) 32 2 3R Acta Phys. Sin. Vol. 73, No. 19 (2024)

191101

(HE=EH ) 17 90 BFF

R4 et

&

|—‘—|, A

RikRE

q D1

1) (B HREFIMAYERS, S & F R AR IR, [l 200433)
2) (HR ARFIFIEETIILY I L3 IRy FILEHIT .0, LI 200438)
(2024 4E 7 A 22 HIE#F); 2024 4E 8 A 30 AU EMERH)

T T ) B AS R T P A TR 2 A Bk ) R REOR i K A SR T AR R T 5 1 R A I 4 R B
AR SCBIETE R RO T S AR R AR X I8 T R TR SR P U (0 S W R ST R A e B
AN BUBKE (FORBI) . RVIBTR 4, FOBE 4. T AR AR FT R E UG B IE RO R 1 B R FES 5 RE Y
RGO I 5 45 AR LR b, TP T (R0 B AR A FE Y BEHLE] . RN, G887 R a7 58 . Ras R
I 52 9 T 45 7 T JBCA S ) B T JIAR , D18k S R X A TR ) O 45 4 14 ) 7R

KR RYBURE TR, CPT XIFRtE, (W) B A b, st

PACS: 11.30.Er, 21.80.4a, 24.80.4y, 21.45.-v
CSTR: 32037.14.aps.73.20241020

1 3

AW ERFIE MR A R, — 7 EF IR/ NG
FEAKL T YA TR, 53— 7 T R
ROBE 25 R RN AR ) 5T SO SOk 02 o) — i
T RBRIE KA JUAN RIS 72 A 1 A v v ek v 25
(IR AR A 1 5 555 15 1K (QGP), RS
AR R, BUEE AR TR A S B IER S R
B BRI, BTSRRI ML B IR T 1E Ok T
()7, 350 H AT AP E Y B2 R
JTLH R, X TS I SO T Ok ik, AN
244 B ARl BEME ] i —.

ZEHGE AR T e A FLE 1956 AR B T 55
AHE A RS 1) S i S e s 1k
AT TUESE B 33— & 3150 B — S g AL g A X
FRYESTE— 5 &0 F BB B, J5 2K, Cronin I
FitchP il i) K AF3 28 5050 A 1 1E SOk FiAE
FERAR S BB A X RRYE (CP XHFRYE) IR, X

i

t BIEVE#E. E-mail: mayugang@fudan.edu.cn
© 2024 FEYIEZS Chinese Physical Society

DOI: 10.7498/aps.73.20241020

AN TR A B 7] 52 38 7 SO0 T Bt r -t W] R 2 o sl
fY, T ELGF B8 S W B Rk 2 ik AR TR R AR
rEE T, WHEEEBA C. T/ P
) T — 8 S ) A5 46 5 2 AN AR Y, X g 3 4
CPT ML, T2 I AW T mRRy. X
R BUHEATAE RIS, SRS IE CPT XFRPER—A>
LT W, H AT T IE R B PRESf EAk
F. UL, X R A 2 R R PR
SRR ) — A BTV 7 ).

Schuster® F 1898 4 L) Potential Matter-A
Holiday Dream B X#&EH T P ik &. 1928 4F,
i B IS E SR RS A ER T (T
B SR ) A&, DT 45 R W AR AEFT 55 T JE Al
1930 4, #X b 5e A O 76 Ath i 138 S rbo A
Ly SRS 512 30 () e WL 21 1E T AR . 1932 48,
Anderson!™ 3 117 A #E S PRI E UL 2 Tk B
TP MIE LT, MILHTIF T NS S EL 40t
FER IR, BlS, TR )2 O I ) o i
SO, 1N, 1959 4F Segré A1 Chamberlain 55 (8]

http://wulixb.iphy.ac.cn

191101-1


http://doi.org/10.7498/aps.73.20241020
https://cstr.cn/32037.14.aps.73.20241020
mailto:mayugang@fudan.edu.cn
mailto:mayugang@fudan.edu.cn
http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

