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Abstract We investigate quantum steering of Dirac field
for different types of Bell states in Schwarzschild–de Sit-
ter (SdS) spacetime that has a black hole event horizon
(BEH) and a cosmological event horizon (CEH). We find
that fermionic steerability from Bob to Alice is greater than
fermionic steerability from Alice to Bob, while bosonic
steerability exhibits the opposite behavior in SdS spacetime.
These different properties between fermionic and bosonic
steering arise from the differences between Fermi–Dirac
statistics and Bose–Einstein statistics. We also find that the
Hawking effect of the black hole decreases fermionic steer-
ability. However, the Hawking effect of the expanding uni-
verse can enhance fermionic steerability, which differs from
the properties of quantum steering in single-event horizon
spacetime. Interestingly, we can indirectly protect quantum
steering by using appropriate types of Bell states in multi-
event horizon spacetime. These conclusions are helpful to
guide the task of processing relativistic quantum informa-
tion for quantum steering in SdS spacetime.

1 Introduction

Early studies of quantum nonlocality focused on symmet-
ric correlations, including entanglement [1] and Bell nonlo-
cality [2–4], where the observers in the system have sym-
metric states. In 1935, Schrödinger proposed the Einstein–
Podolsky–Rosen (EPR) steering to discuss the EPR paradox
[5–7], highlighting that EPR steering is a type of asymmetric
quantum nonlocality. EPR steering has the property that one
observer influences the state of another observer by perform-
ing local measurements, and its asymmetric quantum nonlo-
cality has attracted widespread attention [8,9]. In a bipartite
system involving Alice and Bob, Alice can steer Bob’s state if
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the assemblage of Bob’s conditional states, after Alice’s local
measurements, cannot be explained by a local hidden state
model [8,10]. Based on the asymmetry of quantum steering,
all asymmetric configurations in the bipartite system can be
divided into three types: two-way steering, one-way steering,
and no-way steering. The unique directional applications of
EPR steering have been widely discussed and applied in fun-
damental quantum information processing and asymmetric
quantum communication protocols [11–20].

The SdS spacetime constitutes a precise black hole
solution derived from Einstein’s equations, delineating a
static, spherically-symmetric, uncharged black hole forma-
tion within the context of a positive cosmological constant.
Research on black holes typically emphasizes asymptoti-
cally flat spacetime. However, experimental evidence indi-
cates that our universe is undergoing accelerating expansion
[21,22], necessitating an acknowledgment of the effects of
a positive cosmological constant. We are particularly inter-
ested in the SdS spacetime with a positive cosmological con-
stant, because it holds the potential to deepen our understand-
ing of the early expansion stages of the universe. The SdS
spacetime also encompasses causally disconnected regions,
and an observer can only access the parts of the universe
bounded by their respective horizon. In SdS spacetime, two
distinct event horizons exist: the black hole horizon and the
cosmological horizon. Compared to the single-event horizon
spacetime, each event horizon in this spacetime is character-
ized by its unique temperature [23–28]. This temperature is
proportionate to the surface gravity of the respective event
horizon [29].

Generally, the investigation of relativistic quantum infor-
mation primarily concentrates on single-event horizon space-
time [30–78]. Notably, A. Ali et al. were the first to identify
a persistent trade-off between first-order coherence and con-
currence, highlighting the delicate balance between coher-
ence and entanglement in such spacetimes [43]. Addition-
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ally, the relationship between fermionic entanglement and
steering within single-event horizon spacetime has also been
explored [67]. W. Wen et al. extended the concept of quantum
steering to de Sitter space, originally providing an expla-
nation of its relationship with asymmetry in this single-
event horizon spacetime [66]. Interestingly, fermionic steer-
ing always survives under the influence of the Hawking
effect [67], whereas bosonic steering undergoes sudden death
in single-event horizon spacetime [64–66]. As fermionic
steering is more suitable for handling relativistic quantum
information compared to bosonic steering, we investigate
fermionic steering in multi-event horizon spacetime in this
paper. Given that the Hawking temperature of the black
hole exceeds the cosmological Hawking temperature, the dif-
ference between the two temperatures leads to asymmetric
steering. Hence, quantum steering exhibits a richer set of
properties than quantum entanglement in multi-event hori-
zon spacetime. We can better understand multi-event horizon
spacetime through asymmetric steering.

