methods of symmetry analysis itself.

In this paper we consider the (141)-dimensional constant-coefficient linear rod
equation usy + AMigzee = 0, where A > 0, for unknown function u of the two inde-
pendent variables ¢ and x. This equation describes transverse vibrations of elastic
rods. It is a special case of the Euler—Bernoulli beam equations, corresponding
to constant values of parameters. Lie symmetries and the general equivalence
problem for the class of Euler-Bernoulli beam equations were studied in [5,6,11].
By simple scaling of ¢ or x, without loss of generality we can set A = 1, i.e., it is
sufficient to consider the equation

Ut + Uprrr — 0 (1)

Some simple exact solutions of this equation are presented in [9, Section 9.2.2].}
The maximal Lie invariance algebra of equation (1) is

g = (O, Oz, 2t0; + 10y, Uy, h(t,x)0y),

where h = h(t, z) is an arbitrary solution of equation (1).
We study reduction operators (called also nonclassical or conditional symme-
tries) of the (141)-dimensional linear rod equation (1). First, in Section 2 we

!See also http://eqworld.ipmnet.ru/en/solutions/Ipde/Ipde501.pdf.
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prove a theorem on linear reduction operators of general linear partial differential
equations. This is why the notation in this section is different from the other
part of the paper. The consideration of the next two sections illustrates both the
statement and the proof of the theorem. The description of singular reduction
operators of (1) in Section 3 is exhaustive. In contrast to this, only particular
classes of regular reduction operators of (1) are found in Section 4. Possible gen-
eralizations of results obtained in the paper are discussed in the conclusion. We
list interesting symmetry properties of equation (1) and additionally indicate the
relation between the (1+41)-dimensional linear rod equation (1) and the (1+1)-
dimensional free Schrodinger equation.

2 Linear reduction operators of linear equation

In order to present a theoretical background on reduction operators, based on
[1-4, 10, 12], we first consider a general rth order differential equation £ of the
form L(z,uuy) = 0 for the unknown function u of the independent variables
x = (z1,...,2y). Here, uyy denotes the set of all the derivatives of the function u
with respect to x of order not greater than r, including u as the derivative of order
zero. Any vector field @ in the foliated space of the n independent variables x
and the single dependent variable u takes the form

Q = El(wv u)al + n($7u)aua

where the coefficients & and 7 are smooth functions of z and w. The first-order
differential function Q[u] = n — £u; is called the characteristic of Q.

Here and in what follows the index 7 runs from 1 to n, and we use the
summation convention for repeated indices, « = (aq,...,qy,) is a multi-index,
a; € NU{0}, |of = a1 + -+ + ap, and ¢; is the multi-index whose ith entry
equals 1 and whose other entries are zero. Subscripts of functions denote differ-
entiation with respect to the corresponding variables, 9; = 9/0z; and 9, = 9/0u.
The variable u, of the rth order jet space J" = J"(x|u) corresponds to the deriva-
tive 01l /028" ... 9xln, and u; = us,. All considerations are in the local smooth
setting. Then the equation £ can be viewed as an algebraic equation in the jet
space J” and is identified with the manifold of its solutions in J":

L={(z,uq)) € J" | L(z,up)) = 0}.

We use the same symbol £ for this manifold and write Q. for the manifold
defined by the set of all the differential consequences of the characteristic equation
Qu] =0in J", i.e.,

Q(r) = {(m,um) elJ" | D(l)ll .- Dg"Q[u] =0, a; e NU {0}, ]a\ < 7"},

where D; = 0, + uq4s,0u, is the operator of total differentiation with respect to
the variable x;.
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Definition 1. The differential equation £ is called conditionally invariant with
respect to the vector field @ if the relation Q) L(z, ur))|cng,,, = 0 holds. This
relation is called the conditional invariance criterion [1-3,12]. Then @Q is called
a conditional symmetry (or @Q-conditional symmetry, or nonclassical symmetry,
etc.) operator of the equation L.

In this definition, @, denotes the standard rth prolongation of @ [7,8]:

Q=0+ Z N*0y,, where 7%= D ... DQlu] + EUuns,-

0<|a|<r

The equation £ is conditionally invariant with respect to the vector field @ if
and only if an ansatz constructed with @ reduces L to a differential equation with
n—1 independent variables [12]. Thus, we will briefly call a conditional symmetry
operator of the equation £ a reduction operator of this equation.

Reduction operators C~2 and @ are called equivalent, C~2 ~ @, if they differ
by a multiplier which is a nonvanishing function of z and w: @ = AQ, where
A = Az, u) # 0. Reduction operators () and @ are called equivalent with respect
to a group GG of point transformations if there exists g € GG for which the opera-
tors @ and g*é are equivalent, where g, is the mapping induced by g on the set
of vector fields.

Now consider an rth order linear differential equation £ of the form

Llu) := Z a®(z)uq =0

laf<r

for the unknown function u of the independent variables x = (z1,...,x,), where
some coefficient a® with |a| = r does not vanish.

Among Lie symmetries of linear differential equations, a distinguished role
is played by symmetries associated with first-order linear differential operators
acting on u = w(z). If n > 2and r > 2 or n = 1 and r > 3, the system
of determining equations SDE(L) for the coefficients of vector fields from the
maximal Lie invariance algebra g™®* of £ necessarily implies the equations &/ = 0
and 7y, = 0. In other words, any of such vector fields can be represented as

Q = &'()0; + (n' (z)u + 1" (2))u, (2)

and the system SDE(L) additionally gives that n° is an arbitrary solution of L.
The vector fields n°(x)d,, where n° runs through the set of solutions of the equa-
tion L, form an ideal of the algebra g™?* and generate point symmetries that are
associated with the linear superposition principle. Up to the equivalence in g™®*
that is generated by adjoint actions of elements from the ideal, we can assume
7 = 0 in (2) if at least one of the coefficients ¢¢ or n! does not vanish.

The purpose of the further consideration in this section is to extend the last
claim to reduction operators of the form (2), which will be called linear reduction
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operators. Note that general conditions when a linear differential equation admits
only reduction operators which are equivalent to linear ones are not known.

Additionally recall that a vector field @ is called (weakly) singular for the
differential equation £: L[u] = 0 if there exists a differential function L = L[u] of
an order less than r and a nonvanishing differential function A = Afu| of an
order not greater than r such that L\Qm = )\f/\gm. Otherwise @ is called
a (weakly) regular vector field for £. A vector field @ is ultra-singular for the
equation L if this equation is satisfied by any solution of the characteristic equation
Q[u] :=n — €'u; = 0. See [1,4] for theoretical background on singular reduction
operators.

Theorem 1. Let a linear partial differential equation L possess a reduction oper-
ator Q of the form (2). Then the coefficient n° is represented as n° = szZO —n'¢o,
where (¥ = (%(z) is a solution of L. Hence, up to equivalence generated by action
of the Lie symmetry group of L on the set of reduction operators of L, the coeffi-
cient n° can be set equal to zero. Any vector field of the form £0; + (n'u + &¢; —
nt¢)Ou, where ¢ = ((x) is an arbitrary solution of L, is a reduction operator of L.

Proof. Since Q is a reduction operator, at least one of the coefficients ¢! does not
vanish. Consider the vector field Q = &(2)d;+n' (x)ud,. Let X1(z), ..., X" ()
be functionally independent solutions of the equation ¢'v; = 0, let X™(x) be a par-
ticular solution of the equation ¢*v; = 1 and let U(x) be a nonvanishing solution of
the equation &'v; +n'v = 0. We introduce the notation X = (X!,..., X™). Then
the components of X and the function U(z)u are functionally independent in to-
tal as functions of (x,u). This means that the change of variables 7: & = X (z),
= U(x)u is well defined.

We carry out this change of variables and represent all objects and relations
in the new variables (&, ). Thus, the vector field Q coincides with the generator
of shifts with respect to the variable Z,, Q = 9z, , and hence Q = 0z, + 71°(%)0q,
where 7°(Z) = U(x)n"(z). Then the characteristic equation associated with the
vector field @ in the new variables is %z, = 7. The change of variables 7 also
preserves the linearity of the equation £, which takes the form

Ll = ) a*(&)iia =0, (3)

|al<r

where each coefficient a* are expressed in terms of the coefficients a®’, [o/| > |al,
and derivatives of X? and U. The variable @, of the jet space J" corresponds to the
derivative 9%/ 0z ...0z%. Up to nonvanishing multiplier, a coefficient Ezao,
where |a°| = r, can be assumed to be identically equal to 1.

We denote an antiderivative of 7° with respect to Z, by ¢o,

=G .

We separately consider two cases depending on whether or not the reduction
operator @ is ultra-singular for £, and show that in each of these cases there exists
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an antiderivative ¢ of 70 satisfying the representation (3) of the equation £ in
the new variables, L[¢°] = 0.

Suppose that the reduction operator () is ultra-singular for £. As the property
of ultra-singularity is not affected by changes of variables, this means that the
representation E[ﬂ] = 0 of the equation £ in the new variables is satisfied by any
solution of the characteristic equation iz, = 7°, i.e.,

dSoait s, Y. a%a =0,

‘a|<rvan7é0 |a\<r,an:0

where the derivatives 4, with a,, = 0 are not constrained. Splitting with respect
to them, we obtain the system of equations a® = 0 for « running the set of
multi-indices with |o| < 7 and a,, = 0 and an equation for the coefficient 7,

D g, = Y, @M =0

|| <700 0 || <700 #£0

So, the summation in equation (3) is in fact for the values of the multi-index o
with ay, # 0 and hence the function ¢ satisfies this equation.

Suppose that the reduction operator ) is not ultra-singular for £. As the
rth prolongation of @ is given by Q(,y = 9z, + E| al<r 79(%)0a, , the conditional
invariance criterion implies for this case that

QuLla] = Y (a3, e +aijy) =0 (4)

laf<r

for all points of the jet space J" where L[] = 0 and @ = 72, 5, With |/ <7
and a, > 0. As @ =1, the differential function Q(,.)[N/[ﬂ] does not depend on
the derivative 0. Hence the constraint L[&i] = 0 is not essential in the course
of confining to the manifold £ N Q). The derivatives u, with a;,, = 0 are not
constrained. Splitting with respect to them in (4) gives the system of equations
ag = 0 for a running the set of multi-indices with |a| < r and o, = 0 as
a necessary condition for the equation £ to admit the reduction operator Q.
Then on the manifold Q) we get

QL= > ot Y. @l ia+ Y a%iy

|| <7y, =0 || <70 #0 || <
_ § : ~a ~0 2 : ~a~0
- ainnafén + a1
lal<ran 0 jal<r
_ § : ~a 0 § : ~a 0 § : ~a -0
- a:in Coz + a:En Coz + a Ca+5n
|| <ran, =0 || <r,an #0 |a|<r
=Y ald| =o
jal<r .

Tn
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The integration of the last equality with respect to Z, gives that the function
¢? = (Y(z) satisfies the inhomogeneous linear equation

E[&O} = Z &agg :g(xlv--'axnfl) (5)
|a|<r
for some smooth function ¢ = g(x1,...,2,—1). As in this case the reduction

operator @ is not ultra-singular for £, there exists the multi-index o with || < r
and a,, = 0 such that a* # 0. Hence equation (5) has a particular solution h
that does not depend on &, h = h(z1,...,7,-1).2 The function CNO — h is also
an antiderivative of 7j° with respect to Z, and, at the same time, it satisfies the
corresponding homogeneous linear equation, [~/[C~O — h] = 0. Therefore, without
loss of generality we can assume that the antiderivative 50 itself is a solution of
equation (3), L[C°] = 0.

We carry out the inverse change of the variables in the equality 7" = fgn = Qf 0
and introduce the function ¢9 = ¢° /U, which satisfies the equation £ in the old
variables (z,u). We have Un® = ¢(U(¢%); = UEI(Y + (€'U;)¢° = U(£¢Y — n'¢Y),
ie., n¥ = &¢) — nl¢Y. Here we use that £'U; = —n'U. The mapping generated
by the point symmetry transformation Z = z, @ = u — (%(z) of £ on the set
of reduction operators of £ maps the vector field ) to the vector field Q, for
which the coefficient 1 is zero. This means that Q is a reduction operator of L.
Applying the similar mapping generated by the point symmetry transformation
T =z, = u+ ((x) with an arbitrary solution { = {(z) of L, we obtain that any
vector field of the form £'0; + (n'u+£°¢; —n'¢)d, is a reduction operator of £. [

An ansatz constructed for the unknown function u with the vector field @ is

1
u= %gp(wl, 1) + ),
where ¢ is the invariant dependent variable, w1 = X(z), ..., wy—1 = X" !(2)

are invariant independent variables, and we use the notation from the proof of
the theorem. The corresponding reduced equation is

ol

~

E a™ (Wi, ..., Wn-1 — = 0.
CIIR )&u‘f‘l . aw“zll

|| <r 0, =0 n

It is obvious that the form of the reduced equation does not depend on the
parameter-function (°(x). The substitution of an arbitrary solution of £ instead
of ¢°(x) gives the same reduced equation.

2If n > 2, then for the guaranteed existence of such a classical solution we suppose that
all functions are analytical. In the case n = 2 or for specific linear equations the requested
smoothness of functions can be lowered.
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3 Singular reduction operators of the rod equation

For the linear rod equation (1), i.e., £: wuy + Uzpze = 0, the general form of
reduction operators is

Q = T(t,iB,U)@t + g(tvxa u)az + n(tvxa u)@u,

where the coefficients 7, £ and 7 are smooth functions of (t,x,u) with (7,§) #
(0,0). Similarly to the evolution equations, a vector field @ is singular for the
linear rod equation (1) if and only if the coefficient 7 identically vanishes. Note
that vector fields that are weakly singular for this equation are also strongly
singular for it. Then £ # 0 and hence up to usual equivalence of reduction
operators we can set £ = 1. In other words, for the exhaustive study of singular
reduction operators of the linear rod equation (1) it suffices to consider vector
fields of the form

Q = 0z + n(t,x,u)0,.
The manifold £N Q4 is defined by the equations
Up =1y gy = e+ s Uger = (O + 100, Ugzee = (0 +10u)n,
Ut = —Uggaz = —(0z + 10u)°.
Hence the conditional invariance criterion implies that
Mt + 20etis + Muwtt; — 1u(0z + 10u)*n + (0n +1u)*n = 0.

Collecting coefficients of different powers of the unconstrained derivative u; and
splitting with respect to it, we derive the system of three determining equations
for the coefficient n:

Nuw =0, M =0, Mg — Nu(0z + n@u)377 + (0 + UBU)477 = 0.

Thus, in contrast to a (1+1)-dimensional evolution equation, where there is a sin-
gle determining equation for the coefficient n of singular reduction operators and
this equation is reduced, in a certain sense, to the evolution equation under con-
sideration, finding singular reduction operators of the linear rod equation is not
a no-go problem. The equations 7y, = 0 and 1, = 0 give the expression

n=n"(x)u+n’(t )

for the coefficient 7, where n' = n'(z) and n° = %(¢, ) are smooth functions of
their variables. Theorem 1 implies that, up to equivalence generated by the max-
imal Lie symmetry group G™** of the linear rod equation on the set of reduction
operators of this equation, we can set n° = 0. We also show this directly.
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After substituting the expression for n into the last determining equation, we
can additionally split with respect to u to obtain

0x (0 +0')*n' =0, gy —n'n™ + ™ =0,
where the functions ° and n° are defined by the recurrent relation 7% := n°

and n% = ng’k_l + %0, + ')l k = 1,2,3,4. We make the differential
substitution

0 0
1_ Vs 0_ z
77*97 N =C 0(7

where 6 = 0(z) and ¢ = ((t,z) are the new unknown functions. It is possible to
show by induction that

b ak+1c B gdk+10
T Okl dpktD

k=1,2,....
Hence the differential substitution reduces the system for n' and 7° to a system
for 6 and (,

< > =0, Ctt:v - ggtt - ggxaszz + C + szzxw - C =0.

0 62 0

Integrating once the first equation, we get the constant-coefficient linear ordinary
differential equation 0,.,, = x6, where k is the integration constant. The second
equation can be represented as

Ctt + Ca:a::cx N ezca:a::c o Ctt + Cxa:a:a: o
(0 >x <0 x( =0, hence B — ) = 0.

The integration of the last equation with respect to x results in the equation
Cit + Comax = p(t)0, where p is a smooth function of ¢. The function ( is defined
up to the transformation ¢ = ¢ + o, where ¢ is an arbitrary smooth function of ¢.
This transformation allows us to set p = 0. Indeed, Q:tt—kfmm = pO+oub+okb =0
if o + ko = —p. In other words, we can assume that the function ( satisfies the
linear rod equation (1). Then the mapping generated by the point symmetry
transformation t = t, T = x, & = u— ((t, z) of equation (1) on the set of reduction
operators of this equation maps the vector field ) to the vector field of the same
form, where ¢ = 0 and hence 1° = 0.

Proposition 1. Up to equivalence generated by symmetry transformations of lin-
ear superposition, the set of singular reduction operators of the linear rod equa-
tion (1) is exhausted by the vector fields of the form

0
Qs = Or + ?U8U7

where the function 6 = 0(x) satisfies the ordinary differential equation 0yyyy = KO
for some constant k.
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An ansatz constructed with the reduction operator @ is u = 6(z)p(w), where
w =t is the invariant independent variable and ¢ is the invariant dependent vari-
able. The corresponding reduced equation is ., + k@ = 0. As an interpretation,
we can say that the reduction operator () is related to separation of variables
in the linear rod equation (1). It is obvious that the reduction operator Qg is
equivalent to a Lie symmetry operator only if 0, /6 = const.

4 Regular reduction operators of the rod equation

Consider regular reduction operators of the linear rod equation (1), for which the
coefficient 7 does not vanish. Up to usual equivalence of reduction operators we
can set 7 = 1, i.e., it suffices to consider vector fields of the form

Essential among the equations defining the manifold £N Q) are the equations

U =1 — Uy,  Utg = Mg + Ny — Ealy — EuUE — gy,
Ugt = —Uggzz = N + Nu(N — Euz) — (& + &u(n — Eug) )uy
_g(nx + Nuy — éxux - fuui - gumc)
Collecting coefficients of g,z in the condition following from the conditional

invariance criterion, we obtain the equation &, = 0. Other terms with w.,, give
the equations 7y, = 0 and 7, = %ﬁm. Therefore, we have

3
{=¢t), m=n'(tzjutn’(t,z), where 7= & +9(t)
with a smooth function v = v(t). The other determining equations reduce to

2606 + 5Eupa + 4876, = 0, (6)
€t + Eamaa + 201 E)e + 26&0 — Anbyy + 8EEM" — AEE2 =0, (7)
Mt + Nawae + 20000 — 26 +4&:(ny + 0’0" — &ny) =0, 8)
Mt + Nogwa + 20001 — 26m2 + 4&:(n) +n'n® — &nd) =0, (9)

where every appearance of n' should be replaced by %{x + y(t).

Similarly to singular reduction operators, Theorem 1 again implies that, up to
equivalence generated by the maximal Lie symmetry group G™?* of the linear rod
equation on the set of reduction operators of this equation, we can set n° = 0.
We show that the direct proof of this fact is not trivial. Indeed, let the function ¢
be defined by the relation n° = ¢ + £¢, — n'¢. As it is a first-order quasi-linear
partial differential equation with respect to (, such a function ¢ exists. We use this
relation to substitute for 7% into equation (9). Taking into account equations (6)—
(8) and 1y, = %gm, we derive the following equation for the function (:

(3t + 535(: - 771 + 4€I)(Ctt + mecx) = 07
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i.e., Gt + Craxe = h(t, x), where the function h = h(t, z) satisfies the equation
hi + Ehg + (—n' +4&,)h = 0.

The function h = h(t,z) can be set to zero. Indeed, the function ( is defined
up to summand that is a solution of the equation g; + £g, — n'g = 0. Any such
solution is represented as g = ¢°(¢,7)p(w), where ¢° is a fixed solution of the
same equation, ¢ ia an arbitrary function of w, and w = w(t, z) is a nonconstant
solution of the equation w; + &w, = 0. Then y = w,? satisfies the equation

Xt + Exa + 4 x = 0.

Therefore, the function h possesses the representation h = g% *¢)(w) for some
smooth function 3 of w. The above determining equations imply that the vector
field 0; + €0, + n'ud, is a reduction operator for the equation uy + Ugzze = O.
Hence we have

gt + Jrzoa = gowx4§0wwww +--= gowx4(90wwww + - ))

where the expression in the brackets depends merely on w and the dots denote
terms including derivatives of ¢ of orders less than four. This means that the
ansatz g = ¢°(¢, 2)¢(w) reduces the equation gi + gzzee = h to the ordinary dif-
ferential equation @,uww + -+ = ¥, which definitely has a solution ¢° = ©°(w).
Subtracting the corresponding function g = ¢°¢" from the function ¢, we annihi-
late the function h.

Therefore, without loss of generality we can assume that the function ( satisfies
the initial equation (1). Then the mapping generated by the point symmetry
transformation ¢ = ¢, Z = z, @ = u — ((t,z) of (1) on the set of reduction
operators of (1) maps the vector field @ to the vector field of the same form,
where ¢ = 0 and hence n° = 0.

As a result, the study of regular reduction operators of the linear rod equa-
tion (1) reduces to the solution of the overdetermined system of nonlinear differ-
ential equations (6)—(8) for the functions £ = £(¢,x) and v = y(¢). (Recall that
n' = %é’x + ~(t).) This solution appears an unexpectedly complicated problem.
Hence we have considered particular cases of regular reduction operators by im-
posing additional constraints on the functions ¢ and . Thus, cumbersome and
tricky computations with Maple show that any regular reduction operator of (1)
with v = 0 is equivalent to a Lie symmetry operator of this equation. The same
result is true under the assumption &;; = 0 and & # 0. There are no regular
reduction operators with & = 0 and £, # 0.

Suppose that £ = 0. Then equations (6) and (7) are identically satisfied and the
coefficient n! is represented as n' = v(t). Equation (8) implies the single ordinary
differential equation 7 + 27+ = 0 for the function ~, which is once integrated to
v + v? = —k, where & is the integration constant. Hence the function v admits
the representation v = ¢;/p, where the function ¢ = () is a solution of the
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linear ordinary differential equation ¢4 + K@ = 0. The corresponding reduction
operator

Qr = at + %uaua

results in the ansatz u = ¢(t)f(w), where w = z is the invariant independent
variable and @ is the invariant dependent variable. The corresponding reduced
equation is 0, = kf. Therefore, similarly to the singular reduction operator (g
from Proposition 1 the regular reduction operator Q. is related to separation of
variables in the linear rod equation (1). This operator can be considered as
a regular counterpart of the operator (Js. The reduction operator @, is equivalent
to a Lie symmetry operator only if ¢;/¢ = const.

5 Conclusion

In spite of the rod equation (1) is linear and has only obvious Lie symmetries,
it is interesting from the symmetry point of view since it possesses a number of
nontrivial properties related to the field of symmetry analysis. We list five of these
properties:

e Equation (1) possesses both regular and singular nonclassical symmetries
which are inequivalent to Lie symmetries and associated with separation of
variables.

e A potential system of the rod equation (1) coincides with the (1+41)-di-
mensional free Schrédinger equation. Hence equation (1) possesses purely
potential and nonclassical potential symmetries.

e A function is a solution of the rod equation (1) if and only if it is the real
(resp. imagine) part of a solution of the (141)-dimensional free Schrédinger
equation. This allows us to construct new families of exact solutions of (1)
in an easy way.

e Equation (1) has a nonlocal recursion operator whose action on local sym-
metries (which necessarily are affine in derivatives of u) gives nontrivial local
symmetries of higher order. As a result, for arbitrary fixed order, excluding
order two, this equation possesses local symmetries of this order which do
not belong to the enveloping algebras of local symmetries of lower orders.

e As the linear differential operator associated with (1) is formally self-adjoint,
the space of cosymmetries and the space of characteristics of local symme-
tries coincides. This implies that equation (1) has conservation laws of
arbitrarily high order.

A detail discussion of these properties will be a subject of a forthcoming paper.
In the present paper, we have studied the first property and below we briefly
present the next two properties.
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The linear differential operator L := 97 + 0% associated with equation (1) is
factorized to the product of the free Schrodinger operator and its formal adjoint:

L = (i0; + 02)(—id; + 02).

This indicates that the solution of (1) is closely connected with the solution of
the free (1+1)-dimensional Schrédinger equation

To make this connection explicit, we consider the potential system constructed
for equation (1) with the conservation law having the characteristic 1:

Uy = Ut, VUVt = —Uggz- (11)

The second equation of (11) is in conserved form that allows us to introduce the
potential w satisfying the conditions

Wy =V, W= —Ugg. (12)
Excluding v from the joint system of (11) and (12), we obtain the system

Ut = Weg, Wt = —Uzg- (13)
The maximal Lie invariance algebra of system (13) is

091 = (O, Oy, 2t0r + 20y, WOy — UDy, 2t0; + WOy — TUD,y,
4420, + Atzdy + (x2w — 2tu) Oy — (a:2u + 2tw) Ow, (14)
U0y + Wy, B(t,x)0y + Y(t, )0y),

where (B(t, z),~(t,x)) is an arbitrary solution of system (13).

System (13) implies that the complex-valued function ¥ = w + iu of the vari-
ables ¢t and z satisfies equation (10) and the function w is a solution of equation (1).
Finally, we have the following simple assertion.

Proposition 2. The function u = u(t,x) is a solution of equation (1) if and only
if it is the real (resp. imagine) part of a solution of the (1+1)-dimensional free
Schrédinger equation ithy + g, = 0.

A fixed solution of equation (1) corresponds to a set of solutions of equa-
tion (10) which differ by summands of the form Cyz + Cp, where Cy and C are
arbitrary real constants. As wide families of exact solutions of equation (10) are
already known, Proposition 2 gives the simplest way of finding exact solutions for
equation (1).

In fact, the main result of the paper is Theorem 1 on single linear reduction
operators of general linear partial differential equations. The next step is to extend
this assertion to multidimensional reduction modules that are generated by linear
vector fields.
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For each connected graph we associate a family of Lotka—Volterra systems.
In particular we examine a class of Lotka—Volterra systems associated with
complex simple Lie algebras. In the case of ADE type Lie algebras we present
two approaches to constructing these systems.

1 Introduction

For each graph there exists a Lotka—Volterra system which is constructed in a sim-
ple way. We may restrict our attention to the case of connected graphs. When
the graph is not connected the corresponding Lotka—Volterra system breaks up
into smaller systems associated to the components of the graph. Equivalently, the
Poisson structure is a direct product of Poisson structures of smaller dimension.
With some minor exceptions, the Poisson structure of the systems we consider are
quadratic with entries which are homogeneous with non-zero coefficients £1. We
begin with the well-known case of Dynkin diagrams and we construct a family of
Lotka—Volterra systems associated with complex simple Lie algebras.

The Volterra model, also known as KM system is a well-known integrable
system defined by

& = oi(Tip1 — xi-1),  i=1,2,....n, (1)

where zo = 41 = 0. It was studied originally by Volterra in [15] to describe
population evolution in a hierarchical system of competing species. It was first
solved by Kac and van Moerbeke in [10], using a discrete version of inverse scat-
tering due to Flaschka [7]. In [13] Moser gave a solution of the system using
the method of continued fractions and in the process he constructed action-angle
coordinates. Equations (1) can be considered as a finite-dimensional approxima-
tion of the Korteweg—de Vries equation. The Volterra system is associated with
a simple Lie algebra of type A,. Bogoyavlenskij generalized this system for each
simple Lie algebra and showed that the corresponding systems are also integrable.
See [1,2] for more details.

The Hamiltonian description of system (1) can be found in [6] and [4]. The
Lax pair in [4] is given by

L =B, 1],
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where
il 0 \/T1T2 0 0
0 Tr1+x2 0 \/T2xs3
\/T1T2 0 To+a3
L= 0 A/ L2T3
VIn—1Tn
Tpn—1+Tn 0
VECE O o
and
0 0 v 3;1932 0 0
0 0 0o V2T
2
_ \/.7,‘21.%2 0 0
B = 0 _ \/T2T3
2
VIn—1Tn
2
0 0
_\/wn—lxn 0 0
2

Due to the Lax pair, it follows that the functions H; = %tr L* are constants of
motion. Following [4] we define the following quadratic Poisson bracket,

{zi, i1} = xiwiq,

and all other brackets equal to zero. For this bracket det(L) is a Casimir and the
eigenvalues of L are in involution. Of course, the functions H; are also in invo-
lution. Taking the function ) ;" | z; as the Hamiltonian we obtain equations (1).
This bracket can be realized from the second Poisson bracket of the Toda lattice
by setting the momentum variables equal to zero [6].

There is another Lax pair where L is in the nilpotent subalgebra corresponding
to the negative roots. The Lax pair is of the form L = [L, B], where

0 1 0 0
il 0 1
I_ 0 a2 O 7 (2)
0
: 1
0 z, O
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and
0 1 0 ... 0
0 0 1
B— 12 0 0
o3 0
1
0 e Tp—1%n 0 0

Finally, there is also a symmetric version due to Moser:

0 w 0 -+ - 0
ur 0 ug :
p=|% w0 , (3)
’ 0
0 0 wu, O
and
0 0 upus 0
0 0 0 :
B— | w2 0 0 UgU3
U2U3 Up—1Un
0
0 coo Up_quy 0 0

The change of variables x; = 2u? gives equations (1). The existence of these
three Lax pairs implies that the open KM-system is Liouville integrable.

It is evident from the form of L in the various Lax pairs, that the position of
the variables x; correspond to the simple root vectors of a root system of type A,,.
On the other hand the position of the variables in the matrix B is at the position
corresponding to the sum of two simple roots «; and ;. In this paper we will
generalize this construction for each complex simple Lie algebra.

2 Lotka—Volterra systems

The KM-system is a special case of the so called Lotka—Volterra systems. The
most general form of the equations is

n
T; = €;x; + E Qi TiX 5, 1=1,2,....,n.
Jj=1
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We may assume that there are no linear terms (g; = 0). We also assume that
the matrix A = (a;;) is skew-symmetric. The associated Poisson bracket for the
Lotka—Volterra system is defined by

{zi, x;} = aijziz;, 1,7 =1,2,...,n. (4)
The system is Hamiltonian with Hamiltonian function
H=x1+x2+ -+ Tp.

Hamilton’s equations take the form #; = {x;, H}.

The Poisson tensor (4) is Poisson isomorphic to the constant Poisson structure
defined by the constant matrix A, see [8]. If k = (k1, ko, ..., k) is a vector in the
kernel of A then the function

k1 ko k
f=abade ol

is a Casimir. This type of integral can be traced back to Volterra [15]; see also
[3,8,14].

3 Simple LV-systems

3.1 Complex simple Lie algebras

Cartan matrices appear in the classification of simple Lie algebras over the com-
plex numbers. A Cartan matrix is associated to each such Lie algebra. It is an
£ x £ square matrix where £ is the rank of the Lie algebra. The Cartan matrix en-
codes all the properties of the simple Lie algebra it represents. Let g be a complex
simple Lie algebra, h a Cartan subalgebra and IT = {ay,...,ay} a basis of simple
roots for the root system A of h in g. The elements of the Cartan matrix C' are
given by

(aiv - )
wa)’ (5)
(aj, o))
where the inner product is induced by the Killing form. The ¢ x f-matrix C is
invertible and it is called the Cartan matriz of g. The detailed machinery for
constructing the Cartan matrix from the root system can be found, e.g., in [9,

p. 55] or [11, p. 111]. In the following example, we give full details for the case of
sl(4,C) which is of type As.

Cij = 2

Example 1. Let E be the hyperplane of R* for which the coordinates sum to 0
(i.e., vectors are orthogonal to (1,1,1,1)). Let A be the set of vectors in F of
length /2 with integer coordinates. There are 12 such vectors in all. We use the
standard inner product in R* and the standard orthonormal basis {ey, €2, €3, €4}.
Then, it is easy to see that A = {¢; —€; | i # j}. The vectors

Q) = €] — €2, Q2 = €2 — €3, a3 = €3 — €4
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form a basis of the root system in the sense that each vector in A is a linear
combination of these three vectors with integer coefficients, either all nonnegative
or all nonpositive. For example, ¢ — €3 = a1 + a9, € — €4 = a9 + a3z and
€1 — €4 = aq + ag + as. Therefore I = {ay, a2, a3}, and the set of positive roots
AT is given by

AT ={a1, a9, 3,01 + g, a9 + a3, a1 + ag + as}.
Define the matrix C' using (5). It is clear that ¢;; = 2 and

(Oézw az’+1)

Cii+1 = 2 = —1, 1= 1, 2.
(Oéz‘+1, ai+1)

Similar calculations lead to the following form of the Cartan matrix
C=|-1 2 -1

The complex simple Lie algebras are classified as
Al: Blv Clu Dl7 E67 E?a E87 F47 GQ-

Traditionally, A;, By, Cy, D; are called the classical Lie algebras while Eg, E7, Fs,
Fy, Gy are called the exceptional Lie algebras. Moreover, for any Cartan matrix
there exists just one complex simple Lie algebra up to isomorphism which gives
rise to it. The classification is due to Killing and Cartan around 1890.

Simple Lie algebras over C are classified by using the associated Dynkin dia-
gram. It is a graph whose vertices correspond to the elements of II. Each pair of
vertices o, a; are connected by

4(041', Oéj)2

(i, i) (g, o)

mij =
edges, where
mi; € {0, 1,2, 3}.
To a given Dynkin diagram I' with n nodes, we associate the Cozeter adjacency
matriz which is the n x n matrix A = 2I — C, where C' is the Cartan matrix.

3.2 First approach: from the root system

Let g be a complex simple Lie algebra, h a Cartan subalgebra and IT = {ay, ..., as}
a basis of simple roots for the root system A of h in g. Let X,,,..., X4, be the
corresponding root vectors in g. Define

L=> zXa.

a; €11
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To find the matrix B we use the following procedure. For each i,j we form
[Xa;, Xa;]- If a;+a; is a root then we include a term of the form +z;2;[Xa,, Xa,]
in B. By making suitable choices for the + signs it is possible to construct
a consistent Lax pair. Then we define the system using the Lax equation

L=1[L,B].

For a root system of type A, we obtain the KM system.

3.3 Second approach: from the Dynkin diagram

If a system is of type ADE we can define the system in the following alternative
way. Consider the Dynkin diagram of g and define a Lotka—Volterra system by
the equations

l
l"i = Z; E mijmj,
J=1

where the skew-symmetric matrix m;; for ¢ < j is defined to be m;; = 1 if vertex
i is connected with vertex j and 0 otherwise. For i > j the term m;; is defined
by skew-symmetry. Note that if we replace one of the m;; for i < j from +1 to
—1 we may end up with an inequivalent system. In our definition, the upper part
of the matrix (m;;) consists only of 0 and 1. However, it is possible to define for
each connected graph 2™ systems, where m is the number of edges, by assigning
the £1 sign to each edge. Of course, some of these systems will be isomorphic.
One more observation: there are several inequivalent ways to label a graph and
therefore the association between graphs and Lotka—Volterra systems is not always
a bijection. The number of distinct labellings of a given unlabeled simple graph
G on n vertices is known to be

n!
laut (G)]
Example 2. Consider a Dynkin diagram with graph As.
1 2 3
O O O

We label the vertices from left to right. To define #; we note that vertex 1 is
joined only with vertex 2. Therefore we include a term x1x2. We define mi3 =0
since vertex 1 is not connected with vertex 3. Similarly we define mos = 1 since
vertex 2 is connected with vertex 3. Therefore we obtain the KM system

T1 = T17%2,
T = —x1T2 + T2T3, (6)
i:g = —X2X3.

This system is integrable since the function F' = xjx3 is a Casimir. Taking into
account the Hamiltonian x1 + x2 + 3 we have Liouville integrability.
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Example 3. (Eg system)

1 2 3 4 5
O O O
J,
T = 1172, &o = xo(—x1 + T3),
i3 = x3(—x2 + T4 + T5), T4 = —X324, (7)
x'5 = 335(—$3 + 336), i‘ﬁ = —I5%6-

The associated Poisson structure is symplectic. Therefore to prove integrability
one needs another two constants of motion besides the Hamiltonian.

This method can be used not only for Dynkin diagrams corresponding to simple
Lie algebras but also for an arbitrary graph.

Example 4. This graph has an associated Lotka—Volterra system.

3 8
It is given by
&1 = T122, Ty = —x122 + T2x3 + T2y,
&3 = —xox3, Ty = —To%4 + T4Ts, (8)
5 = —T4T5 + T5X7, Te = TeT7,
L7 = —T5T7 — TeLT + TTTS, Iy = —T7T8.

This system has two Casimirs F} = x1x3 and Fy = zgzs.
Example 5. The periodic KM-system is given by
a':i:xi(xiﬂ—xi_l), i:1,2,...,n, (9)

with periodic condition z;i, = x; for all <. It is associated to a Dynkin diagram
1)

of affine type A, ;.

We examine in detail the case n = 4.

One Lax pair is a generalization of Moser’s

Oa10a4



Lotka—Volterra systems associated with graphs 37

0 0 ajas — a4as 0
0 0 0 —aia4 + azas
B =
—ajag + aqas 0 0 0
0 ai1a4 — a263 0 0

The Lax pair is equivalent to the following equations of motion:

a] = ala% — alai, ag = —aga% + aQag,

as = agaZ — aga%, ay = a4a% — a4a§.
Using the substitution z; = a? and a scaling we obtain the equations for the
periodic KM-system

T = X1T2 — T124, Tg = —x1T2 + TaT3,

T3 = T4T3 — Tox3, T4 = T1T4 — T4T3.

Using the Poisson tensor

—vai/\ ? — 1T 9 0 + Tox 9 ? i ?
T 1283?1 82 1484 81 2382 (93

and the Hamiltonian H = x1 4+ 22 + x3 + x4 we have a Hamiltonian formulation
of the system. The Poisson tensor is of rank 2. It has two Casimirs F; = zix3
and Fy = xox4. Therefore the system is integrable.

An alternative Lax pair is the following

0 1 0 x4 0 0 xgzqy O

~fz1 O 1 O - 0 0 0 xi74
L= 0 i) 0 1 ’ B= X192 0 0 0
1 0 x23 O 0 ToT3 0 0

Example 6. (D, system) By examining the Dynkin diagram of the simple Lie
algebra of type D4 we obtain the system
T = X122, Tg = —x1T9 + ToTy + Toly,
: : (10)
r3 — —T2x3, T4 = —T2X4.
One can obtain the same equations in the following way. Define the matrix L
using the root vectors of a Lie algebra of type Dy

0O 1 0 0 0 0 0 0
z7 0 1 0 0 0 0 0
0 zo 0 1 1 0 0 0
I 0 0 x3 O 0 1 0 0
0 0 x4 O 0 -1 0 01|’
0 0 0 x4 —x3 O -1 0
0 0 0 O 0 -z 0 -1
0 0 0 O 0 0 —x; O
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and

O O O o oo

0
—Z1T2

8
o“é cooo o oo

W
SO OO OO OO

0
0
0
0
0
0
0
0

8
%)
8
N
OO O OO o oo
|
O§ O O OO oo
8
w

Then the Lax equation L = [L, B] is equivalent to (10). We note that

1
Hk:%trLk, k=1,2,...

are integrals of motion for the system. In fact

4Hy = o1 + x2 + T3 + 24,

4H, = tr L' = ZL'% + {E% + ac% + a:?l + 22129 + 22073 + 2204 + 22374.

There are also two Casimirs | = z124 and F5 = x123. It turns out that
det(L) = (F} + F»)%. We have

H3 — 4H, = 8(x123 + 174) = 8(F) + Fy).

We can find the Casimirs by computing the kernel of the matrix

0 1 00
-1 0 11
A= 0 -1 0 0
0 -1 00

The two eigenvectors with eigenvalue 0 are (1,0,0,1) and (1,0,1,0). We obtain
the two Casimirs F} = {29292} = 2174 and Fy = z}af2i2) = 2q23.
There is also a periodic version of D,, with some obvious modifications in the

Lax pair. For n = 4 the affine Dfll) system is given by

Ty = ToT2,
T1 = T1T2, To = —ToTy — T1T2 + ToT3 + Toxy, (11)
T3 = —ToT3, T4 = —T2T4.

The eigenvectors of the coefficient matrix corresponding to the eigenvalue 0 are
(0,1,0,1,0), (1,0,0,0,1) and (1,0,0,1,0). Therefore the Poisson tensor has three
Casimirs zgxs, xors and z1x3. It is therefore integrable.
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Example 7. It is possible to consider graphs which are not simple. For example
the graph associated with the system

T = 1172, Ty = x9(T3 — 11), (12)
:i‘g = xg(x4 — 1‘2), $'4 = —x4(x3 + x4)

has a loop at vertex 4. This system is an open version of a B,, system considered
by Bogoyavlensky in [1,2]. The Hamiltonian formulation of these systems, Lax
pairs and master symmetries were considered by Kouzaris in [12]. There is also
a Lax pair in [5]. The system in our example has two integrals of motion, one of
degree 2 and one of degree 4. The quadratic integral is

F, = x% + x% + :L’§ + 22129 + 22923 + 22374.
The fourth degree invariant is
Fy =zl +x5+ :B§ + 4x2xox3 + 62325 + 4wy w0374 + 4m§xi

+ 4x3x4x§ + 4x1x§ + 43:%954 + 495:1)%2 + 896%3:21‘4

+ 8z 2375 + 4x 2073 + dadas + daoxh 4 6x323.

3.4 Third approach: Lie algebra decomposition

An alternative method to define the systems is the following. Let A = 2T — C be
the Coxeter adjacency matrix. Decompose A = A+ B where A = (a;;) is the skew-
symmetric part of A and B its lower triangular part. Define the Lotka—Volterra
system using the formula

n
T; = g a;jT;x;, 1=1,2,...,n.
j=1

This method can be used to define Lotka—Volterra systems for any complex simple
Lie algebra (including B,,, C),, G2 and Fy). Alternatively, we may use the approach
of subsection (3.3). When there are multiple edges we define m;; for i < j to be
the number of edges from 7 to j.

Example 8. Consider a Lie algebra of type Bs. The Cartan matrix is given by

2 -1 0
C=|-1 2 =2
0o -1 2
Since
010 0 1 0 0 00
2-C=11 0 2|=[-1 0 2|+1|2 0 0},
010 0 -2 0 0 3 0
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we may define a Bs Lotka—Volterra system as follows:

T = X122,
To = —x1X9 + 22213, (13)
.%"3 = —21‘2.%’3.

The Casimir for this system is F' = z3z3. Note that a 3-dimensional Lotka—
Volterra system of the type we are considering, i.e., defined with a skew-symmetric
matrix is always Liouville integrable.

4 The Bogoyavlenskij lattices

Bogoyavlenskij in [3] has generalized the KM-system in the following way

P P
E Titj — E Li—j
J=1 J=1

with periodic condition x,; = z;. We will denote this system with B(n,p). All
the results in this section, except the bihamiltonian pair are from [3]. The system
has a Lax pair of the form

= [L7 A]?

where L = X +AM, A =b— AMPt!, The matrix X has the form Tji—p = x; for
p+1 <i<mnand x;jtn—p = x; for 1 <i < p. The matrix M is defined by m; ;11 =
my,1 = 1. The matrix b is diagonal with entries bj; = —(x; + xig1 + -+ + Tiyp).
Example 9. Let us consider the system B(6,2), i.e., n = 6, p = 2. The equations
of motion become

&1 = x1 (22 + X3 — T5 — X6), &g = xo(x3 + x4 — 1 — T6),
&3 =wx3(xs + x5 — T2 — 1), &4 = xa(T5 + 26 — 3 — T2), (14)
j05:x5(x6+x1—x4—:1:3), .i'ﬁzxﬁ(x1+$2—$5—$4).
0O 0 0 =1 O 01 00 00O
0O 0 0 0 =z 0O 01 0 0 O
z3 0 0 O O O M- 0 001 00O
0 z«. 0 0 0 0}’ “1loo0o 0010}
0 0 25 0 O O 0 000 01
0 0 0 =z 0 O 1 0 0 0 0 O
0O X 0 0 =z O
z3 0 0 X 0 O
0O o 0 O X O
0O 0 a5 0 0 A
A 0 0 z¢ 0 O
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Let p(z) = det(L — xI) be the characteristic polynomial of L. Then the coeffi-
cient of 23 is of the form HA? + Fy, where H = z1 + x9 + 23 + x4 + 5 + z¢ is the
Hamiltonian, and Fo = z1x3%5 + T2x4x6. On the other hand the constant term
of p(x) has the form F3)2 + Fy, where Fy = 21202425 + £123%4%6 + ToT3T5T6 and
F4 = X1X2X3X4T5T6.

By examining the eigenvectors of the coefficient matrix we can see that the
functions Cy| = xsz5, Cy = x124, C3 = Tox476, and Cy = x1x375 are all Casimirs.
Therefore we have a rank 2 Poisson bracket and the system is clearly integrable.
It is easy to see that the functions Fy, F3, Iy can be expressed as functions of C1,
Cy, Cs, Cy.

Now restrict this system on the invariant submanifold x5 = xg = 0. We obtain
the system

&1 = x1(22 + x3), Ty = x9(w3 + 24 — 21),
i3 = x3(xy — x93 — X1), &4 = x4(—x3 — T2).
. .. .. 123
This system is integrable. It has two Casimirs F; = x124 = C3 and Fb = =
T2

C4/Ch.

Example 10. Similarly, the system B(5,2) has a single Casimir x1xox3x425. The
additional integral is

F = 212924 + 12374 + 212325 + T223T5 + T2T4T5.

The system is Hamiltonian using the quadratic bracket (4) and the Hamiltonian
function

H=2x +x2+x3+ 124+ T5.

Denote this quadratic bracket by mo. Define the Poisson tensor mg as follows

0 0 -1 1 0
0o 0 0 -1 1
m=11 0 0 0 -1
-1 1 0 0 O
0 -1 1 0 O

It is easy to check that 7y is compatible with 7o and that we have a bihamil-
tonian pair

modH = mydF.

The function H is the Casimir of bracket 7.
More generally if n = 2p + 1 then we can define a (skew-symmetric) tensor 7
with non-zero entries mo[i,i+n—p—1] = —1for 1 <i < p+1 and mg[i,i+n—p|] =1
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for 1 < i < p. The tensors m and my are compatible and they form a bihamiltonian
pair.
Restricting on the submanifold x5 = 0 we obtain the system

T :$1($2+x3—$4), i‘2=$2(x3+51)4—$1),
£3:$3(x4—$2—$1>, i‘4:$4(.%'1—$3—$2).

This system is integrable with second integral given by xjxz4(x2 + x3), i.e., the
restriction of F' on the submanifold.

Example 11. Restricting the B(7,2) on the submanifold x4 = ¢ = z7 = 0 and
renaming x5 — x4 results in the following system

&1 = x1(x2 + x3), &y = xo(x3 — 1),
i)3:$3(x4—.132—$1), i’4: —X4T3.
The additional integral is F' = z4(z1 + x2).

Example 12. Restricting the B(7,3) on the submanifold z5 = z¢ = z7 = 0
results in the following system

T ::Ul(a:2+x3+x4), i‘2:$2($3+x4—1‘1),
.%"321'3(334—.%2—.%'1), i‘4=$4(—x1 —172—333).

The Poisson matrix in this example is symplectic. The system is integrable since
it has two constants of motion

F = (x1 + x2)14 and Fy = (x3 + 364)&01'
x3 €2
Note that
(:U1 + x9 + xg)(xQ + x3 + SL‘4)
F3 =

T2 + x3
is also a first integral.
5 Connected graphs on 4 vertices

It is well-known that there are 6 connected simple graphs on four vertices. They
are given in the following figure.

o
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It seems that most of the systems associated to a connected simple graph on four
vertices, constructed using our approach, are Liouville integrable.

e The first graph corresponds to the open KM-system which is integrable,
see (2).

e For the second graph (the square) we can associate three Lotka—Volterra
systems each one corresponding to the different ways to label the graph.
One system is

oy =m(v2 +23), T2 = w2(v4 — 1),
3 = x3(xg — 1), T4 = x4(—w2 — T3).
.. . .. €T3
It is integrable with Casimirs F; = — and F5 = z124.
€2
A second case is
1 = z1(x3 + 24), &y = wo(x3 + 24),
:tg = IL‘3(—{L‘1 — IL‘Q), i,‘4 = l’4(—fL‘1 — l’g).
.. . .. €2 T4
It is integrable with Casimirs F; = — and Fp, = —.
z1 x3

Finally, there is also
= x1(22 + 24), T2 = w2(23 — T1),
i3 = x3(x4 — T2), T4 = x4(—21 — T3).

In this case the Poisson structure is symplectic and we need a second integral
to establish integrability.

e One integrable case of the third graph was treated in Example 11.

e The fourth graph is a Dynkin diagram of type D4. One example which has
a Lax pair was considered in Example 6.

Another example which is obtained by changing the order of the labels is

&1 = x1(x2 + 3 + 24), To = —T1T2,

T3 = —x17T3, T4 = —T124.
.. X4 €3
It has two Casimirs F; = — and Fy = —.
1) x2

e One case of Graph 5 is treated in Example 9.
e One case of Graph 6 is treated in Example 12.

Remark. There are three non-isomorphic trees on 5 vertices. We have seen
three Lotka—Volterra systems associated to these graphs. The KM-system, the
D5 system and the affine Dfll) periodic system. The integrability of all systems
associated with a connected simple graph on 5 vertices is an interesting problem

to consider.
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We continue our investigation of the problem of constructing Poisson brackets
having as Casimirs a given set of functions. In this paper we consider the case
of odd-dimensional manifolds. We present an application which involves a class
of Lotka—Volterra systems associated with affine Lie algebras.

1 Introduction

We consider the following problem. Given fi,..., fr smooth functions on an
n-dimensional manifold M, functionally independent almost everywhere, to find
a Poisson bracket on M whose set of Casimir functions consists of the given ones.
The case of an even-dimensional manifold was examined in the first part of this
paper [5]. In this paper we consider the case of odd dimension. Detailed proofs
can be found in [6]. The main purpose of this paper is to present a new application
of these results to the construction of a new class of Lotka—Volterra systems from
Toda systems.

First we recall the results in [5] (see also [6]). Suppose dim M = 2n. Let
f1,..., fon_or be smooth functions on M, functionally independent almost every-
where on M, wy an almost symplectic form on M, A its associated bivector field
and Xy, = Ao# (df;) the Hamiltonian vector fields of f;, ¢ = 1,...,2n — 2k, with
respect to Ag, such that

ApF wy*
f= <df1 A< Ndfon ok, (n—k)'> = <(n—k:)" D CAVAREE /\Xf2n2k> #£0
on an open and dense subset U of M. Consider the (2n — 2)-form

1 k—2

g W
(I):_?(O-_Fk_lwo)/\(k0_2)'/\df1/\/\den—Qk’ (1)

on M. In (1), o is a section of A?D° of maximal rank on U, D° being the
annihilator of the distribution D generated by the Hamiltonian vector fields Xy,
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i=1,...,2n — 2k. Moreover, o satisfies the equation
20 Nd(o) =d(0 N o), (2)

where § is the operator § = xd* and x is the standard star operator [10]. The
function g is defined to be g = ip,0. The form ® corresponds to a Poisson tensor
field A on M with orbits of dimension at most 2k for which fi,..., fo,_or are
Casimirs. Precisely, A = A# (o) and the associated bracket of A on C*°(M) is
given, for any hy, hgo € C*°(M), by

{h17 hQ}Q =
1 g wlg_Z (3)

Conversely, if A is a Poisson tensor on (M, wy) of rank at most 2k on an open and
dense subset U of M, then there are 2n — 2k functionally independent smooth
functions fi,..., fon_or on U and a suitable 2-form ¢ on M such that Uy = —ix
and {-, -} is of the form (1) and (3), respectively.

