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Abstract: Spontaneous pattern formation from a spatially homogeneous background of nonlinear

systems driven out of equilibrium is a widespread phenomenon in nature. However, similar phe-

nomena and their physical realization in nonlinear systems with external potentials of gain and

loss remain a challenge. We propose a scheme to realize a new type of spatial pattern formation

through the self-organization of laser light in a Rydberg-dressed atomic gas with self-defocusing

Kerr nonlinearity as well as non-Hermitian optical potentials. We show that by a suitable design of

control and assistant laser fields, non-Hermitian optical potentials with or without parity-time (PT )

symmetry for the probe laser field can be created. We find that through the nonlocal Kerr nonlinearity

contributed by the long-range atom–atom interaction, a constant-intensity wave (CIW) may undergo

modulation instability and induce spontaneous symmetry breaking, resulting in the emergence of

various self-organized optical structures, which can be actively manipulated by tuning the nonlocality

degree of the Kerr nonlinearity and by designing the non-Hermitian optical potentials. The results

reported here open a door for developing non-Hermitian nonlinear optics.

Keywords: non-Hermitian; PT -symmetry; self-organization pattern; modulation instability;

Rydberg atom

1. Introduction

The dynamical instability of spatially continuous systems is one of the most fascinating
scientific research topics. It has been found that many systems display fascinating spatiotem-
poral structures. Very well-known instability mechanisms have been established over the
last few decades, such as Rayleigh–Benard convection, Taylor–Couette flow, and Benjamin–
Feir instability [1–3], occurring in a broad range such as biology, chemistry, hydrodynamics,
and soft-matter physics [4–9]. One such dynamical instability is modulation instability (MI),
which is studied widely in parity-time (PT ) symmetric optical systems [10–12] and local
and/or nonlocal Kerr nonlinear, even competing, nonlinear systems [13–20].

MI induces a spontaneous symmetry breaking (SSB) in both classical and quantum
mechanics, widely happening in dual-core Bragg gratings [21,22], Bose–Einstein conden-
sates [23], quantum field theory [24], and spin waves [25]. It not only is a destabilization
mechanism to produce a self-induced breakup of an initially continuous wave into localized
structures (i.e., soliton) in self-focusing nonlinear medium [26–29], but also provides an
extended structure (ordered pattern) in self-defocusing optical medium from the homoge-
neous state [30–32].

In addition to SSB in general Hamiltonian systems, SSB in a non-Hermitian system also
has been focused on the research in various physical systems. The primary motivation for
such research is to develop non-Hermitian quantum theory [33–36]. With the advance of the
research, it has been found that PT -symmetric optics, or more generally a non-Hermitian
flat-band system [37,38], may have many practical applications, such as the realization
of unidirectional light propagations [39], coherent perfect absorbers [40–42], giant light
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amplification [43], novel lasers [44,45], precision measurement [46,47], and quantum com-
putation [48], and etc.

Furthermore, in the past decade, a large amount of research was focused on the
investigation of cold Rydberg atomic gases [49–59] working under a condition of electro-
magnetically induced transparency (EIT), such as quantum information [50], quantum
many-body simulation [51], Rydberg spectroscopy [52], Rydberg blockade effect [53], Ryd-
berg self-organization criticality [54,55], Rydberg sensing experiments for multi-frequency
microwave recognition [56], highly sensitive measurement [57], and spectrometer [58], etc.
EIT is an important quantum destruction interference effect typically occurring in resonant
three-level atomic systems, by which the absorption of a probe laser field can be largely
eliminated by using a control laser field [60]. In an interesting work, Sevincli et al. [61]
reported a self-organized hexagonal optical pattern via an MI of plane-wave probe beam in
a cold Rydberg atomic gas with a repulsive Rydberg–Rydberg interaction. Recently, it was
demonstrated that a structural phase transition of optical patterns from a hexagonal lattice
to two types of square lattices may occur in an EIT-based Rydberg gas with a microwave
dressing between two Rydberg states [62].

In this work, combining the PT symmetry with widely concerned Rydberg atomic
gas, we propose an inverted-Y type scheme to realize the self-organization of laser light
with physically realistic non-Hermitian optical potentials by using a coherent Rydberg
atomic gas through a spatial modulation of control laser field and the inclusion of the
nonlocal Kerr nonlinearity of the probe laser field. We first show the MI with both PT -
symmetric and non-PT -symmetric potentials in detail. Based on the MI, SSB happens and
subsequently results in the self-organization of laser light. The rich structures appear from
a constant-intensity wave (CIW), such as ring-like waves, and tetragonal and hexagonal
pattern waves, all of which can be manipulated by the appropriate system parameters.

Before proceeding, we notice that in the literature there were many studies devoted to
MI in general local and (or) nonlocal nonlinear optical systems and PT -symmetric optical
systems [11–17,21,22,36,41]. However, in many aspects, our work is different from those.
First, in most of those Refs., no realistic physical scheme was provided on how to construct
and realize non-Hermitian potentials; our work presents a practical scheme for realizing the
non-Hermitian optical potentials, which is useful to guide realistic experiments. Second, no
results on nonlocal Rydberg–Rydberg interaction are given. In our work, such interaction,
especially self-defocusing nonlocal nonlinearity, is studied, and the result reveals that the
property of the nonlocal structure (ordered pattern) is strongly dependent on the shape of
the nonlocal nonlinear potential. Third, there is no report about two-dimensional (2D) MI,
or the combination of optical potential with nonlocal nonlinearity is not considered. In our
work, such a situation is investigated in detail, and interesting results are obtained. We
consider all kinds of optical potential which include periodic potentials, parabolic potential,
and ring-like optical potential. The results reported here open a route for exploring the SSB
and optical self-organization based on cold Rydberg gases.

The article is organized as follows. In Section 2, the physical model of the Rydberg-
EIT for inverted-Y configuration is considered. In Section 3, the 2D PT -symmetry and
non-PT -symmetry potential are realized. The detailed MI analysis and optical pattern
formations of the laser light for PT -symmetric and non-PT -symmetric potential are given
in Sections 4 and 5, respectively. Our conclusions are given in Section 6.

2. Model

We consider an ensemble of lifetime-broadened four-level atomic gas with an inverted-
Y type level configuration, shown schematically in Figure 1a. The weak probe laser field
with central angular frequency ωp, wavevector kp, and half Rabi frequency Ωp drives
the transition |1〉 ↔ |3〉. The strong control (dressed) laser field with central angular
frequency ωc (ωd), wavevector kc (kd), and half Rabi frequency Ωc (Ωd) drives the transition
|2〉 ↔ |3〉 (|3〉 ↔ |4〉), respectively. Therefore, the total electric fields acting in the atomic
system can be written as E(r, t) = ∑α eαEα exp[i(kα · r − ωαt) + c.c.] (α = p, c, d), with
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eα, Eα the unit vector of the polarization direction and the envelope of the corresponding
laser fields, respectively. States |1〉 and |2〉 are the two ground states, and state |3〉 is
the ordinary excited state. The Λ-type EIT (levels |1〉, |2〉, and |3〉) is dressed by highly
excited Rydberg state |4〉. Under the electric-dipole and rotating-wave approximations,
the Hamiltonian density of the system reads

HH =
4

∑
α=2

∆αŜαα(r, t)− h̄
(

ΩpŜ13 + ΩcŜ23 + ΩdŜ34 + h.c.
)

+
1
2
Na

∫

d3r′Ŝ44(r, t)h̄Vvdw(r
′ − r)Ŝ44(r

′, t), (1)

where Na is the atomic density, and ∆α is the detuning of state |α〉 (α = 2, 3, 4). The
half Rabi frequencies of the probe, control, and dressed fields are, respectively, Ωp =
ep · p31Ep/h̄, Ωc = ec · p32Ec/h̄, and Ωd = ed · p43Ed/h̄, with pαβ the electric dipole matrix
element associated with the transition from |β〉 to |α〉, and Ŝαβ = |β〉〈α| exp{i[(kβ − kα) ·
r − (ωβ − ωα + ∆β − ∆α)t]} the transition operator. The last term on the right-hand side
of Equation (1) is the contribution of the Rydberg–Rydberg interaction with h̄Vvdw(r

′ −
r) ≡ −h̄C6/|r′ − r|6 the long-range interaction potential and C6 the dispersive parameter.
Typically, for 87Rb, the negative C6 results in the repulsive interaction.