Our model considers two observers, Alice and Bob, who
are located at the black hole event horizon (BEH) and the
cosmological event horizon (CEH), respectively. In SdS
spacetime, fermionic steerability from Bob to Alice con-
sistently exceeds fermionic steerability from Alice to Bob,
while bosonic steerability from Bob to Alice is smaller than
bosonic steerability from Alice to Bob in multi-event hori-
zon spacetime [79]. These results indicate a stark contrast
between fermionic and bosonic steering, which arises from
the fundamental differences between Fermi–Dirac statistics
and Bose–Einstein statistics in multi-event horizon space-
time. In addition, we want to explore whether there are the
same properties of fermionic steering for different types of
Bell states in SdS spacetime? This conclusion can help us
choose the appropriate type of Bell state to handle relativis-
tic quantum information tasks involving quantum steering.
Generally, the Hawking effect of the single-event horizon
spacetime reduces fermionic steering [67]. A natural ques-
tion arises: Can the Hawking effect in multi-event horizon
spacetime increase fermionic steerability?

The structure of the paper is as follows. In Sect. 2, we dis-
cuss the quantization of the Dirac field in SdS spacetime. In
Sect. 3, we introduce the quantification of quantum steering.
In Sect. 4, we study fermionic steering for four types of Bell
states in multi-event horizon spacetime. The last section is
devoted to a brief conclusion.

2 Quantization of Dirac field in SdS spacetime

The SdS metric can describe a static spherically symmetric
black hole in de Sitter spacetime in Fig. 1, which is given by

Fig. 1 The Penrose–Carter diagram shows the causal structure of the
extended SdS spacetime. i± respectively denote the future and past time-
like infinities and the infinities I± are spacelike. A thermally opaque
membrane placed in region C(rH < r < rC ) cuts it into two subre-
gions: A and B. The regions R and L are time reversed with respect to
the region C . All the seven wedges are causally disconnected

[80–83]

ds2 = −
(

1 − 2M

r
− �r2

3

)
dt2 +

(
1 − 2M

r

−�r2

3

)−1

dr2 + r2d�2, (1)

where M is the mass of the black hole and � is the cosmo-
logical constant. Note that 1− 2M

r − �r2

3 = �
3r (r −rH )(rC −

r)(r − rU ), where rC and rH are the locations of the cosmo-
logical event horizon (CEH) and black hole event horizon
(BEH), respectively. In addition, rU = −(rH + rC ) is con-
sidered as an unphysical and negative solution [82], because
we cannot extend the coordinate range beyond the curvature
singularity at r = 0. In SdS spacetime, if 3M

√
� < 1, we

can get Killing horizons as

rH = 2√
�

cos

[
cos−1(−3M

√
�) + π

3

]
,

rC = 2√
�

cos

[− cos−1(−3M
√

�) + π

3

]
. (2)

The surface gravities of the black hole and expanding uni-
verse can be written as

κH = �(2rH + rC )(rC − rH )

6rH

= −√
�

{
cos

[
1

3
cos−1[3M√

�] + π

3

]

− 1

4 cos

[
1
3 cos−1[3M√

�] + π
3

]
⎫⎪⎪⎬
⎪⎪⎭

,

(3)
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−κC = �(rH + 2rC )(rH − rC )

6rC

= √
�

⎧⎪⎪⎨
⎪⎪⎩

1

4 cos

[
1
3 cos−1[3M√

�] − π
3

]

− cos

[
1

3
cos−1[3M√

�] − π

3

]}
.