) 32 2 3R Acta Phys. Sin. Vol. 73, No. 19 (2024) 191101

e 92 A 52 A B0 5E i 28 &k BT R R T
1965 4F, T Herh A P 7E 36 [ A0 B 5l B SCE KSR
% (BNL) 1928 586 B i [ 25 s #8 (AGS) b
NI 3 S A%, 1971 4F, JRERRR S ZO0 I 2 T
A 3001 (HASHE A, IE HL RS A R B
SRR T 1936 4F5 1959 4E 13 DL R PB4
SR, P 24 S o 4 A A A S 5 AR i B
i, 20 2 70 AEARJE AR S 5 R FAZ BT
FA A T B 2000 4F, 36 [ 4 6 75 BB S
) % S 6 & AR E S PR HE N GE T T, B R
4 B i B B0 &R AE =ik 200 GeV /e,
R T S HB R Y RPLS. B, 7E STAR
HE A S T B, R T E AR R
R (RO AZ 1) 2010 4F), M3 2 51 4 1% 12
(2011 4F), B U T RJ5 - B o AH BAR A 09
(2015 4F), REBAI 88 A 5 RO R I i S 45
e 1Y (2020 4F), LUK ) T 52 Hy ok 4100)
(2024 4F). ASLHF TRV X AR TH)
T AR 016 D) K vy BB T 2 - flf 48 1k R v R A
() JEF R =AML eah, SR T 2R A
B (REJET) ML . R A BRI s 0 Jo 25 Ty T L
PR R AL TR A 4.

2 KRR TR R R

2.1  HEXNEEEFIHENLF STAR #HRill25

21 42 9), RHIC 2 4 [ Br [ i e BE e i &
B XHENL 2172 %), RHIC - F BRAHMS,
PHENIX, PHOBOS #ll STAR 4 PU/ #8088, &
TR 25 A RRES, AR B LA BAS 36 Fib
FE. 2005 4F, X PUASSZE02H K 3 T 6 i R H T RlE
7 A ) 25 - I 5 B R O A i 2534 S
¥, CHEARN TTE RHIC FLE4 A QGP HiFES
F18) ST 56 I Ff FURH G o 17201,

Solenoidal Tracker at RHIC (STAR) &l
AR A DU AR 25+ 5 S | 2 AT R ) K A R
i, BT PR ISR @0 AEIE (In] <
1, 2n), HEE#EAT 200 s F 8 g he 7, netd %
BRIE L RO, 500 E] (5 Bk n] A 25 2IAR
KIBIEIER (0.2—30 GeV/c). STAR R #%
AN TR 2R G b B, JH: 32 B0 A 455 B[] 4% 52
% (TPC). CATHIEIFE{X (TOF) . R AR 7 4480
. R RBEAR . B 1 R T RHIC-STAR #£il

FHENE U LT RRM AR BB 1T B T AL T
STAR FEPFrEVEAL, ik A T3 BRI ST | F
LM S+ A E Z N X AT 50 5K AN Y ST
500 f Bl R MBI A 4. 78 A VR R RTIH T AR
 rp ERRERE N R RS | b R
ARKZE ERRRA AR R | i ERE R R
FAFRBEFE BT R LLAR K 223X 6 K b BRI LA
AT STAR EHFREVEH. JaiE BHR2E N IGTE
B, BT R 2EE W A B STAR & 1E4L.
STAR- ' E 41l i RS 5k KR E bR A 1R, 78
TN 250 AT 5 R A B AT 45 T AR A T 2
AR, JEREFE T — KHLIE 5 IO RHIT A 5L . 7ERRI
R BE & 71, STAR-H E 4 oTik T 583 5T
ZS B AR E (MRPC) HAR A KA AT a) 3%
I, S5 E TEFHNEE (MTD). WABEE
B E (ITPC). HLT (& B fil % #% ) . i 35 TOF
(eTOF) . H-F &M &% (EPD) %. 7E— &R 5 LA
R BRF A ER RGN RCR h RS T 35
PEVER, a0 QGP HEMAMEATFSE . QGP ik
WAk 22 ¢ A A BEHES 12524 B Akoe A=y it 25261
B RUBE (1) R T S5 2728) LA RO AR 1)
SR 203U SRR R (EAE A,
BRI — SO BB, R | TR 0299 42
HY QGP M AL A% B A1 JieHES 5 2

Mognet

Kl 1 RHIC-STAR M #E Y. 8T REAHREER | 1]
% %= (TPC). CATH A (TOF) . B m R4 (BEMC/
EEMC), 2 T3t 5 (MTD). | WAL 3% I &% (HFT). &
Bl % % (HLT). STAR S AEHA Mt 18 g1 R g Y
Fig. 1. Overview of the RHIC-STAR detector. The main
subsystems include magnets, time projection chamber (TPC),
time of flight detector (TOF), electromagnetic calorimeters
(BEMC/EEMC), Muon telescope detector (MTD), heavy
flavor tracker (HFT), and high-level trigger (HLT). STAR
has a total of over 18 detector subsystems/!.
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Fig. 2. (a) Invariant mass distributions of decay products *He* + n~ from f’\H, and the peak position corresponds to the distribu-
tion of candidate hypertritons!"!; (b) invariant mass distributions of decay products He + =t from ﬁ, and the peak position
corresponds to the distribution of candidate anti-hypertritons!'!. Open circles represent the distribution of candidate signals; solid
black line indicates the background distribution; blue dashed line represents the combined fit of the signal (Gaussian) and the back-

