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The purpose of this paper is to describe the electromagnetic and
hadronic shower simulation! used by CDF. We feel that this
parametrization is relatively simple and reproduces the test beam
data quite accurately. We encourage the reader to look at the
detailed comparisons for both the electrcamagne'cic2 and hadronic3
showers.

Showers that occur “upstream® of tracking chambers must be
simulated by full cascade models, since each daughter particle‘of
the interaction is potentially observable by the tracking device.
However, for situations where individual tracks from the shower
are not seen, as in a calorimeter, we chose to make simplified
models of showers that reproduce the properties of showers

measured in test beams. These models need to be computed quickly

so that high statistic studies can be made to evaluate acceptances

and backgrounds.

Electromagnetic (EM) showers can be simulated by a Monte
Carlo program like €654, but because of computer time this is not
practical for us. D. Wagoner and D. Judd® estimate (depending on
geometry and other factors) that EGS requires approximately 1000
VAX-780 CPU seconds for a SO0 GeV shower, while our simulation
requires 0.2 seconds. EGS produces a detailed cascade shower, in
which a large number of secondary particles are produced, with a
recipe containing the essential physics ingredients such as
Bremsstrahlung and pair production. In our parametrization the
centroid of the shower is considered as a neutral particle

travelling in the same direction as the particle immediately before

showering. The physics is put in by parametrization of the test
beam data. We have also simulated minimum ionizing particles and
nuclear interactions®, but they are not discussed in this paper.

The energy resolution of a calorimeter is usually given as
o(GeV)/E(GeV) = R/JEGEV) (R=.23 GeV!/2 for the COF plug
detector). The sampling fluctuations depend on the square of R.
Values of R? are given in Table | for the 7 calorimeters of the CDF
detector. In addition for sophisticated event analysis one needs to
both the

development. Below, we discuss these distributions for both EM

understand longitudinal and transverse shower

and hadron showers.

For an electron, the EM shower starts as soon as the particle
enters a dense material. For a photon, the start of the shower is
determined by the exponential probability distribution (The
exponent is 9/7 the number of radiation lengths traversed.).
Physically the assymmetry is due to the fact that the charged
electron immediately starts Bremsstrahlung while the gamma
must convert first.

The longitudinal development of the electromagnetic shower

is expressed as’:

o-1 -BL

dE x L e

dL

where L is the number of radiation lengths traversed since the
shower started, (o) =2.1+ 0.56xIn E(GeV), {B>z 0.5, and K =
ExB/I(x) is a normalization constant that insures that the
integral equals the total incoming particle energgz.

We wish to not only reproduce the average longitudinal
shower profile, but also the fluctuations of the energy depositied
in each segment of the calorimeter. Fitting the longitudinal
shower profile measured in the test beam on an event-by-event
basis, we find that o« and § are Gaussian distributed about their
mean values. We also find that o« and B are correlated with an
energy-independent correlation coefficient C = 0.83 where C is
defined as:

C= _LatBd
[(<o@> - <?) (B2 - ¢p>2) 105

In the EM shower counter, of and 8 are determined for each

shower through the following perscription:2
Mean values and sigmas of o and 8 are determined for the incident

particle energy and two eigenvalues (od,)2 and (dd2)2 and a

unitary matrix U are obtained by diagonalizing the matrix M.
2
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with 6 =0.5 and G =0.051.

Random numbers d;‘ (dy") are then extracted from Gaussian

distributions with sigmas od, (9d,). Then  and § are given by:
o=ty +bax,B =48> +AB

with

() ()

2

Thus the average energy deposited in the k th segment is

Ec=f KEX L TxeBLla
where the integral is over the depth interval of segment k.
To correctly account for fluctuations we use

B = By + Rr/Ey = By *R2r V(L /R2)
where R is the resolution paramter, and ry is a random number
which is Gaussian distributed about 0 with sigma equal to 1. If
the energy deposited in the segment is small, Poisson-like

distributions are used as the fluctuations in the second term

instead of Gaussian distributions. The dimensionless quantity
(Ek/Rzl is called the number of equivalent particles and is the
number on which the statistics is based.

The transverse profile is parametrized as a 2-component

Gaussian®
2 2 2
-r /263 -F /20,
ks, =KilAe «(1-A) e }

The 2 components are considered to represent a narrow and a wide
component of the shower profile. “A” is the splitting of the energy
between the 2 components (we use A = 0.6). The normalization
constant can be expressed in terms of the constant used in the
longitudinal parametrization.