In this paper we consider the case where M is an odd-dimensional manifold,
i.e., m = 2n + 1, and we establish a similar formula for the Poisson brackets
on C°°(M) with the prescribed properties. For this construction, we assume
that M is equipped with a suitable almost cosymplectic structure (g, ©¢) and

n
with the volume form 2 = ¥y A —?. In [6], using these results, we showed how
to obtain the A,, Volterra quadrzﬁic Poisson bracket starting from the A, Lie—
Poisson bracket of the periodic Toda lattice. In this paper we illustrate the same
procedure for the case of B;,, and we arrive to a construction, using a new method,
of a family of Volterra quadratic Poisson structures having the same Casimirs. The
algorithm can of course be generalized to any type of complex simple Lie algebra.

2 On odd-dimensional manifolds

Let M be a (2n + 1)-dimensional manifold. We remark that any Poisson tensor A
on M admitting f1,..., font1—2k € C°(M) as Casimir functions can be viewed as
a Poisson tensor on M/ = M xR admitting fi, ..., fonr1—ok and fon 10 op(z,8) = s
(s being the canonical coordinate on the factor R) as Casimir functions, and con-
versely. Thus, the problem of constructing Poisson brackets on C°°(M) having
as center the space of functions generated by (f1,..., font1-2x) is equivalent to
that of constructing Poisson brackets on C'*°(M') having as center the space of
functions generated by (f1,..., font1-2k,5). In what follows we establish a for-
mula analogous to (3) for Poisson brackets on odd-dimensional manifolds. In
the construction we use the notion of almost cosymplectic structures on M, see,
e.g., [11,12].

We consider (M, f1,..., font1-2k), With fi,..., fopi1_ok functionally indepen-
dent almost everywhere on M, and an almost cosymplectic structure (g, Oq)
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on M whose associated nondegenerate almost Jacobi structure (Ag, Fy) verifies

the condition
An k
) #0 @)

0
on an open and dense subset U of M. Let w) = O¢+dsAt and Aj, = Ao+ 55 NEj
s

f= <df1/\"'/\df2n+1—2k, Ey A (n—

be the associated tensors on M’ = M x R. Since, for any m=1,...,n+1,
w/ m @m @m—l
0 =0 4 ds A /\ 0
m! m! —1)! (5)
wn i o
m! m!  Os (m—1)V

it is clear that

6n+1 k
dfi1 N - -- 1 — , —
<f1 A dfapt1-2k N ds (n+1—l<:)!>

g+1 k ) Agfk
=<df1/\"'/\df2n+1—2k/\d5a (TL—{—I—]{J)+8/\EO/\(71—]<3)!> (6)

o An k
— dfl/\‘--/\df2n+1,2k/\d3 a /\EO/\W :—f#o

on the open and dense subset U’ = U XR of M’. Furthermore, we view any bivector
field A on (M, 3y, ©g), having as Casimirs the given functions, as a bivector field

on (M’ w() having fi,..., fan+1—2k and fop+o_ok(x,s) = s as Casimirs. Let D’

be the annihilator of the distribution D" = (X% ,..., X} ) on M’ gener-
1 2n4+2—2k 9

ated by the Hamiltonian vector fields X } = Ag#(dfi) = Ag& (df;) — (dfi,Eo>a—,
i s

i=1,....2n4+1—=2k and X}, = = A (ds) = Eo of fi,..., fons1-2k and
fonto—ok(z, s) = s with respect to Aj. Then, according to the results for the case

of even-dimensional manifolds, there exists a unique 2-form ¢’ on M’, which is
a section of A* D’ of maximal rank 2k on U’ = U x R, such that A = Ag#(a’).

Moreover, since A is independent of s and without a term of type X A 95’ o’ must
s
be of the type

o =oc+71Ads, (7)

where o and 7 are, respectively, a 2-form and a 1-form on M having the following
additional properties:

i) o is a section A*(Eo)°, i.e., o is a semi-basic 2-form on M with respect to
(Ao, Eo);
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ii) 7 is a section of D° = (Xy,..., Xy, .\ ., Eo)°, where Xy, = Ao#(dfi), ie.,
T is a semi-basic 1-form on (M, Ay, Ep) which is also semi-basic with respect
to Xy, ’Xf2n+1—2k;

iii) for any f;,i=1,...,2n+1—2k, 0(Xy,, ) + (dfi, Eo)T = 0.

Consequently, A is written, in a unique way, as A = A# (o) + A# (1) A\ Ejp.
Summarizing, we may formulate the next proposition.

Proposition 1. Under the above notations and assumptions, a bivector field
A on (M,0¢,00), of rank at most 2k, has as unique Casimirs the functions
fis--oy fonr1—ok if and only if its corresponding pair of forms (o,T) satisfies the
properties (i)—(iii) and (rank o,rank 1) = (2k,0) or (2k,1) or (2k —2,1) on U.

On the other hand, it follows from (3) that the bracket {-,-} of A on C*°(M)
is calculated, for any hi, hy € C°°(M), viewed as elements of C°°(M’), by the
formula

(h1, ha) @

ldh A dh /\(’+ g ’)/\ wh" Adfy A - A df: Ad
f 1 2 o T 1w0 (k‘ — 2)| 1 2n+1-2k S,
/I n+1 n
ere = 2 and g° = ipr0'. But, = = Ads, { =Yg N — being
where ¥ = 0 dg —ino. But, @ 2 0 nds, @ = 99 n 20 bei
(n+1)! 0 n!

a volume form on M, and ¢ = iAéa’ = ing+8/0snEo (0 +T Ads) = in,0 = g. Thus,
taking into account (5) and (7), we have
{hl, hQ}Q ANds =

k-2
(k—2)!

Ndfy N+ N dfang1—ok A ds,

1 g
i A dha (a n m%) A

which is equivalent to

{h1,h2}Q2 =

1 g @’872
~pdha A A (o +2500) A

A & —2)! Ndfy N N dfapir—ok.

However, according to (2), {-,-} is a Poisson bracket on C*°(M) C C*°(M’) if
and only if
20" A& (o) =8 (0’ N, (8)

where §' = *'d«’ is the codifferential on Q(M’) of (M’,w()) defined by the cor-
responding star operator *': QP(M') — Q27 +2=P()M’). We want to translate (8) to
a condition on (o, 7). Let QF (M) be the space of semi-basic p-forms on (M,Ag,Ep),
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% the isomorphism between QF (M) and Q%' P(M) given, for any ¢ € QF (M),
by
©%

9

dep: Q8 (M) — ngr L(M) the operator which corresponds to each semi-basic form
@ the semi-basic part of its differential dy, and 6 = *dg, * the associated “codif-
ferential” operator on Qg,(M) = @pezQ (M). By a straightforward, but long,
computation, we show that (8) is equivalent to the system

20 N§(0) =d(o No),
o AT)+d(o)ANT—0Nd(T) = (iA#(dﬁO)a)a - %iAo#(dﬂo)(U/\ o).

9)

Hence, we deduce:
Proposition 2. Under the above assumptions and notations,
A=A (o) + AT (1) A Eg
defines a Poisson structure on (M,99,00) if and only if (o,T) satisfies (9).
Concluding, we obtain the following result.

Theorem 1. Let fi,..., font1-2r be smooth functions on a (2n + 1)-dimen-
stonal smooth manifold M which are functionally independent almost everywhere,

(¥9,00) an almost cosymplectic stru%ture on M such that (4) holds on an open

)
and dense subset U of M, =Yg A —? the corresponding volume form on M, and
n!

(0,7) an element of Q2 (M) x QL (M), with (rank o, rank 7) = (2k,0) or (2k, 1),
or (2k — 2,1) on U, that has the properties (ii)—(iii) and satisfies (9). Then, the
bracket {-,-} on C*°(M) given, for any hi,ha € C*°(M), by

{h1,h2}Q2 =

o2 (10)
G = %) Ndfy A - N dfapg1-ok,

1 g
~ i A A (0 + ﬁe()) A

where f is given by (4) and g = ip,0, defines a Poisson structure A on M,
A= A#(a) + A#(T) A Ey, with symplectic leaves of dimension at most 2k for
which f1,..., font1_9r are Casimirs. The converse is also true.

We close this Section by considering the following question due to F. Magri.

Question: Using the presented theory, we construct a Poisson structure A on
a m~dimensional manifold M, of rank at most 2k on an open and dense subset U/
of M, which has as Casimirs a family (fi,..., fin—2r) of given functions on M,
functionally independent almost everywhere, and whose bracket is given, in the
even case, by (3) and, in the odd case, by (10). From every point x € U passes
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a symplectic leave S of A which has a symplectic form w,. What is the relationship
between wy and o?

In the case where m = 2n, we considered a nondegenerate 2-form wg on M
such that, at each point x € U, T, M is written as a sum of symplectic subspaces
relatively to wyp,. Precisely,

Ty M = Dy @ orthy, Dy,

where D, is the fibre of D at x and orthy,, D, is the orthogonal of D, with respect
to the symplectic form wp, on T, M, [10]. Also,

T,M =D, ® Af (D) and T;M = DS @ (df1, ..., df2n—2k)a, (11)
where D? is the fibre of D° at z and (df1,...,dfo,_o2r), is the fibre at x of the
Pfaffian system generated by df;, i = 1,...,2(n—k). From the last decomposition
and the fact that A = A# (o), with o section of A? D°, we deduce that
ImA# = A¥(D°) = orthy,, D
on U. Hence
TS = orthy,,D and T%S = D°.
Consequently, wg is a section of /\2 D°. On the other hand, taking into acco-
unt (11), we have

2 2 2
/\T*M = (/\Do) ® (Do N <df17 s 7df2n—2k’>) @ (/\<de7 . 'aden—2k>>

on U. Consequently, the 2-form wg can be written as a sum of type

wo=wy + Y mAdfi+ Y gidfi Adfj,

where wé) ° is the part of wy which is a section of /\2 D° on U, 7; are sections of D°

on U and g;; are smooth functions on M. Due to the above expression of wy,
formula (1) takes the form

1 g R wDO k—2
o= —?<o+mw0D ) /\((k?_)z)!/\dfl/\u~/\df2n_2k.
1 o
The 2-form 7 (a + ? J leD ) is the symplectic form on S. By setting

wg = —?(U—F%wéjo),

after a long computation, we prove that A = Ao#(a) = A" (wg).

With a similar manner we can prove that, in the case where m = 2n + 1,

o= Ao Lol
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3 From Toda to Volterra

In this section, by applying Theorem 1 and by imitating the procedure of con-
structing A,-type Volterra lattices from the A,-type Toda lattices presented
in [5,6], we construct a family Poisson structures associated to B,,-type Volterra
lattices from the Lie-Poisson structure A, of B,-type Toda lattice that share the
same Casimir with A,.

3.1 Periodic B,-Toda lattices

The periodic B,,-Toda lattice of n particles is the system of ordinary differential
equations on R?" which is Hamiltonian with respect to the canonical Poisson
structure on R?” and with Hamiltonian function

n 2 n—1
D; a0 g —
H(Qla---aQnaplv"'apn) = ZEZ_‘_Z elimdit1 +eQn +e naz, (12)
=1 =1
In Flaschka’s coordinate system (ag, a1, ..., an,b1,...,b,) defined by
a; = Llexl@—av) 192 n-1,
1 1qn
ap = 5e29m,
o (13)
ap = %6*5((11%12)7
bi:_%pia i=1,2,...,n,

the Hamiltonian system (12) takes the form

a; = a;(biy1 —b;), i=1,2,...,n—1,

Gn = —apby,

ao = ao(by + b2), (14)
bi =2(a?—a? ), i#2,

by = 2(a3 — a2 — ad).

It can be written as a Lax pair L = [B, L], where L is the matrix

b a1 ag 0
a . g
an—1
L= fn-1 27; o Ca (15)
—a, —by,
ag R -

—ap —a; —br
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Moreover, in the new variables (ag,. . ., Gn, b1,. . ., b, ), the canonical bracket on R?"
is transformed into the Lie—Poisson bracket A, on R***! given by

WA (AN AP (RN DA
T 00 " \0by T Oby) T =00 \Obipy Ol "dan " Oby

with respect to which the system (14) is Hamiltonian with Hamiltonian function
h = %Trace L?. The rank of A, is 2n on an open and dense subset U of R2"+!
and it has a single Casimir

2
F =apa1a3---a

3.2 From Toda to Volterra lattices of B,,-type

In the following, using the procedure illustrated in Section 2 and Theorem 1, we
construct another Poisson structure A on R?"*! having the same Casimir invariant
with A, the function F'. To make our construction more clear, we work in the
specific case where n = 4.

We start with the Poisson tensor field

A—agd A (2O +§:a.0A 9 _90N_,9 .09
T 08 8[)1 8b2 im1 18ai Bbiﬂ Bbz 480,4 864

on RY and the function F' = agaja3a3a?. The tensor A, can be viewed as a Poisson
tensor field on R admitting F and by (by being the canonical coordinate on the
extra factor R) as Casimirs. On R!? we consider the canonical Poisson structure

4
0 0 0 0
A== A—— —
0 8a0/\8b0+;8ai/\8b

i

and the distribution D generated by the Hamiltonian vector fields Xrp = Ao# (dF)
and Xp, = A#(dbo)7 where

0 0
Xp = ajaia’a® — + apa2a2a?—— + 2apaiazsa’a? —
293 486 243 48b 3 4862

0 2
+ 2apaia3a3a; —— abs + 2apa1a30304—— bt

0
and X, = —5—, whose annihilator D° is

8&0

4
D° = {Z(aidai + Bidb;) € Ql(Rlo) op = 0 and Boala%agai
i=0

+ aoﬁlagagai + 2a0a1a262a§ai + 2a0a1a§a353a421 + 2a0a1a§a§a4ﬂ4 = O} .
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The family of 1-forms (day, das, das, day, o9, 01, 02, 03), where

oo = 2agdby — aadbs,

o1 = 2a1dby — aadbs,

o9 = —agdby — a1dby + 2a2dby — asdbs,
03 = —agdby + 2a3dbs — a4dby,

provides, at every point (a,b) of R x U, a basis of DE’a b)- The section of maximal

rank o, of /\2 D° — R x U which corresponds to A, via the isomorphism A# , is
written in this basis as

o, = %dal A(og—o01)+ %dag A (o0 + 01)

T

+ (das + day) A (%Uo + %01 + 09 + 03) .
Now, we consider on R'? the 2-form

o =day Ndag + dag A dag + og AN o1+ 092 A o3
= dai N das + das N dayg + 4aga1dbg A dby
— apasdbg N dby — 2agagdbg N dbg + agasdbg N dby
+ 3ajazdby A dby — 2aja3dby A dbs + ajasdby A dby
+ 3azazdba A dbs — 2aza4dba A dby + azasdbs A dby,
which, by construction, is a section of A> D° — R x U and satisfies (2) (it can

be checked after a long computation). Thus, its image via Ao# defines a Poisson
structure A on R0 having as Casimirs the functions F' and by. We have

A= i i + i 0 + daga; — 0 0 — agag—— 0 i
(9[)1 8b2 (9()3 (91)4 8 8 al 8&0 6a2
— 26L0&3i N — 0 + apaq— 0 8 + 3a1a9— 0 VAN i
day Oag dag (9 a4 OJa;  Oas
— 2a1a3—— 9 0 +ar1a4— 8 ? + 3asaz — 9 VAN i
8 8 as 8 8 a4 8a2 8a3
— 2a9a4—— 9 g + asaq— 9 9
Oa an (9 a4 Oa as 6@4

Consequently, A can be viewed as a Poisson structure on R? (R? = {(a,b) € R!? |
bo = 0} ) with F as Casimir. We remark that (R%, A) = (R®, A,,) x (R%, A’) is the
product of two Poisson manifolds whose the Poisson structures have, respectively,
the following form:

0 4apaq —apas —2apaz  agQ4
—4(10&1 0 3a1a2 —2a1a3 a1aq4

A, = agas  —3aias 0 3asaz —2asay |,
2a0a3 2a1a3 —3&2&3 0 asay

—apt4s  —QaiG4 20004 —asay 0
0 2 3
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)
o O o
o O O
o = O O

-1
The Poisson tensor A, is a quadratic Poisson tensor on RS that has F as

unique Casimir function and whose the Hamiltonian vector field Xz = Af(dH )
H = ag+ a1 + ag + ag + a4, has the form of a Lotka—Volterra system (see, [3,4,7])

ap = ap(4a; — ag — 2a3 + a4), ay = aj(—4ag + 3ag — 2a3 + aq),
ay = ag(ao —3a1 + 3a3 — 2a4), ag = a3(2a0 + 2a1 — 3as + CL4),
ay = a4(—a0 — a1 + 2a0 — a3).

The above result agrees in principle with the philosophy of [4] that Volterra lattices
are obtained from the Toda lattices by restriction to the a variables.

4 Another method of constructing A,

In this section we develop a new method of constructing the Poisson structure A,
based on the properties of the Cartan matrix of the corresponding affine Lie
algebra Bil). It is a simple application of our results which connect dynamical
systems of Lotka—Volterra type with complex simple Lie algebras and which will
presented in brief. A detailed presentation will be given in a forthcoming paper.

We consider the complex simple Lie algebra B4 and its associated affine Lie
algebra Bfll) [1,8]. Let (v1,v2,v3,v4) be the set of simple roots of the By root

system given by
v = (17_17070)7 Vg = (07 17 _170)7 V3 = (0707 17 _1)7 Vg = (070707 1)7

and v9 = (—1,—1,0,0) its minimal negative root. It is well known [1] that the
vectors of the family (v, v1,v2,v3,v4) satisfy the linear relation

v + v1 + 209 + 2v3 + 204 = 0 (16)

and that the vector u = (1, 1,2, 2, 2) of the coefficients of (16) generates the kernel

of the Cartan matrix C' of Bil) . The elements of C' = (¢;;) are constructed from
the system of roots (vg, v1,v2,v3,v4) via the formula

where (-, -) denotes the usual inner product of R*. Hence, we can easily calculate
that
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We note that, since ker(C) = ((1,1,2,2,2)), all the rows of C, which are vec-
tors in R, lie in the hyperplane M of R that is orthogonal to the vector
u=(1,1,2,2,2).

We consider a coordinate system (ag, a1, as,as,as) on R®, we denote by I; the
vector corresponding to the i-row, i = 0,...,4, of C, and to each one we associate
a vector field X; on R® as follows:

lo=(2,0,-1,0,0)  — onzao(;;—agai,
I = (0,2,-1,0,0) o oX :2a1£1—a2£2,
lo=(-1,-1,2,-1,0) — Xo= —aoaa%—alaal—i—Qag(f@—ag&,
l3=1(0,0,—-1,2,-1) — X3= _“26(2 + 2%6?13 - a4a§4,

0

0
ly = (0, 0,0, -2, 2) — Xy =—-2a3— +2a4—.
a

Note that X4 = — Xy — X1 — 2X2 — 2X3, which means that rank(Xy, ..., X4) = 4.
Also, we have [X;, X;] =0, for any 4,5 =0,...,4.

Now, using any four from the five vectors fields X;, i = 0,...,4, we can con-
struct various quadratic Poisson structures on R® of rank 4 having F' = agaia3a3a?
as unique Casimir. (We remark that the vector of exponents of F' coincides with
the generator of ker(C).) For example, we can consider the bivector fields

XoAXo+ X1 A X3, XoNA X3+ X1 A Xo, XO/\(X0+X1—X2)+X2/\X3

and check their referred properties. In this framework, the Poisson tensor A, of
the previous Section is written as

AVZXo/\X1+X2/\X3.

It is natural to ask the following question: Which ones of the resulting Poisson
tensors on R are Poisson isomorphic? Is there a rule giving such isomorphism?

Since the Poisson structures that we are seeking are exterior products of linear
combinations of Xp,..., X4, which are in one-to-one correspondence with the
rows of the Cartan matrix C', it is natural to assume that the required Poisson
maps will be related with the transformations of R% which map the rows of C to
a linear combination of these rows. Any such transformation of R® preserves, by
construction, the hyperplane M of R® and its transpose preserves the orthogonal
space (u) of M. In other words, if A = («;) is the matrix of a such transformation,
for any vector v € M, we have

(Av,u) =0 & (v, 4u) =0 < Au=ku, kcR. (17)

Let us study in detail the two Poisson tensors A,, = Xo A X1 + X2 A X3 and
A:/ = Xo A Xo + X1 A X3. A transformation between the two tensors will be
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associated with a transformation of the corresponding rows of the Cartan matrix.

So, we seek ¢: R® — RS,

¢(a) = (¢0(a)> o1 (CL), P2 (a)7 ¢3((1), ¢4(a))7

such that
0« Xo = X1, ¢:X1 = X3,

As a result we will have ¢.A, = A:/.

¢*X2 = X07

6. X35 = Xo. (18)

Let us determine first, the linear transformations of R® which map ly — I,
lh = I3, lo — lp and I3 — [5. Such a transformation will keep l4 within the
plane M, since ly = —lp — 11 —2lp — 2l3. We denote by A = (o) its matrix. Then,
the equations Aly = Iy, Al = I3, Aly = |y and Alg = Il define, respectively, the

following systems of linear equations:

2000 — a2 = 0,
20010 — a2 = 2,

201 — apz =0,
2011 — a2 =0,

2000 — 9o = —1, 2001 — (o2 = —1,

2030 — azg = 0, 2031 — agg = 2,

2040 — ayg = 0; 2041 — oy = —1;

—aoo — ao1 + 2a02 — ap3 = 2, —ap2 + 2003 — apg = —1,
—ayg — aq1 + 2012 — a3 = 0, —aq2 + 2013 — g = —1,
—ao0 — o1 + 2099 — g3 = —1, —a2 + 20093 — Qo4 = 2,
—a3p — a31 + 2a32 — azz =0, —ag2 + 2a33 — azq = —1,
—ay0 — a1 + 2009 — a3 = 0; —ay2 + 2043 — oug = —1.

Choosing the fist equation from each system and solving we obtain the solution:

agp = K, Qo1 =K, Qg2 =2K, «ap3=2k—2, apu=2rk-—3, k€ER.

Repeating in the same way we obtain the following form for the matrix A:

K K 2K 2k—2 2k—3
A+1 A 2 20 —1 2X -1
A= 1 woo 2pn+1 243 2u+3|, K \pv,fER
v v+1 2v 2v—1 2v—-1
¢ -1 26 241 2041

Thereafter, we choose x, A, i, v and £ in way that ‘Au = u. One such choice is
k=A=pu=v=£&=0. Then,

0 0 0 —2 -3
1 0 0 -1 —1
A=|0 0 1 3 3
0 1 0 -1 -1
0 -2 0 3 1
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96
We now return to the system (18). We denote by T¢ = < 8@) the Jacobian

aj
matrix of the map ¢ which represents the tangent map ¢, of ¢. The equation
¢+(Xo(a)) = X1(¢(a)) is equivalent to the system of partial differential equations

O¢o 0o _ g1 9¢1 _

2 B0~ 2By =0, 2 U a2aa2 201,
P2 02 0¢3 d¢3

2 Oaag 28@2 = %2 2 0 9a 28a2 =0,
¢4 0ps

2 08a0__a28a2__0

Similarly, using the other equations of (18), we obtain similar systems of partial
differential equations. Selecting the first equation from each system, we obtain

dpo ol
200 =— —as— =0
08a0 28@2 ’
d¢o I
201 2 — g2 =
@ 8&1 azaag O’
Do Do ddo Do
—g— — 01— + 209 — — =2
(o7h) 8(10 aq aal + 200 8(12 ag 8@3 ¢07
dpo o dpo
P A U ) PV o LAV B ok
daz T 200y “Bag - 7
The solution of this system is similar to the earlier ones. We have
a%:m a%:ﬂ a%:zn
0 Bag ) 1 Day ) 2 Bas )
0 0
oz3ﬂ = 2Kk — 2¢g, a4ﬂ:2/€—3¢0, Kk € R.
dag Oay

Taking x = 0 we obtain the solution

¢o(a) = a§2af’.

We observe that

-2 3
Po(a) :aga(l)ag% ay

i.e., the exponents of this expression are precisely the entries of the first row of
the matrix A. Working in a similar fashion we compute the other unknowns ¢;,
i=1,...,4. Hence we have

¢o(a) = az’a;®,  ¢1(a) = aoaz'ay’, ¢2(a) = azalad,
_1 1
¢s3(a) = alaglazl, ba(a) = ay *a3as.
A simple check shows that

¢*AV = Alvv
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where

Av(a) =XoANX1+XoAX3

0 dagaq —apas —2apa3  Gpay
—4(10&1 0 3a1a2 —2a1a3 aja4
= apaz —3(11&2 0 3&2&3 —2a2a4 s
2a0a3 2a1a3 —3(12&3 0 asay
—apa4 —ai1a4 2a0a4 —asay 0

and

A (qb(a)) =XoANXo+ X1 ANX3

0 20001 3dod2  —2¢0¢3 0
20001 0 —30102  4P193  —2¢1¢4
= | =300p2 3P102 0 —pod3 P2y
20003 —4P193 D203 0 0
0 20104 —P294 0 0

Furthermore, the transformation ¢ preserves the Casimir F"

(¢*F)(a) = F(¢(a)) = pogr1 430367 = apaiazajai = F(a).

The Hamiltonian vector fields of the structures A, and Aj, with Hamiltonians
H, (a) = ag+a1+az+az+aq and H],(¢) = ¢o + ¢1 + ¢p2 + ¢3 + ¢4, respectively,
are Lotka—Volterra systems.

Finally, by introducing the transformation y; = Ina;, i = 0, ..., a4, [7] which
is a global orientation-preserving diffeomorphism inside the positive orthant, we
remark that A, is isomorphic to the constant Poisson structure on R® represented
by the matrix

0 4 -1 -2 1
-4 0 3 -2 1

Y, =]-1 -3 0 3 -2,
2 2 -3 0 1
1 -1 2 -1 0

whose kernel is generated by the vector u = (1,1,2,2,2) of the exponents of F.
This observation is a well known result for quadratic Poisson structures with
a degenerate matrix of constant coefficients [7].

5 Conclusion and open questions

In this paper we use two different methods to generate Lotka—Volterra systems
associated with affine Lie algebras. In the first method, we use the construction
of Poisson brackets from a prescribed set of Casimirs to construct some Lotka—
Volterra systems associated to complex simple Lie algebras of type B,. They
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are obtained from the well-known Poisson structures of the B,-periodic Toda
lattices of Bogoyavlensky [2]. In the second method, we use the properties of the
Cartan matrix of the corresponding affine Lie algebra B,(ll) to construct a family of
quadratic Poisson brackets of Volterra type and hence a family of Lotka—Volterra
systems. We have illustrated with the example of B4 but the procedure can be
applied for any n > 2 and to any affine Lie algebra. We conclude with a list of
questions and open problems.

e We have started with a set of functions fi,..., f;_2r and we have a con-
struction which gives some Poisson brackets with the prescribed Casimirs.
Does this exhaust all possibilities? In other words, is any Poisson bracket
which has the functions fi,..., fin_or as Casimirs obtained by this proce-
dure?

e Are the Lotka—Volterra obtained from the periodic Toda lattices (which are
known to be integrable) also Liouville integrable? For example is the system
defined by the tensor A, and the Hamiltonian Hy = ag + - - - 4+ a4 Liouville
integrable?

e Why is the kernel of the Cartan matrix the same as the kernel of 3,7
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We consider a quasilinear equation which arises in financial mathematics: the
equation introduced by Miller and Weller [J. Econom. Dynam. Control 19
(1995), 279-302]. The equation is studied under the prism of the theory of
modern group analysis. Specifically the complete group classification is per-
formed and the cases that can be mapped either to the heat equation or to some
type of Burgers equation are indicated. Finally the nonlinear self-adjointness
of the equation is investigated; with the help of a formal Lagrangian for the
equation and, using its symmetries, conservations laws are constructed.

1 Introduction

In the Introduction of his now famous paper of 1973 Merton [22] remarked that
‘since options are specialised and relatively unimportant financial securities, the
amount of time and space devoted to the development of a pricing theory might
be questioned’. The observation was not unreasonable for at that time trading
in options was a minor part of most serious portfolios, including those of specu-
lators!. The transactional costs involved with options wvis-a-vis the actual stock
were themselves a deterrent. By way of curious irony in the Conclusion of their
also now famous and contemporaneous paper Black and Scholes [4] made the very
telling point that their results could be extended to many other situations and,
in a sense, that virtually every financial instrument could be regarded in terms of
an option. Merton acknowledged the applicability of the approach of Black and

!One recalls the regular weekly column, Speculators’s Diary, in the Sydney Bulletin of the
times dealt in options maybe once or twice a year and then as a somewhat daring activity.
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Scholes due to the specific assumptions they had made in their model. Subsequent
research has shown that a number of these assumptions can be relaxed without
affecting the viability of the model.

A number of research papers is devoted to models in financial mathematics and,
in particular, their resolution via symmetry methods. Most of these equations
have been shown to be related via a coordinate transformation to the classical
heat equation [10,25]. If such a connection exists then, evidently, all the known
properties and solutions of the heat equation can be transformed and be applied to
the equation under study. Furthermore the derivation of some similarity solutions
in some instances is very important for applications. In this paper we examine
a quasilinear equation, the equation of Miller and Weller [23]:

0.2

Ut + 5 Uag + (o + Bu)uy + du = vyx. (1)
There are various approaches to the analysis and resolution of a differential equa-
tion. In this paper we are concerned with the Lie point symmetry analysis as it is
applied to certain equations that arise in financial mathematics [10]: We employ
the methods of Modern Group Analysis to classify and obtain the Lie algebra of
symmetries of the equations. Classification in this context means to find specific
subsets in the parametric space of the equation, constants and free functions that
give symmetries additional to those of the most general case. Because those spe-
cial cases have a Lie algebra of higher dimension than the one of the general case,
their investigation might be more profitable.

The Lie algebraic approach to the solution of evolution equations that arise in
financial mathematics requires, in general, the existence of a sufficient number of
Lie point symmetries. As a consequence we employ the following procedure (other
methods include those found in [17,18]): If an equation (or system of equations;
the generalisation should be obvious) is well-endowed with Lie point symmetries,
then one should seek to determine if the Lie algebra is isomorphic to that of the
heat equation or to any well-studied equation having the Lie remarkable attribute.
If this be the case, then a suitable transformation can be derived from the two
different representations of the same Lie algebra. If that be not the case, then one
should pursue other standard techniques, symmetry-based or not. In this respect
it is perhaps ironic that the first treatments of the Black—Scholes equation using
the Lie symmetry technique [12,14] happened to be a treatment of an equation of
both maximal symmetry and linearisable to the heat equation. The route to the
solution in [12] was quite different and less straightforward from the ones applied
in [10,20] in subsequent years.

Finally the given model is investigated under the prism of self-adjointness [15,
16]. For the cases that a kind of self-adjointness exists we give the corresponding
Lagrangian and the conservations laws that can be derived from the symmetries of
the equation. Furthermore we use those conservation laws to reduce the equation
and obtain a specific solution. For all the results presented in the present paper
the symbolic package SYM for Mathematica [3,7-9] was extensively used.
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2 The Miller—Weller equation

Adopting the approach of Miller and Weller [23] on continuous-time stochastic
saddlepoint-systems we consider the following model for rational expectations.
There is an economic fundamental the value, z;, of which follows a diffusion
process. There is also an asset the price, 1, of which is a forecast of rational ex-
pectations of future fundamentals (properly discounted). According to the model
of Miller and Weller [23] the fundamental and asset prices are connected as follows

dry = a(xy—2")dt + By — y*)dt + odW; and

w = E [/ —(zs — 2*)e s | Fy| + "
t

The stars denote equilibrium states, which without loss of generality are assumed
to be equal to zero. The uncertainty is assumed to be introduced into the model by
a (possibly vector-valued) Wiener process W; and the rational expectations of the
fundamental are taken over the information set F; = o(Ws, s < t), the natural
filtration generated by the Wiener process. The constant 6 > 0 is a discount
factor. The divergence from equilibrium of the asset is assumed to have some
feedback effect upon the dynamics of the fundamental. According to Miller and
Weller [23] a number of classic models may be cast into this form. An example is
Blanchard’s model [5] which relates stockmarket prices to the level of real activity
in the economy. Another model related to the above is the model of Krugman for
target zones [19]. In this case § = 0 and the asset price is not assumed to have
any feedback on the dynamics of the fundamental.

In a recent work [28] it has been shown that the original model of Miller and

Weller is equivalent to an infinite-horizon forward-backward stochastic differential
equation (FBSDE) of the form

dry = (o + By )dt + (o124 + 02y ) AWy,
dyt = ("}/.Tt + 5yt)dt + thWt,

where 2; is a stochastic process that has to be chosen so that the original system
is well posed from the point of view of measurability of the solutions with respect
to the filtration generated by the Wiener process.

One way to look for solutions of such systems is to assume that the backward
variable y (the asset) is provided by some function of ¢ and the forward variable z,
that is y; = f(x¢,t). We now apply It6’s rule on f(x,t) to find dY;. Then, when
we match this expression with the expression for dy; provided by the FBSDE
system, we find that, in order to obtain compatibility, equation (1) should hold
with some properly chosen final condition.

We refer to equation (1) as the general case of the Miller—Weller equation.
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3 Analysis of the Miller—Weller equation

Before we proceed, we wish to highlight the major differences of the Miller—Weller
equation as compared to other well-studied models in financial mathematics. In
the Black—Scholes equation the price of the option, u(t,x), depends upon the
value of the underlying asset, x, and time, . The asset, say the stock, is assumed
to follow a geometric Brownian motion and is lognormally distributed. In order
to model successfully other financial assets, such as bonds and interest rates,
other processes are assumed. This is mainly because the fluctuation of these
random variables is considerably more ‘stable’ than the inherent high volatility
of, say, a stock. Vasicek assumed that the interest rate, r, follows a mean-reverting
(Ornstein—Uhlenbeck) process [26]. The arguments behind such an assumption
lie in the very nature of the financial asset. (If the (short-term) interest rate is
large, then, on average, it should move down and, if the interest rate is small,
then it is more probable that it rises.) In contrast to the lognormal process there
is no reason for r to remain positive. This leads to a process that is known as
the square root model for the short-term interest rate as in the Cox—Ingersoll—
Ross (CIR) model for nonnegative interest rates [6]. Lastly the equation due to
Longstaff [21] is obtained by assuming a process that is again of mean reversion
but with two square roots in the stochastic differential equation (hence the name,
double square-root model).

Interestingly, if we consider a generalisation of all the processes mentioned
above [13],

der=(v—px)dt+o 27 dB,

then the partial differential equation for zero-coupon bond pricing takes the form

20 gy + (v—px— Aoz )uy —zu =0 (2)

U + %O’
with the terminal condition u(z,T") = 1.

For specific values of the parameters, v and A, we recover, essentially, the Va-
sicek equation (y = 0), the CIR equation (7 = 1/2 and A = 0) and the Longstaff
equation (y = 1/2). From a symmetry point of view, equation (2) possesses
solely the ‘obvious’ symmetries, 0, ud, and fd,, where f is a solution of the
equation itself. Additional symmetries are obtained only for the particular values
v=0,1/2,3/2 and 2 [25]. It is evident that the Miller-Weller equation does not
fit in the class of partial differential equations as reflected in (2). Equation (2) is
essentially a linear partial differential equation and therefore, if there exist values
for the parameters that would allow it to exhibit more (five is a fair number) Lie
point symmetries, then these cases would be easily reduced to the heat equation.
Indeed for all those models that have been proposed in the literature and are
special cases of (2) the transformation to the heat equation has been given [10].
The Miller—Weller equation is nonlinear provided g # 0. Obviously for all cases
mentioned in what follows, where § = 0, there exist point transformations that
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link the equations to the heat equation. The focus of the present work lies in the
nonlinear cases.

3.1 Group classification of the Miller—Weller equation

It is evident that for o = 0 equation (1) is a quasilinear first-order PDE that can be
handled adequately by the available analytical tools for first-order pdes. For this
reason we exclude this case from our classification and we assume in what follows
that o # 0. Also, for 8 = 0, the equation becomes linear and its symmetries are
isomorphic to the Lie point symmetries of the heat equation. Hence, by following
the same logic as in [10], we can easily obtain a point transformation that links
those two equations, see also [17] for an effective criterion that encompasses the
class of parabolic partial differential equations

up = a(x, ) ugy + bz, t)uy + c(z, t)u.

The analysis of equation (1) gives two (distinct) cases, a # ¢ and a = 4, see
Table 3.1 that follows.

The Miller—Weller equation for 5 # 0 and o = § has the Lie algebra si(2,R) ®,
24, as can be inferred by the Table of Lie Brackets:?

] X X Xy Xy Xs
X1 | 0 Xy —X3 2%, —2Xs
Xo| =X, 0 0 0 -2
Xy | X3 0 0 -2X, 0
Xy |-2xs 0 2%, 04X
Xs | 2%5 2X5 0 —4X; 0

The complete classification of the nondimensional generalised Burgers equation
(NDGB)

up + uty + F(t)uze =0 (3)

was performed in [11,27].

The Miller—Weller equation for 5 # 0 and o = § has the same Lie algebra as the
classical Burgers equation (F'(t) = const. in (3)). For each of the three subcases,
following the same reasoning as in [10], a suitable transformation can be found
that links the two equations. Namely, for Case 4 the point transformation,

1
u= 3 [4@Q§tU(X, T — (a+ Q;)m] ,

QFt 201t
X =zxe2? T =2e*72"

251(2,R) is formed by the span of the elements X1, ¥4, X5 and 2A4; from the rest. The given
table can be obtained from all the subcases of o = § after a suitable change of basis.
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Table 1. Group classification of the class u; + %um +

(ax + Bu)uy + du =z, B #0.

N Case Symmetries

va757’y7570— :{1:815

a#d

1| >0 | Xpz=2e2070F00, Lo+ 55 Qf )esla o0y,

Xy = 262(0‘ 0t cos %8

2 0, <0 7
X3 = 2e2(@ Dt gipn Q#6

g

-1 ((a +9) cos At 4 Q7 sin 92 t) e2(@=0)tg,

-3 ((a + 9) sin % — Qf cos 92 t) 2@ty

Xy = e300ty _ (O"%‘S)eé(a—é)ta

u

B

Xy =20, +2t0 — (u+ Q%x)au

X5 = tzd, + 120, + T=2ezt=Blu g

3 2,=0 ) .
X4 = 26300y, _ 2l ooy,
a=9
\ 0 0 X3 = e %eiﬁgt&“
Xu5 = QF X2 100, + 220519, 6u+2(0é¢92+)r QF 2% 9,
Xo = cos(Q3 )9, — % (cvcos(Q3t) + Q3 sin(Q5t)) Ou,
. Q, <0 X3 = sin(Q5t)0, — % (asin(Q3t) — Q3 cos(Q3t)) Dy
Xy = Q+ cos ( Q;t) 20, + sin (2Q;t) Oy
—%((ﬁu + 2ax) cos (20 t) + 297 sin (2Q5t) )0,
X5 = QF sin (2Q5°t) 20, — cos (2Q5°t) O
—%((ﬁu + 2az) sin (20 ) — 295 cos (2Q5t) )9y
Xy = 0r — 50u,
; 9 0 X3 =10, + 1510y,

Q=487+ (a+6)2, Qf = /487 + (e +0)?[,

=By+a? QF =

VB + a?|.
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yields the classical Burgers equation with F(t) = 02/(8Q]); for Case 5 the point
transformation,

1 [QUX,T)
B cos(Q5t)
X = xsec(Qgt), T = tan(Q5t),

— (a4 QF tan(QFt))z | ,

yields the classical Burgers equation with F(t) = 02/(2Q]) and for Case (6)
the transformation v = (U — ax)/f gives the classical Burgers equation with
F(t) = 02/2. These results come in complete accordance with the established
fact that, if an equation from the class

Ut = Ugg + F(t, ZL‘,U,U;E)

admits a five-dimensional Lie symmetry algebra, then it can be mapped to the
Burgers equation [29].
Accordingly, for the case a # 4, the Lie algebras for each subcase are

[ | X X X3
X1 0 %(Oz—d—i—Qf)%g %(Oz—d—Qf)%g
X9 —% (04—54-91'_):{2 0 0
%3 —%(O&—(S—Qf)%g 0 0

when Qf > 0 and the Lie algebra is F(1,1) (A34 in the standard classification
scheme),

[] | X X X3
£ 0 s(a—0)X2— 307X 30X+ 5 (a—0) X3
) —% (a — 5) X9 + %Q—f—%g 0 0
Xg | =530 % — 3 (a—0) X3 0 0

when ; < 0 and the Lie algebra is E(1,1) (As4 in the standard classification
scheme) and

1] E3) X» X3
X 0 %(O& —0)Xy X2+ %(a —90)X3
%2 —%(O& — 5)%2 0 0
X3 | X9 — %(a - (5)%3 0 0

for 2 = 0 with the Lie algebra A3 ».
For Case 1 the point transformation,

1 a—=§4
— |4
28 | ¢

AL +
u T TUXT) -z (a+6+9)],

1 s—atQf +
X:§e Tl T:tet7
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d—a
yields the NDGB equation with F(t) = 83—175 ol for Case 2 the point transfor-
mation, '
1 o Qf QFf
u= 33 [ QfeTétsec (2175> UX,T)—=x <a + 9+ Qp tan <21t)>} ,

1 _a- Qf Qf
X = fe*Tgtsec L), T =tan [ —-t |,
2 2 2

yields the NDGB equation with F(t) = &%exp(?};ﬁ tan~1t) and, finally, for
1 1

Case 3 the point transformation,

1 l(a—&)t e%(éfa)tx
u:—[4e2 U(X,T)—(a—i—é)x}, X=— T=t,
283 2
yields the NDGB equation with F(t) = %26(5*“)’5.

3.2 Conservation laws of the Miller—Weller equation

We turn our attention to find conservation laws for the Miller—Weller equation.
This is accomplished by following the method proposed by Ibragimov [15,16]. Let
the formal Lagrangian be

v(z,t) (—vx + du + up + (za + Pu)ug + %0'211,3335) . (4)
The equation adjoint to (1) is
v = 20705, — (ax + Bu)vg + (0 — a)v. (5)

Without any other knowledge about the adjoint equation, (4) is a Lagrangian of
the system consisting of the equations (1) and (5). To be also a Lagrangian for
equation (1), equation (1) must be self-adjoint. We check under which conditions
this is true.

Obviously, by direct substitution of v by u into equation (5), one can see that
equation (1), or some special case of it, is not strictly self-adjoint.

We turn to quasiself-adjointness by assuming that v = ®(u); after substituting
v into (5) and eliminating u; using (1) we arrive at an identity that is a multivari-
able polynomial with respect to u, and u,,. Equation of the coefficients of this
polynomial to zero gives the following system:

" =0, ' =0, (ud — 27)®" — (o — )@ (u) = 0. (6)

System (6) has a nonzero solution if and only if & = §. For that case ®(u) = ¢,
where ¢ is a constant that, without loss of generality, can be taken equal to one.
The formal Lagrangian for this case is the equation itself. In fact it is easy to put
the equation into the conserved form

B

1
RO azu(z,t) + Sulz, t)? + ~o%uy |+ uy
2 2 2 i
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On the other hand, for equation (1) to be nonlinear self-adjoint, we assume
that v = ®(x,t,u(x,t)). Similarly, by using this assumption, we arrive at the
system:

Dy = 0, D, = 0, ®, = 0, (7)
(0 —a)® — 2vP, + udP, — Oy — (za + uf)P, + %azq)m =0.

(6—a)t

The nontrivial solution of the system is ® = ce In summary the formal

Lagrangian of equation (1) is
g0t (—vz + du(z,t) + w + (za + Bu(w, t))u, + %02um) .

By using the symmetries found in the previous Section we can look for nontrivial
conservation vectors for the cases of Table 3.1. The only nontrivial conservation
vector found in this way is for o # ¢ and the use of symmetry X;

(—%e(‘s*a)t (2(za + Bu)uy + 0%ugt) —e(‘s’a)tut> )

We use this conservation law to find a solution of the equation. We assume that
2(za + Bu)ug + o ugy = g(t), e~y = h(x)

and find that a solution of the equation is

ela—=d)t B

a
a—90 I}

u(z,t) =1 x, (8)
when ad + B~ = 0.
These results come in accordance to the well-established framework in [24] in

which the complete treatment of second-order evolution equations was given using
the direct method [1,2].

4 Discussion

In this paper we have considered the Miller-Weller equation which arises in fi-
nancial mathematics. Although the equation is nonlinear, its complete group
classification reveals a deep connection to the heat equation for § = 0 and the
nondimensional generalised Burgers equation for 8 # 0.

The central theme of the paper is the use of the Lie theory of continuous groups
for the resolution of differential equations. The provenance of these equations is
oftentimes unimportant, but in this instance we have chosen a class of partial
differential equations of considerable application in Finance. The methods based
upon symmetry are algorithmic and a symbolic package may be used, in this
instance it was SYM for Mathematica.

We do emphasise that we wished to illustrate two approaches to the solution
of the Miller—Weller equation, namely a similarity solution and a solution through
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a conservation law. We were not concerned with the solution of (1) in the real-
istic context of finance for which one needs to consider the terminal condition.
Typically this would be of the form u(z, T') = 1 (the actual value of the number
is immaterial) which means that we have the dual conditions, ¢t = T and u = 1,
to be satisfied by any solution of the equation, (1), itself. To find that solution
one needs to take a combination of the symmetries of the equation, (1), which
is compatible with these conditions. Then one may proceed either through the
approach of the conservation law or by a similarity reduction. In the case that
a # 6, > 0 the solution is

20 exp (O‘_(S)(t_T%JFQT(HT) + 27z (exp (Q7t) — exp (O T))
(Ql+ —a— 6) exp (QTT) + (QIr +a+ 6) exp (th)

u(t, x) =

Consequently even in the case of reduced symmetry the use of the Lie theory of
continuous groups leads us to a solution.
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Differential invariants for the maximal Lie invariance group of the Korteweg—de
Vries equation are computed using the moving frame method and compared
with existing results. Closed forms of differential invariants of any order are
presented for two sets of normalization conditions. Minimal bases of differential
invariants associated with the chosen normalization conditions are given.

1 Introduction

Invariants and differential invariants are important objects associated with trans-
formation groups. They play a role for finding invariant, partially invariant and
differentially invariant solutions [11,14,19], in computer vision [16], for the con-
struction of invariant discretization schemes [3,4,7,12,13,15,21] and in the study
of invariant parameterization schemes [1,2,20].

There are two main ways to construct differential invariants for Lie group
actions. The notation we use follows the book [14] and the papers [5,8,15-18]. Let
G be a (pseudo)group of transformations acting on the space of variables (z,u),
where x = (x!,...,2P) is the tuple of independent variables and u = (u!,..., u9)
is the tuple of dependent variables. Let g be the Lie algebra of vector fields that
is associated with G.

The first way for the computation of differential invariants uses the infinitesimal
method [6,11,14,19]. The criterion for a function I defined on a subset of the
corresponding nth-order jet space to be a differential invariant of the maximal Lie
invariance group G is that the condition

pr(n)V(I> =0, (1)

holds for any vector field v € g. In equation (1), the vector field v is of the form
v = &(z,u)0y + dalx,u)dye (the summation over double indices is applied),
and pr®v denotes the standard nth prolongation of v. In the framework of
the infinitesimal method, the differential invariants I are computed by solving
the system of quasilinear first-order partial differential equations of the form (1),
where the vector field v runs through a generating set of g.
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The second possibility for computing differential invariants uses moving frames
[5,8,9]. The main advantage of the moving frame method is that it avoids the
integration of differential equations, which is necessary in the infinitesimal ap-
proach. At the same time, using moving frames allows one to invoke the powerful
recurrence relations, which can be helpful in studying the structure of the algebra
of differential invariants.

In this paper, we study differential invariants for the maximal Lie invariance
group of the Korteweg—de Vries (KdV) equation. This problem was already con-
sidered in [5,17] and in [6] within the framework of the moving frame and infinites-
imal approaches, respectively. Thus, on one hand it is instructive to compare and
review the results available in the literature. On the other hand, we extend these
results in the present paper. In particular, we explicitly present functional bases
of differential invariants of arbitrary order for the aforementioned group.

The further organization of the paper is the following. In Section 2 we restate
the maximal Lie invariance group of the KdV equation. Section 3 collects some
results related to a moving frame for the maximal Lie invariance group of the
KdV equation as presented in [5]. We also introduce an alternative moving frame
in this section. Section 4 contains our main results, which are a complete list
of functionally independent differential invariants for the maximal Lie invariance
group of KdV equation of any order as well as the description of a basis of dif-
ferential invariants for the new normalization introduced in Section 3. Section 5
contains some remarks related to the results of the paper.

2 Lie symmetries of the KdV equation

The KdV equation is undoubtedly one of the most important partial differential
equations in mathematical physics. It describes the motion of long shallow-water
waves in a channel. Here we will use it in the following dimensionless form:

Up + Uy + Uggy = 0. (2)

The KdV equation is completely integrable using inverse scattering [10]. The co-
efficients of each vector field Q = 7(¢, z,u)0; +£(t, x, )0, +n(t, x,u)0, generating
a one-parameter Lie symmetry group of the KdV equation satisfy the system of
determining equations

Te=Tu=Cu=Mm=n:=0, n=§— %UTta T = _%Tt = =2, (3)
with the general solution
T=3cst+c1, &=cqx+cst+co, n=—2cqu+ cs,

where c1,...,cq are arbitrary constants. Hence the maximal Lie invariance alge-
bra g of (2) is spanned by the four vector fields

O, Oy, t0p+0u, 3t0;+ 10, — 2ud,. (4)
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Associated with these basis elements are the one-parameter symmetry groups of
(i) time translations, (ii) space translations, (iii) Galilean boosts and (iv) scalings.
The most general Lie symmetry transformation of the KdV equation can be con-
structed using these elementary one-parameter groups:

T=e(t+eg), X=c(r+extereztest), U=e X (utez), (5

where €1,...,e4 € R are continuous group parameters. The KdV equation also
admits a discrete point symmetry, given by simultaneous changes of the signs of
the variables t and =x.

The prolongation of the general element @ of the algebra g has

na = —(3CY1 + (6% + 2)C4u01 - a103ua171,a2+17

as the coefficient of 9, , where o = (a1, a2) is a multiindex, oy, g € NU{0}, and
Ug = O T2y /911 922 as usual.

