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I. INTRODUCTION

It seems rather likely that for some time to come the most fruitful
view of hadrons will be as composites of colored quarks and gluons. While the
theory of Quantum Chromodynamics (QCD) is still developing, it is already stan-
dard to find "color factors', factors due to the presence of this internal sym-—
metry, quoted in many amplitudes of interest. Indeed, color is most directly

observable in terms of the effect of these color factors on transition rates.

While there is nothing particularly new or mysterious about calculating
the color factors = it is, in the standard theory, an exercise in conventional
SU(3) - some care is required to get it right. There are few places where an
uninitiated reader can go to learn easily the necessary techniques. Consequently,
it was thought that it would be useful to include an introductory pedagogical

treatment as part of the present book, and that is the purpose of this chapter.

Other introductory aspects such as the history and the main tests of
color are well covered in other chapters or in references given there, so we will
concentrate on calculational techniques. A few other sources are mentioned in
references below. References to the original literature should be traced from

other chapters and from the reviews mentioned.

First some introduction to the formalism is given in Section II. Then
in Section III a number of examples are analyzed, some with simple arguments and
some with formal manipulations. We will concentrate on the standard theory, where
color is an unbroken symmetry and hadrons are only in color singlet states ;
other views and ways to distinguish them are well covered in the articles by
Chanowitz and Greenberg in this volume, and by Greenberg and Nelson. Finally, in
Section IV some further remarks are given about the observability of color. It is
worth emphasizing again that the purpose of the present notes is to give an ele-
mentary but fairly complete, pedagogical, introduction to the use of color sym-

metry in quark physics.

II. FORMALISM

We assume that quarks come in a triplet representation of an unbroken
SU(3) color symmetry, and that they interact by exchange of an octet of colored
gluons. That there are 3 colors and the symmetry is SU(3) is the standard choice
to have three quarks in a baryon, and have them in the totally antisymmetric
state required by statistics, and in a color singlet state. We will label the
quark colors, as r, g, b (for red, green, blue). The gluons can change quark

color, so a r quark can absorb or omit a gluon and become a g quark, etc ...
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Some color factors can just be written down, as we will see, but for
some calculations we need the Gell-Mann SU(3) ) matrices, so let us recall their
properties ; it is probably worthwhile to give essentially a self-contained
treatment. They are just the generalization to SU(3) of the Pauli matrices for

spin or isospin. Let us think in terms of isospin, with matrices

Ti T, Tk

L, = e, X )
ijk

2 2 S

Combining the commutation relations with the anticommutator
s T. = o 3
[TL,TJ} 26, ; (3)
one has the useful relation

TiTj = Gij + leijka (4)

Most of the useful properties of the A matrices can be deduced from

the commutation relations and simple arguments based on the isospin analogy. We

[ii;.fi] e M (5)
2 2

have :

#
P

and

-~ 4
{Ai,xj} = 245 Nt - 3y (6)

The second term in (6) has a 3 x 3 unit matrix factor understood. Combining these
we find one useful relation analogous to (4),

2,
3 ]

AiAj = i fijk Ak + dijk Ak +
Many complicated expressions with A matrices can be handled using this equation.

The numbers f. and dij are the standard SU(3) constants, available in many

ijk k
textbooks. Just as for isospin, at a quark-gluon vertex there is a factor due to

color b . Azb
a 2
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where a, b are quark color labels, a, b=1r, g, b or a, b =1, 2, 3.

1

When calculating color factors we expect only internal gluons, whose color 'pola-

rization" is summed over. Therefore we will find factors such as

i i

? Aab Acd
i

which need to be evaluated. The appropriate identity is

i 1
XA
ab _cd ! 1
I—— = -5 .6 - =66 (7)
i 2 ad "be 6 abcd

To check that this is correct, note the following. We can write down

a few )A's by analogy with isospin. We can take

0 1 0 - 1 0 0
yo=[roo , A, ={i 0 , ro=f o=
0 0 0 0 0 o0 0 0

merely the Pauli matrices with a third row and column, still traceless and her-

mitian. Since

1 0
w2 -
L 0 1
then for i =1, 2, 3
1 0 0
A=]0 1 o0
i
0 0 0
In particular, note TrAi =2 for 1i =1, 2, 3 and so Trkf =2 for any i