Figure 1. Schematics of the model and optical patterns: (a) energy level and excitation scheme of the
Rydberg-dressed EIT with inverted-Y type structure. Weak probe (green), strong control (purple),
and strong dressed (red) laser fields with central angular frequencies ωp, ωc, and ωd and half-Rabi
frequencies Ωp, Ωc, and Ωd drive the transitions |1〉 ↔ |3〉, |2〉 ↔ |3〉, and |3〉 ↔ |4〉, respectively.
The Λ-type EIT (level |1〉, |2〉, and |3〉) is dressed by highly excited Rydberg state |4〉. The Rydberg
atoms interact with each other according to the van der Waals potential h̄Vvdw(r′ − r) ≡ −h̄C6/|r′ −
r|6. ∆3 is the one-photon detuning, and ∆2 and ∆4 both are the two-photon detunings. Γαβ is the
spontaneous emission decay rate from the |β〉 to |α〉 (α = 1, 2, 3; β = 3, 4). The assigned atomic levels
are |1〉 = |5S1/2, F = 1〉, |2〉 = |5S1/2, F = 2〉, |3〉 = |5P3/2, F = 3〉, and |4〉 = |nS1/2〉. For principle
quantum number n = 60, C6 = −140 × 2π GHz µm6; (b) possible experimental geometry, where
small solid circles denote atoms, and large dashed circles denote Rydberg blockade spheres; (c) cross
section of nonlocal response function R(ξ, η = 0) as a function of dimensionless ξ = x/R⊥ (R⊥ the
typical radius of the probe beam); (d) nonlocal response function R(ξ, η = 0) in momentum space as
a function of wave number β1.
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According to the Hamiltonian Equation (1), the dynamics of atoms in the system are
governed by the optical Bloch equation, given by [63–65]

∂ρ

∂t
= −

i

h̄
[HH , ρ]− Γ[ρ], (2)

where ρ is a 4 × 4 density matrix (with density matrix elements ραβ; α, β = 1, 2, 3, 4) describ-
ing the atomic population and coherence, and Γ is a 4 × 4 relaxation matrix describing
the spontaneous emission and dephasing. The explicit expression of Equation (2) is pre-
sented in Appendix A. Additionally, under the condition of slowly varying envelope
approximation, the probe field is described by the Maxwell equation with the form

i

(

∂

∂z
+

1
c

∂

∂t

)

Ωp +
c

2ωp
∇2

⊥Ωp +
ωp

2c
χpΩp = 0, (3)

where ∇2
⊥ = ∂2

∂x2 + ∂2

∂y2 , χp = Na(ep · p13)
2ρ31/(ǫ0h̄Ωp) is the probe-field susceptibility,

and c and ǫ0 are the vacuum speed and dielectric coefficient of vacuum, respectively.
Without loss of generality, the probe field is assumed propagating along z direction, i.e.,
kp = (0, 0, ωp/c). Meanwhile, we set the strong control and dressed laser fields along with
kc = (0, 0, kc), kd = (0, 0,−kd) to decrease the first-order Doppler effect. In addition, since
we consider a stationary state of the system, the time derivatives in the Maxwell–Bloch
Equations (2) and (3) can be neglected (i.e., ∂/∂t = 0), which is valid if the probe, control,
and dressed fields have long enough time durations.

Since the probe field is weaker than the control and dressed fields, the standard
asymptotic perturbation expansion can be applied to solve the Bloch Equation (2) by taking
Ωp as a small parameter [63]. The solution of Equation (2) up to the third-order is presented
in Appendix B. With these solutions, we obtain the expression of the optical susceptibility
of the probe field

χp = χ
(1)
p + χ

(3)
p1 |Ωp|

2 +
∫

d3r′χ
(3)
p2 (r

′ − r)|Ωp(r
′)|2, (4)

where χ
(1)
p = Na|ep · p13|

2a
(1)
31 /(ǫ0h̄), χ

(3)
p1 = Na|ep · p13|

2a
(3)
31,1/(ǫ0h̄), and χ

(3)
p2 (r

′ − r) =

N 2
a |ep · p13|

2a
(3)
31,2aa

(3)
44,41(r

′ − r)Vvdw(r
′ − r)/(ǫ0h̄) are, respectively, the linear, the local,

and nonlocal nonlinear susceptibilities with explicit expressions of a
(1)
31 , a

(3)
31,1, a

(3)
31,2, and

aa
(3)
44,41(r

′ − r), respectively, given in Appendix B. A local approximation along the z di-
rection can be made under the condition of the spatial length of the probe pulse in the
z direction is much larger than the range of atom–atom interactions. Hence, the last

term on the right side of Equation (4) can be reduced as
∫

d3r′χ
(3)
p2 (r

′ − r)|Ωp(r′)|2 ≈
∫∫

dx′dy′χ̃
(3)
p2 (x′ − x, y′ − y)|Ωp(x′, y′, z)|2 with χ̃

(3)
p2 (x′ − x, y′ − y, z) =

∫

dz′χ
(3)
p2 (r

′ − r).
Finally, we obtain

i
∂Ωp

∂z
+

c

2ωp
∇2

⊥Ωp +
ωp

2c
χ
(1)
p Ωp +

ωp

2c

[

χ
(3)
p1 |Ωp|

2

+
∫∫

dx′dy′χ̃
(3)
p2 (x′ − x, y′ − y)|Ωp(x′, y′, z)|2

]

Ωp = 0. (5)

We take cold 87Rb atomic gas as an example. The assigned atomic levels are
|1〉 = |5S1/2, F = 1〉, |2〉 = |5S1/2, F = 2〉, |3〉 = |5P3/2, F = 3〉, and |4〉 = |nS1/2〉. For
principle quantum number n = 60, C6 = −140 × 2π GHz µm6 [66]. Typical system param-
eters are chosen as ∆1 = 0, ∆2 = 3.17 × 106 s−1, ∆3 = 1.53 × 108 s−1, ∆4 = 1.32 × 107 s−1,
Γ21 = 0.1 × 2π MHz, Γ3 = 6.1 × 2π MHz, Γ4 = 0.0167 × 2π MHz, Ωc = 2.0 × 107 s−1,
Ωd = 1.5 × 107 s−1, and atomic density Na = 1 × 1011 cm−3. With those parameters, we

obtain χ
(3)
p1 ≈ (2.14 + 0.017i) × 10−17 Hz−2, and χ̃

(3)
p2,max ≈ (1.12 + 0.11i) × 10−13 Hz−2.
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Note that there is not only the local Kerr nonlinearity contributed by light-atom interaction,
but also the nonlocal Kerr nonlinearity resulting from the atom–atom interaction. However,
the later interaction plays the leading role and is three orders of magnitude larger than
the local case [63]. We also note that with the above parameters we have ∆3 + ∆4 ≫ Ωd,
so the system works in the regime of Rydberg-dressed EIT [67]. We eventually obtain
the dimensionless nonlocal nonlinear Schrödinger equation (NNLSE) for the probe field
envelope

i
∂u

∂s
= −∇2

⊥u + Vop(ξ, η)u +
∫∫

dξ ′dη′R̃(ξ ′ − ξ, η′ − η)|u(ξ ′, η′, s)|2u, (6)

where u = Ωp/U0 is the dimensionless Rabi frequency with U0 the typical Rabi fre-
quency of the weak probe field, s = z/(2Ldiff) with Ldiff = ωpR2