Using the chain rule, from the above transformation formula (5) one obtains
the expressions for the transformed derivative operators,

D7 = e %Dy — e3D,), Dx =e “D,.

In [5] these operators were used for listing some of the lower order transformed par-
tial derivatives of u. However, in order to obtain a closed formula for a functional
basis of differential invariants of arbitrary order for the KdV equation, it is useful
to attempt to derive a closed-form expression for the transformed derivatives of w.
Such an expression is

Uy = e~ Botoat2enp, — oD, )*1Do2y

aq
o o (6)
e (Ba1+ag+2)es kz_o(_é.g)k ( f ) Uay —k,o0+k-

In particular, the expressions for Ur and Ux are

Up = e 5% (ug — es3uy), Ux = e 3y,

3 A moving frame for the KdV equation

As the maximal Lie invariance group of the KdV equation is finite-dimensional,
we only review the construction of moving frames for finite-dimensional group
actions here. Details on the moving frame construction for Lie pseudogroups can
be found, e.g., in [5,18].

Definition 1. Let there be given a Lie group G acting on a manifold M. A right
moving frame is a mapping p: M — G that satisfies the property p(g-2) = p(2)g~!
for any g € G and z € M.
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The theorem on moving frames, see e.g. [9,16,17], guarantees the existence
of a moving frame in the neighborhood of a point z € M if and only if G acts
freely and regularly near z. Moving frames are constructed using a procedure
called normalization, which is based on the selection of a submanifold (the cross-
section) that intersects the group orbits only once and transversally.

There exist infinitely many possibilities to construct a moving frame. The
single moving frames differ in the choice of the respective cross-sections. The
moving frame constructed in [5] rests on the normalization conditions

T=0, X=0 U=0, Up=1, (7)

i.e., it is defined on the first jet space J'. It is necessary to construct the moving
frame on the first jet space, as the maximal Lie invariance group of the KdV
equation does not act freely on the space M, spanned by ¢, x and u. The action
of G first becomes free when prolonged to J', which is then the proper space
to construct the moving frame p: J' — G on. Solving the above algebraic
system (7) for the group parameters e1,...,&4 yields the moving frame p)

€1 =—t, €y =—x, E3=—U, €E4= R In(u + uuy), (8)

which is well defined provided that u; + uu, > 0. This moving frame becomes
singular when u; + uu, = 0. The latter condition is equivalent, on the manifold
of the KdV equation, to the condition that uy,,; = 0 and implies, together with
the KdV equation, that u,, = 0.

Another possible normalization, leading to an alternative moving frame, is the
following;:

T=0, X=0, U=0, Ux=1

Solving the normalization conditions gives the associated moving frame

€1 =—t, &y =—x, E3=—U, €E4= 3 In uy, (9)

which is well defined provided that u, > 0.

Note that for uy +uu, < 0 (resp. u, < 0) one can replace the condition Up = 1
by Up = —1 (resp. Ux =1 by Ux = —1).

4 Differential invariants for the KdV equation

The above moving frames can now be used to construct differential invariants
using the method of invariantization [5,16,17].

Definition 2. The invariantization of a function f: M — R is the function
defined by

uf) = fp(2) - 2).
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We first construct the set of all functionally independent differential invari-
ants for the maximal Lie invariance group of the KdV equation using the moving
frame (8). An exhaustive list of differential invariants of any order was not given
in [5]. Such a list is obtained by plugging the moving frame (8) into the trans-
formed derivatives (6). This yields

al
Io = 1(Us) = (us + uu$)7(3a1+a2+2)/5 Z (C;;) Ukual—k»az-i-kv (10)
k=0
where a; > 1 or ag > 0. Invariantizing ¢, z, u and wu;, one recovers the nor-
malization conditions (7) and the associated differential invariants are dubbed
phantom invariants. The corresponding invariantized form of the KdV equation
is 1+ Ipg = 0.
Using the alternative moving frame (9), invariantization of (6) leads to the
following set of functionally independent differential invariants of the maximal
Lie invariance group of the KdV equation,

To = (Uy) = uy Garraz /3§ < kl) T (11)
k=0

where a; > 0 or ag > 1, and H' = 1(t) = 0, H?> = 1(z) = 0, Ipo = ¢(u) = 0 and
I = t(uy) = 1 exhaust the set phantom invariants for this moving frame. Then
the invariantization of the KdV equation yields the invariant form I1g + Ips = 0.
The advantage of the form (11) of differential invariants compared to the form (10),
which follows from the normalization (7) chosen in [5], is that these invariants are
singular only on the subset u, = 0, which is contained in the subset u,, = 0 on
which the invariants (10) are singular (again, when restrict to the KdV equation).

In principle, by computing the form of differential invariants of any order we
have already solved the problem to exhaustively describe all the differential in-
variants for the maximal Lie invariance group of the KdV equation. On the other
hand, it is instructive to study the structure of the algebra of differential invariants
in some more detail.

In particular, an interesting open problem in the theory of differential invariants
is to find minimal generating set of differential invariants in an algorithmic way.
This is the set of differential invariants that is sufficient to generate all differential
invariants by means of acting on the generating invariants with the operators
of invariant differentiation and taking combinations of the basis invariants with
these invariant derivatives. Often the computation of the syzygies among the
differential invariants is a crucial step to prove the minimality of a given generating
set. The two operators of invariantization for the maximal Lie invariance group G
of the KdV equation follow from the invariantization of the operators of total
differentiation D; and D, and they are

D! = o(Dy) = (ug + uug)~>/%(Dy + uDy),
D! = u(D,) = (us + wu,)~V/°D,.
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In [5] it was claimed that the invariants

Uy U+ 2uttyy + gy
(g 4wz )35 (ug + ung)8/5

Ip1 =

form a generating set of the algebra of differential invariants for the KdV equation.
While this is certainly true, this set is not minimal. In [17] it was shown that
the differential invariant Ip; is in fact sufficient to generate the entire algebra of
differential invariants for the KdV equation. The crucial step missed in finding
the minimal generating set in [5] was the use of the commutator formula for the
operators of invariant differentiation D! and D!, which is

[D}, D}] = (111 + I§,)D; — £(Iz0 + 6101) Dy (12)
From the recurrence relation
Diloy = =215, + i1 — 2101150

one can solve for I1; in terms of Ip; and Isg. Applying the commutation rela-

tion (12) to the invariant Iy; then allows solving for Iyg solely in terms of Iy,

which explicitly gives

[Di, Di]Ior — 2(Dioy + S13,)Dilor + $191Dl 1o
55 I01D}Ior — DL 1o

Iy = ;
which shows that Iy; is indeed the minimal generating set of the algebra of dif-
ferential invariants for the KdV equation.

We now repeat the computation of a basis of differential invariants for the
moving frame (9). The associated operators of invariant differentiation for this
moving frame are the same that were constructed in [6] within the framework of
the infinitesimal approach,

D} = u; (D¢ +uD;), DL =u,'/*D,.

The computation of corresponding recurrence relations differs from that given
in [5,17] only in minor details. Identifying c3 = & and ¢4 = %Tt, we obtain the
invariantized forms

T = L(T)a §= L(§)7 0= 7700 = /*(77)7
« a1 + ag + 2
7= o) = —=HEEEE

~1 o
3 I — a1l —1,a0417, a1+ a2 >0,

and the first three forms 7, £ and # jointly with 71 = ((71) make up, in view
of the invariantized counterpart of the determining equations (3), a basis of the
invariantized Maurer—Cartan forms of the algebra g. The recurrence formulas for
the normalized differential invariants are

A H' =w' +7, dyH? =w? +£, dula = Iyt 100w + Tayapi1w? + 7%,
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where the form w! = +(dz) and w? = t(dx) constitute the associated invariantized
horizontal co-frame, dy, is the horizontal differential and so dy,F' = (DiF)w! +
(DL F)w?. We take into account that H' = 0, H?> = 0, Ipo = 0 and Ip; = 1 and
solve the corresponding recurrence formulas with respect to the basis invariantized
Maurer—Cartan forms,

F=—w!, £=-w? fH=—-ILow'—w? =TI+ Ipw?

Then splitting of the other recurrence formulas yields

: a1 + a9 + 2
Dilo = Ini 11,00 — %Iﬂf& +arliola,—1,0041,
3o +ag + 2

D;Ia - Ial,az—i—l - 3

TIpoly + a1do;—1,a0+41,
where a1 > 0 or ag > 1.

It is obvious from the above split recurrence formulas for that the whole set of
differential invariants of the maximal Lie symmetry group of the KdV equation is
generated by the two lowest-order normalized invariants

-5/3 —4/3

At the same time, the differential invariant Iy is expressed in terms of invariant
derivatives of I;p and hence a basis associated with the moving frame (9) consists
of the single element I;g5. Indeed, we have

D!, D}] = —IpoDi + (1 + %Ill)Dim = —IpoD} + (%(D;ho) + %-710]02 + %)D;

as I = Dicllo + g[lolog — 1. Applying the commutation relation for Dic and
D} to I;9 and solving the obtained equation with respect to Iz, we derive the
requested expression,

I [Di, Di]I1g — 5(DLI1o + 2)Di 1o
20 = . . .
5 oDl Ig — Dilyg

5 Conclusion

The present paper is devoted to the construction of differential invariants for the
maximal Lie invariance group of the KdV equation. We illustrate by examples
that it is worthwhile to examine different possibilities for choosing the normaliza-
tion conditions, which is a cornerstone for the moving frame computation. This
is an important investigation as the form of differential invariants obtained de-
pends strongly on the set of normalization equations chosen. In the present case
of the maximal Lie invariance group of the KdV equation, using Ux = 1 as a nor-
malization condition instead of the condition Ur = 1 chosen in [5] leads to the
normalized differential invariants (11) which have a simpler form than the nor-
malized differential invariants (10) associated with the latter condition. The same
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claim is true concerning the corresponding operators of invariant differentiation,
recurrence formulas, etc. Moreover, the differential invariants (11) are singular
only on a proper subset of the set of solutions of the KdV equation for which the
differential invariants (10) are singular. The invariantized form of the KdV equa-
tion is more appropriate using the normalization condition Uy = 1. In contrast
to the condition Ur = 1, this condition also naturally leads to the separation of
differential invariants which involve only derivatives of w with respect to = that
may be essential as the KdV equation is an evolution equation.

We also show that for Lie groups of rather simple structure, it is possible to
construct functional bases of differential invariants of arbitrary order in an explicit
and closed form like (10) and (11). This observation was first presented in [2] for an
infinite-dimensional Lie pseudogroup. Such a closed-form expression is beneficial
as it is generally simpler than the form of differential invariants obtained when
acting with operators of invariant differentiation on basis differential invariants.
It is difficult to conceive finding similar expressions for arbitrary order within the
framework of the infinitesimal method in a reasonable way.
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We present a relationship between discriminantly separable polynomials and
quad-graphs. We start from a classification of strongly discriminantly separable
polynomials in three variables of degree two in each variable. We provide their
geometric interpretation, connecting discriminantly separable polynomials with
the equations of pencils of conics written in the Darboux coordinates. Then we
give a construction of integrable quad-graphs associated with representatives
of strongly discriminantly separable polynomials.

1 Introduction

1.1 Discriminantly separable polynomials

The theory of discriminantly separable polynomials has been introduced in [5],
where a new approach to the Kowalevski integration procedure has been sug-
gested. In [5] a family of discriminantly separable polynomials has been con-
structed starting from the equations of pencils of conics F(w,x1,z2) = 0, where
w, x1 and z9 are the pencil parameter and the Darboux coordinates respectively.
We recall some of the details: given two conics C; and Cs in general position by
their tangential equations

Ci: aow% + agwg + a4w§ + 2azwows + 2aswiws + 2a1wiws = 0; Q)
1

Cy: w% — 4wiws = 0.

Then the conics of this general pencil C(s) := Cj + sC5 share four common tan-
gents. The coordinate equations of the conics of the pencil are

F(s,z1,29,23) := det M (s, 21, 22, 23) = 0,
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where the matrix M is

0 21 29 z3

21 ag al as — 2s
M(s, 21,22, 23) =

Z2 ay az + s as

23 a5 — 28 as a4

The point equation of the pencil C(s) is then of the form of the quadratic poly-
nomial in s

F:=H+Ks+Ls*=0,

where H, K and L are quadratic expressions in (z1, 22, 23).

Next we introduce a new system of coordinates in the plane, the Darboux
coordinates (see [4]). Given the plane with the standard coordinates (z1, 22, 23),
we rationally parametrize by (1,4, ¢?) the conic Cy from (1). The tangent line to
the conic Cy through a point of the conic with the parameter ¢y is given by the
equation

tey, (o) : 2153 — 2290p + 23 = 0.

For a given point P outside the conic in the plane with coordinates P = (21, 22, 23),
there are two corresponding solutions z; and xo of the equation quadratic in ¢

2002 — 2550+ 25 = 0.

Each of the solutions corresponds to a tangent to the conic Cy from the point P.
We will call the pair (z1,2z2) the Darboux coordinates of the point P. One finds

immediately the converse formulae
. L T1t+ T2
21 = ]-7 2 = 2 )

Changing the variables in the polynomial F' from the projective coordinates
(21 : z2 : z3) to the Darboux coordinates, we rewrite its equation F' in the form

23 = x1%2.

F(s,x1,2) = L(z1,22)s° + K (21, 32)s + H (21, 22).

The key algebraic property of the pencil equation written in this form, as a quadra-
tic equation in each of three variables s, x1, and s is: all three of its discriminants
are expressed as products of two polynomials in one variable each

Dy (F)(21,2) = P(x1)P(22),

sz(f)(waxj) = J(’LU)P(I']), (273) :C'p'(172)7
where J and P are polynomials of degree 3 and 4 respectively, and the elliptic
curves

Iy: y2:P(:c), Ty: y2:J(s)

are isomorphic (see Proposition 1 of [5]).
Now we recall the definition of discriminantly separable polynomials. With P},
we denote polynomials of m variables degree n in each variable.
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Definition 1. A polynomial F(z1,...,x,) is discriminantly separable if there
exist polynomials f;(x;) such that for every i =1,...,n
DziF(IBl, ce ,.f,'i, ce ,l'n) = H fj(.%'])
J#i

It is symmetrically discriminantly separable if

fo=fa=--=Jn,
while it is strongly discriminantly separable if
f1:f2:f3:...:fn'

It is weakly discriminantly separable if there exist polynomials fz] (x;) such that
foreveryi=1,...,n

Dy, F(T1,.. &y yTy) = H fi(xj).
J#

Here we do not get into detail about the famous Kowalevski case as the di-
rect motivation for introducing this class of polynomials. We just emphasize that
Kowalevski fundamental equation (see [5,7,8]) is an instance of symetrically dis-
criminantly separable polynomial. Based on that observation we developed a class
of integrable systems and called them Kowalevski-type systems, basically by re-
placing the Kowalevski fundamental equation by other discriminantly separable
polynomials (see [6]).

In the sequel, we consider the polynomials of type P2. In [5] it has been shown
which classes of the discriminantly separable polinomials are equivalent with the
strongly discriminantly separable polynomials, modulo the following gauge trans-
formations

ar; +b

_— , =1,2,3. 2
cx; +d’ ‘ 2,3 (2)

T =
Namely, using the transformations (2) and starting from the strongly discrimi-
nantly separable polynomials one can get other discriminantly separable polyno-
mials if related elliptic curves are isomorphic. Thus we restrict our classification
to strongly discriminantly separable polynomials of type 73??.

1.2 Quad-graphs

In order to present connections between discriminantly separable polynomials and
the theory of integrable systems on quad-graphs from [1,2], we recall first some
of the definitions from the works of Adler, Bobenko, and Suris.

Basic building blocks of the systems on quad-graphs are the equations on the
quadrilaterals of the form

Q($1,$2,$3,.T4) = 07 (3)
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where @ is a multiaffine polynomial. Equations of type (3) are called quad-
equations. The field variables x; are assigned to four vertices of a quadrilateral,
and the parametars o and (8 are assigned to the edges of a quadrilateral assuming
that opposite edges carry the same parameter. The equation (3) can be solved for
each variable and the solution is a rational function of the other three variables.
A solution (x1,x2,x3,24) of the equation (3) is singular with respect to z; if it
also satisfies the equation Qg, (=1, z2,x3,24) = 0.

Following [2] we consider the idea of integrability as the consistency. We assign
six quad-equations to the faces of coordinate cube. The system is said to be 3D-
consistent if three values for x103 obtained from equations on right, back and
top faces coincide for arbitrary initial data x, x1, x2, and x3. Then applying
discriminant-like operators introduced in [2]

6z,y<Q) = Q:ch - QQ:cyy 5w(h) = h:%; - thxm; (4)

one can make descent from the faces to the edges and then to the vertices of
the cube: from a multiaffine polynomial Q(x1,x2,x3,x4) to a biquadratic poly-
nomial h(xj, z;) = 0z, 2, (Q(x;, xj, xk, 2;)) and further to a polynomial P(z;) =
dz;(M(wi, z5)) of degree up to four. The subscripts on the right sides of the for-
mulas in (4) denote the partial derivatives.

By using the relative invariants of polynomials under the fractional linear trans-
formations authors in [2] derive the following formulae that express @ through
biquadratic polynomials of three edges

2u, _ M R
Q = h12h34 _ h14h23 . (5)

2 Classification of strongly discriminantly
separable polynomials of type 'Pg

Let

2
F — Coadk
(z1,22,23) = QT THX
i?jvk:()

be a strongly discriminantly separable polynomial with
Dy, F (x5, i) = P(x;)P(ak),  (i,4,k) = c.p.(1,2,3). (6)

Here by D, F(z;,x)) we denote the discriminant of F considered as a quadratic
polynomial in x;.

This classification is heavily based upon the classification of pencils of conics.
In the case of general position, the conics of a pencil intersect in four distinct
points, and we code such situation with (1,1,1,1), see Fig. 1. It corresponds
to the case in which polynomial P has four simple zeros (case (A)). In this
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case, the family of strongly discriminantly separable polynomials coincides with
the family constructed in [5] from a general pencil of conics. This family, as
it has been indicated in [5], corresponds to the two-valued Buchstaber—Novikov
group associated with a cubic curve T's: y? = J(s). The other cases within the
classification with nonzero polynomial P correspond to the situations for which:

(B) the polynomial P has two simple zeros and one double zero, we code it
(1,1,2), and the conics of the corresponding pencil intersect in two simple
points, and they have a common tangent in the third point of intersection,
see Fig. 2;

(C) the polynomial P has two double zeros, code (2,2), and the conics of the
corresponding pencil intersect in two points, having a common tangent in
each of the points of intersection, see Fig. 3;

(D) the polynomial P has one simple zero and one triple zero, we code it (1, 3).
The conics of the corresponding pencil intersect in one simple point, and
they have another common point of tangency of third order, see Fig. 4;

(E) the polynomial P has one quadriple zero, code (4), and the conics of the
corresponding pencil intersect in one point, having tangency of fourth order
there, see Fig. 5.

Theorem 1. The strongly discriminantly separable polynomials F(x1, x2,x3) sat-
isfying (6) modulo fractional linear transformations are exhausted by the following
list depending on distribution of roots of a non-zero polynomial P(x):

(A) four simple zeros, for the canonical form Pa(z) = (k?2? — 1)(2? — 1),

Fa=3 (—k%% — k223 14 k:%%x%) z2 + (1 — k:2) T122%3

+ % (x% +x§ — k2x%x§ — 1),

Figure 1. Pencil with four simple points.
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(B) two simple zeros and one double zero, for the canonical form Pg(x) = 2% —€?

with e # 0,

e
Fr :x1x2x3+§ (23 + 23 + 23 — €),

={

Figure 2. Pencil with one double and two simple points.

(C) two double zeros, for the canonical form Po(z) = 22,

Fo1 = Aw%x% + priroxs + 1/1‘%, /ﬂ —4 v =1,

Foo = M\3aial + pryxoxs + v, p? — 4w =1,

Figure 3. Pencil with two double points.

(D) one simple and one triple zero, for the canonical form Pp(x) = x,

Fp = *%($1CE2 + zoxws3 + z123) + i (fU% +a5+ f%) )
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Figure 4. Pencil with one simple and one triple point.

(E) one quadruple zero, for the canonical form Pg(z) =1,

2

Fr1 =Mz, + 29+ 23 r1 + 29 + x3 u2—4)\l/:1,

2

To + X3 — T ,u2—4)\1/:1,

2

(

Fro = NMza + 3 — 21
(
( 2

2+ u( )+ v
)7+ ) +v

Frs = Mz + 23 — x2)” + p(xy + 23 — x2) + 1, p?— 4w =1,
)7+ )+v

Frs = Mz + 29 — 23 T1+ T2 — 3 u2—4)\V:1.

Figure 5. Pencil with one quadruple point.

Comparing with [3] we get the following theorem.
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Theorem 2. If a polynomial P has four simple zeros, all strongly discriminantly
separable polynomials F satisfying (6) are equivalent to the two-valued groups

2
(2122 + Tow3 + 2133) (4 + gsw1@2w3) = (21 + 2 + T3 — Jg2a17223)

3 From discriminant separability to integrable
quad-graphs

The classification of integrable quad-equations with complex fields x under some
nondegeneracy assumptions of the polynomial @ is presented in [2]. A biquadratic
polynomial h(x,y) is said to be nondegenerate if no polynomial in its equivalence
class with respect to fractional linear transformations is divisible by a factor of
the form x — ¢ or y — ¢, with ¢ = const. A multiaffine function Q(z1, z2, 3, x4) is
said to be of type Q if all four of its accompanying biquadratic polynomials h/* are
nondegenerate. Otherwise, it is of type H. Previous notions were introduced in [2].

The requirement that the discriminants of h(x,z2) do not depend on «, see

[1,2], will be satisfied if as a biquadratic polynomials h(x1,x2) we take

F(z1, 22, )

il(flfl,:l:g) = P(a)

Y

where F is strongly discriminantly separable polynomial and P is a polynomial
that shows up in a discriminant factorization from our classification. Now with
formulae (5) we can calculate quad-equations corresponding to each representative
of strongly discriminantly separable polynomials.

Theorem 3. Quad-equations of type @) that correspond to the biquadratic poly-
nomaals

- Fr(z1, 22, )

h($17$2;a): P( ) ) I:A,B,C,D,E,
T

are given in the following list:
A P P 21 2-1
O, = Bv/Pa(a) + a/Pa(B) | « B (Fayzszgzs + 1)
k2a2p32 — 1 k202 — 1\ k282 -1

B2 -1 B2 —1
+ m<$1$2 + I’31E4) + m(l‘li&l + 11321'3)

N B/ Pa(a) + ay/Pa(B)

k20252 — 1

(r123 + x274) = 0,

QB = é <Oé\/52 —e?+ 5\/062 - 62) (x123 + T224)

+ /B2 — €2(z11g + wow3) + Va2 — e2(x1x2 + T374)
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— %\/62—62\/a2 — €2 (a\/BQ —eQ—i-ﬁ\/m) =0,
QC = (Oé - 1) (T122 + 2374) + <5 - 1) (124 + T273)
a B
- (04/3 - alﬂ> (x123 + x2224) = 0,

QD =Va(zy — z4)(ze — x3) + \/5(3?1 —x2)(r4 — x3)
— \/aﬁ(\/a+ \@) (w1 + 22 + 23+ 24)
+vay/B (Va+/B) (a+vai+8) =0,

Qr = a(z; — x4)(r2 — x3) + B(x1 — 22)(24 — x3) — aB(a + §) = 0.

The list of the quad-equations from the previous theorem corresponds to the
list from [1] with some transformations of the coefficients o and 3.
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We develop a method based upon the singular manifold method that yields an
iterative and analytic procedure to construct solutions for a Bogoyavlenskii—
Kadomtsev—Petviashvili equation. This method allows us to construct a rich
collection of lump solutions with a nontrivial evolution behavior

1 Introduction

In recent years it has been proven in several papers [1,7,9] that the Kadomtsev—
Petiviashvili I (KPI) equation contains a whole variety of smooth rationally decay-
ing “lump” configurations associated with higher-order pole meromorphic eigen-
functions. These configurations have an interesting dynamics and the lumps may
scatter in a nontrivial way. Furthermore algorithmic methods, based upon the
Painlevé property, have been developed in order to construct lump-type solutions
for different equations such as the (2+41)-dimensional nonlinear Schréodinger equa-
tion (NLS) [6,10], the Kadomtsev—Petiviashvili I equation and the Generalized
Dispersive Long Wave equation (GDLW) [5].

The present contribution is related to the construction of lump solutions for
the (2+1)-dimensional equation [12]

(Augt + Ugzry + SUglyy + Mgptly)y + OUyyy =0, o = %1, (1)

which represents a modification of the Calogero-Bogoyavlenskii—Schiff equation
(CBS) [2,3,8]:

Ayt + Uggry + SUglyy + dugpzuy = 0.

Equation (1) has often been called the Bogoyavlenskii-Kadomtsev—Petviashvili
equation (KP-B) [4]. As in the case of the KP equation, there are two versions
of (1), depending upon the sign of o. Here we restrict ourselves to the minus sign.
Therefore we consider the equation

(4uzt + Upzay + 8u:ruxy + 4umuy)r = Uyyy = 0
or the equivalent system
Apt + Uggry + SUzplagy + AUzpty = Wyy, Uy = Wy (2)

We refer to (2) as to KP-BI in what follows.
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In Section 2 we summarize the results that the singular manifold method pro-
vides for KP-BI. These results are not essentially new because they were obtained
by the author in [4] for the KP-BII version of the equation. Section 3 is devoted
to the construction of rational solitons.

2 The singular manifold method for KP-BI

It has been proven that (2) has the Painlevé property [12]. Therefore the singular
manifold method can be applied to it. In this section we adapt previous results
obtained in [4] for KP-BII to KP-BI. This is why we only present the main results
with no detailed explanation since these have been shown in our earlier paper.

2.1 The singular manifold method

This method [11] requires the truncation of the Painlevé series for the fields u
and w of (2) in the following form:

(1] [0] “[’?] (1] (0] ?[?] 3
utt! = —|—m, wH =w +W, ()

where ¢l%(z,y,t) is the singular manifold and ull, Wl (i = 0,1) are solutions
of (2). This means that (3) can be considered as an auto-Bécklund transformation.
The substitution of (3) into (2) yields a polynomial in negative powers of ¢/ that
can be handled with Maple. As a result (see [4]) we can express the seed solutions
ul” and wl% in terms of the singular manifold,

uldl = i(—vz — 1t —z + %%), uéo] = (=1 —2vy +22,2), (4)

where v, r and z are related to the singular manifold ¢ by the notation

T
=5 "o )

Furthermore the singular manifold ¢[% satisfies the equation

Sy + To — Zyy — ZoZay — 22yZaz = 0, (6)

where s = v, — %1}2 is the Schwartzian derivative.

2.2 Lax pair

Equations (4) can be linearized due to the following definition of the functions
vz, y, 1) and XUz, y,1):

0 0 0 0
S0 T BT e T e )
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When one combines (4), (5) and (6), the following Lax pair arises:

[0] _ w[o] QU[O]w[O}
(8)
t[O] 22¢ } Q[EO] + ( [0] )+ 2zw[o]> 1Ol
together with its complex conjugate
Xk = ixy) — 2ul’ 19, o
[O] 21X[O} 4u1[/0] XL? ] + (QUQ, — inzgo]) X[O].
In terms of % and ¥ the derivatives of ¢l are
[0] [0] X[O] 0 o1 [0]
=S = tn X o gl = ylh0),
¢£9] POl (0]
[0} ) [0] [0] [0] [0] ;[5(2 XECO;
T‘W:“‘ T2 0 T 20 20 250
[0] (0] [0]
g Sy _ (Y Xa :
¢[0] ol (0]
which allow us to write dpl? as
Aol = O g 1 (X[0}¢[01 — o XWJ) dy
(10)

< 4u[0 QNO] (0] + 2¢ [0] [0 + 21%30 X[O] 2X[O]w[0] 2¢[0} Xg) dt
It is easy to check that the condition of the exact derivative in (10) is satisfied by
the Lax pairs (8) and (9).
2.3 Darboux transformations

Let (wl ,X1 ) and (wQ ,X2 ) be two pairs of eigenfunctions of the Lax pair (8)—(9)

corresponding to the seed solution u” and w!®,

B0 = apl?) 9,000

JOxm [0 0] ,10 0 0 0 (11)
Bl = iy iy ~ 4l ¢ (2ul? 4 20y,
(0] [0 ] 0], [0]

[0] [0] [0} [0]

0 0. [0
Xji = —20X;yy — duy X, + (2u[] 2uu[ ]) (0]

X] )
where 7 = 1,2. These Lax pairs can be considered as nonlinear equations between
the fields and the eigenfunctions [4]. This means that the Painlevé expansion of
the fields
¢ [0]
Wt = 0 b i — 000 ioy (13)
o
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should be accompanied by an expansion of the eigenfunctions and the singular
manifold itself. These expansions are

[ _ g0 _ 00 2 m_ o _ o 21
2 1 0 2 = X2 T X1 (b[o]v
1 1
W _ o] 2821 (14)
Py = by ““i%ﬁﬁ‘*-
1

The substitution of (14) into (11)—(12) yields

a2y = o do + i (el — o) dy

(15)
= (4T = 20— 2 Tl 2l at,
Direct comparison of (10) and (115) affords qS[ I = Q; ;. Therefore the knowledge of

the two seed eigenfunctions (wj 0 X; ) j= 1 2, allows us to compute the matrix
entries €; ; and this yields the Darboux transformation (13)—(14).

2.4 Iteration: T-functions

According to the above results gb[;] is a singular manifold for the iterated fields
ull and wll. Therefore the Painlevé expansion for these iterated fields can be
written as

v o, o

_ 1 Y
TR YT
2 2

W2 — ol

which when combined with (13) is

@ = 0 (M2e ey o (T2)y
71,2 71,2

where 719 = [21]¢>[10]. According to (13) this implies that

1 1,2 = ](l)[o] 91’292’1 = det(Q@j). (16)

3 Lumps

The iteration method described above can be started from the most trivial initial
solution ul” = Wl = 0. In this case the Lax pair is

o _ .. 0 o] _ o [0]
iz =~ Wiy Vi = 2005,

[0] (0] (0] _ . [0]
Xj,zx XJ Y’ Xjt = _QZvayy'

(17)
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It is trivial to prove that equations (17) have the solutions

W = Pulay, k) explQo(e,y, k)], o = (),

A = Py (2, k) exp[—Qo(m, y, t: k)], X = ( §°]> ,

where m and n are arbitrary integers and k is an arbitrary complex constant. We
have

(18)

Qo(z,y,t; k) = kx +ik%y + 2ik*t,  ie.

(Qolxy. t; k)" = k*w —i(k")*y — 2i(k")"t
and Pj(x,y,t; k) is defined by

Pj(z,y,t; k) exp[Qo(z, y, t; k)]

Ky
= %(Pj—l(xa?ﬁtvk) eXp[QO(%Zlaﬁ k)])v PO =1

These solutions are characterized by two integers, n and m, that provide a rich
collection of different solutions corresponding to the same wave number, k. Thus,
in our opinion, all of them should be considered as one-soliton solutions despite

the different behaviours shown by the solutions corresponding to the different
combinations of n and m. We now present some of these cases.

(19)

3.1 Lump (0,0): n=0, m =0
The eigenfunctions (18) are
V= explQo(ey k), 4 = expl-Qpa, . b)),
X1 = exp[—Qo(z,y,: k)], x5 = explQj(w, y, t5 k).

The matrix elements (15) can be integrated to give
O = Q1 =2+ 2iky — 8ikPt, B = Qoy =z — 2ik*y + 8i (k) ¢,
1
Ql,2 = _m eXp[_QO(x7 Y, tv k)] eXp[—QS(.T, Y, t7 k)]?

1 *
Qo = m exp[Qo(z, Y, t; k)] exp[Qp(z, y, t; k)]

Therefore the 7-function (16) is the positive defined expression

1
2 2
T1,2 :J<1 +)1 + —,
4a(2)

where k = ag + ibg,
X1 =2 —2boy + 8bo (3af — b5) t. Y1 = 2aq (y + 4(3b5 — ad)t) .

The profile of this solution is shown in Fig. 1. It represents a lump (static in the
variables X7 and Y7) of height 8(1(2).
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Figure 1. Lump of the (0,0) type. Figure 2. Lump of the (1,0) type.

3.2 Lump (1,0): n=1, m =0

The eigenfunctions (18) are

V= Pi(w,y,ts k) explQolw, y. 5 k)], 03 = exp[-Qp(x, y. 1K),
= exp[=Qolw,y k)], X8 = {Pile, .t k)Y exp[Qj (.t k)],

where according to (19) we have
Py(x,y,t; k) = x + 2iky — 8ik>t.
In this case the matrix elements (15) are

1
P = S iy + 2iwyh — 2P — 120tk — Siath + 16yth* — 326K
XP =Y | 200X1Yi+Yi— 1663t o) _ (o))"
+1 ) 2 1 ’
2 2a0

1 *
Q1,2 — _Tao eXp[—Qo(IE, Y, tv k)] eXp[—Qo(ZL', Y, t7 k)]?

1 —2a0X1 + 2ad (X7 + Y?)
Qo1 =

T 4a3 eXp[QO(‘rvy,t;k)] eXP[QE’S(CU,y,t, ]C)]
0

Therefore the 7-function (16) is the positive defined expression

X2-Y2\?  [200X1Y1 +Y; — 16a3t\ >
Te2=\———1] +
2 2&0

2
Xi — 5 vy \ 2 1
+ T 2a0 + <1> + —-
2aq 2a¢9 16ay
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The profile of this solution is shown in Fig. 2. If we wish to show its behaviour
when t — +00, we need to look along the lines

X1 :X1+01t1/2, }/1 :Y1+02t1/2

such that (20) is different from 0 when ¢ — +o0.
e For ¢t < 0 the possibilities are ¢; = *+2a9v/—2, co = —c; which yields two
lumps approaching with opposite velocities along the lines

X1 = X1 +2a0(=20)"2, Y1 = Y] + 2a0(—2t)"/?

and the limit of 71 2 along these lines is

X 1\?2 . 1\? 1
=X — Y1 — — —_.
T1,2 ( 1+4a0> +< 1 4a0> 4-4(1é

e For t > 0 the possibilities are ¢y = :l:2a0\/§, cg = c1 which yields two lumps
with opposite velocities along the lines

X1 = X1 +2a0(20)2, Yy =Y £ 2a0(2t)/?

and the limit of 71 2 along these lines is

A T S T |
= X; + — Yi+— -
1,2 ( 1+ 4a0> T ( L 4a0> + 4ad
3.3 Lump (1,1): n=1, m=1
The eigenfunctions (18) are
gO] = Pl(IE, Y, t, k?) GXP[QO(SU, Y, t, k)])
Y = Py (@, y, t: k) exp[-Qi(z, y. 1 k)],

X[lo} = Pl(l’, Y, t; k) eXP[_QO(% Y, 1 k)]’
X = {Pi(w,y, 1 k) explQf (. y, 15 ).

This yields the following matrix elements according to (15):

X1 (X? —3Y? )& *
Jo - X (X 1)+i<X12Y1—§+8a0t>, o (40"

3

14 2a0 X1+ 2a3 (X3 +Y7? .
Ql,? = - 4@30 ( ! ! ) exp[—Q0($,y,t;k‘)]EXp[—QO(a:,y,t;k)],
0
1 —2a0X; +2a3 (X2 +Y{ .
oy — 0 T4 niQo(a, g s ) explQ sy : )

3
dag
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Figure 3. Lump of the (1,1) type.

Therefore the 7-function (16) is the positive defined expression

1 2 1 2
T2 = <3X1 (X12 - 3Y12)> + <X12Y1 ~3 13 =+ 8a0t>

X24+v2\? /vi\? 1
+ () () + o
2aq 2ag 16ag
The profile of this solution is shown in Fig. 3.
The asymptotic behaviour of this solution can be obtained by considering the

transformation
X1 =X, +0175%, Y1 = Vi + cat3.
There are three possible solutions for ¢;. For all of them 7 5 is
-2 | Y2 1
T172 — Xl +Y1 + R
dag

ec1=0,c0= 2(3@0)%. This corresponds to a lump moving along the line

X, =X, Yi=Y;+2(3apt)s.
e = —\/g(—3a0)%, co = (—3a0)%. This corresponds to a lump moving along
the line
X; = X1 — V3 (=3apt)3, Yi =Y+ (—3aot)3.
°c = \/§(—3a0)%, cy = 2(3a0)%. This corresponds to a lump moving along
the line
X1 = X1 + V3 (=3apt)3, Y1 =Y+ (—3agt)

ol
Wl
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4

Conclusions

The singular manifold method allows us to derive an iterative method to construct
lump solutions characterized by two integers the different combinations of which
yield rich possibilities of nontrivial self-interactions between components of the
solution.
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Lie symmetries of the spatially homogeneous and isotropic Boltzmann equation
with sources were first studied by Nonnenmacher (1984). In fact, he consid-
ered the associated equations for the generating function of the power moments
of the unknown distribution function. However, it was not taken into account
that this equation is still a nonlocal partial differential equation. In the present
paper their Lie symmetries are studied using the original approach developed
by Grigoriev and Meleshko (1986) for group analysis of equations with nonlo-
cal operators, which allows us to correct Nonnenmacher’s results. The group
classification with respect to sources is carried out for the equations under
consideration using the algebraic method.

1 Introduction

The Boltzmann kinetic equation is the basis of the classical kinetic theory of
rarefied gases. Considerable interest in the study of the Boltzmann equation
was always the search for exact (invariant) solutions directly associated with the
fundamental properties of the equation. After the studies of the class of the local
Maxwellians [3,4,11] new classes of invariant solutions were constructed in the
1960s in [13-15]. A decade later the BKW-solution was almost simultaneously
derived in [1] and in [10]. Contrary to the Maxwellians, the Boltzmann collision
integral does not vanish for this solution. The discovery of the BKW-solution
stimulated a great splash of studies of exact solutions of various kinetic equations.
However, the progress at that time was really limited to the construction of BKW-
type solutions for different simplified models of the Boltzmann equation®.

!See [5] for the review.
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The Boltzmann equation is an integro-differential equation. Whereas the clas-
sical group analysis method has been developed for studying partial differential
equations, the main obstacle for applying group analysis to integro-differential
equations comes from presence of nonlocal integral operators. The direct group
analysis for equations with nonlocal operators was worked out and successfully
used in [6,7,12]. In particular, a complete group classification of the spatially
homogeneous and isotropic Boltzmann equation without sources was obtained
in [7,8].

One of the alternative approaches for studying solutions of the Boltzmann
equation, by transition to an equation for a moment generating function, was
first considered in [10]. The BKW-solution was obtained there. In [16], such
an approach was applied to the spatially homogeneous and isotropic Boltzmann
equation with sources. The author of [16] used the group analysis method for
studying solutions of the equation for the generating function. However, it was
not taken into account that this equation is still a nonlocal one. In the present
paper we use our method [7,8] to amend the results of [16]. A group classification
of the equation for a moment generating function with respect to a source function
is obtained.

2 General equations

The Fourier image of the spatially homogeneous and isotropic Boltzmann equation
with sources has the form [1]

1
et(y,t) + @y, 1)e(0,t) = /0 e(ys, eyl — s),t) ds + q(y, ). (1)

Here the function ¢(y,t) is related with the Fourier transform @(k,t) of the
isotropic distribution function f(v,t) by the formulae

o(k?/2,t) = p(k,t) = 4% /Ooovsin(kv)f(v,t) dv.

The function §(y,t) is defined by the Fourier transform of the source function
q(v,t) in a similar way:

4

G(k%/2,t) = é(k,t) == /Ooovsin(kv)q(v,t) dv.

The inverse Fourier transform of @(k,t) gives the distribution function

flu,t) = im /000 ksin(kv)p(k,t) dk.

v

Normalized moments of the distribution function are introduced by the formulae

I - on+2 _
Mn(t)—(2n+1>”/0 F 0 2dy,  n=0,1,2.... @)
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Following [2], one can obtain a system of equations for the moments (2) from (1).
It is sufficient to substitute the expansions in power series

ol t) = ML ) = S w0 Y,
n=0 ’ n=0 '
into (1), where
1

o
qn(t) = )”47r/ q(v, > 2dv, n=0,1,2,...,
0

(2n + )N
are the normalized moments of the source function. As a result, one derives the
moment system considered in [16]:
dM,(t)
dt

+ Mo (6) Mot WHEN@ t) + (). (3)

For g(v,t) = 0 this system was derived in [10] in a very complicated way.
Let us define moment generation functions for the distribution function f(v,t)
and for the source function ¢(v,t):

= WMu(t),  Swt) =D wg(t)
n=0 n=0

Multiplying equations (3) by w”, and summing over all n, one obtains for G(w, t)
the equation

82(wG) I(w@) 9 O(w9)
— — 7 = —_—, 4
Otow o(t) Oow G"+ ow (4)
Here the obvious relations are used
= n WG & n _ O(w9)
5+ DM (0) = S5 D Dtan(t) = S5

Zw ZMk ) GQ.
n=0 =

In contrast to the case of homogeneous relaxation with ¢(v,t) = 0, the gas density
My (t) = ¢(0,t) is not constant. From equation (3) for n = 0 one can obtain

Mo®) = [ ot + My(0)
0
Notice also that
My(t) = G(t,0). (5)

This is the reason why equation (4) has a nonlocal term. This fact was not taken
into account in [16] in the process of finding an admitted Lie group. The lack of
this condition can lead to incorrect admitted Lie groups. In the present paper
this omission is corrected.
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3 Admitted Lie algebra of the equation
for the generating function

Equation (4) is conveniently rewritten in the form
(zug)e — u® 4 u(0)(zu), = g, (6)

where u(0) = u(t,0). Here w = 2, G = u and (wS),, = g.

As mentioned, because of the presence of the term u(0), equation (6) is not
a partial differential equation. Therefore, the classical group analysis method
cannot be applied to this equation. A method that can be used for such equations
with nonlocal terms was developed in [6,7,12]. In this section the latter method
is applied for finding an admitted Lie group of equation (6).

Admitted generators are sought in the form

X =71(t,x,u)0 + &(t, x,u) 0y + C(t, x,u)0y.
According to the algorithm [6,7,12], the determining equation for equation (6) is

Thte + Pr + u(0)(29e +¢) = 2¢u + P (0)(2u)z = 0, (7)

where

(t,z) =tz u(t,x)) — u(t, ) 7(t, 2, u(t, ) — ug(t, 2)E(E, z, u(t, x)),
¥(0) = (¢, 0).

After substituting the derivatives usy, Uy, and uy, found from equation (6) and its
derivatives with respect to x and ¢ into (7), one obtains the determining equation

Cta®® + G + Cugw + CuuPa + g€ + u”E — 2ua( + ux((0)

— 2 (g + g2€ + 9(1e + &) — TPz — EpuPa — 2ug (0) (upr + uw)€(0)
+ u(0)(Ca? — Cuux — ué 4 2 + xEu + 2TU) — Tpunt? — T UpunTy
— W€ — Upa&y®® + Utta @ (G — T + T u(0)T — &gy + &)
+ wg (§x$ + Cou? — € — Tipa? — 27,2 (g 4+ u?) + w(0)z (27U — m’x))
+ u?x(Tu — 2Ty) + 2w (0) (7 — 7(0)) (upz + u) + u§x2(§uu(0) — &tu)
+ 2ug (2(7u(0) + C(0) + Cu) — &t — & — 2609 — 26,u? + 2&,uu(0))

2 2 2 2
— U Ug Ty — U €™ = 0.

(8)

Here

T(O) = (t’ 0, u(tv 0))a 5(0 = €(t7 0, u(tv O))v <(O) = C(ta 0, u(ta 0))7
ut(0) = we(t,0),  uz(0) = ug(t,0).
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Differentiating the determining equation (8) with respect to uy, uz,, and then
with respect to u; and u,, one gets 7, =0, 7, =0, &, = 0, & = 0. Therefore,

T=7(t), &=¢@),

and hence 7(0) = 7. Differentiating the determining equation with respect to u,
and then u,, one finds (u, = 0, i.e.,

C(t,z,u) = uli(t,z) + (o(t, ).

The coefficient with u,u,(0) in the determining equation (8) gives £(0) = 0.
Continuing splitting the determining equation (8) with respect to u; and then
with respect to u,, one finds

Gt x) = —2 2(z) 4 Cro(t).

Hence ¢(0) = ¢(¢,0) = u(0)(10(t) — £'(0)) + ¢o(t,0). The coefficient with u,u(0)
leads to the condition

Differentiating the determining equation with respect to u twice, one has

§
= 2= —¢&(0).
£ =25 —£(0)

The general solution of this equation is
& =z(c1z + ¢).

Equating the coefficient with u, to zero, one derives 74 (t) = (o(¢,0). The coeffi-
cient with «(0) in the determining equation (8) gives x(o, + (o = 0. This equation
has a unique solution which is nonsingular at z = 0,

Co(t, ) = 0.
Therefore, (4(¢,0) = 0 and
T = cot + c3.
The remaining part of the determining equation (8) becomes
gi(cat + ¢3) + xgu(c1z + o) = —2g(c17 + c2). (9)
Thus, each admitted generator has the form
X = coXo + 1 Xy + 2 X2 + c3X3,
where

Xo=x0,, X1=ux(x0y —udy), Xo=1t0 —ud,, Xs=O0. (10)
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The values of the constants cg, ¢1, c2 and c3 and relations between them depend
on the function ¢(¢,x).
The trivial case of the function

g=0

satisfies equation (9), and corresponds to the case of the spatially homogeneous
and isotropic Boltzmann equation without a source term. In this case, the com-
plete group classification of the Boltzmann equation was carried out in [7, 8] us-
ing its Fourier image (1) with ¢(y,t) = 0. The four-dimensional Lie algebra
L* = {Y1,Y3,Y3,Y,} spanned by the generators

Yo =y0,, Y1=ypd,, Y2=1t0—¢d,, Y3=20 (11)

defines the complete admitted Lie group G* of (1). There are direct relations
between the generators (10) and (11).

Indeed, since the functions ¢(y,t) and u(z,t) are related through the moments
M, (t),n=0,1,2,..., it is sufficient to check that the transformations of moments
defined through these functions coincide.

Consider the transformations corresponding to the generators Yy and X,

<l
Il

¥;
Uu.

— a
, Yy=ye,
xe’,

N
|

e
The transformed functions are
@(y,t) = p(ge 1), u(z,t) =u(ze ", 1).

The transformations of moments are, respectively:

] nanﬁ(gv E) nan(p(ge_a? E)
M,(t) = (-1)"—F=— =(-1)'—F—=
(1) =(-1) Iy (1) 0T oo
— n _naan(p — —na .
=(=1)"e " (0,t) = e "M, (t);
_ O"u(ze 1) e O U _
— N — na 1=~ 7 _ na
M, (t) = n! 5 oo el (0,t) = e " My (1).

Hence, one can see that the transformations of moments defined through the
functions ¢(y,t) and u(x,t) coincide.
The transformations corresponding to the generators Y7 and Xy,

|

=t, =y, @=pe’

T

|

Y :ywasﬁ
X1 = x(x0y — udy): t=t,

, u=(1-ax)u,

8l
Il

1—ax
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act on the functions ¢(y,t) and u(x,t) and their moments in the following way:

_ _ T
5, 1) = ¥ (7, 1 i f—
o(7,t) = e"p(y,t), u(z,t)= 1+am (,1+(m>,

g= g=

(g +e) ¢) 0D

_ " (z, 1) A (S
Mpy(t) = n! oT"™  |z=0 " ox" (1 + az (t’ 1+ aa:)) @:07

respectively. Using computer symbolic calculations with REDUCE [9] one can check
that these transformations of moments also coincide.
The vector fields Y2 and X9 generate the following transformations:

—a.
pe

ue ¢,

<
Il

Y
Il

Y2 = t&t — <p8¢,: t=te
t

Y,
Xo =t0; — udy: = te? T

Kl
Il
Il
Il

which map the functions p(y, t) and u(z, t) to the functions @(y,t) = e (i, te~*)
and @(Z,t) = e~ *u(x,te”), respectively. The transformations of moments are

- ,0"o(7,t n —a0"o(y, te™
A 4 e
Y |g=0 Yy |7=0
0" _ S gy
=(=1)"e"° 0,te” %) = M,(te e %
(-1 G E 0.8 = M ()
- _ L 9mMu(z,t) | —a 0 u(z, te”")
M(t) = n! " jz=0 O 0I"  |z=0

mn

oM,
= n!e_“%(O, te™) = M, (te”*)e .

The case where the transformations of moments corresponding to the genera-
tors Y3 = 9y and X3 = 0 coincide is trivial. These direct relations between the
Lie algebras confirm correctness of our calculations.

4 Comparison with results of [16]

Let us formulate the results of [16] using the variables of the present paper. The
admitted generator obtained in [16] has the form

Zg =1(t) (0 — Mo(t)udy) + audy + (v — 0)x(x0y — udy) — Y0y, (12)

t t
0= [ Mle)dt, (o) (ﬁ o [ dt/) gmolt)
0 0

where
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a, 3, v and § are constants. The function g(¢,x) has to satisfy the equation

(05 + ooy~ 5) ~ 1) 92 =
Since My(t) is unknown, comparison of our results is only possible for g = 0.
Moreover, in contrast to equation (9), the source function g(¢, ) in (13) as a solu-
tion of equation (13) depends on the function My(t), whereas the function My(t)
also depends on the source function. This makes equation (13) nonlocal and very
complicated.

Comparing the operator Z,; for ¢ = 0 with (10), one obtains that the part
related with the constants v and ¢ coincides with the result of the present pa-
per, whereas the part related with the constants a and 8 is completely different.
Indeed, in this case equation (13) is satisfied identically, My(t) = My(0), and for

=2 (z(y = 0) + Mo(t)7(t) — @) g (13)

Mo(0) #£0:  mo(t) = tMp(0), 7(t) = Be!Mo® 4 2 <1 _ etMo(O)) :

Mo (0)
My(0) =0: mo(t) =0, 7(t)=p—at.
The admitted generator (13) becomes
) _ _ @ tMo(0) (9, _ >
M) £0: 2z = (5 375 ) €00 00 W00 + 5

+ (v — 0)z(x0y — udy) — yx0y;
My(0) =0:  Zy= B0y — atdy — udy) + (v — 0)x(x0y — udy) — Y0y

One can see that the above results coincide with [16] only for My(0) = 0. The
case Mp(0) = 0 corresponds to a gas with zero density which is not realistic. For
My(0) # 0, the coefficient with the exponent e!™0(0) plays a crucial role. This
coefficient only vanishes for

o = Mo(0)5. (14)

In this case the admitted Lie algebra found in [16] is a proper subalgebra of the
Lie algebra defined by the generators (10). Thus, all invariant solutions with
(o, B,7,0) = (Mo(0)8, 3,7, 0) considered in [16] are particular cases of invariant
solutions obtained in [6,7]. In particular, the well-known BKW-solution is an
invariant solution with respect to the generator Ypxw = (Y1 —Yy)+Ys. In the Lie
algebra (10), this solution is related with the generator Xpxw = ¢(X1 — Xo) + Xs.
Other classes of invariant solutions studied in [16] correspond to (14) with the
particular choice of 5 = 0.