One more ) is obvious, the one which is diagonal in isospin, usually called Ag .
Since it has unity in the 11 and 22 positions and is traceless and normalized

. 2 co s
with TrAa =2 , 1t 1s

Now, to check eqn.(7), we can (i) put b = ¢ and sum, giving the matrix

product, (ii) put d = a and sum, giving the trace.
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Since each term gives 2 and there are 8 terms we get 16, divided by 4 for the two

factors of 1/2. The right hand side gives

= 4

! ! - -1 =21
gc (E' Sqadce ~ E 5acéac) B 9 3 3 6 3 2 2

as expected.

[}
o

L}
0

[}

If we put a d =3, all but Ay have a zero in the 33 posi-

tion so we get

N2

i
?(%3)
i

[
s |-
/N
W&
N—r
1
w |-

and

1 1
§..8 - —48,.8 = - - -
33733 6 33733 2 6 3
1 2
d = 2 . Then (Alz) =1 and

2 . . .
(112 = -1 so both sides should give zero. These three independent checks

establish the identity of eqn.(7) since there are only three ways to combine the

S

A thirg check is to take a=c=1, b

indices.

Finally, we assume that hadrons are color singlet states. To have nor-

malized wave functions,then, a meson is represented by

1

7§ LI (8)
and a baryon by

1

7% €abe ®)

Now we proceed to various physical manifestations of color symmetry.

III. EXAMPLES

First, we can write the electromagnetic current as

EM _ 2 (- - - _ l b 3 b
JU = ; (urur + ugug + ubub) Z (drdr + dgdg + dbdb) + e (10)

where the dots are similar contributions for other flavors s, c, etc... The nor-

malization of each term is required by the charge of each quark.
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Now let us calculate the ratio

R = cT(e+e’ ~+ hadrons) /o(ete™ » p*u7)

The transition is through an intermediate photon.

It has been shown that the total rate to hadrons can be calculated as
if there were a transition to free quarks (which then turn into hadrons). Then
Yy > qq and

q
RIS DS
colors

sc will all colors contributing equally we get a factor of N, .

Ve can see the same result and practice with the formalism. The photon
guark vertex for quark colors a, b is given by éab , and the color singlet

wave function is 6ab//§ s SO
Mmaabsab//'f - sbb//i = 43

so the cross section is larger by M2 A 3 , If there had been N, colors this
would become M ~ /ﬁ; » 6 ~N, , so R gives a direct measurement of the

numbers of colors as well as the presence of such a symmetry.

Next let us éonsider the Drell-Yan process, where a qq pair from
two interacting hadrons annihilate to a lepton pair via an intermediate photon.
Again, we are only considering the color factor, which here is expected to be
1/3. More extensive discussion can be found in the chapter by Quigg. Let us

derive this factor a couple of ways.

Consider color singlet mesons, (rr + gg + bb)/v3 . Then when blue

quarks ann{hilate we have
—
/3
with the circled quarks annihilating. For gree; quarks, similarly, the contribu-

- !
D
V3

The remaining quarks are blue in one case and green in the second, so they do not

¥ i

tion is

ot b

interfere. Consequently, we square before adding. The amplitude for each color is
1/3, so the rate for each color is 1/9 , so the total rate has

1/9 + 1/9 + 1/9 = 1/3 , an overall factor of 1/3 from color.
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Ve can also view the Drell-Yan process in terms of the conventional
formalism. Ignoring color we would write the proton structure function
ep 4 - ) - 1 =N
F (x) = x |= (u(x) + u(x)) + = (d(x) + d(x)) + — (s(x + s(x ’
, (0 [9(() @) + 2 (400 + d) + 3 ) (>)‘
where u(x) , etc ... 1is the distribution of u quarks with a fraction x of
the proton momentum in the scaling region..Including color we would instead

write

FP() = x (Z:[%(uc(x) +8c00) + 5{dc 0 + de0) + g(sct0) + Ec(x))‘

and

u(x) = ux)/3 , c=r,g, b

since the measured u(x) summed over color.

For other color models the last equation might not hold, with possibly a varia-
tion depending on x or q2 . The Drell-Yan rate depends on the product of
structure functions from each hadron, and the annihilation is due to one pair of
colored quarks, so a factor I/Né comes into the rate. However, there are Ne

more pairs than without color, so the final factor is 1/N. as above.