(4)

The surface gravity of the expanding universe is negative,
because repulsive effects are generated by a positive cos-
mological constant (� > 0). The Hawking temperature of
the black hole can be written as TH = κH

2π
and the Hawk-

ing temperature of the expanding universe is TC = κC
2π

.
Since rH < rC , we can get that the Hawking temperature
of the black hole is bigger than the Hawking temperature
of the expanding universe (TH > TC ). For the Nariai limit
3M

√
� → 1, we get rH = rC = 1√

�
, which represents

the configuration in the largest black hole and smallest de
Sitter space. The mass of the black hole in multi-event hori-
zon spacetime cannot exceed a certain threshold at the given
cosmological constant �. Therefore, when 3M

√
� > 1,

the BEH no longer exists, and a naked curvature singular-
ity occurs.

Since r = rH , rC are two coordinate singularities [80],
we need two sets of the Kruskal-like coordinates to extend
the spacetime

ds2 = −2M

r

∣∣∣∣1 − r

rC

∣∣∣∣
1+ κH

κC
(

1 + r

rC + rH

)1− κH
κU

×dμ̄Hd ν̄H + r2d�2, (5)

ds2 = −2M

r

∣∣∣∣ r

rH
− 1

∣∣∣∣
1+ κC

κH
(

1 + r

rC + rH

)1+ κC
κU

×dμ̄Cd ν̄C + r2d�2, (6)

where μ̄H = − 1
κH

e−κHμ, ν̄H = 1
κH

eκH ν , μ̄C = 1
κC
eκCμ,

and ν̄C = − 1
κC
e−κCν are the Kruskal null coordinates. Here,

μ = t−r∗ and ν = t+r∗ are the usual retarded and advanced
null coordinates with the radial tortoise coordinate

r∗ = 1

2κH
ln | r

rH
− 1| − 1

2κC
ln |1 − r

rC
|

+ 1

2κU
ln | r

rU
− 1|, (7)

where κU is the surface gravity of the unphysical horizon
rU . In the limit � → 0, we obtain the rC → ∞, κC → 0,
rH → 2M , and κH → 1

4M . For this section, the SdS metric
has the same line element as the Schwarzschild metric.

We initially consider a two-mode entangled state shared
by Alice and Bob. Here, Alice located at the black hole side
detects the Hawking radiation at the temperature TH in the
subregion A, while Bob detects the temperature TC in the sub-
region B. Because the SdS spacetime has two event horizons

associated with different Hawking temperatures, we separate
two event horizons with a thermally opaque membrane [83–
85] in the region C (C = A

⋃
B) in Fig. 1, which prevents

modes from penetrating and confines them in the respective
regions.

The massless Dirac equation in a general background
spacetime is [86,87]

[γ aeμ
a (∂μ + 	μ)]
 = 0, (8)

whereγ a denotes the Dirac matrices,	μ = 1
8 [γ a, γ b]eν

aebν;μ
is the spin connection coefficient, and the four-vectors eμ

a rep-
resents the inverse of the tetrad eaμ. The quantization in the
side of the membrane that faces the black hole in subregion
A, is similar to a single-event horizon spacstime [39,88,89].
Therefore, we can quantize the Dirac field using the local
modes and Kruskal modes, respectively. Using the Bogoli-
ubov transformations between the creation and annihilation
operators of SdS and Kruskal spacetime [89], the Kruskal
vacuum state in SdS spacetime can be expressed as

|0κH 〉 = cos r |0A, 0L 〉 + sin r |1A, 1L 〉, (9)

where cos r = 1√
1−e

− ω
TH

. Similarly, the expression of the

Kruskal vacuum state in the expanding universe reads

|0κC 〉 = cos α|0B, 0R〉 + sin α|1B, 1R〉, (10)

where cos α = 1√
1−e

− ω
TC

. Here, |nA〉, |nL〉, |nB〉, and |nR〉
(n ∈ 0, 1) characterize the modes in regions A, L , B, and
R, respectively. Note that region A is causally disconnected
from region L , and region B is causally disconnected from
region R. In addition, these excited states are written as

|1κH 〉 = |1A, 0L 〉, (11)

|1κC 〉 = |1B, 0R〉. (12)