5 On equivalence transformations of the equation

for the generating function

For the group classification, one needs to know equivalence transformations. Let
us find some of them using the generators (10) and considering their transforma-
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tions of the left hand side of equation (6)
Lu = zug + up — u® + u(0) (zug + ).

The transformations corresponding to the generator Xy = 0, map a function
u(t, x) into the function

a(t,x) = u(t,Te™ ),

where a is the group parameter. Hence L@ = Lu. One can check that the Lie
group of transformations

t=t, T=uwze" U=u, g=g

is an equivalence Lie group of equation (6).
Similarly, one derives that the transformations corresponding to the generator
X3 = 0; define the equivalence Lie group:

t=t+a, T=x, U=u, §=g.

The transformations corresponding to the generator Xo = t0; —ud, map a func-
tion u(t, z) into the function

u(t, ) = e u(te”*,T).
Hence Lu = e 2%Lu. One can conclude that the transformations

—2a

|

=t, T==zxe" u=wu, g=ge

compose an equivalence Lie group of equation (6).
The transformations corresponding to the generator X; = x(xd, — ud,) map
a function u(t, x) into the function

(6, 7) = ———u (£, —~
u xTr) = u .
’ 1+ azx "1+ az

Hence L = (1 — ax)?Lu and the transformations

X

f=t, z= i=(1—-azx)u, g=(1-az)’g

1—ax’

compose an equivalence Lie group of transformations.
Thus, it has been shown that the Lie group corresponding to the generators

Xo=x0,, X{=ux(x0; —ud, —290,y), X5 =10 —u0,—290,, X35=20

is an equivalence Lie group of equation (6).
There are also two involutions corresponding to the changes

By z=—ux Ey: t=—t, 4= —u.
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6 Group classification

Group classification of equation (6) is carried out up to the equivalence transfor-
mations considered above.
Equation (9) can be rewritten in the form

coho + c1hi + caha + c3hs =0, (15)
where
ho = xg:, h1=2x(xg: +29), ha=1tg+29, h3=g: (16)

One of the methods for analyzing relations between the constants cg, c1, co
and c3 is employing the algorithm developed for the gas dynamics equations [17]:
one analyzes the vector space Span(V'), where the set V' consists of the vectors

v = (ho, h1, he, h3)

with ¢t and = are varied. This algorithm allows one to study all possible admitted
Lie algebras of equation (6) without omission. Unfortunately, it is difficult to
implement.

In [20]? an algebraic algorithm for group classification was applied, which es-
sentially reduces this study to a simpler problem. Here we follow this algorithms?.
Observe here that because of the nonlinearity of the equivalence transformations
corresponding to the generator Xy, it is difficult to select out equivalent cases
with respect to these transformations, whereas the algebraic algorithm does not
have such complication.

First we study the Lie algebra L, composed by the generators Xy, X7, X9 and
X3. The commutator table is

Xo X1 Xo X3
Xo 0 X; O 0
X;!1-X7 O 0 0
X5 0 0 0 —X3
X3 0 0 X3 0

The inner automorphisms are

. kol - a
Ay:  T1 =%,
Ay: X1 =x1 + axog,
. kol — a
AQ. Ir3 = xr3€e,

Asz: 3= x3+ axa,

where only the changed coordinates are presented.

2See also references therein.
3The authors thank the anonymous referee for pointing to the possibility of applying to the
analysis of equation (15) the algorithm considered in [20].
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Second, one can notice that the results of using the equivalence transforma-
tions corresponding to the generators X§, X7, X§, X§ are similar to changing co-
ordinates of a generator X with regarding to the basis change. These changes are
similar to the inner automorphisms. Indeed, the coefficients of the generator X
are changed according to the relation [17]:

X = (Xt)0f + (X7)0z + (X )0y
Any generator X can be expressed as a linear combination of the basis generators:
20 X0 + 81X1 + 22 Xo + #3X3 = 1 X0 + 21X1 + 22X + 73X, (17)
where
Xo =10z, X, =2(Z0; —udy), Xo=10;—udy, X3= 0%

Using the invariance of a generator with respect to a change of the variables,
the basis generators X; (1 = 0,1,2,3) and X; (j = 0,1,2,3) in corresponding
equivalence transformations are related as follows

X$: Xo=Xo, Xi=e %X, Xo=X, X3=Xz
XS Xo=Xo+aX;, X=X, Xo=X5 X3=Xa;
XS: Xo=Xo, X1=X, Xp=2Xp, X3=e'Xs;

X5: Xo=Xo, Xi1=X1, Xo=Xo—aX3 X3=Xs.

Substituting these relations into the identity (17), one obtains that the coordinates
of the generator X in the basis Xy, X1, Xo, X3 and in the basis Xg, Xl, Xg, Xg are
related similar to the changes defined by the inner automorphisms.

This observation allows us to use an optimal system of subalgebras of the Lie
algebra L, for studying equation (15). Construction of such optimal system is
not difficult. Moreover, it may be simplified if one notices that Ly = F € Fb,
where F} = {Xo, X1} and Fy» = {X2o, X3} are ideals of the Lie algebra Ly. This
decomposition gives possibility to apply a two-step algorithm [18,19]. The result
of construction of an optimal system of subalgebras is presented in Table 1.

Notice also that in constructing the optimal system of subalgebras we also used
transformations corresponding to the involutions E; and Fo:

E1Z .f?l:—l‘l; EQZ Zi‘3:—.%'3.

To obtain functions g(¢,x) using the optimal system of subalgebras one needs
to substitute the constants ¢; corresponding to the basis generators of a subalgebra
into equation (15), and solve the system of equations thus obtained. The result
of group classification is presented in Table 2, where o, 8 # 1,y # —2 and k are
constant, and the function ® is an arbitrary function of its argument.
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Table 1. Optimal system of subalgebras.
Basis Basis
1 Xo, X1, X2, X3 11 | Xo + aXg, X3
2| Xo+aXp, X1, X3 | 12 | Xo+ X3, X3
3 Xo, X1, X3 13 X3, X1
4 Xo, X1, X2 14 Xo, X1
5 Xo, X2, X3 15 Xo 4+ aXy
6 X9, X3 16 Xo+ X3
7| Xo—Xo, Xa+ X3 | 17 X3+ Xo
8 aXy —2Xp, X3 18 X3+ X3
9 X1+ Xo, X3 19 Xo
10 X0, Xo 20 X1
21 X3
Table 2. Group classification.
g(t,x) Generators g(t,x) Generators
1 0 Xo, X1, Xo, X3 |9 ka2 X1, X3
2 kx—2 X+ Xo, X3, X1 | 10 t=2@(xt™®) Xo + aXp
3| ka2(xt+ 1) | Xo— Xo, X1+ X3 | 11 | 272627 '0(te® ') | Xy 4 X3
4 kx? vXo — 22X, X3 12 O (ze™t) X3+ X
5| kx2ex Xo+ X1, X3 13| 2720(t+27Y) | Xs+Xy
6 kt=2 Xo, Xo 14 () Xo
7| ka226-1) X5 + BXo, X1 15 z2D(t) X
8 ka—2e? X3+ Xo, X4 16 () X3
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By exploring a possible physical realisation of the geometric concept of noncom-
mutative tangent bundle, we outline an axiomatic quantum picture of space as
topological manifold and time as a count of its reconfiguration events.

This is a physics-oriented companion to the brief communication [4] and its formal-
isation [6]; we analyse a possible physical meaning of the notions, structures, and
logic in a class of noncommutative geometries considered therein, see also [8,12].
We now try to formalise the geometry of such intuitive ideas as space and time,
aiming to recognise further such phenomena of Nature as the mass and gravity
(here, dark matter and vacuum energy) and Hubble’s law. Affine Lie algebras, the
definition of real line R via 0, 1, addition, and bisection, and Voronoi diagrams
play key roles here.

This text itself is a part of the essay [7]: let us first describe the configura-
tion of physical vacuum, while in the second half of [7] we study the admissible
means and rules of coding sub-atomic particles and explore the ways of the parti-
cles’ (trans)formations, reactions, and decays. In particular, we then address the
mass endowment mechanism, generation of (anti)matter and annihilation, CP-
symmetry violation, three lepton-neutrino matchings, spin, helicity and chirality,
electric charge and electromagnetism, as well as the algorithms underlying the
weak and strong processes. The goal which we set for a semantic analysis of the
postulates and their implications within the algebra and calculus in [4, 6] is the
construction of an elementary, toy model unifying the four fundamental interac-
tions. We agree that the potential of our topological and combinatorial picture
to explain or propose possible (dis)verifying experiments is not still the required
ability for a model to predict.

In fact, we only discuss a possible physical sense of axioms and operations or
deductions which are admissible in the chosen setup. Still, our synthesis may be
not a unique way to relate this mathematical formalism to Nature.

Remark 1. We attempt to identify and describe the physics which not neces-
sarily is. We now sketch the processes and motivate their laws which could be
dominant in the early Universe only. Alternatively, it may happen that these
processes are realised nowadays (or are presently registered as signals which were
emitted from afar in our remote past) only under very restrictive hypotheses about



112 A.V. Kiselev

the local space-time geometry, e.g., near a black hole or near its singularity. Nev-
ertheless, we develop the formalism in a hope that it does render the quantum
structure of the Universe at Planck scale.

Our main message is this: It may be that at the Planck scale, the geometry of
this world is disappointingly simple! because

e it does not refer to the diffeo-structure of the visible space, i.e., to its lo-
cally vector space organisation with velocity along piecewise-smooth tra-
jectories and their length, and with smooth transition functions between
charts in the atlas for that manifold; instead, the events occur in the Uni-
verse, which does not amount to the visible space, by using its much more
rough homeo-structure of topological manifold with continuous transition
functions, whereas the incidence relations between points along continuous
paths replace the obsolete notions of length and speed;

e the Universe consists of naught but the homeo-class space itself and the
information which it carries or is able to carry; the fact of existence, be-
haviour, and known forms of the interaction between particles refer to the
locally available information (in particular, stored in a single point by using
a local modification of the topology); the presence of gauge degrees of free-
dom at each point of the diffeo-class space is the manifestation of its own
homeo-structure; the gauge transformations are performed pointwise, either
entirely independently at different points or in no more than a (piecewise)
continuous way, whence an attempt to bind Nature with their differentia-
bility —in order to introduce the gauge connections by taking derivatives of
arbitrary functions— is an ad hoc assumption of the objects’ description.

Indeed, let us notice that the idea of a connection in a principal fibre bundle
appeals to the (existence of) structures, and to their values outside that point,
which therefore requires the existence of other points. Moreover, the gauge free-
dom of any kind allows, in its basic formulation [10], pointwise-uncorrelated gauge
transformations of the field of matter. Consequently, the postulate that length
is defined and hence the distance between space-time points and between fields
can be measured, giving rise to the construction of derivatives, and the postulate
that the pointwise-uncorrelated values glue to a (piecewise-)smooth local section
are the act of will, i.e., an ad hoc assumption in a description to which Nature
is indifferent (e.g., see [9, Eq. (4,1)]). We remark separately that the operations
which are recognised as gauge transformations but which stem from the presence
and structure of space itself (e.g., local homeomorphisms of topological spaces)
are at least but also no more than continuous, see sec. 3.1 on p. 120. We conclude

!This is likely if we recall how Science gradually cast away various essences such as the
phlogiston (though as an abstract principle it was useful for the technology of steam engine),
eether (to which we owe the radio and knot theory, recalling that W. Thomson’s vortex rings
preceded Bohr’s planetary model of atom), or the long-range gravity force (which remains helpful
for navigation in the Solar system).
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that local processes can not be governed by smooth gauge theory (or only by it; in
particular, gauge connection fields did not exist at the moment of the Big Bang).

If this is indeed so, the rules of Nature’s behaviour are the arithmetic — com-
parison or addition of topologically-defined integer numbers — and the associative
algebra of gluing or splitting words written consecutively in its alphabet(s), and
the coding of such topological objects as walks and cycles or knots.

1 The two avatars

This Universe is a topological space. In the beginning, its topology was trivial:
To = {@, Universe}. Nowadays it is not Hausdorff so that there are points which we
can not tell one from another. Modifications of the topology T are also possible.?

Within the regions of vacuum where the topology allows one to distinguish
between points, the Universe is endowed simultaneously with two structures: one
is the homeo-class structure of topological manifold with continuous transition
functions between coordinates (those form continuous nets on the charts); the
other is the diffeo-structure of smooth manifold such that the transition functions
are smooth and local coordinates form the smooth nets.

The Universe co-exists in its homeo and diffeo avatars. The homeo structure
is the quantum world; it carries the information about the geometry and about
the types, formation, and actual existence and states of the particles. The laws of
fundamental interactions between particles retrieve and process that information,
thus determining the processes that run at the quantum level. Each particle or any
other object in the quantum, homeo-class geometry has a continuous world-line.

Our conscience percepts the Universe and events in it at the macroscopic level
using the smooth, diffeo-class geometry, that is, by understanding of the local
charts as domains in a vector space over R with the usual arithmetic of vectors.
The notion of length is defined in the macroscopic world.® This notion allows us
to measure local macroscopic distances by using rigid rods and also measure local
time intervals between events by employing the postulate of invariant light speed,
that is, by using derivatives of the former equipment. With the help of rigid rods
and light, we introduce the macroscopic notions of instant velocity and define the
nominal concept of a smooth trajectory, not referring it to any material object but
only to the local properties of the smooth macroscopic space-time. The transition
between macroscopic charts with smooth coordinates in the diffeo-class space-time
are governed by the Lorentz transformations. The topology of macroscopic space-
time outside particles and black hole singularities is induced by the (indefinite)
metric in inertial reference frames.

2We claim that exclusions of sets from the list 7 and re-inclusions of the information about
such sets provide the mass endowment mechanism and formation of the black holes’ singularities.

3By convention, a length scale is macroscopic if the typical distances considerably exceed the
electric-charge diameter of proton, which is approximately 1 fm = 1075 m.
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The tautological mapping from the quantum, homeo-class world to the macro-
scopic, diffeo-class realisation of the Universe is continuous but not a homeo-
morphism; by construction, it can not be an isometry. Under this tautological
mapping, the information which is realised by the quantum geometry takes the
shape of particles in the macroscopic world; however, a part of this information is
lost along the way due to the introduction of length (more precisely, of Lorentz’
interval): there are topologically-nontrivial quantum objects — in fact, a whole
dimension — which acquire zero visible size in all reference frames.

On top of that, because the composition of (1) local homeomorphisms from
the standard domains to the charts of the homeo-class topological manifold with
(2) the tautological mapping is only continuous at all points of the Universe,
the images of points and point particles in its visible, diffeo-class realisation are
observed by us as if they are in a perpetual inexplicable “motion”. Namely, as
it often happens with legal documents, no other rights may be derived from the
statement that the composition is continuous: the pledge is to take points from
nested sets in the atlas 7 to near-by points as we see them, but the continuous
mapping does not presume that we, upon our own initiative, shall apply our notion
of length to some continuous curves connecting those images. In effect, inertial
trajectories of material objects in the quantum world are continuous but nowhere
differentiable.* The visible world-lines are at most (c, 1)-Lipschitz, where c is the
speed of light and the power 1 states that no material object is allowed to run out
of the light cone of its future.

Example 1. Suppose that we know (setting aside all the subtleties related to the
act of measurement) that a quantum object — e.g., a marked point of it where
all the mass or all the charge is contained — is located now at a given point and
moreover, it does not move with respect to other points according to the incidence
relations between points in a Hausdorff topology. Nevertheless, we may not know
its visible instant velocity because that notion refers to the limit procedure in
a vector space and hence is not applicable.

Example 2. Likewise, choose an inertial reference frame and consider a situation
when a domain in quantum space is homeomorphic to a domain within a crystal
structure [2,3]. Suppose that a vertex of the lattice decides to visit its neighbour
and thus goes along the edge connecting them. Not only its visible initial location
was non-constant in time and the initial instant velocity undefined, but this will
remain so at all points of the continuous, nowhere-differentiable image of the
trajectory along the edge; the journey will end at an unpredictable location of
the endpoint with undefined terminal velocity. We conclude, referring again to
the Red—White antagonism, that it is impossible to tell which of the two worlds,
topological homeo or smooth diffeo, is straight and which is shaking.

4This creates the classical antagonism between Red and White: namely, Norm is firm, straight,
and always all right while Shake is indecisive and trembling. Only we cannot tell who is who in
this Universe.
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For the same reason, provided that we postulate a point particle’s visible in-
stant velocity (irrespective of its actually on-going displacement with respect to
the topologically-neighboured points in the quantum world), we may not deter-
mine at which point of the visible macroscopic space it is located. (Let us remark
that the above examples and reasonings are not applicable to the propagation
of light which can not stay at rest with respect to the incidence relations.) The
balance of resolution for the location of a material quantum object in the smooth
space at a given time and for its momentum is determined by the Heisenberg
uncertainty principle.® Simultaneously, the propagation of a point particle from
a given point to a given endpoint along an a priori unknown continuous trajectory
in the visible, diffeo-class world is the cornerstone of the concept of Feynman’s
path integral.

We now propose to abandon the futile attempts to measure or approximate
the undefined notions but study the interactions between quantum objects by
referring their laws to the homeo-class geometry of the Universe. Let us remember
that the difficulties and uncertainties which we gain — when measuring length and
calculating derivatives such as the velocity — in a description of the quantum
processes do not stem from their true nature. Integrating empirically the laws
of its evolution, the Universe stays, and will stay forever indifferent to the fact
that we can not grasp all its details at once, since we ourself first proclaimed
our intention to take proportions with respect to the standard metre instead of
inspecting the topological invariants of phenomena.

Corollary 1. The processes in the quantum, homeo-class (locally) Hausdorff topo-
logical manifold without length can not be adequately described by (the geometry of
partial) differential equations (c.f. [5,11]). On the other hand, the construction of
o-algebras associates the measure in its true sense with sets of points but not with
distances between points; consequently, integral equations could be more relevant.

2 The time phenomenon

There are at least two ways to understand what the time is in context of a para-
doxal observation by our conscience that everything in this world is staying per-
petually in the present.

A realist approach to the notion of time postulates the existence of a full-
right uncompactified dimension with a reasonable topology of the resulting space-
time. One then operates with the count of time by using the invariant Lorentz
interval, light cones of the past and future, and world-lines of material objects.
An inconvenience of this approach is that, in order to maintain the everlasting
presence, the visible world must unceasingly glide along the time direction, i.e.,
to keep in the same place, it takes all the running one can do. Note that under

5Note that we may not track the behaviour of “empty” points of the quantum space if they
are not referred to by any material object located there; consequently, we do not attempt to
introduce a “temperature” of the vacuum.
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Lorentz’ transformations the local observer’s time can be bent towards another
observer’s space and vice versa but in earnest the time can not be swapped with
any spatial direction.

The concept of a (34 1)-dimensional smooth or topological manifold into which
the time is incorporated a priori contains the following logical difficulty. An in-
finitely-stretching absolutely empty, flat Minkowski space-time (]R xR3, (+———))
without a single object in it would exist forever. In our opinion, there is no time
at all in that empty world: the cups, tea, and bread-and-butter always remain
the same, so it is always six o’clock. Nobody counts to the Time hence time does
not count.

Definition 1. We accept that the time is a count of reconfiguration events in this
Universe; such events are, for example,% the reconfigurations of geometry (i.e., an
act of modification in the topology) or the operation of an algorithm that transfers
information over points, creating an event of output statement by processing the
local configuration of the Universe in its input (such is the propagation of light).

Thus, events create time. Events which do not reconfigure the Universe (e.g.,
a correct statement that for a topologically-admissible arc connecting point 0 to
point 1 there is a null path running from 0 to 1 and then back again along the same
arc) do not express the count of time (although a verification of such statement
by using light signals does take and hence creates time).

The notions of recorded past and expected future are derived from the relation
of order in the count of events by an appointed observer; let us remember that an
opinion of another observer about the order of events could be different.

Example 3. Consider the reconfiguration of the Universe produced by a trip of
Chapeau Rouge from point 0 to point 1 along a continuous arc connecting them in
a coordinate chart of the homeo-realisation of the Universe. This amounts to the
input information that the two endpoints, the arc, and Chapeau Rouge exist, that
the available choice of topology confirms that the path is continuous, and to the
work of the algorithm the negates the already passed points and thus prescribes
the admissible direction to go further.

In absence of length and in absence of any devices at the observer’s disposal,
the time is discrete: it is counted by the events (1) Chapeau Rouge is at the
starting point; (2) Chapeau Rouge has reached the endpoint.

The observer can grind the time scale by recursively installing the intermediate
checkpoints somewhere in between the points which are already marked; this is
done by using the incidence relation for points on the continuous path and does
not refer to the notion of length (in fact, it refers to the definition of real numbers

SWere the Universe truly smooth, Poisson, and possess the Hamiltonian functional, then
the time by definition would be taking the Poisson bracket with such master-functional of the
current state; a weakened and much more likely formulation is the generation of time by events
of evaluating binary operations at locally defined Hamiltonian functionals that correspond to
separate particles, c.f. [6].



Towards an axiomatic noncommutative geometry of quantum space-time 117

by using 0, 1, addition, and bisection). The limiting procedure makes the count
of time continuous.

It is the postulate of invariant light speed which endows the Universe with its
local smooth structure (“twice earlier <= twice closer”). The light automaton
is programmed to choose the next point by processing the information about
earlier visited points and creates an event of specific type; the principle is that
all observers accept its performance identically. By using the bisection method,
we first mark the midpoint ! /2 on the chosen curve and replicate the automaton
0 — 1 to the automata 0 — !/5 and '/3 — 1; then we declare that the old
automaton counts the unit step of time and each of the new automata counts
one half. The recursive process and the limiting procedure create the smooth
structure of space-time for a given observer.”

The inconvenience is that this smooth structure is not applicable to material
objects which are known to travel slower than light; in order to monitor the
steady progress of Chapeau Rouge on her way from 0 to 1, one must use as
many light signals as there are checkpoints installed along the path. Even if the
energy emitted by the new, “shorter-range” automata drops at the moment of
each replication, the total energy which one has to spend in the continuous limit
is either null or infinite; the first option is useless because it does not communicate
any information to the observer; the second option is not impossible if the Universe
is infinite and the observer agrees to waste a finite fraction of this world, still it
is impractical.

In the next section we introduce a possible local topological structure of the
homeo-class realisations of the Universe. If one feels it necessary to multiply
dimensions, then we advise to let a macroscopic observer view the construction
from a chosen inertial frame; the time direction is then locally decoupled to the real
line R. At the end of the next section, the structure of the macroscopic images of
domains under the tautological mapping from homeo to diffeo is then recalculated
to all other inertial reference frames by using Lorentz’ transformations. Let us only
remark that the “smooth time” parameter is introduced in the diffeo-class world
in order to legalise the limiting procedures such as the correlation of arbitrarily
small length and the speed of light in the local vector-space organisation of space.

3 Local configuration of quantum space

Now we introduce the local topological configuration of empty quantum space,
that is, vacuum away from the singularities of black holes. In technical terms, we
define the admissible local structure by taking “as is” or via self-similar continuous

"To use light as the pacemaker of the clock, we ought to describe first what a photon is; to do
that we operate in [7] with the homeo-class geometry. We also notice that before the emission
of the first photon in history of the Universe (or before creation of any other massless particles
which travel with the same invariant speed c), the time had been counted by using events of
other origin; we argue that such events were the reconfigurations in the topology 7.
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limit the lattice of affine Lie algebra (primarily using the root systems As, Bs,
or (5 of simple complex Lie algebras) and thus consider a truncated Kaluza—
Klein model without the Minkowski dimension of Newtonian time but instead,
with a topology brought in by hand (though it is equivalent to a standard one for
each continuous limit); we then analyse the origins of Hubble’s law.

To describe a domain in quantum, or quantised, space we first consider Eu-
clidean space E? containing the affine lattice generated by the irreducible root
system As, Bs, or C3 (see Remark 6 on p. 121). Let us denote by ¥; = >'<'i+1 the
generators of the lattice at hand and by )?i_l their inverses (so that the paths

%71 =x%71.% =1 end at the point where they start). Each lattice deter-

g .
Xi X, T =X,

mines the tiling of space 3, its vertices and edges constituting the 1-skeleton of
the CW-complex with trivial topology (see Remark 8 on p. 125). We let a finite
domain in E? with a given configuration of vertices and the adjacency table of the
lattice be the spatial component of a prototype domain in the discrete quantum
space.

Second, we take the product E3 x E? of space with a two-plane into which we
place the circle S' passing around the origin. Viewing the circle as an oriented
one-dimensional topological manifold, we create an extra, compactified dimension
in the local quantum geometry. Namely, to each vertex of the prototype domain
we attach the tadpole S!, i.e., the edge that starts and ends at the same point
and loops in the extra dimension (outside the old E®). By convention, we denote
by S! = S*! the tadpole walked counterclockwise with respect to the standard
orientation of E? and by S™! the reverse, clockwise cycle.

Remark 2. Under the tautological mapping of the quantum world to the dif-
feo-class visible world, the tadpoles are assigned zero length because the distance
between their start- and endpoints vanishes for each of them.® We conclude that
the entire compactified dimension is invisible to us; this is why the tautological
mapping between the homeo- and diffeo-realisations of the Universe is not bijec-
tive: it compresses one extra dimension at each point to a null vector.”

Namely, passing to the additive notation ((}‘(’l, &), i) instead of the multiplica-
tive alphabet (()Z’iﬂ,Sil), -), that is, viewing the letters as vectors in Fuclidean
space but not as the shift operators and introducing the null vector c_f, we recover
the standard description of the affine basis for the Kac—-Moody algebra at hand;
clearly, the length of the null vector equals zero. Recall further that the circle S*
is the total space in a double cover over the real projective line RP* ~ S! /~: one
full rotation S*! corresponds'® to running along the projective line twice: S' =t

8We note that the notion of length is applicable to the generators S** of such null vectors but it
is not applicable to the edges )'(’iil in space: their length is undefined because the homeomorphisms
from domains in E* containing the lattice to the spatial counterparts of the prototype domains
are not fixed but can change with time.

9We also notice that the generators ST* encode nontrivial walks in quantum space but produce
no visible path which would leave a single point in the macroscopic world; we postulate that the
contours S*! determine the electric charge +e, see [7].

0We introduce a separate notation t for one rotation along the projective line anticipating
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and S7! = (t_t>)71; the double cover over RP! is then responsible for the familiar

coefficient ‘2 in front of the null vector d.

Remark 3. The vertices of the CW-complex are the quanta of space; there is
a deep logical motivation for their existence. Namely, by assembling to one ver-
tex a continuum of physical points within a domain which is dual to the set of
neighbouring vertices in the lattice, Nature replaces the continuous adjacency
table between points to a finite, lattice-dependent table so that there are only
finitely many neighbours of each vertex and hence a finite local configuration of
information channels.

In conclusion, space is continuous but the Universe operates with quantum
phenomena in it, thus achieving a great economy in the information processing.

Remark 4. The tadpole S! at a vertex of quantum space is an indexed union
Uiez S} of tadpoles referred by i to an indexing set Z of points in the quantum
domain which is marked by the vertex. Typically, this set is at least countable,
Z D Z; one could view it as an enumerated set of binary approximations for points
in that domain (here we use the auxiliary metric in E?); we emphasize that by
choosing the indexing set in this way we endow it with order, c.f. [7].

This convention allows us to handle infinitely many tadpoles attached to an
everywhere dense set in the quantum domain by ascribing a different statistics to
a unique tadpole which is attached to the vertex which marks that domain.

Note 1. We postulate that the spatial edges i’iﬂ of the lattice are fermionic so
that no such edge can be walked twice in the same direction by one path; a path
can run twice along the same edge only in the opposite directions. Note that
different paths can go independently in the same direction along a common edge;
we also notice that a path can run many times through a vertex, approaching it
each time by a different edge in its adjacency table.

Unlike it is with spatial edges, the tadpoles S*! attached to the vertices are
bosonic so that paths can rotate on these caroussels any finite number of times in
any direction (which does not really matter because the overall difference §S' —
#S~! of positive and negative rotation numbers is constrained by the value of
electric charge of the particle encoded by the path). However, let us remember
that in earnest we are dealing with ordered infinite sets {SEt!, m € Z C I} of
fermionic tadpoles brought to the marker of a quantum domain; in the continuous
limit of a quantum tiling, this set spreads over the domain — one fermionic tadpole
per each indexed point.

So, let us recall that the part of a lattice in a domain of E3, with tadpole
attached to each vertex, is discrete. We say that the original fermionic lattice
with bosonic tadpoles is the quantum space; in what follows we formalise the
geometry of elementary particles in terms of the alphabet 2 = (()E’iﬂ, ST, )

its future application in the description of “building blocks” for strong interaction and also its
possible use in the study of the quantum Hall effect.
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The standard bisection technique (see sec. 2) allows us to convert the discrete
tiling to its continuous limit in which the topology is inherited from the adjacency
table of the affine lattice (the neighbourhoods in the Voronoi diagram are the duals
of adjacent vertices’ configuration in the spatial, E3-tiling component of the CW-
complex); the limit topology is locally equivalent to the product topology for S*
and Euclidean space E?; the orientation field for S' over E3 is continuous.

Definition 2. The self-similar limit of the discrete structure in a domain of
quantum space is a domain in the homeo-class realisation of the Universe.

Remark 5. The introduction of a continuous field of fermionic lattice generators
)‘(’iﬂ and fermionic loops ST! or t*! over each point of continuous space, which we
have performed here in full detail, is the homeo-class analog of the noncommuta-
tive tangent bundle over the smooth visible realisation of the Universe, see [6].

Quantum space is discontinuous; in sec. 2 we argued that a verification of the
continuity for its self-similar limit requires the expense of infinite energy whenever
one attempts to monitor a steady motion of a material object travelling slower
than the speed of light and for that purpose encodes the object’s path by the
alphabet 20, = ((%}E’iﬂ,Sﬂ; n € NU{0}),-). However, a motivation why the
limit should nevertheless be studied — and is more than a mathematical formal-
ity — is as follows. Namely, a continuous coding of points in space by using binary
arithmetic permits us to consider continuous paths — in particular, closed con-
tours, — not referring them to a specific lattice. Indeed, our ability to describe
and handle such contours does not imply that any material object is actually
transported along those paths; hence energy is not spent but the drawn figures,
and homotopies of these images in space, do encode information: a generic contin-
uous path is an infinitely-long cyclic word written by using infinitely-short letters
of the alphabet 2.,. The massless chargeless contours propagate freely in homeo-
class domains until a very rare event of their disruption and weak interaction with
other material objects. However, this is only a part of the story.

3.1 The U(1) x SU(2)-picture

First, let us notice that there is no marked origin in the affine lattice and therefore
it acts on itself by finite shifts. Note further that this action is topological: it
appeals to the incidence relations between vertices but not to the smooth, local
vector-space organisation of E3.

Having placed the affine lattice in E3, one could — by an act of will to which
Nature is indifferent — extend the algebra of finite shifts to the space of homeo-
morphisms of E3, i.e., the local action of space upon itself by a continuous field
of translations. Moreover, by compactifying space to E3U {pt} ~ S?, one extends
this action to homeomorphisms of the three-sphere. By yet another misleading
isomorphism S* ~ SU(2) — which is given, e.g., by the Pauli matrices — one is
tempted to conclude that
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1. the complex field C is immanent to static geometry of the Universe, and

2. the freedom of appointing for reference point any vertex in the affine lattice,
now realised as a set of points inside SU(2), means the introduction of the
SU(2)-principal fibre bundle over the space-time.

Yet even more: though the pseudogroup of local homeomorphisms of space states
that the field of pointwise-defined shifts is continuous, it is postulated that this
deformation field is smooth, hence there exist derivatives of local sections for
the principal fibre bundle. This pile of ad hoc conventions delimits the smooth
complex SU (2)-gauge theory of weak interaction [10].

Likewise, each tadpole’s circle S' carries the gauge freedom of marking a start-
ing (hence, end-) point on it and also it can be subjected to an arbitrary home-
omorphism (not necessarily a diffeomorphism), which leaves the tadpoles S*!
intact. The choice of marked points is made pointwise at vertices of the lattice
(or at all points of continuous space if we deal with the limit) — without any
idea of smoothness superimposed to continuity. Now we note another misleading
isomorphism S ~ U(1), which also tempts one to introduce complex numbers in
the static quantum geometry.

Summarising, we see that electroweak phenomena could be quantum space in
disguise.

3.2 Hubble’s law

Second, let us recall that there are exactly three canonical tilings of Euclidean
space.

Remark 6. The three irreducible tilings of space are determined by simple root
systems As, Bs, and C3. They have equal legal rights in the geometric construc-
tion, still we believe that the tetrahedral tiling which corresponds to As dominates
over the two others whenever one is concerned with the symmetry and stability
of particles whose contours are encoded by words written in these root systems’
alphabets (see [7]). Thus, more symmetric particles are more stable.

We recall that the adjacency tables for vertices are different for the three ir-
reducible lattices in E? so that the local configurations of information channels
between points in the continuous limits are also different; the three continuous
versions of one space differ by the algorithms of processing locally available infor-
mation.!! However, the limit topologies are equivalent in a sense that a contin-
uous path in one picture stays continuous in any of the other two; the translit-
eration of a continuous path then amounts to a second order phase transition

"Recall that the two gentlemen of Verona could embark and sail to Milan with the morning
tide; alternatively, they could take a train, fly in an airplane, or go by car. Their route organ-
isation would have been different in these four cases, yet the starting- and end-points coincide;
the four paths are integrated by rotation of screw or wheel.
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when the object stays identically the same but the underlying crystal structure
changes.!?

In the sequel, we prefer to operate locally on the affine lattice A3 yet we allow
a formal union of the three irreducible alphabets in the fibre of the noncommu-
tative tangent bundle over each point of space. We view the irreducibility as the
mechanism which holds space from slicing to lower-dimensional components; be-
cause of that, we shall not consider the reducible cases A1 ® A1 ® A1, A1 @ Ao,
Ay & By, and A1 & Go. We also emphasize that we always preview a possibility
of taking the continuous limit in mathematical reasonings but we let the space be
quantised by the edges of the graph, i.e., by the 1-skeleton of the CW-complex.

Viewing the world as it is (e.g., compared with the multiplicative structures
in [6]), we have to admit that a perfectly ordered life inside a Kac-Moody algebra
is an inachievable ideal. In practice, the 1-skeleton of the CW-complex experiences
an everlasting reconstruction; this is why up to this moment we have not described
the attachment algorithm or transition mappings between overlapping quantum
domains; they just attach as graphs and the verity is that the CW-complex is
globally defined — it is space in which the Universe exists.

A possible mechanism of the perpetual modification in the graph’s local topol-
ogy (but not in the triviality of topology of the CW-complex) is that Natura
abhorret a vacuo. In its zeal to shake off its quantum discontinuity, Nature does
attempt to perform the infinite bisection and construct the complete real line R by
using binary arithmetic. Let us recall that such recursive procedure replicates one
unit-time light automaton to two automata plugged consecutively, one after an-
other. But Nature unceasingly replicates each light automaton with its two copies
that are identical to their sample. This leads to the observed proper elongation
of space.!3

Namely, within each fixed half-time'* on-average one half of the actually avail-
able edges split in two new edges. (We remark that this division does not happen
with the contracted edges, see next section; on the same grounds it is the edges
but not vertices that split, for the latter could in fact be a superposition of many
vertices according to the record of past modifications in local topology.) Each
event of edge splitting creates a new vertex — the midpoint — and fills in the adja-
cency table for it, connecting it by one edge with all vertices in the cells delimited
by the splitting edge in their faces.

12\We expect that the transliterations — from one alphabet to another — of cyclic words en-
coding the contours whose meaning is a chargeless spin-%h particle explain the known neutrino
oscillation.

13Notice that a release of energy in the course of edge decontractions (see sec. 4) is compensated
with a simultaneous increase of the volume of continuous space so that the energy density remains
constant; then, a part of this energy is being absorbed by the black holes or is radiated to the
spatial infinity. A simultaneous release of ever-growing amount of energy per unit-time at the
outer periphery of decontracting Universe (see next section) does not burn the objects inside it
but it instead cools down to the present 2.725° K of the cosmic microwave background radiation.

This time interval is counted by the local billiard clock — the edge itself — that sends light
signals to and fro the edge; this parameter can vary as the Universe grows older.
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Also, a tadpole is attached to the new vertex within the compactified dimen-
sion. We recall that the vertices label quantum domains in space so that the
graph’s adjacency table configures the domains’ neighbours. We now note that
the process of spontaneous edges’ splittings roots in the conventional round-up
[n— %, n+ %) — n: the edge’s midpoint is referred to one of the edge’s endpoints —
hence, the midpoint’s fermionic tadpole is communicated to that endpoint. The
splitting goes as follows: in terms of the order in Q along the splitting edge
(n —1,n), its midpoint {n — 3} detaches from {n}, proclaiming the existence of
a separate quantum domain [n—3,n—1) which becomes adjacent with [n—3,n—3)
and [n — %, n -+ %), the round-up demarkation reproduces twofold at {n — %} and
{n — 1}. The marker {n — 3} of the new domain grabs —and endows with order
the set of - fermionic tadpoles attached to all the points {n — 2 + 5¢} which (by
the values of m,¢ € NU {0}) locally get into the bounds [n — 2,n — 1).

But because the light automata remain the same for the first and second frag-
ments of the edge, each of them counts the propagation of light signal along each
new edge as a unit-time event. Consequently, not only the Universe grows at its
periphery, but a trip between distant objects all across the Universe takes more
and more time.

Corollary 2 (The Hubble law). The Doppler-shift-measured velocity v at which
distant material objects, locally staying at rest with respect to physical points, i.e.,
with respect to the incidence relations between points in quantum space, recede
from each other is directly proportional to the proper distance D between these
objects:

v=Hy- D,

here Hy is the Hubble constant (now it approximately equals 74.3£2.1(km/s)/Mpc).
Notice that the picture is uniform with respect to all observers associated with
such objects anywhere in space.™®

Thus, Hubble’s law testifies steady self-generation of space due to which Cos-
mos obeys the principle “twice farther, twice faster” at sufficiently large scale. We
conclude that we do hear the process of space expansion in the form of the cosmic
microwave background radiation; we thus predict that the 1.873 mm-signal can
not be altogether shielded by any macroscopic medium.

4 The mass

The crucial idea in our description of the geometry of vacuum — which is not yet
inhabited by any particles — is that contractions of edges in the graph are allowed
(but highly not recommended unless possible consequences are fully understood).

15 A relative motion of the Milky Way with respect to the underlying quantum space structure
is observed by the detection of Doppler’s shift in the relic radiation at certain direction and its
antipode.
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We emphasize that this does not require stretching, pulling, compressing, or any
other forms of physical activity — an ordinary accountant with pencil, eraser,
and access to the book 7 with topology of the Universe can accomplish more epic
deeds in the course of one reaction than Heracles did in his entire life.

Definition 3. The contraction of an edge is a declaration that its endpoints
merge and there remains nothing in between (i.e., a tadpole is not formed); the
respective ordered sets of fermionic tadpoles S attached to the merging endpoints
unite, preserving the tadpoles’ directions and their ordering (so that a path in
positive or negative direction along either bosonic or fermionic understanding for
the old tadpoles becomes the respectively directed path on the new one). The
decontraction of a previously contracted edge is its restoration in between its
endpoints which become no longer coinciding, and the splitting of the indexed
ordered tadpole sets between the two endpoints.

Remark 7. A contraction of edges in the 1-skeleton of the CW-complex can force
the formation of tadpoles from remaining edges: for example, two contractions
which distinguish between Left and Right could lead to the CP-symmetry violation
in weak processes (see [7]).

Let us also notice that the on-going splitting of edges, which is responsible for
the Hubble law, is a random decontraction process spread over quantum space.

Let us inspect how the concept of Riemann curvature tensor works in the non-
commutative setup when one transports an edge in the CW-complex’s 1-skeleton
along a contour starting at a vertex formed by contracting an edge (see Fig. 1 on
the cubic lattice). Namely, let the edge ab be contracted; consider the lattice ele-

Ny
<

»il

Figure 1. The curvature mechanism.

ment 7. First, transport its starting point a along the contour XyX ~'¥ ! and then
Sy

step along 7; the walk’s endpoint is ¢. However, by walking the route Z¥yx ~'y !

and thus transporting the endpoint along the chosen contour, one reaches the ver-
tex d instead of c¢. By definition, a path connecting c to d is the value R, (X,¥)Z
at Z of the quantum curvature operator for the path determined by the ordered
pair (X,¥) at the point a.

Note 2. In this text we postulate, not deriving the mass-energy balance equa-
tion £ = mc? from the underlying geometric mechanism [14], that a presence of
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a contracted edge is seen as mass, whereas a time-generating event of reconfigu-
ration absorbs energy — creating mass — by contracting an edge and releases that
energy at the endpoints in the course of its decontraction; this is the mass-energy
correlation mechanism. (Note only that one may not measure the stored energy
as “forcexdistance” and thus introduce a stress of the lattice because length is
undefined on it).

Corollary 3. In absence of visible matter and energy, the vacuum can be curved
and cause the force of gravity.

We expect that the dark matter is the configuration field of space contractions
along its subsets; in fact, massive but invisible dark matter is not matter at all.

Let us define the entropy S of a given contraction of edges as minus the number
of vertices — which themselves are not attached to the contracting edges but
which neighbour via an edge with vertices that merge. Basically, this entropy of
a contractions’ configuration in space is the topologically-dual to area (here, the
number of faces for the nearest surface that encapsulates the contracted edges).

For example, a contraction of one edge of the square lattice in E? produces
a snowflake so that S = —6, making 2 x (—6) for two distant contractions. How-
ever, let us notice that the entropy of two consecutive edges for that tiling equals
—8 and is equal to —7 for a corner. In view of this, a reconfiguration of contrac-
tions in a finite volume of the graph could be a thermodynamical process and
gravity force could have the entropic origin, c.f. [13].

We conjecture that initially, the entire space of the Universe was contracted
to one point so that every tiling of it by the 1-skeleton of the CW-complex was
either that vertex or the vertex with tadpole attached to it. Simultaneously, we
expect that space is topologically trivial so that all its possible tilings may not
contain extra edges which would create shortcuts between distant cells.

Remark 8. Numeric experiments [1] reveal the following property which the CW-
complex in E? gains in the course of bisection — i.e., making the tiling finer — under
an extra ad hoc assumption that the cells can be glued, orientation-preserving,
along prescribed pairs of faces not necessarily to their true neighbours but possibly
to sufficiently remote cells. This creates a possibility to obtain a topologically
nontrivial CW-complex which nominally fills in E3 but such that the local density
of genus can be positive. The probability of reconfigurations was postulated to
drop exponentially with increase of the N-valued distance between cells.

Then the fundamental solution of the usual heat equation — or the square
mean deviation of random walks — was calculated by using a natural convention
that the dissipating medium (e.g., smoke) or the random walks’ endpoints spread
freely through the faces of reconfigured tiling. The effective dimension was then
determined from the rapidity of dissipation, and the modelling was repeated a
suitable number of times.

Numeric experiment has shown that, as the sides of elementary domains be-
come smaller but the effective distance, at which the probability of faces’ reat-
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tachment drops exp(1) times, is kept constant, the effective dimension of (3 4 1)-
dimensional combination of space and time drops from four to exactly two in the
continuous limit.

In the paper [7] we try to view Physics as text whose meaning is Nature. We
focus on its alphabet, glossary, grammar rules, and a possible location where the
text is retrieved from, edited, and then stored back to. We know that the text of
Nature is incredibly interesting; in our efforts to read it, we have not yet advanced
much in learning its grammar, and still more feebly we perceive the overall plot.
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The Schouten bracket (or antibracket) plays a central role in the Poisson for-
malism and the Batalin—Vilkovisky quantization of gauge systems. There are
several (in)equivalent ways to realize this concept on jet spaces. In this paper,
we compare the definitions, examining in what ways they agree or disagree and
how they relate to the case of usual manifolds.

1 Introduction

The Schouten bracket is a natural generalization of the commutator of vector fields
to the fields of multivectors. It was introduced by J.A. Schouten [23,24], who
with A. Nijenhuis [18] established its main properties. Later it was observed by
A. Lichnerowicz [16,17], that the bracket provides a way to check if a bivector 7 on
a manifold determines a Poisson bracket via the formula [7, 7] = 0, which was the
first intrinsically coordinate-free method to see this and established the use of the
bracket in the Poisson formalism. Moreover, this makes the bracket instrumental
in the definition of the Poisson(—Lichnerowich) cohomology on a Poisson manifold.

Historically, the bracket on jet space [7] seems to have been researched in two
distinct areas of mathematics and physics, which have been separate for a long
time. The first branch is the quantization of gauge systems; here the bracket
is known as the antibracket. It occurs for example in the seminal papers on
the BRST and BV formalism, [3,4,25] and [1, 2] respectively, where it is used to
create a nilpotent operator [{2, - | providing a resolution of the space of observables.
Other occurrences of the bracket in this context are [5,9,28] and [27], the last of
which contains some geometrical interpretation of the bracket.

In the Poisson formalism on jet spaces it was understood in [8] that the bracket
plays a similar role for recognizing Poisson brackets as on usual manifolds. Con-
cepts such as Hamiltonian operators and the relation of the bracket with the
Yang-Baxter equation are developed in [8] and [21,22]; for a review, see [6].
A version of the bracket that can be restricted to equations was developed in [10].
Later, a different, recursive way of defining the bracket, that we will discuss in
this paper, was shown in [14].

*Corresponding author.
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Generalizations to the Zs-setup and the purely non-commutative setting of the
entire theory have been discussed in [13,20] and more recently [11]; for a review,
see [12].

The realization that the brackets in these areas of mathematics and physics
coincide is not an obvious one. Accordingly, a number of seemingly distinct ways
of defining the bracket has been developed, of which the equivalence is not always
immediate and sometimes a subtle issue. This paper aims to examine four of
those definitions, of which three will turn out to be equivalent when care is taken.

The paper is structured as follows. We first recall in Section 2 the notions of
horizontal jet spaces and variational multivectors; at this point it will become clear
why the definition of the bracket for usual manifold fails in the case of jet spaces.
In Section 3 we first define the Schouten bracket as an odd Poisson bracket; then,
after giving some examples of the bracket acting on two multivectors, we show
that this definition is equivalent to the recursive one introduced in [14]. Using
the recursive definition we shall prove the Jacobi identity for the bracket, which
yields a third definition for the bracket, in terms of graded vector fields and their
commutators.

We use the following notation, in most cases matching that from [12]. Let
m: E — M be a vector bundle of rank m over a smooth real oriented manifold of di-
mension n; in this paper we assume all maps to be smooth. z* are the coordinates,
with indices 4, j, k, . . ., along the base manifold; ¢“ are the fiber coordinates with
indices a, 3,7, . ... We take the infinite jet space moo: J°°(7) — M associated with
this bundle; a point from the jet space is then 6 = (2%, ¢%, Qi Qi 505, ) €
J°(m), where o is a multi-index. If s € I'(m) is a section of m we denote with
j%°(s) its infinite jet, which is a section 7°(s) € I'(7). Its value at x € M is

, s lof ger
JX(s) = (ml,so‘(x), gxz(x), ceey 88330(1:), : ) € J(m).

The evolutionary vector fields, which we will call vectors, are then 8&(1) =

> lo|>0 Sy Do(goa)%, where D, = D o---0 D are (compositions of)
the total derivatives. Here ¢ € »(m) := I'(m5, (7)) = ['(7) ®coo(ary F(7), where
F(m) is the ring of smooth functions on the jet space. The covectors are then
p € xn(m) = %/(7'('\) := Hom g () (5¢(m), A(7)), i.e., linear functions that map vectors
to the space of top-level horizontal forms on jet space. We will denote the coupling
between covectors and vectors with (p,¢) € A(r). The horizontal cohomology,
i.e., A(7) modulo the image of the horizontal exterior differential d, is denoted by
H"(r); the equivalence class of w € A(r) is denoted by [w € H"(r). We will
assume that the sections are such that integration by parts is allowed and does
not result in any boundary terms; for example, the base manifold is compact, or
the sections all have compact support, or decay sufficiently fast towards infinity.
Lastly, the variational derivative with respect to ¢% is éq% = Z| a|20(_)0D0%7
while the Euler operator is 6 = [ d¢ -, where d¢ is the Cartan differential.

For a more detailed exposition of these matters, see for example [12,14,15,19].
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2 Preliminaries

Let £ be a vector bundle over J°°(7), and suppose s; and sy are two sections of this
bundle. We say that they are horizontally equivalent [10] at a point 6 € J°(r)
if Dy(s{) = Dy(s9) at 0 for all multi-indices o and fiber-indices . Denote the
equivalence class by [s]p. The set

J2(€) = {lslo | s €T(g), 0 € J>(m)}

is called the horizontal jet bundle of £. Tt is clearly a bundle over J°(r), whose
elements above 6 are determined by all the derivatives s := D, (s®) for all multi-
indices o and fiber-indices a.

Now suppose ( is a bundle over M. Let us consider the induced vector bundle
7%, (¢) over J°°(7), and the horizontal jet bundle J2° (7%, (¢)).

o0

Proposition 1. As bundles over J°°(r), the horizontal jet bundle J2(m* (¢))
and 7} (J*°(C)) are equivalent.

Proof. The pullback bundle 7} (J*°({)) is as a set equal to
oo (J(C)) = {(5:°(9), 727 (w)) € J>=(m) x J=(C) | @ € M}

On the other hand, consider an element [s]g € J2°(7%,(¢)). Thus, s is a section
s € I'(m5,(¢)). By Borel’s theorem, an arbitrary element over x € M from J*(7)
can be written as j2°(¢q) for some ¢ € I'(w). Now define a section u € I'(¢) by
u = j*(q)*s = s 0 j*®(q), i.e., u(z) = s(j2°(q)). Then by the definition of the
total derivative, we have

O @) = (5" 0 (@) @) = (Dass®) (@),

that is, the partial derivatives of u and the total derivatives of s coincide. This
shows that if we define a map by

(sl (q) = (2" (), 42" (u)) € T (J2(C)),

where u is the section associated to s and ¢ as outlined above, then this map is
well-defined and smooth. Moreover, since the partial derivatives of a section u at x
and the total derivatives of a section s at j2°(¢q) completely define the equivalence
classes j3°(u) and [s];(q) Tespectively, this map is also a bijection. Lastly, it is
clear that as a bundle morphism over J*°(), it preserves fibers. O

When ( is a bundle over M instead of over J*° (), and there is no confusion
possible, we will abbreviate J>°(m% (¢)) with J>(().