KT = Kxl ot-1 xg'BL

2nd Ac® + (1-A)s 2 ]
n w

The sigma for the narrow component is linearly dependent on the
total number of radiation lengths (Lg) traversed by the shower®

On = Bn Lo Xeq/Ec
where Xeq(cm) is the effective radiation length of the

calorimeter, and Ec(MeV) is the critical energy (when the energy of
a secondary particle is less than this it will no longer be detected

by the calorimeter). The values of Ec(MeV/cm) are given in Ref. 9.
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The test beam data gives B, = 0.389 (MeV/cm) with a sigma
0.055. The sigma of the wide component is

Ow * waeq/Ec
where the fitted value is A,, =8.19 (Mev/cm), there is no sigma
associated with this value. The wide component is empirically
determined not to depend on the number of radiation lengths
traversed.

In general the k th segment will be divided into j
subsegments in the transverse plane by integrating the transverse
profile over the geometrical °‘tower” boundaries. Thus the energy
into j th subsegment is:

Ej = fjk—E_k + Ry 'fjkEI_<
where fj is the fraction of the transverse energy in the k th
segment that is in the ] th subsegment and where R is the
resolution parameter and r| is a random number which is Gaussian
distributed about 0 with sigma equat to 1.

The quality of the agreement between test beam data and the
shower model can be seen in Fig. 1. Shown here are the energy
distributions for the 3 depth segments of the plug EM calorimeter,

and the energy deposition in the plug hadron calorimeter for 100
GeV e”. Test beam data (solid) and MC (dotted) are shown.
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Fig. 1

Comparison of puise height distributions observed at
three longitudinal segments of the EM endplug calorimeter and the
hadron endplug calorimeter for 100 GeV e~. The data {Monte Carlo) is
the solid (dashed) line (from Ref. 2).



Hadronic showers are also modeled as a neutral particie
travelling in the same direction as the particle immediately before
showering, with longitudinal and transverse energy density
profiles. The start of a hadronic shower is determined by keeping
track of the number of interaction lengths traversed by the
particle and using an exponential probability distribution where
energy-and particle species-dependent interaction cross sections
are usedS,

The longitudinal parametrization of hadronic showers is!0:

dE/dZ = KifpxWxl® Ve BL 4 1 x(1-w)x1¥-Te-8Y)
where L(I) is the number of radiation (interaction) lengths
traversed since the shower started. Interaction lengths are
measured in terms of the pion interaction length (21.27 cm in

Fe)”. The constants f, and fo depend on the type of calorimeter

the shower is evolving in. We use f;= 1.0 (1.15) and fp =

0.40(0.90) for an electromagnetic (hadronic) calorimeter. The
choice of these constants depends on the observation that hadrons
create less pulse height per GeV of deposited energy than do
electrons. The gain of electrons is set so that the electromagnetic
showers in an electromagnetic calorimeter yield the incident
energy. The gain of the hadron shower is set so that hadron
showers that were minimum-ionizing in the EM calorimeter yielded
the incident energy. The fraction of the energy that is
electromagnetic is W. W is chosen to have a uniform probability
between 0.01 and 0.40 . Above 0.40 the probability is given as a
Gaussian with a mean of 0.40 and a sigma of 0.25. This
distribution is truncated at 0.89. Physically, W is related to the
fractional energy content of the “prompt” 7@ ‘s in the initial
nuclear interaction that starts the shower. The average Tt/e

response (W=0.4) in an electromagnetic calorimeter is:
(1t/e) = (W «(1-WM3)/ Ty =.4x1 «.6x.4 =.64
Yoh and Wickland!2 have observed that the electromagnetic plus

hadron energy is nonlinear as a function of Egy.

Fig. 2 shows the average Epy versus Eyap for SO GeV 1Us

hitting the calorimeter. Both test beam.and MC are shown. The
above fit reproduces this behaviour.

The parameters of the hadron shower model are determined to
be3 :

o= 1.0 + 0.36xE

ot = 0.62 + 0.31xInE

B =0.22

¥=o

§ = 0.81 - 0.024xIn E

Our treatment of the fluctuations in the shower is a little

for € < 10. GeV
for £ > 10, GeV

different than in the pure electromagnetic case.The test beam data
used in the fit of the EM shower constants was from the plug EM

calorimeter, where each each sample in depth was read out,
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Fig. 2
Energy peak values in the central hadron calorimeter,
Eyap(peak), at fixed energy in the central EM calorimeter, plotted
versus Egyy for 50 GeV x. Test beam data and Monte Carlo are

compared. The dashed straight line corresponds to Egy + Eqap = 50

GeV. Note the observed nonlinearity (from Ref. 3).

allowing for a detailed study of the correlations of ot and $. For
the fit of the hadron shower constants, the central EM and hadron
calorimetry test beam data was used. Here, there was no detailed
longitudinal profile information available, preventing a
sophisticated analysis of the correlations between the various
hadron shower constants. For this reason, the hadron shower
constants are fixed at their average values, and the longitudinal
profile is fluctuated by a random multiplicative factor.