In Fig. 2, we show the dependency of the Hawking tempera-
tures TH and TC on the mass M of the black hole and cosmo-
logical constant �, respectively. In Fig. 2a, we can see that
the Hawking temperature TH of the BEH decreases with the
mass M of the black hole. However, the Hawking tempera-
ture TC of the CEH first increases and then decreases with
the cosmological constant � in Fig. 2b. It is shown that the
Hawking temperature TH is greater than the Hawking tem-
perature TC , which is the cause of the steering asymmetry.

The presence of the thermally opaque membrane allows
us to understand the influence of one horizon by regarding
the other horizon as the boundary [83–85]. To achieve this
goal, the following Schrödinger-like equation was addressed
in the following manner [90,91]

−d2Z±
dr∗2 + V± = ω2Z± , (13)
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Fig. 2 a The Hawking temperature TH of the BEH as functions of the mass M of the black hole for fixed � = 1. b The Hawking temperature TC
of the CEH as functions of the cosmological constant � for fixed M = 1

30

with the effective potentials V±

V± = W 2 ± dW

dr∗ = ∓K
f (r)

√
f (r)

r2

±K
f (r)′

√
f (r)

2r
+ K 2 f (r)

r2 , (14)

where the parameter K can assume positive and negative
integer values, given by K = ±(l + 1), with l = 0, 1, 2, ....
The potentials V+ and V− are smooth functions that approach
zero near rH and rC , respectively, while remaining positive in
between. Consequently, this bell-shaped potential serves as
the thermally opaque membrane between the BEH and CEH.
Modes unable to traverse this thermally opaque membrane
become localized near the horizons, leading to their isolation
from each other.

3 Quantification of quantum steering

One party of a bipartite quantum system can use local mea-
surement to influence the quantum state of the other party.
This is known as quantum steering, which is a type of nonlo-
cal correlation. We consider a density matrix of the X-state
ρx as

ρx =

⎛
⎜⎜⎝
ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

⎞
⎟⎟⎠ , (15)

where ρi j is the real element satisfying ρi j = ρ j i . The con-
currence of the X-state ρx given by Eq. (15) can be specifi-
cally shown as [92]

C(ρx ) = 2 max
{
0, |ρ14| − √

ρ22ρ33, |ρ23| − √
ρ11ρ44

}
.

(16)

For a bipartite state ρAB shared by Alice and Bob, the steering
from Bob to Alice can be witnessed if the state is entangled.
Its density matrix τAB is defined as

τAB = ρAB√
3

+ 3 − √
3

3

(
ρA ⊗ I

2

)
, (17)

where ρA = TrB(ρAB) and I is the two-dimension identity
matrix [93,94]. In a similar way, we can witness the steering
from Alice to Bob when the density matrix τBA defined as

τBA = ρAB√
3

+ 3 − √
3

3

(
I

2
⊗ ρB

)
, (18)

is entangled, where ρB = TrA(ρAB). We calculate that the
matrix τAB of the X-state ρx can be specifically expressed as

τ x
AB =

⎛
⎜⎜⎜⎜⎝

√
3

3 ρ11 + g 0 0
√

3
3 ρ14

0
√

3
3 ρ22 + g

√
3

3 ρ23 0

0
√

3
3 ρ32

√
3

3 ρ33 + h 0√
3

3 ρ41 0 0
√

3
3 ρ44 + h

⎞
⎟⎟⎟⎟⎠ ,

(19)

with g = 3−√
3

6 (ρ11 +ρ22) and h = 3−√
3

6 (ρ33 +ρ44). Using
Eq. (16), the state τ x

AB is entangled, if the state τAB satisfies
inequality

|ρ14|2 > La − Lb, (20)

or

|ρ23|2 > Lc − Lb, (21)

where

La = 2 − √
3

2
ρ11ρ44 + 2 + √

3

2
ρ22ρ33

+1

4
(ρ11 + ρ44) (ρ22 + ρ33) ,

Lb = 1

4
(ρ11 − ρ44) (ρ22 − ρ33) ,
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Lc = 2 + √
3