This identification endows the horizontal jet space J2°(¢) with the Cartan
connection — namely the pullback connection on 7} (J°°(¢)). Therefore there
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exist total derivatives D; on the horizontal jet space J(¢); in coordinates these
are just, denoting the fiber coordinate of ( with u, the operators

0 o 0 3 0
D; = Ot + OCZJ do+1; 86]? + ; Ur i1, 811,75—
Thus, instead of the horizontal derivatives D,(u®) of sections there are now
the fiber coordinates u$&, which have no derivatives along the fiber coordinates:
%ué = 0.

Now consider the bundle 7 : E*®A"™(M) — M. Then 7% (7) = 7% (E*)®@A(7),
so that »(mw) = I'(7},(7)). Thus, the formalism described above is applicable to
covectors, so we either take p to be an element from >(7), an actual covector, or
p € J(7).

At this point we take the fibers of the bundle 7 and of 7} (7), and reverse their
parity, II: p — b, while we keep the entire underlying jet space intact [26]. The
result is the horizontal jet space J2°(II7) with odd fibers over . An element 6
from this space has coordinates

0= (2',q" 0%, a5 barbagis-- - bags- . .).

The coupling (p, ) = >, Pap® dVol(M) extends tautologically to the odd b’s, as
do the total derivatives: Dby = by o

Definition 1. Let k € NU{0}. A variational k-vector, or a variational multivec-
tor, is an element of H'' (7*_(II7)), having a density that is k-linear in the odd b’s
or their derivatives (i.e., it is a homogeneous polynomials of degree k in by ). If £
is a k-vector we will call k =: deg(&) its degree. Note that by partial integration,
any such k-vector £ can be written as

£(b) = /(b,A(b,...,b)>

for some total totally skew-symmetric total differential operator A that takes k—1

arguments, takes values in »(), and is skew-adjoint in each of its arguments (e.g.,
in the case of a 2-vector, [(b', A(b?)) = [(b?, A(b))).

Note that this does not imply that every density is, or has to be, a homogeneous
polynomial of degree k; for example,

/ bb, dVol(M) = / (bby + Dy (bbybag)) dVol(M).

To evaluate such a k-vector on k covectors p!, ..., p*, we proceed as follows: we
put each covector in each possible slot, keeping track of the minus sign associated
to the permutation, and normalize by the volume of the symmetric group:

0 ) = o 3P, (1)

SESk
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i.e., in the coordinate expression of (the representative of) £ we replace the i-th
b that we come across with p*) (moving from left to right), and sum over all
permutations s € Si. Thus, under this evaluation k-vectors are k-linear total
differential skew-symmetric functions on k covectors, landing in the horizontal
cohomology of the jet space.

Remark 1. Contrary to the case of usual manifolds M, where the space of k-
vectors is isomorphic to /\k TM, the space of variational k-vectors does not split
in such a fashion. As a result, the two formulas

[X,Y AZ] = [X,Y] A Z 4 (—)desX)=DdesM)y A [ X 7]

for multivectors X, Y and Z, and

[[Xl/\”-/\Xk,Yl/\---/\}/g]] (2)
= Y (HXLYIAXIA AKX A AXGAYI A AY A AY
15520

for vector fields X; and Y}, no longer hold. Both of these formulas provide a way
of defining the bracket on usual, smooth manifolds (together with [X, f] = X (f)
for vector fields X and functions f € C*°(M), and [X,Y] = [X,Y] for vector
fields X and Y).

To sketch an argument why the space of variational k-vectors does not split
in this way, take for example a 0-vector w = [ fdVol(M) and a 1-vector, which
we can write as 7 = [(b,¢) for some ¢ € x(w). How would we define the
wedge product w A n? Both of the factors contain a volume form and if we just
put them together using the wedge product we get 0, so this approach does not
work.

Suppose then we set in this case w An = [ f(b,¢). Now the problem is that
f is not uniquely determined by w and ¢ is not uniquely determined by n; both
are fixed only up to d-exact terms. For example,

o= [ £avel(an) = [ (7 + Difg) avel(an)

but
[ 1002 [ 100+ [ Dty

because the second term is in general not identically zero.

Similarly, we have n = [(b,¢) = [ ({(b, ) + d(c(b))), for any linear map o
mapping b into (n — 1)-forms. In the same way as above, this trivial term stops
being trivial whenever we multiply it on the left with the density of a O-vector,
say. The difficulty persists for multivectors of any degree k and so there is no
reasonable wedge product or splitting.
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3 Definitions of the bracket

3.1 0Odd Poisson bracket

Definition 2. Let £ and n be k and /¢-vectors respectively. The wvariational
Schouten bracket [€,n] of € and 7 is the (k + ¢ — 1)-vector defined by'

o Sy ot oy
=[S | i ¥

in which one easily recognizes a Poisson bracket. Since there are now the anticom-
muting coordinates by, we indicate with the arrows above the variational deriva-
tives whether we mean a left or a right derivative (i.e., if we push the variation b,
or d¢“ through to the left or to the right). The fact that this is a (k+ ¢ —1)-vector
comes from the variational derivatives % occuring in the expression: if i takes k

arguments then ‘;—Z takes k — 1 arguments.
We will use the following two lemmas to calculate Examples 1 through 4.
Lemma 1. Suppose & = (b, A(b,...,b)) is a k-vector. Then
13
Oby
Proof. We calculate

5%;)_5 — 56 = 55 (b, A(b, ..., b))

= (5, A(b, ..., b))+ > (b, A(b,...,5b,...,b)).

= kA(b,...,b). (4)

o
—_

i
I

Now b anticommutes with the b left to it, and A is antisymmetric in all of its
arguments, so we can switch db with the b on its left, giving two cancelling minus
signs. Doing this multiple times, we obtain

k‘
,_.

(b, Ay B)) S (b, A(Sb,b, . B)).

<.
Il
—

'To be precise, if £ = [ f(b,...,b)dVol(M) and n = [ g(b,...,b)dVol(M), where f and g are
both homogeneous polynomials in b, » of degree k and ¢ respectively, then the bracket is given

by
ﬁ
_ 5F 59 5F 5
[[&n]]—/%:(éq S~ 5o 3a° >dV1 M),

which does not depend on the representatives f and g because § od = 0. This notation, although
correct, does not seem to be used in the literature.
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Next we first switch 0b with the b to its left, and then use the fact that A is
skew-symmetric in its first argument, again giving two cancelling minus signs:

= (5b, A(b, ..., b)) + (k — 1)(5b, A(b, ..., b))
= (5, A(b, ..., b))
= kSba A(b, ..., b)"

The result follows by comparing the coefficients of §b<. O

Lemma 2. Let & and n be k and (-vectors respectively, so that& = [(b, A(b,...,b))
and n= [(b, B(b,...,b)) respectively. Then

el = [ {100, 6~ (w0, ). (5)

Proof. In the second term of the definition of the Schouten bracket, we first reverse
the arrow on the b-derivative, giving a sign (—)*~!. In the first term, we swap the

two factors (55/5q )(_>§7/6ba). For this we have to move the £ — 1 b’s of gy/c%a
through the k b’s of 6£/8¢%, giving a sign (—)*¢~1). Thus

o -
e = [ XTI 55%]

3¢° 0by by 0%

= / —()k(f—l)%% _ ()k—l&%]

Sby 0g° 3ba 07

=/ (—)-0eD, B(b)” ;f — (=) kD, A(b)° ;q”]

:/ _( YE(=1) g(9) €= (= )k—lkagng)n]. 0

Example 1. Take a one-vector o € (), i.e., £ = (b,¢), and let H € H " (r) be
a 0-vector. Then

H, o] = / OWH
(Q)_

i.e., the Schouten bracket calculates the velocity of H along 0,

Example 2. Suppose ¢ and 7 are two one-vectors, i.e., & = [(b,¢1) and n =
[ (b, p2) for some 1, @a € (). Then

el = [ (080~ 0) = [ (0. 1) — 020 22))
/ (00901 — (.09 2))
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which holds because b does not depend on the jet coordinates ¢, whence

= [l = [0l el

Thus, in this case the variational Schouten bracket just calculates the ordinary
commutator of evolutionary vector fields, up to a minus sign (cf. equation (2)).

Example 3. Suppose the base and fiber are both R, and let £ = [bb, dz be
a (nontrivial) two-vector and n = [ bx3q,, dz be a one-vector. Then

[€,7] =0 +/26§j)(bx3qm) dz = 2/D§(bx)bx3 dr = 2/:c3bmbdx.

We shall return to this example on p. 136 (see Example 5).

Example 4. In this final example, let £ = [bb, dz again and n = [ ¢,bb, dz;
then

1€, 7] —0+2/8 (qubby dx—2/D - bby d:c—2/bbxbmd:c.

Notice the factor 2 standing in front of the answers in the last two examples; it
will become important in the next section.

3.2 A recursive definition

The second way of defining the bracket, due to I. Krasil’shchik and A. Verbovet-
sky [14], is done in terms of the insertion operator: let £ be a k-vector, and let
p € 3(m) or p € J2°(7) (i.e., p can be either an actual covector or an element from
the corresponding horizontal jet space). Denote by &(p) or ¢p(§) the (k—1)-vector
that one obtains by putting p in the rightmost slot of &:

k
EP)(b) = () (D) =&(b,...,b,p Z ETIE(D, ... b,p,b,...,b),  (6)

k-1

where p is in the j-th slot. Note that if we were to insert k — 1 additional elements
of 3¢(m) in this expression in this way, we recover formula (1).

Lemma 3. If ¢ = [(b, A(b,....,b)) is a k-vector, then

Setp)  k—1 8¢ Se(p)  k—1 8¢

Sbe  k_Oby, (p) an Sbe |k 5ba(p>' (7)

Proof. £(p) is a (k — 1)-vector, so y )/0bo = (k—1)A(b,...,b,p)* by Lemma 1.
However, £ is a k-vector, so (%/517&)( ) = (kKA(D,...,b)%)(p) = kA(b,...,b,p)?,
from which the first equality of the lemma follows. The second equality is es-
tablished by reversing the arrow of the derivative, using the first equality, and
restoring the arrow to its original direction again; this results in the extra minus
sign in this equality. O
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On the other hand, if p € J2°(7) then §¢(p)/6q® = (5¢/5q%)(p). Indeed, we
have dpg +/0q5 = 0, and if f is one of the densities of a k-vector, then the total
derivative D,: and the insertion operator ¢, commute. For example,

Lp(Da:iba,a) = Lp(ba,crﬂi) = Pa,o+1;

and

Dxi(Lp(bOé,U» =D, (pa,o) = Pa,o+1;-

Thus, from the formula 5(}% = Z| U|>0(—)" DJ% for the variational derivative it

follows that 6&(p)/dq® = (0£/9q%)(p).
Theorem 1. Let & and n be k and {-vectors, respectively, and p € J2 (7). Then

1 k

Ie,71(p) = gl + ()

[€(p), n]- (8)

Proof. We relate the two sides of the equation by letting p range over the slots as

in equation (6). In this calculation we will for brev1ty omit the fiber indices a.
Consider the first term of the left hand side, (gg ?g) (p). If we were to take

the sum as in equation (6), we would obtain an expression containing k + ¢ — 1

slots; in some cases p is in one of the £ — 1 slots of % /0b and in the other cases it

is in one of the k slots of % /0q. All of these terms carry the normalizing factor
1/(k+ ¢ —1). Now we notice the following:

e Each term in which p is in a slot coming from gy/ 0b has a matching term
in the expansion of 2 5q Lp (g) according to (6), except that there each term

would carry a factor 1/(¢ — 1), because now p only has access to the £ — 1
slots of %/61).

e Similarly, each term of the left hand side of (8) in which p] is in one of the
%
slots of 0§/dq has a matching term in the expansion of ¢, <6—> %ﬁ, but there
they carry a factor 1/k.

e Moreover, in that case they also carry the sign (—)‘~!, which comes from

the fact that here p had to pass over the £ — 1 slots of §7/5b

Gathering these remarks, we find

&S\, . -1 & (& ok 58\ n
PR A w7 ) A A e O ol B

¢ 5 Sn(p) 1k 5 (p) 5n
T k+l—10q ob k+0—1 oq ob’

where we have used the first equation of Lemma 3 in the first term.
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Now we consider the second term of the left hand side of (8), and use a similar
reasoning:

- — —

s\ 0 & (& , k=1 (38 oy

(aum>@”—k+e_1%%<&)**‘>k+e_ﬁp5b 54
0 &) ek 5(p) 5
Tkt l—10b oq k+l—1 ob oq

where now the second equation of Lemma 3 has been used. Subtracting the results
of these two calculations, we obtain exactly the right hand side of equation (8). [

Thus, by recursively reducing the degrees of the arguments of the bracket,
formula (8) expresses the value of the bracket of a k-vector and an ¢-vector on
k 4+ ¢ — 1 covectors. We can interpret it as a second definition of the Schouten
bracket, provided that we also set

(ol = [0 = [(5rt.0)

for 1-vectors o and O-vectors # € H ' (r). Theorem 1 then says that this definition
is equivalent to Definition 2. However, let us notice the following:

Remark 2. There are numerical factors in front of the two terms of the right
hand side; these are absent in [14]. For example, the bracket of a 2-vector &
and a O-vector H is [H,&](p) = 2£(6H,p) according to both Definition 2 and
Theorem 1; note the factor 2.

Remark 3. Secondly, it is important that the p that is inserted in (8) is not
an actual covector, but that p € J(7). Otherwise, unwanted terms like afp@ (p)
occur in the final steps, and equivalence with Definition 2 is spoiled. Thus one
takes two multivectors, inserts elements from the horizontal jet space according
to the formula, and only plugs in the (derivatives of) actual covectors at the end
of the day. This remark is again absent from [14].

Example 5. Let us re-calculate Example 3 using this formula. So, let £ = [ bb, dz
and n = [ br3qy, dz, and let p!,p? € J2°(7). Then

el %) = Il 0h) = eI + I, ()

= % [, nH)] + 1 [E0%),n(p)] +1- [E@" ), n]

= / [(_)2 81(,? (p2x3qq:x) - az(;%) (p1$3Qxx) + %aig)qzz (plpi - p2pi)} dz
= / [2°paa® — (0 2 p?)] da.

(Keeping track of the coefficients and signs is a good exercise.) This is precisely
what one gets after evaluating the result of Example 3 on p! and p?.
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Theorem 1 allows us to reduce the Jacobi identity for the Schouten bracket to
that of the commutator of one-vectors.

Proposition 2. Let r, s and t be the degrees of the variational multivectors &, n
and (, respectively. The Schouten bracket satisfies the graded Jacobi identity:

()" DEVLE, [n,
+ (), [, €] 9)
+ ()DL [ )] =

Proof. We proceed by induction using Theorem 1. When the degrees of the three
vectors do not exceed 1, the statement follows from the reductions of the Schouten
bracket to known structures, as in Examples 1 and 2. Now let the degrees be
arbitrary natural numbers. Denote by I1, Is and I3 the respective terms of the
left hand side of (9). Then for any p € J°(7) we have that

Li(p) = (=) VI g, [n TN (p)
(7)(7"—1)(15—1) o
= ———— (s +t=1)[&[n,A®] + r(=)* T2 [&w), [0, ¢T])

r+s+t—2
(—)r=D(E=D) .
= ;i;j;qj;i:7§<tﬂ§7ﬂn,C(p)ﬂﬂ + (=) & In(), CT]]

+ (=) [Ep), [n, 1) -

Similarly,
_\(r=1)(s-1)
L(p) = 7<"—:s—|—t—2( [n,1¢,€(p) ] )", <), €1])
—|—S( )r+t 2 )
(_)(371)(15 1) N
I3(p) = ————— (s[¢. [& @] + (=) [¢, [€ (). 1]

r4s4t—
+ (=) ¢ fﬂD

For notational convenience, let us set I1(p) + I2(p) + I3(p) =: I/(r + s+t —2).
Next we rearrange the terms in I:

= () (VD e [, )] + () [, [C). €]

+ (1) (), [l + (=) s { () DED e, In(o), CT]
+ (=)0ED ), ¢ €] + (-) DG [ n)]

+ () { () 2D e (), T, ) + (=) 2D [, [ @]
+ (=)D )l
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i.e., we obtain the Jacobi identity for &, n and ((p); for &, n(p) and ¢; and for £(p),
1 and ¢ (each times some unimportant factors). Thus we see that if we know that
the identity holds for (r — 1,s,t), (r,s — 1,t) and (r,s,t — 1), then it holds for
(r,s,t). O
3.3 Graded vector fields

Proposition 3. If £ and n are k and l-vectors respectively, then their Schouten
bracket is equal to

- [@w = [©an (10)

where for any k-vector €, the graded evolutionary vector field Q¢ is defined by
¢ . 5@ (0)
@ =0 stsen T a&&/éq (11)

Proof. This is readily seen from the equalities
_>
o€ | On / 0§ on
D, — (=)’ Dy
/ 65/6:1 /Z ( ) Obo o az; 5q°‘( ) 0by,&
_ / 3 5 oy
— 0q® 6bq

which is the first term of the Schouten bracket [£,n]. The second term of (11) is
done similarly. 0

As a consequence of Proposition 3, the Schouten bracket is a derivation: if is a
product of k factors, then [¢, 1] = [ Q%(n) has k terms, where in the i-th term, Q°
acts on the ¢-th factor while leaving the others alone. However, while the bracket
is a derivation in both of its arguments separately, it is not a bi-derivation (i.e., a
derivation in both arguments simultaneously), as in equation (2). To see why this
is so, take a multivector 1 and let us suppose for simplicity that it has a density
that consists of a single term containing ¢ coordinates, which can be either ¢’s or
b's: m= Hle ai, for a set of letters a;. Then the i-th term of [§,n] = [ Q%(n) is
a sign which is not 1mportant for the present purpose, times aj - - - Q% (ai)---ay.

Now suppose that £ = H | ¢; for some set of letters c;, and note that Q%(a;) =

(f)Q‘“ + trivial terms. Let us call the trivial term w for the moment. Then we
see that

Q@) ap=ar- (6)Q% - ag+ar--w---ag.

Here the first term expands to what it should be in order for the bracket to be a
bi-derivation, namely a sum consisting of terms of the form

=
a/]_"‘C]_"'(Cj)Qal"'ckj"'aﬁ
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times possible minus signs. The second term, however, is generally no longer
trivial, so that it does not vanish. Therefore the bracket is not in general a bi-
derivation.

Theorem 2. The Schouten bracket is related to the graded commutator of graded
vector fields as follows:

[atns = [1@s.qns (12)

for any smooth function f on the horizontal jet space J(T).

Proof. From the definition of the graded commutator and equation (11) we infer
that

/ Q5.Q")f = / QEQ(f) - <—><’f—l><f—l> / QL))

& In, 1)1 = () FDED [, 18, £1]) = (1€, 71 £])

/Q[[ﬁn]]f

where we used the Jacobi identity in the third line. O

This provides a third way of defining the Schouten bracket, equivalent to the
previous two. Since the only fact that is used in this proof is that the Schouten
bracket satisfies the graded Jacobi identity (Proposition 2), Theorem 2 is actually
equivalent to the Jacobi identity for the Schouten bracket. It is also possible to
prove Theorem 2 directly (see [12, p. 84], by inspecting both sides of equation (12);
in that case the Jacobi identity may be proved as a consequence of Theorem 2.

As a bonus, we see that if P is a Poisson bi-vector, i.e., [P, P] = 0, then Q¥ is a
differential, (Q¥)2 = 0. This gives rise to the Poisson(-Lichnerowicz) cohomology
groups H’}.

4 Conclusion

The research into the generalization of the Schouten bracket to jet spaces has
historically been split in two directions. In the Poisson formalism, it is related to
notions such as Poisson cohomology, integrability and the Yang—Baxter equation;
while in the quantization of gauge system it is used in the BV-formalism to create a
differential D = [€2, - ], also leading to cohomology groups. Although the definition
of the bracket on usual manifolds by the formula that expresses it as a bi-derivation
no longer works, there are several other ways of defining the bracket, which are
equivalent if care is taken.

We finally recall that these definitions of the Schouten bracket also exist and
remain coinciding in the Zs-graded setup J ((mo|m1)) — M™I™ and in the setup
of purely non-commutative manifolds and non-commutative bundles (see [13,20]
and lastly [12], which contains details and discussion, and generalizes the topic of
this paper to the non-commutative world).
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We consider differential operators of infinite order with constant coefficients in
the sequence space s. Necessary and sufficient conditions for these operators
to be equivalent to the usual derivative are given.

1 Introduction

Given two differential operators T" and S in a space H, an operator X is an
“operateur de transmutation” from 7" to S if X is an isomorphism from H onto H
such that SX = XT. Obviously this notion depends on T', .S and the space H.
It was introduced in 1938 by Delsarte [2], T" and S being differential operators of
second order and H a space of functions of one variable defined for z > 0. From
1950 onwards Lions studied several generalizations and applications [13-15].

If T and S are differential operators of order m > 2 with infinitely differentiable
coefficients and H is a space of infinitely differentiable functions on R, then there
do not exist, in general, “operateurs de transmutation”. In 1957, Fage presented
a theorem of transmutation for certain classes of functions of real variables [4,5].

The situation is, on the contrary, very simple taking T" and S differential op-
erators without singularities in the complex domain C and H the space of entire
functions of one real variable. Delsarte and Lions proved in 1957 that in this case,
provided the operators are of the same order, there is always an “operateur de
transmutation” [3].

In the beginning of the 1960s the term “equivalence of operators” appeared.
Two operators T and S are said to be equivalent if there is an “operateur of
transmutation” between them. The subject was intensively studied, mainly by
USSR mathematicians. Some of the relevant works are [1,6-12,22, 23].

A few years ago we started to consider the problem of the equivalence of dif-
ferential operators taking the space H to be a sequence space and substituting
the usual derivative by the general Gelfand—Leontev derivative. In this general
context we have not found closed results; the dependence on the matrix defining
the sequence space and the steps involved in the Gelfand—Leontev derivative seem
to point to many different possibilities. Some particular cases are given in [18,19].
For related problems, see [16,17,20,21].
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Nowadays we are interested in differential operators of infinite order. Nagnibida
and Oliinyk [22] studied the equivalence of differential operators of infinite order
in the spaces of analytic functions, on a disc and on the whole complex plane,
giving a very neat result. We deal with the same problem (stated more precisely
below) in the more general setting of sequence spaces.

2 Terminology

Denote by A'(A) the sequence space given by the matrix A = (af), n,k € Ng =
NU {0}, where a* > 0 and af < a%*! for all k and n, that is

A(A) = {f(w) =Y &a" | & eC, ||flle = |énlal < oo Vk € No} .
n=0 n=0

A sequence space A\!'(A) is called an infinite power series space Ay (a) if (ak) =
(eken), where {a,,} is an increasing sequence of positive numbers going to infinity.
Among such spaces, the space H(C) of entire functions and the space s of rapidly
decreasing sequences are well known. If A = (e_a"/ k), the sequence space is called
a finite series power space Aj(a). The best-known example among finite series
power spaces is the space of analytical functions on a disc.

An operator T is a differential operator of infinite order, with constant coeffi-
cients, if T'= "7 ¢ D™ with ¢,, € C. Let us call it ¢(D).

An operator T from A!'(A) to A'(B) is continuous if and only if

VkeNyg 3C(k) >0, IN(k) € No:  |[[Tenlr < Ck)llenllnm ¥ n,

where {e,} is the canonical basis of the sequence space.

3 Statement of the problem

Consider a sequence space A\'(A) with its natural topology and a differential op-
erator (D) of infinite order with constant coefficients in the sequence space, and
study necessary and sufficient conditions for the equivalence of the operators (D)
and D", where n is a fixed natural number.

As we pointed out above this problem was solved by Nagnibida and Oliinyk
for spaces of analytic functions [22]. They proved the following:

Theorem 1. The operator (D) =Y ¢nD™ is equivalent to the operator D"
in the space of analytic functions on a disc of radius R if and only if p(D) =

S ro kD and |pn| = 1.

Theorem 2. The operator (D) = > ¢nD™ is equivalent to the operator D"
in the space on entire functions if and only if p(D) =>"}_, orDF and @, #0.
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We consider an infinite power series space, namely, the sequence space
o0 o0
5= {f(sc) = & | & eC, |Iflls =1l + D lénln* <00 VE € No}
n=0 n=1

and the derivative D and study the equivalence of differential operators of infinite
order and the operator D", where n is a fixed natural number.

4 Main result

Assume that n = 1. We give the complete solution to the problem in this case
and are working to generalize the result for any n but, at the moment, there are
some technical difficulties that we hope to overcome in the near future.

Theorem 3. The operator p(D) = Y>> 0, D" is equivalent to the operator D
in the space s if and only if o(D) = pol + p1D, p1 # 0.

The following statements are used in the proof of the theorem:

1) If p(D) = >0 o D" is equivalent to D then (D) = pi(D)e??, where
p1(D) = Bol + 1D with 51 # 0. The proof is similar to [22].

2) If (D) = p1(D)eP is equivalent to D, then there exists an isomorphism T
satisfying the relation T'p;(D)e*” = DT, which implies the differential equation

d
I ()\)ea)\Te/\z _ % (Te)\z)

for any A € C. Hence T'(e**) = B(\)eMV?, where h(\) = py(X\)e™ .
3) The k-norm of the elements e** in s is given by
¥ [le = (1 + Pe(|A])) e,

where P is a polynomial of degree k and its coefficients are natural numbers.
Therefore

17Xl = 1B (1 + Be(A)])) .
Proof. Assume that pl(D)e“D is equivalent to D. The point now is to get that
’ :T%e isomorphism T verifies

VreNy 3C(r)>0, IN(r) eNg:  ||TeM|, < C(r)]|e™|Iney YV AEC,

which, in the case under consideration, means

IBOV)|(1+ Po(|h(V)]) "™ < O () (1 + Py (IN)) el v X e C.
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Taking A = ak with k € Ny, we have
|B(ak)|(1 + Pr(|h(ak)])) el @ < C(r) (1 + Py (|ak]))el®™ v k € N.
Write

|B(ak)|(1+ Px(|h(ak)|))e! @)
(1+ P;(|h(@k)]))
(1+ Pr(h(ak))))

< C(r)(1 + Py (|akl)) el V ke Np,Vre N

The dominant part, when k goes to +00, of the right-hand part of the previous

formula is e'a‘(l_gl‘l')k, that, obviously, goes to zero for r > 2/|a|. Then it follows
from

|B@k)|(1+ P5(|h(@k)])) el = [T,

that Te®™* — 0 in s and hence e%* — 0 (as T is an isomorphism) which is not
true. The contradiction implies the result in view of the fact that two differential
operators of order one with constant coefficients are equivalent on s [18]. O

Remark 1. When n > 1, it is still true that a differential operator of infinite
order equivalent to D" is of the form p,(D)e®”, where p,(D) a polynomial of
degree n. We conjecture that a = 0.
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S-expansions of three-dimensional real Lie algebras are considered. It is shown
that the expansion operation allows one to obtain a non-unimodular Lie algebra
from a unimodular one. Nevertheless S-expansions define no ordering on the
variety of Lie algebras of a fixed dimension.

1 Introduction

In 1961 Zaitsev [8] supposed that all solvable Lie algebras of a fixed dimension
could be obtained via contractions from the semisimple algebras of the same
dimension. He called such solvable Lie algebras ‘limiting solvable’ and proposed
the contraction procedure for the ‘limiting classification’ of solvable Lie algebras.
Later the same conjecture was also formulated by other scientists, e.g., Celeghini
and Tarlini [2]. Complexity of the actual state of affairs was illustrated in [6],
where contractions of real and complex low-dimensional Lie algebras were stu-
died. The incorrectness of the above conjecture was illustrated by the fact that
all semisimple (and reductive) Lie algebras are unimodular and any continuous
contraction of a unimodular algebra necessarily results in a unimodular algebra.
Moreover, semisimple Lie algebras exist not in all dimensions.

The aim of this paper is to revisit Zaitsev’s conjecture in terms of S-expansions.
We will study S-expansions of the real three-dimensional Lie algebras. It was
shown in [4] that generalized Inonii-Wigner contractions give a particular case of
S-expansions. This is why we consider only pairs of such algebras that are not
connected by a contraction.

The paper is arranged as follows. Section 2 contains preliminary information on
S-expansions and relevant objects. In Section 3 we construct several key examples
of three-dimensional S-expansions and discuss the possibility of application of S-
expansions to the classification of solvable Lie algebras.

2 Basic properties of S-expansions

Roughly speaking, the S-expansion is the “product” of the semigroup and the
Lie algebra with a Lie algebra structure defined in a special way. The notion
was introduced in [4]. It generalizes the notions of expansion, deformation (under
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a proper choice of the corresponding semigroup), extension and generalized Inénii—
Wigner contraction.

Let S = {A\y} be an Abelian semigroup of order N and let g be an n-
dimensional Lie algebra with the structure constants ij in a fixed basis {e;}
of the underlying vector space V. Here and in what follows the indices «, 8 and
~ run from 1 to N and the indices ¢, j and k run from 1 to n = dim V. The nN-
dimensional S-expanded Lie algebra & := S x g, the underlying vector space of
which is spanned by the basis elements e(; o) = Aa€;, is defined by the structure
constants

k if AgAg = A
(kyy) _ {C’LJ 1 B v (1)

cry o=
(1,0)(4,8) 0 otherwise.

Remark 1. It directly follows from (1) that the product of elements e(; ,) and
e(j,p) in the algebra & is zero if [e;, e;] = 0. Therefore, an appropriate represen-
tative from the isomorphism class of the initial Lie algebra g should be chosen if
S-expansion is used for a certain purpose. In other words, sometimes the struc-
ture constants tensor has to be transformed by an element of the group GL(V)
before the expansion procedure. Of course commutation relations of the expanded
algebra & can also be reduced to an appropriate form using a change of basis.

A

Let a Lie algebra g admit the decomposition g = V & V with [V,V] ¢ V,
namely

[@i,f}j] = CA%@E, [ v, ﬂ C ’Uk + C{kj@fga [Uwv]] = C + C’k vk, (2)
where {9;} is a basis of V and {;} is a basis of V. Then the elements {7;}
form a well-defined reduced Lie algebra |V| with the Lie product defined by the
structure constants C’Z’E

2.1 Algebras of lower dimensions

In general case the dimension of the S-expanded Lie algebra & is greater than n
and it has a more complicated structure than g. Therefore for some purposes it is
reasonable to consider certain subalgebras or reduced algebras of less dimensions
instead of working with the whole expanded algebra.

The problem of the construction of algebras of less dimension that are related to
an expanded Lie algebra is rather complicated. Two classes of such algebras were
presented in [4] for S-expanded Lie algebras admitting an agreed decomposition
of the associated semigroups and Lie algebras. A semigroup S and a Lie algebra g
are said to admit a resonant subset decomposition if they can be decomposed as
g = @pe ; Vp (where the direct sum is interpreted in the sense of vector spaces
only) and S = (J,c; Sp with some index set I in such a way that [V}, V] C
@r@-(p,q) V, and 5,5, C ﬂr@(nq) Sy, where for every p, q € I the index set i(p, q)

is a subset of I. In the resonance case, &g = P,c;(Sp X V) is a resonance
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subalgebra of the S-expanded Lie algebra &. For each resonant decomposition
this gives a Lie algebra of dimension less than the dimension of &. Algebras of
the other class are constructed by means of the reduction of Lie algebras Suppose
that for each p € I the set S, is partitioned into the subsets S and S such that
S S C mréz (p:q) S This partition induces the decomposmon Q5R = & @ &, where
direct sums are interpreted in the sense of vector spaces, & = ®p€ I S x V) and
& = @pg(S x V). As [&,8] C &, the projection of the Lie bracket of &p to &
gives a well-defined Lie bracket on |&|. In other words, the Lie algebra & with
this bracket is the reduced algebra for &p.

Given an Abelian semigroup S with a zero Ay = 0g € S, i.e., A,0g = Og for
alla=1,...,N, any S- expanded Lie algebra & = S x g can be decomposed as
&=V V w1th [V,V] C V, where V = (Ogey,Ogea, . . .,0gey). In this case the
reduced Lie algebra &g := |V| is called the 0g-reduced algebra of &.

Remark 2. The condition (1) implies that the Og-reduced algebra &g has the fol-
lowing commutation relations in the basis {\qe; |a=1,...,N—1, i=1,...,n}:

" CEaadger  if Aahs % O,
aer Aaes] = i TN ’ 3)

0 i Aadg = Og.

2.2 S-expansions and contractions

As generalized Inonii-Wigner contractions are related to gradings of the con-
tracted Lie algebras (i.e., to special decompositions of the underlying vector
space), it is clear that all generalized IW-contractions can be obtained by means
of resonant S-expansions. See [4] for details.

At the same time, this claim does not imply that S-expansions exhaust all
possible contractions since there exist contractions that are not realized by gen-
eralized IW-contractions [1,7].

Example 1. Consider the example of such a contraction constructed in [1] for
the seven-dimensional Lie algebras gr and gg. These algebras are defined by the
commutation relations

gr: [61,6@] = €i+1, 2 § 7 § 6,
le2,e3] = €6, [ea,eq] =e7, [ea,e5] =e7, [e3,eq] = —er,

gp: [e1,6i] = ei11, 2<i <6, [eg,e3] =es+er, [e2,e4] =e7,
and are characteristically nilpotent since their differentiation algebras

Der(gr) = (2E21 + E42 + Es3 + 3E64 + 5E75 + 2E76, E31 + Esp — Exs,
B39+ Ey3 + Esy + Egs + Erg, Ee1, B — Es1 + Eqg,
Es1 + Eg),
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Der(gg) = (E31 — Eq1 + Esa, Egq + Ega, —E31 + Eq1 + Eez + Era,
— Eo1 — Es1 + En + 2E42 + 2E53 + Eg3 + Eea, Er1, Es1,
E2 + E31 — Eyy — FEgg — Es3 — Ee3 + E7s, —Ea1 + Ex3,
E3o + Ey3 + Esq + Egs + Ere, E72, Eg1)

are nilpotent. Here E;; denotes the 7 x 7 matrix with only nonzero (7, j)th entry
that equals 1. (It is obvious that both the differentiation algebras consist of lower
triangular matrices.) This means that the algebras gr and gg admit no group
grading and hence none of them can be a result of a generalized IW-contraction.
On the other hand, there exists the contraction from gr to gg provided by the
following contraction matrix at € — 0:

e 0 0 0 0 0 0
0 e 0 0 0 0 0
00 ¢ 0 0 0 0
U.=| 0 %* 0 & 0 0 0
0 0 35 0 &5 0 0
0 0 0 35 0 & 0
0 0 0 0 %" 0 &

Examples on non-universality of the generalized IW-contractions in dimension
four can be found in [7]. This is why it is still unclear whether all contractions
can be obtained via S-expansions.

On the other part, there exist S-expansions which are not equivalent to con-
tractions. See, e.g., the example on a connection between the Lie algebras sl(2, R)
and As 1 @ A; that is presented in the next section.

Other objects closely related to S-expansions are given by the purely algebraic
notion of graded contractions [3]. The graded contraction procedure is the follow-
ing. Structure constants of a graded Lie algebra are multiplied by numbers which
are chosen in such a way that the multiplied structure constants define a Lie al-
gebra with the same grading. Graded contractions include discrete contractions
as a subcase but do not cover all continuous ones.

Contractions of real and complex three-dimensional Lie algebras were com-
pletely studied in [6]. As all these contractions are realized by the generalized
In6nii-Wigner contractions, they can be realized by S-expansions. Moreover,
S-expansions lead to establishing new relations between such algebras.

3 Three-dimensional S-expansions

According to Mubarakzyanov’s classification [5], nonisomorphic real three-dimen-
sional Lie algebras are exhausted by the two simple algebras sl(2,R) and so(3);
the two parameterized series of solvable algebras A% ,, 0<|a|<1 and A, b>0;
the three single indecomposable solvable algebras As 1, Az and As3; and the two
decomposable solvable algebras 3A4; and As 1 ® Aj.
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In [6] it was proven that all unimodular three-dimensional algebras (namely,
sl(2,R), s0(3), Az}, AY 5, As1 and 3A;) belong to the orbit closure of at least one
of the simple algebras.

All contractions are shown on Fig. 1 by dashed lines (each arrow indicates the
direction of the corresponding contraction). Repeated contractions (i.e., contrac-
tions of the kind: g contracts to go if g contracts to g; and g; contracts to go) are
implied but not indicated on this figure. All three-dimensional contractions were
realized by generalized IW-contractions, therefore the corresponding S-expansions
also exist.

S
34,

Figure 1. Contractions of real three-dimensional Lie algebras are marked by the dashed
lines and S-expansions which are not equivalent to contractions are marked by solid lines.

There are a number of necessary conditions to be satisfied for a pair of Lie
algebras connected by a contraction, see, e.g., [6]. The following examples show
that S-expansions of Lie algebras do not obey the major part of these rules.
These examples involve the algebras (for each algebra we present only nonzero
commutation ralations)

sl(2,R):  [e1,ea] =e1, [ea,e3] =e3, [e1,e3] = 2ey; (4)
Ag1 @ A1 [er,e2] =ex; (5)
Azs:  [er,e3] =e1, [e2,e3] =ea. (6)

3.1 Unimodularity of S-expansions

Given a unimodular Lie algebra g(ey,...,e,), we have
triade,) =Y CL=0 Vi=1..n (7)
j=1

Using (7) for the basis elements E;_j)nia := Aa€; of the S-expanded Lie
algebra &, we get

N n N n
_ B8 i B8 i | _
s, ) =SS KELCL = SO K, (Z%) _o
B=1 j=1

p=1j=1
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a,B_

1 if Aadg = Ay,
0 otherwise.

Thereby the unimodularity property is necessarily preserved by any sole S-expan-
sion. At the same time, a unimodular Lie algebra may contain a non-unimodular
subalgebra or may be reduced to a non-unimodular Lie algebra.

3.2 Examples of non-unimodular S-expansions

Consider the expansion of the Lie algebra sl(2,R) by means of the Abelian semi-
group SQ = {/\1,)\2}, where )\1/\1 = )\1)\2 = )\2)\1 = /\2)\2 = )\2, i.e., )\2 is the
zero element Og, of the semigroup. The elements Ey;_1)1q = Aa€i, @ = 1,2,

= 1,2,3, form a basis of six-dimensional Ss-expanded Lie algebra &. Then
from (4) we obtain the nonzero commutation relations

(B, E3] = Bz, [Ey, Es) = Es, [Ey, Es] =2E,, [E1, Eg| = 2E4,
[E, E3) = By, [Ea, B4l = Es, [Ea, Es] =2E,, [Es, Eg) =2FE;,
[E3, Es5) = Eg, [Es,FE¢| = FEs, [Ei,Es]=FEs, |[E4,Egs) = Eg.

Elements F1, E5 and E35 span a three-dimensional subalgebra with the nonzero
commutation relations [F1, B3] = Fs, [Es, F3] = Es. The basis change Ei = B,
Fy = E5, E3 = E; — F, leads to the unique nonzero relation [El, Eg] = F; and,
therefore, we obtain the Lie algebra Ay 1 @& Ay, cf. (5).

Another example concerns the Lie algebras sl(2,R) and As 3. Let a three-ele-
ment Abelian semigroup with a zero Sz = {0s, = A1, A2, A3} satisfies the con-
ditions AaA3 = A3he = A9 and AgAo = A3A3 = A1. The above properties of Sg
are consistent with the semigroup structure and are sufficient for defining Ss-
expansions. Thus, the Ss-expansion of sl(2,R) is the nine-dimensional Lie algebra
S3 x sl(2,R) with the nonzero commutation relations

[Er, Ey) = E1, [Ey, Es]=FE,, [Ei,E¢=E,
[E1, E7] = 2FE4, [F1,Eg| =2Ey, |[E1, E9] =2F;y,
(B2, E4] = Er,  [Eo, E5| = By, [Ea, Eg| = Ea,
[Ea, E7| = 2E4, [Ea,Eg]| =2FE4, [Eq, Ey|=2E5,
(B3, Es) = E1,  [E3,E5] = Es,  [E3,E¢] = En,
[Es, E7| = 2E4, [Es,Eg| =2FE5, [Es,E9| =2FE;y,
(B4, B7] = Er,  [Ey, Eg] = E7,  [E4, Eo] = Er,
[Es, B7] = E7,  [Es,Eg] = BE7,  [Es, E9| = Eg,
[Eg, Er] = E7, [Eg, Es] = Eg, [Eg, F9] = E7.

From the algebra S5 xsl(2,R) we can extract the three-dimensional subalgebra
(E1, Eq, Fg) isomorphic to As s, cf. (6).
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The two above constructions give us examples on connection between unimodu-
lar and non-unimodular three-dimensional Lie algebras by means of the expansion
and subalgebra extraction.

Remark 3. Concerning the rest of non-unimodular Lie algebras, namely Aso,

¢, and A}:, it seems to be impossible to construct them from simple three-
dimensional Lie algebras by means of S-expansion. This conjecture is motivated
by the disagreement of the right-hand sides of the respective canonical commu-
tators that can not be overcome by basis changes. Nevertheless, this conjecture
needs a rigorous proof.

3.3 S-expansion from A, ; @ A; to Az 3 and vice versa

Consider Ss-expansion of the Lie algebra As 1 @ Aj. To skip the tedious commu-
tation relations of the nine-dimensional Lie algebra we consider only those which
concern the basis elements F7 = Aje1, Fo = Aoe; and Eg = Azes. They are

[E1, E¢) = E1, [Ea, Eg) = FEs, [Ei,E3]=0.

This implies that the basis elements Fq, E5 and Eg form a subalgebra isomorphic
to A3.3, cf. (6)

The inverse connection can be obtained by means of Sy-expansion of the alge-
bra Ass. The basis elements Fi, Fs and Fg span the subalgebra isomorphic to
Asq @ Aq. Indeed, the nontrivial commutation relations between these elements
are

[E1, Ep] =0, [Ey, Eg] = Er,  [Ep, Egl = Ey.

After the basis change F, = E — Es, Ey = Eg, Ey = FEs, we obtain the unique
nonzero commutation relation [El, Eg] = FE.

In contrast to the contraction procedure, the last expansion creates a Lie al-
gebra of more complicated structure. For example, the dimension of the center
decreases from 1 to 0, the dimension of the Cartan subalgebra decreases from 2 to
1 and the dimension of the derivative enlarges from 1 to 2 after the S-expansion
from the Lie algebra As 1 @ Ap to the algebra Ass.

At the same time, the S-expansion, even combined with algebra reduction
and singling out a subalgebra, preserves certain properties of Lie algebras. Thus,
we have [S x g,5 x g] = (S5) x [g, g]. Hence the algebra S x g is solvable (resp.
nilpotent) if and only if the algebra g is, and then the solvability (resp. nilpotency)
degrees of these algebras coincide. The procedures of reducing the algebra S x g
and singling out a subalgebra may not increase the solvability (resp. nilpotency)
degree.

Note that all four of the discussed examples of expansions can be obtained
from the non-Abelian two-dimensional Lie algebra, since in all cases the key role
is played by the commutation relation [ej, ea] = e;.
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Remark 4. S-expansions do not set any ordering relationship on the variety of
Lie algebras of a fixed dimension. This statement is illustrated by the example
of Lie algebras A1 @ A1 and As 3 that can be connected by S-expansion in both
directions. Therefore, in spite of the fact that it is possible to construct non-
unimodular Lie algebras from unimodular ones, there is still a question whether
S-expansions fit to the classification of solvable Lie algebras of a fixed dimension by
means of S-expansions of simple (semisimple) Lie algebras of the same dimension.
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Superintegrable and supersymmetric models described by systems of two cou-
pled Schrédinger equations are presented. All additive shape invariant poten-
tials for such systems are classified and first order integrals of motion with
matrix coefficients are specified. Physically, the discussed systems simulate
a neutral fermions with non-trivial dipole moment, interacting with the exter-
nal electromagnetic field.

1 Introduction

Exactly solvable problems in quantum mechanics are very attractive. They can
be described fully and in a straightforward way free of various complications
caused by the perturbation method. The very existence of exact solutions of these
problems is usually connected with their non-trivial symmetries which are mostly
of particular interest by themselves. In addition, exact solutions form convenient
complete sets of vectors which can be used to expand solutions of other problems.

There are two properties of quantum mechanical systems which can make them
exactly solvable: supersymmetry and superintegrability. Both of them are guide
signs in searches for exactly solvable problems. Moreover, some of quantum me-
chanical systems, like the Hydrogen atom or isotropic harmonic oscillator, are
both superintegrable and supersymmetric, and exactly such systems as a rule
are very interesting and important. Notice that these qualities appear together
naturally, and there exists a tight coupling between superintegrability and super-
symmetry [7]. A more contemporary discussion of such coupling can be found
in [3,8-10,19].

A quantum mechanical system with n degrees of freedom is called superinte-
grable if it admits more than n — 1 integrals of motion. Moreover, at least n — 1
integrals of motion should commute each other. The maximal possible number of
constants of motion including Hamiltonian is equal 2n — 1.

The system is treated as supersymmetric in two cases: when some of its inte-
grals of motion form a superalgebra, and when it has a specific symmetry called
shape invariance.

In the present paper a classification of supersymmetric and superintegrable
models of quantum mechanics is presented. Mathematically, the subject of this
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classification are systems of coupled Schrodinger equations of the following form

Hvy = Ev, (1)
where
vQ

Here v is a multicomponent wave function and V' (x) is a matriz potential. Phys-
ically, just equations of generic form (1) are requested to construct models of
neutral particles which have nontrivial dipole moments. A perfect example of
such particle is neutron. Its electrical charge is zero, but the magnetic moment
and, probably, the electric one, are nontrivial.

Symmetries of systems (1) including two and three equations have been in-
vestigated in [1] and [2]. However, it was done only for diagonal potentials V'
depending on time and one spatial variable.

Higher symmetries of 2d and 3d systems (1), which are responsible for their
superintegrability have been studied in recent papers [20,21] and [4]. Moreover the
class of the considered potentials was restricted to linear combinations of scalar
and spin-orbit terms, and the related systems include only two equations.

In the present paper we adduce classification results of one dimensional systems
with arbitrary number of equations, which have a special symmetry called shape
invariance. In addition we present a classification of 2d integrable and superin-
tegrable models of neutral fermions with a non-trivial dipole moments, and give
examples of 2d and 3d systems which lead to shape invariant equations after sepa-
ration of variables. The presented results are based on the recent papers [5,11-17].

2 An example: Pron’ko—Stroganov model

Let us start with an example of a system with matrix potential, which is both
superintegrable and supersymmetric. This system (discovered by Pron’ko and
Stroganov [18] and denoted in the following text as PS system) is based on the
following version of the Schrodinger—Pauli Hamiltonian

_ p?; +p§ +)\01y — 02T

2m r2

H

(3)

and simulates a neutral spinor anomalously interacting with the magnetic field
generated by a straight line current directed along the z coordinate axis. Here

.0 .0 2 2, .2
=—i— =—i—, r‘==x
Pz or Dy &ya + Y-,

o1 and o9 are Pauli matrices, A is the integrated coupling constant.
Thus the PS system has a clear and important physical content. In addition
it is a nice “symmetry toy” which is both superintegrable and supersymmetric
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(shape invariant). Indeed, Hamiltonian (3) is invariant w.r.t. rotations in  — y
plane, since it commutes with the total angular momentum operator
1

J = TPy — YDz + 50'3- (4)

There are two more integrals of motion for the PS system

1 m
Ax = §(Jp:c +pr) + 7u(n)y, ( )
5
1 m
Ay = i(pr +pyJ) - 7,“(")377

where pu(n) = Aoy — o2x))/r. Operators J, A, and A, commute with H and
satisfy the following commutation relations:

[, A = iAy, [J, A = —ide, [Ag, A,) = —iJH.

In other words, we have 3 integrals of motion for a system with two degrees of
freedom, but only two of them are functionally independent. Thus the PS system
is superintegrable.

Introducing the polar coordinates and expanding solutions via eigenfunctions
of J we reduce the related equation (1) to the following eigenvalue problem for
radial functions:

2

Hethe = < a— + k(k — 03)%2 —i—ali\) e = Eye.

o2
Here k = :l:%, :l:%, :l:g, ... are eigenvalues of J and parameter A can be reduced
to 1 by rescaling independent variable r. The effective potential
1 A
Vi(r) = k(k — 03)72 + o1 (6)

is shape invariant. To show this let us represent V; as

Vile) = =5+ Wi = i

and solve this Riccati equation for W,. We obtain

1 1 2k +1

Wi =5,08= 57791~ 3,

Using (8) we can define the so called superpartner for Vj

awk 1 1 1
‘r-‘r ”72
k 87" k (’i )(KI 3)7"2 1T (2I{+ ].)2

which appears to be shape invariant, i.e.,
1 1

+ — = —
V,.; = Vi1 + Cm On - (2I£ + 1)2 (2/€ + 3) . (9)
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Thus the PS system admits supersymmetry with shape invariance and can be
solved algebraically using the standard technique of supersymmetric quantum
mechanics.

Alternatively, the energy values for coupled states (which by definition are neg-
ative) and the related eigenvectors can be found using the representation theory
of algebra o(3), whose generators are given by equations (4) and (5).

Equation (6) gives an example of matriz shape invariant potential. In con-
trast to the scalar shape invariant potentials, the matrix ones were practically
unknown. In the following we classify shape invariant potentials which are n x n
with arbitrary n.

3 Matrix superpotentials

We restrict ourselves to additive shape invariant potentials which are charac-
terized by superpartners of type (9) with a shifted parameter. We start with
superpotentials of the special form

1
Wi=hQ+ R+P, (10)

where P, R and @Q are n x n Hermitian matrices depending on x. Moreover, we
suppose that @) = Q(x) is proportional to the unit matrix. This supposition can
be motivated by two reasons:

e our goal is to generalize the superpotential appearing in the Pron’ko—Stroga-
nov problem which has exactly this form;

e restricting ourselves to such @ it is possible to make a complete classifi-
cation of matrix superpotentials (10) satisfying shape invariance condition
Moreover, it can be done for matriz potentials of arbitrary dimension.

By definition superpotentials should satisfy the shape invariance condition
W2+ W, =W2., —Wiio+ Ch. (11)

Substituting (10) into (11) and equating coefficients for the same powers of vari-
able parameter K we obtain the following system of determining equations

Q*a— Q' +val =0, (12)
P'—aQP + ul =0, (13)
{R,P}+ X =0, (14)
R? = W1, (15)

where [ is the unit matrix, the prime denotes derivation w.r.t. r and Greek letters
denote arbitrary real parameters.
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Solving equations (12)—(15) it is reasonable to restrict ourselves to irreducible
matrices P and R. It is possible to show [11] that to obtain a non-trivial solutions
it is necessary to set A = 0. Then algebraic equations (14) and (15) can be

decoupled to a direct sum of equations for 2 x 2 and 1 x 1 matrices [11].