ground (double exponential).
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Fig. 3. (a), (b) Relationship between (dE/dz) and p/|Z|'?: (a) Negatively charged particles (gray and blue points); (b) positively
charged particles (gray and orange points). Black curves represent the expected values for each type of particle. The labels p, p,
K and m correspond to protons, antiprotons, K mesons, and © mesons, respectively. (c)—(e) Isotope identification based on energy
loss and mass calculated from momentum and time of flight for each chargel'?: (c), (d) The dE/dz in units of multiples for (a) neg-
atively charged particles and (b) positively charged particles as a function of mass measured by the TOF system; (e) projections of

panels (c) and (d) on the mass axis, with the selection range for these particles being —2 < ng,p, 4, < 3.
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Fig. 4. Invariant mass distributions for (a) 3He + n~, (b) 3He + =+, (c) “He + n~ and (d) 4He + nt are presented(’”. The

red shaded regions indicate the invariant mass ranges for the signal, with the extracted signal counts denoted as Ny, and the back-

ground counts as Npg . Signal significances Zgape and Zeount were calculated using two methods. The Zga,e was obtained by cal-

culating the ratio of the likelihood functions under the null hypothesis (pure background) and the alternative hypothesis (back-
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Fig. 5. Relationship between dN/d(L/Bv) and L/B~y for hypernuclei, as well as the measured data on hypernuclei lifetimes!!?):

(a) dN/d(L/By) of ?\H7 iiH, f}\H, j{H relative to L/B~; (b) a comparison of the measured lifetimes of f’\H, ?\7}[7 f‘\H, jlxiH

X 4%

with world data and theoretical predictions (represented by solid triangles). Error bars and boxes indicate statistical and systemat-
ic uncertainties, respectively. The vertical solid lines with shaded areas represent the average lifetimes of iH and j{H , which were

calculated using maximum likelihood methods based on prior results. Gray vertical line indicates the lifetime of a free A particle.
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Fig. 6. Results obtained from 200 GeV/c gold-gold collision data: (a), (b) Momentum correlation functions for proton pair and anti-

proton pair; (c) their ratio distribution from panels (a), (b); (d) schematic for measuring the momentum correlation function

between anti-protons; (e) comparison of the S-wave scattering length ( fo ) and effective range (dp ) of anti-proton-anti-proton in-

teractions (red star) with the S-wave scattering parameters of other nucleon-nucleon interactions. Here, statistical errors are repres-

ented by error bars, while the horizontal uncertainty of fo is smaller than the symbol size, and systematic errors are indicated by

boxes. Errors for other measurements are in the few percent range, also smaller than the symbol size.
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Fig. 7. (a) Three-body decay of anti-hypertriton events in the TPC detector, while the central enlarged view refers to the local de-
piction of three-body decay events of anti-hypertriton in the Heavy Flavor Tracker (HFT) within the TPC["]; (b) the relative mass
difference between atomic nuclei and their anti-nuclei'¥l. Results for *He and d come from the ALICE collaboration. The horizont-
al error bars represent the total statistical and systematic uncertainties. The vertical dashed line at the zero position on the hori-

zontal axis indicates the expected value of CPT symmetry.
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Fig. 8. (a) Experimental and (b) theoretical values of the binding energy of hypertriton®. The early measurement results are rep-
resented by black dots and their corresponding error bars. The combined value of hypertriton and anti-hypertriton from the STAR
collaboration assumes the CPT symmetry, where the vertical error bars indicate standard statistical errors, and the caps represent
systematic errors. The solid points and lines on the panel (b) represent theoretical calculation results, while the horizontal line in-

dicates the position where the binding energy is zero.
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Fig. 9. According to the Navarro-Frenk-White profile, the distribution of Dark Matter (DM) density ppm as a function of the
distance from the Galactic center is shown in the upper panel®. The lower panel illustrates the interaction between cosmic rays

and interstellar gas or DM (k) that produces 3He 9. The yellow halo represents the heliosphere, and the positions of Earth, the