2
ρ11ρ44 + 2 − √

3

2
ρ22ρ33

+1

4
(ρ11 + ρ44) (ρ22 + ρ33) . (22)

Therefore, the steering from Bob to Alice is thus witnessed.
In the same way, we find that the steering from Alice to Bob
can be witnessed via one of the inequality

|ρ14|2 > La + Lb, (23)

or

|ρ23|2 > Lc + Lb. (24)

According to Eqs. (20)–(24), the steerability from Alice to
Bob is found to be

SA→B = max

{
0,

8√
3
[|ρ14|2 − La − Lb],

8√
3
[|ρ23|2 − Lc − Lb]

}
, (25)

and the steerability from Bob to Alice reads

SB→A = max

{
0,

8√
3
[|ρ14|2 − La + Lb],

8√
3
[|ρ23|2 − Lc + Lb]

}
, (26)

where the coefficient 8√
3

is to ensure that the steerability of
the maximally entangled state is 1.

Asymmetric steering, evidenced by the fact that SA→B

and SB→A are often unequal, has sparked our research inter-
est. Therefore, quantum steering can be distinguished into
three cases: (i) no-way steering, where the state is non-
steerable in any direction; (ii) two-way steering, where the
state is steerable in both directions; and (iii) one-way steer-
ing, where the state is steerable in only one direction. The
last case reflects the asymmetric nature of quantum steering.
To measure the steering asymmetry, the steering asymmetry
between mode A and mode B can be defined as

S�
AB =

∣∣∣SA→B − SB→A
∣∣∣ . (27)

4 Fermionic steering for four types of Bell states in SdS
spacetime

The four types of Bell states, which form an orthonormal
basis of the two-qubit system [95] between Kruskal mode
κH and Kruskal mode κC , can be described as

|
1,±
AB 〉 = 1√

2
(|0κH 〉|0κC 〉 ± |1κH 〉|1κC 〉), (28)

|
2,±
AB 〉 = 1√

2
(|0κH 〉|1κC 〉 ± |1κH 〉|0κC 〉), (29)

where the modes A and B are observed by Alice and Bob,
respectively. Then, we specify that Alice is located at the
BEH in subregion A of C and Bob is located in subregion B
of C .

In SdS spacetime, the initial modes A and B under two-
mode squeezing transformations of Eqs. (9)–(12) are mapped
into four sets of modes: the modes A and B in regions A and
B, respectively; the modes Ā and B̄ in regions L and R,
respectively. Therefore, the complete system is given by

|
1,±
ALBR〉 = 1√

2
(cos r cos α|0000〉

+ cos r sin α|0011〉 + sin r cos α|1100〉
+ sin r sin α|1111〉 ± |1010〉),

(30)

|
2,±
ALBR〉 = 1√

2
(cos r |0010〉 + sin r |1110〉 ± cos α|1000〉

± sin α|1011〉).
(31)

Because the exterior region is causally disconnected from
the interior region of the black hole and expanding spacetime,
Alice and Bob cannot access modes that belong to the regions
R and L . Therefore, we take the trace over modes B̄ and C̄
and derive the density matrix between Alice and Bob as

ρ
1,±
AB = 1

2⎛
⎜⎜⎝

cos2 r cos2 α 0 0 ± cos r cos α

0 cos2 r sin2 α 0 0
0 0 sin2 r cos2 α 0

± cos r cos α 0 0 sin2 r sin2 α + 1

⎞
⎟⎟⎠ ,

(32)

ρ
2,±
AB = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 cos2 r ± cos r cos α 0
0 ± cos r cos α cos2 α 0
0 0 0 sin2 r + sin2 α

⎞
⎟⎟⎠ .