Irreducible matrices satisfying (13)—(15) can have dimension 1 x 1 or 2 x 2.
The general solution of the determining equations for 2 x 2 matrices includes five

non-equivalent superpotentials:

1 w 1

W= A (-H + pexp(—Azx)oy — 803) ’
K
w
Wi =A (/@ tan Ax + psec Axos + —gl> ,
K
W =2 (‘“COth Az + preosech Az o3 — g01) , <0, w>0,
K

Wi =AM (—H tanh Az 4+ psech Ax o1 — gcr;:,)
K

while for 1 x 1 matrices we obtain ten non-equivalent solutions:

K w

W=—-——+4— (Coulomb),
r K
W = Aktan Az + — (Rosen 1),
K
W = \w tanh Az + — (Rosen 2),
K
W = — Ak coth A\x + % (Eckart),
W = ux (harmonic oscillator),
W = px — £ (3d oscillator),
x
W = Ak tan Az + psec A\x Scarf 1),
W = Ak tanh Az + psech Az Scarf 2),

W = Ak coth Az + p cosech Az

(
(
(Poschl-Teller),
(

W =k — pexp(—x) Morse).

(16)
(17)
(18)
(19)

(20)

(27)
(28)
(29)
(30)

30

Thus all superpotential of generic form (10) are exhausted by direct sums
of matrix potentials (16)—(20) and scalar potentials (21)—(30). The potentials
corresponding to the found matrix superpotentials are easy calculated using defi-

nition (7)

- 1w
Vi=(p(p+1)+ K2 — k(2 + 1)os) R

(31)
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Ve = A2 (,u2 exp(—2Az) — (2k — 1)pexp(—Az)oy + 2wos) , (32)

Vi = A2 ((k(k — 1) + p?) sec® Az + 2w tan Azoy (33)
+u(2k — 1) sec Az tan A\zos) ,

Ve = A\? ((k(k—1)+p %) cosech?(\z) + 2w coth Azoy (34)
+4(1 — 2k) coth Az cosech Azos) ,

Vi = N ((11? — k(k — 1)) sech? Az + 2w tanh \wo (35)

—u(2k — 1) sech Az tanh A\zoy) .

Moreover potentials (31), (32), (33), (34) and (35) are generated by the superpo-
tentials (16), (17), (18), (19) and (20), respectively.

Notice that our approach makes it possible to find all known scalar superpo-
tentials (21)—(30) in a very easy way.

4 Dual shape invariance

Starting with (16)—(19) we find the related potentials (31)—(34) in a unique fash-
ion. But let us state the inverse problem: to find possible superpotentials cor-
responding to given potentials. This problem is very interesting since this is
a way to generate families of isospectral Hamiltonians. For matrix superpotentials
everything is much more interesting since there exist additional superpotentials
compatible with the shape invariance condition.

To find additional superpotentials we note that, in contrast to (32) and (35),
potentials (31), (33) and (34) are invariant with respect to the simultaneous change

1
K—u+—-.

% —_
B K 5

5)
However, the corresponding superpotentials are not invariant w.r.t. this change
and take the following forms

—~ ko3 —pu—1 w w?

W = = —
pr z 24DV T a2

(36)

for V given by equation (31) and

Wiw

A 4
"=y <(2,u + 1) tan Az + (2k — 1) sec Axog + 2M:)‘ 101>

for potential (33). The superpotential for (34) has the form

—~ A 4w
w=—=1—(2 1) coth A 2k —1 h A — .
W, 5 < (2u + 1) coth Az + (2k — 1) cosech Azos 2M+101>
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Thus potentials (16), (18) and (19) admit a dual supersymmetry, i.e., they are
shape invariant w.r.t. shifts of two parameters, namely, x and pu. More exactly,
superpartners for potentials (31), (33) and (34) can be obtained either by shifts
of k or by shifts of u while simultaneous shifts are forbidden. We call this property
of potentials dual shape invariance.

5 Multidimensional shape invariant systems

Any of the presented potentials corresponds to the exactly solvable model, which
can be solved algebraically using tools of SUSY quantum mechanics. And it is
very interesting to search for realistic 3d quantum mechanical problems which can
be solved exactly using shape invariance of their effective potentials in separated
variables.

In particular case p = 0 potential (31) coincides with (6). Thus we obtain a
generalized potential of Pron’ko—Stroganov problem with arbitrary parameter pu.
A natural question is whether there exist realistic quantum mechanical problems
whose effective potentials are given by equation (31) with p # 0. In this section
we present examples of such problems.

5.1 Neutral fermion with dipole moment in an external field
Consider Hamiltonian (2) with the potential

[0 2 14

V=a : (37)

72
where o = (01,02, 03) is a vector whose components are Pauli matrices,

z? :w%+x§+x§.

Equation (1) describes a neutral fermion with a non-trivial dipole moment, in-
teracting with an external electric field. It is transparently invariant w.r.t. the
rotation group since the corresponding Hamiltonian commutes with the orbital
momentum vector J = x X p+ %cr. In addition, this Hamiltonian commutes with
the generalized Runge-Lenz vector

R:ﬁ(pr—pr)mv, (38)

and so we have an example of 3d superintegrable system with Fock symmetry [16].
Expanding solutions of equation (1) with potential (37) via spherical spinors
we come to the following equations for radial functions

62
qu)jﬁ = <_8T2 + VJ> Q)jﬁ = ECI)jﬁ. (39)
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Here

2ma?’

E Y 1 (r
r=2max, ¢ Q.= < S Q’H( )>,

and V; is the matrix potential

=(iG4n+g-a(its)) z-ar (40)
where j are half integer numbers labeling eigenvectors of the squared total orbital
momentum J.

Effective potential (40) coincides with (31) if we set w = 1 and g = j. Thus
the radial equation (39) is shape invariant and can be solved with using tools of
SUSY quantum mechanics. The ground state (I)?,k = column(¢?, £%) can be found
as a solution of the first order equation

08, =0, (41)
where a; = —0, + W; and W; is superpotential (36) with p = j and w = 1.
Solving (41) we obtain

15 )
‘I)?,k —al 2(j+1) , (42)
P Ko ()

where K71 and K\ are the modified Bessel functions, ¢, are arbitrary constants.
The corresponding eigenvalue €q is equal to ¢;, i.e., g9 = —%( §+1)72. The solution
(ID? ;. corresponding to n' excited state and eigenvalue ¢, for this state are:

1
— ottt + 0 —
ik = 40 G P 0 =~ Ty (43)
where aj = 0, + Wj. The related energy value in (1) is given by the equation
2
mao
E=—— 44
i (44)

where N=n+35;+1,n=0,1,2,...,

5.2 Shape invariant 2d systems with arbitrary spin

In this section we present a countable set of shape invariant systems, which de-
scribe particles with arbitrary spin s interacting with external fields. Their Hamil-
tonians have the following form [14]:

2
1
H,=L 4 —pis(n), (45)
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5 {c:(xlva)a = vl’%—FZC%,

where n =

| &

po(n) = 37 (<1)"A,, (46)

v=—s
and A, are projectors onto eigenspaces of matrix S - n corresponding to the
eigenvalue v (v, = s,s —1,...,—s)
S -n—1v
A= —
V'#v

In particular, for s = 1 Hamiltonian (45) takes the form

2 2 25_~2 1
H1:P1+P2+a(( z) )7

2m 3 z

where S = (51, S2) with S; and Sy are the spin one matrices

1 010 ; 0 -1 0 1 0 0
Si=—=|[1 0 1}, So=—|[1 0 -1}, S3=({0 0 O
V2 010 V2 0 1 0 0 0 -1

For s = % Hamiltonian H looks as follows

2 4 2 1 ) 4 )
Hs :plTanjLw <;%25'm_ 7@4(5'90)3) '
Here S is a vector of spin 3 whose explicit form can be found, e.g., in [6].

Let us consider the eigenvalue problem (1) for Hamiltonian (45)-(46). We
introduce polar coordinates and expand solutions via eigenvectors of operator
J = x1Py — x9P) + S3 where S3 is a matrix of spin s. These eigenvectors can be
represented as:

e = \}; esxp(i(k — 5.)0),(r), (47)

where

.. (1) = column(¢s, ps—1,...,P_s). (48)

Substituting (47), (48) into (1) we obtain the following equation for radial func-
tions Py:

82

an)f{ = <_81i'2 + Vf@) (I)H = E(I)Im (49)
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where €& = 2mFE and

1\ 1 1

Vi= ((k — 8. - 4> 5 s s = 2mpts(n)ln,=o-

Hamiltonian H,. and matrix S2 commute each other and so they have a mutual
set of eigenfunctions. Matrix S% can be chosen diagonal and its eigenfunctions 1,
corresponding to eigenvalues 12 = s% (s — 1)2, (s — 2)%,... have two or one non-
zero components for 2 > 0 and v = 0 respectively. In the standard representation
of spin matrix with diagonal S3 and symmetric S;', the matrix i, is symmetric
and antidiagonal, and has the unit non-zero entries.

Thus the eigenvalue problem (49) can be decoupled to the following equations

N 2 ~
HR,an,l/ = <_8CE2 + VKJ) wn,ll - &ﬁn,u, (50)
where 9, = < (;b'/ ) are two-component functions (non-zero entries of eigenvec-
tors of matrix S%), and
2 _ 1 3
K—vo3) —3 A
V/{,y = (7,;)4 + ;O-la v 7é 0. (51)

For v = 0 the corresponding reduced potential is one-dimensional

2 1 3
-1 X
VROZH 4+*~ (52)

) 7,‘2 r

Potentials (51) coincide with the shape-invariant potential (31) if we denote
v=pu+ % and Kk = % Thus, in analogy with Section 5.1 we can find the cor-
responding exact solution algebraically. Doing this we should exploit the dual
shape invariance of potential (51) and use the superpotentials (16) for x > v and
superpotentials (36) for 0 < xk < v. Another choice of the superpotentials leads
to solutions which are not square integrable.

Finally we obtain the following components of the ground state vectors 19 =

column(¢%, ¢Y ), v=18,5—1,5—2,...,v > 0:
Ar 1 Ar
0 __ 41 0 _ v—35 +1
¢y ="K, (2/€—|— 1> 0o, =dy (=) Koy <2/-$+ 1) ’
K 2>V,
Ar 1 Ar
0 _ v+1 (U —gpvtl
o) = dyr" K, <2y+1)7 00, = dy(—1) K, (2,,+1>’
0< k<,

'See, e.g., Eq. (4.65) in [6].



Superintegrable and supersymmetric systems of Schrédinger equations 165

where d,, are integration constants. Solution for v = 0, i.e., the component gbg, is
given by the following equation:

Y = dutts exp (—Xr) , k=0,1,2,... (53)

The vectors of exited states and the corresponding energy levels again are given
by relations (43) and (44), respectively, where j should be replaced by .

5.3 2d system with matrix Morse potential

Finally, let us consider a 2d system with a periodic potential. This system ap-
peared as a particular case of superintegrable systems classified in [12]. It is
described by the following equation:

Hy = (p% + p2 + A1 — 2k) exp(—x3) (01 cos 1 — ogsinxy)

+ A2 eXp(—QIQ))1/J = 2mEn. (54)

The Hamiltonian H in (54) admits integral of motion Q2 = P — 5. Thus it is
possible to expand solutions of (54) via eigenvectors of Q2 which look as follows:

4= (exp(i(p + él)wl)w(ﬂfz)>
2

exp(i(p — (%)

and satisfy the condition Q1 = pt,. Substituting (55) into (54) we come to the
equation

82
(-gpti)e-ce

£

Ve = Mexp(—2y) — A2k — 1) exp(—y)o1 — po3. (56)

where we denote y = x9, € = 2mFE —p2 — i, d = <S0>7 and

Potential (56) coincides with the shape invariant potential (32). Using the
shape invariance it is possible to integrate equation (54) in a simple and straight-
forward way with using tools of SUSY quantum mechanics [11]. The eigenval-
ues € and the corresponding state vectors are enumerated by natural numbers
%0

n =0,1,.... The ground state vector ®o(k,y) = <€
0

> should solve the equation

_ 0
a,, ®o(k,y) = <8x + Wﬁi) o(k,y) =0,

thus o = y" 1K, 11(2), & = y""1K,(2), where K, (2) is modified Bessel func-
tion, v =2 + 1 and z = —py/(4x + 2) > 0.
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Solutions which correspond to n'” excited state can be calculated using equa-

tion (43), and the corresponding spectral parameter € have the following form [11]

2 P2

 4N?’
where N = k + n and n is a natural number.

e=-—N

6 Classification of 2d superintegrable systems

Consider a special class of Schrodinger—Pauli equations describing neutral fermions
with non-trivial dipole momentum. The corresponding stationary Schrodinger—
Pauli equation is given by formula (1), where

V=V = %a -B. (57)

Here o is the matrix three vector whose components are Pauli matrices, B is
a three component vector of external field, depending on two spatial variables.
A particular example of potential (57) is discussed in Section 2.
To simplify the following formulae we rescale variables and reduce Hamilto-
nian (1) with potential (57) to the form
H=-V?’+o0-B. (58)
For this purpose it is sufficient to change in (1) and (57) E — ﬁE and B — %B .
Let us search for integrals of motion for Hamiltonian (58) of the generic form:
Q = o" (i{A",V,} + Q1) , (59)
where summation is imposed over the repeated indices p =0,1,2,3 and a = 1, 2,
AFe and Q% are functions of &, {A** V,} = AV, + V AH V, = 8%@7 ou
are Pauli matrices. In other words, we restrict ourselves to first-order differential

operators with matrix coefficients.
Integrals of motion should commute Hamiltonian,

[H,Q] = HQ — QH = 0. (60)

Substituting (58) and (59) into (60) and equating coefficients for linearly in-
dependent matrices and differential operators, we obtain the following system of
determining equations [17]:

AT+ AR =0,

Q% =0,

AabBlt)l — 0’ AObBlt)z — gabCQbB07
QZ, — 2€achchd’

61
62
63

(
(
(
(64

)
)
)
)
where the subindices denote derivatives w.r.t. the corresponding independent vari-
ables. Solving them we can find both admissible external fields B and the corre-

sponding integrals of motion.
The classification results are presented in the following tables.
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Table 1. External fields with Lie symmetries.

no. | External field Symmetry operators
Bl = k9 + i k9 ) ~

1 cos(k0) f1(r) + sin(k6) f(r) Q1 =L+ Loy
B2 = cos(kf) fo(r) — sin(k6) f1(r), B® = fs(r)

2 Bt = pcos(kO)r=F, B? = pusin(kO)r=*, B3 = f3(r) Q1

3 | B'=pcos(0)fi(r), B?=usin(0)fi(r), B*>= fo(r) | Q=L+ 303
B! = cos(6x1) f1(z2) + sin(dxq) fa(x2), -

4 , ' ! Q2 =P — 503
B? = cos(0z1) fa(x2) — sin(dz1) f1(z2), B° = f3(x2)
B! = ~ :

. pexp(—x2) cos xy Qo=Pi — Loy
B? = —pexp(—ag) sinay, B3 = f3(x2)

6 | B'=B?=0, B*= f(x) 93

7 | B'=B?>=0, B%= f(x1) P, o3

] B'=B%2=0, B®=f(r) L, o3

Here r = \/a} + 23, 0 = arctan 22, P, = p, =

laz sa=1,2, L = x1ps — x9p1, fi(-),

J2(), f3(-) and f(-) are arbitrary functlons 0 € {0,1}. For B given in Cases 1 and 4 to be
single valued and 7 to generate finite rotations for arbitrary values of 8, the parameter

k must be an integer.

Table 2. External fields and higher symmetries.

no. | External field Symmetry operators
) B' = pcoszy, B? = psinzy, Q2:P1—%03, Py,
B3=v Q3 = 03(Py —v) — p(oy coszy + oy sinzy)
Bl _ :UJk Sln(ke) Ql =L+ 50—37
2 ) -
P r _
B _/LkCOS(k‘@) B kl Qa = 03(Q1+v)
o r2 ’ T2 — p(oy sin(kl) — oo cos(k6))
2
T Q=L+ b
2\/v* — pcr
3 ) uzgl . Qs = 01P1 +09Py — § (0172
B = = B = -
2./12 — M2T27 2 _ 0,21,1) _ %0,3 /12 — ,LL2T2
Bt _ 12¢
A r Q1, Q6 = 01P1 + 02Py + p(0o3Q1
!
B2 — iy 7 B3 — 7,LL(T’Q0)/ +o’1x2(p—()’21‘1<p)—|—()’3 ((p—|—l/)
r

Here the function ¢ = () is a solution of the algebraic equation (/ﬂrz
where p, v, k and c are real parameters.

+ 1) V22w =c,
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The results presented in Tables 1 and 2 extend the list of exactly solvable prob-
lems of quantum mechanics. Moreover, they exhaust all matrix potentials (57)
which correspond to integrable Schrodinger equations admitting first order con-
stants of motion.

7 Discussion

We present an extended list of new exactly solvable systems of coupled Schrédinger
equations with matrix potentials. An important property of this list is that it is
completed in the classes of equations which are discussed.

In this paper we restrict ourselves to shape invariant superpotentials of special
form (10), where matrix @) is proportional to a unit matrix. This restriction makes
it possible to solve completely the corresponding classification problem. In [12]
superpotentials with an arbitrary matrix @) are described. In particular, in this
case there are 17 non-equivalent matrix superpotentials of dimension 2 x 2 [12].

The other property of exactly solvable systems, i.e., superintegrability, is ex-
ploited in Section 6. Here a classification of matrix potentials (57) is presented
which give rise to Schrédinger equations admitting the first order integrals of mo-
tion with matrix coefficients. Notice that integrals of motion presented in Tables 1
and 2 form interesting superalgebraic structures which are discussed in paper [17].

Some of the classified systems include external fields which do not solve Max-
well equations with physically realizable currents. However, as it was shown in
papers [13] and [15], all these fields solve equations of axion electrodynamics.

There are interesting links between non-relativistic systems discussed in the
present paper and relativistic systems described by Dirac equation. In paper [5]
a relativistic counterpart of the PS system was proposed. It is shape invariant
and exactly solvable, and its non-relativistic limit is nothing but the Pron’ko—
Stroganov system. A relativistic version of the model discussed in Section 5.1
which keeps its shape invariance and superintegrability was proposed in [16].
There are now doubts that the list of relativistic superintegrable and supersym-
metric systems can be added by other systems. The work on classification of such
systems is in progress.
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A hierarchy of normalized classes of generalized Burgers equations is studied.
The equivalence groupoids of these classes are computed. The equivalence
groupoids of classes of linearizable generalized Burgers equations are related to
those of the associated linear counterparts using the Hopf—Cole transformation.

1 Introduction
We consider certain generalizations of the well known Burgers equation
Ut + Uy + Ugy = 07 (1)

which has been widely used as a one-dimensional turbulence model [1]. A review
of its properties can be found in [24, Chapter 4]. Burgers equation can be gen-
eralized in various ways. The purpose of this paper is to study a hierarchy of
classes of generalized Burgers equations. We show that the majority of naturally
arising classes are normalized. This property simplifies considerably the problem
of the group classification for such classes. Specifically, these problems reduce to
subgroup analysis of the corresponding equivalence groups.

A class of differential equations is said to be normalized if its equivalence
groupoid is generated by its equivalence group [12,13,15,17]. The equivalence
groupoid of a class of differential equations is the set of admissible transforma-
tions in this class with the natural groupoid structure, where the composition of
mappings is the groupoid operation [14, p. 7]. An admissible transformation is
a triple of an initial equation, a target equation and a mapping between them.

The notion of normalized classes is quite natural and useful for applications.
For a normalized class of differential equations the following hold: 1) its complete
group classification coincides with its preliminary group classification and 2) there
are no additional equivalence transformations between cases of the classification
list. This notion can be weakened. For example, weakly normalized classes main-
tain the first of the aforementioned features but lose the second, and for semi-
normalized classes the situation is opposite (see [14,17] for precise definitions).

Hierarchies of normalized subclasses arise in the course of solving group clas-
sification problems. Note that a single differential equation forms a normalized



Normalized classes of generalized Burgers equations 171

class. Any set of all possible equations with a prescribed number of independent
variables and a fixed equation order is a normalized class likewise.

In order to prove the normalization property of a class of differential equa-
tions we compare its equivalence group with its equivalence groupoid. Practically,
a class is normalized if there are no classifying conditions among the determin-
ing equations for admissible transformations. A classifying condition is, roughly
speaking, a determining equation that simultaneously involves arbitrary elements
of the class and parameters of admissible transformations and leads to a furcation
while solving the determining equations.

Section 2 is devoted to a normalized superclass, which contains all other classes
under consideration. In Section 3 we consider the relation between equivalence
groupoids of classes of linear (141)-dimensional evolution equations and those
of the associated classes of equations linearized by the Hopf—Cole transformation
u = 2v,/v. In Section 4 we consider classes of generalized Burgers equations with
variable diffusion coefficients. One of these classes is not normalized but it can be
partitioned into two normalized subclasses. Section 5 treats the classical Burgers
equation as a normalized class.

2 Normalized superclass

It is known that the t-component of every point (or even contact) transformation
between any two fixed (1+1)-dimensional evolution equations depends only on ¢
[9,10]. Moreover, as proved in [6, Lemma 2], any point transformation between
two equations from the class

ur = F(t, z,u)uzy + G(t, ,u, uy) (2)

has the form ¢ = T(t), # = X(t,), and @ = U(t,z,u) with T, X, U, # 0. The
coefficients F' and G are arbitrary smooth functions of their arguments with F' # 0.

This class is normalized in the usual sense [6], and any contact transforma-
tion between equations of this class, is generated by a point transformation [19].
However, class (2) is too wide for a generalization of Burgers equation. For our
purpose it is more convenient to consider its subclass,

ug + F(t, 2, u)upe + H (t, 2, u)u, + H(t,z,u) = 0, (3)

where the coefficients F, H', and H? are arbitrary smooth functions in their
arguments with F' # 0. In the present paper we consider this class as the initial
superclass. As it contains all subclasses to be studied in the subsequent analysis,
any transformation between two fixed equations from each specified subclass obeys
the restrictions marked for class (2).

In order to find the general form of admissible transformations for class (3),
we write an equation of this class in tilded variables, u; + Fizz + H iz + HO = 0,
and replace ;, Uz, and @zz with their expressions in terms of untilded variables.
After restricting the result to the manifold defined by the initial equation using
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the substitution u; = —Fug, — H'uy — H 0, we split it with respect to uz, and wu,
and obtain the determining equations for admissible transformations. They imply

t=T(), &=X(tz), a=Utz,u) =Utz)ut+Utz),

F—X“’%F ﬁl—i X H' + X, F — 2X. U—%FJFX

_Tt s _Tt x xx xUl t ] (4)
. 2U, UL 1

0 _ 1770 T 1
2 =U'H + TtUlmF—ﬁ(Ut—i—FUm—kH Us),

where T' = T(t), X = X(t,x), Ut = Ul(t,x), and U° = U°(t,z) are arbitrary
smooth functions in their arguments with 7;X,U' # 0. Note that we obtain
no additional equations (classifying conditions) on the arbitrary elements. This
means that all admissible transformations in this class are generated by the trans-
formations from the corresponding equivalence group, so class (3) is normalized.

To derive admissible transformations of any subclass of (3) it is sufficient to
specify the arbitrary elements F, H', HY, F, H', and HO.

3 Linearizable generalized Burgers equations

We relate the equivalence groupoids of the class of second-order linear evolution
equations

vt + a(t, ) vgy + b(t, x)vg + c(t, x)v = 0, (5)
and the class of linearizable generalized Burgers equations
1
ug + gy + (au + ag + b)ug + iawUQ +byu+ f=0. (6)

Here a, b, ¢ are smooth functions of (t,z) with a # 0, and f = 2¢;. Class (6)
is the widest class of differential equations that can be linearized to linear equa-
tions of form (5) by the Hopf-Cole transformation u = 2v,/v. This linearization
was implicitly presented in [4, p. 102, Exercise 3]. Class (6) is a subclass of (3),
where the arbitrary elements are specified as F = a, H' = au + a, + b, and
HO = %axu2 + byu + f. Substituting these and the corresponding tilded expres-
sions into (4) and splitting the result with respect to u, we derive the general form
of admissible transformations between two equations from class (6),

_ 1
t=T@t), &=X(tz), G=—u+ULz),

Xz
2
G=2%a, b= (Xob+ Xppa — X2U% + Xy),
T, T;
S f (U%), (XU - 2(X,.00), (™)
f=g-—g 2T, e

N X U0(XU% — (X.U°),,  (X.U9),
a — )

Tt Tt
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where T' = T(t), X = X(t,z), and U° = U%(t, x) are arbitrary smooth functions
in their arguments with 7; X, # 0. There are no classifying conditions, so, trans-
formations (7) form the (usual) equivalence group, and class (6) is normalized (in
the usual sense).

Arbitrary elements of class (6) can be gauged to simple fixed values by equi-
valence transformations. At the first step we set a = 1 using the transformation

t = tsigna(t,x), U = U.

”““_/W

Thereby we obtain the class of equations of the general form
Ut + Ugy + (U + b)ug + byu+ f =0, (8)

where b = b(t,z) and f = f(t,z) are arbitrary smooth functions. The linear
counterpart of (8) is vy + vy + bvy + (% J fdm) v=0.

The equivalence group of class (8) can be calculated directly or by means of
the substitution @ = @ = 1 into (7). It consists of the transformations

[=7(t), #=¢(VTz+X'0), a=¢ (\}T»tw Ut x)) :

- b Ty X0
b= U

6<\/Tt+z;3/2x+x/Tt ’ ©)
) ( Fo ), . vy Ud uo, TttU0>

R T VL T, T, 2f

f=¢

where T = T(t), X = X°(#), and U° = U°(t, x) are arbitrary smooth functions
with T3 > 0, and € = £1. Hence, class (8) is normalized.

As the next step we set the arbitrary element b to zero by means of the trans-
formation

f=t, =z a=u+b, f=f—b—bby— by,

which leads to the simplest reduced form for linearizable generalized Burgers
equations containing the single arbitrary smooth function f = f(¢, z),

Up + Uz + v, + f = 0. (10)

Substituting b = b = 0 into (9) we derive the general form of admissible transfor-
mations between two equations of form (10),

- . _ 1 Ty XP
i=T(t), #=c¢(VTe+X'0), a=c(—=u+ ot t],
(t), z=e¢ tx (t) u 5(\/@“ 2T3/2 t)

- 1 3TE — 2T Ty XTw — X1
ol ey 2 L 3 ,
T, AT, T
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where T'(t) is a monotonically increasing smooth function, X%(t) is an arbitrary
smooth function, and ¢ = £1. Class (10) is normalized. Its linear counterpart
consists of equations of the form v; + vy, + (% f fd:n) v =0.

Every equation from class (6) (resp. (8) or (10)) is connected with its linear
counterpart via the Hopf-Cole transformation, as well as the admissible transfor-
mations in any of these classes are connected with transformations in the corre-
sponding linear classes.

Consider now the equivalence groupoid of the class of linear equations (5). It
is determined by the transformations [18]

t=T(), &=X(tz), ©=Vitz)v+Vtx),

Xz .1 2X, V)
B i (e P ),

T} t Vv (11)
. 1 Vxl Q(Vxl)Q _ Vlvxla: ‘/;51
C=—|c— b+ 3 a— =7

T; Vi (V1) 4

where T = T(t), X = X(t,z), V! = V(t,2), and V? = VO(¢,2) are arbitrary
smooth functions in their arguments satisfying 73X, V! # 0 and the classifying
condition

VO VO VO VO
W t+a W xr+b W m+CW:O

This means that VV/V?! is a solution of the initial equation (5). The equivalence
group G~ of class (5) consists of the transformations of form (11) with V9 = 0.
Class (5) is not normalized but semi-normalized because every transformation of
form (11) is a composition of the Lie symmetry transformation v = v + V9/V'1
of the initial equation and an element of G™, namely the transformation (11)
with V0 = 0.

A correspondence between the equivalence groupoids (resp. groups) of clas-
ses (5) and (6) can be established using the Hopf-Cole transformation. Indeed,

iz 2 Vi +Vie+ V0 1 (Viu42V)o+2V)
7 X, Vip+ V0 "X, Vie+ VO )

u=2

which can be expressed in terms of (t,x,u) only if VY = 0. The transformation
component for u in this case is
1
1 2V 0o — 2V,

U= Eu—f— W, l.e., = XV

The constraint on V0 is related to the general form of transformations from the
equivalence group of class (5). The admissible transformations with V° # 0 in
class (5) have no counterparts in the equivalence groupoid of class (6).

Roughly speaking, the semi-normalization of class (5) of linear equations in-
duces the normalization of class (6) of linearizable equations.
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4 Generalized Burgers equations with arbitrary
diffusion coefficient

Now we set F' = f(t,x), H' = u, and H° = 0 in (3). This leads to the class of
generalized Burgers equations with an arbitrary nonvanishing smooth coefficient

f=f(t,z) of uga,
up + uug + f(t, x)uze = 0. (12)

Class (12) was considered, e.g., in [8,11]. Note that [8] is the first paper where the
exhaustive study of admissible transformations of a class of differential equations
was carried out. The equivalence group of class (12) is finite dimensional and
consists of the transformations

;_at%—ﬁ i_fﬁx+u1t+uo ﬂ_fﬁ(’yt—l-é)u—/w:r—l—ulc?—uov
yt+48’ ye+6 ad — By ’

N 2 (13)

f—ﬁf,

where the constant tuple («, 3,7, 0, &, po, p£1) is defined up to a nonzero multiplier

and satisfies the constraints ad — 8y # 0 and k # 0. The form of these transfor-

mations can be calculated directly or by means of the substitutions F = f, F = f

H' =u, H' = 4, and H° = H° = 0 into (4). Since all transformations between

any two fixed equations from (12) are exhausted by (13), class (12) is normalized.
The class of equations of the form

up + Uty + (f(t,a;)ugc)gC =0 (14)

with f running through the set of nonvanishing smooth functions of (¢, z) admits
the transformations

t=T(t), &= x\/|Tilz+ X°(t)
= %Lt ' ’Tt’x + g f=f, (%)

|Tt| u +
T; 2Tt2 T’

<

where s is an arbitrary nonzero constant and the smooth functions 7" and X° of ¢
satisfy the equation

N/ |Tt| Tttfx + QEXU - QEtXt =0. (16)

Unlike the previous classes, class (14) is not normalized. At the same time, its

subclass singled out by the inequality f,,, # 0 is normalized. In this case equa-

tion (16) split with respect to f, leads to the constraints Xy, = 0 and Ty = 0.

Hence the associated equivalence groupoid is determined by the transformations
. xciu+cat +c3

:c%t—i—co, I =xcx+ct+c3, U= 5 . f =,
c
1
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where cq, c1, co, c3, and 3¢ are arbitrary constants with scy # 0, which form the
equivalence group of this subclass.

The complementary subclass, which is defined by the constraint f,.. =0, i.e.,
f=r2t)z%+ f1(t)x + fO(t), possesses a wider equivalence groupoid. Namely, all
admissible transformations in this subclass are of form (15), where the parameter-
functions T = T'(t) and X° = X°(¢) additionally satisfy the system of ODEs

P
ATy Ty f% + 2T, Ty — 31—;&152 =0, 3V T3] Tue f* + T;EX,% — TttX,? =0,

and s is an arbitrary nonzero constant. Although the general solution of this
system is parameterized by the arbitrary elements f' and f? in a nonlocal way,

—2
Tzi/(Cg/e_fothdt—i—Cl) dt + Co,

VITT,
on—;/Tt/Wfldtdt+03T+c4,
t

the solution structure is the same for all values of the parameters. In other words,
the subclass singled out from class (14) by the constraint f,,, = 0 possesses
a nontrivial generalized extended equivalence group, and it is normalized with
respect to this group. See, e.g., [6,16,17,20-22] for the related definitions and
other examples of generalized extended equivalence groups.

Note that the class of equations u; + wu, + f(t)ug, = 0, which differs from
classes (12) and (14) only in arguments of f and is the intersection of these classes,
is normalized with respect to the equivalence group (13) of the whole class (12).
The group analysis of this class was performed in [3,23].

5 Classical Burgers equation

Finally, we consider the class consisting of the single equation (1). It is well
known [2,5] that its linear counterpart is the heat equation v; + vz, = 0. The
maximal Lie invariance algebra of the classical Burgers equation (1) is spanned
by the vector fields [7]

O, 2t0; + 20y — uby, t20p +tx0y + (v — ut)dy, Oy, 10y + Oy

The complete point symmetry group of equation (1) consists of the transforma-
tions
st f o kztmttp o w(VE+O)u— kYT + il — poy
yt+48’ yt+§ ad — By ’
where (a, 3,7, 0, K, po, f£1) is an arbitrary set of constants defined up to a nonzero
multiplier, and ad — 3y = k% > 0. Up to composition with continuous point sym-
metries, this group contains the single discrete symmetry (¢, x,u) — (t, —x, —u).
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6 Conclusion

This paper deals with a hierarchy of normalized classes of generalized Burgers
equations. Due to the normalization property, the group classification for these
classes can be carried out using the algebraic method. There are several examples
of normalized classes the equivalence groups of which are finite dimensional, which
is an unexpected result.

It is important to emphasize the following phenomenon in the relationship
between the classes of linearizable generalized Burgers equations (6) and linear
equations (5) as well as their subclasses via the Hopf-Cole transformation. In
view of the superposition principle for solutions of linear equations, class (5) pos-
sesses the wider set of admissible transformations than class (6). Transformations
associated with the linear superposition depend on arbitrary elements of the cor-
responding initial equations. This obstacle destroys the normalization property of
class (5), though this class is still semi-normalized in the usual sense. At the same
time, the linear superposition principle has no counterpart for the linearizable
equations among local transformations. This is why class (6) is normalized.
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Generalized In6nii-Wigner contractions (generalized IW-contractions) between
Lie algebras are discussed. The contemporary principle results on such con-
tractions are reviewed. An algorithm of finding generalized IW-contractions or
proving their nonexistence for a certain pair of Lie algebras is presented.

1 Introduction

Usual or generalized Inénii-Wigner contractions (IW-contractions) are widely
used for realizing contractions of Lie algebras. In fact, the concept of contractions
of Lie algebras became well known only after the invention of IW-contractions by
Inénii and Wigner in [11,12]. The contraction from the Poincaré algebra to the
Galilean one can be realized as a simple IW-contraction. The other significant
example, the contractions from the Heisenberg algebras to the Abelian ones of
the same dimensions, which form a symmetry background of limit processes from
relativistic and quantum mechanics to classical mechanics, is a trivial contraction.
Any Lie algebra is contracted to the Abelian algebra of the same dimension via
the IW-contraction corresponding to the zero subalgebra.

The name “generalized Inonti-Wigner contraction” was first used in [9] for
so-called p-contractions by Doebner and Melsheimer [7]. Generalizing IW-con-
tractions, Doebner and Melsheimer studied contractions whose matrices become
diagonal after choosing appropriate bases of initial and contracted algebras, and
diagonal elements being powers of the contraction parameter with real exponents.
In the algebraic literature, similar contractions with integer exponents are called
one-parametric subgroup degenerations [1,2,4,8]. The notion of degenerations
of Lie algebras extends the notion of contractions to the case of an arbitrary
algebraically closed field and is defined in terms of orbit closures with respect to
the Zariski topology. Note that in fact a one-parametric subgroup degeneration is
induced by a one-parametric matrix group only under an agreed choice of bases
in the corresponding initial and contracted algebras.

All continuous contractions appearing in the physical literature are realized as
generalized IW-contractions. The question whether every contraction is equivalent
to a generalized IW-contraction was posed in [20]. As shown in [15], the conjec-
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ture that the answer is positive was proved in [21] incorrectly. Counterexamples
to this conjecture are obviously given by contractions to characteristically nilpo-
tent Lie algebras, which were studied in [1,2]. Indeed, each proper generalized
IW-contraction induces a proper grading on the contracted algebra. There exists
a bijection between proper group gradings of a Lie algebra and its nonzero diago-
nalizable derivations. Each characteristically nilpotent Lie algebra possesses only
nilpotent derivations and hence has no nonzero diagonalizable derivations and no
proper gradings. Therefore, no contraction to a characteristically nilpotent Lie
algebra can be realized by a generalized IW-contraction. Since the minimal di-
mension for which characteristically nilpotent Lie algebras exist is equal to seven,
this fact cannot be used for lower dimensions.

The proof of nonexistence of generalized IW-contractions to a Lie algebra that
is not characteristically nilpotent is much more delicate since then the contracted
algebra admits proper gradings and the nonexistence of such contraction is related
to an inconsistency between filtrations of the initial algebra and gradings of the
contracted algebra. Examples on non-universality of generalized IW-contractions
of the above kind were first presented in [17] using four-dimensional Lie algebras.
Therefore, it may be impossible to realize a well-defined contraction by a gener-
alized IW-contraction even though the contracted algebra admits a wide range of
proper gradings. This establishes more precise bounds for applicability of gen-
eralized IW-contractions. It was proven in [17] that between four-dimensional
Lie algebras over the field of real (resp. complex) numbers, there exist exactly
two (resp. one) well-defined contractions that are inequivalent to generalized TW-
contractions. The other contractions of four-dimensional Lie algebras were re-
alized in [5,14,15] by generalized IW-contractions involving nonnegative integer
parameter exponents not greater than three, and the upper bound proved to be
exact [17]. Merging the above results leads to the complete description of gen-
eralized ITW-contractions in dimension four. The similar problem for dimensions
five and six is still not studied.

Considering classes of Lie algebras closed with respect to contractions or setting
restrictions on the structure of contraction matrices, one can pose the problem on
partial universality of generalized IW-contractions for specific kinds of contrac-
tions. In particular, generalized IW-contractions of low-dimensional nilpotent Lie
algebras were studied in [3]. Analogously, the problem on generalized IW-contrac-
tions within the class of almost abelian Lie algebras can be posed since this class
is also closed with respect to contractions. The notion of diagonal contraction
is an extension of the notion of generalized IW-contraction. Namely, the non-
constant part of a diagonal contraction is still diagonal, but allowed to depend on
the contraction parameter in an arbitrary way, rather than to consist of powers
of the contraction parameter. At the same time, it was shown in [18] that every
diagonal contraction is equivalent to a generalized IW-contraction.

This paper is an overview of progress on the question about universality of
generalized IW-contractions. We also present a new method that allows one to
construct a generalized IW-contraction if it exists or to proof that a contraction
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cannot be realized as a generalized IW-contraction. This method forms a basis for
a step-by-step algorithm which can directly be implemented in symbolic calcula-
tion packages. We apply the algorithm described for optimizing the proof from [17]
on that there exists a unique contraction among complex four-dimensional Lie al-
gebras that is not equivalent to a generalized IW-contraction. This immediately
implies that among real four-dimensional Lie algebras there exist precisely two
contractions that cannot be realized as generalized IW-contractions.

2 General contractions of Lie algebras

Let g = (V, [, -]) be an n-dimensional Lie algebra with an underlying vector space
V =R" or V = C", and a Lie bracket [-,:]. A common way for defining this
algebra is to write down the commutation relations in a fixed basis {e1,...,e,} of
V. It suffices to present the nonzero commutators |[e;, ej] = ck ek, ¢t < 7, Where cf’]
are components of the structure constant tensor of g. In What follows the indices
i, J, k, i/, 7 and k¥’ run from 1 to n. We use the Einstein notation, implying
the summation over the repeated indices unless otherwise explicitly stated. For
a matrix A, aé- is the entry of A located at the intersection of the ith row and
the jth column.

Given a continuous mapping U: (0, 1] — GL(V'), we construct a parameterized
family of the Lie algebras g. = (V,[,]c), € € (0,1], which are isomorphic to g,
by defining, for each e, the new Lie bracket [, ]c on V according to the formula
[z,y]e = U7 [U., Usy] for all z,y € V. If for any x,y € V there exists the limit

gl_lg_lo[x y]a = El_l)r_fi_lo U™ [Ua$7 Uay] = [$7y]0

then [-,]o is a well-defined Lie bracket.

Definition 1. The Lie algebra go = (V, [, -]o) is called a one-parametric continu-
ous contraction (or just a contraction) of the Lie algebra g. The procedure g — go
that provides the algebra gg from the algebra g is also called a contraction. The
parameter ¢ is called a contraction parameter. The contraction g — go is trivial
if go is abelian and improper if go is isomorphic to g.

Given a basis {e1,...,e,} of V, the operator U. € GL(V) is defined by the
associated matrix and the above definition can be reformulated in terms of the
structure constants cfj of the algebra g in this basis. Namely, the definition of the
Lie bracket [-,-]p is reduced to the existence of the limit

: ‘ (17 —I\K %
El_lg_lo(Uz-:);/(UE);/(Us Ik Cij =+ €Oy
for all values of ¢/, j and k', where clg s are components of the well-defined
structure constant tensor of the Lie algebra go in the basis {ej,...,ey}. The

matrix-valued function U, of the contraction parameter ¢ is called a contraction
matriz.
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Definition 2. Contractions g — go and g — go are (weakly) equivalent if the
algebras g and go are isomorphic to g and g, respectively.

Under using weak equivalence, only existence and results of contractions are
essential and differences in the contractions ways are ignored. Different notions of
stronger equivalence can be introduced for taking into account contraction ways.
Let Aut(g) denote the group of automorphisms of the Lie algebra g. We identify
automorphisms with the associated matrices in the basis fixed.

Definition 3. One-parametric contractions in the same pair of Lie algebras (g, go)
with the contraction matrices U(e) and U (e) are called strongly equivalent if there
exist such & € (0,1], mappings U: (0,8] — Aut(g) and U: (0,8] — Aut(go) and
a continuous monotonic function ¢: (0,40] — (0, 1], El_igrlocp(a) = 0 that

05 = 05U@(€)UE, €€ (0,5].

The notion of contraction is generalized to an arbitrary algebraically closed field
in terms of orbit closures within the variety of Lie algebras [1,2,4,8]. Consider
an n-dimensional vector space V over an algebraically closed field F. The set
L, = L,(F) of all possible Lie brackets on V' is an algebraic subset of the variety
V*@V*®V of bilinear maps from V' x V to V. Indeed, fixing a basis {ey,...,e,}
of V leads to a bijection among £,, and

_ k n3 k k _ K ok O K
Cn — {(CZ]) el ’ Cij + Cj’i = 0, Cijci’k + Ckici'j + Cjkci’i = O}

that is defined by p(e;,ej) = ijek for any Lie bracket u € £, and any structure

constant tensor (cfj) € Cn. Under identifying u € £, with the corresponding
Lie algebra g = (V,pu), the variety L, of possible Lie brackets on V can be
called the wvariety of n-dimensional Lie algebras (over the field F). The action

of group GL(V') on L,, is left,
U - p)(x,y) = U(u(U_I:L‘, U_ly)) VU e GL(V), Vue L, Yx,y eV,

in contrast to the right action, which is traditionally used for contractions in
physics and defined by the formula (U - p)(z,y) = U_l(,u(Uaj, Uy)) Of course,
this difference is not essential. We use the right action throughout the rest of the
paper.

Denote by O(u) the orbit of u € £, under the action of GL(V) and by O(u)
the closure of O(u) with respect to the Zariski topology on L,,.

Definition 4. A Lie algebra gy = (V, up) is called a contraction (or degeneration)
of a Lie algebra g = (V,u) if up € O(u). The contraction is proper if pg €
O(p)\O(p). The contraction is nontrivial if o # 0.

In the case of the field of complex numbers, F = C, the closure of an orbit
with respect to the Zariski topology in C coincides with the closure of this orbit
with respect to the Euclidean topology in C. Hence, Definition 4 is reduced to
the usual definition of contractions.
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3 Generalized IW-contractions

An IW-contraction can be viewed as a result of a parameterized rescaling of the
basis elements in a specially chosen bases of the initial and contracted algebras.
This rescaling should be singular in a course of the limit process with respect to
the associated parameter.

Definition 5. The contraction C from g to go (over C or R) is called a generalized
Inénii—-Wigner contraction (or briefly, generalized IW-contraction) if its matrix Us
can be represented in the form U, = AW_ P, where the matrices A and P are non-

singular and constant (i.e., they do not depend on €) and W, = diag(e™, ..., &%)
for some aq,...,a, € R.
The n-tuple of exponents (ai,...,q,) is called the signature of the general-

ized IW-contraction C. As the reparameterization ¢ = &2, where 8 > 0, results
in a generalized IW-contraction strongly equivalent to C, the signature of C is
defined up to a positive multiplier. There should be nonzero components in the
signature, since otherwise the algebras g and gy are isomorphic, i.e., the con-
traction C is improper. Moreover, it is enough to consider only signatures with
integer components as any generalized IW-contraction is (weakly) equivalent to
a generalized IW-contraction with an integer signature (and with the same associ-
ated constant matrices). Although this claim was believed to hold for a long time,
it was rigorously proved much later in [18].

The set of signatures of generalized IW-contractions with nonnegative inte-
ger parameter exponents among two fixed algebras can naturally be ordered
up to component permutation. Namely, suppose that @ = (aq,...,qy) and
B = (B1,...,0n), where a;,3; € Z, a1 = -+ Z ay > 0and fy > -+ = p, 2 0,
are signatures of generalized IW-contractions from g to go. Up to equivalence of
signatures components of & (resp. 3) can be additionally assumed coprime. We
say that @ < Bif a1 = B, ..., aj—1 = Bj—1 and a; < B; for some j. A signature
of generalized IW-contractions from g to gg is called minimal if it is minimal with
respect to the above ordering. Finding minimal signatures is a necessary step for
optimizing the choice of contraction matrices.

A particular case of generalized IW-contractions is given by usual IW-contrac-
tions, whose signatures equivalent to tuples of zeros and units. Most contractions
of low dimensional Lie algebras are equivalent to such contractions. They present
limit processes between Lie algebras with contraction matrices of the simplest
possible type. The description of IW-contractions for three- and four-dimensional
Lie algebras [6, 10] easily follows from the classifications of subalgebras of such
algebras obtained in [16].

Similarly to generalized IW-contractions, we can define the class of diagonal
contractions by weakening the related restrictions on the structure of contraction
matrices. The contraction g — go (over F = C or R) is called diagonal if its
matrix U, can be represented in the form U. = AW_P, where A and P are con-
stant nonsingular matrices and W, = diag(fi(¢),..., fu(e)) for some continuous
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functions f;: (0,1] — F\{0}. The class of diagonal contractions is wider than the
class of generalized IW-contractions and, at the same time, any contraction from
the first class is equivalent to a generalized IW-contraction involving only integer
parameter powers [18].

For some theoretical studies, it is convenient to set A and P equal to the
identity matrix by changing bases in the algebras g and gg or, in other words,
replacing these algebras by isomorphic ones. However, this does not properly work
for specific Lie algebras. If U, = diag(¢!,...,e%") then the structure constants
of the resulting algebra gy are given by the formula

k- .
ck. if a4+ a; =g
. . - 1) J 9
cfij = lim cf;e®itoimok =
e 40 cti; =0, otherwise

with no sums over the repeated indices. Hence matrix U, defines a generalized
IW-contraction if and only if o; + a;j > oy, for any (4, j, k) when cfj % 0. The
conditions for existence of generalized IW-contractions and on the structure of
contracted algebras are reformulated in the basis-independent fashion in terms of
gradings of contracted algebras associated with filtrations on initial algebras [8,13].
In particular, the contracted algebra gg has to possess a derivation whose matrix
is diagonalizable to diag(ar,...,a,).!

It is obvious that the generalized IW-contractions defined by the matrices U, =
AW.P and U. = AW.P, where

A= MAN, P=N"'PM, W.= diag(sﬁo‘l, . ,560‘”) for some 5 > 0,

are strongly equivalent. Here M and Mj are automorphisms matrices for algebras
g and gg, respectively, and N is a matrix commuting with the diagonal parts W,
and W.. In other words, the matrix N corresponds to an arbitrary change of basis
within components of the grading of gy associated with W, and W.. Note that
the diagonal matrices W, and W, induce the same grading of go. Summing up
the above consideration, we can say that a certain amount of freedom in choosing
the matrices A and P is preserved even after fixing the canonical commutation
relations.

Let the canonical basis of gg be associated with a grading which is isomorphic
to the one induced by the matrix W,. Then the matrix P can be represented as
a product Pyrad Paut, Where Pyaq and Pyt are matrices of a change of basis within
the graded components and of an automorphism of gg, respectively. Therefore, in
such a case we can get rid of the matrix P by setting it equal to the unit matrix
up to the above equivalence. If U, = AW,, the structure constants of gg read

Eoo_oq ik K _aitai—ay
Couj = Mm ag aj bl ciry e, .

L An operator D in GL(V) is a derivation of a Lie algebra g if D[z, y] = [D=,y] + [z, Dy] for
any z,y € V. The derivations of g constitute a Lie algebra called the derivation algebra Der(g)
of g. After the basis {e1,...,en} of V is fixed, entries of the matrix I' = (74) of a derivation D
satisfy the system: cfj%f/ = cf/jwf + cfj/y; .
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where A = (a;'-), A7l = (b;-), and there is no sum over i, j and k. We introduce
the notation

E o i gk K
:l','U = a; CLj bklcilj/. (2)

k

It is clear that :cf] = —xz7;. The condition (1) implies that there are three cases

for values of ¥ depending on the sign of o + a; — aj. The first two cases,
1] g g J

azfj:O it o+ a; —a <0,

k _ .k : —
T = € 4ij it o+ a; —ar =0,

(3)

k

can be formally united in the single case T *kco,ij’ a; + o — o < 0 since ¢,

is also zero if a; + a; — oy, < 0. The entries T3 with a; + aj — ag > 0 are not

constrained due to the limit process. They can be computed jointly with aé- from

the System of algebraic equations formed by equations (2) defining x¥,, where the

’Lj’
entries x¥. ; with aj+a;— oy, < 0 should be substituted from (3 (3). We re-arrange this
system. Namely, we multiply the tensors on the left and right hand sides of (2)

by ak, and contract Wlth respect to the index k. We additionally arrange the

derived equations a; a; cf,]/ = ak 3: . by re-denoting indices kK — k" and k" — k

and obtain the system of quadratlc equatlons

i i/ /
a; ag ck/Jl = al,z/:rk (4)

with respect to the entries of A and ¥ i
xf”] = Co i I o + o — ap < 0. For low-dimensional Lie algebras, system (4) can
easily be solved using a symbolic computation system, e.g., Maple.

In view of the above consideration, we can suggest the following algorithm for
realizing a contraction between Lie algebras by a generalized IW-contraction or
proving that such a realization is not possible. We fix two Lie algebras, g and
go- The starting point of the algorithm is the assumption that there exists the

contraction g — go.

with a; + a; — o > 0, where 7 < j and

1. It is convenient to begin the study of generalized IW-contractions with an
exhaustive study of simple IW-contractions of g. This is equivalent to the
study of sub-algebraic structure of g. If go is among the listed contracted
algebras, then the algorithm is completed. Otherwise, we continue the study,
excluding simple IW-contractions from it.

2. We find the algebra of derivations of the contracted algebra gg and select diag-
onalizable differentiations. There exist a one-to-one correspondence between
such differentiations and gradings of gg. In other words, we study gradings of
contracted Lie algebra in terms of diagonalizable differentiations. The consid-
eration of the gradings aims at resolving a twofold challenge—to obtain possible
values of parameter exponents of contraction matrices and to understand the
structure of constant components of these matrices.
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3. The signature of any generalized IW-contraction from g to gg coincides with
the diagonal of a diagonalized differentiation of go. Further restrictions on
parameter exponents follow from the absence of simple IW-contractions from
g to go. We should use the fact that up to positive multiplier, any signature
associated with a simple IW-contraction consists of zeros and units.