⊥/c the typical diffraction
length, (ξ, η) = (x, y)/R⊥, [(ξ ′, η′) = (x′, y′)/R⊥] are dimensionless spatial coordinate

with R⊥ the typical radius of the probe beam, and Vop = −ω2
pR2

⊥χ
(1)
p /c2 the optical

potential. Here, R̃(ξ ′ − ξ, η′ − η) = Ldiff|U0|
2R2

⊥ωpχ̃
(3)
p2 /c ≡ α a

(3)
44,41[(ξ

′ − ξ)R⊥, (η′ −

η)R⊥]Vvdw[(ξ
′ − ξ)R⊥, (η′ − η)R⊥] with α = |ep · p13|

2a
(3)
31,2R4

⊥ω2
pU2

0N
2
a /(ǫ0h̄c2). Since

the local nonlinearity is much smaller than the nonlocal nonlinearity due to atom–atom
interaction, the local term has been canceled in Equation (6).

Figure 1c shows a cross-sectional diagram (η = 0) of the response function R̃(ξ)
as a function of ξ. We also give the response function R(β1) in momentum space as a
function of β1 with β2 = 0 in Figure 1d. We can see that the nonlocal response function
approaches saturation at small distance, and the response function in momentum space
changes its signs at some interval, which is the key to the appearance of MI (discussed
later). The nonlocality degree can be characterized by the parameter σ ≡ Rb/R⊥, where
Rb is the radius of the blockade sphere, which is estimated by Rb = |C6/δEIT|

1/6 with δEIT
the linewidth of EIT transition spectrum, calculated by δEIT = |Ωc|3/γ31 for ∆3 = 0 and
δEIT = |Ωc|2/∆3 for ∆3 ≫ γ31. Typically, Rb ≈ 8.34 µm in our system with the parameters
above.

3. Realization of Non-Hermitian Optical Potentials

3.1. Constant-Intensity Wave Solution

Our main goal is to investigate the MI and related optical pattern formations in
the system with non-Hermitian optical potentials starting from the constant-intensity
background. To this end, we first consider the physical realization of various non-Hermitian
optical potentials and give a corresponding constant-intensity wave (CIW) solution. It is
easy to show that the NNLS Equation (6) admits the 2D CIW solution

u(ξ, η, s) = A exp
[

i
∫

l
(dξWI + dηWII)− iµs

]

, (7)

if the optical potential Vop(ξ, η) satisfies condition [10]

Vop(ξ, η) = −|WI|
2 − |WII|

2 + i

(

∂WI

∂ξ
+

∂WII

∂η

)

, and
∂WII

∂ξ
=

∂WI

∂η
. (8)

where µ =
∫∫

dξdηR̃(ξ, η), WI and WII are real functions of ξ and η, A is an arbitrary real,
positive constant, and l is any smooth open curve connecting an arbitrary point (ξ0, η0) to
any different point (ξ, η). The detailed derivation of the constant intensity wave solution
(7) is given in Appendix C. For simplicity and without loss of generality, we consider in the
following only three special optical potentials: (i) the PT -symmetric potential determined
by WI = a cos(ξ) sin(η), WII = a cos(η) sin(ξ); and (ii) the non-PT -symmetric potential
determined by WI = b+ aη + F0ξ exp[−ξ2/(2σ2

1 )] and WII = b+ aξ + G0η exp[−η2/(2σ2
2 )];

(iii) the ring-shaped optical potential (see below), where a, b, F0, and G0 are the arbitrary
real constants.
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3.2. Realization of PT -Symmetric Optical Potential

In the special case where WI and WII are even functions, the actual optical potential
Vop(ξ, η) turns out to be PT -symmetric. Thus we will consider how to realize a linear
2D PT -symmetric optical potential in our Rydberg system (i.e., satisfying the condition
of Vr(−ξ, η) = Vr(ξ, η), Vr(ξ,−η) = Vr(ξ, η) and Vi(−ξ, η) = −Vi(ξ, η), Vi(ξ,−η) =
−Vi(ξ, η)). Here the subscripts r and i represent the real and imaginary parts of the
potential, respectively. To the aim, we assume that our target optical potential is PT -
symmetric with the form

Vop,1(ξ, η) =− V2
0 [cos2(ξ) sin2(η) + cos2(η) sin2(ξ)]− 2V0i sin(ξ) sin(η), (9)

where V2
0 and 2V0 are constants which characterize the amplitudes of the real and imaginary

parts of the periodic optical potential, respectively. The potential (9) can be obtained by
taking WI = V0 cos(ξ) sin(η) and WII = V0 cos(η) sin(ξ). The eigenvalue problem of
the linearized Equation (6) reads L̂v = λv, here L̂ ≡ ∂2/∂ξ2 + ∂2/∂η2 − Vop,1 and the
λ is defined through the relation u(ξ, η, s) = v(ξ, η) exp(iλs). The eigen spectrum is
real (complex) for V0 < 1.25 (V0 > 1.25), working in unbroken (broken) PT phase with
phase transition point V0 = 1.25. Hereafter, we consider only the case of the unbroken PT
phase and V0 = 1.

To realize the such potential in the Rydberg-dressed EIT, we follow the standard
method given in Refs. [68–70]. Firstly, we note that the optical potential with PT symmetry
must satisfy the condition Im[Vop](ξ = 0, η = 0) = 0 at the origin to balance gain and loss
in the whole space. Then, we assume the half Rabi frequencies of the control and dressed
fields be space-dependent, i.e., Ωc = Ωc(ξ, η), Ωd = Ωd(ξ, η). Hence the optical potential
is a function of Ωc and Ωd. Finally, by Taylor expanding Vop around Ωc = Ωc0(ξ = 0, η = 0)
and Ωd = Ωd0(ξ = 0, η = 0) to the first-order and separating the real and imaginary parts,
we obtain the following equations

RcΩc + RdΩd = Vtr(ξ, η)− Vtr(Ωc0, Ωd0) + RcΩc0 + RaΩd0, (10)

IcΩc + IdΩd = Vti(ξ, η) + IcΩc0 + IaΩd0, (11)

where Rd ≡ ∂Vr
∂Ωd

, Rc ≡
∂Vr
∂Ωc

, Id ≡ ∂Vi
∂Ωd

, and Ic ≡
∂Vi
∂Ωc

are the derivations at Ωc = Ωc0, Ωd =

Ωd0, and Vtr, Vti are the real and imaginary of the target optical potential Vop,1, respectively.
Finally, solving the coupled equations above, we can choose the control and dressed fields
with spatial distribution, i.e.,