(33)

Employing Eqs. (25) and (26), we can get quantum steer-
ing from Alice to Bob of 


1,±
AB and 


2,±
AB as

SA→B
1,± = max

{
0, cos2 α(cos2 r − 2√

3
cos2 r sin2 r sin2 α

− 1√
3

sin2 α − 1√
3

sin2 r)

}
, (34)

SA→B
2,± = max

{
0, cos2 α(cos2 r

− 1√
3

sin2 α − 1√
3

sin2 r)

}
. (35)

From Eqs. (34) and (35), we can see that quantum steering
from Alice to Bob depends not only on the mass M of black
hole, but also on the cosmological constant �, which indi-
cates that the Hawking radiation of the SdS spacetime will
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affect the A → B steerability. To check if the quantum steer-
ability is symmetric in multi-event horizon spacetime, we
can define steering asymmetry as

S�
1,± =

∣∣∣SA→B
1,± − SB→A

1,±
∣∣∣ , S�

2,± =
∣∣∣SA→B

2,± − SB→A
2,±

∣∣∣ ,
(36)

where quantum steering from Bob to Alice of 

1,±
AB and 


2,±
AB

is found to be

SB→A
1,± = max

{
0, cos2 r(cos2 α − 2√

3
cos2 α sin2 r sin2 α

− 1√
3

sin2 r − 1√
3

sin2 α)

}
, (37)

SB→A
2,± = max

{
0, cos2 r(cos2 α − 1√

3
sin2 r

− 1√
3

sin2 α)

}
. (38)

From the analysis of Eqs. (34)–(38), we find that quantum
steering exhibits distinct properties for different types of Bell
states between Alice and Bob in multi-event horizon space-
time. In contrast, quantum correlations in these states display
consistent properties in single-event horizon spacetime, as
only Bob is affected by the gravitational effect [30–34].

Figure 3 depicts the relationship between quantum steer-
ing, steering asymmetry, and the mass M of the black hole
for different types of Bell states. We can find that, for ω = 1,
quantum steering first decreases and then reaches a fixed
value with the decrease of the mass M of the black hole,
meaning that the Hawking effect of the black hole reduces
quantum steerability. In the Nariai limit, where 3M

√
� → 1,

quantum steerability reaches its maximum 1, unaffected by
the gravitational effect of SdS spacetime. At this limit, the
coincidence of the two horizons results in their tempera-
tures approaching zero (TH = TC = 0), which implies
cos r = cos α = 1. It is shown that fermionic steering
B → A is always greater than fermionic steering A → B,
indicating that the observer with the lower temperature has
stronger steerability than the other one. However, bosonic
steering B → A is always smaller than bosonic steering
A → B [79]. Therefore, the phenomenon of the bosonic
steering exhibits the opposite behavior to fermionic steer-
ing in multi-event horizon spacetime. These findings indicate
that fermionic steering contrasts sharply with bosonic steer-
ing, due to the differences between Fermi–Dirac and Bose–
Einstein statistics in SdS spacetime. Based on the character-
istics of fermionic and bosonic steering in curved spacetime,
we can utilize the appropriate type of particle steering to
manage relativistic quantum information tasks.

From Fig. 3, we also find that, for ω = 0.4, fermionic
steering from Alice to Bob undergoes a sudden death as the
mass of the black hole M decreases. This represents a cru-
cial transition in the quantum system, shifting from two-way

steering to one-way steering, driven by the Hawking effect.
Notably, this maximal asymmetry marks the exact transition
point between two-way and one-way steering in multi-event
horizon spacetime. In addition, we obtain the condition of
maximal steering asymmetry that is a point of the sudden
death of fermionic steering A → B. For two-way steering, it
is interesting to find that steering asymmetry for 


1,±
AB equals

steering asymmetry for 

2,±
AB

S�
1,± = S�

2,± = 1√
3

∣∣∣(cos2 r − cos2 α)(sin2 r + sin2 α)

∣∣∣ .
(39)