4. We fix a proper signature. The matrix P in the representation U, = AW_.P of
the contraction matrix U, is determined up to changes of basis within graded
components and up to automorphisms of the contracted algebra. Often the
matrix P provides an isomorphism between gradings of gg. Then we can set
P equal to the identity matrix. If for a fixed signature there exist a few non-
isomorphic gradings, they correspond to inequivalent values of the parameter-
matrix P. We separately set each of these values to the identity matrix by
carrying out the corresponding change the canonical basis of gy and continuing
the consideration with the new structure constants. In the above two cases,
which are typical for low-dimensional algebras, only the entries of the matrix
A remain unknown. These entries satisfy a system of algebraic equations im-
plied by the condition (1). If a signature possesses a parameterized family of
inequivalent gradings, the algorithm requires further development.

5. A significant part of cases for parameter exponents can be ignored as the
associated systems of equations for entries of the matrix A are extensions of
their counterparts for other cases and hence the consistency of the former
systems implies that of the latter ones.

6. We consider each tuple of parameter exponents for which the corresponding
system of algebraic equations for entries of the matrix A is minimal. This non-
linear system is represented in a specific form that allows us to apply methods
of solving systems of multi-variable quadratic equations.

4 Non-existence of generalized IW-contractions
between four-dimensional Lie algebras

Almost all contractions of four-dimensional Lie algebras were realized in [5,15] by
generalized IW-contractions. The exceptions are exhausted by the contractions

2421 = A1 @ Aza, As10 = A1 D A3z and 2g21 — g1 P 932

for the real and complex cases, respectively, since the complexification of the
algebra Ay 1¢ is isomorphic to the complexification 2gs 1 of the algebra 245 1. The
above real Lie algebras are defined by the following nonzero commutation relations
in their canonical bases:
24211 e1,e2] =eq, [es, eq] = es;
A1 @ Asa: [e,eq] = e2, [e3,e4] = €2+ e3;

Agr0:  ler,es3] =e1, [ez,e3] =ea, [e1,eq] = —ea, [e2,e4] = €.
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For the complex case, g... denotes the complexification of the corresponding alge-
bra A .

In fact, the contraction 2gs.1 — g1Pgs.2 cannot be realized as a generalized TW-
contraction. First this assertion was proved in [17]. Here we provide an optimized
proof of it, which illustrates algorithm presented in the previous section. As all
other contractions relating complex four-dimensional Lie algebras are equivalent
to generalized IW-contraction, the following theorem is true [17].

Theorem 1. There exists a unique contraction among complex four-dimensional
Lie algebras (namely, 2g21 — g1 @ g3.2) that cannot be realized by a generalized
Inonii—Wigner contraction.

Proof. We prove this theorem by contradiction. Suppose that the contraction
2g2.1 — g1 D gs.2 is equivalent to a generalized IW-contraction. We begin with
finding the gradings of the algebra g; @ gs2 that can be associated with this
contraction.

The derivation algebra of g; @ gs.2 consists of linear mappings whose matrices
in the canonical basis have the form [19]

nooo0y
p_ |0 % 5
0 0 95 7
0 0 0 0

Here the superscript and subscript of a matrix entry denote the corresponding
row and column numbers, respectively, and all entries expect identically zero ones
are arbitrary. Therefore, the matrix of any diagonalizable derivation of g; @ gs.2
is reduced, by changing the basis, to the form diag(3, «, ,0), which also gives
the only possible form (8, «,«,0) of signatures for generalized IW-realizations
of g1 @ gz2. In other words, each grading of the contraction g; @ g3 admits
at most three nonzero components, and one of these components correspond to
zero exponent. The signature (5, a,«,0) includes at least two nonzero values
since otherwise the contraction 2gs; — g1 @ g3.2 would be equivalent to a usual
IW-contraction, which is not true [10]. Hence the contraction 2g21 — g1 @ gs.2
may induce only gradings with three nonzero components, Lg, L, and Lg, where
0#a#p#0,dimLg =dimLy =1 and dim L, = 2. We prove that any such
grading G is equivalent, up to automorphisms of g; @ gs.2, to the grading G with
Lg = (e1), Lo = (e2,e3) and Lo = (eq).

Indeed, let I' be the matrix (in the canonical basis {e;}) of a derivation asso-
ciated with a grading G = (f)g, Le, Lg). Then 72 = 0 since the matrix T is diago-
nalizable. We choose a new basis €; = ejsg, where det(s}) #0, so that Lg = (¢1),

L, = (é2,€3) and Ly = (é4). Upon this choice the matrix I" has to be transformed

into a diagonal form. Hence s? = 53 = s{ = 0 and s} = s = s} = s3 = 0. Then

the change of basis in question can be represented as a composition of the change
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of basis within the graded components

5 1 5 2 3 5 2 3 4

€1 = €187, €2 = €285+ €35y, €3 = €353+ €353, €4 = €45,
with s}si(s3s3 — s3s3) # 0, which does not affect I' in any substantial way, and
of the automorphism

~ N ~ N ~ » Al | A 22 | 5 A3
€1 =€, ez =¢€, €3=¢€3, €e4==¢e4+ €15+ €25+ €35

setting v} = 72 = 73 = 0. (Here the coefficients 3}, 2 and &} are expressed via s;)
This means that up to the automorphism we can assume ig = Lg, Lo = Lo and
Lo = L.

The general form of the matrices for the generalized IW-contractions from 2gs 1
to g1 P g3 is U = AW.P, where A and P are constant nonsingular matrices and
W, = diag(f—:fB ,e%,e% 1), Since P is a matrix of transition between two graded
bases with the same signature (3, o, o, 0), it can be represented as P = Pyrad Pauts
where Py,q is a matrix of basis change within the graded components and P, is
an automorphism matrix of g; @ gszo. The matrix ]?gmd commutes with W, and
is absorbed into the matrix A by passing from A to A = APgr,q. The matrix Paye
can be ignored as it does not affect the commutation relations of the contracted
algebra g1 @ g3.2. Therefore, it suffices to study only contraction matrices of the
form U. = AW, assuming that P is the unit matrix. '

Each of the transformed structure constants (Ua)ﬁ/(Ua);,(Ug_l)ﬁlcfj includes
a single power of the contraction parameter €. The set of possible values for
exponents of such powers is

g:{ov a, ﬁv O[+,8, Q_B) ﬁ_av 20(, 20[—,6}

We treat the two possible cases a > [ and 8 > « separately.
In the first case, a > (3, we may have two definitely nonpositive exponents,
0 and 8 — . Then we set :cf] = c’&ij for the corresponding values i, j and k

and substitute such a:f] into (4). If additionally « and f are positive, we have no
other words, the system of equations for xfj and aé associated with the condition
a > > 0 is minimal among (i.e., is a subsystem of) all such systems arising in
the case a > . Moreover, any such system does not involve the parameters «
and §. For this reason specific values of them are not essential, and we can set,
e.g., a = 2 and § = 1 for convenience of symbolic computation. The resulting
system

more nonpositive elements in £ and, therefore, no other constraints for x%.. In

1.4 _ 1,2 2 1 1.1 1 1.4 _ 1.2 2 1
A Xy = aya7 — ayay, 1Ty — A5 + AyTy 9 = A A5 — AxA5,
2,4 _ 2,1 2 2,4 _
azry =0, ajTgy — aj +azryy =0,
3,4 _ 3 4 4.3 3,.1 3 3,4 _ 3 4 4.3
A Ty = aya07 — Aya7, 7Ty — A5 + AxT 9 = QAo — AyQ3,

4.4 _ 4.1 4 4.4 _
ayxy =0, ajTgy — Ay + ayTyy =0,
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1.1 11, 1.4 _ 1.2 21
a1Ty3 — Ay — a3 + ayry3 = a a3 — azaz,

2.1 2 9, 9.4 _
ajxgy —aj — a3+ ajry; =0,

3.1 33, .34 _ 34 43
a1Ty3 — @y — a3 + azry3 = a a3 — a4a3,
ajryy — ay — az + ajrg; =0

has no solution with det(aé-) # 0, which is easily checked by Maple.

The second case, 8 > «, is considered in a similar way. If additionally 8 >
a > 0 and 2a > 3, the set £ contains only two nonpositive elements, 0 and o — 3,
and both these elements are always nonpositive. Hence the system of equations
for xfj and aé associated with the inequalities § > a > 0 and 2a > S is minimal
among (i.e., is a subsystem of) all such systems arising in the case 5 > «. Specific
values of the parameters o and 3 are again inessential as any such system does not
involve them, and we can set, e.g., « = 2 and § = 3 for convenience of symbolic
computation. It can again be checked by Maple that the resulting system of this
case also has no solution with det(aé) # 0.

ayafy + azrd) +ajry = ajai —ajal,  —ay +ajal; = ajal — ajay,
a%xil + a%xil + aixil =0, — a% + aixfm =0,

ayafy + a3z +ajry = ajay —ajel,  — a3+ aja, = ajey — ajas,
a%xil + aéxil + aﬁmil =0, - a% + aix@ =0,

— a3 — a3 + ajayy = ajai — afag,

— a% — a% + %215333 =0,

~a} — o + alely = alaf — el

—a%—aé—i—aﬁxig,:O. O

Corollary 1. There exist precisely two contractions among real four-dimensional
Lie algebras (namely, 2A21 — A1 @ Aso and Ag10 — A1 @ As2) which cannot be
realized as generalized Inoni—Wigner contractions.

Combining the results of [5,15,17] also yields the following assertion.

Theorem 2. Any generalized Inoni—Wigner contraction between complex (resp.
real) four-dimensional Lie algebras is equivalent to a generalized Inoni—Wigner
contraction whose signature consists of nonnegative integers that are not greater
than three. This upper bound is exact. The only generalized Inéoni—Wigner
contractions necessarily involving exponents which do not belong to {0,1,2} are
2A2_1 — A4.1, A4.10 — A4_1 and SO(3)EBA1 — A4_1 i the real case and 292,1 — 4.1

in the complex case. The minimal tuple of exponents for each of these contractions
is (3,2,1,1).
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5 Conclusion

Although generalized IW-contractions of four-dimensional Lie algebras over the
real and complex fields were exhaustively studied in [5,15,17], there are still
a number of open problems about generalized IW-contractions in higher dimen-
sions including even dimensions five and six. In particular, no examples on non-
universality of generalized IW-contractions contractions for five-dimensional (resp.
six-dimensional) Lie algebras are known. Note that all contractions of five-dimen-
sional nilpotent Lie algebras and elementary contractions of six-dimensional nilpo-
tent Lie algebras proved to be equivalent to generalized IW-contractions [3, 8.
(A contraction is called elementary if it is not equivalent to a repeated contrac-
tion.) The problem posed can be additionally specified to the following ques-
tion: Is there an elementary contraction between five- or six-dimensional Lie al-
gebras that cannot be realized by generalized IW-contractions? The examples
on non-universality of generalized IW-contractions for four-dimensional Lie alge-
bras over the real and complex fields are in fact given by repeated contractions.
Both the corresponding contractions in the real case 2457 — A; ® Ass and
Aq10 — A1 @ Aso and their complex counterpart 2go1 — g1 D gs.2 can be repre-
sented as compositions of generalized IW-contractions, 2451 — AQ'B — A1 D A3,
As10 — Agg — A1 ® A3zo, 2g01 — 92‘8 — g1 D g3.2, respectively. Here the real
Lie algebra A§ ¢ is defined by the following nonzero commutation relations in its
canonical basis:

[e2,e3] = €1, [e1,eq] =e1, [e2,eq] = ea,

and g ¢ denotes the complexification of the algebra A9 . At the same time, the
contraction between the seven-dimensional characteristically nilpotent Lie alge-
bras gr and gg, which was constructed by Burde [2], is elementary since the di-
mensions of the orbits of these algebras are dim O(gr) = 39 and dim O(gg) = 38,
i.e., their difference equals 1.
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We consider partial differential equations admitting infinite-dimensional
symmetry algebras parametrized by arbitrary functions of dependent variables
and their derivatives. These symmetries were shown to lead to infinite sets
of (essential) conservation laws unlike infinite-dimensional symmetries with
arbitrary functions of independent variables. We discuss the problem of
finding all Lagrangian PDE’s of the second order that possess an infinite set
of conservation laws with an arbitrary function of the dependent variable and
its first and second derivatives. We show that the problem leads to two classes
of PDE’s, and among them are equations of Liouville type.

1 Introduction

Infinite-dimensional (or infinite) symmetry algebras parametrized by arbitrary
functions and their relations to conservation laws have been studied considerably
less extensively than finite-dimensional Lie symmetry groups and corresponding
conservation laws. According to the classic Noether result (the Second Noether
Theorem [9], see also [10]) infinite variational symmetries with arbitrary functions
of all independent variables do not lead to conservation laws but to a certain rela-
tion between equations of the original differential system (which means that the
original system is underdetermined). Infinite variational symmetries with arbi-
trary functions of not all independent variables were studied in [12] and shown
to lead to a finite number of essential (integral) local conservation laws. Each
essential conservation law is determined by a specific form of boundary condi-
tions, see e.g. [12,13,15,16]. It was noted in [14] that the situation with infinite
symmetry algebras parametrized by arbitrary functions of dependent variables
is radically different leading to an infinite set of essential conservation laws (lo-
cal conserved densities). Two known examples of this situation are equations
of Liouville type, (see [22-24]) that can be integrated by the Darboux method,
see e.g. [1,2,7,21], and hydrodynamic-type equations [4,20]. A general case of
one scalar Lagrangian equation of the second order admitting infinite variational
symmetries with arbitrary functions of a dependent variable u (v = u(z,t)) and
its first derivatives u,,u; was analyzed in [17] where classes of partial differential
equations possessing infinite symmetries with arbitrary functions of a dependent
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variable and its first derivatives were found along with corresponding infinite sets
of essential conserved quantities. Extension of this work to the case of systems
of two equations for two dependent variables was demonstrated in [18]. Thus,
equations with infinite-dimensional variational symmetry algebras parameterized
by arbitrary functions of dependent variables have a remarkable property: they
possess infinite sets of essential conservation laws.

In the present paper we discuss a problem of finding all Lagrangian scalar
PDE’s of the second order that possess an infinite set of conservation laws with
an arbitrary function of the dependent variable and its first and second derivatives;
in general form this problem has not been posed or solved in the literature. We
show that this problem leads to two classes of PDE’s and analyze equations of
each class.

2 Infinite symmetries and essential conservation laws

Let us briefly outline the approach we follow, for details see [12,17]. By a conser-
vation law for a differential system

w(w, u, ugry, ugg), - - ) = 0, a=1,...,n,
is meant a divergence expression
DZ'KZ(H?, u, u(l), 'LL(Q), cee ) = 0,

vanishing for all solutions of the original system (=). Here and in what follows
r= (2,22, 2™ and v = (u',u?,...,u") are the tuples of independent and
dependent variables, respectively, and z™t! = ¢; u(y) is the tuple of rth-order
derivatives of u, r = 1,2,...; w® and K; are differential functions, i.e., smooth
functions of x, u and a finite number of derivatives of w; see [10] for a precise
definition of differential functions. The index a runs from 1 to n and the indices ¢
and j run from 1tom—+1,a=1,...,nand i,j =1,...,m+ 1. Summation over
repeated indices is assumed.

Two conservation laws K and K are equivalent if they differ by a trivial con-
servation law [10]. A conservation law D;P; = 0 is trivial if a linear combination of
two kinds of triviality is taking place: 1. (m+1)-tuple P vanishes on the solutions
of the original system: P; = 0. 2. The divergence identity is satisfied in the whole
space: D;P; = 0.

By an essential conservation law [12], we mean such non-trivial conservation
law D; K; = 0, which gives rise to a non-vanishing conserved quantity

Dt/ Ky dztda? - - da™ =0, reDcR™ K, # 0. (1)
D

We consider functions u® = u®(z) defined on a region D of (m+1)-dimensional
space-time. Let

S = / L(z,u,ugy, - - ) d™ g
D
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be the action functional, where L is the Lagrangian density. Then the equations
of motion are

Ea(L) = w“(az, u, U(l), U(Q), ‘e ) = 0, (2)

where

. d 9
E —8ua—Zi:Dlau?+ZDlD]8u?j+~- (3)

i<y

is the Euler-Lagrange operator. Consider an infinitesimal (one-parameter) trans-
formation with the canonical infinitesimal operator

a 9 a 9 DA i
Xo=a's o+ ;(Dza )aug + ; (D:D;a )augj e (4)
a® = a(x, u,ugy, - )

Variation of the functional S under the transformation with operator X, is
69 :/ X Ld™" . (5)
D

X, is a variational (Noether) symmetry if
XoL = D; M, (6)

where M, = Mi(a:,u,uu), ...) are smooth functions of their arguments. The
Noether identity [11] (see also [5], or [19] for the version used here) relates the
operator X, to E?,

Xy =a"E*+D;R,;, (7)
R-—aaa + E (Da“)—oﬂg D 0 + (8)
ai — ul . k . k 6U(-1k .
? k> k<i g

Applying the identity (7) with (8) to L and using (6), we obtain

Dz(Mz - Roﬂ'L) = Oéawa, (9)
which on the solution manifold (w =0, D;w =0, ...) is
D;(M; — R L) = 0, (10)

leads to the statement of the First Noether Theorem: any variational one-para-
meter symmetry transformation with infinitesimal operator X, (4) gives rise to
a conservation law (10). Consider now infinite variational symmetries.
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2.1 Arbitrary functions of independent variables

Consider an infinite variational symmetry with a characteristic a of the form

a® = a®p(x) + a“Dip(x) + Z ™ DDp(x) + -+, (11)

1<J

where p(z) runs through a set of smooth functions of # and the coefficients a®°,
a®, o™ .. are some differential functions.

The Second Noether Theorem [9] deals with the case when p(z) is an arbitrary
function of all base variables of the space. The situation when p(x) is an arbitrary
function of only some of base variables was analyzed in [12]. For a Noether
symmetry generator X, (4) in this case we have

55:/ 5Ldm+1x:/ XaLdm“x:/ D;M; d™ e = 0. (12)
D D D

Therefore, the following conditions for M; (Noether boundary conditions) should
be satisfied [12]

=0, i=1,....m+1, (13)

where - denotes the limit along the ith axis. Equations (13) are usually satisfied
for a “regular” asymptotic behavior: u®* — 0 and u{ — 0 at infinity, or for periodic

solutions. Integrating equation (10) over the space Q (z!,22,...,2™) we get

/da:l...d:cth(Mt—RatL)i/dml...daszDi(RmL—Mi). (14)
@ Q i=1

Applying the Noether boundary condition (13) and requiring the LHS of (14) to
vanish on the solution manifold leads to the “strict” boundary conditions [12]

Ro1 L 2 == RamL

x = 0N

" ~0. (15)

= RqoL
Q

z 360

In the case L = L(z,u,u()), the strict boundary conditions (15) take the simple
form

. OL

— =0 l=1,... . 16
O‘aug ’ AR L (16)

500

It was shown in [12] that in the case of an arbitrary function of (not all) inde-
pendent variables conditions (13) and (15) necessary for the existence of Noether
conservation laws allow only a finite number of essential conservation laws corre-
sponding to infinite symmetry of the system.
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2.2 Arbitrary functions of dependent variables

Consider now infinite symmetries whose characteristics contain an arbitrary
smooth functions f of dependent variables and their derivatives [12], i.e.

aa:aaOf_i_aasasf_’_.__’

where index s numerates arguments of the function f = f(u, U1y, - - .) and the

coefficients a®?, o, ... are some differential functions. The conservation law

(10) then has the form
Dy(M; — Ry L) + Dy(My — Ryt L) = 0, l=1,...,m, (17)

where

M; = M) f+ M;Osf + -+,

0 (18)
Rogl = POf + PLo,f + -

for some differential functions MZ-O, M?, ..., and Pio, P, .... In order for the
system to possess (Noether) local conserved quantities, both Noether (13) and
strict boundary conditions (15) have to be satisfied. Let

flusuay, ) = g(§(u, uy, - - .)), (19)

where g runs through the set of smooth function of a single argument. Assuming
regular boundary conditions u® — 0, u$ — 0, ... at infinity, the Noether boundary
conditions (13) take the form

M; (9(£(0,...,0),4'(£(0,...,0),...)

(20)
— M; (9(£(0,...,0),4'(£(0,...,0),...) = 0.
Conditions (20) are satisfied for any smooth function g and
1€(0,...,0)| < oc. (21)

It is easy to see that the strict boundary conditions (15) are also satisfied if
restrictions (21) are met.

Thus, in the case of infinite symmetries with arbitrary functions of dependent
variables a% = fa(u,u(l), ...) unlike the case with independent variables, there
are no serious restrictions for functions f® to lead to local conservation laws,
Therefore, in this case the continuity equation (17) provides an infinite number of
essential conservation laws [17]. The corresponding Noether conserved quantities
can be found in the form

D, / de'dr? ... dz™ (M; — RotL) = 0. (22)
Q
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3 Equations possessing infinite variational symmetries
with an arbitrary function f(u,wu@),u(2))

Consider the case m = n = 1 and denote 2! = x and 22 = t. We look for equations
with first-order Lagrangians, L = L(u,u,,u:), possessing X, as a variational
symmetry for each characteristic a of the form

a=Pf(&)+Qf (&) +Rf(), (23)

where f is an arbitrary smooth functions of a single argument, £ is a smooth
function of u and its derivatives up to order two, & = &(u, U(l),U(g)), and P, Q)
and R are some differential functions. Then we have

XoL =Dy M, + Dy M, (24)
with

M, = Af(§) + Bf'(§) + Cf (),

M; = Ef(€) + Ff'(§) + Gf"(€),

where A, B, C, E, F and G are some differential functions.

Calculating the LHS of (24) (X,L) we obtain terms with f"”'(£), (&), f'(£),
and f(&). Using the fact that the function f(§) is arbitrary we can equate coeffi-
cients of derivatives of f to corresponding coefficients in the RHS. We obtain the
following four constraints, respectively:

& (RL, —C)+ & (RL, — G) =0,
g:v (QLZ - B) + gt (QLp - F)

=D,C — (D,R)L, + D;G — (D:R)L, — RL,,
gx(PLz*A)+§t(PLP*E)

- Da:B - (DxQ)Lz + DtF - (DtQ)Lp - QLu,
PL,=D,A+ D\FE,

(25)

(26)

where the following notations were used: u, = z, uy = w; & = D&, & = Di&.
Solving the first equation of this system for G and using

w =Ly —Dy(L,) —D¢(Lyp) (27)
we have
G:RLer?(RLZ—C),
t

gw (QLZ_B)+‘£t (QLP_F)
=D, (RL, — C)+ Dy [?

—t(RLz — C)} — Ruw, (28)
gx(PLz_A)“‘gt(PLP_E)
=-D, (QLZ — B) — Dy (QLp - F) - Qw7

PL,=D,A+DE.
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Introducing B, C, F
B=QL, - B, C =RL, - C, F=QL,-F, (29)

and expressing E from the third equation of system (28), we obtain

G =RL,+ 5—””6’,
‘ ) (30)
E=PL,+ 2 (PL,— A) te DB+ DiF 4 Qu]
t t
and
&B+&F = -D,C + Dy [&”C} — Ruw,
&t
¢ ¢ (31)
SDP — P [Lu — Dy (Lp + xL)] =-D,A+Dy [*“A — H} ,
&t &t
where
5:Lp+§iLz, H:D”’B+]th+Qw. (32)
t t

Since we are looking for local conservation laws we require all coefficients to be
local functions. The second equation in (31) will have local solutions for the
function P if the integrating factor e® is local

_ Lu—Dt/B _ qu
e =e {77 dt:,Befﬁdt.

- Lu
The integrating factor is local if the function e e i is local. Therefore
we require that the integral

/L“dt
Lp + gchz/ft

be a local function. The last condition means the existence of function v € C*
such that

Ly, B
Lp + foZ/ét

Since L = L(u,u()) and § = &(u,u(), ue)), the LHS of (33) is nonlinear with
respect to the third derivatives of function u, w;jx while the RHS is linear with
uijk- The equation (33) therefore, can be satisfied only if L, = 0 (not interesting)
or L, =0.

Thus, the first class of equations possessing an infinite symmetry algebra (25)
is given by L, = 0, meaning that

Vi (u, ury, w(2))- (33)

L = L(ug,ut), (34)
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see also [17]. Any equations with Lagrangians of the form (34) have an infinite
number of essential conservation laws parametrized by an arbitrary function of the
dependent variable and its first and second derivatives given by expression (17)
((22)). An interesting example of the class (34) is two-dimensional Born—Infeld
equation

(1 — Uy + 2ustigtips — (14 u2)uy = 0, (35)
with the Lagrangian density
L=(1+u2—u2)". (36)

Born-Infeld Lagrangian (36) is related to classical relativistic string Lagrangian
in a four-dimensional space, see e.g. [3]. Infinite set of conservation laws for
Born-Infeld equation (35) and the relation to its infinite group of contact trans-
formations was studied in [8]. Another example of the class (34) is hyperbolic
Fermi-Pasta—Ulam equation [6]

Ut — kugzpuxx =0, (37)
with the Lagrangian density

2 3

U ku
L=-21t-—2 38
2 3 (38)

Note that the condition L, = 0 came as a requirement that solutions of the
second equation of the system (31) for the function P (and its integrating factor)
be local. There is no need for this condition in the case when

D,P=0, P=P(). (39)

In this case the second equation of (31) takes the form

P [Lu ~ D, <Lp - &”Lﬂ _ D, A-Dy |5A - H} . (40)
& &t
We can rewrite the equation (40) in the form
D,H =P [Lu ~ D, <Lp + &EL)] +D, ?A] — D, A, (41)
t | &t
and solve it for H
H= P/Ludt - P (Lp + 5‘”’“’Lz> + ?A - /(DxA)dt + g(x), (42)
t t

where g(z) is arbitrary. Since L, # 0 from the requirement that function H be
local we obtain P = (0 and

H= ZA _ / (Dy A)dt + 3(x). (43)
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The function A is local if

D, A =4y, Y = P(u, ), ug), (44)

meaning that

A = ugp(u, ugry) + we B (u, wy) + plu, ug)

Y = Uzt B(u, ugry) + Uzzp(u, ury) + v(u, ugy), (45)
with ¢, B, u,v € C1. As a result we have two constraints (31) for the coefficients
P,Q,R,A,B,C,E,F,G determining our infinite symmetry (23) and infinite es-
sential conservation laws (17) ((22)) along with the expressions (29) for finding

B,C, F and (30) for finding G and E. Using the definition of H (32) we can write
these two constraints in the form

6.8 = —&F —D,C+ D, [ic} " R, (46)
t

gtH = D$B + DtF + Qw.

Solving the first equation of the system for B and substituting it into the second
equation we obtain

€H — _fo _Dm?+D$W—Dw}§“+DtF+QW. (47)

In a special case F = C' = 0 we obtain

€ = Dmlz‘” Qu, (48)

where w is the LHS of the original equation, see (30). Thus, we obtain two classes
of solutions

1. (Di)H =0, Dy #0; (49)
and

2. D& =0. (50)
Case 1 naturally splits into two sub-cases

la. H =0, (51)
and

16. Dy =0. (52)

It can be shown that solution of the system (31) in general case also gives rise to
two classes (49) and (50), and that case 1la (51) leads to trivial conservation laws
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(the details will be given elsewhere). The case (52) is known to lead to equations
of Liouville type, see e.g. [1,2,7,21-24]. The most common equation of this class
is the Liouville equation

Uz Ut

Ugr = € with L= + e, (53)

for which we have [23]

2
Uy

o = U;pf,(f) + sz/(é) = U:Bf,(f) + fmf//(£)7 where § = ug; — o

Indeed,

u u

D€ = ugat — ugtizy = Dy(€¥ — w) —ugp(e” —w) = =Dpw + ugw = 0,

where w = € — uy;. The coefficients P, Q, R, A, B, C, E, F and G in (23), (24),
(25) take the form

P:07 Q:ul‘7 R:§$7 AZO: B = 92 —’U;$t+€,
Uy UxQ Uz
= E=-1, F=—/— = .
¢ 27 ’ 2 ¢ 2

Clearly, the case (50) also leads to the equations of Liouville type (z <> t).

4 Conclusion

We have demonstrated that the problem of finding all Lagrangian PDE’s of the
second order possessing an infinite set of conservation laws with an arbitrary
function of the dependent variable and its first and second derivatives leads to
equations of two classes: equations of the form (34) with Lagrangians depending
only on first derivatives of the function, and equations of Liouville type charac-
terized by relation (52).
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We present two different hierarchies of PDEs in 141 dimensions whose first and
second members are the shallow water wave Camassa—Holm and Qiao equa-
tions, correspondingly. These two hierarchies can be transformed by recipro-
cal methods into the Calogero-Bogoyavlenskii-Schiff equation (CBS) and its
modified version (mCBS), respectively. Considering that there exists a Miura
transformation between the CBS and mCBS, we obtain a relation between
the initial hierarchies by means of a composition of a Miura and a reciprocal
transforms.

1 Introduction

Reciprocal methods are based on transformations in which the role of the indepen-
dent and dependent variables is interchanged. When the variables are switched,
the space of independent variables is called the reciprocal space, or in the case of
two dimensions, the reciprocal plane. As a physical interpretation, whereas the
independent variables play the usual role of positions, in the reciprocal space,
this number is increased by turning certain fields (usually velocities or parameter-
ized heights of waves, in the case of fluid mechanics) into independent variables
and vice-versa [4]. Recently, a lot of attention has been paid upon reciprocal
transformations, as they appear to be a very useful instrument for the identifica-
tion of ordinary or partial differential equations and high-order hierarchies which,
a priori, do not have the Painlevé property (PP) [6,8,9].

According to the Painlevé criterion of integrability, we say that a non-linear
equation is integrable if its solutions are single-valued in the neighborhood of
the movable singularity manifold. The PP can be checked using an algorithmic
procedure developed by Weiss [16,17], which gives us a set of solutions relying on
the truncation of an infinite Laurent expansion. In this situation, one can prove
that the manifold of movable singularities satisfies a set of equations known as
the singular manifold equations (SME). Also, the SME are a subject of our rising
interest due to the possibility of classification of O/PDEs in terms of their SME
used as a canonical form. If this were the case, two apparently unrelated equations

*Corresponding author.
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sharing the same SME must be tantamount versions of a unique equation. In this
way, we are reducing the ostensible bundle of non-linear integrable equations into
series of equivalent ones.

The PP is non-invariant under changes of independent/dependent variables.
For this reason, we can transform an initial equation which does not pass the
Painlevé test into another which successfully accomplishes the Painlevé require-
ments. In most of the cases, the transformed equation is well-known, as well as
its properties, integrability and so on. In this way, reciprocal transformations can
be very useful, for instance, in the derivation of Lax pairs (LP) in such a way that
given the LP for the transformed equation, we shall perform the inverse reciprocal
transformation to obtain the LP for the initial one.

Nevertheless, finding a suitable reciprocal transform is usually a complicated
task and of very limited use. Notwithstanding, in cases of fluid mechanics,
a change of this type is usually reliable. In [5,10], similar transformations were
introduced to turn peakon equations into other integrable ones.

Sometimes, the composition of a Miura and a reciprocal transform, hence the
name Miura-reciprocal transform, helps us to relate two different hierarchies, which
is the purpose of the present paper. We shall illustrate this matter through a
particular example: the Camassa—Holm (CH1+1) and Qiao (Qiaol+1) hierarchies
in 141 dimensions. We shall prove that a combination of a Miura and reciprocal
transforms can relate the parameterized height of the wave in Camassa—Holm’s
U =U(X,T) with Qiao’s u = u(z,t) hierarchies. A summary of the process is
included within the following diagram:

Reciprocal T.

CH1+1 — CBS
Miura-reciprocal T. | | Miura T.
Qiaol+1 = mCBS

Reciprocal T.

In view of this, we shall present the plan of the paper as follows. In Section 2,
we establish the reciprocal transformations that link CH1+1 and Qiaol+1 to CBS
and mCBS, respectively. Section 3 is devoted to the introduction of the Miura
transformation between CBS and mCBS, as well as the inverse reciprocal trans-
form from CBS and mCBS to the initial CH1+41 and Qiaol+1. In the conclusion,
we underline several important relations between the fields and the independent
variables of the two initial hierarchies.

2 Reciprocal links

In this section we review previous results from references [7,9], in which the recip-
rocal links for the Camassa—Holm and Qiao hierarchies in 241 dimensions were
introduced, and particularize these to the case of 14+1 dimensions that concerns
us in this paper. Notice that technical details will be omitted but can be checked
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in the aforemention references. It is important to mention that henceforth we
shall use capital letters for the independent variables and fields appearing in the
Camassa—Holm’s hierarchy and lower case letters for those variables and fields
concerning Qiao’s hierarchy.

2.1 Reciprocal link for CH1+41

The n-component Camassa—Holm hierarchy in 141 dimensions can be written in
a compact form in terms of a recursion operator as follows:

Ur = R"Uy,

where R = KJ ! with K = xxx — Ox and J = —3(dxU + Udx). The factor
—1/2 is conveniently added in J for future calculations. If we include auxiliary
fields Q) with i = 1,...,n when the inverse of an operator appears, the hierarchy
can be written as:

Ur = JQ(I)’
Ux = KQ™.

It is also useful to introduce the change U = P? such that the final equations
are of the form

1
— —— (PoW
Woex = O = =P (PATD) - i=1n 1, 3
P2 = Q) (4)

If i = 1 we recover the celebrated Camassa—Holm equation in 141 dimensions [3].
Given the conservative form of equation (2), the following transformation arises
naturally:

1
dTy = PdX — 5PQ<1>dT, dTy = dT, (5)

such that d?Ty = 0, recovering (2). We shall now propose a reciprocal trans-
formation [5] by considering the former independent variable X as a dependent
field of the new pair of independent variables X = X(Tp,T1), and therefore,
dX = XodTy+ X1 dIh, where the subscripts zero and one refer to partial deriva-
tive of the field X with respect to Ty and 77, correspondingly. The inverse trans-
formation takes the form

dTy

1
dX = —= + 5Q(%m, dT = dTy, (6)
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using which, by direct comparison with the total derivative of the field X, we
obtain

We can now extend the transformation [9] by introducing n—1 independent vari-
ables Ty, ..., T, which account for the transformation of the auxiliary fields Q)
in such a way that OO = 92X, withi=2,...,nand X; = %. Then, X is a func-
tion X = X (Ty, T1, T, ..., T,) of n+1 variables. It requires some computation to
transform the hierarchy (2)—(4) into the equations that X = X (Ty, 11,75, ..., Ty)
should obey. For this matter, we use the symbolic calculus package Maple. Equa-
tion (2) is identically satisfied by the transformation and (3), (4) lead to the
following set of PDEs

Xit1 Xoo 1 [ Xoo 2 ,
— = — + X o . ¢ =1,...,n—1
< XO >0 { < XO + 0>0 2 < XO + 0> }Z ) 1 ) , ) (7)

which constitutes n—1 copies of the same system, each of which is written in three
variables Ty, T;, T;+1. Considering the conservative form of (7), we introduce the
change

1 [/ Xoo 1 { Xo0 2
Moy=- (221 xy) - (22 4+ x
0 4{(X0 + 0>0 5 <X0 + 0) (8)

with M = M(Ty,T;,T;4+1) and ¢ = 1,...,n — 1. The compatibility condition of
Xooo and X;41 in this system gives rise to a set of equations written entirely in
terms of M:

Mo iv1 + Mooo; + 4M; Moo + 8MoMo; =0, i=1,...,n—1, (9)

that are n—1 CBS equations [1,2] each of which depends on three different vari-
ables M = M (T, T;, T;+1). These equations have the PP [11,12] and the singular
manifold method (SMM) can be applied to derive its LP. Making use of CBS’s
LP and with the aid of the inverse reciprocal transform, we could derive a LP for
the initial CH1+1. The detailed process can be consulted in [8,9].

2.2 Reciprocal link for Qiaol+1

The n-component Qiao hierarchy in 1+1 dimensions can be written in a compact
form in terms of a recursion operator:

ur =1 Uy
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such that 7 = kj =1 with k = Oppz — 0, and j = —0,u(0;) " 'ud,. If we introduce n
additional fields v(¥ when we encounter the inverse of an operator, the expanded
equations take the form

(7 :jv(1)7
ko) — jv(i‘*'l)7 i=1,...,n—1, (10)

This hierarchy was firstly introduced in [7] as a generalization of the Qiao
hierarchy to 2+1 dimensions, depicted in [13] and whose second member was
studied in [14]. If we now introduce the value of the operators k and j, we obtain
the following equations:

up = — (uw(1)>$, (11)
) = (uw““)) Ci=1,....n—1, (12)

xT

v,

u =" — ™,

in which the change w;g) = uvg) with other n auxiliary fields w® has been neces-
sarily included to operate with the inverse term present in j.

Given the conservative form of (11), the following change reciprocal transfor-
mation [5] arises naturally

dTy = udx —uwWdt, dTy = dt (14)

such that d*Ty = 0 recovers (11). We now propose a reciprocal transformation [9]
by considering the initial independent variable = as a dependent field of the new
independent variables such that © = x(Ty, T} ), and therefore, dz = xo dTy+x dT.
The inverse transformation adopts the form:
dT
do == +wWary, dt = dTy. (15)
U
By direct comparison of the inverse transform with the total derivative of x, we
obtain that:

ro——, X1 = w(l).

1
u
We shall prolong this transformation [15] in such a way that we introduce new
variables Ty, ..., T, such that = (T, T4, ..., T),) according to the following rule
w® =gy, x; = % for i = 2,...,n. In this way, (11) is identically satisfied by the
transformation and (12), (13) are transformed into n — 1 copies of the following
equation, which is written in terms of the three variables Ty, T;, T4 1:

<ﬂ%+1+%00> :<%) P=1,. .1
oty o /o 2 i
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The conservative form of these equations allows us to write them in the form of a

system as:
2
mo="0, (16)
my = L L T00 (17)
ZTo i)

which can be considered as modified CBS equation with
m = m(To,...,’_Z—%,Tl'+1,...,Tn).

The modified CBS equation has been extensively studied from the point of view
of the Painlevé analysis in [8], its LP was derived and hence, a version of a LP
for Qiao is available in [7].

3 Miura-reciprocal transformations

In the previous section, we have seen that both hierarchies CH1+41 and Qiaol+1
are related to the CBS and mCBS, respectively, through reciprocal transforma-
tions. These final equations possess the PP, whereas the initial did not accomplish
it. In this way, we are able to obtain their LPs, solutions and many other prop-
erties. The inverse reciprocal transform allows us to obtain LPs for the initial.
From the literature [8], we know that CBS and mCBS can be transformed one
into another. In this manner, the fields present in CBS and mCBS are related
through the following formula

AM = 29 — m. (18)

This is the point at which the question of whether Qiaol+1 could possibly be
a modified version of CH1+1 arises. Nevertheless, the relation between these two
hierarchies cannot be a simple Miura transform, since each of them is written in
different triples of variables (X,Y,T) and (z,y,t). However, both triples lead to
the same final triple (7o, 71,7,). Then, by combining (5) and (14) we have

1
PdX — §PQ(1)dT = udzx — uw(l)dt, dt = dT, (19)

that yields a relationship between the variables in CH1+1 and Qiaol+1. Using
formula (18), we obtain the relations between fields X and x

X

AMy = zoo — Mo = =2 + X = o, (20)
Xo

4Mi:$0i—mi:>— 1+1:$0i—@—x1+1, izl,...,n—l, (21)

Xo To )



Miura-reciprocal transformations for two integrable hierarchies 209

where we have also employed (8), (16) and (17). Now, by using the inverse
reciprocal transformations proposed in (6) and (15) in equations (20) and (21),
we obtain (see Appendix):

1 1 1
—=(= — 22
: (P>X T (22)
(i+1) (i+1)
PO o) _ 0y o ) = P T (23)
xT 2 b
where ¢ = 1,...,n — 1. Furthermore, if we isolate dz in (19) and use expres-

sion (22), we have

_(,_Px o _ QW Px
dx—<1 P>dX+<w — (1= ) ar. (24)

The condition d?z = 0 implies that the cross derivative satisfies

Px Q0 Px ol + o
( P )T (“’ 2 P)) 7" 2 (25)

Finally, with the aid of (25), we write (24) in the form

B Px Pr
dx—(l— P)dX— PdT

which can be integrated to give
r=X—InP.

This equation gives us an important relation between the initial independent
variables X and z in CH1+1 and Qiaol+1, respectively. We point out that the
rest of independent variables, y, t and Y, T' do not appear in these expressions,
since they were left untouched in the transformations proposed in (5) and (14).

Summarizing, hierarchies (1) and (10) are related through the Miura-reciprocal
transformation

InU
—X -
T 5

SCRE:

which means that the Qiao hierarchy can be considered as the modified version
of the celebrated Camassa—Holm hierarchy.
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4 Conclusions

Our aim was to highlight the utility of the reciprocal transformations for the
identification of integrable equations, for the study of their properties as well as
for classification purposes in the case of disguised versions of a given equation.
To illustrate this we have presented the example of the Camassa—Holm and Qiao
hierarchies in 1+ 1 dimensions. For these two hierarchies we have derived a trans-
formation between their fields and independent variables. This has been achieved
by a combination of a Miura and a reciprocal transform, which we have called
Miura-reciprocal transformation.

Appendix
e A method for obtaining equation (22).
1 1
Equation (20) provides zo = X + do(In Xp). Since Xy = 2 and g = —,
u

1 1

the latter equation becomes — = B Oo(In P), and by using (5) we have
u

1 1 1

Z= P ﬁ(ln P)x, which yields (22).

e A method for obtaining equation (23).
If we use (6) and (15), then (21) becomes

POU+1) . , :
—— = A (W) — udoo(w™) — uw ),
Here and in all equations below i =1,...,n — 1. And now (14) gives us
P+ (@) (@) ,
_ A e 2 RN (R SV
2 U U

Using the expressions wg) = uvg(f), uwlt) = ) — v:(f;,?, arising from (13),
we arrive at
1
_PQ(Z ) 0
2 * ’

as is required in (23), and uw(*1) = () — v{¥) can be written as

w9 = (60 -) o (o -ot2) = (257 (25

From (19), we have J, = %BX, therefore,

) PQ(H-l) " PQ(Z—H)
(i+1) _ il
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, pPQli+l) 1 . ;

We can eliminate u using (22). This results in

i+1 i
_oft e

2

LU+
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Finite-dimensional subalgebras of a Lie algebra of smooth vector fields on a cir-
cle, as well as piecewise-smooth global transformations of a circle on itself, are
considered. A canonical form of realizations of two-dimensional noncommuta-
tive algebra is obtained. It is shown that all other realizations of smooth vector
fields are reduced to this form using global transformations.

1 Introduction

The description of Lie algebra representations by vector fields on a line and a plane
was first considered by S. Lie [3, S. 1-121]. However, this problem is still of great
interest and widely applicable. In spite to its importance for applications, only
recently a complete description of realizations begun to be investigated systemati-
cally. Furthermore, only since the late eighties of the last century papers on that
subject were published regularly. In particular, different problems of realizations
were studied such as realizations of first order differential operators of a special
form in [2], realizations of physical algebras (Galilei, Poincaré and Euclid ones)
in [9,11]. In [4] it was constructed a complete set of inequivalent realizations of
real Lie algebras of dimension no greater than four in vector fields on a space of
an arbitrary (finite) number of variables. In that paper one can obtain a more
complete review on the subject and a list of references.

Almost in all works on the subject realizations are considered up to local equiv-
alence transformations. Attempts to classify realizations of Lie algebras in vector
fields on some manifold with respect to global equivalence transformations (on the
whole manifold) have been made only in a few papers (see, e.g., [6,8,10]). In these
papers it is proved that (up to isomorphism) there are only three algebras, namely,
one-dimensional, noncommutative two-dimensional and three-dimensional isomor-
phic to sl(2,R), that can be realized by analytic vector fields on the circle.

The purpose of this paper is to construct all inequivalent realization of the
two-dimensional algebras on the circle. For this reason, we are not limited by the
requirement of analyticity, as it is considered in [6,8, 10].
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On the circle S' we introduce the parameter § € R, 0 < 6 < 27. Then
the vector fields on S* can be represented as a vector field U(G)d%, where v(0)
is a smooth real function on the circle [5]. One more possibility is to assume
that # € R, and v(#) is a smooth 2m-periodic function on a line. We consider
the vector fields of the class C! (with continuously-differentiable functions v(6)),
which is natural to require when calculate the commutators of two vector fields.

We also introduce a class of transformations f: S' — S', which is defined by
the following properties:

— it is one-to-one mapping of the circle onto itself;

— f(9) is continuous at any point 6 € S';

— it is continuously differentiable at all points except a finite number of them:;
— the derivative f’(#) tends to —oo or 400 at all points of discontinuity;

— under a change of the coordinate § = f (0) a vector field of the class C*
transforms to a vector field of the same class.

Such transformations are defined as equivalence transformations of vector fields.
We call two realizations of an algebra of vector fields inequivalent, if it is im-
possible to transform realizations to each other by compositions of equivalence
transformations.

We assume that f(0) = 0, without loss of generality. Indeed, any equivalence
transformation is obvious a composition of some equivalence transformations with
fixed zero and a rotation of the circle. So, we can perform preliminary classification
of inequivalent realizations up to such transformations (with fixed zero) and then
complete classification taking into account the rotations of the circle. Then it is
easy to see that f(6) is monotone on the whole interval 0 < 6 < 27. Degree of
the map equals £1, deg f = £1 (see [1]). Depending on the sign of the degree the
function is monotonically decreasing or increasing.

Besides the transformations of f, we introduce the following class of homotopy
of a circle into itself. Let us take two points 61,62 € S1, 61 < 0. We define a family
of transformations Fy, g,(¢,0): [0,1] x ST — S of the circle the as follows.

In the case 61 # 0

0
0+t97(92_91) if 0<6 <64,
1
Fy0,(8,0) = $ 0+ (62 — 0) if 0 <0< 06y,
9 if 6, <6< 2.

In the case 81 =0

0(1 —t) if 0<6 <0y,
F t,0) = —
27 — O

Obviously, if some subset of singular points of a vector field (i.e., zeros of its
coefficient [1]) forms an open set (61, f2) on S* then this interval can be constricted
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to a point by an appropriate homotopy. Therefore, we can consider vector fields
singularities which do not form intervals, although the number of singularities
may be infinite. We denote the class of such vector fields by C. They form the
set of realizations of the one-dimensional algebra. In general case such vector
fields cannot be simplified by equivalence transformations, because of infinity the
number of singular points.

We are interested in all inequivalent realizations of finite-dimensional Lie alge-
bras by vector fields from the class C.

2 Two-dimensional commutative algebra

Further we denote vector fields U(Q)d% and w(@)d% by V and W, correspondingly.
Let they commute, and V € C. A singular point 6y of the field V is said to
be degenerate if v'(0y) = 0. It is easily to show that if 0 < 6y < 61 < 27 are
two degenerate points, such that the interval (6, 01) does not contain additional
degenerate points, then w(f) = Av(f) on (6p,01), where A # 0 is an arbitrary
constant. This follows from the fact that W € C and the continuity of the deriva-
tive of the function w(#). In particular, if there is no degenerate point, or it is
unique, then w(f) = Av(#) on S'. In this case the vector fields V and W are
linearly dependent, and there is no realization of two-dimensional commutative
Lie algebra (see [6,8,10]).

We assume that we have more than one degenerate point. Without loss of
generality, we may assume that point 0 (and 27) is degenerate. Then the func-
tion w(#) can be described as follows. We take an arbitrary point § € S*. If it
is non-degenerate for function v(#), then, obviously, there is a maximum interval
(0o, 01) with two degenerate endpoints on it, such that 0 < 6y < 6 < 61 < 27.
Then w(f) = Av(f) on this interval. Further, considering point 6" & [0, 61], we
repeat the procedure, if it is not degenerate. Again we have relation w(f) = Nv(6)
on some interval. Here the values A and X' can be not equal.

If the point # is degenerate, then, by virtue of the fact that V € C, we can
find arbitrarily close to it a non-degenerate point #”. So we repeat the above
procedure for #”. Thus if we know the function v(6), we can construct values of the
function w(#) in all non-degenerate points. For degenerate points we can construct
values of w(#) in arbitrary close to them points. If the number of degenerate points
of the function v(0) is infinite, then the number of non-equivalent realizations of
the vector field W is infinite. So the number of realizations of two-dimensional
commutative algebra is infinite.

3 Two-dimensional noncommutative algebra.

Auxiliary lemmas

Let vector fields V' and W generate the noncommutative algebra. It can be
assumed up to their linear combining that they satisfy the commutation relation
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[V, W] = W, which implies the relation between the functions v(0) and w(#):
v(0)w'(0) — V' (O)w () = w(®). (1)
Lemma 1. There is a singular point for the field W.

Proof. Assume that the field W has no singular points, i.e., w(6) > 0 (or w(f) < 0)
for all values 0 < 0 < 27. Then from (1) we can obtain the solution for the
function v(#) on the whole interval [0, 27):

0(60) = (— /09 wd(’z) 4 >\> w(), @)

where A is some constant. The function w(#) is 2w-periodic on the line. Since the
integrand in (2) is positive, we have v(0) # v(2w). It contradicts the periodicity
of the function v(0). O

Lemma 2. Singular points of W are singular points of V.

Proof. Assume that w(fy) = 0. Suppose that v(fy) # 0. Then there exists
some neighborhood Uy, of this point, where v(f) # 0. In this neighborhood, the
equation (1) can be rewritten as:

gy 1LH00)
w'(0) = = 7= wlb). 3)

Since w(fp) = 0 and the right-hand side of equation (3) satisfies the Lipschitz
condition with respect to w uniformly on € then, by virtue of Picard’s theorem [7],
the differential equation (3) has a unique solution in the neighborhood of 6.
Obviously, such a solution is w = 0, what contradicts the fact that W € C. O

Lemma 3. The number of singular points of the field W is finite.

Proof. Assume that the number of singular points is infinite. Since S' is a com-
pact set then there is a monotonically increasing (or decreasing) a sequence {6, }

converging to some point 0y such that w(,) = 0. It is easy to show that
for any n there is a non-singular point 6, € (6,,0,11) satisfying the condi-
tion w'(6,) = 0. Then, from equation (1) we see that v'(f,) = —1. Since

li_>m 0,, = 6, then, by virtue of continuous differentiability of function v(6), we

n oo

have lim v'(,) = v/(6y) = —1. On the other hand, from Lemma 2 we get that
n—oo

v(0n) = v(On+1) = 0. Hence there is a point 0y, € (0,,,0,41) such that v/(6,) = 0.