Ωc(ξ, η) ≈ Ωc0{0.993 − 0.022 sin(ξ) sin(η) + 0.0292 cos(2ξ) cos(2η)}, (12)

Ωd(ξ, η) ≈ Ωd0{0.989 − 0.0159 cos(2ξ) sin(2η) + 0.186 sin(ξ) sin(η)}, (13)

where Ωc0 = 2.0 × 107 s−1 and Ωd0 = 1.5 × 107 s−1. The distributions of the obtained
control and assistant fields are plotted in Figure 2a,b with V0 = 1. Note that the periodic
spatial modulation of the control and dressed fields can be realized experimentally by using
a high-resolution space–light modulator with a pixel size smaller than the probe-beam
radius R⊥.
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Figure 2. Spatial distributions of the control and assistant laser fields in the Rydberg-dressed EIT
system for realizing optical potentials with and without PT symmetry. Distributions of the control
field Ωc (a) and assistant field Ωd (b) of Equations (12) and (13) as functions of dimensionless spatial
coordinate ξ = x/R⊥ and η = y/R⊥ for realization of the 2D PT -symmetric optical potential Vpo,1

with V0 = 1. Distributions of the control field (c) and assistant field (d) of Equations (15) and (16) as
functions of ξ and η for realizing the non-PT -symmetric potential Vop,2(ξ, η) with a = 0.01, F0 =

G0 = 7, σ1 = σ2 = 5. Here, Ωc0 = 2.0 × 107 s−1, Ωd0 = 1.5 × 107 s−1, R⊥ = 5µm, and Ldiff =

0.33 mm, respectively.

3.3. Realization of Non-PT -Symmetric Optical Potential

The non-PT -symmetric optical confining potential is of the form

Vop,2(ξ, η) = −W2
I − W2

II + i

{

F0 exp

(

−
ξ2

2σ2
1

)(

1 −
ξ2

σ2
1

)

+ G0 exp

(

−
η2

2σ2
2

)(

1 −
η2

σ2
2

)}

. (14)

where WI = aη + F0ξ exp(−ξ2/2σ2
1 ), and WII = aξ + G0ξ exp(−η2/2σ2

2 ). To achieve this
potential, we design the laser fields with the form

Ωc(ξ, η) ≈ Ωc0(1.004 − 0.022s1 + 0.1s2), (15)

Ωd(ξ, η) ≈ Ωd0(1.006 − 0.032s1 + 0.65s2), (16)

where a = 0.01, F0 = G0 = 7, σ1 = σ2 = 5, s1 = [0.01η + 7ξ exp(−ξ2/50)]2 + [0.01ξ +
7η exp(−η2/50)]2 and s2 = (1− ξ2/25) exp(−ξ2/50)+ (1− η2/25) exp(−η2/50). The dis-
tribution of laser fields are shown in Figure 2c,d.

4. MI and Pattern Formation for the PT -Symmetric Periodic Potential

4.1. MI for the PT -Symmetric Periodic Potential

The PT -symmetric potential has the form Vop,1(ξ, η) = Vr(ξ, η) + iVi(ξ, η) which is
given in Equation (9). In Ref. [10], the authors consider the nonlinear Schrödinger equation
with a general, non-Hermitian potential and a local Kerr nonlinearity and prove that the
system allows constant-intensity wave solution. According to analogue analysis and simple
mathematical deduction, a constant intensity probe field solution appears in our nonlocal
Rydberg system described by Equation (6), i.e., u(ξ, η, s) = A exp[iV0 sin(ξ) sin(η)] exp(iµs),
with µ = −A2

∫∫

R̃(ξ, η)dξdη the propagating constant and A a constant.
To study the stability of constant intensity solution in our Rydberg system, a simple

linear stability analysis of constant intensity wave by the perturbation was implemented,

i.e., u = [A+ ǫF̃(ξ, η)ei~ζ·~β+iλs + ǫG̃∗(ξ, η)e−i~ζ·~β−iλ∗s] exp[iV0 sin(ξ) sin(η)] exp(iµs), where
~ζ = (ξ, η) is the dimensionless coordinates, and ~β = (β1, β2) is the dimensionless wave
vector corresponding to (kx, ky). Inserting this equation into Equation (6) and linearizing
with perturbation amplitudes F̃, G̃, we have

(∇2
⊥ − β2 + L11)F̃ + A2N̂ = λF̃, (17)

(β2 −∇2
⊥ + L22)G̃ − A2N̂ = λG̃, (18)

where N̂ = −
∫∫

dξ ′dη′R̃(ξ ′ − ξ, η′ − η)[F̃(ξ ′, η′) + G̃(ξ ′, η′)]ei~β·(~ζ ′−~ζ), β2 = β2
1 + β2

2, L11 =

2iL1 + 2iV0L2 − 2V0L3,L22 = −2iL1 + 2iV0L2 − 2V0L3, L1 = β1
∂

∂ξ + β2
∂

∂η , L2 = sin(η) cos(ξ)
∂

∂ξ + sin(ξ) cos(η) ∂
∂η , and L3 = β1 sin(η) cos(ξ) + β2 sin(ξ) cos(η).
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We use the Fourier collocation method [10,71] to study the MI of the CIW solution
according to Equations (17) and (18). The eigenvalue equation tells us that if there exists
an eigenvalue whose imaginary part Im[λ] is larger than zero, the solution is linearly
unstable. Figure 3a–c show the growth rate λ as functions of β1 and β2 for different
nonlocal nonlinearity α = 2, 5, and 10, respectively. From the gain spectrum, we know
there exists an instability interval in which the system undergoes from CIW to some other
states when we increase the nonlinearity. Figure 3d is the cross section of the eigenvalue
spectrum at β2 = −0.5 as function of β1 corresponding to α = 2, 3, 5, 10, and 20 (from
lines a to e), which further illustrates the instability interval increases with α increasing.
The results show that nonlocal nonlinearity is the key to MI.

According to the MI analysis of combining with PT symmetric optical potential,
we know it is the nonlocal Rydberg interaction that makes our system distinctive. It is
generally known that there is always MI in self-focusing nonlinearity both in local and
nonlocal nonlinearity [13,15,16], but in the nonlocal self-defocusing case, the MI is strongly
dependent on the detailed form of the response function, which demands the response to
have some sign change in the momentum space. Fortunately, the response function in our
Rydberg system is the soft-core potential shown in Figure 1c, and the momentum space of
the response shown in Figure 1d changes the sign.

-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5 -0.5 0 0.5

0

0.02

0.04

a

b

c

d

e

Figure 3. MI analysis for NNLSE with PT -symmetric potential according to Equations (17) and (18).
(a–c): imaginary part Im(λ) of eigenvalues as functions of dimensionless wavenumber β1 and β2 for
nonlocal nonlinearity α = 2, 5, and 10 (here σ = 0.7); (d) cross section of the eigenvalue spectrum at
β2 = −0.5 as a function of β1 corresponding to α = 2, 3, 5, 10, and 20 (i.e., from lines a to e).

4.2. Pattern Formation for the PT -Symmetric Periodic Potential

Based on the MI, SSB appearing in our Rydberg system is obvious. We solve Equa-
tion (6) with different α and the nonlocality degree σ of the nonlocal Kerr nonlinearity under
the CIW u0(ξ, η, s = 0) = A exp[iV0 sin ξ sin η] by imaginary time evolution method [71].
We study the MI with its consequences systematically, and eventually, we obtain the
different solutions from CIW solution to tetragonal and hexagonal lattice solutions.