Now we turn to calculating color factors for several processes where

it is most convenient to use the formalism of SU(3) )\ matrices summarized above.

First consider qq scattering by single octet gluon exchange. Consider

the diagram

a i b
[ i d
1 i i
M = — T X A
4 1 abcd

Each vertex has a factor A'/2, and the virtual gluon color state is summed. The
initial and final states can be thought of as having the quarks come from diffe-
rent hadrons, perhaps to undergo a hard scattering to large P, - Then the cross

section is

2 1\ /1 ili * "\
an M? o= (2L = (Al radad L
3/\3) abed \i ab cd/\ j "abcd /yp
* 3

4

Since the SU(3) matrices are hermition, XA b = Aoa ! and we have summed over all
a a

final quark colors and averaged (giving 1/3 for .each initial quark) over all
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initial quark colors. Since the initial quarks are in color singlet hadrons the

probability of fimding a quark of given color is /3 g Gah//g)(éa'b//§)=]/3daé

1 1 B . .
for mesons, gc(7€ Eabc) (:3? sa.bc)—l/3éaa, , for baryons) , SO 1n averaging
over the initial state we have a factor 1/3 for each quark ; it is like spin

states with an unpolarized beam if we start with color singlet hadrons. Using

eqn. /7, we get

1 1 1 1 1
9= 5- abgd (Edaddcb E6ab6cd)( 2 dbcéad Eéadéch

L(L(3)(3)_1_ - @+ (3)(3)> =2
9\e 12 12 36 : 9

For a physical situation the relevant calculation is more complicated
(see Feynman and Field for more discussion). One must add the crossed diagram
where quark b comes from the lower vertex. The size of the interference term
depends on the scattering angle, and is different for different color symmetries.
For a given physical process one must add the relevant diagrams with spin and

color factors, and explicitly calculate the cross section.

Next, let us examine the effect of color on several decay rates. We
ignore changes due to electromagnetic and strong coupling strengths. In all cases
when we speak of the effect of the color factor, it should always be interpreted
as meaning a comparison of processes, such as the effect relative to positronium

or of two different final states.

a) Consider the expected rate for the charmonium state n, * 2y , as

shown, with color labels in parentheses,

(a) Y
c
(e)
c
(b) Y
Formally, the matrix element has (6ab//§) for the initial wave function, and
éae N 6be at the quark-y vertices. Then

M = aabsaeaba//i =

so the rate is enhanced a factor of 3 by color (compared to the analogous rate

for parapositronium).
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b) Next consider =° - 2y . Here, as reviewed in detail by Chanowitz,

it is well known that the expected enhancement due to color is 3 in amplitude,

9 1in rate. But what is different from n, > 2y just above ? It is the role of

o

PCAC and the triangle anomaly that is different. The 7° case is viewed not as

a quark annihilation but as

Ay

shown here,where the 7° couples to the divergence of the axial curreat, and
three currents are coupled to the quark loop. The coupling of w° to avA“ is
via the measured decay factor f, , which then effectively includes the color
wave function normalization. The coupling of the axial current and two vector
currents to the quark loop is normalized by the currents. Clearly with three
tolors there are three loops and the amplitude is enhanced by 3., the rate

by 9.

Comparison of (a) and (b) illustrates nicely that one must pay some

attention to the detailed dynamical situation when working out color factors.

(c) Consider a hypothetical heavy quark b of charge -1/3 , coupled
to the u quark in a weak isospin doublet (Cahn and Ellis). The nonleptonic
decay of a bu meson state to sc would proceed via a direct channel interme-

diate vector boson W , as shown

u s

According to our rules we have

Mo Z(,(Sab/‘/3 )aab 6cd v 3 6cd

g ~ 3z 6cd6cd = 9
so the rate is enhanced by 9 . If the bu meson decays into a lepton pair such
as v, , there is no color factor for the final state and the enhancement is 3

(the reverse of (ete™ ~ hadrons)).

(d) Alternatively, consider the hypothetical bd meson going into uu.

Then the W 1is a t-channel exchange,
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¥

g

A I

kgl d

and since the coupling at each vertex is just the Kronecher delta coupling of

the current, the color factor is just unity in the rate.