For one-way steering, we obtain S�
1,± = SB→A

1,± and S�
2,± =

SB→A
2,± . From the Eqs. (34), (35), (37), and (38), we can see

that quantum steering of 

1,±
AB is always less than quantum

steering of 

2,±
AB in SdS spacetime. In practical applications,

we should choose quantum steering of Bell states 

2,±
AB to

handle relativistic quantum information tasks.
In Fig. 4, we plot quantum steering and steering asymme-

try as functions of the cosmological constant � for different
types of Bell states. From Fig. 4, we can see that, with the
increase of the cosmological constant �, quantum steering
first decreases to its minimum value and then returns to its
initial value in the Nariai limit. This suggests that quantum
steering in SdS spacetime can be strengthened and protected
by the Hawking effect of the expanding universe. Since the
temperature TH is greater than the temperature TC , the steer-
ing from B to A is always greater than the steering from A
to B. In Fig. 4e, we find that quantum steering first suffers
from the sudden death and then the sudden birth with the
increase of �. In other words, quantum system first transi-
tions from two-way steering to one-way steering in SA→B

sudden death, and then from one-way steering to no-way
steering in SB→A sudden death. Next, it transitions from no-
way steering to one-way steering in SB→A sudden birth, and
finally from one-way steering to two-way steering in SA→B

sudden birth. For � = 0, the SdS spacetime degenerates into
the Schwarzschild spacetime, resulting in 


1,±
AB = 


2,±
AB .

Therefore, quantum steering of 

1,±
AB equals quantum steer-

ing of 

2,±
AB in Schwarzschild spacetime.

In multi-event horizon spacetime, the relationship between
fermionic steering and entanglement is both closely related
and distinct in its expression. Quantum entanglement serves
as a key resource for quantum steering, which enables one
party (Alice) to nonlocally influence the state of another party
(Bob) through local measurements. In the specific case of SdS
spacetime, fermionic steering is a quantum phenomenon that
is influenced by both the gravitational environment and the
underlying entanglement structure of the system. Notably,
while fermionic steering is completely suppressed by the
Hawking effect in SdS spacetime, quantum entanglement can
persist in multi-event horizon spacetime [81].
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Fig. 3 Quantum steering and steering asymmetry as functions of the mass M of the black hole for fixed � = 100

5 Conclusions

The gravitational influence of a black hole and an expand-
ing universe on fermionic steering and its asymmetry for
different types of Bell states in SdS spacetime has been
investigated. This spacetime features both a black hole event
horizon (BEH) and a cosmological event horizon (CEH).
By positioning a thermally opaque membrane between these
two horizons, two independent thermal equilibrium regions
are established. Our model consists of two modes: the mode
A, observed by Alice at the BEH; the mode B, observed
by Bob at the CEH. Since the Hawking temperature of the
black hole is higher than that of the expanding universe,
fermionic steering from Bob to Alice is greater than steer-
ing from Alice to Bob. Conversely, bosonic steering exhibits
opposite characteristics, which can be attributed to the dif-
ferences between Fermi–Dirac statistics and Bose–Einstein
statistics [79]. Furthermore, the Hawking effect of the black
hole reduces fermionic steerability, while the Hawking effect
of the expanding universe can enhance it. This indicates that
the Hawking effect of the expanding universe is not always
detrimental to fermionic steering. This conclusion provides a

more comprehensive understanding of the Hawking effect via
fermionic steering. The gravitational effect can completely
destroy fermionic steering in multi-event horizon spacetime,
whereas fermionic steering can persist indefinitely in single-
event horizon spacetime [67]. Finally, we have found that
quantum steering of Bell states 


1,±
AB is always less than quan-

tum steering of Bell states
2,±
AB in SdS spacetime. Therefore,

selecting the appropriate Bell state is crucial for effectively
managing relativistic quantum information tasks involving
quantum steering.
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Fig. 4 Quantum steering and steering asymmetry as functions of the cosmological constant � for fixed M = 1/30
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