We first illustrate the phase diagram as functions of nonlocality degree σ and non-
linear interaction strength α, with the range of constant intensity probe field amplitude α
from 3 to 12 and nonlocality degree σ from 0.3 to 1.2 in Figure 4a, which represents the
emergence of the different phases from the constant intensity wave (labeled by “CIW”)
solution (green region) to the tetragonal lattice (purple region) and hexagonal lattice (red re-
gion), respectively. We then track the system energy by minimizing E =

∫

|∇⊥u(~ζ)|2d2~ζ −

1/2
∫∫

R̃(~ζ ′ −~ζ)|u(~ζ)|2|u(~ζ ′)|2d2~ζ ′d2~ζ+
∫∫

Vop|u(~ζ)|2d2~ζ. The inset in Figure 4b shows
the energy change along s = z/2Ldiff, and its energy becomes lower, eventually remains
unchanged, and comes to the ground state. To view the tendency of the energy change, we
give the partially enlarged drawing inside the inset. We also show the difference in Hamil-
tonian energy Egs − ECIW (blue line in left y-axis) and propagation constant µgs − µCIW (red
line in right y-axis) as functions of α from 2 to 12 with σ = 0.6 in Figure 4c, which is
corresponding to the vertical dotted line crossed from the point “P”, i.e., P(0.6, 5.3) in
Figure 4a with σ = 0.6, and α from 3 to 12. We find that the difference in Hamiltonian
energy or propagation constant has a phase transition at point “P”.
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Figure 4. Pattern formation and the corresponding phase diagram for the case of PT -symmetric
periodic potential: (a) phase diagram represents the emergence of the different phases from the
constant intensity wave (CIW) solution to the tetragonal lattice (purple region II) and hexagonal
lattice(red region III) as functions of nonlocality degree σ and nonlinear interaction strength α;
the vertical dotted line crossed from the point “P”, i.e., P(0.6, 5.3), corresponds to the σ = 0.6, and α

from 3 to 12; (b) Hamiltonian energy for difference propagating distance s = z/2Ldiff; the partially
enlarged drawing inside the inset with a red line corresponds to the original curve with a red dotted
line; (c) Egs − ECIW (blue) and µgs − µCIW (red) as functions of constant intensity amplitude α from 2
to 12 with σ = 0.6, where subscript “gs” and “CIW” mean the ground state and constant intensity
wave, respectively; (d,e) two typical pattern formations in the system, i.e., tetragonal lattice (with
α = 4 and σ = 1.1) and hexagonal lattice (with α = 6 and σ = 0.7), versus dimensionless ξ = x/R⊥

and η = y/R⊥; here, the probe field intensity is normalized by |u|/|u|max, V0 = 1, R⊥ = 4.5µm in
(d) and 8µm in (e).

Furthermore, according to the phase diagram, we choose two groups of parameters to
solve the equation and obtain the two types of pattern formations. One is the tetragonal
lattice which is a function of dimensionless coordinate ξ and η with nonlocality degree
σ = 1.1, and α = 4 in Figure 4d; the other one is the hexagonal lattice which is in Figure 4e
with α = 6 and σ = 0.7. Different patterns can be understood as follows. On one
hand, intuitively, by detailed analysis of the original NNLSE Equation (6), we find this
equation includes diffraction, non-Hermitian potential, and nonlocal nonlinearity, which
can interact with each other. While the diffraction effect tends to make the wave function
extension much flatter, the non-Hermitian potential can modify the diffraction property of
the system (i.e., in some points of the Brillouin region, the diffraction can change its sign).
On the other hand, the optical potential and Van der Waals interaction simultaneously
work on the system. When one interaction is stronger than another interaction, the former
plays the dominant role.

5. MI and Pattern Formation for Non-PT -Symmetric Confining Potential

5.1. MI for Non-PT -Symmetric Optical Confining Potential

We then turn our attention to studying the MI of the CIW under non-PT -symmetric
confining (Hermite-Gaussian) optical potential, which is given in Equation (14). The so-
lution is given by u(ξ, η, s) = A exp

[

i
{

sµ + aξη + F0σ2
1

[

1 − exp(−ξ2/2σ2
1 )
]

+ G0σ2
2

[

1 −
exp(−η2/2σ2

2 )
]}]

. Using a similar method to that used in the previous section and adding
small amplitude perturbation F̃ and G̃ (|F̃| ≪ A and |G̃| ≪ A) into CIW, we have

[∇2 − β2 + L11 − Vop,2 − µ]F̃ + A2N̂ = λF̃, (19)

[−∇2 + β2 + L22 + Vop,2 + µ]G̃ − A2N̂ = λG̃, (20)
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where L11 = 2iL1 − 2L2 + 2iL3, L22 = −2iL1 − 2L2 + 2iL3, L1 = β1
∂

∂ξ + β2
∂

∂η ,

L2 = β1WI + β2WII, and L3 = WI
∂

∂ξ +WII
∂

∂η . Solving the eigenvalue Equations (19) and (20)
numerically, we obtain the gain spectrum in Figure 5a, which shows the gain interval lying
in the vicinity of |β1| = |β2| in the first Brillouin region. We also give the cross-section
curves of the eigenvalue spectrum in Figure 5b as a function of β1 corresponding to
β2 = 0 (red line), β2 = 0.25 (green dotted line), and β2 = 0.5 (blue dashed-dotted line),
respectively.

Figure 5. MI, phase diagram, and pattern formation with optical confining potential: (a) imaginary
part of eigenvalues [i.e., Im(λ)] as functions of β1 and β2; (b) cross section of the eigenvalue spectrum
as a function of β1 for β2 = 0 (red line), β2 = 0.25 (green dotted line), and β2 = 0.5 (blue dashed-
dotted line), respectively; (c) phase diagram for patterns by varying σ and α; (d) distribution of the
stable pattern |u|/|u|max as functions of ξ and η with σ = 0.9, α = 10, and R⊥ = 5.5µm; here, we
also show the contours of optical confining potential with a dotted line.

5.2. Pattern Formation for Non-PT -Symmetric Confining Potential

We start with CIW u(ξ, η) = A exp{i
{

0.01ξη + 175
[

2− exp(−ξ2/50)− exp(−η2/50)
]}

}
perturbed by small noise and simulate Equation (6) numerically. First, the phase diagram is
given in Figure 5c as functions of nonlocality degree σ (range from 0.3 to 1.2) and nonlinear
interaction strength α (from 2 to 10). It shows that the CIW solution can experience MI
in other states by manipulating the nonlinearity or nonlocality degree. The white dashed
line is the boundary of the stable pattern and constant intensity wave. We also show the
pattern with σ = 0.9 and α = 10 in Figure 5d, in which we also plot the contours of the
optical potential with a dotted line.

The pattern can be explained by the co-interaction of diffraction effect, potential,
and nonlocal self-defocused interaction. When both the nonlocality degree and nonlinearity
are small, the nonlocal nonlinearity is reduced to local nonlinearity, and the diffraction effect
tends to make the wave function extension much flatter; eventually, the CIW is still stable.
While we increase nonlocality degree and nonlinearity, the nonlocal nonlinearity plays the
leading role, which tends to make the wave function extensive, while the potential traps
the wave function. Eventually, the wave will become a hexagonal pattern when reaching
balance between potential and nonlinearity.