(e) Finally, consider the QCD calculation for the total hadronic decay
of n, , n. > 2 gluons. Since the two gluons are assumed to have unit probability
to become hadrons, it is sufficient to just calculate the annihilation graph to
two gluons. The amplitude for the figure shown for quark colors a, b, c and

gluons i, j 1is
B S— i
b
c ,.
e ]

Ao

8 ..
M oo 2 _ab be _ T Tr()\lk‘])
/3 2 2 4/3

Now Tr A"A? is zero if i # j and 2 if {1 = 3j , as shown above, so

g 4 . §8..8.. = L ¥ oS8, = 8 .z The complete
4g P HH] 2 v 12 3

amplitude 1is given by the sum of this process and the crossed diagram. In this
case since M v 6ij the two gluons are identical particles and the interference
and counting of states is the same as for final photons. Thus we can take the
QED parapositronium calculation and just multiply by the color factor of 2/3
(and redefine the coupling strength) to get the expected n, decay rate. For
the three gluon annihilation of ¢ relative to orthopositronium it is more com-

plicated to show that the counting is the same as for photons.

(f) Finally, consider a heavy lepton decay. The expected mechanism is
L - vy o+ W , W~ xy and one must sum over all pairs x, y that couple to the

appropriate W . Presumably one has x, y = uv ev, , cs , ud plus any addi-

uo e

tional contributions from heavy quarks or leptons permitted by energy conserva-
tion. Since each color couples to the current independently, there is one contri-
bution from each lepton,plus N. from each quark pair.Thus the branching ratio to a

single channel is expected to be ]/(2+2NC) if all the above are allowed. For
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the decay of the SPEAR heavy lepton presumably cs 1is not allowed by energy

conservation, so 3 colors predict 1/(2+3) = 1/5 , as discussec by Chanowitz.

Next we turn to some aspects of the influence of color on hadron spec-
troscopy. Some of these details are available in Jackson (1976) but they are
included here for completeness ; the connections to the original literature can

also be traced from his lectures as well as the articles in this volume.

If there were a coupling 8, in the absence of color, the single
gluon exchange force gives an effective coupling g between q and a, for color

singlet mesons
g ’

i ]
2 éab Aac Adh 6cd
g = L.r —\8, — J\8, — | ——
ijabed A o , ° 5 /3

where the labeling is as shown. Notice

i
a . ., <::::§\\\\L"A_
”‘?;_4>_ —////___~;d -
i

the order of indices (think of a as q 1in the other direction).

[F=]

Fa)

Then
P I ST SRR B S CLats B RN S I SR R
g 85 . Myoteb gs %, r(l A ) 8 ; gg

12 © ii 12 ° ij 12 iy H

For vector, octet gluons this corresponds to an attractive force, giving binding

for mesons.

For the qqq system (a baryon) we have

€ 2t J €
g2 N s 5 abc ‘ad _be | “def
abc 1j /g ° 2 ° V6 ef
def
2
g L
o 1.]
= 2 3 ) -
5, @b Ej \adxbe (6ad6be 5ae6bd )
24
de
_2 L2
O R T LI ooy Tr()l)f])= .
24 de 1ij "ed'de 9q 11 3 ©

19



This also gives an attractive force, half the strength of the meson binding force
Thus the electromagnetic coupling strength o in the photon exchange interaction
gets replaced by (4/3)(1s for gluon exchange in a meson and (2/3)&s for gluon
exchange in a baryon.

Another useful way to get this result is as follows (de Grand et al,
1975) . Consider quark and antiquark bound together in a color singlet state
|0> . Then we must have for any i

(Ai+>\i‘)|0> =0 .

1 9

Taking a scalar product with Aq , we have for this situation

. . . 2
I ahlo- —Z(xl) = -16 .
1 qq 1 q
With numerical factors 1/4 since A/2 goes at each vertex and 1/vV3 for

initial and final states, this gives -4/3 as before. For the baryon

i i i
A + A + > = .
( ql q2 Aq3>|0 0
Taking scalar products with Aql . qu . Aq3 in turn and combining equations
gives
.. 2
gt - sl ety - -
i “ql "q2 2 1\'4

or half of the meson result, giving the factor -2/3 from above.