The longitudinal profile is fluctuated by multiplication by a
random scale factor, SCALE. The reciprocal of scale is a truncated
Gaussian between 0.01 and infinity. The Gaussian distribution has
a mean of 0.60 and a sigma of 0.45. When scale is calculated, only
values in the range 0.2 to 1.5 are accepted.

The above fluctuation changes the shape of the longitudinal
profile. The distribution of the fluctuation was chosen to fit
observed hadronic shower energy flow distributions.The data used
in the fit were from the E616 experiment at Fermilab!3 and the
WA-1 experiment at CERN'4. The normalization constant is again

determined by integrating the longitudinal profile function:

K(EW) = E/[Sx(fWx(T(e)/B%) + 1(1-W)x(T(2)/87) ) ]
where S is the average value of the scale factor. In the same way
as for the EM case, we find the average energy in the k th segment
by integrating the longitudinal profile. We have the same

expression for the energy in the k th segment:
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and again, the energy is split into "tower” subsegments, via
integrating over the transverse shower profile, with statistical
fluctuations of each subsegment done independently.

The quality of agreement between the hadron shower model
and measured test beam data are shown in Fig. 3 and 4. Fig. 3
shows the hadron calorimeter energy distribution for SO GeV TUs
that were minimum ionizing passing through the front EM
calorimeter. Fig. 4 shows the EM calorimeter energy distribution
for all incident pions. The minimum ionizing peak is truncated to
emphasize the rest of the distribution.

The transverse profile has 2 components: one associated with
the electromagnetic part; and one with the hadronic part. The
electromagnetic part is a Gaussian that is identical to the narrow
part of the pure electromagnetric shower. The hadronic part is a

Gaussian with sigma:
Oy = Ay + Byl
where Ay = 6.45S (there is no sigma associated with this value)

and By =0.07 with a sigma of 0.02, and L is the length in gm/cm2.

Recently H. Jensen!S has investigated the non-linearity in the

(pulse height/energy) versus energy for pion showers. This
non-linearity is inserted into the simulation by multiplying the
longitudinal parametrization by a function g(E). At the present
time this function is not parametrized but is tabulated
numerically. Fig. S shows the normalized pulse height per GeV
is a fit to a

versus energy of the incident 7. The curve

compilation of data from several different experiments. There is a
striking non-linearity in the data. The point Eyr = 50 GeV is chosen
as our normalization peint. The turnover in the curve at very low
pion energy is understood as due to pions ranging out by dE/dx
without nuclear interactions.

to both

electromagnetic and hadronic showers are simulated in the CDF

In summary we have tried indicate how
detector. There is much additional information the reader may
wish to know such as the number of radiation lengths, absorpti;m
length, segmentation, and other properties of the 7 calorimeters in
the CDF detector, these are given in Ref. 1. The agreement between
test beam data and the simulation is given Ref. 2 and Ref. 3. Much
as the UA1 parametrization10 was a good starting point for us, we
hope that our parametrization will be a good starting point for the
detectors of the SSC.

Hadron Energy Distribution
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Distribution of the energy, Ejyap. measured in the
central hadron calorimeter, normalized to unit area for 50 GeV =«
minimum ionizing in the central EM calorimeter. The test beam data

and Monte Carlo are compared (from Ref. 3).
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Distribution of the energy, Eg)y, measured in the

central EM calorimeter, with arbitrary normalization, for 50 GeV =
(either interacting or not interacting in the central EM calorimeter).
Test beam data and Monte Carlo are compared (from Ref. 3).
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Hadron Calorimetry Normalized Response

1~2 |‘[ll—lll_r|7 T ll,lll[l 1 1 lllllll T

1.0 —
>
v L
(@]
~ L
= L
Ry
© 08 -
£
’ M
o
w
5 L
a

0.6 — -]

L — Jllllll' 1 ]lllllll —l llllllll A |Jk+
10° 102
Pion Energy (GeV)
Fig. §

This figure shows normalized pulse-height per GeV in
hadron calorimeters as a function of energy of the incident x. The
graph has been normalized so that pulse height is equal to energy at

50 GeV (from Ref.15).

Table = (Responsei2

DETECTOR EM HADRON
CENTRAL EM 0.02 0.20
CENTRAL H 0.10 0.50

PLUG EM 0.05 0.20

PLUG H 0.60 1.2

FORWARD EM 0.05 0.20
FORWARD H 0.70 1.4

WALL H 0.50 1.0
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