Sun, Voyager 1, AMS-02, and GAPS experiments are also depicted.
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Fig. 10. (a), (b) Hadron abundances and predictions from the statistical hadronization modell®: (a) The dN/dy values (red circles)

for different hadrons and nuclei at mid-rapidity, including hypertritons, compared with the statistical hadronization analysis (blue

bars); (b) the ratio of data to the predictions of the statistical hadronization model, with error bars determined solely from the data,

representing the sum of statistical and systematic uncertainties. (c), (d) Collision energy dependence of the relative abundances of

several hadron species. Data from central collisions are compared with the results of statistical hadronization calculations
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Fig. 11. (a) Invariant yield of nuclei produced in Au-Au collisions at 11.5 GeV/c and 200 GeV/c as a function of baryon number B,
calculated using the Blast Wave model and coalescence modell™. The interval used is the average transverse momentum range
pr/|B| = 0.875 GeV/c. The solid points represent our results based on the coalescence model, while different lines indicate the fits
of the coalescence model to data from the STAR experiment!’?. (b) In the 2.76 TeV Pb + Pb collisions, the relationship between
dN/dy and baryon number A exhibits an exponential decay!™. There are essentially two types of production chains: the first type
includes N—d—t (3H) (red), > NQ — NNQ (blue), Q2 — NQQ (pink), while the second type includes N > NQ — N QQ
(green). 2 — QQ (brown) and d > NQ N — NN QQ (light green) chains. These lines illustrate the relationship dN/dy = exp(-b4),
where the values of b for the first type are 5.78 (red), 5.68 (blue), and 4.70 (pink), and for the second type are 11.1 (green), 13.3

(brown), and 10.7 (light green).
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Fig. 12. Production of deuterons and tritons in Au + Au collisions at RHIC energies’®. The collision energy dependence of the light
nucleus yield ratios (a) Ng/Np, (b) Nay/N, and (c) Nay x Np/NZ is shown. Theoretical results including and excluding had-
ronic kinematics are derived from Hydro + RKE (shaded band) and SHM (lines), respectively. The experimental data points, which

include statistical and systematic uncertainties, are sourced from the STAR collaboration.
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Fig. 13. Central apparatus and hybrid potential energy of ALPHAF: (a) Antihydrogen synthesis and trapping region of the
ALPHA apparatus. The image shows the atomic trap magnet, modular annihilation detectors, and partial Penning trap electrodes.
An external solenoid (not shown) provides a 1 T magnetic field for the Penning trap. The diagram is not to scale. The inner diamet-
er of the Penning trap electrodes is 44.5 mm, and the effective length of the minimum magnetic field trap is 274 mm. Each silicon
module is a double-sided, segmented silicon wafer, with strip spacing of 0.9 mm in the z direction and 0.23 mm in the w direction.
(b) The nested trap potential used for mixing positrons and antiprotons. The blue shading represents the approximate space charge

potential of the positron cloud. The z position is measured relative to the center of the atomic trap.
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Fig. 14. Experimental data (filled circles) and fitted lines for (a) single-spin polarized and (b) double-spin polarized antihydrogen
samples®?. Data points were obtained from detected spin-flip events at a laser pulse energy of 0.5 nJ, normalized to the total num-
ber of trapped antihydrogen atoms. Error bands represent 1o counting uncertainty. The frequency offset is 2, 466, 036.3 GHz. The
red fitted curve is obtained using a standard fitting procedure (Model 1), while the blue curve is derived from another fitting model
(Model 2). (¢) Experimental measured frequency of the 1S-2P transition in antihydrogen fres (exp)is compared with the theoretical
expected frequency for hydrogen fres (th). All four measurements are consistent with hydrogen, and their average provides a test of
CPT invariance at the level of one billionth. Error bands represent 1o, and the average error band calculation takes into account

other related uncertainties®?),
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Fig. 15. Comparison of spectral line shapes of transversely cooled antiprotons and thermally excited antiprotons in the same series
of cooling experiments!®: (a) Comparison of spectral line shapes between equally sized subsamples in the “stacking and cooling”
series data. The line shapes for subsamples with transverse energies greater than (less than) the median are represented by solid
(dashed, filled under the curve) lines. (b)—(h) Similar comparisons for the (b) cooling, (c) no laser, and (d) heating series, along with
(e)—(h) corresponding simulations. In all cases, the connecting lines are intended to guide the eye. In the laser cooling series as
shown in panels (a) and (b), transversely cooler atoms are also longitudinally cooler, while the correlation is reversed in the heating

