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Schwinger pair production of electrons and positrons in a strong electric field is a prediction
of nonperturbative quantum field theory, in which the out-vacuum is superposed of multi-particle
states of the in-vacuum. Solving the Dirac or Klein-Gordon equation in the background field,
though a linear wave equation, and finding the pair-production rate is a difficult or nontrivial job.
The phase-integral method has recently been introduced to compute the pair production in space-
dependent electric fields, and a complex analysis method has been employed to calculate the pair
production in time-dependent electric fields. In this paper, we apply the complex analysis method
to a Sauter-type electric field and other hyperbolic-type electric fields that vanish in the past and
future and show that the Stokes phenomena in pair production occur when the time-dependent
frequency for a given momentum has finite simple poles (polons) with pure imaginary residues.
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I. INTRODUCTIONS FOR PUBLICATION

Quantum field theory in strong background fields has
attracted much attention in theoretical and experimen-
tal physics and numerous papers have been published
since Heisenberg and Euler [1] and Schwinger [2] ob-
tained the one-loop effective action in a strong electro-
magnetic field in quantum electrodynamics (QED). One
prominent feature of the one-loop QED action is the
spontaneous pair production of electrons and positrons,
known as the Schwinger effect, in a strong electric field in
a proper Lorentz frame, which could not be explained by
any perturbative method of summing a finite number of
Feynman diagrams. The other aspect is the vacuum po-
larization due to the interaction of background photons
with virtual electron-positron pairs. Contrary to the real
effective action without simple poles in a pure magnetic
field, the effective action in an electric field takes a com-
plex value, whose real part is the vacuum polarization
and whose imaginary part results from the pair produc-
tion [2].
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The gamma-function regularization has recently been
introduced in the in-out formalism [3], which via the
Cauchy residue theorem leads to a complex effective ac-
tion in electric fields [4,5]. The vacuum persistence am-
plitude, twice the imaginary part of the effective action,
is the sum of either all instantons for multi-pairs [6] or
all residues of the vacuum polarization [4,5] and is thus
determined by the mean number of produced pairs. The
vacuum persistence amplitude implies the instability of
the Dirac vacuum due to pair production. The complex
effective action through the gamma-function regulariza-
tion seems to provide a consistent quantum field theory
for spontaneous pair production from the background [7].

Kim and Page have advanced the phase-integral
method to explain the Schwinger effect in a spatial pro-
file of electric field, for which the Dirac or Klein-Gordon
equation becomes a tunneling problem with at least more
than one pair of complex turning points [8]. However,
the phase-integral method proved to extend to a tempo-
ral profile of electric field, for which the Dirac or Klein-
Gordon equation becomes a scattering problem over a
barrier, and the coefficient for the negative frequency
solution is also determined by the relativistic instanton
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actions [8]. Dumlu and Dunne have further elaborated
the phase-integral method in various profiles of time-
dependent electric fields and found Stokes phenomena
for specific profiles of electric fields with more than two
pairs of turning points in the complex plane, which give
rise to substructures of Schwinger pair production [9–
11]. Some WKB approximations have been adopted to
the Schwinger effect [12–16].

Recently Kim has found in the in-in formalism that the
particle production originates from the geometric tran-
sition in the complex plane for time-dependent electric
fields or expanding universes [17–19]. In the formalism
the vacuum persistence amplitude is determined by the
scattering matrix between the in-vacuum and the trans-
ported one along loops in the complex plane that starts
from and returns to the base point for the in-vacuum
á la the functional Schrödinger picture. The scattering
matrix gives a null result when the in-vacuum evolves
along the real time and then returns to the same base
point. However, the time-dependent frequencies for the
relativistic theory for a charge may have multiple simple
poles including the one at the infinity and gain residues
that lead to the nontrivial vacuum persistence amplitude
and exhibit a rich structure such as the Stokes phenom-
ena for the Schwinger effect. In short, the mean number
for pair production is prescribed by [17–19]

N =

∣∣∣∣∣ ∑
L≥1,J

exp
[
−i

∮
C

(L)
J (t0)

ω(z)dz

]∣∣∣∣∣, (1)

where the summation is over all possible, independent,
loops J of winding number L with the base point t0 for
the in-vacuum. In fact, the structure of simple poles,
the so-called polons, determines the mean number for
the Schwinger effect.