5.3. Pattern Formation for the Ring-Shaped Non-PT -Symmetric Potential

We also consider another potential Vr = V0[exp(−ζ8/a8) − exp(−ζ8/b8)] and

Vi = −V2
0

[

a2Γ
(

1/4, ζ8/a8
)

− b2Γ
(

1/4, ζ8/b8
)]2

/(64ζ2). Here, V0 can represent the am-
plitude of the potential, ζ =

√

ξ2 + η2, a, b are the width of the super-Gaussian function,
and Γ(·, ·) is the incomplete gamma function. The CIW solution gives the form u =
A exp[iθ(ξ, η)] with A a constant, and the detailed form of θ(ξ, η) is given in Appendix C.

The pattern formations obtained by numerical simulation in Equation (6) are shown in
Figure 6. When the width of the super-Gaussian potential is a = 3, b = 4, the singer layer
ring-shaped structure pattern with the smaller radius is obtained in Figure 6a. When we
increase the width, i.e., a = 6, b = 8 and a = 4, b = 7, the larger ring-shaped pattern is
obtained in Figure 6b,c. Furthermore, the two or more two layers of a ring-shaped pattern
with a hexagonal structure have been obtained with a = 2 and much larger b = 9 which is
shown in Figure 6d.
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According to the simulation with the typical parameters, we find that by manipulating
the parameters a or b, on the one hand, we can obtain the ring-like structure patterns with
different radii. On the other hand, we can change the layers of the ring. That is, the larger a
and b correspond to the pattern with the larger radius, but the larger |b − a| results in more
layers of the pattern.

Figure 6. Pattern formation in ring structure potentials. From panel (a–d), the ring-shaped shape
patterns as functions the dimensionless coordinate ξ and η with σ = 0.6 for different parameters a

and b which are, respectively: (a) a = 3, b = 4; (b) a = 6, b = 8; (c) a = 4, b = 7; and (d) a = 2, b = 9.
All data are normalized into 1, and all figures share the same color bar.

6. Summary

The predictions of the optical patterns presented above may be observed experimen-
tally by using a cold Rydberg atomic gas with the inverted Y-shaped level configuration.
Since these lattice patterns form in the transverse x-y plane and the typical lattice separation
is around 8 µm, one should prepare a Rydberg gas with transverse size of several tens of
micrometers (e.g., 30 µm) and with longitudinal size of several millimeters (e.g., 2 mm),
which can be realized by current experimental techniques [72]. To realize the predicted
optical structures, one can inject a continuous-wave probe field; under the condition of the
EIT and by setting suitable system parameters, the probe field will undergo MI and then be
transformed into the optical patterns when it propagates along the z-direction for several
millimeters. In the present work, we have limited our considerations under the ultra-cold
Rydberg atomic gas. It is possible that the system supports optical structures in thermal
atomic gases. There are many inherent broadening effects, such as Doppler broadening,
transition broadening, collision broadening, etc., which should be considered. We think it
may have a richer self-organization structure, which is an interesting topic deserving to be
explored further.

In conclusion, we have proposed a realistic scheme to realize non-Hermitian optical
potentials with or without parity-time symmetry and hence find the pattern formations
through the self-organization of laser light in a cold Rydberg atomic gas. We have shown
that through nonlocal Kerr nonlinearity contributed from the atom–atom interaction, a CIW
probe laser field can undergo an MI, and induce SSB and hence result in various self-
organized optical patterns (including hexagonal and tetragonal lattices, etc.), which can
be actively manipulated by changing the Kerr nonlinearity, its nonlocality degree, and the
potential depth of the non-Hermitian optical potentials. The results reported here open a
route for exploring the SSB and self-organization of laser light for non-Hermitian nonlinear
optics based on cold Rydberg gases.



Photonics 2022, 9, 856 12 of 18

Author Contributions: Conceptualization, Z.S., L.Q. and X.Z.; data curation, Z.S. and L.Q.; funding
acquisition, Z.S. and L.Q.; investigation, Z.S., L.Q. and X.Z.; methodology, Z.S., L.Q. and X.Z.; project
administration, Z.S. and L.Q.; software, Z.S., L.Q. and X.Z.; supervision, Z.S. and L.Q.; validation,
Z.S., L.Q., X.Z. and H.H.; visualization, Z.S., L.Q. and X.Z.; writing—original draft, Z.S., L.Q., X.Z.
and H.H.; writing—review and editing, Z.S., L.Q., X.Z. and H.H. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Hubei University of Automotive Technology, grant number
BK202210; and Henan Normal University, grant number QD2021081.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and/or analysed during the current
study are available from the corresponding author on reasonable request.

Acknowledgments: We are grateful to G. Huang for help with the theory and valuable discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
MI modulation instability
SSB spontaneous symmetry breaking
PT Parity time
NNLSE nonlocal nonlinear Schrödinger equation
CIW constant-intensity wave
2D two-dimensional

Appendix A. Optical Bloch Equations for Density Matrix Elements ραβ

The optical Bloch Equation (2) for ραβ(r, t) reads

i
∂ρ11

∂t
− iΓ13ρ33 + iΓ21ρ11 + Ω∗

pρ31 − Ωpρ13 = 0, (A1)

i
∂ρ22

∂t
− iΓ23ρ33 − iΓ21ρ11 + Ω∗

c ρ32 − Ωcρ23 = 0, (A2)

i
∂ρ33

∂t
− iΓ34ρ44 + iΓ3ρ33 − Ω∗

pρ31 + Ωpρ13 − Ω∗
c ρ32 + Ωcρ23 + Ω∗

dρ43 − Ωdρ34 = 0, (A3)

i
∂ρ44

∂t
+ iΓ34ρ44 − Ω∗

dρ43 + Ωdρ34 = 0, (A4)
(

i
∂

∂t
+ d21

)

ρ21 + Ω∗
c ρ31 − Ωpρ23 = 0, (A5)

(

i
∂

∂t
+ d31

)

ρ31 + Ω∗
dρ41 + Ωp(ρ11 − ρ33) + Ωcρ21 = 0, (A6)

(

i
∂

∂t
+ d32

)

ρ32 + Ω∗
dρ42 + Ωpρ12 + Ωc(ρ22 − ρ33) = 0, (A7)

(

i
∂

∂t
+ d41

)

ρ41 + Ωdρ31 − Ωpρ43 −
1
2
Na

∫

d3r′Vvdw(r′ − r)ρ44,41(r
′, r, t) = 0, (A8)

(

i
∂

∂t
+ d42

)

ρ42 + Ωdρ32 − Ωcρ43 −
1
2
Na

∫

d3r′Vvdw(r′ − r)ρ44,42(r
′, r, t) = 0, (A9)

(

i
∂

∂t
+ d43

)

ρ43 − Ω∗
pρ41 − Ω∗

c ρ42 + Ωd(ρ33 − ρ44)

−
1
2
Na

∫

d3r′Vvdw(r′ − r)ρ44,43(r
′, r, t) = 0, (A10)

where ραβ = 〈Ŝβα〉 is expectation of the density matrix element, Γ3 = Γ13 + Γ23, dαβ =
∆α − ∆β + iγαβ (α, β = 1, 2, 3, 4; α 6= β), ∆1 = 0, ∆3 = ωp − (ω3 − ω1), ∆2 = ωp − ωc −
(ω2 − ω1), ∆4 = ωd + ωp − (ω4 − ω1) are the one-photon, two-photon, and two-photon

detunings, respectively. γαβ = (Γα + Γβ)/2 + γ
dep
αβ with Γα = ∑α<β Γαβ. Here Γαβ denotes
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the spontaneous emission decay rate from the state |β〉 to the state |α〉, and γ
dep
αβ represents

the dephasing rate reflecting the loss of phase coherence between |α〉 and |β〉. We notice
that ρ44,4α(r

′, r, t) = 〈Ŝ44(r
′, t)Ŝ4α(r, t)〉 (α = 1, 2, 3) are the two-body correlators. We also

observe that there exist two kinds of nonlinearity in the system. One of the nonlinearities
such as Ω∗

pρ31 results from the photon–atom interaction (which is local) according to the
coupling between the probe field and atoms. The another is the atom–atom interaction
(which is nonlocal), represented by the terms involving the two-body potential Vvdw(r

′ − r).