And since le 6, = 6o, then le v'(0,) = v'(0p) = 0. Therefore, we have a con-

tradiction. 0

Lemma 4. If 6y is a singular point of W, then it is degenerate for this field (i.e.,
w’(ﬁo) = 0).
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Proof. Since v(6y) = 0 (see Lemma 2), then
v(0) = v'(00)(0 — 0o) + h(0), w(B) = w'(00)(0 — bo) + g(0),
where h, g are continuously differentiable functions and
h(6o) = g(6o) = ' (60) = ¢'(60) = 0. (4)
Furthermore, taking to account equation (1) we have

0160) 5 00) 5] = [0~ 00)(B0)g(0) ~ w6011 0)

(O (00) + 9'(9)) — gB)(0!(60) + 1(6))]
= [u/(80)(6 — 00) + 9(0)] =

Let us divide both sides of this equality by 8 — 8y and take the limit & — 6. Then
from relations (4) and L’Hopital theorem one can easily see that w'(6y) =0. O

Lemma 5. Under the equivalence transformation 6 = f(0) singular (resp. regular)
points of the vector field W are mapped to singular (resp. reqular) points of the

vector field W = w(é)%.

Proof. a) Let w(6p) # 0. Then there is a finite derivative f/(6y). If it is not,
then there is a neighborhood of the singular point 6, where it is continuous and
6111191 f'(0) = oo (the sign depends on deg f). For the transformed vector field W
—bo

we have the relation w(é)% = w(0)f'(0)%. Hence, w(f(0)) = w(0)f'(f). Since
w(#) # 0 in the above neighborhood, then

g DO
110 =" )

and from the continuity of the functions f and w it is following that the limit
Gling 1'(0) is finite. Recall that a continuity of the function @ follows from the
—bo

properties that any equivalence transformation f maps C'-vector fields to C'-
vector fields.

Now suppose that @w(f(6p)) = 0 (i.e., f(6p) is singular). Since the right side of
differential equation (5) satisfies Lipschitz condition for the argument f(#) uni-
formly on @ (function @ is continuously differentiable), then in a neighborhood of
the point fy a unique solution f(#) exists. The constant solution in this neigh-
borhood f(f) = f(fy) = const satisfies equation (5). But the definition of the
equivalence transformation contradicts to the property of one-to-one mapping.
That is ) = f (0p) is a regular point.

b) Let 6y be a singular point and suppose that w(f(6p)) # 0 (i.e., f(6p) is
regular). By Lemma 3 there is a neighborhood of 6y, in which all points are
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regular (except 6p). From the previous part of the proof we get (see (5)) for
the regular points relations f'(8) > 0 (f'(9) < 0) if degf > 0 (degf < 0).
Therefore, it is easy to show that the inverse map 0 = f _1(5) belongs to the class
of equivalence transformations. Applying the reasoning of the previous part, we
see that the regular point 6 goes to the regular point 6y under the mapping f~.
So we have a contradiction. O

Corollary 1. The number of singular points is an invariant of any equivalence
transformation.

4 Realizations of a two-dimensional noncommutative
algebra

Taking into account Lemmas 1 and 3, we suppose that there is a vector field W

with n > 1 singular points . It is easy to show that applying the composition of

2k
equivalence transformations and rotation of the circle we achieve that 6 = —,
n

k=0,1,...,n— 1. Consider the interval Ay = (0, 0r+1) and denote

—~ Hk + 9k+1 7T(2]€ + 1)
O = =gt = S

We construct the following continuously differentiable transformation for f on A\
satisfying the conditions

FOk) =0k, [(Orr1) = Okyr, f(O) = O (6)
Suppose that w(f) > 0, 6 € A. Consider the Cauchy problem for this interval:
w(0)f'(8) =1 —cos(nf(6)), f(Ok)= b (7)
Tts solution is
£(8) = 2 arctan (—nI(9)) + 6, where I(8) = / " (8)
n 0y w(0)

The integral I(0) converges for any point of the interval Ag. By virtue of Lemma 4
the integral diverges at the ends of this interval:
lim I(6) = —o0, lim I(6) = 4o0.
60—60+0 0—0441—0

It is easy to show that the transformation (8) satisfies conditions (6) and maps
the vector field w(G)d% to the vector field (1 — cos(n@))%.

If w(®) < 0 for § € Ay then we can analogously obtained the equivalence
transformation that maps the vector field w(@)d% to (cos(nf) — 1)%.

Now, if we consider the vector field at the intervals Ag, £ = 0,1,...,n — 1,
then substituting the function w(f) = +(cos(nf) — 1) (omitting the tilde) in
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equation (1), it is easy to obtain the solution for the function v(6) on these specified
intervals:

o(0) = %sin(n@) + (1 — cos(nf)), A € R. (9)

As a result, we have the following assertion.

Theorem 1. Any realization of the two-dimensional noncommutative algebra of
vector fields on a circle is equivalent to the form

<<:z sin(nf) + A\ (0)(1 — cos(n@))) %, or(0)(1 — cos(né?));;> , (10)

2k 2m(k +1
where A\,(0) and o1 (0) = +1 are constants on the intervals <Z, 7r(n+)>

The questions about the reducibility of realizations (10) to simpler ones, their
inequivalence and the number of inequivalent realizations will be discussed in
a forthcoming work.

Acknowledgements

The author thanks the referees for their valuable comments.

[1] Dubrovin B.A., Novikov S.P. and Fomenko A.T., Modern geometry: methods and applica-
tions, Nauka, Moscow, 1986 (in Russian).

[2] Gonzélez-Lépez A., Kamran N. and Olver P.J., Lie algebras of vector fields in the real
plane, Proc. London Math. Soc. 64 (1992), 339-368.

[3] Lie S., Theorie der Transformationsgruppen, Vol. 3, Teubner, Leipzig, 1893.

Popovych R.O., Boyko V.M., Nesterenko M.O. and Lutfullin M.W., Realizations of real
low-dimensional Lie algebras, J. Phys. A: Math. Gen. 36 (2003), 7337-7360; arXiv:math-
ph/0301029.

Pressley A. and Segal G., Loop groups, Mir, Moscow, 1990 (in Russian).

=

= o

Sergeev A.G., Geometric quantization of loop spaces, Modern. Math. Probl., Vol. 13, Steklov
Mathematical Institute of RAS, Moscow, 2009 (in Russian).

Stepanov V.V., Course of differential equations, Fizmatlit, Moscow, 1950 (in Russian).

JEORES|

Strigunova M.S., Finite-dimensional subalgebras in the Lie algebra of vector fields on a
circle, Tr. Mat. Inst. Steklova 236 (2002), Differ. Uravn. i Din. Sist., 338-342 (in Russian);
translation in Proc. Steklov Inst. Math. 236 (2002), 325-329.

[9] Yehorchenko I.A., Nonlinear representation of the Poincaré algebra and invariant equations,
Symmetry Analysis of Equations of Mathematical Physics, 62—66, Inst. of Math. of NAS of
Ukraine, Kyiv, 1992.

[10] Zaitseva V.A., Kruglov V.V, Sergeev A.G., Strigunova M.S. and Trushkin K.A., Remarks
on the loop groups of compact Lie groups and the diffeomorphism group of the circle,
Tr. Mat. Inst. Steklova 224 (1999), Algebra. Topol. Differ. Uravn. i ikh Prilozh., 139-151;
translation in Proc. Steklov Inst. Math. 224 (1999), 124-136.

[11] Zhdanov R.Z, Lahno V.I. and Fushchych W.I., On covariant realizations of the Euclid
group, Comm. Math. Phys. 212 (2000), 535-556.



Sixth Workshop “Group Analysis of Differential Equations and Integrable Systems”, 2012, 219-224

On Some Exact Solutions of Convection
Equations with Buoyancy Force

Irina V. STEPANOVA

Institute of Computational Modelling, 50/44, Akademgorodok,
660036 Krasnoyarsk, Russia
E-mail: stepiv@icm.krasn.ru

Some exact solutions of the equations of convective motion are constructed.
Examples of the non-stationary, stationary and self-similar flows are considered.

1 Introduction

The natural convection is a type of macroscopic flows which are intensively stud-
ied in modern fundamental sciences. The development of the experimental and
theoretical researches has led to the isolation of the convection in a separate field
of fluid mechanics. The natural convection mechanisms define different processes
which have wide applications and educational values. The results of investiga-
tions in this field are applied in the power engineering, metallurgy, meteorology,
chemistry and crystal physics [3].

The equations of the natural convection are complicated because the gradients
of the temperature, the concentration and the density are taken into account. Also
the equation of the state must be considered. Symmetry methods are successfully
used to study mathematical models of convective flows. In particular, in [8] the
group classification problem is solved for all constant physical parameters in the
case that the buoyancy force depends on the temperature and concentration lin-
early. Group classification for transport coefficients depending on the temperature
is carried out in [4] for just thermal convection model. A number of exact solu-
tions for the description of the convective flows is presented, e.g., in the papers of
Russian researchers V.V. Pukhnachev, V.K. Andreev, R.V. Birikh and members
of their research groups.

To study the basic laws of convection, the equations of motion are usually
chosen in according to the simplified model of the process. Let us consider a binary
mixture with the equation of state

p=poF(T,C),

where pg is the mixture density at the mean values of temperature 7Ty and con-
centration Cp, T and C' are the deviations from their mean values, F' is arbitrary
positive function defining the buoyancy force. The equations of motion under the
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Soret effect influence have the form

u+ (u-V)u = —pEIVp+VV2u—|—F(T, O)g, (1)
T, +u-VT = xV*T, (2)
Cy +u-VC = DV?C + DrV>T, (3)
V-u=0, (4)

where x = (2!, 22, 23) is the coordinate vector, u = (u!,u? u?) is the velocity

vector, p is the pressure, g = (0,0, —g) is the acceleration of external force vector,
v, x, D are the kinematic viscosity, thermal diffusivity and diffusion coefficients
respectively, D is the thermal diffusion coefficient. The case Dy < 0 corresponds
to positive Soret effect, when the lighter component is driven towards the higher
temperature region. In the case of negative Soret effect we have D > 0, and the
opposite situation is observed.

2 Symmetry properties of the governing equations

We assume that the constants v, x, D, and Dy do not vanish and D # x. Using
the notations

system (1)—(4) takes the form

us + (u-V)u = —Vu' + vV2u + Fu’,u%) g, 5

up 4w - Vu® = xV2ud, 6

ud +u - Vu® = DVZu®, 7

V-u=0.

)
)
)
8)

(
(
(
(

We note that equations (6) and (7) have the same differential form. The detailed
solution of the group classification problem for system (5)—(8) with respect to the
function F' is carried out in [1]. There are 43 forms of the classified function F' and
the admitted algebras of the generators are presented in this paper. The function
F' has power, logarithmic and exponential dependencies on the temperature, the
concentration and their combinations. The kernel Lg of the admitted Lie algebras
is spanned by the generators

Xo =0, Xio= xlaxQ — x2ax1 + u18u2 — u28u1,

Ho(fo) = f08u47 Hz(fl) = fzaxl + fltaul - fittxiau‘la
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where f; = fi(t), i = 0,1,2,3, are arbitrary smooth functions of ¢. It should be
noted that the generators Ly are inherited by equations (5)—(8) from the set of
generators from the Lie symmetry algebra for the Navier—-Stokes equations [2].

The extension of the algebra Ly depends on the forms of function F' and consists
of the linear combinations of the generators

3
7 = 2t8t + Z (1:’8331 — u’@uz) — 2u48u4, Y = 1238“4,
1=1
T' =uP0,;s, T?=0,, C'=ubde, C?=0,.

3 Exact solutions

It is well known that symmetries can be used to construct exact solutions. In
practice it is very important to know the exact solutions of partial differential
equations for describing simpler mathematical models or for testing numerical
methods. Usually the goal is to reduce the governing equations to ordinary differ-
ential equations or to partial differential equations with less independent variables,
which can be solved. Of course this reduction gives only a class of solutions which
have certain properties. But often these solutions help to define the specificity
of some physical phenomena. The simplest classes of exact solutions are station-
ary and self-similar solutions. In terms of the symmetry approach the stationary
solutions are invariant under translations and the self-similar solutions are invari-
ant under dilations. By means of these simpler classes of solutions we can study
certain properties of new phenomena and use them as initial point to construct
solutions of more complex problems with approximate methods. That is why the
study of such types of solutions is very important.

I. Firstly, we present the example of the stationary solutions. These solutions
are characterized by the independence of the unknown functions on time ¢t. We
consider the subalgebra

(Xo, H'(1) +XH (1), H*(1)),

where A is an arbitrary constant. Then the solution of the governing equations
can be found in the form

ut = P(%) + Azt WP =T(%), ub =CP).
The factor system can be written as
WUys = — A+ VUysgs, WU = V3,3, wﬁcs = Xfac%?’a

WWy3 = VWy3,3 — P:(:3 - F(T\, a)g, Wyp3 = 0, wé’xg = Daxsxs.
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In the case w = wp = 0 the solution has the simple form

uz%(m3)2+k1x3+k2, v=rkszd+ ks, w=0, f:k5x3+k6,
v

. (9)
C =k +kg, ut= —g/F(k5a:3 + kg, kra® + kg)da® + Aat + k.

If w = wgy # 0 the solution can be written as

A
w= 23+ klexswo/y + ko, v= k‘3€x3w0/’/ + ks, w = wp,
wo

j—\' = k‘56x3w0/x + ]{6, 6 = k‘76m3w0/D + k‘g, (10)
ut = —g/F(k?E)emgwo/X + ke, fere™ wo/D kg)dx® + Azt + kg.

In formulas (9) and (10) k;, ¢ = 1,...,9, are constants. Solution (9) is the
generalization of solution describing the Poiseuille flow which arises between two
rigid walls under the horizontal pressure gradient action. There is a description
of the classical Poiseuille flow in [5].

II. Here we present an example of a non-stationary solution. We consider the
subalgebra of generators

(H*(1), H'(t)).

The solution has the form

1
u' = x? =+ U(taxg)’ u = U(ta x3)7 u? = w(t,a:S),

ut=P(t,2%), W’ =T(ta%), ub=C(, ).
From the fourth equation of system (5)—(8) we obtain
3

Then the factor system can be written as

3 3
T 1 x
U =vU,s,3 — <wo — t> Uy — n U, v=vv.3,3— <w0 - t>vx3,

~ 223 1
PIB = *F(T, C)g* ‘[;T — ;w[) — Wot,
~ ~ $3 ~ ~ ~ .ZU3 ~
Ty = xTys,3 — <w0 — t)sz, Cy = DCs,s — <w0 — t)C'xs.

Let us consider the change of variables [6]

1
T:§B2t3+A, g—Bm?’—B/wo dt + C,
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U= _th(Tvé.)’ U:Q2(77£)7 sz?»(T?g)a 62@4(775)7

where A, B, C are arbitrary constants. Using these notations we obtain the
system of parabolic equations for the functions @;, i =1,...,4,

Qir =vQiee, Qor =vQae, Q3r = XQ3¢e, Qar = DQuge.

After integration of these equations, we find the solution of the governing equa-
tions (1)—(4). Such form of solution allows to use well-known data about boun-
dary-initial problems for parabolic equations.

III. It is well-known that the class of self-similar solutions is a wide-used class of
solutions describing the motion in continuum mechanics. We present an example
of a such solution for convection equations. One of the forms of the buoyancy force
function presented in [1] is F' = (u®)7f(u®), where v # 0 is arbitrary constant,
f is arbitrary smooth function of u®. Considering the subalgebra

(H'(1), H*(1), 3T" —~Z)

we find the solution in the form

A UO L, VO W

it T T
PO 5 TO e

u :4t I - 27t37

where ¢ = 23/+/t is the new independent variable.
From the fourth equation of the system (5)—(8) we find that W = wg = constant
and the factor system can be written as

v (w°_2§) —U =0,V <wo—25> — V-V =0,

1 SN _ 3
P’—iwo—i—gTVf(C):(), T’<o—§)—7T YI" =0,

C’ (wo - ;§> — DC" =0,

where the prime denotes the derivative with respect to &.
After the integration of this system of ODEs with reference to the handbook [7],
we obtain the solution
(25e)

111
— ki ® -
Uk1<224§>

3
V—k3¢><; ; 41 CQ) \CF (1 5 4,,C) (11)
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~ 1 1 1 1
T:k5q) 317777(2 +kﬁiq) 37X+77§77C2 )
272 4y 2x \2v 2 2 4x

~ ¢ _wp S e A
C’—k7+kgerf(2i\/5), P—2§—g/T f(C)dE + ky.
In the formulas (11) ¢ = £ — 2wy, kj, 7 = 1,...,9, are constants, the functions
®(a,b,v) are the Kummer functions and erf(¢) is the error function, i = /—1.
Real physical velocities, pressure, temperature and concentration of the fluid can
be found from the corresponding expressions. It is interesting to note that the class
of self-similar solutions can be used as intermediate asymptotics for numerical or
practical experiment and understanding nature of flows.

All constructed solutions describe the flows of a binary mixture under the ther-
modiffusion effect and buoyancy force action. Different boundary value problems
can be studied for these solutions. For example behavior of the velocity, tempera-
ture and concentration fields can be carried out for layers of liquids between rigid
walls, with the free surface or with the interface.

4 Conclusion

Equations describing convection in a binary mixture with the thermodiffusion
effect under buoyancy force action are considered. The results of group classifi-
cation with respect to the buoyancy force function are used to construct certain
exact solutions of the governing equations. These solutions can be useful to study
simpler models of convection and for testing numerical methods.
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The class of generalized Fisher equations with time-dependent coefficients is
studied from the point of view of Lie symmetry. We find the associated equiv-
alence groupoid and perform the exhaustive group classification of this class.

1 Introduction

The classical Fisher equation
ug = bugy + au(l —u), ab#0, (1)

first appeared seventy-five years ago in the seminal paper [5]. This equation was
originally derived to model the propagation of a gene in a population. More
precisely, the dependent variable, u, stands for the frequency of the mutant gene
in a population distributed in a linear habitat, such as a shore line, with uniform
density. Theorems on existence and uniqueness of bounded solutions for equations
of the more general form u; = ug, + F (¢, x,u) were proved in [10]. Traveling-wave
solutions of (1) were constructed in [1] (see also [3,4,11,14]).

In recent papers [6,15] it was proposed to consider generalized Fisher equations
with a time-dependent diffusion coefficient, b, and a time-dependent favorability
coefficient, a, namely the equations of the general form

up = b(t)uze + a(t)u(l — u), (2)

where a(t) and b(t) are smooth nonvanishing functions. In practice these coeffi-
cients could represent long term changes in climate or short term seasonality [6].
Solutions for equations from this class were constructed in [6,15].

The aim of this paper is to study symmetry properties of equations from
class (2). In the next section we first look for equivalence and all admissible trans-
formations (called also form-preserving or allowed ones) of this class. We describe
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the equivalence groupoid of class (2) by proving that this class is normalized in
the generalized extended sense. Two simplest gauges of the arbitrary elements a
and b are discussed in Section 3, and the gauge a = 1 is shown to be optimal. The
exhaustive group classification of class (2) is performed in Section 4. The results
obtained and further development of them are discussed in the Conclusion.

2 Admissible transformations

To solve the group classification problem for a class of differential equations it is
important to describe exhaustively point transformations that preserve the general
form of equations from the class and transform only its arbitrary elements. Such
transformations are called equivalence transformations and form a group called
the equivalence group of this class [17]. According to Ovsiannikov the equivalence
group consists of the nondegenerate point transformations of the independent
and dependent variables and the arbitrary elements of the class, where transfor-
mation components for independent and dependent variables do not depend upon
arbitrary elements, i.e., they are projectible onto the space of independent and
dependent variables. Neglect of the projectibility restriction leads to the notion
of generalized equivalence group [13]. If new arbitrary elements are allowed to
depend upon old ones in some nonpoint (possibly, nonlocal) way, then the corre-
sponding equivalence group is called extended. The first examples of a generalized
equivalence group and an extended equivalence group are presented in [13] and [7],
respectively. The set of point transformations admissible in pairs of fixed equa-
tions from the class naturally possesses the groupoid structure with respect to the
composition of transformations and hence it is called the equivalence groupoid of
the class [18]. If the equivalence groupoid is generated by the equivalence group
of a certain kind (usual, generalized, extended, etc.), the class of differential equa-
tions is called normalized in the same sense [18,20].

Proposition 1. The usual equivalence group G~ of class (2) comprises the trans-
formations
1—¢ a

i=—. b=-Lp
9 0 YT e T

t=T(t), =0+, U=cu+

where T'(t) is an arbitrary smooth function with Ty # 0, 61 and d2 are arbitrary
constants with 61 # 0 and € = £1.

Remark 1. Up to composing to each other and to continuous equivalence trans-
formations, the equivalence group G*~ contains three independent discrete trans-
formations

71: (t,x,u,a,b) = (—t,az,u, —a, _b)a

To: (t,x,u,a,b) — (t,—x,u,a,b),
Ts: (t,x,u,a,b) — (t,z,1 —u,—a,b).
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Proposition 2. Class (2) is normalized with respect to its generalized extended
equivalence group G~ formed by the transformations

t=T(t), T=0x+0d, u=wlt)u+0(),

a

U S I

where T(t) is an arbitrary smooth function with Ty # 0, 01 and dy are arbitrary
constants with 61 # 0,

B (aefadt—i—ﬁ)(’yefadt—f—(S) aefadt—i—,@

(@6 —pyedatt 0 0T T Tag—py

the constant pairs (o, B) and (7, d) are defined up to nonvanishing multipliers and
ad — py # 0. In other words, the equivalence groupoid of class (2) is generated by
the generalized extended equivalence group G~ of this class.

Proof. Suppose that an equation from class (2) is connected with another equation
iy = b(t)azz + a(f)u(1l — ) (3)
from the same class by a point transformation of the general form
t=T(t,z,u), &=X(tzu), a=Utzu),

where |0(T,X,U)/0(t,x,u)| # 0. Admissible point transformations between
quasilinear evolution equations are known to satisfy the constraints T, = T, =
Xy = 0 [19]. (The first two constraints are valid for all evolution equations [9].)
Therefore from the very beginning we can assume that

t=T(), 7=X(t,x), u=U(tz,u),
where T; XU, # 0. The prolongation of this transformation to the derivatives u;
and uzz 1S
1
TtXa:
N 1

T

(X$(Ut + Uuut) — Xt(Uz + Uuuz)) ,

Uy =

After we substitute the expressions for the tilded variables into (3), we obtain an
equation in the variables without tildes. It should be an identity on the mani-
fold £ determined by (2) in the second-order jet space .J? with the independent
variables (¢,z) and the dependent variable u. To involve the constraint between
variables of J2 on the manifold £ we substitute the expression of u; implied by
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equation (2). The splitting of the obtained condition with respect to the deriva-
tives ugzy and ug results in the determining equations for the functions 7', X and U,
which are parameterized by a, b, a and b,

Uuu = 0,

bX2 — bT; =0,

X XU, + 20T, X, Uy — b1 X 30Uy = 0,

. X, = Xax = T

aTyU(1 —U) — aUyu(l — u) — Uy + X—iUx - thX—gUx + in%Um —0.

The first two determining equations respectively imply that U is a function linear
in v and X is a function linear in z, i.e.,

U=w(t,z)u+6(t,z) and X = @(t)z+1(t).

Additionally the second equation gives the transformation component for b,

b= b

o
T,

When we substitute the expressions for U, X and b into the other determining
equations and then split the last one with respect to u, we get

2bpws + (e + th)w =0, (4)
alyw —a =0, (5)
aTywp(l — 20) — pw; — apw + wy (e + Y1) + bpwyy = 0, (6)
aTip0(1 — 0) + bpbry — 00 + 0. (prx + 1) = 0. (7)
We obtain from (5) that w is a function of ¢ only, w = w(t), and
il O
- Ttw '
Then it follows from (4) that ¢; = ¢, = 0 and Eq. (6) reduces to
wr =a(l —w —26). (8)

It is easy to see from Eq. (8) that the function 6 depends only upon ¢, 6 = 6(¢).
Therefore Eq. (7) can be rewritten as

wh; = ab(1 —0). 9)

Looking for the usual equivalence group of class (2), we should split Egs. (8)
and (9) with respect to the arbitrary element a (b is not involved in these equa-
tions). Thus we get wy = 6, =0, (0 — 1) = 0 and w = 1 — 20. The solution of
this system results in Proposition 1.
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In order to find the generalized equivalence group of class (2) and describe
the whole equivalence groupoid of this class we have to solve the system of first-
order nonlinear ODEs (8) and (9) with respect to the functions w and 6. This
system reduces to the system of the same form with a = 1 by the transformation
t = [adt. The simplest way to integrate this system is to consider three cases for
values of . If =0 or # = 1, then w = Cie~t + 1 or w = Cre~t — 1, respectively.
If  # 0,1, then from Eq. (9) we have w = 6(1 — 0)/0; and hence Eq. (8) is
equivalent to the equation 0 = 07. As a result in this case we get 0 = Cret + Cy
and w = (Cye’ + Cp)(1 — Cre! — Cp)Cy e . Tt is easy to show that the union of
the above three parameterized families of solutions coincides with the family of
(w, ) presented in Proposition 2.

Since the transformation component for u nonlocally depends upon the arbi-
trary element a, the corresponding transformations form the generalized extended
equivalence group G~ of class (2). We have also shown that every admissible point
transformation in class (2) is generated by an element of G, i.e., the equivalence
groupoid of class (2) is generated by G~. Therefore, this class is normalized in
the generalized extended sense. O

It is obvious that there are equations in class (2) that are G~ -equivalent but
not G™~-equivalent. Therefore the usage of the group G™ strongly simplifies the
group analysis of class (2).

Corollary 1. Equation (2) reduces to the classical Fisher equation

by a point transformation if and only if for some positive constant A the coefficients
a and b satisfy the condition

2 2
bit bt Gt ag
2

M2 -2 3L =2 2" 11
b+3b2 a a+3 (11)

Remark 2. After the exclusion of the constant A by differentiation with respect
to t, the condition (11) reduces to the condition

a

3 2
a attbt CLt bt 2bt
3L g — 22t 43t 4 g2t
+a3 aay ab+a2b+a b

bt b{? by ittt Qe Qi
— 4+6—=—6—-=——-4
b + b3 b2 a a?

which is more convenient for checking using a computer algebra package.

Remark 3. The condition (11) is satisfied if and only if the function b is expressed
in terms of a as
Aad — By)ael adt
(aefadt + B)(’yefadt + 5)’

where ) is a positive constant, the constant pairs («, ) and (v, ) are defined up
to nonvanishing multipliers and ad — Sy # 0.
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3 Gauging of arbitrary elements

Equivalence transformations allow us to simplify the group classification problem
by gauging arbitrary elements, often reducing their number. For example, there
is one arbitrary parameter-function 7'(¢) in the equivalence groups G™ and G~
of class (2). It means that we can gauge an arbitrary element, either a or b, to
a simple constant value, e.g., to 1. Thus the equivalence transformation

f:/bdt, T=x, U=1u

belonging to the group G~ maps class (2) onto its subclass singled out by the
constraint b = 1. The arbitrary element a of the mapped class equals a/b. The
gauge a = 1 is realized by the similar point transformation from G~

f:/adt, I=x, U=u.

In the corresponding mapped class we have a = 1 and b= b/a.

Since class (2) is normalized in the generalized sense, it is easy to find the
equivalence group of its subclass with b = 1 (resp. a = 1) by setting b=0b=1
(resp. @ = a = 1) in the transformations from G~. We obtain the following
corollaries of Proposition 2.

Corollary 2. The class of equations of the general form
U = gy + a(t)u(l - u), (12)

where a runs through the set of nonvanishing smooth functions of t, is normalized
in the generalized extended sense. The generalized extended equivalence group G
of this class consists of the transformations

a

t=6%t+06y, T=0r+06, U=wt)u+o(), Q=5
1w

where §;, 1 = 0,1,2, are arbitrary constants with 61 # 0,

B (aef“dt—i—ﬂ)(fyef“dt—i—é) o aefadt—i—,@

(@b — Byyeledt 7T T T ag =By

the constant pairs (o, B) and (v, ) are defined up to nonvanishing multipliers and

ad — By #0.

Corollary 3. The class of equations of the general form

up = b(t)ugy + u(l —u), (13)
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where b runs through the set of nonvanishing smooth functions of t, is normalized
in the usual sense. The usual equivalence group G} of this class consists of the
transformations

- aet + 8

t:m’yet—ké’ T = 0z + o,

L_(ad+B)(e' +4)  ae'+B 5 df(ac’ +B)(ve’ +9)
- (ad — By)et T = By’ o (awd — Bry)et ’

where 9, 7 = 1,2, are arbitrary constants with 61 # 0, the constant quadruple
(a, B,7,0) is defined up to a nonzero multiplier and ad — By # 0.

Remark 4. The group G}’ contains two discrete equivalence transformations
T : (t,z,u,b) — (t,—x,u,b), T": (t,z,u,b) — (—t,z,1 —u,—b).

An interesting question is which of the above two gauges is preferable for fur-
ther consideration. Class (12) is still normalized only in the generalized extended
sense. At the same time class (13) is normalized with respect to its usual equiv-
alence group. This is why we can expect that it is easier to perform the group
classification in class (13) rather than in class (12).

Corollary 4. Eq. (13) reduces to the classical Fisher equation (10) by a point
transformation if and only if the coefficient b has the form

AMad — By)et

o0 = e + Byt +8)°

where X is a positive constant, the constant quadruple (o, B,7,9) is defined up to
a nonzero multiplier and ad — By # 0.

4 Lie symmetries

We study the Lie symmetries of equations from class (13) using the classical
approach [17]. We fix an equation, £, from class (13) and search for vector fields
of the form

Q =71(t,z,u)0 + &(t, x,u)0p + n(t, x,u)0,

that generate one-parameter point symmetry groups of £. These vector fields form
the maximal Lie invariance algebra, A™®* = A™#X([)  of the equation £. Any
such vector field @) satisfies the infinitesimal invariance criterion, i.e., the action
of the second prolongation, Q) of @, on the equation £ results in the condition
identically satisfied for all solutions of this equation. Namely we require that

@m@fJﬁmm—uﬂ—u»L:O. (14)
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After the elimination of u; by means of (13), equation (14) becomes an identity
in six variables, t, x, u, Uy, Uzy and ug,. In fact, equation (14) is a polynomial in
the variables u,, t., and us,.. The coefficients of different powers of these variables
are zero, which gives the determining equations for the coefficients 7, £ and 7.
When we solve these equations, we immediately find that 7 = 7(¢) and £ = £(¢, x).
This completely agrees with the general results on point transformations between
evolution equations [9]. Then the remaining determining equations take the form

Nuu = 0, 2b {JJ = (bT)ta 2b Nou = bfzx - €t7
1N — Nt + bNga + (Tt — 27— nu)u + (nu — Tt)uz =0.

The integration of the first and the second equations of this system results in

b
e= e ¢y and oy =t 0),
where ¢, n' and n° are arbitrary functions of their arguments. Then the third

equation becomes

1
((b’l’)t> x+ G+ 2k =0. (15)
2b .

After substituting the above expression for 7 into the fourth equation and splitting
this equation with respect to u, we get

n'=—m, n =ty —n"=0, 20" =7 +bny, —n.
The last system implies that n' and n° do not depend upon z and are expressed
via derivatives of the function 7 as follows

1
n=-n n'= 5(7} + Ty).

The function 7 satisfies the equation 74 — 7% = 0, i.e.,
ot —t
T =-c1e +cee " +c3

for some constants ¢1, co and c3. We take into account all the constraints derived
and split Eq. (15) with respect to x. As a result we immediately obtain ( =
cp = const and the classifying equation ((b7);/b); = 0 which essentially includes
both the residuary uncertainties in the coefficients of the vector field @@ and the
arbitrary element b. We integrate the classifying equation once to obtain

(cre’ + cae™ 4 c3)by = (—cret + cae™ 4 c4)b (16)

with one more constant, ¢4. To find the common part of the maximal Lie in-
variance algebras (the kernel algebra) of equations from class (13), we split equa-
tion (16) with respect to b and by, which gives ¢; = 0, i = 1,2,3,4. The only
nonzero constant ¢y corresponds to the operator d, (Case 0 of Table 1).
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The set V} of coefficient tuples of equations of the form (16) satisfied by a fixed
value of the parameter-function b is a linear space. The dimension, kj, of this
space coincides with the dimension of Lie symmetry extension for the same value
of b. It is easy to prove that ky < 3 and, if k; = 2, any element of V}, satisfies the
equation CZ = cg —4cyes.

An at least one-dimensional extension of Lie symmetry exists only for values
of b satisfying (16) with (c1, c2,¢3) # (0,0,0), i.e., if

ot —t
b(t) = c5 exp </ e toe + C4dt> (17)

cret 4+ coet + c3

for some nonzero constant cs. Then an extension operator is of the form
_ & _
Xy = (c1€! + coe™" + ¢3)0; + 5411:83; + [(c2e™" = cr€’)u 4 c1€'] Dy

The integration in (17) gives the following values of b:

4

2616t +c3—v|v
2ciet +c3+v

C5

cret 4+ coet + c3

if D>0,c #£0,

‘4
Cs€°3

b= if D>0,¢ =0,

c4

(coe™t 4 c3) ©s

Cs 2cq .
b= ) it D=y, 0,
ciet +coet +c3 P ( 2c1et + 03) ! o7

b = c5exp <t+c46t> if D=0,c =0,
C2

2 2c;et
b= C5 exp “ arctan Zae t+oes if D<0.
ciet + coet +c3 v v

Here D = c% —4cico and v = \/ﬁ . When one uses the scaling transformation
with respect to x, the constant c5 can be set to signcs, i.e., c5 = £1 mod Gy.

In fact the above expressions for b can be simplified more by transformations
from the group G}’. Up to G -equivalence the parameter quadruple (c1, c2, 3, c4)
can be assumed to belong to the set

{(0307 170-)a (07 lvoa’%)v (17 1707p) | oz 07 k= :l:la pe R}

Indeed, combined with multiplication by a nonzero constant, each transforma-
tion from the equivalence group Gj  is extended to the coefficient quadruple of
equation (16) in the following way:

é1 = 16 — 370 + 272, Gy = c18% — csaf + coa?,

¢3 = —2c180 + c3(ad + By) — 2c2ay, &4 = (ad — By)ea.



234 0.0. Vaneeva, R.O. Popovych and C. Sophocleous

There are three G} -inequivalent reduced forms of the triple (c1, ¢z, ¢3) depending
upon the sign of D,

(0,0,1) if D>0, (0,1,0) if D=0, (1,1,0) if D <O0.

So, up to Gy -equivalence, which coincides with the general point equivalence,
there are three types of equations from class (2) the maximal Lie symmetry alge-
bras of which are two-dimensional. They are represented by Cases 1-3 of Table 1.
In view of the constraint ¢ = cg —4c1co any case of extension of the kernel algebra
by two linearly independent operators reduces by equivalence transformations to
Case 4 of Table 1, where b = +e’. Since class (13) is normalized, there are no
additional equivalence transformations between the cases listed in Table 1.
As a result we have proven the following theorem.

Theorem 1. The kernel algebra of class (13) is A" = (9,). Gy -inequivalent Lie
symmetry extensions for class (13) are exhausted by those presented in Table 1.

Table 1. The group classification list for class (13).

no. b Basis elements of A™2*
0 \ O
1 cet Or, O + %x@i
2 eexp(t + kel) Oy, €710 + gaﬁm + e~ tud,
3 cozh ; exp (parctane!) | 0,, 2coshtd; + gacﬁm + (et — 2sinhtu) 8,
4 et Oy, O+ %w@m, ety + udy)

Heree, 0, K, p are constants, ¢ = £1 mod G}’, 0 > 0 mod G}’, 0 # 1 and k = £1 mod G}

The classification list adduced in Table 1 represents by itself the result of group
classification problem for class (2) up to G™~-equivalence.

5 Conclusion

On the face of it, the class (2) of variable-coefficient Fisher equations is a quite
simple object for symmetry analysis. It consists of semilinear (1+41)-dimensional
second-order evolution equations and is parameterized by only two functions of the
single variable t. Group classification problems have already been solved for much
more general classes of evolution equations, see, e.g., [2,12]. At the same time
the group classification for class (2) cannot be directly extracted from existing
group classifications of wider classes with reasonable effort. Moreover it turns out
that class (2) has a number of interesting properties. In particular it possesses
a nontrivial generalized extended equivalence group and it is normalized with
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respect to this group. It is also mapped by proper gauging of arbitrary elements
to its subclass (13) that is normalized in the usual sense and the equivalence
algebra of which is finite dimensional. Therefore it is convenient to solve the
group classification problem in class (13) by the algebraic method although in
this paper we have applied the standard method, which is based upon the direct
solution of the determining equations for Lie symmetries up to point equivalence.

When one analyzes results of group classification problems for various classes
of variable-coefficient PDEs (see, e.g., [8,19-22]), one can observe that constant
coefficient equations usually admit the widest Lie symmetry groups within such
classes. In other words they represent the most symmetric cases. We unexpectedly
discovered that the Lie symmetry group of the classical Fisher equation (1) is not
widest within class (2). This fact can easily be interpreted in terms of mappings
between classes of differential equations [20-22]. Namely class (2) is mapped
by a family of point transformations to a class of similar but simpler structure.
The mapped class consists of equations us = f(#)uz: + g(t)u?, where the arbitrary
elements f and g run though the set of smooth nonvanishing functions of ¢, and this
class is more convenient for group classification than the initial class (2). Under
the above mapping the classical Fisher equation is transformed to a variable-
coefficient equation and the equation presenting the Lie symmetry extension of
highest dimension in class (2) (Case 4 of Table 1) is transformed to a constant-
coefficient equation. An extended consideration of the aforementioned fact will
be the subject of a forthcoming paper.
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We investigate hidden and conditional symmetries of second-order PDEs with
linear and nonlinear additional conditions, and classes of equations having sym-
metries of such types. We also discuss some connections of hidden symmetry
and reductions of differential equations and approaches to classification of equa-
tions with respect to reductions.

1 Introduction

In this paper we study reductions of PDEs and non-Lie symmetries of PDEs
resulting in reductions. We will discuss some general ideas and look at some
examples, e.g., of nonlinear wave equations with linear and nonlinear additional
conditions.

Here we mean by reduction of a PDE a transformation of this PDE into another
PDE with smaller number of independent variables. Solutions of this new PDE
form a subset of solutions of the initial PDE. Such reduction may be performed
either just to simplify the process of finding of exact (or approximate) solutions,
or to separate some special set of solutions.

Within the standard Lie framework [17,19], the process of search for exact
solutions starts with search for Lie symmetries. Then we classify these Lie sym-
metries to get inequivalent reductions: then use the inequivalent subalgebras of
the Lie invariance algebra to find “inequivalent” reductions. However, with this
algorithm we get first far too many reductions and solutions; and lose far too
many reductions and solutions.

Though within the Lie framework it is possible to find inequivalent reductions.
In the 1983 paper by Fushchych and Serov [8] Lie reductions were found by means
of the same principle as was later used in finding of Q-conditional symmetries
(see [9]): ansatzes reducing equations under consideration were found as solutions
of the condition (as in the definition of a Q-conditional operator)
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but the operator () was the general form of the Lie invariance operator. The
benefit of this approach as compared to finding of inequivalent subalgebras and
their invariants [20], and then building of Lie invariant ansatzes from them is that
we get no redundant (equivalent or identical) reductions and solutions.

We should also note that application of the direct method for finding of re-
ductions [3, 18] also gives inequivalent reductions. Actually what was done in [8]
was similar to the direct method, but with limitation of symmetry operators only
with Lie operators, and with the resulting limitation of the reductions. Though
the direct method does not give any new results as compared to non-classical
reductions [16] (and, in some cases, even as compared to classical Lie reductions),
it gives a reasonably algorithmic method to obtain inequivalent reductions.

However, it is more or less feasible to use the direct method (and thus to
obtain inequivalent reductions straightforwardly) only for equations with small
number of dimensions. For multidimensional equations, Lie reductions can be
algorithmically obtained using inequivalent subalgebras and their invariants (as
to such reductions of the multidimensional wave equations see e.g. [4-7,13,20]).

So it is interesting to find some ways to study non-Lie symmetries and to
classify reductions for wider classes of equations than it would be feasible by
means of the direct method of reduction.

Why it is important to study reductions of PDEs

It is already well known that reductions of a PDE usually show much more than
its Lie symmetries, not only with respect to exact solutions, but also with respect
to the properties of the equation [3,18].

Another reason to study and classify reductions even for the equations were
only Lie reductions exist: it is interesting to have classification of the exact solu-
tions of a PDE that were already found.

This research has also some negative motivation: there exist lots of papers that
present solutions that are in reality equivalent to already known ones, and many
papers listing exact solutions of a PDE present lots of redundant solutions.

When studying interesting PDE and their symmetries people are actually in-
terested in their solutions. Very often an equation is regarded to be good and
interesting if it has just one good and interesting solution.

A very popular subject for studies may be higher dimensional equations that
combine or inherit good properties and solutions of lower dimensional good equa-
tions.

Solutions obtained by the direct reduction are related to the equation’s symme-
try properties — Q-conditional symmetry of this equation (such symmetries are
also called non-classical or non-Lie symmetries) as was rigourously proved in [26].

Discussing relations between reductions and the conditional symmetry, we
should note that that symmetry of two-dimensional reduced equations is often
wider than symmetry of the initial equation. Then, reduction to two-dimensional
equations allows finding new non-Lie solutions and hidden symmetries of the ini-
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tial equation (see, e.g., papers by Abraham-Schrauner [1,2]). Such study of new
symmetries of reduced equations was probably done first in the papers by Kapi-
tanskii [14,15] without using of a special term for such symmetry.

The classification problem for systems of evolution equations with respect to
generalised conditional (Lie-Bécklund) symmetries was solved in [21,22].

New (as compared to Lie) reductions may be also obtained by adding of another
equation to the initial equation. One prominent example of such new reduction
with an additional condition is the d’Alembert-Hamilton system [12].

2 Reductions and hidden symmetry

The concept of “hidden symmetry” has quite a few different meanings in various
contexts, and it is usually a symmetry not obtainable by some standard and
straightforward procedure applicable to the models in this context.

We will consider hidden symmetry of PDE similarly to Type II hidden sym-
metry of ODE within the context of papers by Abraham-Schrauner [1,2].

With respect to ODE, such symmetry arises as symmetry of equations with
reduced order that is not a symmetry of the original equations. For a PDE, it is
symmetry of the reduced equation (with reduced number of independent variables)
not present in the original equation. We will consider all possible reductions to
find hidden symmetries, not only symmetry reductions.

We use a definition of Type II hidden symmetry in terms of the conditional
symmetry (see [23,24]).

3 Examples of classes of PDEs reducible
by means of certain ansatzes

One problem related to investigation of reduction of PDE is finding all equations
in some class that can be reducible by a certain ansatz.

3.1 Equations reducible using translation operators

First example is description of all equations in the general class of the second-
order PDEs with three independent variables that are invariant and conditionally
invariant with respect to translation operators.

The example is very simple, but it is instrumental to illustrate difference in
classification with respect to Lie symmetries and classification with respect to
reductions.

We consider a general class

F=F(t2yuuu) =0 (1)

We describe all such equations having Lie symmetry with respect to the operator
0, and hidden symmetry with respect to the operator d, after reduction by means
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of the operator 0,. The condition of such Lie and hidden symmetry is invariance
of the equation (1) under the operator d, on condition that u, = 0:

OuF|pg=0,  OyF|py . 0. (2)

=0

The general solution of the conditions (2) will be a function of all invariants of
the operators 9, and 9y, that is of ¢, u, us, u,, uy, and of the conditional invariants

ql = ule(tayauvlllﬂ %)7 q2 = uxtR2(t,y,u, zf?g)?
¢* = up R (t,y, uu,), ¢F = uay RY(ty, uu, v)

(being absolute invariants of d,), where R* are arbitrary functions that is reason-
ably determined on the relevant manifolds u, = 0, uz; = 0, Uuze = 0, Uugzy = 0O:

F(q', ¢% ¢, q4,t,U771l, u) = 0.

3.2 Equations reducible using radial variables

We describe all equations in the general class (1) that can be reducible by means
of radial variables

) )
p=t*—a? — 4> (4)

We may use reduction of space variables using the Euclidean radial variable r
and leave the “old” time variable ¢, or use the radial variable p in the Minkovsky
space.

Reduction of equation (1) by means of a new variable (3) (here we have two new
independent variables r and t) is equivalent to its conditional invariance under
the rotation operator

J = x0y — yO,. (5)
Conditional differential invariants with the condition
TUy — Yug = 0 (6)
may be chosen as follows:

t, r=2+yh u, w,  Tup +yuy, ug—f—ui, (7)
gy + 2UgUyUgy + uzuyy7 TUG Uy + (TUy + YUy ) Ugy + YUylyy,

Uty Ugg + Uy, U+ Uy, TUgr + Yy,

Uk Ukt UK Uk (8)

) ) — €kl g
T Tk TEI] T
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We used notations z1 = z, 2 = ¥y, U1 = Uy, Uz = uy etc; ey = Lif bk =1
or ey = 0 if k # I. Note that expressions in (7) do not imply summation over k
and [.

Obviously we can use as conditional differential invariants any of these invari-
ants with adequately differentiable functional multipliers.

Invariants (7) represent a functional basis of absolute differential invariants
for the operator (5) (see, e.g., [11]), and invariants (8) are proper conditional
differential invariants under condition (6). It is easy to check directly that they are
really differential invariants under such condition. The listed proper conditional
differential invariants do not actually represent a functional basis, e.g., from (6)

U U
—= = Y but we adduced all such invariants just to show their general structure.

x
The general form of the equation (1) reducible with the ansatz
U = ¢(t? T)a (9)
will be
F<IAaW7ukt7um_6klu’§> :07 (10)
T X XX $k

where 14 is the functional basis of absolute differential invariants (7), and the
remaining variables are represented by proper conditional differential invariants.

It is easy to check that equation (10) can be reduced by means of ansatz (9)
to the form

f(t, r, ¢7 ¢t: ¢Ta ¢tt7 ¢tr7 ¢TT) = 0, (11)

and the class (11) may be studied to find equations having new symmetries. Equa-
tions with hidden symmetries then will be described by conditional differential
invariants under (6) and these new symmetries.

Reduction of equation (1) by means of the new variable (4) is equivalent to its
conditional invariance under the operators of Lorentz algebra

Jo1 = t0y + x0k, Jo2 = t0y + YO, J =20y — yO,. (12)
Conditional differential invariants with the conditions
tug + zup = 0, tuy + yuy = 0, Uy — YUy =0 (13)
may be chosen as follows:
Uy, TpZy, Tply, Uy, OU,  Uplpty,  UpluUpala, (14)
U Upallpe, Tplply, Tl lvala,

and in (14) we imply summation over y, v, «;
Uy Upw u

n
= 15
T, Tty Gpuw xi (15)
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and in (15) we do not imply summation over u, v, a. Here u, v, a take values
from 0 to 2, and we used notations zg = t, 1 = =, T2 = ¥y, Uy = Ut, U] = Uy,
up = Uy etc.; (gu) = diag(l, —1,—1).

Invariants (14) represent a functional basis of absolute differential invariants for
the operator (12), and invariants (15) are proper conditional differential invariants
under condition (13). It is easy to check directly that they are really differential
invariants under such condition. The listed proper conditional differential invari-

U U
ants do not actually represent a functional basis, e.g., from (13) — = —Z, but we
€T Yy

adduced such invariants just to show their general structure.
The general form of the equation (1) reducible with the ansatz

u = ¢(p), (16)
will be
Uy Uy U
F<IA7 i> K2 g,uug) = 07 (17)
T, TpTy 3

where I4 is the functional basis of absolute differential invariants (14), and the
remaining variables are represented by proper conditional differential invariants.

It is easy to check that equation (17) can be reduced by means of ansatz (16)
to the form

f(pa o, ¢/7 ¢”) =0, (18)

and the class (18) may be studied to find equations having new symmetries. Equa-
tions with hidden symmetries then will be described by conditional differential
invariants under (13) and these new symmetries.

The presented results can be naturally extended to arbitrary number of space
dimensions.

An example of a nonlinear wave equation having conditional symmetry with
respect to the Lorentz group with n space dimensions was given in 1985 paper by
Fushchych and Tsyfra [10]:

Aoud  A\u? A u2
Oy = 204— 21+--~+ 2”-
g x] x2

It is easy to see that this equation is actually constructed with first-order condi-
u
tional differential invariants of the type —.

Ty

4 Classification of PDEs with respect to reductions

Usual classification of the classes of PDE with respect to symmetries allows uti-
lization of algebraic methods.
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Operators of conditional symmetry in general do not form Lie algebras, so we
cannot use the standard algorithms of the Lie group classification for classification
of equations with respect to their reductions.

The easiest example of inequivalent equations within well-known classes is
equations that have special symmetries in lower dimensions, and thus have hidden
symmetries for a higher dimension under consideration.

The equation

Ou = \uF

is conformally invariant when the number of spatial variables n = 3, k = 3, but
also has hidden conformal invariance when k£ = 5 (this is a “descendant” conformal
invariance from n = 2).

Scheme of classification of PDEs with respect to reductions

Equivalence condition in our classification is equivalence of the system consisting
of the equation (or class of equations) and the reduction condition.

1. Study possible reductions for a class of equations.

2. Study equivalence of the resulting class of the reduced equations and get its
classification.

3. Then we find “original” equations from our reduced equations, and thus
have some classification of the original class of equations.

4. If we have no conditional or hidden symmetries then our problem reduces
to the usual Lie group classification.

Example of classification of a PDE with respect to reduction is
Ut — Ugg — Uyy = F(u). (19)

We consider classification with respect to “absolute” reductions by means of the
ansatzes u = p(v), u = p(v,w).

Following the results of [25] on compatibility of the reduction conditions, for
the special case of two spatial variables, we can find possible types of the reduced
equations:

1
Pov — Pww = F(SO)7 Pov — aﬁpw - Puww = F(SO)

Classification of these reduced equations will produce lists of special nonlinear-
ities. To obtain such full classification, we used the direct reduction procedure.
Even though we were unable to complete the procedure, we succeeded to de-
scribe all possible reductions and possible reduced equations, and thus enable full
classification of reductions for this equation.
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Such classification with respect to reduction also finally gives full description
of all inequivalent Type II hidden symmetries for the initial equation (19) being
Lie and conditional symmetries of the reduced equations.

5 Conclusion

We briefly presented the main ideas and outlines of algorithms related to classifi-
cation problems with respect to possible reductions of PDEs, together with some
simple examples. Here we do not consider rigorous proofs needed for description
of equations conditionally invariant under arbitrary sets of operators.

Further research

1. Study of Lie and non-Lie symmetries of the systems of the reduction condi-
tions for the class of equations under study.

2. Investigation of Lie and non-Lie symmetries of the classes of reduced equa-
tions. Finding exact solutions of the reduced equations. Note that many
interesting classes of PDEs may be considered as classes of reduced equations
for some classes of PDEs or single PDEs.

3. Relation of the equivalence group of the class of the reduced equations with
symmetry of the initial equation.
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