To illustrate how the formula (1) works and to show
the advantages of the complex analytical method, we
apply Eq. (1) to a constant electric field with the vector
potential

E∥ = E0, A∥(t) = −E0t, (2)

in which a charge q with mass m has the time-dependent
frequency in the complex plane

ωk(z) =

√
µ2 +

(
k∥ + qE0z

)2
, (3)

where µ2 = m2+k2
⊥ is an effective mass that the charge

would experience along the longitudinal direction. Using
the branch-cut in Ref. [8] and expanding the square root
for large z in a power series

ωk(z)

= qE∥z

[
1−

∞∑
l=1

(2l − 2)!

22l−1l!(l − 1)!

((z0
z

)l
+
(z∗0
z

)l)

+
∞∑

k,l=1

(2l − 2)!(2k − 2)!

22l+2k−2l!(l − 1)!k!(k − 1)!

(z0
z

)l(z∗0
z

)k]
, (4)

where z0 = (k∥+iµ)/qE0, the simple pole at z = 0 occurs
when l = 2 in the first sum and k = l = 1 in the second
sum. Then, the sum of the residues is −qE0(z0 − z∗0)

2/8

and hence the contour integral clockwise along a loop of
winding number one recovers the Schwinger formula [2]

Nk = e
−i

∮
C

(1)
J

dzωk(z)
= e−

πµ2

qE0 . (5)

Note that all loops not enclosing the pole at the infin-
ity with winding number L ≥ 2 is homotipically equiv-
alent to that of winding number one. Thus, this im-
plies that the Schwinger formula (5) is exact. Similarly,
the higher order corrections to the Wentzel-Kramers-
Brillouin (WKB) approximation vanish in the phase-
integral method, which explain why the relativistic ac-
tion from the WKB approximation gives the exact result
[8].

The organization of this paper is as follows. In Sec. II
we revisit the Schwinger effect in a Sauter-type elec-
tric field, for which the exact solutions of the relativistic
wave equation are known in terms of a special function,
the in-vacuum and the out-vacuum are well-defined, and
the Bogoliubov transformation is established. This field
model has provided an arena for various approxima-
tion schemes to be tested. In Sec. III the formula for
Schwinger pair production is applied to another hyper-
bolic electric field which vanishes at the past and future
infinities, and whose direction reverses symmetrically in
time. The solitonic nature of the Schwinger effect is
explained via the Stokes phenomena. In Sec. IV the
Schwinger effect is studied when the electric field effec-
tively acts for a finite period of time but the electric field
changes slower than the Sauter-type field.
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II. SAUTER-TYPE ELECTRIC FIELD
REVISITED

The Sauter-type electric field [20]

E∥(t) =
E0

cosh2(t/τ)
, A∥(t) = −E0τ tanh(t/τ), (6)

is one of nontrivial electric fields that has been most
extensively studied in strong QED. In this work we fo-
cus on the scalar QED problem, though the study can

be straightforwardly extended to spinor QED. Then the
time-dependent frequencies of a charge q with mass m af-
ter the Fourier mode-decomposition of the Klein-Gordon
equation take the form (in units of ℏ = c = 1)

ωk(t) =

√
µ2 +

(
k∥ + qE0τ tanh(t/τ)

)2
, (7)

where µ2 = m2 + k2
⊥. A conformal transformation z =

etτ leads to a contour integral in the complex plane

∮
ωk(t) = τ

∮
dz

z(z2 + 1)

√
µ2
(
z2 + 1

)2
+
(
k∥
(
z2 + 1

)
− qE0

(
z2 − 1

))2
. (8)

In order to apply the Cauchy residue theorem to the pair production formula (1), the frequency (8) should be
made an analytical function in the complex plane, which can be done by properly choosing a branch-cut. In fact, the
square root of the frequency (7) has the same form as in Ref. [19], in which the branch-cut and independent loops are
discussed in detail. Using the branch-cut in Ref. [19], a simple pole at the infinity (z = ∞) leads to the relativistic
action, after symmetrizing the momenta k∥ and −k∥ for equally produced pair with opposite directions along the
longitudinal direction,

S(∞) := 2πRes
(
∞
)
= −πτ

[√
µ2 +

(
k∥ + qE0τ

)2
+

√
µ2 +

(
k∥ − qE0τ

)2]
. (9)

There are also a pair of finite simple poles at z = ±i, and
enclosing clockwise the pole at z = i from the causality
reason yields another action

S(i) := 2πRes
(
i
)
= 2πqE0τ

2. (10)

Finally, adding the contributions from the independent
loops of winding number one, the leading term for the
mean number of pairs produced with the momentum k
is given by

Nk = e−πτ
(
ωk(t=−∞)+ωk(t=∞)

)(
1 + e2πλsp

)
, (11)

where the first term in the parenthesis comes from any
loop not enclosing the pole at z = i, which is universal,
while the second exponent comes from any loop enclosing
the pole at z = i. Noting that λsp = qE0τ

2 is a quan-
tity for spinor QED, Eq. (11) is the leading term of the
exact mean number from the Bogoliubov transformation
between the in-vacuum and the out-vacuum [8].