Appendix B. Detailed Solutions for Density Matrix Elements

By taking Ωp ∼ ε as an expansion parameter, ραα = ρ
(0)
αα + ερ

(1)
αα + ε2ρ

(2)
αα + · · · , ραβ =

ερ
(1)
αβ + ε2ρ

(2)
αβ + · · · , (β = 1, 2, 3; α = 1, 2, 3, 4; β < α), substituting the expansions into the

Maxwell–Bloch (MB) Equations (2) and (3) and collecting coefficients of εm (m = 0, 1, 2, · · · ),
we can solve the MB equations order by order. At the zeroth order (m = 0) of the expansion,
we obtain

























iΓ21 0 −iΓ13 0 0 0 0 0 0 0
−iΓ21 0 −iΓ23 0 0 0 0 0 Ω∗

c −Ωc

0 0 0 iΓ4 −Ω∗
d Ωd 0 0 0 0

0 Ωc −Ωc 0 0 0 Ω∗
d 0 d32 0

0 0 0 0 −Ωc 0 d42 0 Ωd 0
0 0 Ωd −Ωd d43 0 −Ω∗

c 0 0 0
0 Ω∗

c −Ω∗
c 0 0 0 0 Ωd 0 d∗32

0 0 0 0 0 −Ω∗
c 0 d∗42 0 Ω∗

d
0 0 Ωd −Ω∗

d 0 d∗43 0 −Ωc 0 0
1 1 1 1 0 0 0 0 0 0
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. (A11)

The solutions read

ρ
(0)
11 = 2Γ13

(

2Z2 + 2XY + XΓ34

)

/M, (A12)

ρ
(0)
22 = Γ21[4

(

Z2 + XY
)

+ 2(X + Z)Γ34 − (Γ13 + Γ23)(2Y + Γ34)]/M, (A13)

ρ
(0)
33 = 2Γ21[2

(

Z2 + XY
)

+ XΓ34]/M, (A14)

ρ
(0)
44 = 2Γ21[2

(

Z2 + XY
)

− Z(Γ13 + Γ23)]/M, (A15)

ρ
(0)
32 = [(|Ωc|

2 − d42d43)ρ
(0)
22 + (|Ωd|

2 − |Ωc|
2 + d42d43)ρ

(0)
33 − |Ωd|

2ρ
(0)
44 ]Ωc/D1, (A16)

ρ
(0)
42 = [d43ρ

(0)
22 − (d32 + d43)ρ

(0)
33 + d32ρ

(0)
44 ]ΩcΩd/D1, (A17)

ρ
(0)
43 = [|Ωc|

2ρ
(0)
22 + (|Ωd|

2 − |Ωc|
2 + d42d32)ρ

(0)
33 − (|Ωd|

2 − d42d32)ρ
(0)
44 ]/D1, (A18)

where M = Γ21
{

12(XY+Z2)+ 2Γ34(2X+Z)−Γ23[Γ34 + 2(Y+Z)]
}

+Γ13[2Γ34X+ 4XY−
Γ21(Γ34 + 2Y+ 2Z)+ 4Z2], X = 2Im[(d42d43 −|Ωc|2)/D1]|Ωc|2, Z = 2Im(1/D1)|Ωd|

2|Ωc|2,
Y = 2Im[(|Ωd|

2 − d42d32)/D1]|Ωd|
2, and D1 = d32d42d43 − d32|Ωc|2 − d43|Ωd|

2.
At the first-order solutions (m = 1), we have





d21 Ω∗
c 0

Ωc d31 Ω∗
d

0 Ωd d41











ρ
(1)
21

ρ
(1)
31

ρ
(1)
41






=







ρ
(0)
23

ρ
(0)
33 − ρ

(0)
11

ρ
(0)
43






Ωp. (A19)
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Solutions of ρ
(1)
α1 are

ρ
(1)
21 =

1
D2

[(

d31d41 − |Ωd|
2
)

ρ
∗(0)
32 − d41Ωc(ρ

(0)
33 − ρ

(0)
11 ) + ΩdΩcρ

(0)
43

]

Ωp ≡ a
(1)
21 Ωp, (A20)

ρ
(1)
31 =

1
D2

[

−Ωcd41ρ
∗(0)
32 + d21d41(ρ

(0)
33 − ρ

(0)
11 )− d21Ωdρ

(0)
43

]

Ωp ≡ a
(1)
31 Ωp, (A21)

ρ
(1)
41 =

1
D2

[

ΩcΩdρ
∗(0)
32 − d21Ωd(ρ

(0)
33 − ρ

(0)
11 ) +

(

d21d31 − |Ωc|
2
)

ρ
(0)
43

]

Ωp ≡ a
(1)
41 Ωp, (A22)

where D2 = d31|Ωc|2 + d21|Ωd|
2 − d21d31d41, and other ρ

(1)
αβ are zero. At second-order

(m = 2), we obtain



































iΓ21 0 −iΓ13 0 0 0 0 0 0 0
−iΓ21 0 −iΓ23 0 0 0 0 0 Ω∗

c −Ωc

0 0 0 iΓ4 −Ω∗
d Ωd 0 0 0 0

0 Ωc −Ωc 0 0 0 Ω∗
d 0 d32 0

0 0 0 0 −Ωc 0 d42 0 Ωd 0
0 0 Ωd −Ωd d43 0 −Ω∗

c 0 0 0
0 Ω∗

c −Ω∗
c 0 0 0 0 Ωd 0 d∗32

0 0 0 0 0 −Ω∗
c 0 d∗42 0 Ω∗

d
0 0 Ωd −Ω∗

d 0 d∗43 0 −Ωc 0 0
1 1 1 1 0 0 0 0 0 0



































×











































ρ
(2)
11

ρ
(2)
22

ρ
(2)
33

ρ
(2)
44

ρ
(2)
43

ρ
(2)
34

ρ
(2)
42

ρ
(2)
24

ρ
(2)
32

ρ
(2)
23











































=







































2iIm[Ωpρ
(1)
13 ]

0
0

−Ωpρ
(1)
12

0

Ω∗
pρ

(1)
41

−Ω∗
pρ

(1)
21

0

Ωpρ
(1)
14

0







































. (A23)