The qa interaction due to single gluon exchange is proportional to
the scalar product Aq.ka . We change just seen that this gives an attractive
force (i.e., a minus sign) for color singlet meson (and baryon) states. If

we write

2
)\+)\> = 22+ a2 e ol
e 1 a’ g q'q

and solve for Aq.xa (following the common procedure with spin or isospin) we

have

2
2% e ={x +a_]-22 -2
9’3 q g ¢ 7

In the color singlet state (Aq + Aa)z = 0 and we have our result above. For
2
higher color states we would need to know the eigenvalue of (Aq + Kq> , 1.e.

the analogue of J2 = J(J+1) , but it is sufficient for our purposes to just



2
note that (Aq + Aa is positive, so that forces mediated by color gluon
exchange will always have the color singlet states lying lowest. Consequently,
even if quarks and gluons were not confined it would make sense to have the

observed hadrons in color singlet states.

Similarly, consider a color singlet hadron and ask what is the force

between it and another quark Q . We can write the interaction as

I A A -
1,9 Q'"q(q)
in hadron

and rearranging gives

M A AL . I X = .

Q ( 4,9 q(q))
But the quantity in parentheseswill vanish for a color singlet hadron, so the
existence of only qg and qqq systems can perhaps be understood dynamically, in
terms of the properties of the color gluon forces. See Greenberg's chapter for

more discussion on this saturation question.

Two other ways in which the color properties of the forces may affect
dynamics are interesting. First, since hadrons are to be taken as color singlets,
and one can get a singlet from 3 @3 =1@®8 or 3@ B3@®3) =1+ ..., the
G ® 3) diquark in the baryon must transform as a 3 as far as color forces
can tell. This may help clarify the dynamical role that diquark systems seem to
play and the similarity of the Regge behavior of mesons and baryons. Second, it
has been remarked (Nussinov, 1976) that a dynamical symmetry property of the
Pomeron may arise from color. If one builds the Pomeron from multigluon exchange,
the possibility of odd charge conjugation (C) exchange naturally arises in the
3-gluon contribution. But due to color this odd C part of the exchange vanishes

identically. It is given by

k d
j e
c_ . i B £
1 i k
MoV I Bk At be Yad fabe Sdef
where the antisymmetric SU(3) numbers fijk project out the odd C part of the

gluon exchange and all indices are summed. Since i, j and e, f and b, ¢ are

all summed over we can interchange them i j , ce& b , e~ f . After doing so
' .

the three A's are unchanged, and the quantity fijkeabcedef

changes, one from each of its totally antisymmetric pieces. Thus M - -M so M = 0.

has had three sign
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IV. OBSERVABILITY OF COLOR

To conclude we want to briefly emphasize the ways in which the exis-
tence of a color symmetry may be observable. While the elegance and richness of
QCD may suffice to convince many theorists of its relevance or even truth, one
often hears -- particularily for the unbroken, '"hidden" color symmetry -- ques-—
tions about the meaning of having a new set of degrees of freedom that are not
directly observable. Because states of non-zero color may exist, is color unob-

servable ?

Of course not. We are familiar with procedures for observing non-abe-
lian groups such as angular momentum or isospin from selection rules and transi-
tion rates. If m and N could only interact in I = 3/2 states we would learn
it from the 9/1 ratio of elastic scattering of n*p and n7p . Similarly, we
have mentioned a number of observable consequences of color above (see especially
Chanowitz's article for additional examples). In addition to the basic need to
antisymmetrize three quarks in a baryon, these include the predicted factor of

N. increase in R = GT(e+e_)/0(e+e‘ > u*p~), the factor of N. decrease in the

c
Drell-Yan cross section, a number of changes in decay transition rates and bran-
ching ratios, such as a factor Ni in nonleptonic weak decays with s-channel
intermediate vector bosons and no modification for t-channel ones. Other color
dependent predictions are available for a number of processes involving photons,
and for scaling violations in deep inelastic v, e, n reactions (see the
Chanowitz review). Many of these test both the presence of an internal symmetry
and the actual degree of symmetry, the number of colors. In the near future both
our experimental and our theoretical understanding of these tests will become

clear, and the experimental status of color symmetry will be settled by several

independent measurements.
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