A few comments are in order. The pair production and
the total pairs produced per unit volume could be ex-
pressed in terms of the two dimensionless parameters in-
troduced in Ref. [8]: the inverse of the integrated power
multiplied by the Compton time

q

2

∫ ∞

−∞
dtE∥(t) = qE0τ, ϵ =

m

qE0τ
, (12)

and the peak strength to the Schwinger critical strength

δ =
qE0

πm2
. (13)

These dimensionless parameters may play a role similar
to the Keldysh parameter for the Schwinger effect [21],
provided that an electric field profile is characterized by
both the peak strength and the effective duration of the
field, as will be shown in Secs. III and IV. Then the total
number of pairs integrated over the momentum in Ref.
[8] is indeed expressed in terms of dimensionless param-
eters (12) and (13). Note that πϵ2δ = 1/(qE0τ

2) = /λsp.
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It was shown that the leading WKB result for scalar
QED is equivalent the sum of the leading and the next-
to-leading order WBK results for spinor QED [8], which
was numerically confirmed in Ref. [22]. For a practical
purpose, when the field decreases slower than the Sauter-
type (6) but is still exponentially decaying, one may use
the power integrated over a finite period of a few multiple
of τ for p ≥ 1:

q

2

∫ pτ

−pτ

dtE∥(t) = qE0τ tanh p, ϵp =
m

qE0τ tanh p
. (14)

For p ≫ 1, the parameter ϵp rapidly approaches ϵ.

III. DIRECTION-REVERSING
TIME-DEPENDENT ELECTRIC FIELD

An interesting model is provided by an electric field,
for which the Klein-Gordon equation resembles a reflec-
tionless scattering problem in quantum mechanics. For
certain parameters for the profile of the field, Schwinger
pair production sustains effectively for a finite period of
time and then vanishes in the future infinity, exhibiting
a solitonic nature [23,24]. The model electric field and
the vector potential are

E∥(t) =
E0 sinh(t/τ)
cosh2(t/τ)

, A∥(t) =
E0τ

cosh(t/τ) . (15)

The electric field and the vector potential are anti-
symmetric and symmetric, respectively, with respect to
t = 0. Note that the parameter (14) vanishes while
the parameter (13) still has the same form. Then the
charge with a given momentum has the time-dependent
frequency

ωk(t) =

√
µ2 +

(
k∥ −

qE0τ

cosh(t/τ)

)2
. (16)

The solution to Eq. (16) is known in terms of special
functions [25].

Using the same conformal transformation as in Sec. II,
the frequency in the complex plane is given by∮

ωk(t) =

τ

∮
dz

z(z2 + 1)

√
µ2
(
z2 + 1

)2
+
(
k∥
(
z2 + 1

)
− 2qE0τz

)2
.

(17)

The large-z expansion leads to a simple pole at the in-
finity, whose residue gives an action

S(∞) = 2πRes
(
∞
)
= −2πτωk(t = ∞). (18)

Together with the imaginary actions from a pair of poles
at z = ±i

S(±i) = 2πRes
(
±i
)
= −2iπqE0τ

2, (19)

the mean number (1) is a sum of four loops of winding
number one

Nk = e−2πτωk(t=∞)
∣∣1 + 2e−i2πqE0τ

2

+ e−i4πqE0τ
2 ∣∣

= 4e−2πτωk(t=∞) cos2
(
πqE0τ

2
)
, (20)

where the first term comes from any loop not enclosing
any pole at z = ±i, the second term from two loops en-
closing only one pole at z = i or z = −i, and the last
term from any loop enclosing both poles. The phase-
integral in the complex time of t may lead to the inter-
ference effect due to infinite pairs of complex tunneling
points, which shows the substructure of the Schwinger
effect [9–11].