At third-order (m = 3), the solutions of ρ
(3)
α1 (α = 2, 3, 4) can be obtained from





d21 Ω∗
c 0

Ωc d31 Ω∗
d

0 Ωd d41











ρ
(3)
21

ρ
(3)
31

ρ
(3)
41






=







a
(2)
23

a
(3)
33 − a

(2)
11

a
(2)
43






|Ωp|

2Ωp +





0
0
Λ



, (A24)

where Λ = Na

∫

dr′Vvdw(r
′ − r)a

(3)
44,41|Ωp(r′)|2Ωp, a

(3)
44,41 can be obtained by solving two-

body correlator equations in the below. Solving the above equation, we obtain

ρ
(3)
31 = a

(3)
31,1|Ωp|

2Ωp +Naa
(3)
31,2

∫

d3r′Vvdw(r
′ − r)a

(3)
44,41|Ωp(r

′)|2Ωp, (A25)

where a
(3)
31,1 = [d21d41(a

(2)
33 − a

(2)
11 ) − d41Ωca

∗(2)
32 − d21Ω∗

da
(2)
43 ]/D2 and a

(3)
31,2 = d21Ω∗

d/D2.
Combining the first three order solutions of ρ31 with Maxwell Equation (3), we obtain the
nonlocal nonlinear Schrödinger equation

i
∂Ωp

∂z
+

c

2ωp
∇2

⊥Ωp + W1|Ωp|
2Ωp +

∫

d3r′R(r′ − r)|Ωp(r
′)|

2
Ωp = 0, (A26)
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where W1 = κ13[d41Ωca
∗(2)
32 + d21Ω∗

da
(2)
43 − d21d41(2a

(2)
33 + a

(2)
22 + a

(2)
44 )]/D2, and R(r′ − r) =

(κ13d21Ω∗
d Na/D2)Vvdw(r

′ − r)a
(3)
44,41(r

′ − r). Note that the two-body equations a
(3)
44,41 should

be solved firstly. To that end, we first solve the second-order solution of the correlators of

ρ
(2)
41,41 which can be obtained from

















2d41 − Vvdw 2Ωd 0 0 0 0
Ω∗

d d41 + d31 Ωd Ωc 0 0
0 Ω∗

d d31 0 Ωc 0
0 Ω∗

c 0 d41 + d21 Ωd 0
0 0 Ω∗

c Ω∗
d d31 + d21 Ωc

0 0 0 0 Ω∗
c d21









































ρ
(2)
41,41

ρ
(2)
41,31

ρ
(2)
31,31

ρ
(2)
41,21

ρ
(2)
31,21

ρ
(2)
21,21

























=























a
(0)
43 a

(1)
41

(a
(0)
33 − a

(0)
11 )a

(1)
41 + a

(0)
43 a

(1)
31

(a
(0)
33 − a

(0)
11 )a

(1)
31

a
∗(0)
32 a

(1)
41 + a

(0)
43 a

(1)
21

(a
(0)
33 − a

(0)
11 )a

(1)
21 + a

(0)
23 a

(1)
31

a
∗(0)
32 a

(1)
21























Ω2
p. (A27)

The solution for ρ
(2)
41,41 = a

(2)
41,41(r

′ − r)Ω2
p(r

′) with

a
(2)
41,41(r

′ − r) =
P0

P1 + P2V(r′ − r)
, (A28)

where P0, P1, and P2 are the functions of system parameters, which are too lengthy to be in-

cluded here. The two-body correlators equations for ρ
(3)
44,4α = a

(3)
44,4α(r

′ − r)|Ωp(r′)|2Ωp(r),
(α = 1, 2, 3) are very lengthy and hence are omitted here, and we just give the formalized

solution a
(3)
44,4α

a
(3)
44,4α(r

′ − r) =

8
∑

n=0
Pn,α V(r′ − r)n

9
∑

m=0
Qm,α V(r′ − r)m

, (A29)

where Pn, Qm (n = 1, 2, . . . , 8; m = 1, 2, . . . , 9) are the functions of Ωd, Ωc, ∆, Γ and γ, which
are too lengthy to be included here.

Appendix C. Constant Intensity Wave Solutions of the NNLSE

We seek the solution of the NNLSE Equation (6) with the form U(ξ, η, s) = u(ξ, η)eiµs.
Substituting the solution into NLSE yields

−µu +∇2
⊥u + Vu −

∫∫

R̂(ξ ′ − ξ, η − η′)|u(ξ ′, η′)|2dξdηu = 0, (A30)

where u(ξ, η) is the complex function, and µ is the corresponding propagation constant,
which will be determined. Now, we rewrite the solution u(ξ, η) in the form u(ξ, η) =
g(ξ, η)eiθ(ξ,η) with g, θ the real function of amplitude and phase, and potential V(ξ, η) =
Vr(ξ, η) + iVi(ξ, η), then we have

− µg +∇2
⊥g + 2i(θξ gξ + θη gη)− g(θ2

ξ + θ2
η) + ig(θξξ + θηη) + (Vr + iVi)g

−
∫∫

R̂(ξ ′ − ξ, η′ − η)g2dξdηg = 0. (A31)
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Furthermore, the nonlinear equation can be separated into real and imaginary parts. Even-
tually, we can obtain two coupled nonlinear equations for the real and the imaginary part
of the equation, respectively,

[Vr − µ − (θ2
ξ + θ2

η)]g +∇2
⊥g −

∫∫

R̂(ξ − ξ ′, η − η′)g2dξdηg = 0, (A32)

g(θξξ + θηη) + 2(θξ gξ + θη gη) + Vig = 0. (A33)

To find the constant intensity wave (CIW) solution, we set g ≡ A = constant, Vr = θ2
ξ + θ2

η .

Then, we have µ = −
∫∫

R̂(ξ, η)dξdηA2 and Vi = −(θξξ + θηη). Let WI = θξ , WI I = θη , we

have general form of the potential V(ξ, η) = W2
I + W2

I I − i( dWI
dξ + dWI I

dη ). In special cases,
we choose

• Periodic potential

WI = a cos(ξ) sin(η); WI I = b sin(ξ) cos(η),

V = a2[cos2(ξ) sin2(η) + sin2(ξ) cos2(η)] + 2ai sin(ξ) sin(η),

u(ξ, η, s) = A exp[ia sin(ξ) sin(η)] exp{iA2[w1 + w2

∫∫

R(ξ, η)dξdη]s}. (A34)

• Parabolic (Hermite-Gaussian) potential

WI = aη + b + F0ξe
− ξ2

2σ2
1 ; WI I = aξ + b + G0ηe

− η2

2σ2
2 , (A35)

where a, b, F0, G0, σ1, σ2 can be arbitrary constant. Without loss of generality, we choose
a = 0.01, b = 0, F0 = G0 = 7, σ1 = σ2 = 5.

• Ring-shaped potential

V = V0e−ζ8/a8
− e−ζ8/b8

− iV2
0

[

a2Γ

(

1
4

,
ζ8

a8

)

− b2Γ

(

1
4

,
ζ8

b8

)]2

/(64ζ2),

θ =
ζ2

4

[

2F2

(

1
4

,
1
4

;
5
4

,
5
4

;−
ζ8

b8

)

− 2F2

(

1
4

,
1
4

;
5
4

,
5
4

;−
ζ8

a8

)]

+
a2 ln ζ

8

[

Γ

(

1
4

,
ζ8

a8

)

+ Γ

(

1
4

, 0,
ζ8

a8

)]

−
b2 ln ζ

8

[

Γ

(

1
4

,
ζ8

b8

)

+ Γ

(

1
4

, 0,
ζ8

b8

)]

. (A36)

Here 2F2(a1, a2; b1, b2; ζ) is the generalized hypergeometric function, Γ(a, ζ) is the
incomplete gamma function, and Γ(a, ζ0, ζ) is the generalized incomplete gamma
function.
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