series and shown in panel (d).
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Fig. 16. Gravity test experiment of antihydrogen atoms: (a) Schematic diagram. The ALPHA collaboration first manipulates the
formation of antihydrogen atoms in a Penning trap apparatus, where they are confined in a magnetic field generated by supercon-
ducting magnets and two electromagnetic coils known as mirror coils. Voltage is applied to the two mirror coils to simulate the
magnetic field gradient of the gravitational effect. Antihydrogen atoms are then released and detected on the walls of the apparatus.
When the magnetic field gradient balances with the gravitational acceleration, a similar number of atoms will be found on both the
top and bottom walls, indicating that antihydrogen atoms experience gravitational effects similar to those of hydrogen atoms®Y.
(b) Relationship between the experimental data and the probability Py, of antihydrogen atoms escaping downwards, derived from
simulated experiments, as a function of deviation®. Graph displays three values of gravitational acceleration ag: 1 g (normal grav-
ity, orange), 0 g (zero gravity, green), and —1 g (repulsive gravity, purple). The right vertical axis represents the asymmetry of anti-
particles moving upwards and downwards, A = 2 Py, — 1. The confidence intervals for the zero gravity and repulsive gravity simu-
lations are comparable to those for normal gravity simulations, although these are not depicted for clarity.
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Fig. 17. (a) A historical overview of the measurement of the magnetic moment of antiprotons®!. (b) Relevant components of the
Penning trap used in the experiment!. In the uniform magnetic field of the precision trap, the cyclotron frequency of the particles
is measured, and the spin transitions of the Larmor particles are induced. In the inhomogeneous magnetic field of the analysis trap,
the spin state is first initialized, and then analyzed after each attempt to flip the spin in the precision trap. (c) Spin flip probability!*%.
The red line represents the results of the direct likelihood estimation of g, and 2z . The gray area indicates the 68% error band.
The black data points represent the binned average values of Psp (I') measurements, with the error band corresponding to lo.
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Fig. 18. Positronflux ¥, isexpressedasafunctionof E3 103,
Derived AMS positron spectrum E3@,; (red data points)
is plotted against energy E. Due to solar modulationl'®¥, the
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ent the energy ranges corresponding to the spectral behavi-
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Fig. 19. In the magnetic rigidity range from 1.00 to 1.71 GV, (a) and (c) show the relationship between electron flux ¥,- and

positron flux ¥4 , while (b) and (d) depict the relationship between proton flux ¥, and positron flux ¥,y 1. The data points in

panels (a) and (b) correspond to the average flux over 3 days. For (c) and (d), ¥, , ¥, , and ¥, are calculated as moving aver-

ages over 14 BRs with a 3-day step. The flux units are [ m~2-sr
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Abstract

The asymmetric origin of matter and antimatter in the universe is an important unsolved mystery in
science today. In this paper, we briefly review the history of antimatter research and the recent international
hotspots of related research. This paper focuses on the advances in antimatter research made in recent years at
the large-scale international RHIC-STAR experiment at the Relativistic Heavy Ion Collider, including the
discovery of the first antimatter hypernucleus (anti-hypertriton), antimatter helium 4 and antihyperhydrogen 4,
the first measurements of antiproton interactions, and the precise measurements of the mass and binding energy
of the hypertriton and anti-hypertriton. The antimatter hypertriton nucleus, composed of an antiproton, an
antineutron, and an anti-A hyperon, is the first anti-hypernucleu to be discovered, extending the three-
dimensional nuclide map from the anti-strange quark degree of freedom. Antimatter Helium 4 is the heaviest
stable antimatter nucleus yet discovered. Anti-hyperhydrogen 4, just discovered in 2024, is composed of an
antiproton, two antineutrons, and an anti-A hyperon, and is the heaviest antimatter hypernucleus to date.
Equivalence to the proton-proton interaction was established by measurements of the antiproton-antiproton
interaction. At the same time, precise measurements of the mass of hypertriton and anti-hypertriton nuclei
confirmed the equivalence of matter and antimatter. And these also fully demonstrate that the CPT symmetry
is also valid for antimatter nuclei. Measurements of the binding energy of the hypertriton nucleus indicate that
the interaction between A and the nucleus of the hypertriton (the deuterium nucleus) is strong, which differs
from the earlier common belief that the hypertriton nucleus is a weakly bound system. Furthermore, we discuss
different physical mechanisms for the production of (anti) light nuclei, mainly including thermal, coalescence
and relativistic kinetic models. Finally, we also present recent results from antihydrogen atom experiments at
CERN, antimatter space probes, etc., and discuss the implications of these advances for understanding the
structure of matter. Overall, the existing studies of antimatter nuclei and atoms have not yet provided clear
evidence for the asymmetric origin of matter and antimatter in the universe, which can help further improve the
accuracy of various measurements in antimatter research. Of course, other efforts in this direction in nuclear

and particle physics are well expected.

Keywords: antimatter nucleus, CPT symmetry, mechanism of (antimatter) light nucleus production,

antihydrogen atom
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