Note that when the parameters satisfy

qE0τ
2 =

(
n+

1

2

)
, (21)

any charged pair cannot be detected in the future in-
finity. The pair production from the exact Bogoli-
ubov transformation under the condition (21) confirms
that the Schwinger effect indeed exhibits a solitonic na-
ture, which corresponds to the reflectionless scattering
of the wave equation [23,24]. Here, we have shown that
the solitonic characteristic is a consequence of Stokes
phenomena due to a destructive interference among
possible loops enclosing simple poles with pure imagi-
nary residues. The Stokes phenomenon also occurs for
Gibbons-Hawking radiation in the global coordinates in
any odd-dimensional spacetime [18]. A physical interpre-
tation may be that each pair of electron and positron pro-
duced before t = 0 reverses the acceleration after t = 0

in an exactly symmetric way and annihilates each other.
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IV. UNIDIRECTIONAL
TIME-DEPENDENT ELECTRIC FIELD

As the last model, we consider an electric field similar
to Eq. (15) but time-symmetrical

E∥(t) =
E0 cosh(t/τ)
sinh2(t/τ)

, A∥(t) =
E0τ

sinh(t/τ) . (22)

The electric field is symmetric with respect to t = 0

and does not change the direction. Further, the electric
field blows up immediately before and after t = 0 and
in a physical sense is not realizable. The model (22) is
theoretically interesting since one may test whether pairs
are produced even for a cusp profile with an effective
duration of 2pτ . The parameter (14) now given by

ϵp =
m sinh p

qE0τ
(23)

grows exponentially for p ≫ 1. The time-dependent fre-
quency for each momentum becomes

ωk(t) =

√
µ2 +

(
k∥ −

qE0τ

sinh(t/τ)

)2
. (24)

The solution to Eq. (24) is not known in terms of special
functions [25].

Using the same conformal transformation as in Sec. II,
the frequency in the complex plane is given by∮

ωk(t) =

τ

∮
dz

z(z2 − 1)

√
µ2
(
z2 − 1

)2
+
(
k∥
(
z2 − 1

)
− 2qE0τz

)2
.

(25)

The large-z expansion gives a simple pole at the infinity,
whose residue contributes the action

S(∞) = 2πRes
(
∞
)
= −2πτωk(t = ∞). (26)

However, the pair of poles at z = ±1 along a counter-
clockwise loop enclosing one pole now give the real action

S(±1) = 2πRes
(
±1
)
= −2πqE0τ

2. (27)

The mean number (1) after summing four loops of wind-
ing number one is

Nk = e−2πτωk(t=∞)
∣∣1 + 2e−2πqE0τ

2

+ e−4πqE0τ
2 ∣∣

= 4e−2πτωk(t=∞)−2πqE0τ
2

cosh2
(
πqE0τ

2
)
. (28)

A few comments are in order. The existence of a pair
of finite simple poles does not always guarantee the de-
structive interference among independent loops. As the
two model fields in Secs. III and IV explicitly show the
pair production, the presence of pure imaginary residues
at pairs of finite poles is a necessary condition for the
formula (1) to exhibit an oscillatory nature and thus the
Stokes phenomena. The orientation of loops should be
chosen in a physically meaningful sense, otherwise the
residues change the sign and give exponentially blowing
up of produced pairs. The choice of the loop orientation
may be related to the causality.

V. CONCLUSION

Schwinger pair production, a nonperturbative quan-
tum effect, of electrons and positrons in a strong electric
field is a consequence that a positive frequency solution
for the in-vacuum in the past infinity splits into another
positive solution and a negative frequency solution in
the future infinity when scattered by the time-dependent
vector potential. The Bogoliubov transformation be-
tween the in-vacuum and the out-vacuum gives rise to
the mean number of pairs produced by the electric field.
The exact solutions are known only for a few profiles
of electric fields and appropriate approximation schemes
have to be employed to compute the pair production.

In this paper, we have applied a recently introduced
complex analytical method for the Schwinger effect to a
few time-dependent electric field profiles, which include
the Sauter-type field in Sec. II, a direction-reversing field
in Sec. III, and a unidirectional field in Sec. IV. The
time-dependent frequency for each momentum exhibits
an interesting and rich structure when it is conformally
transformed to the complex plane. The complex ana-
lytical method rests on the Cauchy residue theorem in
finding the vacuum persistence amplitude and thereby
the mean number of pairs produced by the electric field.
In other words, the pair production (1) is entirely de-
termined by the pole structure, polons, in the complex
plane and by all independent loops enclosing poles in
various combinations.

We have found that the frequencies (8) and (17) in the
Sauter-type electric field (6) and the direction-reversing
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electric field (15), respectively, have the same pole struc-
ture. However, all the residues take real values for the
Sauter-type electric field while the residues at a pair
of finite simple poles become pure imaginary for the
direction-reversing field (15), which leads to an oscilla-
tory factor for the pair production. On the other hand,
the unidirectional electric field (22) with an infinite cusp
does have a different pole structure and an exponential
behavior for pair production. It can be argued that the
oscillatory nature of the pair production is a consequence
of the destructive interference among finite simple poles
with pure imaginary residues, which is the origin of the
Stokes phenomenon.
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